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libraries that build the backbone of software reuse. Breaking changes, i.e., when an update to a library
introduces incompatible changes that break existing client programs, are troublesome barriers to this
library reuse. Semantic Versioning has been proposed as a practice to make it easier for the users to

Keywords: find safe updates by encoding the change impact in the version number. While this practice is widely
Maven Central studied from the framework perspective, no detailed insights exist yet into the ecosystem perspective.
Method popularity In this work, we study violations of semantic versioning in the MAVEN ecosystem for 13,876 versions of
Compatibility 384 artifacts to better understand the impact these violations have on the 7,190 dependent versioned
Semantic versioning packages. We found that 67% of the artifacts introduce at least one type of semantic versioning

API evolution

; violation, either a breaking change or an illegal API extension in their history. An impact analysis on
Breaking changes

breaking methods that (direct or transitive) dependents reference, revealed strong centralization: 87%
of publicly accessible methods are never used by dependents and among methods with at least one
usage, half of the unique calls from dependents concentrate on only 35% of the defined methods. We
also studied method popularity and could not find an indication that popularity affects stability: even
popular methods break frequently. Overall, we confirm the previous result that Semantic Versioning
is violated repeatedly in practice. Our results suggest that the frequency of breaking changes might
be a sign of insufficient change-impact awareness on the ecosystem and we believe that developers

require more adequate information, like method popularity, to improve their update strategies.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction Depending on a third-party library means that a project ac-
cepts a coupling to the API of said library. However, libraries

Software reuse is a pillar of modern software engineering.  might introduce breaking changes in subsequent versions that
The availability of mature and powerful open-source libraries change the API in an incompatible way, for example, by remov-
has boosted the productivity of developers both in open-source  jng 3 method or by changing its arguments. Updates are often
and industry. For easy release, discovery, and distribution, pack- necessary for consumers to fix bugs or vulnerabilities, so such a
age managers like MAVEN, NPM, or PyPr usually rely on cen-  praqking change to the API is often an unwelcome surprise for the
tralized repositories. These repositories contain vast numbers of developers of the depending project, which forces them to adapt
inter-dependent packages that build self-contained, ever-growing their code. Semantic versioning has émerged as a best practice to

software ecosystems (Decan et al, 2019). The use of depen- . e . . .
dencies has aiready been the focus of a rich body of previous signal compatibility of a change to the previous version, but it is
voluntary and not enforced in the ecosystem.

works that studied, for example, the evolution of dependency net-

works (Benelallam et al., 2019; Soto-Valero et al., 2019), bloated Numerogs studies already investigated various agpects such
dependencies (Soto-Valero et al, 2021, 2020), and vulnerable s usage (Qiu et al, 2016; Wang et al., 2020), evolution (Bavota
dependencies (Zapata et al., 2018). et al,, 2015; Hora et al., 2014; Kogi et al., 2019; Lamothe et al,,

2021), and stability (Raemaekers et al., 2012) of APIs. However,
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non-major upgrades. However, they did not provide any details
about the extent of the method-level impact on the ecosystem
which is the main goal of our study.

In this paper, we advance the perspective on breaking changes
from the library creator to the ecosystem. Instead of treating a
breaking change to a library method as a single incident, we
consider the methods’ popularity in the ecosystem to weigh the
severity of a breaking change. This is achieved by identifying all
dependents of a library in question through a global dependency
graph (Soto-Valero et al, 2019). This global dependency graph
includes a large part of the recent releases in the ecosystem. It is
important to note that we can query this graph for all possible
dependents of any given library that is released recently. All
dependents start using a version after its release date. Therefore,
if we select a library that was released x months ago, all of
its dependents are at least x months old hence our dependent
graph includes them. After generating the call graphs (CGs) for
all dependents, we can identify all references to method defi-
nitions in the original library (through calls or inheritance). A
breaking change can then be identified by comparing the list of
extracted references to the available methods in the next version
of the library. This methodology not only allows us to replicate
previous work and identify breaking changes in the library but
also helps us to reason about the severity of a breaking change
for the ecosystem. We expect that widely-used methods are
more damaging to break because they affect more users. In this
study, we aim to answer three research questions: (1) How often
do semantic versioning violations occur? (2) How is popularity
distributed among library methods? and (3) Is there a relation
between popularity and breaking changes?

We have created a sample of 384 artifacts and 19,639 unique
versions of them. From each of these artifacts, we picked one
version. For the picked versions we identified a total of 7190
unique dependents on MAVEN Central. We used these dependents
to infer method popularity. Our results confirm previous work
by showing that 67% of artifacts violate semantic versioning. To
better understand the effects that these violations have on the
ecosystem, we have further investigated the methods’ popularity.
We found that 87% of publicly defined methods are never called
by another library. From the remaining 13% only 35% receive half
of all calls to the respective library.

In this study, we show that maintainers introduce breaking
changes in popular methods as often as less popular methods.
One possible explanation for this is that library maintainers may
not always be aware of the popularity of their methods. It is
important to note that the adoption of a library is typically in
the best interest of its maintainers, and the lack of upgradability
may sometimes hinder this goal. Providing sufficient information
to library maintainers about the popularity of their methods has
the potential to help them enhance the upgradability of their
library. While some breaking changes may be inevitable, there
are cases where the severity of certain breaking changes may be
underestimated. In situations where a breaking change affects a
widely used method, maintainers may decide to notify users with
a major release.

The contributions of this study are as follows:

e A quantitative analysis of APl method extensions and con-
tractions that violate semantic versioning.

e An empirical study of the popularity distribution in typical
APIs of MAVEN libraries.

e Aninvestigation of the extent of user breakage that semantic
versioning incompatibilities cause on MAVEN.

2. Related work

We found three areas of research to be closely related to this
paper: software ecosystems, dependency management, and APIs
and breaking changes.
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Software ecosystems. Multiple studies investigated the software
ecosystems from different aspects. Decan et al. (2019) found that
dependency networks are growing over time by analyzing the
evolution of different package managers. Moreover, they real-
ized that a minority of packages are used by a majority of the
network. Several studies (Kula et al., 2017b; Benelallam et al.,
2019; Soto-Valero et al., 2019) modeled software ecosystems
using graphs with package versions as nodes. They used these
graphs to study MAVEN Central and the CRAN. Their findings
show that MAVEN ecosystem has a more conservative approach
to updating dependencies than CRAN. They also studied activ-
ity, popularity, and timeliness of more than 1M artifacts in the
MAVEN Central. However, these studies only consider package-
level relations. Raemaekers et al. (2013) presented the dataset
of MAVEN containing information about 148K Java libraries and
their CGs. The authors only provided a dataset of metrics and
CGs but contrary to our work they do conduct any ecosystem
analysis using this data. Hejderup et al. (2018) proposed a fine-
grained dependency network that uses CGs to model function
interactions in the ecosystem. The authors present a methodology
to construct and analyze this network. This study also does not
provide insights into the method-level relations of the ecosyste-
ms.

Dependency management. Various studies studied different as-
pects of dependency management such as their updates, trends,
and adoption. Several other studies (Soto-Valero et al., 2021,
2020) studied the use of bloated (i.e., unused) dependencies. They
showed that once a package becomes bloated in a project it is
likely to stay bloated. They also found that bloated dependencies
are mostly the result of transitive dependencies. Zapata et al.
(2018) studied developer reactions to known vulnerable depen-
dencies. This study shows that 73.3% of clients using vulnerable
dependencies are not running vulnerable code. Hence they con-
firm that analysis at the library level is an overestimation and
function-level analysis is needed. Alrubaye and Mkaouer (2018)
automated library migration to save time and reduce the knowl-
edge requirements for engineers. They use method-level changes
in programs that already migrated and automate the procedure
for others that are interested in migration. Mileva et al. (2009)
presented an approach to support developers in their decision to
upgrade a dependency using wisdom of the crowds. Macho et al.
(2021) analyzed trends of changes in MAVEN build files. Kula et al.
(2017a) presented a way to decide when a library needs to be
updated based on its usage level. Kula et al. (2018) conducted an
empirical study that covers over 4600 GITHUB software projects
and 2700 library dependencies. The findings of this study show
that 81.5% of the studied systems keep outdated dependencies.
Kula et al. (2015) studied the adoption habits and trust of main-
tainers towards new releases of an existing library. The study
concludes that maintainers are becoming more trusting of new
releases and becoming inclined to update their existing systems
to the latest release.

The aforementioned studies inspect dependency-related top-
ics. However, none of them empirically studies the API usages of
the MAVEN ecosystem. Most of them only considered package-
level relationships between packages. In this study, we will con-
sider API usage and empirically study method-level networks. We
leverage the CGs of libraries to provide insights about the APIs of
the MAVEN with method-level precision.

APIs and breaking changes. Some studies specifically targeted the
library APIs and investigated their patterns, stability, usage, etc.
Qiu et al. (2016) studied API usage of 5k open-source projects.
Their findings show that the API usage obeys a Zipf distribu-
tion and deprecated APIs are still widely used. Bavota et al.
(2015) studied the evolution of a set of projects. They show
that when releases contain major changes a large amount of
them are bug fixes. They also show that developers are more
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reluctant to upgrade when APIs are removed or altered. Wang
et al. (2020) empirically investigated the usage and updates of
packages in Java projects. They also provide a prototype of a
tool that alerts developers about updating packages. Xavier et al.
(2017) studied the frequency of breaking changes, the behavior of
these changes over time, their impact on users, and the charac-
teristics of libraries with a high frequency of breaking changes.
Lima and Hora (2020) categorized APIs into popular, ordinary,
and unpopular. They found that popular APIs often have more
public methods, more lines of code, a higher complexity, higher
relative complexity per method, change more frequently, and
have more contributors. However, they also found that there is
no change in the relative line of code, method name length, or
the number of parameters of popular APIs and they are often
used early in the development cycle and are often more unstable.
Harrand et al. (2022) performed a large scale study on MAVEN.
They discovered that with sufficient users, all APIs seem to be
used, but there is a concentration of usage on a small set of APIs.
Meaning developers could focus on a smaller portion of APIs and
save time. Hora et al. (2014) proposed a tool to extract rules
by monitoring API invocation changes in the code history. This
then can be used to keep track of the evolution of an APl Kim
et al. (2011) performed a large analysis of API refactorings and
bug fixes. Their findings revealed that the number of bug fixes
increased after refactorings, while the time required to address
these bugs decreased. Koci et al. (2019) investigated changes that
happen to APIs and classified them to gain a bigger picture of
API evolution. Nguyen et al. (2010) presented LIBSYNC, a tool for
developers who want to upgrade their dependencies. It suggests
to users a way of adapting their API usage by learning from clients
that have already migrated to a new library version. Hora et al.
(2018) performed an exploratory study to observe API evolution
and its impact on the PHARO software ecosystem. Lamothe et al.
(2021) reviewed the literature on APIs and API evolution. They
conclude that the main challenges are identifying factors that
drive API changes, creating a uniform benchmark for research
evaluation, and the impact of API evolution on various program-
ming languages. Raemaekers et al. (2012) proposed four different
metrics for the stability of the libraries. Raemaekers et al. (2017)
studied how new releases of a library impact the client libraries
and their semantic versioning. They found that on average one
in three releases introduce breaking changes that produce com-
pilation errors that need to be addressed. The above-mentioned
studies investigated APIs from different aspects. However, none
of them focuses on an analysis of public APIs from the consumer
perspective at the ecosystem level.

3. Experimental setup

Our approach contains multiple components that enable us to
perform the desired analyses. In this section, we first provide a
brief overview of these components and the overall methodology.
Then we elaborate on different components for example the
SAMPLER component that is used for the data selection.

3.1. Overview

Within Maven Central, all packages are uniquely identified by
a triplet consisting of groupId:artifactId:version. In this
paper, we refer to such an identifier as a Versioned Package (VP).
We also use the term artifact to refer to a package but not a
particular version, i.e. groupId:artifactId.

Fig. 1 illustrates an overview of the methodology of the paper.
We resolve dependents of all versioned packages released in a
particular time frame on MAVEN. For this, we use our DEPEN-
DENT RESOLVER component which is described in Section 3.2.

The Journal of Systems & Software 203 (2023) 111738

This component internally uses DEPENDENCY RESOLVER (red arrow
in the overview figure). The next step is selecting a subset of
versioned packages to analyze. We select 384 versioned packages
for the analysis using the SAMPLER component. This component
is described in detail in Section 3.3. For the dependents of any
selected versioned package, we resolve their dependencies. We
describe our dependency resolution in Section 3.4. Note that,
the list of dependencies of each dependent contains the original
versioned package that was selected as a target for the analysis.

In the rest of the paper, we call these versioned packages
target versioned packages and their corresponding artifacts target
artifacts.

In the next step, all dependency sets are transmitted to the
STATIC ANALYZER component (see Section 3.5). This component
performs two crucial tasks. Firstly, it generates a Call Graph
(CG) for each dependency set and transmits it to the CG JOINER.
Secondly, it forwards the method definitions of the target artifacts
and their respective versions to the SEMVER ANALYZER (explained
in Section 3.6). The CG JoINER (refer to Section 3.5) combines
these Call Graphs into a single joined CG for each target versioned
package.

These CGs contain all method calls from dependent versioned
packages to the target versioned packages. All other edges such
as internal calls of these libraries are filtered. Finally, we analyze
method declarations to find violations of semantic versioning in
SEMVER ANALYZER resulting in violation information. POPULARITY
ANALYZER then uses this information together with joined CGs to
find if the violations affect the most popular methods.

Fig. 1 also shows the data that goes through this pipeline
alongside an example. Consider g : a : vy as a versioned package
that is released within our target time frame. g : a : vy is one of
its dependents resolved by DEPENDENT RESOLVER. In the second
step SAMPLER selects g : a : v; as a target versioned package.
Afterward, DEPENDENCY RESOLVER includes g : a : v; among the
dependencies of g : a : vy. In the fourth step, STATIC ANALYZER
generates a CG for all dependency sets including g : a : v,’s. This
component also uses MAVEN to find all the versions of selected
artifacts and extracts their method definitions such as method
n()ing:a:v;.

After acquiring all the versions of the selected artifacts, the
SEMVER ANALYZER computes any breaking changes and illegal API
extensions, such as the removal of the method n() ing : a :
vy, which is the subsequent minor release after g : a : v;.
Meanwhile, the CG JOINER joins the CGs it receives, resulting in
a unified CG that contains an edge from method m(), defined
ing : a: vy to method n(), defined in g : a : vy. Using all
the calls to the methods defined in the target versioned packages,
the POPULARITY ANALYZER calculates the popularity values for
methods. For instance, the popularity value of n () is greater than
zero because it is utilized at least once by g : a : vy.

By removal of n() method m() would break should develop-
ers of g : a : vy decide to update to g : a : vy;. We use popularity
values, breaking changes, and illegal API extension information
for the reports and figures of this study.

3.2. Dependent resolver

Dependent resolution is the process of identifying versioned
packages that refer to a particular target versioned package, either
directly or transitively. One needs to first perform dependency
resolution for all versioned packages on the ecosystem. Using this
information, one can create a so-called dependency graph. This
graph determines which versioned packages are dependent on a
given versioned package by retrieving the incoming edges of the
given node. We replicated the approach presented by Benelallam
et al. (2019) to create this graph.
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Fig. 1. Overview of the methodology. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We created this graph by including releases from 1st of Oc-
tober 2021 to 31st of March 2022. This contains 537K versioned
packages that are released in this time frame and we add them as
initial nodes of this graph.

MAVEN index (mavenIndex, 2022) lists all versioned packages
that are being released. We use this index to include releases
of our target time frame. We also include all dependencies of
each versioned package by analyzing their POM files. We do not
resolve the exact versions of these dependencies in this phase
and only store the information available in the POM file. Most de-
pendency definitions specify the exact versions. For these cases,
we simply add a dependency edge between two versioned pack-
ages. However, some POMs define version range dependencies.
This is less common than exact versions dependency definitions.
For these cases, we also store the range information separately.
Consider versioned package g:a:0 and g:a:1 that both define
the dependency g:d: [1,5] in their POM files. This dependency
refers to all releases between version 1 and 5. We use this
example in the rest of this paragraph to show how DEPENDENT
REsOLVER functions. While adding g:d as a dependency we store
the range information [1,5]. We resolve the exact versions only
on demand once we receive queries. For each query about the
dependents of a given versioned package, we first return all poten-
tial dependents that exist in the whole graph. This includes both
direct and transitive dependents. For example, when A depends
on B and B depends on C we also count A as a dependent of C.
Next, we use the dependency resolver (see Section 3.4) to resolve
the dependencies of each potential dependent at the current
moment. After that, we check whether or not the given versioned
package is present in their dependency sets. For example, when
we receive a query about the dependents of g:d:1 we return
both g:a:0 and g:a: 1. We then resolve dependencies of g:a:0
and g:a:1 to validate whether or not g:d:1 is among their
dependencies. Assuming that g:a:0’s dependency set does not
contain g:d:1 and g:a:1’s does, we keep g:a:1 and eliminate
g:a:0 from the list of its dependents. We opted for analyzing a
particular time frame because it enables us to find the complete
set of dependents for any versioned package that is released within
or after our target time frame. Users can depend on each ver-
sioned package only after its release, not before, so this approach
provides a comprehensive view of the dependents existing on
MAVEN.

3.3. Sampler
We have continuously collected data from MAVEN central and

created a dataset that represents the current state of the ecosys-
tem. This dataset contains all versioned packages that are released

release

Fig. 2. Random selection example.

between the 1st of October 2021 and 31st of March 2022. We
call this time frame our sampling frame. The sampler component
is responsible for selecting a set of versioned packages that is
representative of this dataset. This sampling is done because CG
generation is a highly expensive task and not feasible to perform
for all existing versioned packages. Fig. 2 shows an example of this
sampling. In the remainder of the Section, we use this example to
describe the steps we take in our data selection. In the sampling
time frame, some artifacts may have only one release (g2:al),
some may have multiple releases (junit:x, g3:a2), and some
may have no release (g1:a2, g3:al). As the first step of our se-
lection, we filter the artifacts without any release in the sampling
frame (g3:al, gl:a2). MAVEN Central repository contains ap-
proximately 9M indexed packages. However, the aforementioned
6 months time frame contains approximately 537K versioned
packages. These versioned packages are released within the sam-
pling frame. For example, in Fig. 2 there are 6 versioned packages
within the sampling frame (gray area) including two junit:x,
one g2:al, and three g3:a2 releases. Fig. 3 shows the number of
versioned packages that are released within the sampling frame
on MAVEN Central.

Before we sample, we apply two filters to the sampling frame;
which allows us to create a more representative set of versioned
packages. The first filter we apply is to remove testing-related
versioned packages that contain the keywords assertj, junit,
mock and test from the dataset. We do this because our purpose
is to analyze the regular library API usage while testing-related
libraries have different usage patterns. Also, the versioned pack-
ages uploaded to MAVEN Central usually do not contain sufficient
bytecode information to analyze the testing-related part of the
code. In the example, artifact junit:x will be filtered after this
step which leads to four remaining versioned packages derived
from two unique artifacts i.e. g2:a1, g3:a2. After applying this
filter on MAVEN data, approximately 380K versioned packages
remain. These versioned packages are derived from 10.6K unique
artifacts. To avoid a bias towards artifacts with a high release
frequency, we randomly select only one version from each of the
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Fig. 3. Number of releases in the dataset per month.

10.6K unique artifacts that we could identify in the dataset. In the
example, this step is specified with S1. L.e. from each remaining
artifact (g2:al, g3:a2) we randomly select one version. In case
of g2:al there is only one versioned package (Vil) in sampling
the frame, while g3: a2 has three versions and we pick the second
one (Vj2) randomly as shown in Fig. 2.

Popular versioned packages with many dependents influence
the overall ecosystem more, thus we perform weighted random
sampling based on the number of dependents (direct and tran-
sitive) that versioned packages have. In example, assume that
g3:a2:vj2 has 20 dependents and g2:al:vil has 10. Conse-
quently, g3:a2:vj2 is twice more likely than g2:al:vil to
be selected in this step. SAMPLER uses DEPENDENT RESOLVER (see
Section 3.2) to get the number of dependents that each ver-
sioned package has. Table 1 shows the number of dependents
per versioned package. More than 7.5K artifacts do not have any
dependents, which using weighted random sampling cannot be
selected. To verify the correctness of this, we randomly picked
10 of these cases and manually checked their dependent number
with two other sources: LIBRARIES.I0! and the usage tab of MAVEN.
They all had no dependents. We observed that some of them
are very new releases. Therefore, they did not have the chance
yet to attract users. The rest are unpopular versioned packages
due to different reasons such as being from a very unpopular
package. We believe these cases happen because the majority
of the versioned packages are barely used, especially in the early
stages of their lives while a minority are highly used. Previous
research (Soto-Valero et al.,, 2019; Harrand et al., 2022; Decan
et al.,, 2019) as well as our findings show very similar patterns
in library usage within the ecosystem. To achieve generalizable
results, we made sure to select a representative subset of li-
braries. The dependent distribution for versioned packages follows
an inverse logarithmic distribution. We selected 384 versioned
packages from the 3.1K versioned packages with 10.7K non-unique
dependents (7190 unique), which gives our results a confidence
level of 95% and max the margin of error of 5%.

Our popularity analysis requires CG generation for all de-
pendents of selected versioned packages. Thus we use the de-
scribed 384 versioned packages in Popularity Analyzer component
(Section 3.8). However, Static Analyzer (Section 3.5) and SemVer
Analyzer (Section 3.6) use all versions of the selected artifacts that
are available on MAVEN. In Fig. 2 we show this by S2 as the final

1 https://libraries.io/.
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Table 1
Number of dependents.

Dependents versioned package
0 7533
1 2091
2-9 844
10-24 88
25-49 33
50 27

step of our selection process. Using weighted random sampling
we pick g3:a2:vj2. This versioned package is used in Popular-
ity Analyzer component for the impact analysis. However, Static
and SemVer Analyzers inspect all versions of the corresponding
artifact g3:a2 including vjO, vj1, vj2, vj3, and vj4.

3.4. Dependency resolver

Dependency resolution is resolving what dependencies a ver-
sioned package needs to compile, build, test or run. These depen-
dencies are (directly or transitively) specified in the pom.xml file.
For transitive dependency resolution, one needs to recursively get
the dependencies of all dependencies and consider the MAVEN-
specific resolution rules for solving conflicting definitions within
the dependency set.

Dependency resolution in MAVEN is not deterministic because
of version ranges (VersionRanges, 2022). New releases on MAVEN
may change the outcome of dependency resolution for existing
projects, even if the specified dependencies in pom.xml are stable.
One such scenario arises when there are conflicting versions in
transitive dependencies. Suppose we have two dependencies, D,
and D,, that rely on different versions of the library L, for instance,
Di — L,; and D, — L, and project X depends directly on both
Dy and D,. This leads to a dependency conflict because X cannot
include both L,; and L,; in its dependency set simultaneously.
Different versions of the same package may have varying APIs and
behaviors, so MAVEN permits only one version from each package
to be present in the dependency set after resolution.

When a conflict occurs, MAVEN addresses it by conducting
a breadth-first search and choosing the closest version of the
conflicting dependency to the root. For instance, if X defines D,
before D,, the closest version of L to the root (X) is L,;. As D,
defines L,, in the dependency tree of X, L,, appears after L,;. In
this example, the dependency set may alter from the perspective
of D, when X relies on D1, compared to when it does not. MAVEN
has numerous similar cases of dependency resolution, making
it excessively complicated. We do not implement this feature
ourselves, but instead, we use a re-implementation of MAVEN's
built-in dependency resolution from a Java library (artifact, 2022).
This tool enables us to include all dependencies, including tran-
sitive ones, when resolving dependencies. As a result, we handle
transitive dependencies similarly to direct dependencies.

3.5. Static analyzer

The static analyzer component extends an existing framework
OPAL (Helm et al., 2020) to perform two types of analyses. This
analyzer both generates CGs for versioned packages and their
dependencies and extracts the method definitions in versions of a
given artifact. In the following, we explain each of these analyses.

Generation. After receiving a dependent and its dependency set
we perform class hierarchy analysis (CHA) (Dean et al.,, 1995) to
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Fig. 4. Example dependency set and its CG.

ensure all possible method calls are contained within the CG. A
class hierarchy analysis determines a program’s class inheritance
graph and the set of methods defined in each class. Using these
two pieces of information we add all possible invocations of any
method to the CG.

Fig. 4 illustrates a minimal dependency set and its correspond-
ing CG, which we will use as an example to elaborate on the steps
we take in our analyses. As previously explained, CHA analysis
overapproximates and draws edges to all possible implementa-
tions of a target method. For example, in the running example,
method n in class B calls method m using object a. However,
since the CHA algorithm does not reason about the control flow
of the program, the exact type of a is unknown. Therefore, B.n
is connected to both A.m and B.m, as illustrated in Fig. 4. This
becomes more complicated when object a is not defined in the
same scope, such as when it is passed as an argument to method
n. It is worth noting that A could also be an interface, and m
could be an abstract method. In such cases, the algorithm would
perform similarly, except it would not draw an edge to A.m
because an abstract method is not executable. Nonetheless, the
algorithm considers A in the type hierarchy and draws edges to
its subtypes.

It is important to note that the imprecision caused by this
algorithm only occurs for virtual dispatch calls, which are calls
that cannot be statically resolved. Despite this imprecision, we
believe CHA is a suitable trade-off for our analysis, balancing
soundness, scalability, and precision. More precise analyses, such
as CFA CG generation, lack scalability. Dynamic CG generation is
also not practical for our use case due to a lack of scalability and
coverage.

In this part, we also generate unique identifiers for each
method within the ecosystem. We call these identifiers Global IDs
(GID). These GIDs help us join the generated CGs in CG JOINER
3.7.

Method definition extraction. For each target artifact, we first
query MAVEN for all versions. Having all versions we extract all
public method definitions that they have and assign them a GID.
It is important to note that we only consider method definitions
(methods with a body) because CGs only resolve edges to defined
methods since declared methods (without a body) cannot be
executed. In the next steps of the study, we limit the scope to
methods with body i.e. method definitions to be able to connect
semantic versioning violations to method popularity. Moreover,
since public visibility is the most common access modifier for
library usage we consider such methods as API endpoints that we
analyze. Hence, we use the term publicly defined method to refer
to such methods.
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Fig. 5. Two releases of an example artifact and their dependents.

3.6. SemVer analyzer

This component analyzes semantic versioning violations in
a given versioned package. We categorize these violations into
two categories. The first category is breaking changes, which are
changes that break compatibility within a major version. The
second category is illegal API extensions, which is considered an
extension of the API in patch versions.

We define breaking changes as changes that alter or remove
a method signature. In addition to the name, our definition of
method signature also includes return type and all arguments.
Such changes should be introduced in major version upgrades
only, Semantic Versioning is violated when these changes occur
in minor or patch releases. This means that, when a new mi-
nor or patch version is released, a public method signature has
been altered or removed which breaks the compatibility of an
APL This leads to issues in case this method is called by some
dependents. Therefore, changes that remove method signatures
are not allowed, unless they are part of a major version upgr-
ade.

To detect such violations we analyze the evolution of method
signatures in the release history within the sampling frame.
We look at the set of method signatures publicly available in
a given versioned package v, and compare it to the previous
version’s set of method signatures, the goal is to identify cases,
in which signatures that existed before are removed in v, (See

Eq. (1)).

Sig(vn—1) — Sig(vn)  H(vn, va—1) € Major(vn)}

BC = 1
(vn) ] otherwise 3
where:

BC(vy) = Set of breaking change signatures introduced in

Un
Major(v,) = Set of patch and minor in the same major
version as v,

Sig(vy) = Set of public method signatures defined in v,

Fig. 5 shows two consecutive releases of artifact a. We use
this figure as a running example to explain the next steps of
our approach. For conciseness, we use a number to refer to each
method. This figure also shows fully qualified method names
next to their corresponding number. To calculate the breaking
changes of versioned package a : v,, assuming that v, and v,_;
are within the same major version, we need to subtract the set of
methods in a : v, from a : v,_;. This means {1, 2, 3} — {1, 2, 4, 5}
resulting in {3} which can also be illustrated as BC(a : v,) = a :
vp—1/x/Y .c()void.

The second category of violations is the extension of the API
in a patch version. We use a similar approach as before with
a small adaptation. We iterate over the different patch versions
and detect if a new method signature is added. This means there
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has been an extension of the API within a patch version. We
find illegal API extensions of versioned package v, by finding the
difference between the previous patch version’s set of method
signatures and the set of method signatures in v,, the goal is to
identify cases, in which a signature did not exist before but was
added to the v, (See Eq. (2)).

Sig(vn) — Sig(va—1) — Up(vn)  I{(vn—1, va) € Minor(v,)}

EX(v,) =

% otherwise
(2)
where:
IEX(v,) = Set of signatures illegally added to v,
Up(vy) = Set of updated signatures in v,

Minor(v,) = Set of patch releases within the same minor
version as vy

Sig(vy) = Set of public method signatures defined in v,

Our approach shares similarities with a conventional diff cal-
culation function in that it treats updated parts as a removal and
an addition. Consequently, the updated methods belong to both
the ‘BC’ and ‘IEX’ categories if we do not exclude them. While
these updated methods qualify as ‘BC’ because they may impact
users, they should not be considered as ‘[EX’ because they are
related to previously existing methods and not independently
added. To identify the methods that truly belong to the ‘[EX’
category, we subtract the updated methods (Up(v,)) in Eq. (2). To
compute the set of potential updated methods, we use a heuristic
approach that only considers sets of fully qualified signatures in
releases. The heuristic approach, outlined in Algorithm 1, iden-
tifies five categories of changes in a release, including package
name, class name, method name, parameters, and return types
refactoring. This heuristic searches for pairs of removals and
additions that contain only one renamed piece of fully qualified
method names. For instance, if an added method has a similar
package name, class name, method name, and parameters to a
removed method and only differs in the return type, we consider
it as one potential update. We do not consider other cases of
updates in this heuristic such as when two or more elements
of the signature are updated. Although this approach may not
capture all types of updates that can occur in a release, it provides
a reasonable approximation for our study.

Up(vy) is the only source of unsoundness in our calculation of
‘[EX’ and can be replaced with more accurate approaches if nec-
essary. Notably, achieving accuracy in this context would require
calculating the differences between the complete binary files of
consecutive releases, which is resource-intensive and impractical
in terms of scalability. Therefore, this approach falls outside the
scope of our study.

Algorithm 1 Find Updated Methods

Require: added: list of method signatures added to v,
Require: remowved: list of method signatures removed from v,
Ensure: result: list of updated signatures in v,

1: result < {}

2: for a € added do

3: for r € removed do

4 r.sig < [r.pkg, r.class, r.name, r.params, r.return]
5 a.sig < [a.pkg, a.class, a.name, a.params, a.return]
6: if r.sig differs from a.sig in only one element then
7: result < result U {a}

8 end if

9: end for

10: end for
11: return result
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Returning to the example in Fig. 5, we illustrate the process
of calculating illegal API extensions for versioned package a : v,.
First, we subtract the set of methods in a : v,_; from v,. That
is, 1,2,4,5 — 1, 2, 3, which results in 4, 5. Alternatively, we can
express this as [EX(v,)+Up(v,) = x/Y.d()void, x/Y .e(int)int. Next,
using Algorithm 1, we compare all pairs of additions and removals
in v,. The set of additions in v, is 4,5 and the set of removals
is 3. This means that in this algorithm, we compare x/Y.c()void
to x/Y.d()void and x/Y .e(int)int. The only two cases with a single
element difference (method names) are 3 and 4. Thus, we count 4
as an updated version of 3. This implies that Up(v,) = x/Y.d()void
and IEX(v,) = x/Y .e(int)int.

3.7. CG joiner

Using the list of dependents, we need to determine how every
dependent interacts with target versioned package. Within STATIC
ANALYSER 3.5 we generated a CG for every dependent and its
dependencies. Note that the dependencies of each dependent
contain a target versioned package. Initially, we build one unique
CG per dependent, but as every node has a unique identifier, we
can join these individual CGs to get a joint CG for one target
versioned package. Every node within our CGs has a unique identi-
fier. While analyzing each versioned package for the first time we
use a combination of MAVEN coordinates of the versioned package
and fully qualified names of methods (including java package and
return types) to uniquely identify each method within the ecosys-
tem. Consequently, we can join CGs that are related to a target
versioned package into a single CG. See Fig. 6 for an example of CG
joining. In this Figure, a node P is common between two graphs.
When we join these graphs the result shows what other nodes
call this node from both graphs. See Eq. (3) for the mathematical
formula behind joining CGs.

GiUG =(ViUVy, EfUE; U{(a,b):€ Vi, b e V2}) (3)
where:

Gy = Graphx

Vy = Vertices of graph x

E, = Edges of graph x

After joining the CGs of a target versioned package we have a
representation of the interactions between versioned package and
its dependents, in an individual CG. However, this joined CG con-
tains many edges that are irrelevant to our study. Every possible
edge that happens in the context of each dependent is present
in this joined graph, such as internal calls of the dependents.
In the next step, we filter all irrelevant edges. Suppose we are
analyzing target versioned package x, we reduce this joint CG to
the edges that have a source outside of x and a target inside of x.
Consider the running example in Fig. 4. Suppose gy:ay:0 is one
of our target versioned packages. In the filtering step, we iterate
over all four CG edges shown in this figure. For each of them,
we check the two aforementioned conditions. All of these edges
pass the first check which is whether or not their source method
is defined outside of gy:ay:0. This is because B.n is defined
in gx:ax:0 and not in our target versioned package (gy:ay:0).
In the second condition check, however, two of the edges are
identified as filterable edges. Since B.o and B.m are defined
within gx:ax:0 we filter B.n->B.o, B.n->B.m. Similarly, we
process any existing edge in the joined CG. This procedure also
filters indirect calls to versioned packages. For example, a call from
another method to B.n would be filtered since B.n is not defined
within target versioned package. In this study, our focus is the in-
tentional usage of library methods and indirect calls in the CG do
not capture them. The remaining CG only includes the method-
level interactions between the library and its dependents. This



M. Keshani, S. Vos and S. Proksch

The Journal of Systems & Software 203 (2023) 111738

Fig. 6. Example of CG joining.

allows us to determine popularity scores and influence ratings
based on all interactions within a given versioned package.

3.8. Popularity analyzer

This component calculates two types of popularity values.
Firstly, it calculates the popularity of the target versioned pack-
ages. And secondly, it calculates the popularity of methods within
them. We are inspired by Raemaekers et al. (2017) to use the term
popularity in this study. For the library popularity, we divide the
number of dependents of versioned package v by the number of
all unique dependents (7190) to calculate the popularity of v (see
Eq. (4)). The value reflects the popularity of a versioned package
among dependents.

|Dependents(v)|
P(v) = (4)
\U¢er Dependents(t)
where:
P(v) = popularity of versioned package v
Dependents(v) = dependent set of versioned package v
T = set of target versioned packages

Consider Fig. 5. To calculate the popularity of a : v, we should
divide the number of dependents that a : v, has by the number
of all dependents. Assuming that our dataset only includes four
dependent versioned packages (d1, d2, d3, d4) we should divide
one by four. d4 is the only dependent that uses a : v, thus
P(v,) = 1/4. This value is 3/4 for P(a : vy_1).

Having the joined CGs we count the distinct dependents that
call each method of the target versioned package. We then divide
this by the number of all dependents that the target versioned
package has to understand the relative popularity of a method
among its dependents. We devise a simple metric called distinct
dependents usage. Eq. (5) shows this metric for a given method M.

1 1 3
DRM)= —————— Y dm e s
|Dependents(p)| 0 otherwise
deDependents(p)
where:
mep = versioned package p defines method m
DR(m) = ratio of dependents that call the method m
Dependents(p) = dependents set of the target versioned
package p
{d, m} = edge between a dependent d and a method
m
CGp = joined CG of p

Consider Fig. 5 once again. The popularity value for a : v,_1/
x/Y.a(int)void is 2/3 since out of three dependents of a : v,
(d1,d2,d3) two of them (d2, d3) call this method. Moreover,
DR(a : vy_1/x/Y.b()int) = 1/3 since only d1 calls this method.
DR(a : wvp—1/x/Y.c()void) equals 1/3 because only d2 calls it.
Finally, DR(a : v,/x/Y.d()void) = 1/1 as d4 is the only dependent
of a : v, and the only caller of this method.

Table 2
Type of release per artifact for the selected artifacts.
Mean Median Std Sum
Major 14 1.0 2.1 509
Minor 111 5.0 16.6 3894
Patch 26.8 11.0 55.2 9473
Total 39.3 23.0 60.1 13876

4. RQ1: How often do semantic versioning violations occur?

The first category of violations of semantic versioning is
through breaking changes, which are changes that break com-
patibility. We expect that the evolution of an API sometimes
leads to incompatibility, due to developers removing or changing
the existing set of method signatures of an artifact within a
minor or patch release. The second category of violations of
semantic versioning is the extension of an API through patch
versions. Hence, we investigate the extent of semantic versioning
violations in the first research question.

As a first step, we filter the versioned packages that do not com-
ply with the semantic versioning structure. L.e we filter versioned
packages with a qualifier such as pre-releases, snapshots, betas,
etc. We do this because semantic versioning does not provide
any rules for them. Selected artifacts have 5763 releases with one
type of such qualifiers. However, they have 13,876 releases that
adhere to the default structure of the semantic versioning and we
use them in our study.

We use SemVer Analyzer as described in Section 3.6 to re-
trieve the set of breaking change methods in all remaining target
versioned packages and their newer versions. We compare the
retrieved set of breaking change methods with the set of total
methods defined in respective artifacts and calculate the percent-
age of methods that break in each artifact. Using this data, we can
show the extent of violations within the ecosystem at the library
level. We then compare the number of methods that artifacts
define and the number of breaking changes they introduce. This
information helps us discover any method-level trends between
the number of methods and the number of violations if they exist.
We conduct similar analyses for illegal API extensions as well.

To understand the extent of semantic versioning violations
we analyze the selected artifacts. Table 2 shows the number of
releases per artifact. As this table shows, patch releases (9473)
happen more often than minor releases (3894). This is expected
because multiple patches are usually released between two minor
releases. The same explanation is also valid when comparing the
number of minor (3894) and major (509) releases. Overall, we
analyze all releases (13,876) of 384 selected artifacts. In the rest
of this section, we investigate how often breaking changes occur
and, if they occur, what portions of the artifacts are affected.
Firstly, we found that among selected artifacts 244(63%) intro-
duce at least one breaking change in their history. Secondly, as
Fig. 7 shows the percentage of methods involved in breaking
changes differs among artifacts that have at least one breaking
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Fig. 7. Ratio of methods involved in breaking changes.

change. This figure shows the percentage of public methods,
defined in an artifact, that are involved in breaking changes.
In 22(9%) of artifacts, less than 1% of methods are involved in
breaking changes. These percentages are calculated for only ar-
tifacts with breaking changes. On average, 19% of methods of the
artifacts with breaking changes are affected by the breakage. In
addition, we can notice that for higher ratios, only a small number
of artifacts have such a high ratio. Only 22(9%) artifacts have
more than 50% of their methods involved in breaking changes.
Fifty-five percent of artifacts feature a ratio that is not bigger
than 15%. However, several outliers exist that feature a noticeably
higher ratio, indicating that these artifacts contain many breaking
changes.

Now we realize different artifacts break to different extents.
That is the number of methods involved in breaking changes
highly differ between artifacts. We suspect that some libraries
may break more methods because they have more methods in
total. To this end, we investigate whether or not the total number
of methods that these artifacts define is related to the number
of breaking change methods. Fig. 8 shows the total number of
public methods that artifacts have against the total number of
breaking changes that occur in them. The axes in this figure are
logarithmically scaled because the number of methods and break-
ing change methods highly differ between artifacts. Therefore, it
is not practical to show them in a linear plot. As can be seen in
this figure there is a tendency for artifacts with more methods
to involve more methods in breaking changes. We fit a linear
regression model with a confidence interval of 95% to better show
this trend. The blue line in the figure shows this regression model.
We conclude that indeed a larger number of methods leads to
a larger number of breaking changes. However, we observe that
the number of breaking changes does not grow as rapidly as the
number of methods. This is in line with the findings of Raemaek-
ers et al. (2017). They found a correlation between the number
of methods in a library and the number of breaking changes and
showed that bigger libraries introduce more breaking changes.
They also reported that 30% of all releases contain at least one
breaking change. Unlike them, in this RQ we conduct artifact-
level analysis. To further understand how our results compare to
theirs we calculated the number of minor and patch releases that
contain breaking changes. We found that 14% of minor and patch
releases contain breaking changes. We did not include the major
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releases here because major releases are allowed to have back-
ward incompatible changes according to semantic versioning. The
difference can be explained by another finding of Raemaekers
et al. (2017) that says adherence to semantic versioning principles
increases over time. For example, they reported a decrease of
breaking changes in non-major releases from 28.4% in 2006 to
23.7% in 2011. This is a positive observation about the ecosystem
and shows significant improvement in practices over time.

We showed that there exist some artifacts that introduce the
first category of semantic versioning violation, breaking changes,
and they do this to different extents. Now, we investigate the
second type of semantic versioning violation, Illegal API exten-
sions. Therefore, we inspect the number of methods that are
added in patch releases. In Fig. 9, the number of artifacts is
plotted against the percentage of methods of artifacts that are
added via illegal API extensions. One may notice the distribution
is similar to breaking changes (Fig. 7), however, the number of
artifacts with API extensions is overall a bit lower than breaking
changes. More specifically, 207(54%) of the artifacts introduce at
least one illegal API extension in their history. Note that, the
set of artifacts is not equal to the set of artifacts that feature
breaking changes. Overall, 257(67%) of artifacts introduce at least
one type of semantic versioning violation. It is worth mentioning
that artifacts with illegal extensions on average add 14% to their
set of existing methods through the illegal API extension. Thirty-
eight (18%) of these artifacts illegally extend their API methods
up to 1% and only 12(5%) of them add 50% or more methods via
illegal extensions.

Finally, after elaborating on illegal extensions, we realize that
similar to breaking changes the extent of the effect is different
between libraries. Therefore we aim to understand whether or
not this extent is related to the overall size of the artifacts. One
could expect that bigger libraries may prevent adding yet more
methods in general not to mention adding via illegal extensions.
However, surprisingly Fig. 10 shows that similar to breaking
changes the number of illegal API extensions also grows along
with the number of methods.

Sixty-three percent of the artifacts introduce breaking
changes, and 67% of the artifacts feature at least one type
of semantic versioning violation. Furthermore, the more
public methods artifacts define the more likely it is that
they introduce semantic versioning violations.
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5. RQ2: How is popularity distributed among library methods?

Now that we have answered the first research question, we
have an insight into how often violations of semantic versioning
occur in general. However, understanding the importance of the
methods that break from the perspective of users within the
ecosystem is also critical. Hence, as the next step, we investigate
the popularity of the methods. Despite any relation that popu-
larity and breaking changes may have, all attributes of popular
methods propagate more within the ecosystem. Therefore, it
becomes important to understand what portion of libraries are
generally popular and widely used. Maintainers could for exam-
ple pay extra attention to the important parts of their libraries
and be more careful not to break them.

To answer this research question, we first investigate the
popularity of target versioned packages at the library level. We
use the output of Sampler component (see Section 3.3) to show
the difference between the number of dependents that target
versioned packages have. After this, we analyze the method-
level popularity. We use the Popularity Analyzer as described in

10
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Section 3.8 to calculate a popularity score for every method
within target versioned packages. We inspect these popularity
scores in two groups. Firstly, the popularity scores for the major-
ity of the public methods indicate zero usage by other libraries.
Hence, we first look into the ratio of unused methods compared
to the total number of public methods that versioned packages
define. Secondly, we analyze the methods that are used by other
libraries at least once and show how their popularity scores are
distributed.

To fully comprehend the distribution of library-method pop-
ularity, one must recognize that not all libraries have the same
number of users. Fig. 11 shows the number of dependents that
selected versioned packages have. As shown in this figure a limited
number of versioned packages are used by many dependents but
most of the versioned packages have less than 100 dependents.
More specifically, only 12(3%) of the selected versioned packages
have more than 100 dependents while 310(80%) of them have less
than 20 dependents. The distribution follows the Pareto principle,
which states that roughly 80% of consequences come from 20% of
the causes (Dunford et al., 2014).

There also exist public methods within libraries that are not
used by others. To this end, we first look into the extent of public
methods that are not used by other libraries. Fig. 12 shows that
the majority of publicly defined methods are not used by any
other library. On average versioned packages that we selected for
this study define 1688 public methods. However, the median of
public methods for this versioned packages is 386 which indi-
cates that some outlier projects skew the average. That is, we
have a versioned package with 32k publicly defined methods as
an outlier that affects the average. Additionally, there are some
versioned packages that primarily concentrate on interfaces and
define only a few public methods that can be called externally.
In fact, we have 13 versioned packages with less than 10 publicly
defined methods. Moreover, the second violin plot shows the
distribution of publicly defined methods that are not called by
any other library. On average 1.4k unused public methods are
defined by selected versioned packages. However, similar to the
number of methods this average is skewed by the outliers such
as the project with the maximum number of unused methods
with 31.6k unused methods. Therefore, the median of the unused
methods is 386. There are also 14 versioned packages with less
than 10 unused public methods. Finally, on average, the ratio of
public methods that are not used by other libraries is 87% (median
of 92%). The minimum ratio is 0.39 and the maximum ratio is 1.
That is, (1) maximum coverage of public methods is 39% among
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all analyzed libraries, and (2) there exist libraries within selected
packages that non of their publicly defined methods are used by
others, which is because of their interface-based nature as our
manual inspection revealed.

To look more closely at the used parts of these libraries we
calculate the dependent usage ratio metric (see Section 3.8) for
each method in the selected libraries that is used at least once by
others. As seen in Fig. 13, the dependent ratio follows a logarith-
mic distribution. The x-axis of this plot shows the public methods
of libraries. Since libraries have a different number of methods
we normalize this axis by using the Quintiles when sorted by the
value of the y-axis. The y-axis is the ratio of dependents calling
the method. Each dot in this plot shows the mean of all selected
versioned packages in that particular x value. The orange line
shows the trend that the mean of all selected versioned packages
follow. This line is calculated by a regression model that we fit
on the aforementioned dots. Hence, this figure shows that on
the current state of MAVEN on average there are only a limited
number of methods in each library that are widely used.

The statement regarding the Pareto Principle also relates to the
conclusions made by Harrand et al. (2022), which notes that most
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clients depend on a small fraction of an API. From our research,
we can come to a similar conclusion; popularity skews towards
the most used methods, but comparatively, more methods exist
with low popularity values. More specifically, the area under the
orange curve in Fig. 13 is 0.53. A coordinate with x = 1.76 and y
= 0.1 is a point where the left area and right area under the curve
are almost equal. This means that on average 35% of the methods
in MAVEN libraries are receiving 50% of all calls from dependents.
The remaining majority (65% of the public methods) receive the
other half of the unique dependent calls. Note that these are only
about the 13% of the methods that are at least called once by
another library.

The majority of public methods that libraries define are
not used by others. On average, 87% of publicly defined
methods are never used by other libraries, and 35% of the
remaining 13%, cover half of the dependent calls.

6. RQ3: Is there a relation between popularity and breaking
changes?

In the next step, we want to investigate the extent of the
problem from the users’ point of view by connecting popular-
ity information and breaking changes. Deletion of an unpopular
method does not nearly have as many consequences as the dele-
tion of a popular method. We aim to understand the relationship
between popularity and breaking changes, this would reveal if the
maintainers of the libraries are already aware of their users and
try not to break them.

We investigate this research question in two levels similar to
previous questions, i.e., library and method levels. For the library-
level investigation, we first get the library popularity scores for
the target versioned packages from Popularity Analyzer as de-
scribed in Section 3.8. We want to inspect if there is any relation
between these popularity scores and semantic versioning viola-
tions. So we also retrieve the violations of the target versioned
packages from SemVer Analyzer as described in Section 3.6. We
then calculate the ratio of the number of packages with violations
to their corresponding popularity scores. By fitting a second-order
regression model on the popularity scores and their correspond-
ing violation ratio, we inspect whether or not a trend exists. Next,
we use the Popularity Analyzer to obtain method-level popularity
scores for target versioned packages. We investigate the difference
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Fig. 14. Semantic versioning violations and popularity of the versioned packages.

between the population curve of these scores for methods that
are involved in breaking changes and those that are not.

To explore the relationship between popularity and breaking
changes we first analyze the popularity of the libraries. As de-
scribed in Section 3.8 we measure what portion of the dependents
are attracted to each target versioned package. Then we connect
this information to the breaking changes to understand whether
or not the popularity of libraries has any effects on making break-
ing changes. As shown in Fig. 14 there exists a slight tendency
for more popular versioned packages to introduce more breaking
changes. This can be due to the higher number of change requests
that popular libraries receive from their users. Note that the
overall number of unique dependents is 7190. Therefore, when
we divide the number of dependents of each versioned package
by such a big number, the maximum popularity value lies around
0.04.

To look closer at the popularity of breaking changes we inspect
the relation between method popularity and breaking changes.
Fig. 15 shows the population of the popularity of methods that
are not involved in breaking changes compared to the popularity
of methods involved in breaking changes. The popularity is rep-
resented by the percentage of dependents that call the method.
For example, when the x-axis is equal to one, the method is called
by every dependent of the versioned package. The orange line in
the figure shows the density of the population of the methods
that are defined in our target versioned packages and are not
identified as a breaking change. The blue curve, however, is the
methods of the same versioned packages that are involved in the
breaking changes. Methods with zero popularity are filtered from
this figure since they make the rest of the figure invisible due to
their high number. More specifically, 61k methods that were not
used by any other library were filtered from the orange curve and
2.2k were eliminated from the blue curve.

In Fig. 15, we can compare the difference between two popu-
lations by investigating the difference in the density at a certain
point of the x-axis. If the curve of breaking changes has a higher
density than the curve without breaking changes on a certain
point x, this means that on average, a method with a breaking
change more often has popularity x than a method without a
breaking change. However, in this figure, it can be noted that
both lines follow a very similar distribution. Whether or not
the method is involved in a breaking change does not seem
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Fig. 15. Distribution of percentage of dependents that call methods. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

to be related to its popularity. To prove this, we performed a
T-test on both populations and observed that there is no signif-
icant difference between them. The results of this test show a
p — value = 0.48 for a two-sided independent samples, showing
that these populations do not have a significant difference.

One observation that we can also make from this figure is that
the orange curve contains several spikes. Our manual inspection
shows that the popularity values of methods can be concentrated
on the same numbers. This means many methods are assigned
with similar popularity values. Since versioned packages have a
limited number of dependents and there are not many permuta-
tion options for method usage, these numbers can be similar. For
example, assume a versioned package v has 10 dependents and 20
methods. If 4 of these methods are related to one functionality
and are usually used together, when five of the dependents only
use this functionality, the popularity value will be 0.5 for all four
methods. The popularity of the remaining 16 methods can also be
0.5 if they are used by five of the dependents. Hence these spikes
can be observed when creating the population curve for all data
points. However, despite these spikes, the overall distributions
are similar as validated by the T-test.

The popularity of a method does not play a role in
whether or not it is involved in breaking changes, no
significant difference exists between the popularity of
the methods that break the semantic versioning and the
ones that do not.

7. Discussion

We found that a large number of versioned packages contain
breaking changes. Users run into issues when they unsuspect-
ingly attempt to upgrade their dependencies, as the API is no
longer compatible with their artifact. This happens even though
the versioning convention of the library promises compatibility.
Furthermore, illegal API extensions do not pose a threat to the
compatibility of users. Therefore, it might seem intuitive that
maintainers can be less concerned with these illegal API exten-
sions. However, the maintainers that extend their API illegally
are not only employing bad practices but also increasing the
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chances of having more breaking changes and violations in the
future. This is because having more methods in a library increases
the chance of violations as we showed in Section 4. By doing
this study, we found that maintainers on one hand need to pay
more attention to semantic versioning and any type of library
API expansion as a preventive measure to decrease the chance of
semantic versioning violations. Researchers on the other hand can
continue our work by investigating what type of tooling, design
decisions, and development methodologies lead to more stable
APIs.

We did not find a meaningful relationship between the pop-
ularity of a method and whether it is involved in a breaking
change or not. However, there might be some factors at stake.
For example, on one hand, more popular methods may get in-
volved in more issues by the users. This can potentially help
maintainers understand which methods are more popular. On
the other hand, attracting more attention to the issues naturally
increases the chance of changes in the methods and consequently
more involvement in breaking changes. Similarly, in the case of
unpopular methods, maintainers may realize that not as many
people open issues related to a particular method. Hence they are
not very popular. Maintainers may change such methods more
easily since they assume they would not affect many people.
We speculate that there are many similar factors affecting the
behaviors of maintainers in case of breaking changes that are
worth understanding for the software community. Hence, we
encourage researchers to conduct more research to understand
such aspects. Our results emphasize the need for such studies
by showing that breaking changes are still a big problem for
members of the ecosystems. However, in this study, we only
focused on finding the breaking change usages in the ecosystem.
It is also important to understand the collective cost that breaking
changes impose on the ecosystem members in terms of time and
money since the cost may differ from one dependent project to
another. We encourage researchers to reuse some parts of our
approach as a starting point to study these collective costs.

We speculate that library maintainers do not have sufficient
data to accurately differentiate between popular and unpopu-
lar methods. They can use this information before introducing
breaking changes and during their maintenance. An established
popularity ranking of the usage of their own methods across the
whole ecosystem would allow library maintainers to improve
their workflow. Utilizing such a popularity ranking, one could pri-
oritize a list of issues to work on based on their importance within
the ecosystem; a change to a popular method will have more
impact compared to an unpopular one. During this study, we
realized that there are numerous opportunities for client-side and
platform-based tools. IDEs can recommend maintainers to adjust
their version appropriately whenever a change in method signa-
tures is detected. Build tools can offer warnings when finding an
inappropriate version upgrade. GITHUB can warn users when they
break a popular method in their pull requests. MAVEN Central can
warn developers about incompatibilities, impose strict require-
ments for versioning of artifacts, or give a high score to projects
without any semantic versioning violations. To create a safer and
more trustworthy environment within the ecosystem researchers
and engineers can focus on building such tools in the future as we
indicated the need in this study.

Method popularity also introduces opportunities for the users
of the libraries. Method popularity might be used as a recom-
mender system that supports developers during the coding activ-
ity. Currently, library popularity in MAVEN helps users determine
which library to use. However, users can also pay attention to
the popularity of the methods that they need or compare the
popularity of methods with similar functionalities. Another use
case that is worth further research is integrating method pop-

13

The Journal of Systems & Software 203 (2023) 111738

ularity ranking within auto-complete engines to improve their
recommendations.

In this study, we only focused on public methods as the main
mean of library reuse. While it is possible for the developers to
use package private and protected library methods, such meth-
ods may not as often be intended for API usage. Maintainers
intentionally expose the public methods for the reuse of their
library. Hence, we limit our scope to the intended and most
common modifier for library reuse. We also limited the scope of
violations to the defined methods since the CGs only add edges
to such methods. We ran our popularity analysis experiment on
all methods and we observed minimal difference in the overall
results. We believe a more detailed investigation in this regard is
out of this study’s scope. Future research is needed to investigate
this in detail. We realized that despite the existing studies there
is room for further research. For example what parts of code are
more likely to break or whether public methods break more often
than protected methods. Answering these questions benefits the
community to understand what parts of the code they should pay
more attention to.

7.1. Threats to validity

In this study, we limit our dependent resolution to a recent
six months while multiple decades of evolution are available
on MAVEN Central. We believe our dataset is already extensive
and that a larger study would substantially increase the cost of
execution, while there is no reasonable intuition to expect that
the insights would differ for a bigger period. A more extended
period surely increases the number of versioned packages and
their dependents. However, we do not expect the overall usage
pattern of versioned packages to change.

Generating a perfect static CG is an undecidable problem.
Hence existing solutions use over-approximation and sacrifice
precision for scalability. Our illegal API extension extraction also
uses approximation. An AST-level solution is needed for better
precision which was not practical for our scale. Although these
design decisions may impact our precision, we opted to prioritize
scalability, which enabled us to offer a more comprehensive
perspective of the ecosystem. Nevertheless, our findings entirely
align with previous research which shows the effects are minor.

MAVEN Central does not only contain Java artifacts; it also
contains artifacts that are implemented in other JVM-based lan-
guages. In some cases, we had difficulty generating CGs for such
versioned packages, and thus the artifacts were not included in the
analysis. However, we found that no more than 1% of analyzed
artifacts were ScaLA or KoTLIN packages. Thus, we believe it is
safe to only focus on JAvA projects in this study.

During this study, we developed several programs and used
open-source libraries which may contain implementation errors.
One can never ensure all implementations are bug-free. However,
we tried to mitigate this by performing manual tests and code
reviews as well as releasing our code and executable to the
public.?

8. Summary

In this study, we showed that a large number of MAVEN li-
braries do not completely adhere to semantic versioning. We
know this, as 63% of analyzed artifacts break compatibility within
their major versions. Illegal API extensions also occur in 54%
of artifacts. Therefore, these violations form a big problem for
the trustworthiness of semantic versioning on MAVEN. Moreover,

2 https://github.com/ashkboos/semver-vs-popularity.
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deletion or alteration of an unpopular method does not have
the same impact as changing a popular method. We investigated
whether a relationship between method popularity and involve-
ment in breaking changes exists. We discovered that breaking
changes occur in popular methods as frequently as in unpopular
ones. By analyzing all interactions between software artifacts and
their dependents we found that the majority (87%) of publicly
defined methods are not used by others and 35% of the remain-
ing are responsible for half of the dependent calls. Similarly,
the number of dependents per library also follows a power law
distribution.
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