

Delft University of Technology

Completing Function Documentation Comments Using Structural Information

Ciurumelea, Adelina; Alexandru, Carol V.; Gall, Harald C.; Proksch, Sebastian

DOI
10.1007/s10664-022-10284-6
Publication date
2023
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Ciurumelea, A., Alexandru, C. V., Gall, H. C., & Proksch, S. (2023). Completing Function Documentation
Comments Using Structural Information. Empirical Software Engineering, 28(4), Article 86.
https://doi.org/10.1007/s10664-022-10284-6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-022-10284-6
https://doi.org/10.1007/s10664-022-10284-6

Empirical Software Engineering (2023) 28:86
https://doi.org/10.1007/s10664-022-10284-6

Completing Function Documentation Comments
Using Structural Information

Adelina Ciurumelea1 ·Carol V. Alexandru1 ·Harald C. Gall1 · Sebastian Proksch2

Accepted: 12 December 2022
© The Author(s) 2023

Abstract
Source code comments are a cornerstone of software documentation facilitating feature
development and maintenance. Well-defined documentation formats, like Javadoc, make it
easy to include structural metadata used to, for example, generate documentation manuals.
However, the actual usage of structural elements in source code comments has not been
studied yet. We investigate to which extent these structural elements are used in practice and
whether the added information can be leveraged to improve tools assisting developers when
writing comments. Existing research on comment generation traditionally focuses on auto-
matic generation of summaries. However, recent works have shown promising results when
supporting comment authoring through a next-word prediction. In this paper, we present an
in-depth analysis of commenting practice in more than 18K open-source projects written in
Python and Java showing that many structural elements, particularly parameter and return
value descriptions are indeed widely used. We discover that while a majority are rather
short at about 6 to 9 words, many are several hundred words in length. We further find that
Python comments tend to be significantly longer than Java comments, possibly due to the
weakly-typed nature of the former. Following the empirical analysis, we extend an existing
language model with support for structural information, substantially improving the Top-1
accuracy of predicted words (Python 9.6%, Java 7.8%).

Communicated by: Christoph Treude

� Adelina Ciurumelea
ciurumelea@ifi.uzh.ch

Carol V. Alexandru
alexandru@ifi.uzh.ch

Harald C. Gall
gall@ifi.uzh.ch

Sebastian Proksch
S.Proksch@tudelft.nl

1 University of Zurich, Zurich, Switzerland
2 Delft University of Technology, Delft, Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10284-6&domain=pdf
http://orcid.org/0000-0001-8874-5450
mailto: ciurumelea@ifi.uzh.ch
mailto: alexandru@ifi.uzh.ch
mailto: gall@ifi.uzh.ch
mailto: S.Proksch@tudelft.nl

 86 Page 2 of 48 Empir Software Eng (2023) 28:86

Keywords Comment completion · Python documentation strings · Javadocs ·
Neural language models

1 Introduction

Source code comments are an important part of any software project as they are essential
for developers to understand, use and maintain projects. However, writing comments is a
tedious, manual process and, as a result, software is often poorly documented (Aghajani
et al. 2020). Research has long attempted to reduce this effort through automated comment
generation. The earliest works were focused on generating function and class comments
(Haiduc et al. 2010; Moreno et al. 2013) through custom heuristics and templates. More
recent data-driven approaches are inspired from the field of machine translation and use
deep learning and natural language processing to generate summaries of the source code
(Hu et al. 2018; Wan et al. 2018; Le Clair et al. 2019). What all these approaches have in
common is that they focus on the first sentence of the documentation comment. This sen-
tence is treated as the summary and the rest of the comment is ignored. In practice, however,
comments contain a wide range of topics, ranging from functional descriptions to discus-
sions of the rationale behind design decision (Writing system software: code comments
2021; Pascarella and Bacchelli 2017). It is also well known that developers spend more than
half of their time on source code comprehension activities (Xia et al. 2018). While a good
summary can be helpful, it is just the tip of the iceberg and represents only a small fraction
of the whole comment. Unfortunately, automatically generating complete comments is still
out of reach for current machine learning techniques.

Several documentation formats exist that introduce structural elements for languages
such as Python and Java. These elements allow the organization of comment contents into
various sections, for example, said summary, but also a long description, a description of
parameters and return values, details about possible runtime errors, or other fields that are
specific to the programming language or the documentation framework. A popular example
of such a format is Javadoc for documentation comments in Java code. Having structural
elements does not only improve the readability of a comment, but also enables automated
processing to automatically generate API documentation or to provide better tool support in
development environments.

In this paper we investigate the idea that leveraging the structural information available in
comments can improve the assistance systems for developers for writing comments. Instead
of generating full comments though, we keep the developer in the loop. Previous work
has introduced a promising comment-completion tool that works in a semi-automated way
(Ciurumelea et al. 2020), which -similar to email clients (Chen et al. 2019) and messaging
apps- suggests likely next words to reduce repetitive typing and the required time and effort.
We enhance this previous approach by considering the section information as additional
context to improve the quality of the predicted comment completions.

In this study, we answer the following research questions to investigate the context and
the feasibility of our vision:

RQ1: How structured are function documentation comments?
RQ2: Can structural information be used to improve the accuracy of a comment comple-

tion tool?
RQ3: How dependent are the results on a concrete programming language?

Empir Software Eng (2023) 28:86 Page 3 of 48 86

To answer these questions, we have compiled two datasets that contain more than 14K
Java and Python projects. We have comprehensively analyzed this dataset and have mea-
sured various characteristics of the contained comments. Our results show that structured
documentation comments are indeed widely used in practice, for example, we could iden-
tify a formatting style for over half of the Python projects. While summaries, also called
short descriptions are indeed the most widely used comment section across both languages,
also long descriptions, declarations of parameters and return values, and explanations of
possible exceptions/raises are frequently contained in a comment.

These results made us confident that it is possible to improve the accuracy of the com-
pletion tool, so we trained several variants of a language model that uses the section
information. The evaluation results show improvements between 4.1% for the Long descrip-
tion section and 9.6% for the Return section of the obtained Top-1 accuracy, when compared
to the baseline for the Python dataset. We also found that some sections are significantly
more predictable than others and achieved significantly different Top-1 absolute accuracy
values from 0.194 (for the Long description) and 0.323 (for the Raises section) for the
Python base model represented by the Context LM.

A comparison across the Python and Java languages datasets has revealed several simi-
larities. Comments in both languages contain structured comments, however while Python
has a diverse set of formatting styles, Java is dominated by Javadoc. We found that Java
comments contain more structural elements than Python and that documentation comments
of Java projects are more complete and include the different sections more often. Also the
language model can achieve similar results for Java and Python, which suggests that our
initial observations can be generalized to other programming languages. However, further
research is required to solidify these initial findings and replicate them in a larger array of
programming languages.

Overall, this paper presents the following main contributions:

– An empirical study over two programming languages that investigates the use of
function documentation formats in practice.

– An extension of an existing language model for the task of code comment completion
that leverages the additional section structure to improve the accuracy of the generated
completion suggestions.

– A comparative evaluation of the study and the language models for two programming
languages to strengthen our findings.

We have released a replication package that contains the datasets and the corresponding
source code we used for the analysis of the projects and the training and evaluation of the
neural language models (Replication package (2022)).

2 Overview

Motivated by an empirical study on comment sections, this paper proposes a novel com-
ment suggestion engine that is assessed in an extensive evaluation approach in two different
programming languages. To clarify this complex methodology of the paper, we provide an
overview over the paper structure in Fig. 1 to illustrate the different high-level parts.

The first part of this paper is an empirical study on source code documentation practices
in the wild. We base this initial investigation on the CodeSearchNet dataset (Husain et al.
2019b). This dataset is clean and ready to use, which provides an excellent starting point

 86 Page 4 of 48 Empir Software Eng (2023) 28:86

Fig. 1 Overview over the paper structure

for our research. The dataset also covers different programming languages, so it is possible
to compare results on a similar ground. The study that is presented in this paper is based on
Java and Python to cover to popular programming languages with different paradigms. We
will introduce more details about the two (sub-)datasets in Section 3.1.

We preprocess the existing data for both languages and establish a pool of source
code/comment pairs. Details about this preprocessing will be provided in Section 3.2.
Based on this dataset, we can answer RQ1 by investigating several aspects of documen-
tation comments: which format guideline is most popular (Section 3.3.1), how often are
docstrings used/missing (Section 3.3.2), which sections are commonly used in docstrings
(Section 3.3.3), how consistent is the documentation of method parameters (Section 3.3.4),
and how long are the descriptions of tag-like structures (Section 3.3.5).

The results of these analyses are used to inform our design of the completion engine that
is presented in Section 4.We start with two neural language models for comment completion
that have been introduced in previous work and introduce three extensions that leverage the
additional information that is available when section information is taken into account: both

Empir Software Eng (2023) 28:86 Page 5 of 48 86

models will be extended through an additional embedding layer to encode the enclosing
section in the comment. While the base model only considers the word sequence, the context
model also considers the method body as input. The third model is an ensemble technique
that contains multiple instances of the context model, which are all trained/specialized for
one particular comment section.

To instantiate the different models, we have established another dataset. While for Java,
the CSN dataset was extensive, we found the extent of the Python dataset limited and
decided to complement it with additional data that we mined from GitHub. Section 5 con-
tains detailed information about the second dataset and our approach to training the different
language models. Using the resulting models allowed us to investigate the two final research
questions: As a first step, we investigate in Section 6 for Python, whether the additional
section information can actually improve the performance of the completion suggestion
(RQ2). In the next step, we answer RQ3 by shedding light onto the questions whether these
results also generalize to other languages like Java (Section 7).

3 Structure Analysis of Function Documentation Comments (RQ1)

We noticed during our previous work (Ciurumelea et al. 2020) that Python documentation
comments (docstrings) often have a well defined structure as a result of following a spe-
cific formatting style, and are not only simple natural language textual descriptions of the
accompanying code. As this observation seems to be relevant for approaches that analyse
the content of comments or build tools for supporting developers to write comments, we
decided to further investigate how common formatting styles are and how they are used in
practice. While past research has studied the content of comments (Pascarella and Bacchelli
2017) as well as the co-evolution of source code and comments (Fluri et al. 2007; Wen et al.
2019), they did not consider the structure of documentation comments. In addition, we also
investigate the prevalence and size of documentation contained in different sections.

Our previous work has focused on documentation comments for Python functions, how-
ever another popular programming language, Java, also uses a formatting style called
Javadoc (How to write doc comments for the javadoc tool 2021) for writing documen-
tation comments. An accompanying tool, also named javadoc, exists for automatically
extracting these comments from the source code to different kinds of output formats. While
formatting styles for other programming language do exist, to the best of our knowledge
these are less common with fewer available open-source projects. Therefore, we restrict our
investigations to these two programming languages.

In the next sections, we describe the dataset, the process for parsing the documentation
comments and functions, and finally present the findings of our analysis. We analyse the
prevalence of the different formatting style for the Python dataset. Following, we study if
the Python and Java documentation comments have the structure we expect and investigate
where the parameter, return and raises/throws sections should be included but are missing.
We also analyse the distribution of the different sections among the projects in our dataset,
comparing the findings between the two programming languages. Additionally, we look at
how complete and correct the parameters sections are. Finally, we collect statistics on the
size of section-based comments, and investigate whether parameters for which a dedicated
section is missing are mentioned elsewhere in the docstring description.

 86 Page 6 of 48 Empir Software Eng (2023) 28:86

We would like to note that throughout the paper we often use the term docstring to refer
to a documentation comment accompanying a method for Java and/or a function for Python.
When necessary we also specify the corresponding programming language.

3.1 Dataset

To study the structure of documentation comments we use the Python and Java datasets
provided during the CodeSearchNet challenge (Husain et al. 2019b), which aimed to explore
semantic code search, i.e., retrieving relevant code given a natural language query (Husain
et al. 2019a). This data is suited to our goal, as it provides comment-and-code pairs at the
function level. It comprises 4,769 Java repositories with 136,336 distinct files and 13,590
Python repositories with 92,354 files, respectively.

To build the corpus, the authors of Husain et al. (2019b) chose publicly available open-
source non-fork GitHub repositories that were identified as libraries (used by at least one
other project), and sorted by “popularity” represented by the number of stars and forks.

The following filtering steps for selecting the comment-function pairs were applied:

– only include functions that do have an associated documentation comment;
– filter-out pairs for which the comment is shorter than 3 tokens;
– filter-out pairs for which the function is shorter than 3 lines;
– remove functions with the word “test” in the name, and constructors and extension

methods such as str in Python or toString in Java;
– remove duplicates using an algorithm described by Allamanis (2018) based on Jaccard

similarity from the dataset and keeping a single copy.

In Table 1 we include statistics for the analysed datasets on a repository level. These
include the files and functions that were not removed after the filtering step. The code is
tokenized using TreeSitter (GitHub’s universal parser), while the documentation comments
are tokenized using NLTK’s tokenizer (Nltk sentence tokenizer 2021). Although, software-
specific tokenizers are subject to ongoing research (e.g., S-POS (Ye et al. 2016)), these are
not as readily usable, and we found NLTK sufficiently precise. A full word is considered

Table 1 Statistics per Repository for the Python and Java Datasets

Dataset 25% 50% 75% 95% 100%

Python

Files 1 2 5 16 517

Function-Docstring Pairs 4 10 27 127 11211

Code Length 43 72 132 341 28410

Docstring Length 11 26 61 184 8510

Java

Files 1 2 4 12 1181

Function-Docstring Pairs 6 20 67 369 22028

Code Length 42 66 121 331 68278

Docstring Length 15 30 56 137 7135

Empir Software Eng (2023) 28:86 Page 7 of 48 86

a token, but also punctuation signs or mathematical operators. As an example, this func-
tion with the largest number of code tokens for Python includes a large number of matrix
multiplications.

3.2 Parsing Documentation Comments

The current best practice is for Python and Java function documentation comments to follow
a specific style and structure, nevertheless, this is largely just a recommendation, and tools
enforcing docstring formatting are not widely applied, even though they exist1. To under-
stand the structure of these comments, we first need to parse them and extract the different
sections, as described next.

3.2.1 Parsing Python Docstrings

Python documentation strings or docstrings are string literals that occur as the first statement
in a function or method and can be accessed through a special attribute at runtime. The goal
of a docstring is to summarize the function behavior and document the arguments, return
value(s), side effects, exceptions raised, and any restrictions related to when the function
can be called (Pep 257 – docstring conventions 2021). In Listing 1 we include an exam-
ple of a function docstring written using the Google style format. For Python, the official
recommendation is to use the reStructuredText (reST) style for formatting docstrings as
mentioned in Pep 287 – restructuredtext docstring format (2021). Nevertheless, in practice
several other formatting styles are also used, like Epytext (The epytext markup language
2022), Google (Google docstring style 2022) and NumPy (Numpy docstring style 2022).
All these formats contain the following main sections (Numpydoc docstring guide 2021).
Some sections are specified by corresponding markup indicators (“tags”):

– Short description: a one-line summary;
– Long description: an extended summary clarifying the functionality;
– Parameters: one tag for each function, describing the argument including its type;
– Return: a tag explaining the return type and value;
– Raises: one tag for each possible exception raised by the function and under what

conditions.

To extract the different sections, we use a modified version of an open-source parser for
Python docstrings called docstring parser (Docstring parser 2021). This offers support for
the reST, NumPy and Google formats and we extended it to also parse docstrings using
Epytext. The recommended best practice is to always start a docstring with a one-line sum-
mary. Then, if necessary, more details can be added as a Long description after an empty
line. We observed that following this recommendation the parser made the assumption that
the first line of a docstring is always the Short description, and everything else that does
not start one of the other section belongs to the Long description. In our dataset, developers
would sometimes write first sentences that are longer than a single line, therefore the parser
would cut the sentence and erroneously interpret the first part until the newline character
as the Short description and the rest as the Long description. We modified the parser to
interpret the first sentence as the Short description using the nltk sentence tokenizer (Nltk
sentence tokenizer 2021), and if there are additional sentences, allocate them to the Long

1E.g., https://github.com/maet3608/splint (Python) or javadoc’s javadoc -Xdoclint.

https://github.com/maet3608/splint

 86 Page 8 of 48 Empir Software Eng (2023) 28:86

Listing 1 A Documented Python Function

description. This choice was a trade-off between what the standard recommends and how
developers write comments. It seemed wrong to cut a sentence at the end of a newline, for
this reason we decided to extract the first sentence, even if it extends the first line. How-
ever, if the first line contains multiple sentences, just the first one is interpreted as the short
description. We encounter the situation when the first sentence is longer than a single line in
18% of the comments with Short Descriptions, while when this is shorter than a single line
appears in around 6% of the cases. However, we also noticed that when the first line con-
tains multiple sentences, the extra sentences represent additional explanations and would be
more appropriate for the long description.

After these changes we perform a preliminary evaluation for the different sections to
understand how well the parser works. We want to assess whether parsing errors might
influence our conclusions, while we do not intend to perform a full evaluation of the parser
itself, as this would be outside of the scope of this paper. We choose for each section a
sample of 100 docstrings and manually analyse them. To choose this sample we first ran-
domly select 500 projects from our dataset, then for each section we iterate through the list
of projects and randomly select one docstring per project that contains the specific section
until we obtain a sample of 100 docstrings per section. For each section we obtain a differ-
ent sample of 100 docstrings and the corresponding extracted content. One author read each
docstring and classified it as correct/incorrect and marked the incorrect examples accord-
ing to the identified problems. Table 2 contains the results of our evaluation. Note that the
Incorrect Cases column only includes a subset of the identified cases for reasons of brevity.

For the Short description, as mentioned, we modified the parser to split at the sentence
level. We use a well established parser from the NLTK package trained for the English
language. Nevertheless this relies on punctuation being used correctly and can return an
incorrect sentence split if there is no punctuation or if abbreviations using a “.” character
are included. From the sample of 100 docstrings, in 91 of the cases the parser correctly
extracts the first sentence as the Short description. In 7 cases, the tokenizer does not split
correctly the sentences and in 2 cases the docstring is not written in English, although that
does not necessarily mean that the extraction is not correct. If the docstring contains correct
punctuation similar to the English language, the tokenizer is still able to split the sentence
correctly.

For the Long description, we obtain correct results in 81 cases. In 7 cases the sentence
split is not correct, in 9 cases the docstring content is not formatted correctly and the Long
description contains descriptions of return or parameter values. In 2 cases the docstring is

Empir Software Eng (2023) 28:86 Page 9 of 48 86

Table 2 Evaluation of Extracted Section

Section type Correct Incorrect Incorrect cases

Python

Short Description 91 9 incorrect sentence split

Long Description 81 19 incorrect sentence split, wrong formatting

Parameters 77 23 wrong formatting or parsing for type

Return 76 24 wrong formatting or parsing for type

Raises 74 26 wrong formatting or parsing for type

Java

Short Description 96 4 incorrect sentence split

Long Description 96 4 incorrect sentence split

Parameters 97 3 docstring/signature name mismatch

Return 100 0 –

Raises 100 0 –

not written in English and in only one case the parser made an error and terminated the Long
description too early, thus skipping some of its content.

For the Parameters section the parser extracts for each parameter the name, the type,
whether it is optional or not and a potential default value. In this case it is able to correctly
extract the parameter tag descriptions in 77 of the docstrings, from which two of the doc-
strings contain an empty description. The most common mistake we identified is that the
parser is not able to extract the type of the parameter correctly, nevertheless, the parame-
ter name and description are returned correctly. We encountered one example that was not
written in English and in two cases the developer included extra content after including the
parameters section which the parser erroneously attributed to the last parameter description.

For the Return section the parser extracts the type and the corresponding description.
The parser correctly extracts this information for 76 of the cases, however in 5 of the cases
the developers documents returning None, and in 1 case the description is empty. The most
common mistake identified because of wrong formatting is that the type is not correctly
detected and is included in the description. In 4 of the cases, the return value is a tuple that
is not formatted correctly, therefore the parser only extracts one return value.

For the Raises section the parser returns a tuple with a type and description for each
potential error that is documented. It works correctly in 74 of the cases, although for 2 cases
the description section is left empty. The most common mistake encountered is that the type
is not correctly identified, this is either because of a formatting error, or because the parser
is not able to extract it, however the description is correctly identified. In 1 more case the
docstring is not written in English.

We include in Table 3 several examples that could not be parsed correctly. For the Short
description, the sentence tokenizer incorrectly detected a sentence split because of the ‘.’.
For the Long description example, it is a bit difficult to understand what the developer meant
to write, it seems that they used the wrong punctuation. For Parameters the parser extracts
tuples of the form: (name, description, type, is optional). Therefore, for the example it is
clear that the developer wanted to specify the type ‘bool’, however this should have been
split by the rest of the description through the colon character and not the dot character.
Finally, the Raises sections are extracted by the parsers as tuples of the form: (type, descrip-
tion). However, as the exception type is not followed by a newline, as the formatting style

 86 Page 10 of 48 Empir Software Eng (2023) 28:86

Table 3 Examples of Incorrect Extracted Sections for Python

Section type Partial docstring Extracted section

Short description Sample from a Polya-Gamma dis-
tribution, as in Proc Int Conf Mach
Learn. 2012; 2012: 1343–1350.

Sample from a Polya-Gamma dis-
tribution, as in Proc Int Conf Mach
Learn.

Long description setLEDBrightness() 0 or 0x00=off 255 or

Sets the brightness of the motion
LED to the decimal hex value
provided. 0 or 0x00=off 255 or
0xFF=Full Bright. (0-255 or 0x00-
0xFF)

0xFF=Full Bright. (0-255 or 0x00-
0xFF)

Parameters :param metadata dict: (dict) Meta-
data dictionary

(‘metadata dict’, ‘(dict) Metadata
dictionary’, None, None)

Return Returns: (None, ’bool. if the RPC

bool. if the RPC interface file was
written.

interface file was written.’)

Raises Raises (None, ‘OAuth1Error if the request is invalid.’)

- - - - - -

ValueError if broadcast fails

specifies (Example numpy style python docstrings 2022), it was wrongly extracted together
with the description.

After performing this analysis we can conclude that the parser works well enough for
our purposes for the Python programming language. The most common identified problem,
is that the parser is not able to correctly extract the type from the Parameters, Return or
Raises tag descriptions. However, we do not consider this information when analysing the
structure of Python documentation strings, therefore it does not affect our results.

3.2.2 Parsing Java Documentation Comments

Doc Comments, also called Javadoc, is the de-facto standard format for writing comments
in Java, intended for use with the javadoc documentation generator. Thus, unlike in Python,
where multiple commenting styles exist, documentation comments in Java usually adhere to
one specific structure. Furthermore, programming environments (such as IntelliJ IDEA or
Eclipse), automatically generate correctly formatted comment templates for the developer
to fill in. API documentation to well-maintained Java projects, be it as HTML pages or in
other formats, is commonly generated entirely from the documentation comments written
in the source code. Hence, the Java documentation specifically states two primary goals for
commenting code: “as API specification, or as programming guide documentation” (How
to write doc comments for the javadoc tool 2021), with the former being a priority.

Java documentation comments can be written in HTML, placed directly before class,
field, constructor or method declarations and typically consist of two parts: 1. A description,
where the first sentence is a short summary, followed by 2. block tags, such as @author,
@param, @see, or @deprecated, among many others.

In this study, we are interested only in the description and the @param, @throws and
@return tags. Observe Listing 2 for an example of a Java method that includes a correctly
formatted comment. Note that unlike in Python docstrings, the type of a parameter is not
included in a block tag (although it may be optionally linked to).

Empir Software Eng (2023) 28:86 Page 11 of 48 86

Listing 2 A Documented Java Method

Because we wish to know the types of parameters for our study, we do not only parse the
docstrings in our dataset, but also the method signatures. This way, we can determine (i) the
types of documented parameters, provided their names are correctly mentioned in the block
tag, and (ii) whether there are undocumented parameters in the method signature.

To parse the comments and methods, we use javalang (Javalang 2021). For the descrip-
tion section of each comment, we used NLTK’s sent tokenize to separate the first sentence
(the summary or what we call the Short Description) from the rest (what we call the Long
description).

All HTML tags and entities were stripped from the comments using the following regex:
<.*? >| & ([a-z0-9]+ | #[0-9]1,6 | #x[0-9a-f]1,6);.

We implemented a two-fold verification to ensure that the data is extracted correctly. First,
we handcrafted a code and comment pair as a sample representative of the data set and
manually extracted the expected data. Then, we wrote automated tests to ensure that our
approach extracts the expected data. Second, we drew a random sample of 100 from the
extracted data and had one author inspect each of them for discrepancies between the
expected and extracted values. The extraction of Short and Long descriptions, Parameters,
Return and Throws statements worked perfectly in 97 out of 100 cases, with zero errors in
identifying and extracting the different docstring sections, as well as extracting the types
from the source code where applicable. Due to a limitation in the parser, the type of two
parameters and one return statement were extracted incompletely: when a type is specified
using a fully qualified identifier, the parser only extracts the first path component, e.g., only
java instead of java.util.Map.

3.3 Comments Sections Analysis

In this part of the paper, we perform an in-depth investigation into the nature of docstring
usage in Python and Java in order to answer the following questions:

– What is the prevalence of the four different styles for Python docstrings?
– How often are docstring sections missing where they should be present?
– How common are the different sections among the projects in our dataset?
– How well do parameter docstrings match up with the parameters specified in the

function or method (correctness and completeness)?
– How often are parameters described in the short or long descriptions instead of having

their own tag description?

 86 Page 12 of 48 Empir Software Eng (2023) 28:86

– How can the length of parameter, return and exception descriptions be quantified?

3.3.1 Distribution of Python Formatting Styles

A particularity of Python documentation comments is that there does not exist a consensus
on a single formatting style, there are several recommended styles while plain text doc-
strings are also accepted. To analyse the distribution of the formatting style, we identify the
majority style as the style of a particular project. We can only determine the style of a doc-
string, if this contains one of the Parameters, Return or Raises sections, because the Short
and Long descriptions look identically for all the styles as they do not contain any tag iden-
tifiers. We plot in Fig. 2 the obtained distribution. We notice that reST is the most popular
style, followed by the Google, NumpyDoc and finally the Epytext styles. In 6,551 projects
we were not able to identify a style, this either means that the docstrings do not describe the
parameters, return and raises values or that the formatting used does not follow any of the
known conventions. The projects for which a style could not be identified are included in
all the analyses that follow in the next sections, as otherwise the comparison would not be
fair with the Java dataset.

3.3.2 Analysis of Missing Docstring Sections

We start by analysing if the Python and Java documentation comments from our dataset
have the structure we expect and investigate where the parameter, return and raises/throws
tag descriptions should be included but are missing. We would like to emphasise that in
our analysis we only consider function-comment pairs, therefore we only take into account
functions for which the developer decided to write a comment. While we do not believe that

Fig. 2 Distribution of Docstrings Formatting Styles

Empir Software Eng (2023) 28:86 Page 13 of 48 86

a general rule to document all code is necessary, we also do not adhere to the saying that
“good code is self-documenting”. By taking into account only functions with comments
pairs, we select only cases for which a comment was deemed necessary. And, we do not see
a valid reason why a comment should not be complete, once it had been included.

To find the cases for which the Parameters, Return and Raises sections are missing when
they should be included, we parse the docstrings and extract the different tag descriptions.
Please, note that we use the terms “Raises”, “Throws” and “Exception” interchangeably to
refer both to raises sections in Python docstrings and throws sections in Java documentation
comments. We then conduct a static analysis on the functions from the dataset to determine
if a particular function contains parameters in the signature, or return or exception-raising
statements in the body. Then, we compare this information with the parsed docstring sec-
tions and compute the fraction of docstrings that have missing Parameter, Return or Raises
docstring tags per project. For example, for a project with 100 function-docstring pairs, of
which 30 have parameters included in the function signature, but lack a parameter section in
the comment, we obtain a fraction of 0.3 for missing parameters. After obtaining these val-
ues for each project and section we compute and include the summary statistics results of
the fractions of missing sections in Table 4. Here, we would like to note that for the Python
dataset, we only consider projects for which a formatting style has been identified, that is
we were able to parse correctly at least one of the parameter, return or raises sections in the
docstrings of the project.

For this analysis we consider only absolute values. For instance, if the function has
parameters in the signature, we only verify if there is at least one parameter documented in
the docstring. Similarly, for the returns and raises we only report a missing case when there
is at least one corresponding statement in the function body but none in the docstring. If the
function does not include parameters in the signature, or has no return or raises statements
in the body, then this is ignored in the corresponding analysis as to not inflate the results.

From Table 4 we can observe that developers omit these sections quite often for the
Python programming language, although they should be included. The section developers
include most often, is the Parameters section. The average fraction of project docstrings
that should include a parameters section but do not, is 0.424. This value increases to 0.565
for the return section, while the raises section is the one developers include least frequently
and is missing on average in over 0.85 of the project docstrings. This represents a convinc-
ing argument for our work, as there does not exist a valid reason for not writing complete
documentation comments and developers would benefit from getting support in writing
them, especially for the Python programming language. Interestingly, for the Java functions

Table 4 Summary Statistics for the Fraction of Missing Sections

Section Mean std min 25% 50% 75% max

Python

Parameters 0.424 0.340 0.000 0.083 0.400 0.733 1.000

Return 0.565 0.368 0.000 0.218 0.625 0.941 1.000

Raises 0.859 0.282 0.000 0.888 1.000 1.000 1.000

Java

Parameters 0.303 0.316 0.000 0.002 0.197 0.500 1.000

Return 0.243 0.292 0.000 0.000 0.125 0.397 1.000

Raises 0.868 0.181 0.000 0.000 0.000 0.857 1.000

 86 Page 14 of 48 Empir Software Eng (2023) 28:86

Listing 3 Example Python Function with Missing Parameters

we analysed, this problem seems to be less pronounced. A possible reason could be that
for Java projects it is more common to use IDEs which can create a documentation com-
ment template automatically whenever a function is defined. If this is the case we expect
to see more sections with empty descriptions. Indeed, the Java dataset contains more empty
parameter descriptions at 10.03% vs. 6.59% in Python. Exception descriptions are also more
frequently empty in Java at 18.23% vs. 2.85% in Python. However, return descriptions are
empty in Java for 7.16% of functions, compared to 11.07% for Python. For those parame-
ter, return and exception descriptions which are not empty, we provide a further empirical
analysis regarding their size in Section 3.3.5.

3.3.3 Distribution of Docstrings Sections

The minimal documentation comment includes only the Short description section, the short
summary of the function. For Python this should fit on a single line, however as we observed
developers write summaries that are longer than a single line, we extract the first sentence as
the Short description. The short summary of a function has also been the focus of previous
research that automatically generates summaries of code (Hu et al. 2018; Wan et al. 2018;
Le Clair et al. 2019). In this section, we would like to understand how common it is for
developers to only write a summary of the method for the projects in our datasets, therefore
previous approaches only focusing on generating the short summaries of code are enough.
Or if developers do provide more than just the first sentences for a documentation comment
and additional approaches are needed to support them with this task.

To study how common it is for developers to only write this first sentence for the Python
and Java projects in our datasets, we plot in Fig. 3 the number of extracted docstrings per
project on the x axis and the number of corresponding number of Short description only doc-
strings on the y axis for the Python dataset. If the documentation comments in our dataset

Empir Software Eng (2023) 28:86 Page 15 of 48 86

Fig. 3 Total Docstrings vs. Short Description only Docstrings per Project

would only contain short description, we should observe an almost linear relationship. On
the contrary, if the comments would never contain only the short description, then the scat-
ter plot would only include points on the x axis, resulting in a horizontal line. From the
plots, we can observe that there is a large variety into the number of Short description only
docstrings per project for both programming languages. Therefore there is no obvious cor-
relation between the number of docstrings and how many of those are Short descriptions
only.

To better understand the distribution of these comments we compute the fraction of Short
description only from the total docstrings per project and include the summary statistics
for these values in Table 5. The average fraction of Short description only per project is
around 0.38, while the median percentage has a close value of 0.31. We can notice that
the Java projects have, in general, a higher number of documentation comments from the
plots, while the average number of Short descriptions only per project is smaller with a
value of 0.29 and the median value is only 0.18. This suggests that Short descriptions only
comments are somewhat less frequent for Java documentation comments than for Python
from the analysed dataset.

We would like to note that for all the scatter plots presented in the paper, we show only
the projects that contain a number of docstrings less or equal to the 0.99 percentile, as
showing all the points would lead to more dense and harder to read figures. As well, please
note the differences in scales on the x and y axis for the Python and Java side-by-side plots.
Using the same scale, would lead to figures that are more difficult to read.

Following, we analyse how common each of the studied sections: Short description,
Long description, Parameters, Return and Raises are among the docstrings on a per project

Table 5 Summary Statistics for the Percentage of Short Description only Docstrings per Project

Dataset Mean std min 25% 50% 75% max

Python 0.38 0.34 0.00 0.04 0.31 0.62 1.00

Java 0.29 0.31 0.00 0.00 0.18 0.47 1.00

 86 Page 16 of 48 Empir Software Eng (2023) 28:86

Fig. 4 Total Docstrings vs. Total Docstrings with Short Descriptions per Project

basis. We first look at how prevalent the Short description is over all the docstrings from the
two datasets. We expect that most comments include a Short description, while it should be
less common for a comment to include other sections (like Parameters, Return or Raises)
but not this one. In Fig. 4 we plot the number of docstrings per project on the x axis and
the number of extracted Short descriptions on the y axis. We can notice that there is almost
a linear relationship between the number of docstrings and the ones that include a Short
description. There is some variety for the Python dataset, while for the Java dataset this
relationship between the number of docstrings per project and the corresponding number of
Short descriptions is almost perfectly linear with the exception of a few projects. For both
of our datasets it is clear that there is a strong inclination to include the summary as a Short
description in a comment.

Fig. 5 Total Docstrings vs. Total Docstrings with Long Descriptions per Project

Empir Software Eng (2023) 28:86 Page 17 of 48 86

Fig. 6 Total Docstrings vs. Total Docstrings with Parameters per Project

To analyze how common the Long description section is we plot in Fig. 5 the number of
docstrings on the x axis and the number of extracted Long description per project on the y
axis for both datasets. Here, we observe that there is a high variety on the frequency of this
section, while still being relatively common. The goal of the Long description is to elaborate
on the summary and can include different details that the developer finds important, for
example dependencies with other functions, constraints that should be known when using
the particular function or rationale for using a specific data structure or algorithm.While this
section is less common than the Short description, developers use it frequently to describe
more than just the one sentence summary of the function. We can observe that the frequency
of this section is similar between Python and Java.

Fig. 7 Total Docstrings vs. Total Docstrings with Return per Project

 86 Page 18 of 48 Empir Software Eng (2023) 28:86

Next, we look at how common the Parameters section is. In Fig. 6 we plot the number of
docstrings per project on the x axis, while on the y axis we plot the corresponding number
of docstrings including this section for the Python and Java datasets. We can notice a higher
prevalence of this section for the Java dataset, while the distribution between the number of
Long Descriptions and the corresponding total number of docstrings has a linear tendency.
The Python dataset seems to have several projects with various counts of docstrings, but
without any extracted Parameters section, as indicated by large density of points on the x
axis. These likely correspond to the projects for which we could not identify a style and
classified them as N/A in Fig. 2. Here, we would like to note that it is possible for developers
to have provided description for the parameters as free-text, while others include formatting
errors which makes it impossible for the parser to correctly extract the Parameters section.
In our results, we can only analyze sections that have been correctly formatted.

Finally, we analyse the Return and Raises sections. The plots in Fig. 7 include the number
of docstrings on the x axis and the number of extracted Return sections on the y axis. We can
observe similarities of this section with the Parameters section per programming language.
For the Python dataset, both sections have a wide distribution without any clear correlation
and a large density on the x axis. While for Java, there is a clear linear tendency while the
projects plotted on the x axis are not very frequent. In Fig. 8 we plot the number of docstrings
on the x axis and the number of well formed Raises sections on the y axis. Here we can
notice a drastic difference in the frequency of this section for the Python dataset compared
to the rest of the sections. Very few projects contain a large number of this section among the
total number of docstrings. This difference is not as pronounced for the Java dataset with a
larger variety of the frequency of this section among the various documentation comments.

Even though the scatter plots allow us to visualize the prevalence of the different sec-
tions per project, to gain a better quantitative understanding of how common these sections
are, we perform a further analysis. We compute the fraction of docstrings including a par-
ticular section per project and then include the summary statistics for these fraction values
in Table 6. From this table we can observe that for the Python dataset, the Long descrip-
tion is on average included in a third, while the Parameters section is included in a quarter

Fig. 8 Total Docstrings vs. Total Docstrings with Raises/Throws per Project

Empir Software Eng (2023) 28:86 Page 19 of 48 86

Table 6 Summary Statistics for the fraction of included sections per project

Section Mean std min 25% 50% 75% max

Python

Short description 0.977 0.104 0.000 1.000 1.000 1.000 1.000

Long description 0.328 0.301 0.000 0.042 0.271 0.500 1.000

Parameters 0.252 0.335 0.000 0.000 0.000 0.500 1.000

Return 0.181 0.295 0.000 0.000 0.000 0.284 1.000

Raises 0.025 0.103 0.000 0.000 0.000 0.000 1.000

Java

Short description 0.996 0.434 0.000 1.000 1.000 1.000 1.000

Long description 0.250 0.242 0.000 0.333 0.200 0.375 1.000

Parameters 0.560 0.333 0.000 0.294 0.622 0.846 1.000

Return 0.448 0.327 0.000 0.150 0.443 0.709 1.000

Raises 0.156 0.230 0.000 0.000 0.500 0.222 1.000

of the docstrings of a project. The Return section shows up on average in 0.181 fraction of
the docstrings per project, while the Raises section is extremely rare in the projects from
the Python dataset. Here, we would like to note that the median value for the Parameters,
Return and Raises sections is equal to 0, as around half of the projects do not have a majority
styles, this means that such sections could not be extracted by the parser we used.

Interestingly, the Long description is less common in the Java dataset we studied, the
average fraction of docstrings including this section per project is 0.25, 0.078 less than for
the Python dataset, while the occurrence of the Return and Raises sections is significantly
larger in the dataset we studied. The average fraction of docstrings per project including a
Parameters section is 0.56, while for the Return and Raises section this value is equal to
0.448 and 0.156 respectively.

Following our analysis of the structure of documentation comments for the Python and
Java dataset, we can make the following observations:

Finally, we can notice differences between the structure of Python and Java documenta-
tion comments. We speculate that this might be due to the more frequent use of IDEs for
writing Java code, which generate the template of documentation comments automatically.
Additionally, the existence of a single recommended and widely accepted formatting style
might encourage developers to use this more often. Nevertheless, we observed for the sec-
tions that are included in Python documentation comments, they seem to be longer than the

 86 Page 20 of 48 Empir Software Eng (2023) 28:86

Java counterpart. Further work is needed to understand the reasons behind these differences.
However, the prevalence of these sections in both datasets we studied, indicates that both
Java and Python developers can benefit from approaches that support them in writing fully
formed comments and not only the summary.

3.3.4 Analysis of the Parameters Section

For the Parameters section, we extend our analysis by looking at how correct and com-
plete this section is. We interpret precision as correctness in order to answer the following
question: “from the parameters that are described in the comment, how many do actually
appear in the function signature?”. And we interpret recall as completeness to answer the
second question: “from the parameters included in the function signature how many are
described in the documentation comment?”. We compute the precision (correctness) and
recall (completeness) of the included parameters using the following two formulas:

Precision = |correctDocstringParams|
|docstringParams|

Recall = |correctDocstringParams|
|f unctionParams|

The correctDocstringParams represent the number of parameters described in the
docstring that match parameters from the function signature. The len(docstringParams)
represents the number of parameters included in the docstring, while len(functionParams)
represent the number of parameters included in the function signature. For class instance
methods we ignore the parameter self, as the recommendation is to not document it. As an
example, in Listing 3 the description for the parameter one hot labels is missing and we
obtain the following values for precision and recall: Precision = 1/1 = 1.0, Recall = 1/2 = 0.5.

We then compute the average of these values per project and include the summary statis-
tics in Table 7. From this table we can observe that the average and median precision and
recall per project for Python docstrings that do include parameters descriptions is around
0.5. This can happen if a developer does not document all the parameters in the docstring.
Maybe they did not include them from the beginning, or maybe they neglected to update
the corresponding comment when adding additional parameters at a later time. Another
option is that the function parameter in the signature was renamed, but not in the docstring.
Incomplete comments can be particularly problematic, as a developer, reading the comment
might wrongly assume that it is complete and rely on incorrect information. Interestingly,
the average precision per project of included parameters description is much higher for the
Java projects at around 0.97, while the average recall per project is lower at 0.65. This fur-
ther corroborates our previous observation, that the comments of the Java dataset are more
complete. If parameters are included in the documentation comments these are correct, as

Table 7 Summary Statistics for the Parameter’s Precision and Recall

Language Metric Mean std min 25% 50% 75% max

Python Precision 0.53 0.34 0.00 0.23 0.52 0.85 1.00

Recall 0.51 0.33 0.00 0.20 0.50 0.81 1.00

Java Precision 0.97 0.09 0.00 0.98 1.00 1.00 1.00

Recall 0.65 0.35 0.00 0.38 0.77 0.98 1.00

Empir Software Eng (2023) 28:86 Page 21 of 48 86

named in the function signature, however also for the Java dataset sometimes parameters
are missing as indicated by the lower average recall value.

References in Short or Long descriptions In many cases, docstrings are present, but the
expected parameters are not defined. We wanted to determine how often parameters may
be documented simply as part of the Short or Long descriptions, rather than in their dedi-
cated sections. For this investigation, we first filtered out all samples where the parameters
are fully documented. For the remaining samples in which at least one parameter is undoc-
umented, we (a) parsed the function body to extract the parameter names, (b) determined,
whether each parameter name appears in the Short and/or Long descriptions, (c) calculated,
for each project, the mean fraction of parameter names referred to in different parts of the
description. We chose to consider the mean fraction for each project, rather than all frac-
tions, as projects have a tendency for uniformity, and we wanted to avoid larger projects with
more functions to bias the outcome. To parse the functions, we again used javalang for
Java code, while using Python’s own ast module for parsing Python functions. We were
able to parse 496,248 Java methods. Since the CodeSearchNet dataset also contains older
Python code, we used lib2to3 (Lib2to3 2022) to refactor any Python functions that could
not be parsed initially. This allowed us to parse an additional 3,964, for a total of 442,980
Python functions. We were unable to parse 440 Java and 333 Python functions from the
CodeSearchNet dataset, as they appear to be malformed. The mean fraction of mentioned
parameters for each project is calculated via the following formula:

∑|f unctions|
i=0

|mentionedParametersi ||parametersi |
|f unctions|

Figure 9 visualizes these mean values. We can see that for both Python and Java, where
docstring tags are missing, parameters are mentioned in about 10-40% of descriptions for
most projects. Conversely, this means that parameters are undocumented in the majority of
functions. The outliers indicate that in some projects, most parameters are documented, or
at least mentioned, as part of the Short or Long descriptions.

3.3.5 Length of Tag Descriptions

Similar to parameters, also return values and exceptions are documented using tags, for
example @returns foo or @raises exception X. To obtain an approximate understanding
of how extensively this tag-like structures are documented (if they are present), we used
NLTK’s word tokenizer to count the number of words contained in their descriptions. For

 86 Page 22 of 48 Empir Software Eng (2023) 28:86

Fig. 9 For each project, the mean fraction of parameter names mentioned in the short or long descriptions
(or not at all) for functions where not all code parameters have corresponding tags

parameters, we also check if the parameter name itself is mentioned as part of the descrip-
tion. We make sure to only identify parameter names not surrounded by other alphabetical
characters (e.g., a parameter i would be identified in the sentence “Takes a number i.” but
not in “Not implemented!” by using the following regex:

rf”(?: ˆ |[ˆ a-zA-Z])(re.escape(param))(?:[ˆ a-zA-Z]—$)
Figures 10, 11 and 12 display the word count distributions (not including zero-length

descriptions), revealing the insights described next.
A quarter of all non-empty parameter descriptions appearing in Python and Java pro-

grams comprise just up to 5 or 3 words, respectively. From a qualitative inspection of our
data, we conclude that these parameter tags are usually in the form of @param thing
the given thing; i.e., the documentation provides barely any additional information
over the source code. The same holds true for exceptions, where a quarter are described in
6 words or less in both languages. Furthermore, one in four parameter descriptions men-
tion the parameter name itself, contributing to the word count, in both Python (27%) and
Java (28%).

Tag descriptions in Python tend to be more verbose than in Java, this is true for both
Short and Long descriptions. We identify at least one contributing reason: most Python code
lacks type hints and Python code often leverages duck typing. For this reason, the parameter
descriptions often describe default values or the ability to accept different types of values.
Similarly, return values in Python are often complex values (such as dictionaries), which are
not defined and documented in a separate source code location, so they are documented in
the location where they are returned. It is also common for usage examples to be included as
part of parameter or return descriptions. Listings 4, 5 and 6 illustrates a few such examples.

Fig. 10 Number of words contained in non-empty parameter descriptions, shown as quartiles

Empir Software Eng (2023) 28:86 Page 23 of 48 86

Fig. 11 Number of words contained in non-empty return descriptions, shown as quartiles

By contrast, parameters and return types in Java have a specific (or at least, generic) type
which is documented elsewhere. Thus, return descriptions in Java are often similar to the
short parameter and exception tags in the form of “@return the thing”. Given the relative
verbosity of Java code, it is reasonable to assert that Java code can be more self-documenting
than Python code in this regard.

There are numerous outliers which provide extensive documentation for single parame-
ters, return values, or even raised/thrown exceptions. Inspecting a random sample of long
parameter descriptions reveals that these often accept a specific set of values (such as choos-
ing a specific strategy or algorithm), in which case every value accepted by the function
is described as part of the parameter documentation. Similarily, long return and exception
descriptions often describe an extended set of possible values. We also observe that in some
cases, the text provided as a description must have been placed there accidentally, for exam-
ple duplicating documentation that belongs to the type of the parameter, possibly done so
by an automated tool.

Table 8 gives an overview of all data analyzed in Sections 3.3.5 and 3.3.4.

4 Structure-based Comment Completion

The empirical study has shown that structural elements are indeed widely used in documen-
tation comments of Python (docstrings) and Java (Javadoc). Motivated by this finding, we
present novel language models in this section that leverage this structure information for the

Fig. 12 Number of words contained in non-empty exception descriptions, shown as quartiles

 86 Page 24 of 48 Empir Software Eng (2023) 28:86

Listing 4 This return description from the robinandeer/puzzle Python project describes a complex return
value

Listing 5 This parameter description from the pandas-dev/pandas Python project illustrates that Python
parameters may require more documentation due to weak typing

Listing 6 This return description from the totalgood/nlpia Python project includes a usage example

Table 8 Overview statistics on the code and docstring analysis

Language Java Python

Total number of functions 496,688 443,313

Functions successfully parsed 496,248 442,980

Functions failed to parse 440 333

Parameter descriptions mentioning parameter 147,350 96,234

Functions with complete param tags 329,940 57,539

Functions with incomplete param tags 166,748 385,774

Parameters parsed 325,219 993,581

Parameters found in docstring tags 558,432 367,705

Parameters mentioned in short description 43,481 128,726

Parameters mentioned in long description 14,263 111,777

Parameters not mentioned at all 273,948 776,230

Empty parameter descriptions 33,636 11,111

Empty return descriptions 288,856 350,749

Empty exception descriptions 17,590 344

Empir Software Eng (2023) 28:86 Page 25 of 48 86

Fig. 13 Docstring Completion Example

task of comment completion. For simplicity, we will refer to both types of structured doc-
umentation with the name docstring. The completion task that we are tackling is “given a
prefix sequence of a documentation comment, suggest the most likely next word to the devel-
oper”. We include an illustrative example in Fig. 13. Imagine that the developer is about
to write a complete comment and is currently at the point of the cursor (where the darker
text ends). The completion engine should assist the developer in finding the next words,
i.e., function that can, and so on. We adopt and extend neural language models
that were presented in previous work (Ciurumelea et al. 2020) as a baseline for generating
completion suggestions.

4.1 Neural LanguageModels

The task of generating completion suggestions can be solved using language models (LMs),
which are statistical models (Jurafsky and Martin 2000) that assign a probability to each
possible next word and are also able to assign a probability to an entire sentence. For the
example in Fig. 13 if the developer typed Converts the class into an actual
view such a model can generate possible next words. Some potential ones are function,
method and object, but not the, refrigerator or view. These kind of models
have applications in a large variety of tasks, such as speech recognition, spelling or gram-
matical error correction and machine translation among others. Traditionally, this problem
was tackled using n-gram language models, which estimated the probability of a sequence
by extracting frequency counts from the training corpus. However, n-gram models have sev-
eral problems due to data sparsity and require complex back-off and smoothing techniques.
Additionally, using larger n-gram sizes is very expensive in terms of memory and these mod-
els cannot be generalized across contexts. For example, seeing sequences such as “blue car”
and “red car” will not influence the estimated probability of “black car”. Whereas a neural
language model is able to learn that “blue”, “red” and “black” all represent the same con-
cept of color. Neural language models are better able to handle all the problems described
above, and will in general, have a much higher prediction accuracy than an n-gram model
for a particular training set (Jurafsky and Martin 2000).

To build neural language models we use LSTM-based models that process sequences
of words one word at a time and return at each time step a fixed sized vector representing
the processed sequence so far. Vanilla RNNs are notoriously difficult to train and have
problems with exploding and vanishing gradients during training. For this reason they have
been replaced by gated architectures such as Long Short-Term Memory (LSTM) or Gated
Recurrent Unit (GRU) units.

 86 Page 26 of 48 Empir Software Eng (2023) 28:86

Language models can be evaluated using an intrinsic metric called perplexity, the per-
plexity of a language model on a test set represents the inverse probability of the test set
normalized by the number of words (Jurafsky and Martin 2000). A better language model is
one that assigns a higher probability to the test set, therefore has lower perplexity values. For
training and evaluation of such models it is common to use the log transformed version of
perplexity, called cross-entropy. An intrinsic improvement in perplexity does not guarantee
an improvement in the performance of the task for which a language model is used, there-
fore it is important to always evaluate such a model using extrinsic metrics, which reflect
the performance of the application. In our case, we want to know how well we can predict
completion suggestions while a developer is typing a comment, for this we use the Top-k
accuracy metric with k = [1, 3, 5, 10]. We define the Top-k accuracy as the ratio of correct
predictions among the k predicted words with regard to all predictions being made.

When training language models it is necessary to define a fixed vocabulary at the begin-
ning. This vocabulary can be composed of full words, sub-words or characters, while each
type has its advantages and disadvantages. In general, it is not possible to learn all possi-
ble words, as some will not appear in the training set at all or will not be frequent enough.
The solution is to assign a general ¡UNK¿ token to words that are rare or were not seen
during training. This is a reasonable solution for natural language text, as it is less likely to
encounter unknown tokens during training and testing. However, in source code develop-
ers include new identifier names all the time (Hellendoorn and Devanbu 2017) and dealing
with ¡UNK¿words requires additional measures. For example, splitting identifiers using the
snake or camel case convention into individual words.

4.2 LanguageModels for Documentation Comments

We train five different language models (LM) for the experiments in this paper. We first train
a Sequential and a Context-based Language Model on the extracted sections to establish
a baseline. For this, we use the same models that have been introduced in previous work
(Ciurumelea et al. 2020).

Sequential LM The sequential language model is presented in Fig. 14(a) and is an LSTM
model that includes an Input layer, an Embeddings layer, one or more LSTM layers followed
by one or more Dense layers interleaved with Dropout layers. The input layer receives a
word sequence of length k representing the prefix, for which a completion suggestion should
be generated. Then this is followed by an Embeddings layer, this associates with each word
of the vocabulary a dense fixed-size real valued vector that incorporates semantic and syn-
tactic information. This layer is necessary, as deep learning models cannot receive as inputs
words, only numeric values. What happens in practice is that words are one-hot encoded,
that is each word is represented as a sparse vector with a 1 on a single position. The Embed-
dings layer is added on top of the Input layer, to learn a dense distributed representation
for each word from the vocabulary in a predefined vector space. This representation of the
words, also called word embedding is learned based on the usage of the words. Words that
are used in a similar way will result in having similar representations that can be projected
close in the geometric space they are represented. For example, colors or animals will have
similar vector representations.

The LSTM layer will process the input sequence word-by-word and keep an internal
state during this process. At the end of the sequence it will return a vector representation
of the received sequence. This is passed through the Dense layers, to extract further useful
features until the final Dense layer, which outputs for each word in the vocabulary the

Empir Software Eng (2023) 28:86 Page 27 of 48 86

Fig. 14 Language Models from Previous Work

probability that this is the next word. This is a regular language model that only uses the text
of the documentation comments in our dataset for training, but as mentioned in (Ciurumelea
et al. 2020) documentation comments are accompanied by context information, such as the
method body they are documenting.

Context LM Following, we build a Context LM represented in Fig. 14(b), which is a multi-
input model that additionally to the prefix sequence also receives the method body as input.
The method body is passed through a shared Embeddings layer, then the obtained represen-
tation of the method body is passed through a GlobalAveragePooling1D layer. This averages
the Embeddings vector representing the method body to obtain a single vector representa-
tion of the method body context, which is then repeated and concatenated with each word
embedding representation of the prefix sequence. The rest of the model follows the structure
of the Sequential LM.

Next, we want to investigate how to leverage the structure information of the documen-
tation comments to improve the suggestions results. For this we have two options: either
build a model that receives the section type as additional input, or train section specific

 86 Page 28 of 48 Empir Software Eng (2023) 28:86

models, that is train a separate model for each of the sections we analysed: Short and Long
description, Parameters, Return and Raises sections, respectively.

Section LM To pursue the first option, we extend the Sequential LM and build a Section LM
model represented in Fig. 15, that also receives the section information as input, which can
take one of the following categorical values: Short description, Long description, Param-
eters, Return or Raises. The section input is passed through an Embeddings layer, with
different weights and dimensions than the ones used for the prefix sequence input. This
allows the model to learn a more meaningful representation for the sections, for example, it
might learn for the Short description a vector representation that is more similar to the one
learned for the Long description than the one for the Raises sections. The embedding repre-
sentation of the section input is repeated and concatenated with each embedding vector for
the prefix sequence words which are then passed through the layers described previously.

Section-Context LM Our fourth model is a Section-Context LM model that receives as
input the prefix sequence, the method body context and the section type for which it should

Fig. 15 Section Language Model

Empir Software Eng (2023) 28:86 Page 29 of 48 86

Fig. 16 Section-Context Language Model

learn to generate a completion suggestion. This model is included in Fig. 16. It concatenates
the embedding representation for each word in the prefix sequence with the obtained method
context and the section types representations. This information is then passed through the
LSTM layers for each word of the prefix sequence, and the representation at the end of this
sequence is passed through the Dense layers up to the final Output layer.

Section specific Context LMs Additionally, we train section-specific models using the
Context LM architecture 14(b) using as training data only the corresponding sections. For
example, for the Short description we train a model that only receives as input the prefix
sequences generated from the extracted Short description sections together with the method
body context. As a result, we obtain 5 Section models that are then evaluated on the corre-
sponding section test sets. We will refer to these models as Section specific Models in the
rest of the paper.

5 Dataset Creation and Training Details

We selected Python and Java as two popular representatives for two different program-
ming paradigms to investigate the performance of our completion engine in different

 86 Page 30 of 48 Empir Software Eng (2023) 28:86

programming languages. Additionally, both languages are known for recommending a for-
matting style when writing documentation comments. In the following, we describe which
datasets we use for training and evaluating the models, how we extracted the training
instances and finally provide some additional details about the models themselves. For
Python, we collected a larger and more diverse dataset for training the language models.
However, for Java we keep the CodeSearchNet dataset as this should be sufficient for our
goals, to understand if our results can be generalized to other programming languages.

5.1 Documentation Comments Datasets

Python Dataset Collection We build a new Python dataset from the GitHub dump avail-
able on the BigQuery platform through the Google Cloud Public Datasets Program (Google
cloud public datasets 2021). At the time we queried BigQuery for this particular dataset, it
had last been updated on the 20th of March 2019. We collect all Python files that contain at
least one instance of triple quotes, which could potentially represent a docstring. Here, we
would like to note that some of the projects were relatively old and might not use the newer
recommendations. Additionally, by only looking at triple quotes, we might have missed the
comments that uses single triple quotes. However, this was only common for older projects.
This resulted in a very large number of files and projects of varied quality and character-
istics. To ensure that the quality of our dataset is sufficient, we queried GitHub using the
REST API (Github rest api 2022) for additional commit information and filter the projects
based on the following characteristics:

– no forks (not marked as a fork of another project);
– include at least 10 Python files;
– commits data: it includes at least 10 commits, and these commits include at least 2

different author emails
– include at least 100 docstring - function pairs.

The filtering criteria have been chosen as minimal characteristics for excluding toy
projects. For example, we have chosen at least 10 commits with at least 2 different emails as
criteria to ensure a minimum amount of activity in the project without excluding too many
projects. However, it is possible that a GitHub user uses two different emails when com-
mitting changes to a repository, thus resulting in a false positive. We also ignore projects
which have been removed from GitHub or for which we were not able to obtain the commit
information. After performing all these filtering steps we obtain a list of 14,507 projects,
nevertheless we noticed that there was some duplication among the projects. While we fil-
ter out the forks, some users copy a specific project then create a new repository on GitHub
using this project and give it a different name. By using the git root hash we remove these
cloned projects and obtain a final list of 9,743 projects that comprise the Python dataset.
By looking at the git root hash, we were able to filter out a substantial number of cloned
projects. These were projects that copied another popular project and contained minimal
changes to it. However, it might still be possible that we missed some of them, or that a
project includes the source code of another project.

Java As we previously mentioned, for Java we use the dataset, that we analysed in Section 3
of the paper. This is the one provided as part of the CodeSearchNet challenge (Husain et al.
2019a).

Empir Software Eng (2023) 28:86 Page 31 of 48 86

5.2 Training Data Extraction

To train and evaluate machine learning models, it is necessary to prepare the data and con-
vert it to training instances in the format expected by the models. Additionally, to ensure that
our evaluation results are valid, we should follow procedures such as splitting the dataset
into a training, validation and testing sets, and use cross-fold validation. Employing k-fold
cross-validation for training and evaluation mitigates the risk that the results are caused by
spurious patterns in the data partitioning.

The dataset is split into 5 folds, while 4 folds are used for training, and the fifth fold is
equally split into validation and test sets. We are using 5 folds instead of the more traditional
10 folds because of limited computational resources. We follow the guidance from Le Clair
and McMillan (2019) and split the data on a repository level granularity. This means that
repositories that appear in the training set will not appear in the validation/test sets and vice-
versa. Splitting the data on a function level granularity would lead to a boost of our results
as functions from the same project would be found both in the training and test set, therefore
making it easier for the neural language models to generated completions for them. Please
note, that the partitioning on a project level is different to previous work (Ciurumelea et al.
2020), which split the dataset at a function level.

For the collected Python dataset, we check and eliminate function-docstring exact dupli-
cates pairs between the train and validation/test sets. In this way we are ensuring that the
results are not inflated because of auto-generated code and comments or snippets of code
that are copy-pasted between projects. For the Java dataset this has already been done
(Husain et al. 2019a).

In Table 9 we include the number of repositories, files and extracted function-docstring
pairs averaged over the 5 folds for the Python and Java datasets. We would like to note,
that as some of the projects have a disproportionate number of docstrings, we only keep a
maximum of 500 docstrings per project for Python that were randomly selected. Addition-
ally, for each documentation comment we extract the sections and obtain the total counts as
included in Table 10 averaged over the 5-folds for the separate dataset partitions.

We can observe by comparing the number of repositories and extracted function-
docstring pairs for the Python and Java datasets described in Table 9, that the Java dataset is
smaller. From the statistics describing the number of extracted sections included in Table 10
for the Java dataset, we notice that these are better balanced and we expect that this will
have an effect on the training of the neural language models. This observation confirms the

Table 9 Training/Validation/Testing Datasets Statistics

Dataset Repositories Files Method-Docstrings Pairs

Python

Train 7,439 270,498 1,415,297

Validation 960 40,806 211,868

Test 963 40,528 213,181

Java

Train 3,674 93,171 327,112

Validation 457 9,862 34,980

Test 461 13,453 46,797

 86 Page 32 of 48 Empir Software Eng (2023) 28:86

Table 10 Extracted Sections Statistics (5- fold average)

Section type Train count Validation count Test count

Python

Short description 1,370,770 205,576 207,041

Long description 394,098 62,170 62,786

Parameters 790,204 115,192 113,115

Raises 38,392 5,438 5,484

Returns 233,090 33,435 32,960

Java

Short description 327,111 34,980 46,797

Long description 103,044 10,852 14,908

Parameters 407,753 44,293 57,645

Raises 95,768 7,584 16,357

Returns 163,547 17,096 23,790

findings from the Section 3, that Java comments include more often the different sections
and rarely contain only a summary of the method as a documentation comment.

Preprocessing and Generation of Training Instances For creating the training instances
we use the sections extracted from the docstring-function pairs. For each of the Short
description, Long description, Parameters, Return and Raises sections we perform the
following preprocessing steps:

1. remove non-English docstrings, which were detected using the Python langdetect
library (Langdetect 2021) as mentioned in Le Clair et al. (2019);

2. remove doctests (Doctest — test interactive python examples 2021) from the section
content, these correspond to interactive Python sessions and contain snippets of code
and the expected results, they are not very common and would likely lead to worse
results. This step is only applied for the Python dataset.

3. split identifiers based on the camel and snake case conventions, this has been shown in
previous work to reduce the necessary vocabulary size (Hu et al. 2020) for training neu-
ral language models and as a reasonable solution for the problem of Out-Of-Vocabulary
words for source code comments;

4. lowercase all characters;
5. replace any characters that do not satisfy the following regular expression: [A-Za-z0-

9.,!?:; \n] with an empty space;
6. replace the punctuation signs with a corresponding special symbol (e.g.,the dot charac-

ter is replaced with <punct.>), we keep the punctuation signs as we believe they are
important signals for the LMs;

7. multiple whitespaces are replaced by a single one;
8. add a <sos> (start of sequence) and an <eos > (end of sequence) token to each

extracted section.

The summary statistics for the obtained lengths in tokens of the preprocessed sections for
the datasets are included in Table 11.

Empir Software Eng (2023) 28:86 Page 33 of 48 86

Table 11 Preprocessed Sections Lengths Statistics

Section Mean Std Min 25% 50% 75%

Python

Full Comment 41.04 76.63 1.00 9.00 18.00 45.60

Short description 11.30 9.85 1.00 7.00 9.00 13.00

Long description 41.04 62.15 1.00 12.60 23.00 46.00

Parameters 15.58 27.57 0.00 7.00 11.00 17.00

Returns 13.31 49.65 0.00 4.00 8.00 14.00

Raises 15.45 15.58 0.00 9.00 12.00 18.40

Java

Full Comment 50.67 68.75 1.00 17.00 34.00 62.00

Short description 12.19 9.44 1.00 7.00 10.00 15.00

Long description 37.95 53.14 1.00 13.00 22.00 43.00

Parameters 10.40 10.72 1.00 6.00 9.00 12.00

Returns 10.26 9.46 1.00 5.00 9.00 13.00

Raises 11.60 14.73 0.00 6.00 10.00 14.00

Next, we describe how the extraction, preprocessing and training instance generation
works using as an example the function-docstring pair illustrated in Listing 1. We include
in Table 12 the extracted sections, while in Table 13 we include the corresponding prepro-
cessed sections. The Short and Long descriptions will be extracted as free text from the
docstring if they exist, while the Parameters are represented as a list of tuples. Each tuple
will contain the identified name, the description, the type if it is included, and, for Python, a
boolean flag that indicates whether the parameter is optional. The Return section is a tuple
containing the type and the corresponding description, while the Raises section can contain
a list of tuples containing for each extracted exception the type and the description. The
method body is split into tokens, which are then preprocessed using steps 3 to 7 from above
and the results are then fed as context input for the Context-based LMs presented earlier.

Using the preprocessed section, we generate the training instances, these contain
sequences of length k, the preprocessed method body and the corresponding section type.
The neural language models will be trained to predict the kth word, given the prefix sequence
of length k - 1, and additional input depending on the model type.We apply a sliding window

Table 12 Extracted Docstring Sections Example

Section type Section content

Short Description Returns the cross entropy loss of the classifier on images.

Long Description None

Parameters [(’images’, ’A minibatch tensor of MNIST digits. Shape must
be [batch, 28, 28, 1].’, None, None), (’one hot labels’, ’The
one hot label of the examples. Tensor size is [batch, 10].’,
None, None)]

Returns (None, ’A scalar Tensor representing the cross entropy of the
image minibatch.’)

Raises None

 86 Page 34 of 48 Empir Software Eng (2023) 28:86

Table 13 Preprocessed Docstring Sections Example

Section type Section content

Short Description returns the cross entropy loss of the classifier on images
<punct.>

Long Description None

Parameters [(’images’, ’a minibatch tensor of mnist digits <punct.>
shape must be batch <punct,> 28 <punct,> 28 <punct,>
<newline> 1 <punct.>’, None, None), (’one hot labels’, ’the
one hot label of the examples <punct.> tensor size is batch
<punct,> <newline> 10 <punct.>’, None, None)]

Returns (None, ’a scalar tensor representing the cross entropy of the
image minibatch <punct.>’)

Raises None

approach to extract the sequences of length k for the Short and Long description sections.
However, the other sections are lists of tuples or tuples, therefore we first assemble them
into strings before extracting the sequences of length k. For example, for each extracted
parameter we concatenate the identifier name, the type and optional/not optional qualifier if
it exists, a special token <sod > (start of description) and finally the description. A similar
process is used for the Return and Raises sections.

In Table 14 we include several of the resulting training instances corresponding to the
current example. The first column includes the preprocessed method body, the second one
includes the section type and the final one includes the docstring sequence. For these exam-
ples, the model would receive the sequence without the last word as input and it would learn
to predict the last word. In practice, we train the model on all possible subsequences that
we can generate from a comment. We follow the previous work (Ciurumelea et al. 2020)
and use a value of 5 for k, as this allows us to predict words early on. The size of the pre-
processed method body is limited to the first 100 tokens, which also follows the example
of previous work (Hu et al. 2020) in automated summary generation, as neural networks
generally have problems with learning long sequences.

5.3 Model Configuration and Training Details

We trained the described models for 20 epochs with early stopping, and the models were
evaluated after each epoch on the validation set. The model that performed best on the
validation set was then evaluated on the test set by computing the Top-k accuracy. Here, we

Table 14 Training Instances Example

Method body Section type Docstring sequence

def mnist cross entropy images... Short Description <sos> returns the cross entropy

def mnist cross entropy images... Short Description returns the cross entropy loss

def mnist cross entropy images... Parameters <sos> images <sod> a minibatch

def mnist cross entropy images... Parameters images <sod> a minibatch tensor

def mnist cross entropy images... Returns <sos> <sod> a scalar tensor

def mnist cross entropy images... Returns <sod> a scalar tensor representing

Empir Software Eng (2023) 28:86 Page 35 of 48 86

would like to mention that testing instances for which the predicted word is a special token,
like the < UNK > or any of the punctuation tokens, are ignored during the evaluation
on the test set. We used the Tensorflow and Keras libraries to implement our models and
trained them using a GPU. For the training, we use the following hyperparameters for the
neural language models:

– a size of 512 for the prefix and method body Embedding layers, while a size of 64 is
used for the section type Embedding layer;

– an LSTM layer with size 256, followed by a Dense layer with size 128 and finally the
Output layer with dimension equal to 30,000, as the vocabulary size, we also add a
Dropout layer between the Dense and Output layers with a dropout probability value of
0.2;

– training is done using the Adam optimizer with a learning rate of 3e − 4;

This model configuration is similar to the previous work, we have only set the dimen-
sionality slightly higher to accommodate for our larger dataset. We have not performed
further hyperparameter optimization because of time and computational resources con-
straints. This should not affect our findings, since the goal of our work was to investigate
whether the structure of documentation comments could be leveraged for the problem of
generating completion suggestions. However, further hyperparameter optimization could
results in better results.

6 Can Structural Information Improve Completion Accuracy? (RQ2)

The focus of this research question is to understand the effect of using the section infor-
mation on the completion performance. We will investigate two aspects: “1) does using the
section information improve the generated completion suggestions?” and “2) are there sig-
nificant differences between the completion predictability among the sections?”. To limit
the scope of the research question, we first focus only on Python docstrings. The comparison
to the Java results will then be performed in the next research questions.

Methodology To evaluate the trained language models we compute the Top-1, Top-3, Top-
5, Top-10 accuracy of the generated suggestions for the test sets averaged over the 5 folds.
There are several options for evaluating machine learning models, and language models in
particular. We choose the Top-k accuracy as it allows us to directly measure how well the
models work for our task. This metric has been used in a paper (Zhou et al. 2022) that
evaluates deep learning models for the task of code completion, which is similar to our task.
We are interested in understanding if the results returned by the model are correct, the most
important value is the Top-1 accuracy, as likely developers will not spend time analysing a
list of 10 words to chose the correct next word. However, looking at the Top-3, Top-5 and
Top-10 accuracy allows us to understand the potential of the models, as additional post-
processing steps could allow us to improve the prediction results. For example, we might
decide to suggest a parameter or variable name on the first position if this appears in the
method body and the model suggests it in the Top-5, but not as the Top-1 prediction.

We include the results of our evaluation in Table 15, describing the results obtained for
the Sequential, Section, Context, Context-Section Language Models and for the Section
specific Models. We select the Context LM as the base model and include for all the other
models in parentheses the relative change, in percentages compared to this model. The rel-
ative change is computed as the difference between the new value and the reference value,

 86 Page 36 of 48 Empir Software Eng (2023) 28:86

Table 15 Top-k Accuracy for Python Docstrings

Model Short Long Parameters Return Raises

Description Description

Top-1

LM 0.180 (−12.7%) 0.182 (−6.3%) 0.251 (−4.9%) 0.247 (-6.6%) 0.307 (−4.9%)

Section LM 0.183 (−11.0%) 0.182 (−6.2%) 0.256 (−3.1%) 0.241 (-9.0%) 0.335 (+4.0%)

Context LM 0.206 0.194 0.264 0.264 0.323

Context-Sec LM 0.210 (+2.0%) 0.194 (+0.1%) 0.270 (+2.5%) 0.273 (+3.3%) 0.348 (+8.0%)

Sec specific Models 0.221 (+7.3%) 0.202 (+4.1%) 0.284 (+7.6%) 0.290 (+9.6%) 0.349 (+8.3%)

Top-3

LM 0.286 (−13.6%) 0.286 (−7.2%) 0.373 (−5.7%) 0.361 (−7.9%) 0.422 (−6.5%)

Section LM 0.294 (−11.2%) 0.287 (−6.8%) 0.380 (−4.0%) 0.356 (−9.2%) 0.456 (+1.1%)

Context LM 0.331 0.308 0.396 0.392 0.451

Context-Sec LM 0.339 (+2.6%) 0.308 (−0.1%) 0.405 (+2.3%) 0.400 (+1.9%) 0.483 (+7.1%)

Sec specific Models 0.352 (+6.5%) 0.315 (+2.0%) 0.414 (+4.7%) 0.402 (+2.6%) 0.458 (+1.5%)

Top-5

LM 0.341 (−13.8%) 0.346 (−7.4%) 0.435 (−6.2%) 0.418 (−8.5%) 0.480 (−6.9%)

Section LM 0.349 (−11.7%) 0.350 (−6.6%) 0.443 (−4.4%) 0.417 (−8.7%) 0.512 (−0.6%)

Context LM 0.395 0.374 0.463 0.457 0.515

Context-Sec LM 0.404 (+2.3%) 0.375 (+0.3%) 0.473 (+2.0%) 0.463 (+1.4%) 0.546 (+6.0%)

Sec specific Models 0.416 (+5.4%) 0.381 (+1.8%) 0.478 (+3.2%) 0.456 (−0.1%) 0.509 (−1.3%)

Top-10

LM 0.427 (−13.4%) 0.436 (−7.6%) 0.523 (−6.4%) 0.502 (−8.4%) 0.562 (−7.0%)

Section LM 0.433 (−12.2%) 0.440 (−6.9%) 0.530 (−5.1%) 0.500 (−8.8%) 0.586 (−3.0%)

Context LM 0.493 0.472 0.558 0.548 0.604

Context-Sec LM 0.500 (+1.4%) 0.474 (+0.4%) 0.565 (+1.3%) 0.554 (+1.1%) 0.633 (+4.7%)

Sec specific Models 0.509 (+3.1%) 0.476 (+0.8%) 0.564 (+1.0%) 0.533 (−2.8%) 0.578 (−4.4%)

divided by the reference value, where the new value is the Top-k accuracy obtained for a
specific model and the reference value is the Top-k accuracy obtained for the base model,
that is the Context LM model. The values included in the table are rounded for reasons of
space, however the relative change is computed on the exact values.

For completion, we also include a metric traditionally used for evaluating summarization
models, the ROUGE-L score (Lin 2004). ROUGE-L is part of the ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) set of metrics used for evaluating automatic summariza-
tion and machine translation software in natural language processing. This metric measures
how similar a candidate (predicted) sequence is to the reference (expected) sequence and
includes several variants based on the length of the n-grams it considers for measuring
the similarity. We focus on the ROUGE-L score that measures the longest common subse-
quence(LCS) between a reference and the predicted output and computes the corresponding
precision, recall and F1-Score. The formulas for computing these scores are the following:

Precision = |LCS|
|prediction|

Empir Software Eng (2023) 28:86 Page 37 of 48 86

Recall = |LCS|
|ref erence|

F1 = 2 ∗ Precision ∗ Recall

P recision + Recall
For example, for a reference sequence such as “helper function to start the server” and

the prediction “helper function to return the server” the word “return” is incorrect and the
LCS length is equal to 5 words and the corresponding F1 = 0.833.

We would like to note that our use case is different than the one for which the ROUGE
metric was developed, as we focus on generating completion suggestions on a word level
and not the full sequences, therefore we could not directly compare our approach to others
that focus on generating full summaries. The ROUGE metric is typically used to evaluated
summarization and machine translation models such as the more recent T5 Model (Raffel
et al. 2019) which are more complex than our models. In our current work we address the
more classical recommender systems use case and recommend one word at a time, and plan
on addressing longer completions in the future.

The F1 score is computed for each method on a section level, we concatenate the predic-
tions of the model on a word level for a particular section and compare it with the reference
section and use the rouge-score (Python rouge implementation 2022) open source package
to calculate the scores. This is similar to the scenario where the developer is typing the
comment and the model suggests a complete word and the developer either accepts it or
types the correct one. We compute these scores per section, which we then average for each
model and section and report the final results in Table 16. We only present the scores for the
Context, Context-Section and the Section specific Models, as these are expected to have the
more promising results.

Results From the evaluation results included in Table 15 we can observe that there are sig-
nificant differences between the obtained accuracy of the different sections. For the base
model, the Context LM Model, we note that it obtains the lowest Top-1 accuracy for the
Long and Short descriptions sections. The evaluation results for the Parameters and Return
sections are equal, while the results obtained for the Raises section is significantly higher.
This indicates that some sections are easier to complete than others, as they are more
predictable. For example, the most challenging to complete is the Long description, fol-
lowed by the Short description. This is likely due to the fact that the content of the Long
description is quite heterogeneous and longer, developers might expand the Short descrip-
tion, include additional explanations about how a particular function or algorithm works,

Table 16 ROUGE-L F1 Scores for Python Docstrings and Javadocs

Model Short Long Parameters Return Raises

Description Description

Python

Context LM 0.232 0.229 0.327 0.279 0.340

Context-Sec LM 0.238 (+2.3%) 0.228 (−0.5%) 0.337 (+3.0%) 0.285 (+2.1%) 0.368 (+8.1%)

Sec specific Models 0.252 (+8.3%) 0.229 (+0.3%) 0.347 (+6.1%) 0.266 (−4.7%) 0.358 (+5.2%)

Java

Context LM 0.265 0.229 0.403 0.302 0.362

Context-Sec LM 0.257 (−2.9%) 0.231 (+1.3%) 0.423 (+5.0%) 0.296 (−1.9%) 0.407 (+12.5%)

Sec specific Models 0.251 (−5.0%) 0.216 (−5.5%) 0.415 (+2.9%) 0.267 (−11.4%) 0.374 (+3.4%)

 86 Page 38 of 48 Empir Software Eng (2023) 28:86

while sometimes they might either include the parameters, raises or returns information in
a free-text form or using a custom formatting style. The Parameters, Return and Raises sec-
tions are easier to complete. This is probably caused by the more homogeneous content of
these sections, as they typically explain what a particular parameter, return or raises values
represent.

The Rouge-L F1 scores confirm our initial observations, that there are significant dif-
ferences between the values obtained for the different sections of the Python dataset. The
section for which we observe the highest scores is the Raises one, while also for this metric
the hardest to predict is the Long Description. The Sec specific Models seem to lead to bet-
ter results, however this does no apply for the Return section, and further analysis is needed
to investigate why.

Qualitative Analysis For the Python dataset, we observe that we obtain the largest gain
by training Section specific Models, however this gain is more pronounced for the Top-1
results. To improve our understanding of these differences, we include several examples
from the test set where the Section specific Models are able to return the correct word on

Table 17 Comparison Between Section specific and Context LM Predictions for Python (The grey part of
the docstrings is provided as context information to the reader, but is not part of the input, the expected target
word is highlighted in bold)

Nr. Partial Input Section Models Context LM

Docstring Sequence Top-10 Predictions Top-10 Predictions

Empir Software Eng (2023) 28:86 Page 39 of 48 86

the first position, while the Context LM model is not, in Table 17. We include on each row
an example belonging to the individual sections in the following order Short description,
Long description, Parameters, Return and Raises. We omit the method body that both the
Section specific and the Context LM models receive as input for reasons of space. The
Section specific Models are Context LM models trained on the dataset specific to a section,
while the Context LM model is trained on all the available data.

The first row includes an example from a Short description, interestingly the docstring
starts with the word “Return”. The developer tried to summarize what the method does, by
indicating what values are returned and in what conditions. Such a description would be
more appropriate for the Return section, however the docstrings in our dataset are of mixed
quality and it is a positive sign that the models still work in such cases. The Short description
specific Section model was able to return the correct word sequence as the first prediction,
while the Context LM model only returned this word on the second position. It is difficult
to find an intuition, for why the Short description specific model was able to predict the
correct word on the first position, while the other model did not. Likely, for this section the
word “sequence” is more common than the more specific word “list”.

In all the included examples, we can notice that the Section specific Models predict
the correct word on the first position, nevertheless the completions recommended by the
Context LM are reasonable completions although they are not an exact match. However,
the correct word is included in the 10 predictions also for the Context LM. This observation
indicates that the Section specific Models learn a better ranking of the results, as opposed
to the general Context LM, by being trained on the section data. Likely, for the individual
sections, the models learn that some completions are more likely than others. For example,
for the Raises section example included in row 5, the Raises specific Model learns to predict
the word “wrong” to complete the prefix sequence “parameters are of the”. When describing
error conditions, it is common that developers use negative words more often, than for the
other sections. Therefore the model learned to predict the correct word, instead of the word
“same” as the Context LM model did.

7 How Language-Dependent Are The Evaluation Results? (RQ3)

This section focuses on completion suggestions for Java docstrings from the second dataset
we introduced in Section 3. We train several language models for the task of documentation
comment completion and evaluate them separately on the different docstring sections. We
would like to investigate if we can observe similar findings as for the Python dataset: dif-
ferences between the prediction accuracy of the various sections on the test set and if using
the section information can improve the prediction results.

 86 Page 40 of 48 Empir Software Eng (2023) 28:86

The methodology of this research questions is the same that we have applied in the
previous section for Python.

Results We trained and evaluated a Context LM, Context-Sec LM and Section specific
Models for the Java dataset and include the evaluation results in Table 18. We do notice, as
for our Python Context LM Model, that the obtained Top-k accuracy values vary across the
different sections. The Long description is the most difficult to complete, while the Short
description is the second hardest. The best results are obtained for the Parameters section,
followed by the Raises and Return sections. Surprisingly, the Section specific Models obtain
worse evaluation results than the base model. We believe, this is caused by the smaller
dataset, especially when the section datasets are used separately for training. This can be
confirmed also for the ROUGE-L F1 scores that we included in Table 16, as the Section
specific Models have the lowest values. Additionally, using the section information only
helps for the Parameters, Raises and slightly for the Long description sections.

For the completion suggestions predicted on the first position (Top-1 accuracy), the
Context-Sec LM model performs best, except for the Return section where it shows a rela-
tive decrease in accuracy of 0.6%. However, the results are improved for the results returned
on the first 3 positions (Top-3 accuracy), where the Context-Sec LM model outperforms the
Context LM models for all sections. The differences of the results between the Python and
Java models can either be caused by specifics of the programming languages or by the char-
acteristics of the two datasets used for training. We plan on further investigating the cause as
future work. A reasonable hypothesis is that the training instances are more balanced among
the different sections for Java. Therefore the Context-Sec LM benefits from being trained
on more data including all the sections but is also able to leverage the section information
and improve the accuracy results compared to the Context LM model. For Python, the data
is enough for the different sections to obtain good results when training section specific

Table 18 Top-k Accuracy for Javadocs

Model Short Long Parameters Return Raises

Description Description

Top-1

Context LM 0.222 0.192 0.325 0.270 0.317

Sec specific Models 0.213 (–4.1%) 0.187 (−3.0%) 0.326 (+0.5%) 0.244 (−9.5%) 0.310 (−2.3%)

Context-Sec LM 0.223 (+0.2%) 0.197 (+2.3%) 0.335 (+3.3%) 0.268 (−0.6%) 0.342 (+7.8%)

Top-3

Context LM 0.353 0.311 0.463 0.402 0.469

Sec specific Models 0.345 (−2.4%) 0.300 (−3.4%) 0.456 (−1.5%) 0.367 (−8.6%) 0.439 (−6.3%)

Context-Sec LM 0.364 (+2.9%) 0.321 (+3.3%) 0.480 (+3.6%) 0.408 (+1.5%) 0.495 (+5.6%)

Top-5

Context LM 0.421 0.376 0.530 0.467 0.541

Sec specific Models 0.408 (−3.2%) 0.360 (−4.2%) 0.517 (−2.5%) 0.430 (−7.8%) 0.500 (−7.6%)

Context-Sec LM 0.432 (+2.6%) 0.386 (+2.7%) 0.545 (+2.8%) 0.476 (+2.0%) 0.565 (+4.4%)

Top-10

Context LM 0.516 0.466 0.613 0.556 0.633

Sec specific Models 0.498 (−3.5%) 0.444 (−4.9%) 0.592 (−3.5%) 0.515 (−7.3%) 0.575 (−9.1%)

Context-Sec LM 0.526 (+2.0%) 0.474 (+1.6%) 0.625 (+1.9%) 0.569 (+2.4%) 0.650 (+2.8%)

Empir Software Eng (2023) 28:86 Page 41 of 48 86

models. And likely, the imbalanced sections make it harder for the Python Context-Sec LM
to learn to take advantage of the section information.

Qualitative Analysis We include for the Java dataset a couple of examples that compare the
results returned by the Context LM and the Context-Sec LM models included in Table 19.
The rows correspond in order to a Short description, Long description, Parameters, Return
and finally Raises examples. We include examples for which the model using the section
information returns better results than the base model and interestingly the section infor-
mation helps the models to improve the ranking of the results. While, it is often difficult to
explain the predictions of large neural language models, as the ones we train, we believe that
some completions are more common for certain sections than for others. For instance, for
the example number 3, the Context-Sec LM model completes the prefix “the class of the”
with the word , while the Context LM model predicts the word “given”. While

Table 19 Comparison Between Section and Context LM Predictions for Java(The grey part of the docstrings
is provided as context information to the reader, but is not part of the input, the expected target word is
highlighted in bold)

Nr. Partial Input Context-Sec LM Context LM

Docstring Sequence Top-10 Predictions Top-10 Predictions

 86 Page 42 of 48 Empir Software Eng (2023) 28:86

over all the sections, the completion “given” is more likely, for the Parameters section the
word is more common.

8 RelatedWork

Work related to our research can be split into two main categories: studies related to
the content of comments to understand the types of comments developers write, what
kind of programming constructs they accompany and their frequency and approaches for
automatically generating comments, mainly as summaries of the corresponding source
code.

8.1 The Content of Source Code Comments

The content of source code comments was studied by Haouari et al. (2011), who conducted
two studies: the first one looked at the distribution and frequency of comments depending on
different programming constructs and noticed that method comments are the most common.
While during the second study, participants looked at the content and relevance of comments
and observed that most of them refer to the subsequent code and that method declarations
are well explained. Developers seem to prioritize such comments, this supports our decision
to focus on method and function comments. The quality of comments was investigated
by Steidl et al. (2013) through a semi-automatic method. One of their metrics computes
the coherence between code and comments based on the Levenshtein distance between the
words in the method name and in the comment: if the two are too similar then the comment
is likely trivial and not useful; if they are too different then either the identifier name needs
to be refactored or the comment is not sufficient.

Pascarella and Bacchelli (2017) built a detailed taxonomy to identify the purpose of Java
comments by analysing 6 open-source Java projects. They built and evaluated an automated
approach for classifying comments according to their taxonomy and noticed that although
summary comments are quite common, they only represent 24% of the overall comments.
Two of the identified categories: expand which provides details on the code itself and ratio-
nale which explains the reason behind some choices, patterns and options, confirm our
belief that comments contain more than just the summaries of the accompanying source
code.

A more recent paper (Aghajani et al. 2019) analysed the issues that developers face
with documentation by qualitatively evaluating documentation related artifacts collected
from mailing lists, StackOverflow discussions, issue repositories and pull requests. They
identified as important issues the lack of completeness and outdated documentation. In
a subsequent work (Aghajani et al. 2020) the authors conduct surveys with practitioners

Empir Software Eng (2023) 28:86 Page 43 of 48 86

to understand issues with documentation from their perspective and identify the types of
documentation that are considered to be most relevant. The majority of study participants
identified lack of time to write documentation as an important issue that they frequently
encountered. Additionally, code comments were described as highly useful for develop-
ment and testing tasks. They also mentioned that keeping comments updated and consistent
with the source code to be very important. Differently from previous work, we study the
structure of documentation comments to understand if they follow the formatting styles rec-
ommended for a specific programming language. We investigate if such comments include
the sections that we expect them to include, however we do not look at the content as this
would be very difficult to do manually for the large datasets we consider.

8.2 The Automated Generation of Source Code Comments

Researchers have long identified that developers need support in writing comments and
focused on the automated generation of comments in the form of short summaries from the
accompanying source code. Initially, researchers have tried to solve the task of source code
summarization by applying text retrieval methods, such as Vector Space Model (Salton et al.
1975) and Latent Semantic Indexing (Landauer et al. 1998), to generate term-based sum-
maries (Haiduc et al. 2010) of Java methods and classes from code and inline comments. A
subsequent work (Moreno et al. 2013) generated human readable summaries of Java classes
based on fixed templates. Another paper (Sridhara et al. 2010) presents an approach to pro-
duce descriptive summary comments for Java methods using a set of heuristics to select
important statements from a method body and then templates to generate corresponding
natural language summaries. While this initial work on the automated generation of docu-
mentation was promising, the generated summaries were of limited quality and usefulness.
More recent approaches are data-driven and take advantage of the large number of open
source projects available online.

One of the earliest works that try to summarize code snippets using full data driven
approaches is the one by Iyer et al. (2016). The authors build a model called CODE-NN,
which is a neural network trained on StackOverflow C# and SQL code snippets to predict
the corresponding title. They are the first to try to summarize code using neural networks,
nevertheless they do not use actual source code, but StackOverflow data. In Hu et al. (2018)
the authors used a machine translation based approach to automatically generated code
comments for Java methods. Their approach, DeepCom, translates the source code to a
high-level description of the method. They used the ASTs of the methods as code represen-
tation and convert this to a structured-based traversal (SBT) representation before passing it
to the machine translation model to generate the method summary. Their results are promis-
ing and improve on the ones obtained in Iyer et al. (2016). Wan et al. (2018) develop an
approach to generate summaries for Python methods by combining a sequence and AST
representation of the source code snippets into a deep reinforcement learning framework
using an actor-critic network. In Le Clair et al. (2019) the authors develop a neural machine
learning model that receives separately as input and then combines two types of informa-
tion for representing the source code: a word representation that treats the code as text and
an AST representation. Using this model they train and evaluate it on a large dataset of Java
methods to generate summaries. In a follow-up work (Haque et al. 2020) the authors use the
file context, the other subroutines in the same file, as additional input to the summarization
model to improved the generated comments, while in Le Clair et al. (2020) develop a more
sophisticated model for handling the AST input by using a graph neural network.

 86 Page 44 of 48 Empir Software Eng (2023) 28:86

In Chen et al. (2021) the authors observe that comments are written with different inten-
tions, and these can influence the results of comment summarization approaches. To verify
their observation, they classify comments according to the following six categories: “what”,
“why”, “how-to-use”, “how-it-is-done”, “property” and “others” and evaluate existing
comment summarization approaches on these. They notice that the different approaches lead
to different results, depending on the comment category, while all approaches have trou-
ble with the “why” and “property” categories. Finally, they develop a composite approach,
that uses a predicted comment category to decide which model to use for comments
summarization and obtain results that outperform current state-of-the-art approaches.

The previously mentioned research papers use increasingly sophisticated Deep Learning
based approaches to convert the source code for a function body to a short natural language
summary and evaluate them automatically using a machine translation metric called the
BLEU score. While promising and potentially useful, these kind of approaches only address
a small part of a comment, the first sentence, and cannot support the developer to generate
information that is not part of the source code. By focusing on a semi-automated approach
to support developers with comment writing, we address the full comment and our approach
can potentially be used in combination with one that is able to automatically generate the
summary of a function.

9 FutureWork

For this paper, we have selected the Python and Java languages as these are the most popular
languages for which sufficient open source projects exist that are known to use formatting
styles for their documentation comments. Both languages have very different styles, so we
believe that they provide a fair impression on commenting practices across languages. Nev-
ertheless, we plan on extending our study to further programming languages to investigate
this assumption.

Furthermore, we plan on investigating how using different kind of neural language mod-
els could improve the accuracy of the generated suggestions. This paper focused mainly
on understanding the structure of documentation comments and whether this information
can be leveraged to improve the completions. Newer neural language models can also lead
to improved results, however they come at additional computational costs for training and
inference. However, as shown in a recent work (Mastropaolo et al. 2021) using a newer and
more complex model like the Text-To-Text Transfer Transformer (T5) (Raffel et al. 2019)
Model for the code summarization task does not necessarily lead to clear improvements.
Another potential direction for future work is understanding if other types of contextual
information, for example the file context, can improve the predicted completion suggestions.

Finally, while code completion is a widely available and popular feature of many IDEs
(Intellij idea - code completion 2021) and many researchers have developed improved
approaches over the years (Bruch et al. 2009; Alon et al. 2018; Svyatkovskiy et al. 2020)
for completing source code, there are currently no studies investigating the perceived accep-
tance and usefulness of source code comment completion. We plan on conducting such a
study in the future. While we expect that accurate completion suggestions will help devel-
opers with writing comments faster, we would like to investigate how such a tool influences
the content and completeness of the comments.

Empir Software Eng (2023) 28:86 Page 45 of 48 86

10 Threats to Validity

Possible threats to the validity of our results are related to the selected dataset and the
automated parsing of the docstrings. However, we try to mitigate this threat by applying
filtering criteria to the Python dataset we used to ensure a minimal quality of the selected
projects. While, for Java we use an available dataset with strict filtering criteria that was
made available for the CodeSearch Challenge (Husain et al. 2019a).

While analysing the structure of the documentation comments in Chapter 3 we studied all
the methods included in the CSN Dataset (Husain et al. 2019a) for Python and Java. Public
API and private non-API methods have different documentation requirements and ideally
we should not mix them during our analysis. However, it was not possible to reliably and
automatically distinguish between the two types of methods and this issue remains a threat
to our study. We tried to mitigate this by selecting the CSN Dataset (Husain et al. 2019a)
for the analysis, which only includes library projects, but we were not able to completely
eliminate the threat.

Another threat is the use of an automated parser for extracting the different sections. For
Python we extended an already existing parser while for Java we developed our own. We
wrote automated tests for both parsers and manually evaluated a sample of the extracted
sections, nonetheless it is still possible that because of formatting errors in the docstrings or
errors in the parsers, we were not able to extract all the sections. However, this means that
our findings are more conservative than in reality.

Additionally, the results of the neural language models could be affected by data used
for training and evaluation. To mitigate this threat we perform 5-fold cross-validation and
report the averaged results over the 5 folds for both the Python and Java datasets. We also
ensure the partitioning of the data on a project level, not on a function level, therefore our
results are more conservative than could otherwise be obtained.

11 Summary

The current recommendation for function documentation comments for the Python and Java
programming language is to follow a specific formatting style, therefore they should have a
well defined structure. In this work, we analysed the structure of documentation comments
of two large datasets, a Python dataset including 13,590 open source projects and a Java
dataset including 4,769 projects open source projects offered as part of the CodeSearch-
Net challenge (Husain et al. 2019a). For this we extended an existing parser (Docstring
parser 2021) for Python and built a new one for Java to extract the following sections:
Short description, Long description, Parameters, Return and Raises sections from the func-
tion documentation comments of our datasets. We could observe that developers do include
these sections quite often and structure their comments according to a recommended for-
matting style. Therefore docstrings are not simple natural language text descriptions, but
have a well-defined format that should be taken into account when analysing their content
or when building tools to help developers with writing comments.

During the second part of the paper we train and evaluate neural language models on
training instances generated from the extracted sections. Our results show that there are sig-
nificant differences in the prediction accuracy depending on the considered sections. When
evaluating our base model, the Context LM Model, we obtain a Top-1 prediction accuracy
of 0.194 for the Long Description, while for the Parameters, Return and Raises sections
we obtain a prediction accuracy between 0.264 and 0.323 for the Python dataset. We obtain

 86 Page 46 of 48 Empir Software Eng (2023) 28:86

similar values for the Java dataset, the prediction accuracy for the Long description is
0.192, while for the Parameters, Return and Raises sections we obtain a prediction accuracy
between 0.270 and 0.325. Leveraging the section information leads to improved sugges-
tions, as we obtain a relative increase of up to 9.6% for the Python models compared to the
base model and for the Java models we obtain a relative increase of up to 7.8% when con-
sidering the Top-1 accuracy results. In conclusion, function documentation comments for
Python and Java often follow a specific formatting style, thus have a well defined structure,
which can be leveraged for approaches that support developers with comment writing.

Acknowledgements This research work was partially funded by the H2020 grant 825328 (FASTEN). We
thank the anonymous reviewers for their valuable feedback and comments.

Funding Open access funding provided by University of Zurich.

Data Availability All data generated or analysed during this study are included in this published article (and
its supplementary information files) (Replication package 2022).

Declarations

Competing interests The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aghajani E, Nagy C, Linares-Vásquez M, Moreno L, Bavota G, Lanza M, Shepherd DC (2020) Software
documentation: the practitioners’ perspective. In: Proceedings of the ACM/IEEE 42nd international
conference on software engineering, ICSE ’20, Association for computing machinery, New York,
pp 590–601. https://doi.org/10.1145/3377811.3380405

Aghajani E, Nagy C, Vega-Márquez OL, Linares-Vásquez M, Moreno L, Bavota G, Lanza M (2019) Soft-
ware documentation issues unveiled. In: Proceedings of the 41st international conference on software
engineering, ICSE ’19, IEEE Press, pp 1199–1210. https://doi.org/10.1109/ICSE.2019.00122

Allamanis M (2018) The adverse effects of code duplication in machine learning models of code. CoRR
arXiv:1812.06469

Alon U, Levy O, Yahav E (2018) code2seq: generating sequences from structured representations of code.
CoRR arXiv:1808.01400

Bruch M, Monperrus M, Mezini M (2009) Learning from examples to improve code completion systems. In:
Proceedings of the 7th joint meeting of the european software engineering conference and the ACM sig-
soft symposium on the foundations of software engineering, ESEC/FSE ’09, Association for computing
machinery, New York, pp 213–222. https://doi.org/10.1145/1595696.1595728

Chen MX, Lee BN, Bansal G, Cao Y, Zhang S, Lu J, Tsay J, Wang Y, Dai AM, Chen Z, Sohn T, Wu
Y (2019) Gmail smart compose: Real-time assisted writing. In: Proceedings of the 25th ACM sigkdd
international conference on knowledge discovery & data mining, KDD ’19, association for computing
machinery, New York, pp 2287–2295.. https://doi.org/10.1145/3292500.3330723

Chen Q, Xia X, Hu H, Lo D, Li S (2021) Why my code summarization model does not work: Code comment
improvement with category prediction. ACM Trans Softw Eng Methodol, vol 30(2). https://doi.org/10.
1145/3434280

Ciurumelea A, Proksch S, Gall HC (2020) Suggesting comment completions for python using neural
language models. In: 2020 IEEE 27th international conference on software analysis, evolution and
reengineering (SANER), pp 456–467. https://doi.org/10.1109/SANER48275.2020.9054866

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/ICSE.2019.00122
http://arxiv.org/abs/1812.06469
http://arxiv.org/abs/1808.01400
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/3292500.3330723
https://doi.org/10.1145/3434280
https://doi.org/10.1145/3434280
https://doi.org/10.1109/SANER48275.2020.9054866

Empir Software Eng (2023) 28:86 Page 47 of 48 86

Docstring parser (2021). https://pypi.org/project/docstring-parser/ . Accessed 01 June 2021
Doctest — test interactive python examples (2021). https://docs.python.org/3/library/doctest.html. Accessed

12 Apr 2021
Example numpy style python docstrings (2022). https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

example numpy.html#example-numpy. Accessed 16 Mar 2022
Fluri B, Wursch M, Gall HC (2007) Do code and comments co-evolve? on the relation between source code

and comment changes. In: 14th Working conference on reverse engineering (WCRE 2007), pp 70–79.
https://doi.org/10.1109/WCRE.2007.21

Github rest api (2022). https://docs.github.com/en/rest. Accessed 16 Mar 2022
Google cloud public datasets (2021). https://cloud.google.com/public-datasets. Accessed 01 June 2021
Google docstring style (2022). https://github.com/google/styleguide/blob/gh-pages/pyguide.md#

38-comments-and-docstrings. Accessed 15 Mar 2022
Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the use of automated text summarization techniques

for summarizing source code. In: 2010 17th Working conference on reverse engineering, pp 35–44.
https://doi.org/10.1109/WCRE.2010.13

Haouari D, Sahraoui H, Langlais P (2011) How good is your comment? a study of comments in java
programs. In: 2011 International symposium on empirical software engineering and measurement,
pp 137–146 https://doi.org/10.1109/ESEM.2011.22

Haque S, Le Clair A, Wu L, McMillan C (2020) Improved automatic summarization of subroutines via
attention to file context. CoRR arXiv:2004.04881

Hellendoorn VJ, Devanbu P (2017) Are deep neural networks the best choice for modeling source code? In:
Proceedings of the 2017 11th joint meeting on foundations of software engineering, ESEC/FSE 2017,
ACM, New York, pp 763–773. https://doi.org/10.1145/3106237.3106290

How to write doc comments for the javadoc tool (2021). https://www.oracle.com/technical-resources/articles/
java/javadoc-tool.html. Accessed: 22 Mar 2021

HuX, Li G, Xia X, Lo D, Jin Z (2018) Deep code comment generation. In: Proceedings of the 26th conference
on program comprehension, ICPC ’18, association for computing machinery, New York pp 200–210.
https://doi.org/doi.org/10.1145/3196321.3196334

Hu X, Li G, Xia X, Lo D, Jin Z (2020) Deep code comment generation with hybrid lexical and syntactical
information. Empir Softw Eng, vol 25. https://doi.org/10.1145/3196321.3196334

Husain H, Wu H, Gazit T, Allamanis M, Brockschmidt M (2019) Codesearchnet challenge: Evaluating the
state of semantic code search. CoRR arXiv:1909.09436

Husain H, Wu HH, Gazit T, Allamanis M, Brockschmidt M (2019) CodeSearchNet, challenge: evaluating
the state of semantic code search. arXiv:1909.09436

Intellij idea - code completion (2021). https://www.jetbrains.com/help/idea/auto-completing-code.html.
Accessed 01 June 2021

Javalang (2021). https://github.com/c2nes/javalang. Accessed 29 Mar 2021
Iyer S, Konstas I, Cheung A, Zettlemoyer L (2016) Summarizing source code using a neural atten-

tion model. In: Proceedings of the 54th annual meeting of the association for computational
linguistics, Association for computational linguistics, Berlin (vol 1: long papers), pp 2073–2083.
https://doi.org/10.18653/v1/P16-1195. https://www.aclweb.org/anthology/P16-1195

Jurafsky D, Martin JH (2000) Speech and language processing: an introduction to natural language pro-
cessing, computational linguistics, and speech recognition, 1st edn. Prentice Hall PTR, Upper Saddle
River

Landauer TK, Foltz PW, Laham D (1998) An introduction to latent semantic analysis. Discourse Process
25(2-3):259–284. https://doi.org/10.1080/01638539809545028

Langdetect (2021). https://pypi.org/project/langdetect/. Accessed: 01 June 2021
Le Clair A, Haque S, Wu L, McMillan C (2020) Improved code summarization via a graph neural network.

In: Proceedings of the 28th international conference on program comprehension, ICPC ’20, association
for computing machinery, New York, NY pp 184–195. https://doi.org/10.1145/3387904.3389268

Le Clair A, Jiang S, McMillan C, A neural model for generating natural language summaries of program
subroutines (2019). In: Proceedings of the 41st international conference on software engineering, ICSE
’19. IEEE Press pp 795–806. https://doi.org/10.1109/ICSE.2019.00087

Le Clair A, McMillan C (2019) Recommendations for datasets for source code summarization. CoRR
arXiv:1904.02660

Lib2to3 (2022). https://github.com/python/cpython/tree/3.10/Lib/lib2to3/. Accessed 12 Mar 2022
Lin CY (2004) ROUGE: a package for automatic evaluation of summaries. In: Text summarization branches

out, association for computational linguistics, Barcelona, pp 74–81. https://aclanthology.org/W04-1013
Mastropaolo A, Scalabrino S, Cooper N, Nader-Palacio D, Poshyvanyk D, Oliveto R, Bavota G (2021) Study-

ing the usage of text-to-text transfer transformer to support code-related tasks. CoRR arXiv:2102.02017

https://pypi.org/project/docstring-parser/
https://docs.python.org/3/library/doctest.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/examp le_numpy.html#example-numpy
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/examp le_numpy.html#example-numpy
https://doi.org/10.1109/WCRE.2007.21
https://docs.github.com/en/rest
https://cloud.google.com/public-datasets
https://github.com/google/styleguide/blob/gh-pages/pyguide.md #38-comments-and-docstrings
https://github.com/google/styleguide/blob/gh-pages/pyguide.md #38-comments-and-docstrings
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1109/ESEM.2011.22
http://arxiv.org/abs/2004.04881
https://doi.org/10.1145/3106237.3106290
https://www.oracle.com/technical-resources/articles/java/java doc-tool.html
https://www.oracle.com/technical-resources/articles/java/java doc-tool.html
https://doi.org/doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3196321.3196334
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://www.jetbrains.com/help/idea/auto-completing-code.html
https://github.com/c2nes/javalang
https://doi.org/10.18653/v1/P16-1195
https://www.aclweb.org/anthology/P16-1195
https://doi.org/10.1080/01638539809545028
https://pypi.org/project/langdetect/
https://doi.org/10.1145/3387904.3389268
https://doi.org/10.1109/ICSE.2019.00087
http://arxiv.org/abs/1904.02660
https://github.com/python/cpython/tree/3.10/Lib/lib2to3/
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2102.02017

 86 Page 48 of 48 Empir Software Eng (2023) 28:86

Moreno L, Aponte J, Sridhara G, Marcus A, Pollock L, Vijay-Shanker K (2013) Automatic generation
of natural language summaries for java classes. In: 2013 21st International conference on program
comprehension (ICPC), pp 23–32. https://doi.org/10.1109/ICPC.2013.6613830

Nltk sentence tokenizer (2021). https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.punkt.
Accessed 01 June 2021

Numpy docstring style (2022). https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard.
Accessed 15 Mar 2022

Numpydoc docstring guide (2021). https://numpydoc.readthedocs.io/en/latest/format.html#
method-docstrings. Accessed 01 June 2021

Pascarella L, Bacchelli A (2017) Classifying code comments in java open-source software systems. In: Pro-
ceedings of the 14th international conference on mining software repositories, MSR ’17. IEEE press,
Piscataway, pp 227–237. https://doi.org/10.1109/MSR.2017.63

Pep 257 – docstring conventions (2021). https://www.python.org/dev/peps/pep-0257/. Accessed 01 June
2021

Pep 287 – restructuredtext docstring format (2021). https://www.python.org/dev/peps/pep-0287/. Accessed
01 June 2021

Python rouge implementation (2022). https://pypi.org/project/rouge-score/. Accessed 09 Sept 2022
Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ (2019) Exploring the

limits of transfer learning with a unified text-to-text transformer. CoRR arXiv:1910.10683
Replication package (2022). - completing function documentation comments using structural information.

https://www.dropbox.com/sh/vi2zl3shvntp8p7/AAC5uwwDV973h2L1Ou7A4hcYa?dl=0. Accessed 16
Dec 2022

Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM
18(11):613–620. https://doi.org/10.1145/361219.361220

Sridhara G, Hill E, Pollock L, Vijay-Shanker K (2010) Towards automatically generating summary comments
for java methods. In: Proceedings of the IEEE/ACM international conference on automated software
engineering, ASE ’10, ACM, New York, pp 43–52. https://doi.org/10.1145/1858996.1859006

Steidl D, Hummel B, Juergens E (2013) Quality analysis of source code comments. In: 2013 21st Inter-
national conference on program comprehension (ICPC), pp 83–92. https://doi.org/10.1109/ICPC.2013.
6613836

Svyatkovskiy A, Deng SK, Fu S, Sundaresan N (2020) Intellicode compose: Code generation using
transformer. CoRR arXiv:2005.08025

The epytext markup language (2022). http://epydoc.sourceforge.net/manual-epytext.html. Accessed 15 Mar
2022

Wan Y, Zhao Z, YangM, Xu G, Ying H,Wu J, Yu PS (2018) Improving automatic source code summarization
via deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE international conference on
automated software engineering, ASE 2018, association for computing machinery, New York, pp 397–
407. https://doi.org/10.1145/3238147.3238206

Wen F, Nagy C, Bavota G, Lanza M (2019) A large-scale empirical study on code-comment inconsisten-
cies. In: 2019 IEEE/ACM 27th International conference on program comprehension (ICPC), pp 53–64.
https://doi.org/10.1109/ICPC.2019.00019

Writing system software: code comments (2021). http://antirez.com/news/124. Accessed 01 June 2021
Xia X, Bao L, Lo D, Xing Z, Hassan AE, Li S (2018) Measuring program comprehension: a large-scale field

study with professionals. IEEE Trans Softw Eng 44(10):951–976. https://doi.org/10.1109/TSE.2017.
2734091

Ye D, Xing Z, Li J, Kapre N (2016) Software-specific part-of-speech tagging: An experimental study on stack
overflow. In: Proceedings of the 31st annual ACM symposium on applied computing, SAC ’16, associ-
ation for computing machinery, New York, pp 1378–1385. https://doi.org/10.1145/2851613.2851772

Zhou W, Kim S, Murali V, Aye GA (2022) Improving code autocompletion with transfer learning. In: 2022
IEEE/ACM 44th international conference on software engineering: Software engineering in practice
(ICSE-SEIP), pp 161–162. https://doi.org/10.1145/3510457.3513061

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/ICPC.2013.6613830
https://www.nltk.org/api/nltk.tokenize.html#module-nltk.toke nize.punkt
https://numpydoc.readthedocs.io/en/latest/format.html#docstri ng-standard
https://numpydoc.readthedocs.io/en/latest/format.html#method -docstrings
https://numpydoc.readthedocs.io/en/latest/format.html#method -docstrings
https://doi.org/10.1109/MSR.2017.63
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0287/
https://pypi.org/project/rouge-score/
http://arxiv.org/abs/1910.10683
https://www.dropbox.com/sh/vi2zl3shvntp8p7/AAC5uwwDV973h2L1Ou 7A4hcYa?dl=0
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1109/ICPC.2013.6613836
https://doi.org/10.1109/ICPC.2013.6613836
http://arxiv.org/abs/2005.08025
http://epydoc.sourceforge.net/manual-epytext.html
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1109/ICPC.2019.00019
http://antirez.com/news/124
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1109/TSE.2017.2734091
https://doi.org/10.1145/2851613.2851772
https://doi.org/10.1145/3510457.3513061

	Completing Function Documentation Comments Using Structural Information
	Abstract
	Introduction
	Overview
	Structure Analysis of Function Documentation Comments (RQ1)
	Dataset
	Parsing Documentation Comments
	Parsing Python Docstrings
	Parsing Java Documentation Comments

	Comments Sections Analysis
	Distribution of Python Formatting Styles
	Analysis of Missing Docstring Sections
	Distribution of Docstrings Sections
	Analysis of the Parameters Section
	References in Short or Long descriptions

	Length of Tag Descriptions

	Structure-based Comment Completion
	Neural Language Models
	Language Models for Documentation Comments
	Sequential LM
	Context LM
	Section LM
	Section-Context LM
	Section specific Context LMs

	Dataset Creation and Training Details
	Documentation Comments Datasets
	Python Dataset Collection
	Java

	Training Data Extraction
	Preprocessing and Generation of Training Instances

	Model Configuration and Training Details

	Can Structural Information Improve Completion Accuracy? (RQ2)
	Methodology
	Results
	Qualitative Analysis

	How Language-Dependent Are The Evaluation Results? (RQ3)
	Results
	Qualitative Analysis

	Related Work
	The Content of Source Code Comments
	The Automated Generation of Source Code Comments

	Future Work
	Threats to Validity
	Summary
	Declarations
	References

