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Development of a Geomechanics Program for Wellbore
Stability Analysis

Omid Saeidi1 and Amin Rahimi Dalkhani2

Abstract: A geomechanics program for wellbore stability analysis has been developed consisting of two modules: an analytical-based sol-
ution and a numerical-based solution. In the first part, input data are imported, including petrophysical well logs, pressure data, formation well
tops, and a well path. Lithology intervals are set with proper prediction equations to calculate rock mechanical properties based on laboratory
tests. In-situ stress and pore pressure are determined using different methods, including the poroelastic plane strain model and stress polygon.
From the theory of plane strain, new equations are solved to determine horizontal tectonic strains (εh, εH ) from drilling events such as total
mud loss and breakout during drilling. Safe mud weight bounds are calculated through depth and in different azimuths and inclinations ap-
plying the Mohr–Coulomb and the Mogi–Coulomb failure criteria. The latter underestimated the minimum mud weight to prevent wellbore
breakout. The transversely vertical isotropy of shale formation is programmed with multiple stress transformations via the weak-plane
method. In the second module, a 3D model around the wellbore is discretized with hexahedral eight-point elements and programmed
using the finite-element (FE) method. Rock mechanical property and displacement boundary conditions are applied to solve FE equations.
Stress from the numerical model matched to the Kirsch model and results show that maximum stress concentration around the wellbore cor-
responds to the wellbore breakout, which has analytically been established. A new well plan across the 3D model was examined to obtain the
safe mud weight bounds and results were in agreement with the analytical calculations. DOI: 10.1061/IJGNAI.GMENG-8733. © 2023
American Society of Civil Engineers.

Author keywords: Mud weight; In-situ stress; Transversely isotropy; Failure criterion; Finite-element analysis; Boundary condition;
Mechanical property.

Introduction

Wellbore instabilities during drilling are time-consuming and
costly for drilling operation, reservoir completion, and production
in the earth energy industry. Today, geomechanical wellbore stabil-
ity analysis is essential prior to any drilling operation and at the
final production stage, such as open-hole completion. In this regard,
available data during and after drilling, including well logs, pres-
sure data, drilling tests and evidence, and geological information,
are combined to conduct wellbore stability analysis using analytical
and numerical solutions. The problems with wellbore instability
often involve equivalent mud weight (EMW) both static and dy-
namic, in-situ stress, formation anisotropy, wellbore direction,
pore pressure, and thermal–chemical reaction (Chen et al. 2008;
Ma and Chen 2015).

Zoback et al. (2003) studied in-situ stress orientation and mag-
nitude in deep wells in several oilfields. They used the Anderson
and Coulomb theories to constrain stress magnitude using the con-
cept of stress polygon. In addition, they incorporated complemen-
tary data (Leak-off tests, wellbore breakout, and drilling-induced
tensile fractures) from drilled wells, including well test data and
geophysical logs to obtain mud weight bounds in different azimuth
and inclination of the wellbore. Safe mud weight bounds for

wellbore drilling have been calculated substituting induced stresses
around wellbore with six permutations using the Mohr–Coulomb
failure criterion (Fjaer et al. 2008). The Mohr–Coulomb criterion
ignores the middle principal stress then overestimates the mud
weight bounds. The effect of middle principal stress (σ2) on the
rock failure has been incorporated in the Mogi–Coulomb criterion,
indicating shear failure along an octahedral plane under mean nor-
mal stress (Al-Ajmi and Zimmerman 2006). Kidambi and Kumar
(2016) built a 1D geomechanical model for a vertical wellbore.
They presented calculations for the horizontal tectonic strains and
obtained the safe mud weight bounds in a wellbore. However,
the theoretical background for horizontal strains calculations has
not been mentioned.

Wellbore instability problems commonly in shale formation
occur due to shear failure along the weak planes (Jaeger 1960;
Wu et al. 2005). Lee et al. (2012) developed a program to solve for-
mation anisotropy using the Mohr–Coulomb failure criterion in a
weak plane. They projected in-situ stress on the weak plane
using multiple transformation matrices. They applied intact and
rock mass properties of transversely isotropic formation to deter-
mine safe mud weight for drilling. Liu et al. (2016) presented a
wellbore stability model for transversely isotropic shale and deter-
mined critical mud weight for stable horizontal drilling by applying
the Mohr–Coulomb criterion both in the rock matrix and along the
weak planes. They concluded that the horizontal wellbore in shale
is more stable when the dip angle of the weak plane is 30°−60° and
the dip direction is 0–120°. Setiawan and Zimmerman (2018) used
the Lekhnitskii–Amadei solution to calculate the stress and elastic
anisotropy in a shale formation and combined the Mogi–Coulomb
failure criterion with the weak-plane theory of Jaeger to determine
the breakout pressure. They determined the elastic matrix of the an-
isotropic shale by the generalized plane strain concept and the
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Lekhnitskii method then solved the Beltrami–Michell’s stress
equations of equilibrium to obtain the stress tensor around a well-
bore penetrating a transversely isotropic shale. Their results
showed that a highly anisotropic rock implies higher stress concen-
tration. By comparing this with an isotopic rock, the difference
could reach approximately 25% for the highest degree of anisot-
ropy. Their results with the Mogi–Coulomb criterion considering
the middle principal stress reduced breakout mud pressure with re-
spect to the Mohr–Coulomb criterion.

Asaka and Holt (2021) computed mud weight bounds in a shale
formation using the Amadei solution of stress concentration and the
Skempton’s parameter for induced pore pressure around a well-
bore. They found that induced pore pressure based on anisotropy
in the Skempton’s parameter plays an important role in stress con-
centration around the wellbore. In low inclination wellbores with
high horizontal stress difference, the elastic anisotropy computa-
tions give a wider mud weight bounds. Slip along an arbitrary
plane due to acting principal stress has been evaluated using the
3D Mohr diagram. This diagram shows discontinuity planes with
a pole representing shear and normal stresses acting on it through
stress transformation tensors. Xu et al. (2010) analyzed the 3D
Mohr diagram to determine pre-existing plane reactivation under
stress changes. They found that pre-existing plane reactivation de-
pends on both the maximum stress difference and the middle prin-
cipal stress. However, they have not considered the effect of pore
pressure on the Mohr diagram. Numerical simulation is useful for
predicting earth response under different stress and thermal and
fluid flow conditions with operational disturbance via drilling.
Hawkes et al. (2002) applied an elastoplastic model to simulate me-
dium behavior around the wellbore when reaching a critical stress
limit. They concluded that going over the critical stress limit, in this
case, does not mean that the rock mass has completely failed, sep-
arated, or collapsed. In contrast, it means that the medium can ab-
sorb more stresses and accept more deformation. Elyasi and
Goshtasbi (2015) used the numerical finite difference codes to
study the wellbore stability of a horizontal multidrain oil well.

They used the Normalized Yielded Zone Area analysis around
the wellbore and its branches to optimize mud pressure and plastic
deformation inside the wellbore under different earth stress re-
gimes. Ghoreishian Amiri et al. (2017) developed a hybrid numer-
ical model for multiphase fluid flow in a deformable porous
medium. They used a control volume-based finite-element method
(FEM) that combines the mesh flexibility of the FE with the local
conservative characteristic of the finite volume scheme. They
found that combining the control volume-based method and
Galerkin FEM is more accurate in modeling multiphase flow in
the deformable porous media; it has been found that this method
preserves the local conservation of mass and is capable of handling
complex geometries and heterogeneities. Li et al. (2018) modeled
the thermohydromechanical behavior of a transversely isotropic
shale formation using the FEM. They showed that thermally in-
duced pore pressure can be developed in the shale with high clay
content and tend to the shear plastic yielding of the formation.
Their results showed that the isotropic elastic model underestimates
the shear yield of shale in comparison with the transversely isotro-
pic model. Li et al. (2022) presented an integrated geomechanics
approach to manage wellbore stability in a deep graben formation.
They combined geological, seismic, logging, and drilling data to
calculate pore pressure and fracture pressure and provided safe
mud weight bounds to guide drilling operations in the graben for-
mation. They also established a discrete-element model to analyze
the factors affecting wellbore stability and suggested recommenda-
tions for drilling in the graben formation.

This study presents the development of a geomechanical pro-
gram, namely GeoRock, which consists of two modules, analytical
and FE numerical solution, which have been programmed using the
graphical user interface (GUI) in Matlab (MathWorks 2009). Most
of the commands have been written as follows:

uicontrol(‘style,’‘background,’‘white,’‘position,’[size of
tab],‘String,’ name of a parameter, ‘fontsize,’12,{@callback
function})

(a) (b)

Fig. 1. (a) Opening window with default values; and (b) geomechanical properties in different formation intervals by specific prediction correlations
applied from the laboratory tests and literature.

© ASCE 04023118-2 Int. J. Geomech.
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The command’s properties include “style” as a type of uicontrol
such as popup, text, and glider then background color, position, and
a callback function. The most common industrial programs are
Schlumberger Techlog and Paradigm Geolog. In our program,
we also employed transversely isotropic calculation by weak
plane concept to determine required mud weight for favorable drill-
ing stability when it comes to fracture slip and a 3D FE analysis
module. The analytical module imports input data, and it calculates
stable mud weight bounds in different azimuth, inclination, and
depth-wise in a wellbore. In the case of minimum data availability,
minimum and maximum horizontal strains (εh, εH ) are determined

using drilling events such as total mud loss and wellbore breakout
by solving plane strain equations. In comparison with those tools,
fracture stability analysis of our program provides correct results.
Shale’s transversely isotropic behavior due to stress or pressure
changes is analyzed using stress transformation tensors in arbitrary
planes. In the 3D FE part, the wellbore’s boundary is discretized
with eight-point hexahedral elements. Elements from the global co-
ordinate system are mapped to the natural coordinate system, and a
stiffness matrix is calculated in each element by a two-point
Gaussian integration rule. Stress tensor and displacement around
the wellbore and the entire model are obtained from computations.

(a) (b)

(c) (d)

Fig. 2. Mechanical tests on the limestone core specimens (D= 37.1 mm, L= 70.49): (a) triaxial compression test; (b) Brazilian tensile test (D=
38.25 mm, L= 17.22 mm); (c) ultrasonic wave velocity measurement; and (d) uniaxial compression test.

Table 1. Prediction correlations for rock properties among well logs and experimental tests

Argillaceous limestonea Limestone Dolomite Sandstone/Siltstoneb

Vp ult = 1.12Vp − 628.76 UCS = 11.95 DT−0.83ρ5.67n0.15 UCS = 0.4502ρ5.2685 UCS = 5 × 1029e−0.75DT

UCS= 0.019Vp− 22.21 φ = 0.0078Vp − 2.79 Vs = 0.2931V 1.0983
p Vs = −702.25 + 0.89Vp − 3.95 × 10−5V 2

p
Vs = −602.71 + 0.79Vp − 4.95 × 10−5 V 2

p T0 = 0.0014Vp − 0.55 φ = −0.84DT + 90.122 φ = 61.71ρ − 117.158
Est = 1.76E0.5761

dyn Est = 1.28E0.6929
dyn T0 = −0.1127DT + 12.8973 T0 = 0.3UCS

Est= 4.392ln(Edyn)− 4.192 Est = 0.71Edyn + 0.14

aArgillaceous limestone is a rock type with less than 35% clay; Vp ult = ultrasonic p-wave velocity in m/s; Vp and Vs=well log sonic velocity in m/s; UCS=
uniaxial compressive strength in MPa; Est= static Young’s modulus in GPa; Edyn= dynamic Young’s modulus in GPa; DT= sonic slowness in μs/ft; T0=
tensile strength in MPa; ϕ= friction angle; ρ= bulk density in g/cm3; and n= porosity in percentage.
bSiltstone is a fine-grained sedimentary rock consisting of more than 50% silt with a diameter of 1/16–1/256 mm.

© ASCE 04023118-3 Int. J. Geomech.
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(a) (b)

Fig. 3. (a) In-situ stress and pore pressure calculation by poroelastic strain method; and (b) stress polygon windows with default values.

(a) (b)

Fig. 4. (a) Global and local (in-situ stress) coordinate systems; and (b) weak planes in shale, wellbore crossing, and corresponding coordinate
systems.

© ASCE 04023118-4 Int. J. Geomech.
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Analytical Module

This module imports input data, including petrophysical well logs,
pressure data, formation well tops, and well paths. As shown in
Fig. 1(a) five main items include input file, in-situ stress pore pres-
sure, and geomechanical modeling in which the final analysis is
done to determine safe mud weight bounds; other features include
transversely isotropy analysis in shale where the polar plot of mud
weight is calculated based on weak-plane theory, and Fracture Slip
where a 3D Mohr–Coulomb diagram shows that a fault/fracture to
what extent is near to slip due to pore pressure changes. The input
file includes seven submenus where for importing raw log data the
extensions are Microsoft Excel (.xls, .xlsx) and a standard common
LAS (.las) format. Users can independently import calculated rock
mechanical properties elsewhere or use the calculate geomechani-
cal properties tab [Fig. 1(b)] to import the well log data and deter-
mine rock properties in the specified intervals. Major rock types in
our study are: argillaceous limestone, limestone, shale, sandstone,
dolomite, anhydrite, and salt. The rock type is selected and the
depth interval is entered, then a callback function calculates the
geomechanical properties according to the specified rock type
and its proper prediction equation.

Rock Mechanical Properties

Seven common rock types in our case, including argillaceous lime-
stone, limestone, shale, sandstone, dolomite, anhydrite, and salt,
are added and selected in the specified interval with particular me-
chanical property correlations from the laboratory rock tests and lit-
erature (Eissa and Kazi 1988; Horsrud 2001; Ameen et al. 2009;
Fjaer et al. 2008). In order to obtain physiomechanical relations
of the recovered rock samples, rock mechanical tests were done
on the specimens from several oilfields according to the suggested
methods of the International Society for Rock Mechanics (ISRM)
as shown in Fig. 2 (ISRM 2007). Thus, both ends of the specimens
with L/D= 2 were carefully trimmed and polished. Uniaxial

compression and triaxial multistage tests were conducted with a
loading rate of nearly 1 MPa/s. Ultrasonic P and S wave velocities
were measured along and perpendicular to specimens with proper
P-polarized and S-polarized transducers. Reliable correlations
(R-square > 0.9) among Vp ult and Vs ult from specimens and their
corresponding Vp and Vs from the well log were obtained even
though the measurement tools are different in the wave’s fre-
quency. Table 1 lists prediction correlations between well logs
and experimental tests for different rock types implemented in
the program.

In-situ Stress and Pore Pressure

Pore pressure in geological formations involves two statuses: nor-
mal pressure and abnormal pore pressure. It equals the hydrostatic
column of water above a certain point in a normal condition. The
mechanisms of abnormal pore pressure (overpressure) include
undercompaction, hydrocarbon generation, tectonic compression,
and clay mineral digenesis, which many researchers have studied
(Gutierrez et al. 2006; Morley et al. 2011; Tingay et al. 2009;
Zhang 2011). The most common methods used for pore pressure
prediction are Bowers’s (Bowers 1995) and Eaton’s methods
(Eaton 1975). In the first, pore pressure is analyzed based on
velocity, density, and resistivity logs reversal, density-velocity
cross-plot, and formation loading–unloading due to hydrocarbon
generation. In the second, mostly reversal of sonic velocity, poros-
ity, and resistivity logs is used as a tool for overpressure prediction
due to undercompaction. Here pore pressure, mostly for shale inter-
vals, is calculated by the modified Eaton’s method, which is more
applicable for Iranian petroleum basins (Azadpour et al. 2015). On
the other side, in nonshale intervals of permeable formations with
intragranular connectivity, pressure points of the hydrostatic col-
umn can be set.

Principal in-situ stresses are the crucial parameters in geome-
chanics modeling where different methods can be used for calcula-
tion (Molaghab et al. 2017). In the plane strain concept it is
assumed that εz = 0 but σx, σy, σz≠ 0 along the wellbore axis.
Thus, the principal in-situ stress is expressed as

σx =
E

(1 + υ)(1 − 2υ)
((1 − υ)εx + υεy) (1)

σy =
E

(1 + υ)(1 − 2υ)
((1 − υ)εy + υεx) (2)

σz =
Eυ

(1 + υ)(1 − 2υ)
(εy + εx) (3)

where εx and εy are known as the tectonic strains in petroleum rock
mechanics; when rewriting the in-situ stresses like the preceding
equations and based on the poroelastic-plane strain concept, they
become

σh = αPp +
υ

1 − υ
(σv − αPp)

+
E

(1 + ν)(1 − 2υ)
((1 − υ)εh + υεH ) (4)

σH = αPp +
υ

1 − υ
(σv − αPp)

+
E

(1 + ν)(1 − 2υ)
((1 − υ)εH + υεh) (5)

where σh=minimum horizontal stress; σH=maximum horizontal
stress; α=Biot’s coefficient; Pp= pore pressure; σv= vertical

Fig. 5. Data input window to determine breakout mud weight in the
anisotropic shale; C_rm is intact rock cohesion, fric_rm is intact rock
friction angle.

© ASCE 04023118-5 Int. J. Geomech.
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stress; E=Young’s modulus; and υ=Poisson’s ratio. Conducting
an extended leak-off test (XLOT) is important in determining hor-
izontal strains (εh, εH ) in Eqs. (4) and (5). In conventional drilling,
drillers usually skip XLOT due to the formation damage, fractur-
ing, and need for a cementing cure followed by operational delays.
Thus, here the horizontal strains are constrained by the plane strain
equations [Eqs. (1)–(3)], image logs, and drilling events. Drilling
events, including total (complete) mud loss (because of induced
fracturing not fracture/fault) and wellbore breakout, occur at the
maximum and minimum horizontal stress directions, respectively.
Therefore, minimum and maximum hoop stress compressions rel-
evant to these stresses around the wellbore from Kirsch equations
(Bradley 1979) can be expressed as

σθ = σH + σh − 2(σH − σh) cos 2θ − Pp − Pw (6)

3σh − σH − Pp − Pwb ≤ −T0, θ = 0, π (7)

UCS ≥ 3σH − σh − Pp − Pw, θ = ±
π

2
(8)

Assuming α= 1 and introducing Eqs. (4) and (5) into Eqs. (7)
and (8) and solving the equations gives horizontal strains as

(3 − 4ν)εh − (1 − 4υ)εH =
Pp + Pwb − T0 − 2m

q
(9)

(3 − 4ν)εH − (1 − 4υ)εh =
Pp + Pw + UCS − 2m

q

q =
E

(1 + ν)(1 − 2υ)
, m = αPp +

υ

1 − υ
(σv − αPp)

(10)

where εh and εH = horizontal minimum and maximum strains;
Pp = pore pressure; θ is measured from the direction of σH;
Pwb = formation breakdown pressure; UCS= unconfined compres-
sive strength; T0= rock tensile strength; Pw=well pressure; and q
and m= variables. Most of the time, both induced fracturing and
breakout would not happen simultaneously in a well, then the hor-
izontal strains can be calculated from Eqs. (3) and (9) or (10). Fig. 3
shows the window for pore pressure and in-situ stress calculations
by the poroelastic strain method [Fig. 3(a)] and the stress polygon
method [Fig. 3(b)]. Details of the stress polygon method can be
found in Zoback (2007). Here, RHOB0 denotes density at the sur-
face for onshore wells or the mudline for offshore wells; reservoir
pressure points are used for pore pressure calibration, Mu is the
crustal coefficient of friction, Az-SHmax is the azimuth of SHmax
from north, DeltaT is the differential temperature of drilling fluid
and formation.

Transversely Vertical Isotropic Shale Formation

Anisotropic formations, mainly shale, due to shear failure along
weak planes require a different critical mud window than do the
isotropic formations (Lee et al. 2012). In-situ stress must be

Fig. 6. Imported well logs in which GR is Gamma ray, Bit-Caliper shows diameter of bit and wellbore, NPHI is porosity, RHOB is density, DT is
sonic transit time, Vp and Vs are compressional and shear sonic velocities.

© ASCE 04023118-6 Int. J. Geomech.
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transformed three times, as shown in Fig. 4, to calculate stress ten-
sor along the weak planes. The first tensor transform is done from
the in-situ principal coordinate system to global coordinate the sys-
tem via rotation αi around Z-axis and rotation βi around σh-axis,
which is expressed as

σin−gl = B′σinB (11)

σin=
σH 0 0
0 σh 0
0 0 σv

⎡
⎣

⎤
⎦, B=

cosαicosβi sinαicosβi sinβi
−sinαi cosαi 0

−cosαisinβi −sinαisinβi cosβi

⎡
⎣

⎤
⎦
(12)

The second tensor transform is done from global to wellbore co-
ordinate system via rotation αwb around Zwb-axis and βwb around
Ywb-axis, which is expressed as

σgl−wb = Tσin−glT
′ (13)

σgl−wb =

σwbxx τwbxy τwbxz
τwbyx σwbyy τwbyz
τwbzx τwbzy σwbzz

⎡
⎢⎣

⎤
⎥⎦,

T =
cosαwbcosβwb sinαwbcosβwb sinβwb

−sinαwb cosαwb 0
−cosαwbsinβwb −sinαwbsinβwb cosβwb

⎡
⎣

⎤
⎦

(14)

The third tensor transform is done from a global to weak plane
coordinate system via rotation αwp around Zwp-axis and βwp around
Ywp-axis, which is expressed as

σwb−wp =MT ′C′σccsCTM ′ (15)

σccs =
σ′rr τrθ τrz
τrθ σ′θθ τθz
τrz τθz σ′zz

⎡
⎣

⎤
⎦ C =

cosθ sinθ 0
−sinθ cosθ 0
0 0 1

⎡
⎣

⎤
⎦ (16)

M =
cosαwpsinβwp sinαwpsinβwp cosβwp

−sinαwp cosαwp 0
−cosαwpcosβwp −sinαwpcosβwp sinβwp

⎡
⎣

⎤
⎦ (17)

In the preceding equations, σccs is the effective stress tensor in a
cylindrical coordinate system around the wellbore (Bradley 1979).
Fig. 5 shows the data input for breakout mud weight in a shale for-
mation calculated by the preceding procedure [Eqs. (11)–(19)].
Mud weight calculation has been started in a specified azimuth
and inclination of the wellbore, with a minimum value of 30 pcf
(4 ppg) up to the minimum horizontal stress or the fracture gradient
(the upper bound of mud weight window) with the fixed increments
based on the preceding procedure program. However, in the over-
balanced drilling practice, mud weight could not be less than 56 pcf
due to the operational limits even with a high ratio of diesel mix-
ture. The stress tensor is calculated using Eqs. (11)–(17) and two
possible failure mechanisms: failure through intact rock matrix
and shear failure along the weak plane is established using the
Mohr–Coulomb criterion in this program. To check the intact
rock failure, σ′1 and σ

′
3, which are the principal effective stresses ex-

tracted from σccs in Eq. (16), are introduced as

σ′1 = UCS + σ′3tan
2 φ

2
+ 45

( )
(18)

If the intact rock fails, the mud weight is stored for this point and
proceeds to the next wellbore point. The procedure is repeated for
checking failure along the weak plane around the wellbore in all di-
rections. By projecting shear stress on the weak plane as inT
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Eq. (15), failure occurs when it exceeds normal stress along weak
plane according to the Mohr–Coulomb criterion as (Jaeger 1960)

τw = Cw + σnwtan(φw)

|τw| =










τ2xy + τ2xz

√ (19)

where τw, σnw, Cw, and φw= shear stress, normal stress, cohesion,
and friction angle across the weak plane. Breakout mud weight is
the maximum of intact rock and weak plane mud weight at each
point.

Field Data for the Wellbore Stability Analysis

To proceed with the first module, which also called 1D geomechan-
ical model or wellbore stability analysis, actual data from a well-
bore, including well logs are imported, as shown in Fig. 6. The
lithology in the analyzed formations is listed in Table 2. Rock me-
chanical properties calculated from prediction correlations as de-
scribed in the section “Rock Mechanical Properties” are shown
in Fig. 7. It is not possible to core the whole geological intervals
for the laboratory tests; thus predicted results mostly from well

logs can be corrected based on the drilling evidence such as tight
holes, stuck pipes, mud losses, and particularly with a caliper and
image log that shows wellbore breakout or drilling-induced frac-
tures. Fig. 8 shows the calculated pore pressure and in-situ stress
in this well based on Eqs. (4) and (5) where the pore pressure
has been calibrated with the reservoir drill stem test (DST). As
shear sonic is unavailable in this wellbore, parabolic prediction cor-
relations in Table 1 are used to obtain shear velocity (Vs) in each
formation. Static Young’s modulus is calculated using the conver-
sion of dynamic well log correlations from literature (Elkatatny
et al. 2018) as

ln (Est) = 14.9 − 0.61 ln (DT ) − 2.18 ln (DTS) + 1.42 ln (ρ) (20)

where DTS= shear sonic slowness; and ρ= bulk density.
Given that no clear velocity or density log reversal (Fig. 6) was

observed, the modified Eaton’s method is used to calculate the pore
pressure. Although no LOTs have been conducted, a complete mud
loss (>100 barrels/hour) has been reported in this well at
1,152 mMD. At this point the parameters obtained are: Pwb=
13.4 MPa, σv= 23 MPa, Pp= 10.6 MPa, UCS= 36 MPa, ν= 0.26,
E= 19 GPa, and Pw= 11.25 MPa; solving Eqs. (9) and (3) give
εh = −0.00022 and εH = 0.00303, by substituting in Fig. 3

Fig. 7. Rock mechanical properties predicted by the well logs.

© ASCE 04023118-8 Int. J. Geomech.

 Int. J. Geomech., 2023, 23(8): 04023118 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
06

/0
6/

23
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



provides the in-situ stresses as in Fig. 8. The log plot of data shows
many fluctuations where there are several methods to find an ex-
pected value for each lithology such as smoothing, classification,
clustering, and averaging, where in this study we used the average
of parameters as listed in Table 3.

Based on the geomechanical properties and in-situ stress calcu-
lated in the formations and applying the Mohr–Coulomb and

Mogi–Coulomb criteria, the depth-wise mud weight window is de-
picted in Fig. 9. The theoretical calculations of the mud weight
bounds based on the rock failure criteria are presented in
Appendix I. The Mogi–Coulomb criterion is popular as it considers
the effect of the middle principal stress (σ2) on the rock shear failure
along the octahedral plane (Al-Ajmi and Zimmerman 2006). Here,
the breakout mud weight and fracture gradient were calibrated

Fig. 8. Pore pressure and in-situ stress from well logs; black diamond points are DST measurements.

Table 3. Average of rock physical and mechanical properties

Formation Depth Pw ρ Vp Vs Est Pp φ ν UCS σh σH σv

Jahrum 541 7 2.495 4,278 2,156 24 5 38 0.22 33 8 20 14
Jah.-Pa. 681 10 2.424 3,890 1,929 21 8 36 0.23 33 13 23 20
Pabdeh 1,271 13 2.260 2,866 1,401 12 13 29 0.34 25 20 25 26
Gurpi 1,376 14 2.339 3,294 1,741 16 13 32 0.31 9 20 28 28
Ilam 1,456 15 2.543 4,594 2,342 27 13 40 0.32 17 22 37 30
Laffan 1,554 16 2.349 3,354 1,815 17 15 32 0.29 11 22 30 31
Mishrif 1,594 17 2.263 2,875 1,410 12 17 31 0.23 32 22 26 33
Khatiyah 1,745 18 2.394 3,607 1,891 18 17 31 0.25 33 23 32 35
Nahr-U 1,899 19 2.358 3,385 1,830 17 18 32 0.29 13 26 34 37
Shuaiba 1,973 20 2.303 3,075 1,598 14 20 32 0.23 26 26 32 39
Hawar 2,086 21 2.513 4,372 2,218 24 19 37 0.22 36 26 38 40
Kharaib 2,113 21 2.452 4,015 2,016 21 20 36 0.23 33 27 38 42
Yamama 2,274 23 2.515 4,440 2,219 25 21 36 0.23 39 30 43 47
Sulaiy 2,542 25 2.430 3,877 1,943 20 24 38 0.23 29 33 43 50
Hith 2,696 27 2.901 7,812 4,212 85 19 52 0.26 88 33 94 52
Arab-A 2,784 28 2.753 6,418 3,199 53 22 48 0.25 48 36 71 55

Note: Depth is in m; ρ= bulk density in g/cm3; velocities in m/s; Est= static Young’s modulus in GPa; pressures and strength in MPa.
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with a caliper log, where a stuck pipe and a tight hole at 1,530 and
1,800 m depths, respectively, and mud loss at 800 m were observed
that agreed with the wellbore failure while drilling. At the stuck pipe
depths, the drill string gets stuck because of formation collapse,
showing that the actual mud weight is less than the breakout mud
weight; then, mud weight increase is suggested at this interval in
the later drilling operations. The Mogi–Coulomb criterion
(EMW-MGC) underestimates the breakout mud weight because it
is less than the EMW-MC and the pore pressure. Fig. 10 shows
the mud weight required to prevent formation collapse and fracturing
of the wellbore in different azimuths and inclinations. The EMW of
the breakout varies from 69 pcf at the σh direction (the stable direc-
tion, since it needs less mud weight for retaining the wellbore wall)
to 79 pcf at the σH direction (the unstable direction, since it needs a
higher mud weight). The polar plot is symmetric along both horizon-
tal stresses; however, it could be different in an anisotropic formation
such as shale and is discussed later in this section.

Fracture stability analysis in the reservoir is important as it re-
acts to pressure injection or depletion during development periods
of the field. Different types of fractures such as natural fractures,
open fractures, and drilling-induced fractures were picked in an
OBMI-UBI log after drilling the wellbore and their corresponding
effective normal and shear stress have been calculated using the
Fracture Slip tab of the program as shown in Fig. 11. Table 4
lists input data of discontinuities that have been picked on the
image logs for fracture instability analysis. Shear stress and effec-
tive normal stress were calculated by transferring the average of
in-situ stress over Yamama interval (Table 3) from the global
coordinate system to the fracture plane orientation. Among the
fractures, an open fracture at 2,759 m is near to failure envelope,
where by pressure injection in the reservoir it is possible to be
reactivated and tends to the wellbore failure.

The effect of shale anisotropy on the polar plot of mud weight is
determined using the section “Transversely Vertical Isotropic Shale

Fig. 9.Mud weight window through depth based on geomechanical properties and in-situ stress in the well; EMW is equivalent mud weight, MC is
the Mohr–Coulomb, and MGC is the Mogi–Coulomb EMWs.
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Formation” procedure at 1,363 mTVD, in this case study. As seen
in Fig. 12(a), the mud weight plot is no longer symmetric and varies
in different azimuth and inclination due to the considering rock an-
isotropy. In this case, the formation dip is 12° toward the northeast
and the direction of σh is 120° from the north. It is observed in
sensitivity analysis along well inclination [Fig. 12(b)] that wells
drilled with an inclination less than 40° and nearly up-dip (αwb=
210°–240°) formation, required a minimum mud weight of
73 pcf concerning other directions; for example, down-dip
(αwb = 30◦) and cross-dip (αwb = 120◦).

Numerical Module

A 3D mesh around the wellbore is generated and extended to a
depth to form hexahedral eight-point elements in the numerical
module. Linear FE is used for computation, and rock material is as-
sumed to be continuous, isotropic, elastic, and homogenous. Stiff-
ness matrices are calculated using the two-point integration
Gaussian method in the whole model. The detail of the numerical
module is described in the following sections.

Mesh Generation

Grid generation is one of the most important steps in numerical
modeling, particularly when the boundary of the problem domain
has curvature or bending. A popular method for grid generation
is the algebraic transfinite interpolation method. Advantages of
grid generation based on interpolation include, first, rapid compu-
tation of grids and, second, direct control over grid point locations
(Leseikin 2010). The key issue in this method is the blending func-
tion in which grid lines at the boundary and internal surfaces are
matched. In our model, the first degree of Lagrange polynomial
as 1− ξ, ξ, 1− η and η are used as blending function and basic

transfinite interpolation formula is expressed as

X (ξ, η) = (1 − η)Xb(ξ) + ηXt(ξ) + (1 − ξ)Xl(η) + ξXr(η)

− {ξηXt(1) + ξ(1 − η)Xb(1) + η(1 − ξ)Xt(0)

+ (1 − ξ)(1 − η)Xb(0)} (21)

where X= blending function in terms of ξ and η axes of logical or
computational space, which is mapped to the physical space of the
problem; and subscripts b, t, l, and r= bottom, top, left, and right of
the domain. Eq. (21) has been used to create four quadrants con-
taining a wellbore cross section along with boundaries that merged
to form whole mesh, finally. Fig. 13 shows a bilinear quadratic
mesh around the wellbore created using the transfinite interpolation
method. Since the wellbore is vertical, it can be extended to hexa-
hedral eight-point (brick element) by adding the Z-location of
nodes.

Governing Equations in FE Analysis

In static equilibrium, the rock encounters very slow displacement
without motion-like seismic wave propagation; the equations of
stress equilibrium are expressed as (Jaeger et al. 2007)

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ fx + σx0 = 0

∂τyx
∂x

+
∂σy
∂y

+
∂τyz
∂z

+ fy + σy0 = 0

∂τzx
∂x

+
∂τzy
∂y

+
∂σz
∂z

+ fz + σz0 = 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(22)

where σ= normal stress; τ= shear stress; f= body force; σ0= prin-
cipal in-situ stress in three dimensions. Integration of the preceding
equations over the domain gives the stiffness matrix. Governing
equation on continuum medium using integral calculus over a

(a) (b)

Fig. 10. Polar plots of mud weight: (a) collapse; and (b) induced fracturing mud weight at 1,190 mTVD. Input data include: ν= 0.34; ϕ= 29°,UCS=
25 MPa, Pp= 13 Mpa, σv= 26 MPa, σh= 23 MPa, σH= 25 MPa.
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(a)

(b)

Fig. 11. Instability potential of different fractures: (a) fractures picked from an OBMI-UBI log; and (b) in the 3D Mohr diagram.
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domain can be expressed as∫∫∫
(σij,j + fi + σi0)dV = 0 (23)

Well-known elasticity equation for elastic material is expressed
as

{σ} = [C]{ε − ε0},

{σ0} = [C]{ε0}
(24)

Table 4. Input properties for the fracture stability analysis

No Dip Dip azimuth Type

1 79 239 Open fracture
2 17 192 Unconformable bed
3 7 26 HC bedding
4 7 27 Bedding
5 15 101 Stylolite
6 15 69 Stylolite
7 87 7 Breakout
8 87 7 Breakout
9 87 7 Breakout
10 87 8 Breakout
11 17 14 Unconformable bed
12 85 7 Breakout
13 52 56 Open fracture
14 21 26 Unconformable bed
15 85 9 Breakout
16 85 9 Breakout
17 9 2 HC bedding
18 3 159 Stylolite
19 11 19 Lamination
20 11 20 Lamination
21 55 289 Open fracture
22 68 223 Open fracture

Note: HC= high confidence.

(a) (b)

Fig. 12. (a) Polar plot; and (b) sensitivity analysis of the mud weight in Laffan shale formation at 1,363 mTVD. Input data include: ν= 0.29, ϕ= 30°,
C= 8 MPa, Pp= 15 MPa, σv= 31 MPa, σh= 25 MPa, σH= 28 MPa, Cwp= 3 MPa, ϕwp= 12°, βwp= 8°, αwp= 30°.

Fig. 13.Mesh generation around the wellbore using transfinite interpo-
lation technique; four boundaries are shown in l, t, r, and b.

Fig. 14. Two-point rule of Gaussian integration method in the 2D local
space.
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Fig. 15. Input parameters and boundary condition windows of numerical module.

(a) (b)

Fig. 16. Mesh generated around wellbore: (a) top view; and (b) 3D view.
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where ε= strain tensor; ε0 = in-situ strain; and C= elastic matrix
for isotropic material in 3D is expressed as

[C]=
E

(1+ν)(1−2ν)

1−ν υ ν
ν 1−ν ν
ν ν 1−ν

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1−2ν

2
0 0

0
1−2ν

2
0

0 0
1−2ν

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

The term ε0 in stress calculation is ignorable as it is very small in
earth considering equilibrium conditions. A strain tensor with six
elements is connected to displacements through the following dif-
ferential equation:

ε =

∂N
∂x

0 0

0
∂N
∂y

0

0 0
∂N
∂z

∂N
∂y

∂N
∂x

0

∂N
∂z

0
∂N
∂x

0
∂N
∂z

∂N
∂y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

In the next step, we need to connect displacements to the shape
functions (Lagrange function) to convert our calculations from
global (physical) to local (computational) space for a hexahedral
eight-point element as

Ni =
1

8
(1 + ξiξ)(1 + ηiη)(1 + ζiζ) (27)

where N= shape function; and ξi, ηi, and ζi= coordinates of ele-
ment nodes at local space. The benefit of this conversion is that
all the nodes in local space vary in (−1, 1). To take into account
pore pressure at each node of the elements in a porous formation,
Terzaghi’s effective stress was calculated which is

σ′ij = σij − αPpδij + σ0 (28)

where σ′ = effective stress; σ= total stress; and δ=Kronecker
delta. Substituting Eqs. (24)–(28) into Eq. (23) element stiffness
matrix is expressed as

Ke =
∫∫∫

B′CBdV +
∫∫∫

αB′PpNdV +
∫∫∫

N ′bdV +
∫∫∫

N ′SndA

+
∫∫∫

B′Nσ0dVB = [D][N ] (29)

where Ke= element stiffness matrix; B= derivation of shape func-
tion; Sn= traction or the surface forces; and b= body force. To
solve the continuous integrals in Eq. (29), the most common
method is discrete Gaussian quadrature method (Logan 2012), par-
ticularly, with Legendre polynomials where by integrating in 3D, it

Fig. 17. Numerical and analytical comparison of the tangential and radial stress.
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(a) (b)

(c) (d)

Fig. 18. Stress results in model around wellbore: (a) total stress in z-direction; (b) total tangential stress; (c) shear stress in x–z plane; and (d) total
stress in x-direction.

(a) (b)

Fig. 19. Displacement results: (a) around wellbore in x-direction; and (b) in whole model in z-direction.
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becomes

∫∫∫1
−1

f (ξ, η, ζ)dξdηdζ ≈
∑n
i=1

∑n
j=1

∑n
k=1

wiwjwkf (ξ, η, ζ) (30)

where w=weight of numerical integration via two-point rule
shown in Fig. 14 where in 3D it becomes eight points (2 × 2 × 2).

In a hexahedral element, a matrix with 24° of freedom in three
dimensions is assembled to the neighbor elements based on their
connectivity to form the total matrix of the whole model. Finally,
solving Eq. (29) using Eq. (30) and substituting into the
well-known global stiffness matrix, it becomes

Ku = Fb + Fs + Fis (31)

(a) (b)

(c)

Fig. 20. (a) The new well plan directed to the lower right corner of the model; (b) top view; and (c) mud window predicted from the numerical
calculations for the new plan.
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where u= displacement; Fb= body force; Fp= pore pressure; Fs=
traction; and Fis= in-situ force. Nodal stress is calculated as

σ = CBu (32)

For element stress calculation, the nodal stresses are averaged
over the cube. In addition, boundary condition including fixing dis-
placements of the nodes on the sides and bottom of the model are
needed to obtain the full matrix of displacement from Eq. (31). Pro-
gramming the preceding equations led to the numerical module of
the developed program.

Numerical Module Output

In this module, a vertical wellbore in a single formation with prop-
erties from Table 3 has been modeled to observe the results of the
FE analysis. To model wellbore stress and displacement, Eqs. (21)
to (31) have been programmed, and results are described in this sec-
tion. Fig. 15 shows input data windows, including geometry, boun-
dary conditions, and mechanical properties selected from Table 3 at
1,190 mTVD. Boundary conditions are of two types: stress boun-
dary and displacement boundary, which are crucial to solving the
stiffness matrix in Eq. (31). For real boundaries, imposing displace-
ment conditions provide relevant results while stress boundary un-
derestimates stresses and displacements. It should be noted that the
model is run in a geostatic equilibrium (steady-state) analysis, not
in a time-dependent transient analysis.

The transfinite technique has been used to generate a mesh grid
shown in Fig. 16 as described in the section “Mesh Generation.”
Hexahedral eight-point (brick) elements have been built around
the model where, finally, it includes 2,592 elements with 3,200
nodes. Each element is integrated counterclockwise to obtain the
element stiffness matrix and assembled with 8° × 3° of freedom
to form the total model stiffness matrix with 9,600 × 9,600 arrays.
Bottom displacements are fixed in three dimensions, left and right
on the x-side of the model; back and front are fixed on the y-side of
the model (Fig. 15).

The in-situ stresses are orthogonally applied to the 3D model.
They were transformed from the in-situ coordination to the global
coordination using Eqs. (11) and (12), that is, σH is in the
x-direction, σh is in the y-direction, and overburden is downward
at the top of the model. After applying boundary conditions and
running the model, the results were compared with the Kirsch sol-
ution (Appendix II). Fig. 17 compares numerical radial and tangen-
tial stresses with the analytical stresses. The numerical results
nearly matched the analytical model, and the difference could be
due to the model’s mesh size. In Fig. 18(a), stress contours in the
z-direction (σzz) are shown where total stress obtained is in agree-
ment with applied overburden where it reaches 25.01 MPa at
depth by applying 22,170.6 KN/m3 of the body weight. Shear
stress in the x–z plane (σxz) is shown in Fig. 18(b). As noted, the
maximum stress concentration corresponding to the wellbore
breakout is in the σh direction as seen in Fig. 18(c) around the well-
bore. In geostatic equilibrium, computed displacement must be
small enough (Logan 2012) as the right term of Eq. (22) is related
to density variation over time, which is zero in this analysis. As
shown in Fig. 19, vertical and horizontal displacements are small
enough of the order of 10−3 throughout the model and wellbore
wall.

Finally, the objective of a 3D numerical simulation is to predict
the predrilling mud weight bounds for a proposed well in any direc-
tion inside the cube. Therefore, a well plan is directed to the lower
right corner of the cube and the result of mud window predicted
from the numerical model are shown in Fig. 20(c). Nodal stresses

were picked from the intersection of the well with numerical ele-
ments. Radial and tangential stress were obtained and introduced
into the Mohr–Coulomb and Mogi–Coulomb criteria to determine
the mud weight bounds. The breakout pressures from both criteria
matched a cross-marked line. Therefore, with the new well direc-
tion, the mud weight required to prevent wellbore breakout at
1,190–1,200 m is 80 pcf, which agrees with the mud window in
Fig. 9.

Conclusion

A geomechanics program for wellbore stability analysis has been
developed, consisting of two parts: an analytical module, and a nu-
merical module. Required data such as physical well logs, lithology
intervals, pressure data, formation well tops, and well survey plans
were imported into the analytical module. For calculating mechan-
ical rock properties empirical prediction formulas, in-situ stress the
poroelastic plane strain method and pore pressure the Modified
Eaton’s were used. A LOT is mandatory for stress calculations;
however, many drillers skip it because of formation fracturing
and consequences; thus, from a plane strain concept and drilling ev-
idence, a set of new equations were solved to obtain the minimum
and maximum horizontal strains. Safe mud weight bounds through
depth and polar plots using the Mohr–Coulomb and Mogi–
Coulomb criteria were shown in different windows. The latter
underestimated the minimum mud weight to prevent wellbore
breakout. Results of this module have been calibrated with drilling
events and ultimately could be used for future drilling plans. The
transversely isotropic behavior of shale has been solved using the
weak-plane slip method. Results showed how formation isotropy
could affect the polar plot of the mud window and made it symmet-
rical concerning the isotropic formation. In comparison with an in-
dustrial program, the results of our program in fracture stability,
which are crucial in a reservoir in terms of pressure injection or pro-
duction, correctly showed fractures normal and shear stress poles
inside the 3D Mohr diagram.

The numerical module uses the transfinite technique to generate
hexahedral mesh elements around a vertical wellbore. The Stiffness
matrix was computed in each element using the Gaussian two-point
rule integration and assembled in neighbor elements by element
connectivity to form the whole model stiffness matrix. Forces are
computed by applied in-situ stress, pore pressure, and body forces.
Displacement boundary conditions on the bottom and sides of the
model are applied, and solving the global stiffness equation in a ge-
ostatic equilibrium condition gives the nodal displacement of the
whole model. The displacement obtained is introduced into the
stress–strain equation, and the total stress in the model is computed.
The numerical model matched the analytical Kirsch model and the
results showed a high-stress concentration area around a wellbore,
which corresponds to the breakout in the wellbore wall. The small
displacement obtained shows the model’s accuracy, which is of the
order of 10−3, and maximum shear stress observed at the direction
of maximum horizontal stress.

Appendix I. Mud Weight Bounds Based on the Rock
Failure Criteria

The most common rock failure criteria to determine the mud weight
required for stable drilling are the Mohr–Coulomb and the
Mogi–Coulomb criteria. The corresponding bounds in the
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Mohr–Coulomb are calculated as

τ = C + σntan(φ)

Pwb mc =
3σH − σh + P0(N − 1) − UCS

N + 1

N =
1 + sin(φ)

1 − sin(φ)

Pwf mc =
UCS + N (3σh − σH ) − Pp(N − 1)

N + 1

(33)

where Pwb mc =minimum required mud weight to prevent wellbore
breakout; and Pwf mc =maximum required mud weight for fractur-
ing the formation based on the Mohr–Coulomb criterion. The
Mogi–Coulomb criterion considers the effect of middle principal
stress, σ2, on the rock shear failure along an octahedral plane and
like the preceding equation its mud weight bounds are

τoct = a + bσm

τoct =
1

3









































(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
√
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2
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2

√

3
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2



2

√

3
sin(φ)

(I21 − 3I2)
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12(a + b(D − 2Pp))2 − 3(D − 2E)2

√
D = 3σh − σH

A = 3σH − σh

(34)

where σ1, σ2, and σ3= principal stresses; I1, I2, and I3= stress in-
variants; τoct= octahedral shear stress; Pwb mgc =minimum required
mud weight to prevent the wellbore breakout; and Pwf mgc =maxi-
mum required mud weight to fracture the formation.

Appendix II. Kirsch Solution around a Wellbore

The Eq. (22) has been expressed by Kirsch (1898) in the cylindrical
coordination as

∂σr
∂r

+
1

r

∂τθr
∂θ

+
∂τzr
∂z

+
σr − σθ

r
+ fr = 0

1

r

∂σθ
∂θ

+
∂τrθ
∂r

+
∂τzθ
∂z

+ 2
τrθ
r
+ fθ = 0

∂τzθ
∂z

+
∂τzr
∂z

+
1

r

∂τzθ
∂θ

+
τzr
r
+ fz = 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(35)

Integrating over the wellbore area with an in-situ stress tensor
the following components are calculated:

σrr =
σ0x + σ0y

2

( )
1 −

a2

r2

( )
+

σ0x − σ0y
2

( )
1 + 3

a4

r4
− 4

a2

r2

( )

cos 2θ + σ0xy 1 + 3
a4

r4
− 4

a2

r2

( )
sin 2θ + Pw

a2

r2

σθθ =
σ0x + σ0y

2

( )
1 +

a2

r2

( )
−

σ0x − σ0y
2

( )
1 + 3

a4

r4

( )

cos 2θ − σ0xy 1 + 3
a4

r4

( )
sin 2θ − Pw

a2

r2

σzz = σ0z − ν 2(σ0x − σ0y )
a2

r2
cos 2θ + 4σ0xy

a2

r2
sin 2θ

( )

σrθ = −
σ0x − σ0y

2

( )
1 − 3

a4

r4
+ 2

a2

r2

( )

sin 2θ + σ0xy 1 − 3
a4

r4
+ 2

a2

r2

( )
cos 2θ

σθz = (−σ0xz sin θ + σyz cos θ) 1 +
a2

r2

( )

σrz = (σ0xz cos θ + σyz sin θ) 1 −
a2

r2

( )

(36)

where σ0x , σ
0
y , and σ0xy = in-situ stress components; a=wellbore ra-

dius; r= any distance from the wellbore center; and θ is measured
from the x-axis.
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Shear_Velocity.m, Petrophysics.m, Parameters.m, Input_Calc_
Model_Parameters.m, Fracture_Slip.m, and read_las.m.
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