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Summary

Arguably, nearly all real-world decisions, including travel choices, are 

inherently associated with subjective uncertainty where decision-makers’ 

personal evaluations play a significant role. In public transport networks, 

uncertainty due to waiting time and, recently, the COVID-19 pandemic 

possibly induce the most frustration and anxiety. Therefore, with the 

overarching aim of making public transport a viable and satisfying option, 

this thesis is dedicated to modelling and analysing the impact of such 

pervasive uncertainty on public transport travellers’ route choice behaviour.
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1 

Introduction 

1 Research motivation 

Arguably, nearly all real-world decisions are made under uncertainty. The anatomy of any 

choice consists of the alternatives, their properties, and the set of outcomes possible for each 

alternative under various eventualities. These eventualities are the realizations of uncertainties 

in the choice situations. Consider somebody deciding whether to go for a long bicycle ride 

tomorrow. The cyclist’s options may be whether to go cycling or not. Their outcome, in terms 

of joy derived from the ride, depends on the weather tomorrow, which is clearly uncertain. The 

uncertainty can be defined by the various weather ‘events’ possible; for instance, it could be 

sunny or rainy. Additionally, the source of uncertainty could also be regarding the availability 

of options (whether they could even go cycling tomorrow or not), the decisions of others 

(whether it will be too crowded on the cycle paths), or the impact of outcomes (whether they 

will enjoy cycling as much as they think).  

 

Uncertainty, when represented by a set of events, is often classified on the basis of whether 

objective probabilities exist for these events (Knight, 1921). Uncertainty is objective when 

probabilities for different events are available to and trusted by decision-makers, either because 

they are integrated in the choice situation itself (e.g., in a casino roulette game) or because there 

is a consensus regarding them (e.g., trusted expert opinion of striking oil). Most decisions, 

however, are inherently associated with subjective uncertainty where the decision-makers’ 

personal beliefs regarding the likelihood of events play a much larger role. Such personal beliefs 

may be informed by a number of factors, including available information, experience, trust, 

decisions of others, and so on. The pervasive nature of such uncertainty in everyday decision-

making means that often intuition reigns and decisions lack retrospection (Gilboa, 2012). 

 

Uncertainty has a significant impact on decisions because of its intricate relationship with 

emotion and affect. Not only do the emotional and affective contexts (i.e., state when making a 

decision) influence the perception of uncertainty (Loewenstein and Lerner, 2003) but the 

reverse is also true (Anderson et al., 2019). Uncertainty is largely associated with negative 
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affective responses and has been strongly linked with anxiety (Carleton, 2016) and stress (Buhr 

and Dugas, 2002). 

 

Travelling is one such sequence of decisions where uncertainty is present, largely subjective, 

and usually dealt with not by carefully weighting probabilities but using intuition. Deciding 

whether to travel, to go by car or bus, and to take the freeway or urban roads are all associated 

with uncertainty. A large number of studies have demonstrated the importance of travel time 

reliability on various decisions, including mode and route choice (Bates et al., 2001; Börjesson 

et al., 2012; Carrion and Levinson, 2012; de Palma and Picard, 2005; Small et al., 1999; Small 

et al., 2005). While travel time is typically the main source of uncertainty in this domain, others 

may arise with newer forms of mobility, such as availability of shared vehicles (Hsu et al., 

2016), or following security events (Elias et al., 2013; Holguín-Veras et al., 2003) and disease 

outbreaks (Lau et al., 2003; Wang, 2014) which may cause travellers to feel uncertain about 

their safety. 

 

Public transport is different from personal modes of transportation, such as the car, in that it 

(typically) has fixed schedules, serves discrete locations, and is shared. Because of these 

properties, the two main sources of uncertainty associated with travelling, reliability and safety, 

are particularly important for public transport passengers. In fact, several authors have 

identified these aspects as being the most basic of public transport travellers’ needs and 

potential dissatisfiers (Allen et al., 2019; van Hagen, 2011). With respect to reliability and 

impact on overall satisfaction, waiting time is perhaps the most important aspect of travelling 

with public transport (Abenoza et al., 2018). Waiting is inherently frustrating (Maister, 1985) 

and its inevitability in public transport and travellers’ apparent lack of control can induce stress 

and dissatisfaction (Cantwell et al., 2009).  

 

While there are numerous safety aspects related to public transport due to its shared nature, 

such as at public transport stations and on vehicles (and arguably during access and egress trips 

as well; e.g., walking home from the station at night), with the outbreak of the COVID-19 

pandemic in early March 2020, the risk of contracting or spreading the virus on public transport 

rose to prominence in travellers’ and authorities’ minds alike (Shelat et al., 2022). Like previous 

epidemics (Lau et al., 2003; Rubin et al., 2009), this pandemic too induced anxiety and public 

transport avoidance (de Haas et al., 2020; Gerhold, 2020). This has been compounded by 

unprecedentedly sustained uncertainty as different parts of the world suffered seemingly 

endless infection waves. 

 

Keeping in mind the overarching aim of reducing dependence on unsustainable motorized 

individual transport modes by offering public transport as a viable and satisfying alternative, 

this thesis analyses the impact of pervasive uncertainty on route choice behaviour within public 

transport networks. That is, we analyse the choice of (a combination of) public transport lines 

or vehicles in order to obtain insights into traveller preferences. Given their prominent impacts, 

the focus is on behaviour under waiting time uncertainty and in the context of the uncertainty 

presented by COVID-19. 

2 Research gaps 

Although a number of studies have demonstrated and discussed the importance of travel time 

uncertainty for route choice decisions, potential for improving the external validity of these 

behavioural models remains. This is particularly true in the context of waiting time uncertainty 
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in public transport. This thesis addresses different research gaps (RG) related to this potential 

by focussing on two important dimensions: the source of behavioural data and the type of 

uncertainty analysed. Additionally, it also undertakes new research avenues that result from the 

impact of the COVID-19 pandemic on public transport travel behaviour. 

2.1 Source of behavioural data 

The impact of travel time uncertainty on travellers’ choices has been analysed using behavioural 

data obtained from (i) stated choices, that is, between hypothetical alternatives in surveys or 

laboratory experiments, or from (ii) reported or passively observed choices in real-world trips. 

While the former mode of data collection offers more experimental control and has traditionally 

been easier to collect, it is likely to suffer from hypothetical bias. Hypothetical bias is a catch-

all term for suspected deviations of reported behaviours or values in stated preference studies 

from those potentially evident in the market. For behavioural studies, this bias likely arises due 

to varying degrees of: (i) absence or misalignment of consequences of respondents’ choices, 

that is, improper incentives, (ii) removal from real-world contexts under which the choice 

would normally be made, or (iii) strategic responses aimed at influencing the perceived policy 

outcome of the study (Haghani et al., 2021b). Readers are referred to Hensher (2010) and 

Haghani et al. (2021a, 2021b) for a detailed review. 

 

Although, due to the above factors, stated choice surveys typically offer the lowest level of 

realism, the vast majority of behavioural studies in the domain of travel time uncertainty have 

used observations from such surveys (e.g., Small et al. (1999), Schwanen and Ettema (2009), 

Tilahun and Levinson (2010)). Laboratory experiments, while also collecting hypothetical 

choices, reduce hypothetical bias by emulating the choice context via simulation, enabling 

learning by giving feedback for every choice made, and/or awarding choice-based incentives 

or penalties. A few laboratory experiments have analysed travel behaviour under uncertainty 

but they have largely focussed on road traffic networks and learning mechanisms (e.g., Ramos 

et al. (2011), Ben-Elia and Avineri (2015)). Moreover, laboratory experiments incentivising 

revelation of true preferences by linking rewards to choices are not common in studies of travel 

behaviour.  

 

Revealed preferences have the least hypothetical bias; yet only a handful of studies have studied 

revealed preferences related to travel time uncertainty and have focussed on road users. These 

studies have used reported perceptions of travel time (e.g., Peer et al. (2014)), active 

observations obtained by asking drivers to carry out specific real-world trips (e.g., Carrion and 

Levinson (2013)  ̧Dixit et al. (2019)), or passive observations of choices between tolled, reliable 

routes and untolled, unreliable routes (e.g., Lam and Small (2001), Brownstone and Small 

(2005)). The latter—passive choice observations or naturalistic data—have the highest realism 

(Haghani et al., 2021b) but have usually been the most difficult to collect.  

 

One of the key difficulties with using revealed preferences is the lack of experimental control: 

researchers not only have to identify situations with sufficient variation of the variable of 

interest across alternatives (Carrion and Levinson, 2012), but they also have to infer which 

alternatives are considered by the decision-makers. For active observations, one might simply 

ask the participant which alternatives they considered; and for passive observations, the set of 

all chosen alternatives in a given choice situation may be assumed to be its considered choice 

set. However, the self-reporting in the former is subject to various errors (Hoogendoorn-Lanser, 

2005) and the latter precludes the possibility to include non-chosen but considered alternatives 

(Raveau, 2017). As such both of these direct-identification methods lack transferability as 
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similar insights may not be available for other public transport networks (Ton et al., 2018). 

Because of this a number of approaches have been put forward for route choice set generation 

but none are completely satisfactory. These approaches either make strong, simplistic 

behavioural assumptions—such as those in shortest-path methodologies—or depend on the 

researchers’ (or experts’) judgements regarding travel behaviour—such as those in link-

labelling or uncalibrated constrained enumeration methodologies (Bovy, 2009; Prato, 2009).  

Thus, a route choice set generation methodology that produces transferable parameters, requires 

minimal assumptions regarding traveller behaviour, and can be calibrated using revealed choice 

observations is missing (RG1). Moreover, transferable behavioural insights regarding the 

consideration set formation need to be derived (RG2). 

 

Another difficulty in collecting naturalistic data for route choice studies has been the effort and 

expense related to observing choices and the values of attributes of different alternatives 

(Carrion and Levinson, 2012). This has become considerably easier in public transport networks 

with automatic fare collection (AFC) systems (e.g., those using smart cards) which collect data 

that can then be used to trace travellers’ routing choices and the attribute values of various 

alternatives. Although a number of studies have used such data to study route choice behaviour 

in public transport networks (e.g., Guo and Wilson (2011), Jánošíková et al. (2014), Yap et al. 

(2018)) only one previous study, (Leahy et al., 2016), has specifically analysed the effect of 

travel time uncertainty. However, it examines the impact of total travel time uncertainty and 

only uses a sample of AFC transactions over the time period of their study. Thus, an explicit 

analysis of the impact of waiting time uncertainty on route choice behaviour in public transport 

networks remains to be conducted (RG3). Note that all revealed preference studies on this topic 

have analysed the impact of objective travel time uncertainty. Empirical distributions of travel 

time are summarised through various statistical measures that can be broadly classified into 

statistical ranges and buffer times (van Lint et al., 2008). While some studies have even 

compared different statistical indicators for total travel time (e.g., Bogers et al. (2008), 

Alemazkoor et al. (2015), Leahy et al. (2016); Tilahun and Levinson (2010)), there is no 

consensus regarding the best representation and specific insights for waiting time uncertainty 

in public transport networks are missing (RG4).  

 

RG1  A route choice set generation methodology that can be calibrated using revealed 

choice observations using minimal behavioural assumptions to produce transferable 

behavioural parameters 

RG2  Transferable behavioural insights regarding considered route choice set formation 

from a real-world public transport network 

RG3  An explicit analysis of the impact of waiting time uncertainty on route choice 

behaviour in public transport networks 

RG4 Comparison of different statistical representations of waiting time uncertainty in route 

choice models for public transport networks 

2.2 Type of uncertainty analysed 

Travellers in public transport networks rely on published schedules or frequencies to draw their 

expectations regarding waiting times. Since vehicles are not always on time, waiting times are 

associated with subjective uncertainty which travellers may gauge based on past experiences 

with the system, their own personal characteristics (e.g., pessimism), and other contextual 

variables (e.g., bad weather) (Cheng and Tsai, 2014; Kugler et al., 2012). While real-time 

information can offset some of this uncertainty, it is also liable to be distorted by travellers’ 

personal, subjective beliefs. Although waiting time uncertainty is subjective, the existing body 
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of literature has largely studied its impact on route choice using objective probabilities (or 

probability distributions) that are normally not available to travellers. 

 

The type of uncertainty—(objective) risk, simulated uncertainty, or natural ambiguity—under 

which decisions have been observed is closely related to the data collection method. Stated 

choice experiments have typically presented hypothetical route choices with objective 

distributions of travel times. A number of presentation methods have been used for such 

distributions, such as displaying an array of equiprobable travel times (e.g., Swierstra et al. 

(2017)) or indicating the probability of a fixed delay (e.g., Schwanen and Ettema (2009)), yet 

conveying objective probabilities to respondents who are not used to receiving such information 

remains difficult (Bates et al., 2001; Carrion and Levinson, 2012).  

 

With laboratory experiments, a number of studies have observed behaviour under simulated or 

artificial uncertainty. Typically in such experiments respondents face repeated choices between 

routes for which imperfect or no information regarding travel times is provided and the true 

travel times of the chosen (and sometimes also non-chosen) routes is revealed after the choice 

has been made to allow respondents to develop likelihood beliefs just as travellers do in the 

real-world (e.g., de Moraes Ramos et al. (2013), Avineri and Prashker (2006), Chorus et al. 

(2008)). However, the uncertainty simulated is usually unrelated to that in real-world public 

transport networks but is instead tuned to fulfil analysis requirements such as studying a given 

range of values or estimating a specific parameter.  

 

Finally, route choice decisions under natural ambiguity—subjective uncertainty (also known as 

ambiguity) for natural (i.e., not artificial but real-world) events (Baillon et al., 2018)—have 

only been studied using revealed preferences from the field experiments mentioned in the 

previous section. However, as discussed in that section, although the travellers made choices 

under natural ambiguity, the analyses on these choices have assumed the uncertainty to be 

objective that is, as if travellers had access to the probability distributions (or statistical 

measures thereof) of travel times (e.g., Small et al. (2005)). 

 

Thus, a method to analyse route choice decisions made under natural ambiguity without 

assuming the availability of objective probability distributions is missing (RG5). This is 

especially true for waiting time related uncertainty in public transport networks because studies 

where decisions are at least observed under some kind of uncertainty (i.e., laboratory and field 

experiments) are mainly car traffic focussed. Such a method would result in a concrete 

evaluation of travellers’ subjective beliefs regarding waiting time uncertainty for real-world 

public transport networks as well as describe heterogeneity in these beliefs (RG6). 

 

RG5  An experimentation method to observe and analyse public transport route choice 

decisions under natural waiting time ambiguity 

RG6  Evaluation of travellers’ subjective beliefs regarding waiting time uncertainty (and 

heterogeneity therein) in real-world public transport networks 

2.3 COVID-19 and travel behaviour 

Since the coronavirus causing COVID-19 spreads through airborne means, exposure is typically 

through proximity to infectious persons. As such, transmissions are more successful with closer 

proximity and longer exposure times to infectious persons (Hu et al., 2020; Prather et al., 2020). 

This is why public transport, which involves moving a large number of people in dense, 
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enclosed spaces, poses a transmission risk for COVID-191. As a result of governmental and 

individual interventions to avoid such transmission, the COVID-19 pandemic (2020–) has 

resulted in significant disruption to public transport ridership (Shelat et al., 2022). Similar 

impacts have been found in previous (respiratory) disease outbreaks, such as SARS (2002–

2004), MERS (2012), and swine flu (2009). Moreover, survey responses during these epidemics 

indicated that people perceived public transport avoidance as an effective risk mitigation 

strategy. Given the relatively wider and more sustained impact of COVID-19, travellers in this 

pandemic are also likely to change their behaviour and focus on factors contributing to disease 

transmission.  

 

In the context of public transport travel during (both past and ongoing) disease outbreaks, 

research has largely focussed on analysing (i) aggregate statistics of ridership drops and mode 

shifts (e.g., Bucsky (2020); Teixeira and Lopes (2020)), (ii) travel/activity pattern changes (e.g., 

Beck and Hensher (2020); de Haas et al. (2020); Engle et al. (2020); Kim et al. (2017a); Lau et 

al. (2003)), and (iii) Likert scale-based measures of transmission risk perception (e.g., Dryhurst 

et al. (2020); Gerhold (2020); Rubin et al. (2009)). Even though—as a result of its 

unprecedented scale—a large body of literature on COVID-19 exists, only a handful of studies 

(e.g., Aaditya and Rahul (2021); Aghabayk et al. (2021); Cho and Park (2021)) have directly 

modelled travel choices or analysed how public transport travellers trade-off various 

transmission risk determinants with travel time attributes (RG7)2.  

 

In particular, travellers can be expected to change their valuations for on-board crowding and 

in-vehicle times; factors that are directly related to exposure risk. Furthermore, at a macroscopic 

level, a higher proportion of infectious (i.e., capable of spreading the disease) people in the 

population increases the probability of exposure; and at the microscopic level, weaker immunity 

makes one more susceptible to the disease, increasing the likelihood of transmission. Thus, in 

addition to trip-specific factors, travellers may also take into account the general COVID-19 

situation in their region as well as the susceptibility of themselves and their loved ones. 

 

As with any new disease, in its early stages, there was a great deal of uncertainty around 

COVID-19. Although consensus regarding factors causing the disease and the risk it posed 

grew amongst the medical community, perceptions in the general population remained 

divergent (Smail et al., 2021); a problem further exacerbated by misinformation spread via 

social media  (Bridgman et al., 2020). Since beliefs regarding the risks imposed by the pandemic 

(and attitudes towards these risks) are so varied, it would be pertinent to measure heterogeneity 

in public transport travellers’ behaviour, particularly with respect to factors related to the 

disease, such as on-board crowding (RG8). Assessing how different travellers will behave under 

different COVID-19 situations is not only useful in communicating and designing transmission-

preventing policies but is also critical for eventually bringing back public transport ridership 

levels. 

 

RG7 A choice analysis of travellers’ trade-offs in public transport between COVID-19 

transmission risk determinants and travel time attributes 

RG8 Evaluation of heterogeneity in public transport travellers’ choice behaviour in context 

of the COVID-19 pandemic 

 
1 Although this risk can be attenuated by better respiratory protective measures, such as masks and HVAC filters. 
2 It should be noted that as this is a very active domain of research, the number of studies is expected to rise. 
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3 Research objective, scope, and questions 

The objective and scope of this thesis follows from the research motivation and gaps in literature 

outlined above. The overarching objective is to model and analyse the impact of the 

pervasive uncertainty on public transport travellers’ route choice behaviour. To do this, 

we use observations from stated choices experiments and passively collected, naturalistic data 

from automatic fare collection systems. The focus is on analysing the impact of waiting time 

uncertainty and the changes in behaviour brought about by the uncertainty presented by the 

COVID-19 pandemic. Although the case studies presented in the thesis use observations from 

travellers in the Netherlands, the methodologies and, to a limited extent, findings are applicable 

to developed public transport networks around the world. 

 

To achieve this objective, we aim to answer the following four research questions (RQ). First, 

to model travel behaviour from passively observed route choices (which have no hypothetical 

bias), choice sets must be inferred. While several choice set generation methods have been 

proposed in the literature, they are not completely satisfactory, leading to the need for a new 

parsimonious and transferable methodology.  

 

RQ1 How to infer route choice sets from passively observed choices using minimal 

assumptions and producing transferable behavioural insights? (Addressing RG1, RG2) 

 

The next two questions are about analysing the impact of waiting time uncertainty on travellers’ 

route choice behaviour. First, with the conventional assumption that travellers are aware of the 

empirical distribution of waiting time (i.e., objective uncertainty), and then relaxing this 

assumption to evaluate travellers’ subjective beliefs regarding waiting time uncertainty and 

subsequently their route choices under the natural ambiguity that exists in the real-world. 

 

RQ2 What is the impact of waiting time uncertainty, expressed as different statistical 

representations of its historical values, on route choice behaviour? (RG3, RG4) 

RQ3 How to evaluate subjective beliefs regarding waiting time for route choices made under 

the ambiguity that is naturally present in the real-world? (RG5, RG6) 

 

Finally, the COVID-19 pandemic (2020–) has imposed new uncertainties everywhere, 

potentially also resulting in changes in how travellers perceive various components of public 

transport travel. This leads us to our final research question: 

 

RQ4 What are the impacts of COVID-19 transmission risk determinants on public transport 

travellers’ route choice behaviour? (RG7, RG8) 

4 Research approach 

To fulfil the research objective effectively, this thesis addresses each of the three groups of 

research gaps identified previously. First, for source of behavioural data, a mix of stated and 

revealed preferences is used. The former have been collected from (online) stated choice 

experiments with travellers in the Dutch railways, while the latter have been obtained from 

passively collected smart card observations from the public transport services of The Hague 

and Amsterdam. Second, behaviour is modelled under different assumptions of uncertainty. 

The uncertainty under which the choice has been made depends on the source of the behavioural 

data. For stated choices, this depends on the type of experiment whereas for smart card 
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observations, choices have been made under the natural ambiguity that exists in the system. The 

behavioural analysis can then either ignore the uncertainty, include it as if it were objective, or 

account for its subjective nature. Finally, research gaps related to the new uncertainties brought 

about by the COVID-19 pandemic are directly addressed by the last research question. Next, 

we discuss the approach taken for each research question. 

 

The first question (RQ1) seeks to overcome shortcomings of current choice set generation 

methods in order to empower the use of passively collected data for route choice analysis in 

public transport networks. To do this, we model consideration set formation using a non-

compensatory decision heuristic (elimination-by-aspects) as is common in marketing literature 

(Hauser, 2014). This heuristic is calibrated for a given public transport network in two parts: (i) 

a constrained enumeration of feasible routes using the network topology and schedule (and two 

logical constraints), and (ii) a brute force calculation of the parameters in the elimination-by-

aspects model (i.e., attribute ranking and thresholds). The model parameters are calculated to 

optimize the balance between coverage—the proportion of observed routes that have been 

generated (i.e., recall)—and efficiency—the proportion of generated routes that have been 

observed (i.e., precision). The calibration methodology is used to generate route choice sets 

from smart card observations in The Hague tram and bus networks. To develop our 

understanding of the methodology, we examine the intermediate analysis as well as final results 

in detail. 

 

To answer the remaining research questions, a series of choice models are estimated. All choice 

analyses in this thesis are underpinned by the random utility maximization paradigm as is 

conventional in transportation modelling. The paradigm assumes that decision-makers make 

choices that maximize utility, which is a latent variable consisting of systematic and random 

components. In particular, we employ multinomial logit models which assume Gumbel 

distributed random components. Where panel information is available, taste heterogeneity is 

analysed with latent class choice models which are useful for identifying specific segments of 

travellers. Both models are introduced in the methodology sections of chapters (e.g., section 

5.3) employing them. 

 

In the next two research questions (RQ2, RQ3), the impact of waiting time uncertainty is 

studied. First, route choices made under natural ambiguity are analysed as if empirical 

distributions of waiting time were available. We use the tram and bus networks of The Hague 

as a case study, combining smart card, automatic vehicle location, and general transit feed 

specification (GTFS) data of the networks. Before choice analyses can be performed, the 

following steps are required: data preparation (including transfer inference), choice set 

identification, and attribute assignment. Special attention is paid to analysing waiting time 

which is considered separately for the origin and transfer stops. Uncertainty in waiting time is 

characterised by the reduced-form approach (Börjesson et al., 2012) which divides the 

uncertainty into regular and irregular deviations from scheduled values. We then estimate 

choice models with various representations of irregular deviations and compare attribute ratios 

and model fits. Finally, model validation is performed using a k-fold procedure. 

 

Next, we propose a method to quantify travellers’ evaluation of waiting time uncertainty under 

natural ambiguity. In order to guide the scope of the analysis, first a theoretical framework of 

decision-making under uncertainty is sketched from which we focus on quantifying the effects 

of (i) travellers’ attitudes and perceptions and (ii) situational contexts. To do this, observations 

from a realistic choice situation (occurring in many real-world public transport networks) are 

used to quantify subjective uncertainty beliefs in terms of a certainty equivalent: a risk-less 



Introduction 9 

 

value for any situation with uncertain outcomes—a gamble—such that the decision-maker is 

indifferent between the risk-less value and the gamble. We employ this method in two case 

studies. 

 

For the first case study, the choice situation is contextualised for the Dutch railways within a 

stated choice experiment. The experiment is carefully designed so that respondents’ choices 

reflect their subjective beliefs regarding the real-world network and so that we are able to 

measure a potentially wide range of beliefs. The choice analysis includes estimating 

multinomial logit models, with and without the certainty equivalent term, to assess the impact 

of explicitly accounting for waiting time uncertainty (also using k-fold cross-validation for 

model fit); and a latent class choice model to capture decision-maker heterogeneity. The latent 

class choice model is followed by a posterior analysis of its class membership whereby we 

analyse the distribution of attitudinal characteristics in the three classes. 

 

The second case study analyses smart card observations (in combination with vehicle location 

and GTFS data) from Amsterdam’s tram and bus networks. Unlike the controlled experiment 

above, in this naturalistic study, observability of attributes is a key concern. Therefore, we 

define a subset of the smart card data wherein all key choice attributes are completely observed. 

Following data preparation similar to that in RQ2, choice sets are enumerated using techniques 

(e.g., topological representation, attribute assignment) comparable to those developed for RQ1 

and filtered based on design considerations analogous to the case study above. The choice 

analysis is performed with multinomial logit models which explicitly take into account 

differences not present in the controlled experiment and is also followed by a k-fold cross-

validation. 

 

Finally, for the last research question (RQ4), another online survey is conducted with travellers 

of the Dutch railways. The survey, distributed at the end of May 2020, includes a stated choice 

experiment and collects travellers’ socio-demographics, mobility choices, and (Likert scale) 

pandemic-related attitudes and opinions. In the experiment design, emphasis is placed on 

carefully communicating on-board crowding for route alternatives and contextual information 

regarding COVID-19. As we are specifically interested in the heterogeneity in traveller 

behaviour under pandemic-related uncertainties, we estimate latent classes of behaviour and 

perform a posterior analysis to derive class profiles of the collected Likert scale measures. This 

is followed by an in-depth comparison of these classes. 

5 Main contributions 

By addressing the research gaps discussed in section 2, a number of scientific contributions 

with societal relevance have been made. 

5.1 Scientific contributions 

The primary scientific contributions of this thesis are: 

 

Development of an assumption-parsimonious and transferable route choice generation 

methodology for public transport networks (chapter 2; RG1): A route choice set generation 

methodology is developed where consideration set formation is modelled as an elimination-by-

aspects process and the parameters of this model are calibrated with passively observed choices. 

The non-compensatory decision heuristic used as the model is well-aligned to the actual 
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cognitive process and requires minimal behavioural assumptions on the part of the modeller. 

The calibration results in actionable insights and the estimated parameters can be used for 

choice set identification in similar public transport systems. 

 

Analysis of the impact of waiting time uncertainty on route choices in public transport networks 

using revealed preferences (chapters 3 and 4; RG 3,): The impact of waiting time uncertainty 

on route choice is explicitly estimated in discrete choice models using observations from 

passively collected smart card data (in combination with vehicle location data, network 

topology, and schedule information). Using revealed preferences overcomes hypothetical bias 

related shortcomings of previous stated preference experiments on the impact of reliability. 

 

Suitability comparison of different statistical representations of waiting time uncertainty in 

route choice models for public transport networks (chapter 3; RG 4): Statistical summaries of 

historical values of travel times have been typically used to represent reliability in route choice 

models. Using vehicle location data and schedule information, different measures of types 

statistical range and buffer times are calculated for waiting time. Their suitability in 

representing travellers’ perceptions of the uncertainty is then assessed by using these measures 

in discrete choice models and comparing their model fits (and the face validity of other 

coefficient ratios). 

 

Development of an experimentation method to observe and analyse public transport route 

choice behaviour under natural waiting time ambiguity (chapter 4; RG 5): An experimentation 

method involving a realistic route choice situation is developed to enable quantification of 

travellers’ subjective beliefs regarding waiting time uncertainty and the impact of situational 

contexts thereon in terms of a certainty equivalent. The choice situation occurs fairly commonly 

in public transport networks, allowing us to generalize findings beyond the scope of the specific 

situation. Furthermore, the experimentation method lends itself to both controlled and natural 

route choice experiments as demonstrated in the case studies which use stated and passively 

observed choices, respectively. 

 

Analysis of the (heterogeneity in the) impact of COVID-19 transmission risk determinants on 

public transport route choice behaviour (chapter 5; RG7, 8): A choice analysis of the trade-

offs between COVID-19 transmission risk determinants, particularly, on-board crowding, 

exposure duration, and prevalent infection rate, and travel time attributes is performed. The 

analysis is conducted in the early stages of the pandemic for travellers of the Dutch railways. 

Latent classes of travellers are estimated and their crowding valuations and propensities to 

avoid public transport given a prevalent infection rate are compared. Furthermore, class profiles 

composed of socio-demographics and pandemic-related attitudes and opinions are derived. 

5.2 Societal relevance 

This thesis makes contributions that will help planners, operators, and policy-makers improve 

public transport services and make it a more attractive alternative to other modes. This is 

achieved by enabling better forecasting through improved models, offering improved 

behavioural assessment through better experimentation methods, and providing actionable 

insights arising from our case studies: 

 

Improved models: By explicitly including waiting time uncertainty and using revealed 

preference data sources, we estimate public transport route choice models with better 

performance and reduced hypothetical bias. Furthermore, explicit choice analysis of travel 
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behaviour under the new uncertainties presented by the COVID-19 pandemic has led to updated 

crowding valuations and infection rate based propensity-to-travel estimates. Planners can 

incorporate this information into demand estimation and assignment models by including the 

suggested attributes (e.g., waiting time irregular deviations, certainty equivalent) or they can 

directly use the estimated coefficient ratios (and comparisons to previous appraisals either pre-

pandemic or without the said attributes). 

 

Better experimentation methods: The proposed route choice set generation methodology 

enables experiments with revealed choices when direct identification of choice sets is not 

possible or suitable. While the method is demonstrated on a large dataset of passively observed 

choices, it can also be used for limited actively observed choices as demonstrated in Ton et al. 

(2020). Planners can use this methodology to shift towards using behavioural data sources with 

smaller hypothetical bias for their choice analyses. 

 

With the proposed experimentation method for capturing travellers’ subjective beliefs 

regarding waiting time, planners can explicitly account for uncertainty. Moreover, since waiting 

time uncertainty is critically linked to public transport travellers’ satisfaction (Abenoza et al., 

2018), the snapshots of certainty equivalents captured by this method can be used by operators 

as an indicator to analyse which situational or environmental variables cause higher uncertainty 

perception; or test within randomized experiments which measures are effective in lowering 

anxiety. 

 

Actionable insights: The models and case studies in the thesis give insights that public transport 

providers can act upon directly. The parameters of the proposed route choice set generation 

methodology give insights into which routes are not likely to be considered. This can add to the 

learnings obtained from traditional fully-compensatory models. Moreover, journey planner 

applications can use these insights to provide travellers with useful mode/route 

recommendations.  

 

Such applications can also use our analysis of waiting time uncertainty perceptions to nudge 

travellers into making choices that are more optimal for them and the network. Moreover, as 

noted above, operators can use this experiment (which can be automated when smart card data 

is used) to understand and remedy situations that generate a higher perception of uncertainty in 

travellers. 

 

Finally, while we note the rapidly changing nature of the pandemic, our study contains 

important insights about travellers’ response to COVID-19 risk determinants for policy-makers. 

The updated choice parameters can be used to re-plan supply and identified latent clusters of 

behaviour can help tailor marketing campaigns that balance bringing travellers back to public 

transport and educating them about the need for respiratory protective measures. Moreover, 

even if the choice parameters themselves become outdated they are integral in understanding 

the evolution of travel behaviour and can support proactive action in the next one. 

6 Research Context 

This thesis was part of and supported by My-TRAC (my travel companion), a European Union 

Horizon 2020 project3 with a consortium of academic, consultancy, and operator partners in the 

 
3 Support from ancilliary funding sources (Amsterdam Institute for Metropolitan Solutions, Transport Institute of 

TU Delft) and data providers (HTM, GVB) is also acknowledged. 
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Netherlands, Greece, Spain, and Portugal. The project aim was to develop a ‘[mobile] 

application for seamless transport and an ecosystem of models and algorithms for public 

transport—public transport user choice simulation, data analytics and affective computing’4. A 

substantial portion of the research in this thesis was conducted in the context of project tasks 

relating to the development of a choice modelling framework that extends the state-of-the-art 

in simulating and predicting traveller behaviour and providing recommendations to public 

transport operators. This thesis contributes to these tasks and the overall aim by (i) focussing 

on understanding (heterogeneity in) behaviour under uncertainty so that this companion 

application can assist people with making more ‘rational’ choices and (ii) developing 

methodologies that can be used to draw inferences from passively collected data that can be 

useful for operator planning. 

7 Outline 

Figure 1 shows an overview of the thesis, arranging the research contributions (chapters 2–5) 

into three parts and dividing each analysis based on the source of behavioural data. As discussed 

above, two types of behavioural data have been collected and analysed in this thesis: (i) stated 

choices and (ii) smart card observations. 

 

The first part, which consists of chapter 2, focusses on enabling the use of passively observed 

route choices for behavioural analysis. Since, such naturalistic data has no hypothetical bias, 

we are interested in using it but are obstructed by the lack of experimental control, particularly 

the inability to observe considered alternatives. Therefore, to answer RQ1, a novel choice set 

generation methodology is proposed in this chapter. The proposed methodology uses a non-

compensatory decision model—in line with theoretical models of choice set formation—and 

calibrates it using smart card data. This chapter is an edited version of the following article: 

 

Shelat, S., Cats, O., van Oort, N., van Lint, J.W.C. Calibrating Route Choice Sets for 

an Urban Public Transport Network using Smart Card Data. 6th International 

Conference on Models and Technologies for Intelligent Transportation Systems (2019). 

(chapter 2) 

 

The second part contains chapters 3 and 4 which answer RQs 2 and 3, respectively, on the 

impact of waiting time uncertainty on route choice behaviour. First, as has been done for travel 

time uncertainty in the literature, the conventional assumption that objective probabilities of 

waiting time are available to travellers is adopted. However, smart card observations are used 

for the analysis giving us important advantages over previous studies. One, the choices studied 

are made under natural ambiguity (even if they are not analysed as such), and two, model 

performance with different statistical representations of empirical waiting time distributions can 

be compared.  

 

Next, a method to assess travellers’ route choice behaviour under natural ambiguity is proposed 

so that the above assumption can be relaxed. The method can provide snapshots of travellers’ 

evaluations of waiting time uncertainty in real-world public transport systems using, both, 

stated choice experiments and passively collected smart card data. As shown in Figure 1, this 

is demonstrated with two case studies using these two sources of data, respectively. The 

 
4 http://www.my-trac.eu/about/ 
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chapters in this part of the thesis are based on edited versions of the following articles and 

conference presentation: 

 

Shelat, S., Cats, O., van Oort, N., van Lint, J.W.C. Evaluating the impact of waiting 

time reliability on route choice using smart card data. Transportmetrica A: Transport 

Science (2022). (chapter 3) 

Shelat, S., Cats, O., van Lint, J.W.C. Quantifying travellers’ evaluation of waiting time 

uncertainty in public transport networks. Travel Behaviour and Society (2021). (chapter 

4) 

Shelat, S., Dixit, M., Cats, O., van Oort, N., van Lint, J.W.C. What does smart card data 

reveal about subjective beliefs regarding waiting time uncertainty? 8th International 

Symposium on Transport Network Reliability (2021). (chapter 4) 

 

The third part, comprising of chapter 5, takes a look at travel behaviour under the new 

uncertainties brought about by the COVID-19 pandemic. To answer RQ4, stated route choice 

observations are analysed—specifically, with respect to factors affecting the risk of COVID-19 

transmission. Moreover, the heterogeneity in behaviour is explored with a posterior analysis of 

various covariates in order to understand how the variation in beliefs regarding the pandemic 

affect behaviour in public transport network. This chapter is an edited version of the following 

article: 

 

Shelat, S., Cats, O., van Cranenburgh, S. Traveller Behaviour in Public Transport in the 

Early Stages of the COVID-19 Pandemic in the Netherlands. Transportation Research 

Part A: Policy and Practice (2022). (chapter 5) 

 

Finally, in chapter 6, overall conclusions of the thesis are drawn from findings and discussions 

in the preceding chapters. This is followed by a discussion of policy recommendations and ideas 

for further research. 

 

 

 

Figure 1: Thesis outline 
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Route Choice Set Calibration 

Identifying the set of routes from which travellers choose is a crucial first step in estimation and 

application of route choice models. However, it is a typically difficult exercise when using 

passively collected data, such as from smart cards, because while chosen routes are observed, 

the ones considered are not. Approaches proposed in literature are not completely satisfactory, 

either lacking transferability or requiring strong assumptions regarding traveller behaviour.  

 

Therefore, in this chapter, we propose a novel methodology wherein a non-compensatory 

decision model—elimination-by-aspects—is applied to alternative sets that are generated by 

constrained enumeration. The decision model is calibrated using observed route choice 

behaviour from smart card data. In addition to the choice sets, the calibration also returns key 

insights regarding choice set formation. We first present the proposed methodology followed 

by a demonstration using data from The Hague as a case study. The chapter concludes with an 

outline of the contributions and results, important remarks on limitations, and notes on potential 

avenues for further research. 

 

  

This chapter is an edited version of the following article: 

Shelat, S., Cats, O., van Oort, N., van Lint, J.W.C. Calibrating Route Choice Sets for an Urban Public 

Transport Network using Smart Card Data. 6th International Conference on Models and Technologies for 

Intelligent Transportation Systems (2019). 
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1 Introduction 

There is widespread agreement in the marketing field that consumption choices occur in a two-

stage process whereby consumers first form a consideration choice set and then make the final 

choice from this set (Hauser, 2014). Choice set composition and size can affect the ultimate 

decision in a number of ways (Prato and Bekhor, 2007), with the most obvious being that the 

exclusion of an alternative from the choice set means that it cannot be selected. Identification 

of choice sets may be straightforward when the number of alternatives is limited but it becomes 

more difficult as this number increases. In these cases, correctly identifying the choice set is 

important not only for real-world application of estimated choice models but also for the 

estimation of choice models from revealed preferences where choices are observed but choice 

sets are not. 

 

Public transportation provides vital, sustainable transportation in many regions, making their 

planning, maintenance and operation a priority for authorities. In order to provide an 

appropriate level of service, understanding traveller behaviour to correctly model network flows 

has become increasingly important. Amongst other traveller decisions, route choices have a 

significant impact on network flows. Therefore, for both, estimation and application of route 

choice models, identification of route choice sets is a crucial step (Prato and Bekhor, 2007). 

 

However, identifying route choice sets for origin-destination (OD) pairs in a network is a non-

trivial task for several reasons. First, due to the combinatorial nature of the problem, the number 

of available and attractive routes is usually large. Second, public transport characteristics, such 

as fixed routes, schedules, and headways, which are usually time-dependent, add to the 

complexity of the task. Finally, the existence of different forms of travel costs, for instance, 

transferring or in-vehicle time, mean that traveller preferences have to be taken into account 

when identifying route choice sets. 

 

Given the importance and complexity of route choice set identification, several studies in 

transportation literature have either entirely focussed on or have employed some form of route 

choice set identification methodology. These methodologies can be broadly divided into: (i) 

direct identification of choice sets and (ii) choice set generation methodologies (CSGMs). 

 

Direct identification of choice sets may be based on reporting or observations of non-selected 

and selected alternatives, respectively. In the former, surveyed travellers are asked to report 

alternatives to their chosen route that they did not select but considered. This method has the 

obvious advantage that researchers do not have to guess what travellers have in their mind and 

the consideration set is known at the individual level. However, this reporting is subject to a 

number of errors (e.g., forgetfulness) and, as suggested in (Hoogendoorn-Lanser, 2005), is ‘at 

best a subset of the true choice set’. Furthermore, such interview techniques are time consuming 

and difficult to implement when choice sets are required for network-wide analysis. 

 

For network-wide identification of choice sets, observations of selected alternatives offer a 

more suitable data source. In this method, the sets of unique routes observed are assumed to be 

the choice set for the respective OD pairs. The argument is that, if such data is collected over a 

long period of time, it should include all routes considered by travellers. Practically, this is 

facilitated by the creation of large data sources as an increasing number of public transport 

services turn to automatic fare collection (AFC) technologies. As a result, several studies using 

smart card data employ this method for the identification of choice sets. However, this 

technique precludes the possibility of taking into account why some non-selected but feasible 
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routes are never chosen (Raveau, 2017). Moreover, the transferability of behaviour parameters, 

estimated with choice sets thus obtained, is precarious because matching choice set generation 

methodologies are not available for other public transport networks (Ton et al., 2018). 

 

Some drawbacks of direct identification of route choice sets can be overcome by using CSGMs. 

The aim with this approach is to develop a generic algorithm, that satisfies requirements 

associated with the purpose of the choice set (Bovy, 2009), for identification of route 

alternatives. Thus, route CSGMs are suitable for network-wide application and by nature more 

transferable than direct identification techniques. These methods are typically classified into: 

(i) deterministic and stochastic shortest path, (ii) constrained enumeration, and (iii) probabilistic 

approaches (Bovy, 2009; Prato, 2009). Below, the most important approaches are discussed and 

the comparison of their performance is reviewed (for a complete literature review see Bovy 

(2009); Prato (2009)). 

 

Shortest path-based methodologies, which compose the largest group of models, search for 

optimal routes in the network and assume them to be the route choice set. Variations are based 

on the link impedances optimized, route constraints, and other search criteria (Bovy, 2009; 

Prato, 2009). Approaches in this category that are based on either purely topological criteria or 

use only travel time have the drawback that the choice sets do not reflect traveller preferences. 

On the other hand, methods that do have some degree of behavioural sophistication, such as the 

link-labelling approach (Ben-Akiva et al., 1984), are criticised for their dependence on analyst 

judgments to make assumptions regarding traveller behaviour for the definition of objective 

functions (Bovy, 2009; Guo and Wilson, 2011; Prato, 2009). Furthermore, shortest path 

methods tend to produce more homogenous routes and are, therefore, typically unable to 

reproduce all observed routes. 

 

Unlike the above approaches, constrained enumeration methodologies are based on rules other 

than minimum cost paths. Since these methods aim to generate all possible routes between OD 

pairs whilst being constrained by some rules, they usually perform better in terms of 

reproducing observed routes than the shortest path CSGMs (Bovy, 2009). Constraints used to 

reduce the number of irrelevant routes generated may be based on logic or common sense, 

feasibility, degree of choice set heterogeneity, or behavioural preferences (Hoogendoorn-

Lanser, 2005; Prato and Bekhor, 2006). The disadvantages of this approach include the high 

computational effort required for route enumeration and the fact that, here too, the method 

depends on the definition of behavioural constraints which have been typically based on the 

expertise of analysts. Despite this drawback, in a comparison of various (uncalibrated) route 

CSGMs, a branch-and-bound based enumeration with threshold-based behavioural constraints 

performed better than other shortest path approaches on all the validation criteria considered 

(Bekhor and Prato, 2009; Prato and Bekhor, 2006). 

 

From the common disadvantages of the above approaches, it is clear that calibration of 

behavioural parameters is an important aspect of route CSGMs. Yet, while studies often 

validate their models against observed (selected) or reported (non-selected) route alternatives, 

calibration is rarely performed. A Scopus search5 for studies that perform such calibration 

returned only five relevant studies, including two studies that considered public transport modes 

(Bovy and Fiorenzo-Catalano, 2007; Hoogendoorn-Lanser et al., 2007). The latter studies use 

trial-and-error methods to calibrate their models on the basis of analyst judgments and, observed 

 
5Search term: ( TITLE-ABS-KEY ( calibr* )  AND  TITLE-ABS-KEY ( ( route  OR  path ) )  AND  TITLE-ABS-

KEY ( ( "choice set*"  OR  "consideration set*" ) ) ); Access date: 8 February 2019 
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and reported route alternatives. However, a shortcoming of these studies is that sample sizes of 

the data used are relatively small in comparison to the networks considered (which may be at 

least in part due to data collection difficulties). 

 

Given the importance of identifying route choice sets in public transport networks and the 

drawbacks of existing studies, we propose a methodology that adopts an intuitive and accepted 

behavioural model of choice set formation and includes calibration of parameters of the same 

using smart card data. The proposed CSGM takes a constrained enumeration approach similar 

to those used (and proven to perform well) in (Hoogendoorn-Lanser, 2005; Prato and Bekhor, 

2006). However, the methodology developed here avoids (almost completely) the need for any 

subjective assumptions regarding traveller preferences by delaying the application of 

behavioural constraints until after all logical and feasible routes have been generated. Instead 

of assumptions, behavioural constraints are directly obtained from AFC data, the increasing 

availability of which makes it possible to more easily collect network-wide route choice 

observations. Moreover, the constraints, which are based on a non-compensatory decision 

model, offer an intuitive insight into travellers’ choice set formation preferences (section 2). To 

demonstrate the methodology, it is applied to the urban public transport network of The Hague, 

Netherlands. 

 

In the next section, the behavioural model used for choice set formation is discussed. Section 3 

describes the choice set generation methodology which is applied to the urban public transport 

network of The Hague, Netherlands. Results are discussed in section 5 followed by a summary 

of the contributions, key insights from the case study, and potential paths for future research. 

2 Behavioural models of choice set formation 

When a large number of alternatives are involved, consumers are likely to apply heuristic 

decision rules, rather than perform a comprehensive evaluation, when forming their considered 

choice set. These choice set formation heuristics are usually more reasonable because of the 

relatively high (cognitive and explicit) costs of complete evaluations (Hauser, 2014). Therefore, 

since the number of route alternatives available in transportation networks is typically large, 

travellers can be reasonably expected to use such heuristics to identify their choice sets (Bovy, 

2009; Prato, 2009). 

 

While complete evaluations are typically compensatory in nature, heuristics involve non-

compensatory decision rules. Compensatory models take into account trade-offs between 

alternative attributes whereas non-compensatory models only apply constraints on individual 

attributes. A number of non-compensatory decision models have been proposed in literature, 

such as: (i) disjunctive, (ii) conjunctive, (ii) lexicographic, and (iv) elimination-by-aspects 

(Hawkins and Mothersbaugh, 2010). Some of these have been used in the route choice set 

generation literature. 

 

Disjunctive and conjunctive rules both set minimum thresholds for all important attributes. The 

former accepts alternatives that comply with at least one requirement while the latter needs all 

attribute thresholds to be met. Most route CSGMs that apply detour thresholds to different 

attributes (e.g., Hoogendoorn-Lanser (2005); Prato and Bekhor (2006)) are applying 

conjunctive rules. In these studies, thresholds are usually set as multiplicative factors (greater 

than one but not necessarily integers) of the attribute value of the best performing alternative 

(for that particular attribute). 
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Under lexicographic decision-making, first, attributes are ranked by importance; then 

alternatives are selected on the basis of their performance of the top-ranking attribute. In case 

of a tie, the performance on the second-best attribute is checked, and so on. Since this method 

does not set thresholds, desired choice set sizes need to be defined for their formation 

(lexicographic and conjunctive decision rules become the same if choice set size is defined for 

both) (Hauser, 2014). The link-labelling route CSGM (Ben-Akiva et al., 1984), which assumes 

that travellers optimize paths for different attributes, is an example of this category. 

 

Elimination-by-aspects (EBA) combines attribute ranking and setting of thresholds. Although 

the original version (Tversky, 1972) was proposed as a probabilistic rule, most applications for 

choice set formation use a deterministic version (Hauser, 2014). For the choice set formation, 

first the most important attribute is selected and alternatives that do not meet its threshold are 

eliminated. This is repeated until all attribute thresholds have been checked although in another 

version, elimination stops once the required choice set size has been achieved (Hauser, 2014). 

Based on the literature review conducted here, no route CSGM could be found that uses this 

behavioural model. A possible reason could be that in the absence of a calibration method, 

because this model combines ranking and setting thresholds, researchers are required to make 

more assumptions regarding traveller behaviour. 

 

This study assumes deterministic EBA as the behavioural model for route choice set formation. 

In the version employed here, no assumptions are made regarding choice set size. Deterministic 

EBA implies that the choice set for an OD pair at a given time is the same for all travellers. 

Attribute values are obtained from the general transit feed specification (GTFS) data. Therefore, 

attributes included in the process are limited to those observable in this data. 

 

The output of the methodology proposed here are route choice sets per OD pairs and time 

periods. Each alternative in the route choice set is defined uniquely by the sequence of alighting 

stations and the common lines (lines passing through the same sequence of stations) connecting 

the respective stations. Although common lines are thus accounted for, issues concerning partial 

route overlap are assumed to be handled at the next stage of choice modelling. In addition to 

the route choice sets, calibration of the choice set formation model returns two insights 

regarding traveller behaviour: (i) the importance ranking of attributes and (ii) the acceptable 

detour threshold for each attribute. 

3 Methodology 

To give structure to the complexity of route choice set identification, a hierarchy of route choice 

sets (for a given OD pair and time period) is proposed in (Bovy and Stern, 1994) and presented 

from traveller and researcher perspectives in (Hoogendoorn-Lanser, 2005). Similar to those, for 

the methodology presented here, the following hierarchy is used (Figure 2, right hand side): (i) 

complete network containing the universal set of all possible paths from origins to destinations, 

(ii) logical routes per OD pair, (iii) feasible routes per OD pair for different times (OD-T), (iv) 

considered routes per OD-T, and finally (v) chosen routes. Here, the consideration route set is 

obtained from the generated-feasible and observed route sets. The following sub-sections 

describe the steps in the proposed methodology (Figure 2, centre) that take some inputs and 

produce the desired outputs (Figure 2, left hand side), by progressively moving down the 

hierarchy. 
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Figure 2: Algorithm for proposed route choice set generation methodology 

3.1 Inputs 

Two main data sources are required for the route CSGM proposed here: (i) GTFS and (ii) AFC. 

GTFS data contains information regarding the service layer of the network and its properties. 

These define public transport lines connecting different sequences of stops in the network, the 

in-vehicle travel time (time taken by a vehicle) between OD pairs, and the frequencies (vehicle 

departures per hour) of each line. Although, a frequency-based system is assumed in this 

CSGM, line frequencies are allowed to be time-dependent. AFC data is used to generate the set 

of selected route alternatives. Ideally, for each observation, the data should contain information 

regarding the sequence of stops (i.e., origin, transfers, and destination), the lines used between 

each stop, and boarding times. It should be noted, however, that for data from nearly all AFC 

systems, at the least, transfer inference will be required. 

 

In addition to the above data sources, rules regarding which routes are logical, and which 

aspects and thresholds are considered by the calibration process are also inputs to the 

methodology. However, in the current implementation, these inputs are defined as part of the 

methodology. 
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3.2 Network representation 

Proper network representation is key to the computational efficiency of route generation. For 

the topological constrained enumeration methodology used in this study, the public transport 

network is represented in the P-space which explicitly represents the service layer: nodes are 

stops while links are (groups of) public transport lines that provide direct (transfer-less) 

connections to other stops. Although urban public transport networks may use schedules, this 

study assumes a frequency-based system. Thus, time is not included in the graph representing 

the network. 

 

Stops in the representation are defined by the ‘parent station’ field in the GTFS data. Moreover, 

different lines are grouped together as one connection in P-space if they pass through the same 

sequence of stops, that is, they are common lines. Each cell in the P-space adjacency matrix 

contains information about the connections between the origin and destination stops. For each 

connection, this information consists of the common lines and the stops they traverse (pass 

without alighting) through for this connection. 

 

Since the generation methodology also considers transfers which require walking to another 

stop, walkable links are stored as a binary adjacency matrix of all stops. To avoid generating 

too many irrelevant alternatives, a conservative threshold of 200 Euclidean metres is set as the 

maximum acceptable walking distance. 

3.3 Constrained enumeration 

Enumeration 
The enumeration methodology applied here uses a one-to-all, breadth-first search algorithm, 

similar to that used in (Shelat and Cats, 2017). The methodology is applied to the P-space graph 

representation of the network as defined above. 

 

First, a stop is selected as the origin and the vertex root of the search tree. The stops it is directly 

connected to in the P-space graph of the network become destinations; this is the first level of 

the search tree. The information contained in the connections (lines and traversed stops) are 

stored for the respective OD pairs. For the next level of the search tree, the following become 

intermediate origins: transfer stops (stops connected by more than one line) amongst the 

neighbouring stops and stops accessible by walking from the neighbouring stops. Then the stops 

directly connected to these intermediate origins become destinations and connection 

information is stored, retrospectively from the origin stop (vertex root), for the respective OD 

pairs. For the next level, intermediate origins are selected in the same way as above, and the 

process is repeated up to a desired depth of the search tree. This way, all route alternatives 

between the origin stop and others are generated and stored. The procedure can then be repeated 

with another stop as the origin. 

Constraints 
Obviously, simply enumerating this universal set of routes would be unending. To prune the 

search tree, the depth is constrained by assuming that travellers accept a maximum of two 

transfers. This behavioural assumption should be reasonable for most urban public transport 

networks. Additionally, to ensure that only logical routes are produced, two rules are used as 

breadth-wise constraints to the enumeration. (i) No loops—traversing through, alighting at, or 

walking to stops previously traversed through or boarded from is not allowed. (ii) No 
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transferring between common lines—alighting at a stop which is connected by the same set of 

lines as the previous connection is not allowed. Since travellers may want to shift time spent 

waiting for a particular line downstream, transferring to stops with a subset of the previous 

connection’s lines is permitted. In this case, this subset of lines is removed from the previous 

connection to ensure that transfers do not occur between the same lines. In the current 

implementation, it is assumed that travellers do not shift their waiting times by walking to 

another stop, hence, walking to a stop connected by a subset of the lines as the previous 

connection is not allowed. These logical constraints are only applied after the first level of the 

search tree. 

3.4 Attribute assignment 

In this step, route alternatives, that were generated from an unweighted graph, are assigned 

attribute values. This is required to remove infeasible routes as well as for the consideration set 

formation in section 3.6. 

Attribute values 
The following route attributes are observable from the GTFS data, and therefore included in the 

study: (i) waiting time, (ii) in-vehicle time, and (iii) number of transfers. Currently, the waiting 

and in-vehicle times over different legs of the route are not considered separately and only the 

total values are used. 

 

Expected waiting time for connections between two stops is calculated as the inverse of the sum 

of frequencies of the connecting lines, implicitly assuming them to be evenly spaced as well as 

assuming uniform arrivals of travellers at stops. The time-dependent nature of public transport 

line frequencies is taken into account by assigning them separately for each hour of the day in 

weekdays and weekends, respectively. Routes that become infeasible at a certain time (because 

a link has zero frequency) are eliminated from the feasible choice set for the respective time 

period. Values of the other attributes are time-independent. Although there might be small time-

dependent fluctuations in the planned in-vehicle times, they are ignored for the sake of 

computational efficiency. 

 

As discussed in section 2, the consideration set formation model employed here uses the EBA 

behavioural model, which requires setting threshold constraints to different attributes. These 

thresholds are some factors of the attribute values of the alternatives (in the same time period) 

that perform best on the respective attributes. In preparation for the calibration step, these 

factors are calculated for each attribute in all the alternatives. Since waiting and in-vehicle times 

are more continuous in nature, multiplicative factors are employed, whereas for number of 

transfers an additive factor is used. 

Dominated alternatives 
Once attribute values have been assigned, alternatives that are state-wise dominated, that is, 

perform worse on all attributes, by others (in the same time period) are removed. It is rarely 

disputed that choosing such a dominated alternative is irrational. Although the existence of 

dominated alternatives in the choice set may have a decoy effect (see (Puto et al., 1982)), such 

effects are rarely modelled in the route choice context. 
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3.5 Generated and observed routes merging 

The calibration uses generated-feasible routes as well as those observed from AFC data. This 

step merges these two route sets on the basis of the sequence of stops boarded, lines used, the 

hour of the first boarding, and the final destination stop. For the calibration, only those observed 

routes that were also generated are considered. Given that the constraints assumed during route 

enumeration are not very restrictive, discarding observations that are not generated should not 

affect the final calibration too much. In case, the overall coverage does turn out to be low, it 

may make sense to check the AFC data for issues such as improper transfer inference. 

3.6 Elimination-by-aspects calibration 

In EBA, travellers are assumed to rank and set threshold cut-offs for attributes. In order to 

deduce these preferences, the generated feasible route alternatives may be compared with the 

observed ones. For such a comparison, two indicators are commonly used in literature, albeit 

for validation purposes rather than calibration: (i) coverage—the proportion of observed routes 

that have been generated, and (ii) efficiency—the proportion of generated routes that are 

observed. 

 

With respect to calibration, clearly, the likeliest combination of choice set formation 

preferences is one that maximize both coverage and efficiency; that is, reproduces as many 

observed routes as possible while not generating too many irrelevant alternatives. Thus, to 

derive EBA preferences, an optimization problem that maximizes these indicators is setup. 

First, however, small modifications to the above indicators are proposed. 

Indicators 
In their simplest form, coverage and efficiency do not take into account demand across OD 

pairs and weigh each route alternative as the same. For example, if there is an OD pair with 

only one trip, it would still have an effect on the choice set calibration even though there is little 

behaviour to be observed. To this end, the coverage indicator is modified by simply adding 

demand weights per route. Efficiency is changed more fundamentally by making it a proportion 

of routes not observed (but in the generated feasible choice set), rather than a proportion of 

generated routes, to avoid asymmetric demand weighting in the definition. These indicators are 

defined below. 

 

Let N  be the set of stops in the network under consideration; and 
fR ij  the set of generated-

feasible routes between OD pairs , Ni j , 
oR ij  the set of observed routes therein ( )o fR   Rij ij , 

and 
cR ij  be the calibrated choice set, such that 

c fR   Rij ij , for a given combination of EBA 

preferences. Then, Table 1 gives the four possible sets (and notations) of route alternatives that 

result when comparing the observed and calibrated choice sets. Finally, let 
ijq  be the total of all 

demand on routes 
oR ij , and 

TP FN,ij ijq q  be the total demand for route sets 
TP FNR ,Rij ij , respectively. 

Then, coverage and efficiency are defined in this study as:  
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where  denotes set size. Since coverage and efficiency move in opposite directions (as one 

increases the other decreases), to achieve a balance between coverage and efficiency (in the 

absence of other requirements), the following optimization indicator is minimized for each 

attribute, a : 

 

 ( )abs coverage efficiencya a ax = −  [3] 

Algorithm 
The EBA based analysis conducted here considers only a few aspects (i.e., attributes). 

Moreover, it is reasonable to expect that the potential thresholds are close to the respective 

smallest values (i.e., 1 for waiting time and in-vehicle time ratios, and 0 for difference in number 

of transfers). Therefore, to deduce EBA preferences, a brute force algorithm may be feasibly 

employed. The algorithm to calculate indicator values for different attribute rankings (Figure 

3) works as follows: all possible attribute permutations are listed; for a given permutation, 

different thresholds from the pre-defined search space are tried to find the minimum indicator 

value for the first attribute; before repeating this for the next attribute, routes that do not comply 

with the previously found threshold(s) are eliminated; this is repeated until all attribute 

thresholds (and indicator values) for the permutation have been found; and the process is 

repeated for the next permutation. 

 

It should be noted that a key difference from other threshold based CSGMs is the sequential 

elimination of routes. Thus, for each permutation we have a number of optimization indicator 

values associated with each attribute in it. The performance of a permutation, p, is assessed by 

calculating the natural logarithm of the product of attribute optimization indicator values in that 

permutation: 

 

 
p pln a

a

x x
 

=  
 
  [4] 

 

Since the optimization indicator has to be minimized, the permutation with the lowest value is 

considered optimal. 
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Table 1: Comparison between calibrated and observed choice sets 
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Figure 3: Algorithm for elimination-by-aspects calibration 
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4 Case study analysis 

To demonstrate the above methodology and obtain attribute ordering and threshold preferences 

of travellers, the urban public transport network of The Hague, Netherlands (Figure 4) is used 

as a case study. The network consists of both tram and bus lines which mainly serve The Hague 

but also connect to the neighbouring cities of Zoetermeer and Delft. The case study uses smart 

card data from March 2015 and the corresponding GTFS data for the analysis. The network 

then consisted of 12 tram and 8 bus bidirectional lines serving a total of 459 stations (as defined 

under ‘parent stations’ in the transit feed). 

 

The AFC system on both trams and buses requires travellers to check-in and out with the OV-

chipkaart, (the national public transport smart card; for more details see (Van Oort et al., 

2015a)) every time they board and alight a vehicle; thus, potentially allowing full observation 

of chosen routes. Moreover, since, a large number of travellers in the network use smart cards 

for fare payment a significant amount of data is available for analysis. The data, made available 

by the operator, is pre-processed such that individual smart card transactions (check-ins and 

outs) are already chained to approximately 5.9 million journeys from origin to destination 

stations. Out of these, the case study, which only includes trips in weekday extended morning 

peak hours (0600h to 1100h), makes use of about 1.5 million journeys. 

 

The pre-determined journeys used in the smart card dataset have been inferred using a simplistic 

rule based on maximum transfer time (35 minutes (Yap et al., 2017)). Such inference methods 

typically lead to an overestimation of routes with more transfers and can leave seemingly 

illogical trips in the data. A full and robust (against disruptions) transfer inference algorithm as 

given in (Yap et al., 2017) can solve these issues. However, this is not done and misidentified 

journeys are directly filtered out when they do not match with the generated feasible routes. 

This seems to have a relatively low impact for the time period selected for the analysis as the 

overall coverage of the generated-feasible routes is nearly 85 percent of the observed routes. 

 

Figure 5 compares the logical, feasible, and identified route choice set size distributions. As 

one would expect, logical choice sets are typically large (median size: 58 routes). A sharp 

decline in the sizes for the feasible set (median size: 9 routes) is brought about mainly by the 

state-wise dominancy elimination rule, although some routes are also removed due to service 

unavailability in certain time periods. 

 

For the EBA calibration, three attributes, waiting time, in-vehicle time, and number of transfers, 

are considered. Based on experience and with an eye on computational efficiency, the threshold 

search space for the former two is defined between 1 and 2 with a step size of 0.025, while all 

possible values (0 to 2) are tried for the latter. Note that, if an intuition for these values is not 

available, one could simply try a larger search space. 

5 Results and discussion 

Performance of the six permutations (Figure 6) indicates a clear preference in attribute ranking. 

Similar to findings for fully compensatory route choice models in literature, people rank number 

of transfers as the most important parameter followed by waiting and in-vehicle time, 

respectively. 
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For all permutations, constraints on individual attributes are quite restrictive: for waiting and 

in-vehicle time most multiplicative thresholds lie between 1 and 1.1 (meaning that only a 10 

percent increase is acceptable), while for transfers, routes with even a single extra transfer are 

unacceptable in the choice set. These thresholds are lower than those assumed in CSGM studies 

assuming a conjunctive model for consideration set formation. For instance, for road traffic, the 

threshold used for travel time is 1.5 in (Prato and Bekhor, 2006). Moreover, because of low 

thresholds, the choice sets sizes are also small (Figure 5) with a median size of only 2 routes. 

gives the threshold values obtained for individual attributes. 

 

To assess the performance of the calibration the overall coverage of the EBA model can be 

calculated as the product of the coverage values obtained sequentially for each attribute (Table 

2). The overall coverage for this case study is 63.9% which on its own is a somewhat moderate 

performance, but one that may be expected because, in an effort to be more transferable, the 

model trades-off coverage for an increase in efficiency. 

 

 

Figure 4: The Hague tram (orange) and bus (gray) networks in March 2015 

 

 

Figure 5: Comparison of choice set size distributions (normalized) of logical, feasible, 

and identified route choice sets (top- and right- censored for better focus) 
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Figure 6: Performance for different attribute rankings (Num-T: number of transfers, 

WT: waiting time, IVT: in-vehicle time) (lower is better) 

Table 2: Optimal attribute ranking and thresholds 

Rank Attribute Thresholda Sequential Coverage 

1 Number of transfers 0 99.3% 

2 Waiting time 1.1 82.0% 

3 In-vehicle time 1.1 78.4% 
aThreshold accuracy for waiting and in-vehicle time = 0.025 

 

Figure 7 takes a deeper look into the values of individual thresholds for the optimal permutation. 

It can be seen that for the first attribute—number of transfers—at 99.3 percent, coverage is 

already extremely high with no extra transfers; a clear reflection of travellers’ dislike for 

transferring. Thus, any increase in the transfer threshold only decreases efficiency thereby 

increasing the indicator value. For waiting time too, the initial coverage is quite high, meaning 

that improvements in coverage tend to be quite slow. Accepting twice the least possible waiting 

time only increases coverage from 79.9 to 93.3 percent. On the other hand, efficiency quickly 

decreases by approximately 40 percentage points. Although the initial slope for coverage is 

slightly higher than efficiency, the overall change in the latter is higher for in-vehicle time too. 

The fact that the initial value of coverage is more moderated for this attribute could be because 

the values are calculated after the feasible choice set has been filtered based on the thresholds 

of the previous two attributes. Finally, it should be noted that for all three attributes, the optimal 

indicator values are unambiguous. 

 

A possible explanation for the restrictive constraints may be a combination of the following 

statistical observations and hypothesis. The statistical observations are (Figure 8) (i) OD pairs 

with a high demand tend to be nearby (in terms of in-vehicle time) and (ii) OD pairs that are 

farther away tend to have more feasible routes generated by the CSGM. The hypothesis is that 

(iii) travellers are either able to evaluate alternatives better or have a lower threshold acceptance 

for OD pairs that are nearby. From statistical observation (i), the hypothesis in (iii), and the 

definition given in Equation [1], it can be seen why the coverage values are already quite high 

at low thresholds. This increase in coverage is mainly due to the highly used routes between 

OD pairs that are close to one another. On the other hand, statistical observation (ii) and the 
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definition in Equation [2] explain why non-selected alternatives from farther away OD pairs 

might play a larger role in the value of efficiency. This potential disconnect might cause a 

decrease in efficiency that is not sufficiently balanced by the increase in coverage, leading to 

smaller thresholds. The larger slopes of efficiency in comparison to coverage (Figure 7) seem 

to indicate that this is indeed the case here. 

6 Conclusion 

Route choice set identification for public transport networks is a vital but complicated task. 

Identifying the correct route choice sets are crucial for both, estimation and application, of route 

choice models. However, approaches developed and commonly employed in literature either 

lack transferability (observation-driven methods) or require strong assumptions regarding 

traveller behaviour (uncalibrated CSGMs). 

 

Given this key scientific gap, and the context of increasing availability of smart card data for 

public transport networks, this research makes two crucial contributions. First, a choice set 

generation methodology is proposed which uses elimination-by-aspects as the consideration set 

formation model. This model adds more behavioural dimensions over those used previously by 

taking into account attribute ranking as well as threshold constraints. Second, rather than 

making subjective assumptions regarding traveller preferences, the elimination-by-aspects 

model is calibrated using revealed behaviour observations from smart card data. The proposed 

methodology can be used to identify choice sets for estimating route choice models from 

revealed preferences as well as to predict alternative shares on the basis of available choice 

parameters. 

 

Application of the proposed methodology to the urban public transport network of The Hague 

revealed that the number of transfers is the most important attribute for travellers, followed by 

waiting time, and in-vehicle time. Furthermore, the thresholds obtained for individual attributes 

are quite restrictive indicating that travellers make more optimal choices than previously 

assumed. Although the overall coverage for the EBA model is on the lower side, it makes up 

for this by being a more transferable model rather than a network-specific one. While coverage 

and efficiency are weighted equally here, one may want to tune this trade-off. For instance, Ton 

et al. (2020) assign a higher weight to coverage because they had a relatively small number of 

observations for their choice model. The ideal trade-off can also be learnt by jointly evaluating 

the CSGM with the performance of the subsequent choice model. 

 

An important limitation in the current implementation of the model is the assumption that the 

public transport services are frequency-based. Based on this, waiting times are calculated from 

the headways of individual lines under the assumption of evenly spaced arrivals of public 

transport lines and uniformly distributed traveller arrivals at stops. These assumptions may not 

hold outside rush hours or for non-urban networks where line frequencies are often lower, or 

when lines are explicitly synchronised to reduce transfer waiting time. To overcome issues 

arising from the assumption of a frequency-based system, future implementations may consider 

using the following: (i) a schedule-based network which includes time in its representation and 

(ii) more complex traveller arrival models. Further improvements to the model could include 

taking into account that travellers behave differently for OD pairs that are relatively near, as 

hypothesised in the discussion of the case study results. Finally, future research could focus on 

using the calibration procedure proposed here, for the comparison of different behavioural 

models of route choice set formation. 
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Figure 7: Coverage (C), efficiency (E), and optimization indicator (I) values (y-axes) by 

threshold values (x-axis) of different attributes for the optimal permutation 

 

 

 

Figure 8: Comparison between the number of generated-feasible routes, number of 

observed routes and average in-vehicle times (in seconds) per origin, destination, and 

time period (x-axis right-censored for better focus) 
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Empirical Waiting Time Uncertainty 

The effect of travel time reliability on route choice behaviour has been studied extensively—

typically as the impact of an objective representation of uncertainty on hypothetical choices. In 

this chapter, we overcome disadvantages that are inherent to stated choice experiments, such as 

hypothetical bias and difficulty in uncertainty presentation, by using revealed preferences from 

smart card data. We analyse the effect of waiting time uncertainty as regular and irregular 

deviations from scheduled values. Since passively collected data is used, we are also able to 

examine a number of statistical indicators for the latter.  

 

Using data from The Hague, first choice sets suitable to analyse the effect of waiting time 

uncertainty are obtained. (We do not employ the methodology proposed in the previous chapter 

but adopt one that is more commonly used.) Next, we assign attributes to the choices and 

inspect, in particular, a range of indicators for irregular waiting time deviations. Multinomial 

logit choice models for morning peak and off-peak hours, with and without reliability 

coefficients are estimated and validated, followed by a detailed discussion of the estimated 

models. Finally, we conclude with a summary of our contributions, main results, and a 

discussion on the limitations of the analysis. 

  

This chapter is an edited version of the following article: 

Shelat, S., Cats, O., van Oort, N., van Lint, J.W.C. Evaluating the impact of waiting time reliability on route 

choice using smart card data. Transportmetrica A: Transport Science (2022). 
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1 Introduction 

The impact of travel time reliability on route choice behaviour has received much attention in 

literature. The vast majority of studies have used stated preferences collected through surveys 

or simulation experiments (Carrion and Levinson, 2012; Li et al., 2010). Due to the costs 

associated with data collection, only a few have analysed revealed preferences and almost all 

of these have focussed on car traffic. Fortunately, however, an increasing number of public 

transport networks are integrated with automatic fare collection (AFC) systems, which enable 

analysts to glean revealed preferences from this passively collected data. Moreover, automatic 

vehicle location (AVL) data, provides detailed information on the realised supply 

characteristics (e.g., travel time, waiting time) of public transport services. In this chapter, we 

combine the revealed preferences from AFC data with reliability information derived from 

AVL data to establish the role of waiting time reliability in public transport route choice.  

 

Passively collecting revealed preferences offers two important advantages over simulation 

experiments and conventional stated preferences. First, and most importantly, revealed 

preferences are free from hypothetical biases that are prevalent in the other methods since 

observed choices have consequences and are made in real-world situations. Second, passively 

collecting revealed preferences obviates the need to explicitly convey reliability information, 

which has proven to be difficult (Bates et al., 2001; Carrion and Levinson, 2012). Furthermore, 

unlike revealed preference questionnaires that enquire about past behaviour, passive data 

collection allows us to gather significantly more observations. However, since revealed 

preferences inherently lack experimental control, the amount of information obtained per 

observation is likely to be significantly lower than stated preferences or simulation experiments. 

The lack of experimental control could also lead to issues in determining the direction of 

causality. Privacy regulations may also restrict the amount and type of data that can be used for 

analysis. Finally, passively collected data typically require significant processing effort and 

require assumptions regarding attributes that cannot be observed (e.g., Lam and Small (2001); 

Luo et al. (2018)). 

 

While more complete reviews of studies analysing the effect of travel time reliability on travel 

behaviour are available elsewhere (Carrion and Levinson, 2012; Li et al., 2010), here, we briefly 

outline those using passively collected data for their analysis. For car traffic, such studies have 

largely made use of road-pricing experiments in the United States (Alemazkoor et al., 2015; 

Carrion and Levinson, 2013; Lam and Small, 2001). This setting offers researchers a unique 

opportunity to observe choices between a free but (potentially) congested road and a tolled but 

(almost certainly) uncongested road, and thus, estimate the value of reliability. Travel times and 

choices are obtained via loop detectors or GPS devices and toll transponders, respectively. In 

recent years, with the introduction of AFC systems, researchers have used this passively 

collected data to analyse travel behaviour in public transport systems, often in combination with 

AVL data. Amongst these studies, for many, general route choice behaviour is the primary aim 

of the analysis (e.g., Jánošíková et al. (2014); Kim et al. (2019)). Other studies focus on specific 

aspects such as, on-board crowding (Hörcher et al., 2017; Yap et al., 2018), transfer 

inconveniences (Guo and Wilson, 2011), route choice variability (Kim et al., 2017b; Kurauchi 

et al., 2014), or strategic behaviour (Nassir et al., 2018; Schmöcker et al., 2013). To the best of 

our knowledge, only Leahy et al. (2016) have used such data to analyse the impact of travel 

time reliability on route choice behaviour in public transport networks. Our study is different 

from theirs in two important ways: (i) whereas they evaluate the role of the total trip travel time 

reliability we focus on and are able to specifically estimate perceptions related to waiting time 
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reliability; and (ii) they use a sample of AFC transactions over the time period under study 

while we have access to the full population dataset. 

 

In general for the service industry, waiting time is a critical component of satisfaction (Maister, 

1985). For public transportation too, it has been consistently shown that waiting time has a large 

impact on behaviour. Unreliability in this important component of travel time may lead to 

frustration and anxiety amongst travellers. We note that unreliability is inherently an uncertain 

(Knight, 1921) attribute—the true distribution of waiting times is unknown to the travellers. 

Instead, travellers may have their own subjective distributions (Dixit et al., 2019; Meng et al., 

2018) that they use to make decisions. However, in line with the majority of previous research 

on this topic (Carrion and Levinson, 2012), we model waiting time unreliability as if it were a 

known risk. We compare a number of empirical measures of unreliability in our choice analysis. 

Furthermore, the effects of waiting time unreliability are modelled separately for origin and 

transfer stations, for different public transport modes, and for morning peak and off-peak hours. 

 

Next, we briefly present our case study: the urban public transport network of The Hague, 

followed by the methodology outlining data preparation, choice set identification, attribute 

extraction, and finally choice analysis. We then discuss the estimated choice models and 

conclude with a summary of the main results and suggest avenues for future work. 

2 Case study 

For our analysis, we use smart card data from the urban public transport system in The Hague, 

the third largest city in the Netherlands. The network contains 12 tram and 8 bus lines 

connecting 499 aggregated stops (operator-defined ‘parent stations’ in the GTFS data) in The 

Hague and neighbouring suburbs and towns (Figure 9). About 90% (Yap et al., 2018) of the 

trips in the network are paid for through a smart card based AFC system which requires 

travellers paying with the smart card to interact with the system (i.e., check-in and check-out) 

upon boarding and alighting a vehicle. Travellers in the network can check scheduled departure 

times at all tram and bus stops, at most of which, real-time information is also available. For 

those using mobile internet, real-time information for the entire network is always available. 

 

The urban public transport operator in The Hague, HTM, provided us with processed and 

anonymised AFC and AVL data from March 2015. The provided AFC data consists of journeys 

constructed by linking individual AFC transactions using a time-based transfer inference 

method wherein a trip with the same smart card identifier is included in the same journey as the 

previous trip if the boarding time of the second trip is within 35 minutes of the alighting time 

of the first. Since the data we received does not contain these unique identifiers, we are unable 

to follow individual cards across different journeys. Furthermore, since no information about 

the type of card or discounts applied is available, segmentation based on such variables is not 

possible. 

 

The data consists of about 5.9 million inferred journeys and information on boarding and 

alighting time, stop, and line for each trip in every journey is available. In this study, we analyse 

and contrast route choice behaviour in weekday morning peak (06:00–09:00) and off-peak 

(09:00–16:00) hours. After filtering the datasets accordingly and applying the transfer inference 

procedure (described next), we are left with 1.02 million and 2.63 million journeys for the 

morning peak and off-peak hours, respectively. 
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Figure 9: The Hague tram (orange) and bus (gray) networks in March 2015 

3 Methodology 

3.1 Data Preparation 

Three data sources are used: (i) automatic fare collection, (ii) automatic vehicle location, and 

(iii) general transit feed specification (GTFS) data. While AFC data is the source for 

behavioural observations, the latter two, being data on the realized and scheduled operations, 

respectively, provide information on travel time characteristics including waiting time 

reliability.  

 

To analyse route choice behaviour, complete journeys—as sequences of trips (i.e., rides on a 

single vehicle) without intervening trip-generating activities—have to be known. Although, the 

AFC data provided by the operator already consists of journeys, these are inferred by a time-

based algorithms which tend to over-estimate the number of transfers (Yap et al., 2017). The 

time-based algorithm considers two trips to be part of the same journey if the time between the 

last check-out and next check-in is less than 35 minutes. Thus, trip-generating activities of 

shorter duration are ignored, leading to an overestimation of the number of transfers. This is 

particularly true for an urban public transport system where services have a relatively higher 

frequency and transfer times are rarely greater than the threshold. Therefore, we apply our own 

transfer inference algorithm to each journey to check whether the trips linked together by the 

operator indeed constitute one journey. For this, the AFC and AVL datasets were merged using 

the technique detailed in Luo et al. (2018). 

 

The transfer inference algorithm is composed of one spatial and one temporal rule. The spatial 

rule ensures that the alighting stop of one trip and the boarding stop of the next are within 400 

Euclidean metres (Yap et al., 2017) of one another. This places an upper bound on the distance 
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travellers will walk to transfer. The temporal rule checks whether, after alighting, the first 

plausible service (or an earlier one) of the line used in the next trip is boarded. When this is the 

case, it is unlikely that a traveller will have performed an intermediate trip-generating activity. 

If the boarding stop is the same as the alighting stop of the previous trip, then the first plausible 

service is the same as the first service. That is, if the alighting and boarding stops for two 

consecutive trips are the same, then the first plausible service is the first vehicle of the line 

(actually) used in the second trip to arrive at the stop after the traveller has alighted. If the two 

stops are different, then it is the first service (of the line used in the next trip) after adding the 

time required by most people to walk between the two stations. For this, Euclidean distances 

and a walking speed of 0.66 m/s (Hänseler et al., 2016) are used. A slower walking speed is 

used to ensure that the first plausible service is feasible for the majority (in this case 97.5%) of 

the population. Note that since it is rare for vehicles in the network to be too crowded for 

passengers to board, we do not account for the possibility that a traveller does not board the 

first plausible vehicle due to overcrowding. As an example, to understand how the transfer 

inference algorithm works, consider an operator-inferred journey where a traveller goes from 

stop A to D, first taking line 1 from A to B, then walking from B to C, and finally taking line 2 

from C to D. The traveller alights line 1 at 10:03 and boards line 2 at 10:20. Line 2 departs from 

C every 10 minutes (i.e., at 10:00, 10:10, 10:20, etc.) and the distance between stops B and C 

is 200m. The transfer thus passes the spatial rule as the distance is less than the threshold of 

400m. Based on the assumed walking speed of 0.66m/s, the traveller should have arrived at 

stop C by about 10:05. Thus, the first plausible service of line 2 at stop C is the one at 10:10. 

Since the traveller instead boarded the service departing at 10:20, it fails the temporal rule and 

the two trips (A to B and C to D) are separated to two journeys. 

 

Journeys containing transfer between the same lines (about 0.47% of the data) are not removed 

as long as they pass the above temporal criterion. This is done to accommodate travellers 

affected by planned and unplanned short-turning, stop-skipping or dead-heading. To avoid 

considering such routes as different alternatives, wherever the temporal criterion is passed for 

such transfers, the trips involved are merged into one (thus removing the extra transfer to the 

same line). 

 

Applying this transfer inference algorithm reduces the number of journeys with at least one 

transfer from 18.8% of all journeys in the dataset provided by the operator to 10.8%. Journeys 

with more than one transfer make up about 0.5% of the total. 

3.2 Choice Set Identification 

A number of choice set generation methodologies have been proposed in literature. These 

approaches typically either require enumerating shortest paths or relying on a variety of 

behavioural assumptions (see Bovy (2009); Prato (2009) for an overview). However, studies 

analysing travel behaviour using AFC data have typically identified the route choice set for 

each origin-destination (OD) pair directly from the set of observed routes (Kim et al., 2019; 

Leahy et al., 2016; Yap et al., 2018). A potential disadvantage of this method is that we do not 

include in our analysis routes that are feasible but are only used for a few trips or not at all. 

However, since the data used for this study covers the entire network and covers a reasonably 

long period of time, this disadvantage is fairly low and the direct identification method is also 

suitable for our analysis. 

 

The following filtering rules are applied to identify OD pairs (and associated route alternatives) 

for choice analysis: (i) each OD pair must have at least 2 route alternatives, (ii) each OD pair 
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must have at least 200 trips between them, and (iii) each route alternative must make up at least 

10% of the observations of its OD pair. While the first rule ensures that we are able to observe 

trade-offs between alternatives, the lower limits on the number of observations ensure that there 

is sufficient information to estimate behavioural parameters as well as to eliminate unusual 

observations that do not take place regularly. The set of eligible OD pairs is filtered iteratively 

using these rules until a stable set is obtained. 

 

For the choice analysis, routes have to be uniquely defined such that travellers can be reasonably 

expected to perceive one route to be different from another. To this end, route alternatives are 

defined by the sequence of modes used and the boarding, intermediate and alighting stops. We 

consider lines (of the same mode) along a common corridor (i.e., traversing the same sequence 

of stops) to be perceived equivalently by travellers. Moreover, routes that have different transfer 

stops but are otherwise similar are distinguished as separate alternatives. This is to account for 

the fact that different stops may be associated with different waiting time reliability 

characteristics due to various reasons, such as planned transfer coordination.  

 

Given these filtering rules, for the morning peak, we are left with 39 OD pairs and 30,606 

inferred journeys suitable for choice analysis while for the off-peak, we have 105 OD pairs and 

85,952 inferred journeys. As shown in Figure 10, most OD pairs in both time periods have only 

2 alternatives. 

3.3 Choice Attributes 

Once all eligible OD pairs and associated choice sets are obtained, attribute values for the 

alternatives are assigned. The following attributes are used for the choice analysis: for each leg 

of the route, its (i) mode, (ii) in-vehicle time, and (iii) waiting time (and its components: 

scheduled waiting time, and regular and irregular deviations), and for the route alternative as a 

whole, its (iv) path size factor (indicating degree of overlap with other alternatives) and the (v) 

number of transfers. Attributes (i) and (v)—mode used in each leg and number of transfers—

are directly known from the route definition. Travel time attributes are aggregated over each 

hour per day of the week (e.g., Mondays, 0900h–1000h) to account for the fact that travel time 

attributes may vary over time. Unfortunately, the data available does not include fare (or 

discount) information. However, for alternatives of a given OD pair, the price difference is 

typically in the order of cents. Moreover, paying by smart card may make it even more difficult 

for passengers to internalize costs. Having said that, we acknowledge that any fare effects will 

instead show up in the coefficients of other attributes, particularly, in-vehicle time, number of 

transfers, and mode, which are associated with price differences. We describe each choice 

attribute and its calculation below. 

Modes and Number of Transfers 
The mode used (denoted by m in Equation [7]) helps to understand how travel time components 

are weighed for different modes by travellers while the number of transfers (ntrans) is used to 

evaluate the transfer penalty, that is, the additional disutility beyond the transfer waiting time. 

Amongst the journeys eligible for choice analysis, all have a maximum of one transfer although 

the vast majority of observations are direct tram trips. Barring two OD pairs in the off-peak 

hours, whenever a bus-based option is available, it competes against a tram alternative. 

However, the overall proportion of observations where the choice between bus and tram is 

observed is also quite low: only 5 (5.12% of observations) and 11 (9.86% of observations) such 

OD pairs are available in the peak and off-peak hours, respectively. This may be expected given 
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the different functions the two networks perform in a wheel & spoke-like network where the 

tram lines radiate out of the centre and the bus lines provide peripheral connections. 

In-vehicle Time 

Since the focus here is on waiting time reliability, only scheduled in-vehicle times ( ivt

mt ) are used 

in the analysis. In-vehicle times are separately calculated for each stop pair and line 

combination by taking the mean of the scheduled values over the aggregation period. For 

common corridors, the in-vehicle times are assigned by taking the median of the in-vehicle 

times of the individual lines in the corridors. 

Waiting Time 
We use the reduced-form approach to include reliability effects in the route choice model. This 

method directly introduces statistical measures of travel times in the utility function (Börjesson 

et al., 2012). Usually, centrality and dispersion of realised travel times are used (Alemazkoor 

et al., 2015; Carrion and Levinson, 2012) with the aim of estimating how expectations of travel 

times (centrality measures such as mean or median) are traded-off against dispersion parameters 

(such as standard deviation or skew). However, unlike road traffic, since schedules exist for 

public transport networks, they may loom large in the decision process. Therefore, based on 

van Oort et al. (2015b) and van Oort (2016), we consider the following waiting time 

components to quantify the effect of reliability on route choice behaviour: (i) scheduled waiting 

time ( wt

0,mt ); and (ii) regular deviations ( wt

d,mt ) and (iii) irregular deviations ( wt

r,mt ; where r is 

replaced by the indicator name) of the realised waiting times from the schedule. 

 

Regular deviations are calculated as the difference between the median of realised and 

scheduled values. For irregular deviations, a few studies on road traffic have compared 

indicators (Alemazkoor et al., 2015; Bogers et al., 2008; Bogers et al., 2006) but there is little 

consensus regarding which dispersion measures best represent the perception of travel time 

unreliability. van Lint et al. (2008) categorize these measures into (i) statistical ranges, (ii) 

buffer times, (iii) tardy trip measures, and (iv) probabilistic measures. The first two categories 

are commonly included in travel behaviour studies: statistical ranges (for instance, variance or 

standard deviation) measure the variation around the central value while buffer times indicate 

the extent of worse case scenarios, usually through the difference between the 90th or 95th 

percentile travel time and the median. In our analysis, we tested absolute and normalized 

formulations of these two commonly used dispersion measures (Table 3) to evaluate which 

representations best explain observed behaviour. 

 

The effects of waiting times at origin (
owtt ) and transfer (

twtt ) stops are considered separately. 

We assume that travellers arrive uniformly at origin stops and subsequently consider half of the 

headway time (of relevant lines) as the origin waiting time. Previous studies have found that 

for headways up to 10–12 minutes, passengers tend to indeed arrive randomly (Ansari Esfeh et 

al., 2020; Fan and Machemehl, 2009; van Oort, 2011). Figure 11, top-left shows the distribution 

of calculated waiting times at origin (the headways are double these values). It can be seen that 

although our assumption is reasonable for most alternatives, for some, the headways are slightly 

higher. For these, we may be considering a slightly higher waiting time than reality as we can 

expect travellers to begin coordinating their arrivals to departure times (or be ‘less random’ Fan 

and Machemehl (2009)). Furthermore, we assume that travellers take the first vehicle available 

to them since denied boarding is rare in The Hague (Yap et al., 2018). Transfer waiting times, 

on the other hand, can be fully observed as the time between departures of the lines used to and 



38 Route Choice Behaviour under Uncertainty in Public Transport Networks 

 

from the transfer stop. However, for alternatives with common corridors, the expected transfer 

waiting time also depends on the lines used from the previous stop; and therefore ultimately on 

the assumptions made regarding traveller arrivals at the origin. For example, to obtain the 

waiting time at the first transfer stop, the proportion of travellers using each line at the origin 

stop (under given assumptions) is used to weight the feasible transfer times between the lines 

from the origin to the transfer stop and from the transfer stop onward. 

 

Figure 11 shows the distribution of scheduled waiting times, and regular and irregular 

deviations for the route alternatives eligible for analysis. (Since it is ultimately selected for the 

choice models in section 4, only standard deviation is shown here.) While the origin waiting 

times are generally low, transfer waiting times show a stark difference between the two time 

periods. Lower transfer waiting times in the peak hours may be a result of increased transfer 

coordination by the operator. Characteristic of urban public transport networks, regular 

deviations are distributed around zero. Most values fall within a narrow deviation of 0.5 minutes 

for both time periods, indicating a fairly reliable service on average—although again a wider 

spread can be observed in the off-peak hours at transfer stops. On average, irregular deviations 

seem to be slightly higher in the peak hours presumably due to disturbances caused by the 

higher number of travellers on the public transport network and heavier road traffic. 

 

High correlation between regular and irregular deviation indicators may affect choice analysis. 

Unlike dispersion indicators calculated for total travel times (for example in (Alemazkoor et 

al., 2015; Lam and Small, 2001)), a small negative correlation (0 to -0.3) is found between 

absolute values and median scheduled waiting times. Naturally, therefore, when the indicators 

are normalized with the median value, the magnitude of negative correlation is stronger (-0.5 

to -0.8). For routes that include transfers, the variability of waiting times at transfer stops may 

depend on that for the origin stops (which is essentially the variation in headways) (Bates et al., 

2001). For eligible routes in our analysis, we find only a small positive correlation (0 to 0.2) in 

the peak hours, while in the off-peak hours dispersion indicators for the origin and transfer stops 

of a route appear to be unrelated.  

Path Size Factor 
In order to account for overlap between the available alternatives, the path size factor for each 

route is calculated. We define the degree of overlap as the number of links shared with other 

alternatives and use the simplest form of the path size factor (Hoogendoorn-Lanser et al., 2005). 

Specifically, if route k of an OD pair traverses over links l∈Lk, and the number of alternatives 

using link l is nl, then the route’s path size factor, pk, is given by Equation [5] (|Lk | indicates the 

number of links in Lk). The path size factor lies between 0 and 1, with higher values 

corresponding to lesser overlap. As described in the following sub-section, the natural logarithm 

of the path size factor enters the systematic utility under multinomial logit. 
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Figure 10: Choice set size distribution for the morning peak and off-peak hours 

Table 3: Waiting time dispersion measures considered 

Category Statistical measure Formula 

Statistical range 

Standard deviation 
2( μ)

N

ix −
  

Normalized variance (van Lint et al., 2008) 
90 10

50

p p

p

−

 

Buffer times 

Reliability buffer time 95 50p p−
 

Reliability buffer index 
95 50

50

p p

p

−

 

Normalized skew (van Lint et al., 2008) 
90 50

50 10

p p

p p

−

−
 

For a given time period aggregate (hour-day of week), xi is the ith realised value, µ is the mean of realised 

values, N is the number of realisations, pm is the mth percentile of the realised values 

 

   

   

Figure 11: Scheduled, regular deviations, and irregular deviations for origin and 

transfer waiting times of route alternatives in the choice analysis (in minutes) 
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3.4 Choice Analysis 

The effect of waiting time reliability on route choice behaviour is assessed under the 

conventional random utility maximisation (RUM) paradigm. Since the data provided does not 

contain individual identifiers, we treat each observation as independent (although in reality 

choices made by the same person may be correlated) and employ multinomial logit (MNL) 

models. Within the RUM paradigm, the utility of an alternative a, Ua, is composed of systematic 

(Va) and random (ε) components. The systematic part is the product of the vector of taste 

preferences (β) and the vector of alternative attributes (xa). The MNL model assumes that the 

random components are i.i.d. Gumbel distributed, which gives the probability of choosing 

alternative i from I alternatives as the following: 
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In the most generic form of the model, all attributes associated with separate legs of the route 

are mode-specific as shown in Equation [7] (symbol descriptions can be found in section 3.3). 

To examine the impact of including reliability parameters, we estimate one set of models with 

only planned values and another which also incorporates parameters for regular and irregular 

deviations. We also estimated models with quadratic terms for in-vehicle times and interaction 

effects between irregular deviations and in-vehicle times but this resulted in less generalizable 

models; that is, for values outside of the ranges observed here, the effects would be in the wrong 

direction. The effect of transfer distances was excluded because of the relatively small 

magnitude. Choice model parameters are estimated using PandasBiogeme (Bierlaire, 2018). 
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We also separately validate the off-peak hour models (with and without reliability parameters), 

using a k-fold procedure where each fold is assigned observations from a unique OD pair. In 

one iteration of this procedure, we keep the observations of an OD pair as the test dataset; 

estimate the choice model using observations from the remaining OD pairs; and calculate the 

likelihood that this estimated model predicts the test data. This is then repeated until all OD 

pairs have been kept as the test dataset. After all iterations have been completed for a particular 

model, all prediction likelihoods are aggregated by taking their product. The two models can 

then be compared using the likelihood ratio test. 

4 Results and Discussion 

Table 4 shows the estimated route choice models, with and without reliability parameters for 

morning peak and off-peak hours. Estimated coefficients are scaled relative to that for in-

vehicle times in trams to easily compare models. To arrive at the final models, statistically 

insignificant (p > 0.1) coefficients are removed (i.e., fixed to zero) one-by-one followed by re-
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estimation until all coefficients retained in the model are significant (p ≤ 0.1). Other exceptional 

conditions for keeping or removing parameters are discussed below.  

 

Most parameters are statistically significant although, given the relatively low number of trips 

with transfers to buses, mode-specific coefficients for transfer waiting times were difficult to 

estimate with sufficient confidence. As discussed previously, we tried different irregular 

deviation measures in the choice models with reliability parameters. Likelihood ratio tests 

confirmed that in both time periods, all dispersion measures led to a better fit than models with 

only scheduled travel times (p < 0.001). For each time period, (with the exception of normalized 

variance in peak hours) fairly similar model fits were found and values for transfer penalties 

and waiting-to-in-vehicle time ratios were comparable. Using both indicator types (statistical 

range and buffer times) together, did not improve the model significantly and led to 

counterintuitive results.  

 

Other revealed preference studies have also reported similar results. In their analyses of choices 

between a free and tolled route, Lam and Small (2001) find that reliability buffer time and 

standard deviation perform almost the same in terms of model fit while Carrion and Levinson 

(2013) find that using the mean and standard deviation gives the best fit followed closely by 

the combination of  median and reliability buffer time. The fact that we find comparable models 

with different indicators may be because, similar to the abovementioned studies, in each time 

period the indicator types are generally highly correlated. Ultimately, we choose to present 

results with standard deviation as the dispersion indicator in both time periods. As noted below, 

the coefficients for the off-peak hours seem more in line with expectations; therefore, we choose 

the indicators that fit best for that time period. Since standard deviation is also most commonly 

used to calculate reliability ratios in literature, using this indicator also enables comparison. In 

the following, unless noted otherwise, we discuss parameters of the models with reliability 

parameters. 

Unexpected effect of irregular deviations in peak hours 
Some coefficients for origin waiting time in peak hours are unexpected. The scheduled waiting 

to in-vehicle ratio (in the model with reliability parameters) at the origin for trams is 0.81, 

indicating that travellers value in-vehicle time more than waiting time, while the opposite effect 

has been typically found. We also confirmed (by means of a t-test) that the two parameters are 

indeed different with a statistical confidence of >99%. Furthermore, irregular deviations—both 

statistical ranges and buffer times as indicators—are found to have a positive effect. Leahy et 

al. (2016), who analyse smart card data from London, also find higher travel time standard 

deviation to have a positive effect on the utility of one of the mode combinations studied and 

suggest that this is indicative of risk-seeking behaviour. We, however, submit that this anomaly 

in our results may have arisen because crowding and dispersion measures are correlated in the 

long run. That is, as more travellers choose a particular line it becomes more unreliable because 

of delays due to greater boarding and alighting times. If in reality unreliability has a small effect 

on travellers’ choices, the estimation procedure would find that travellers tend to choose the 

unreliable alternative because of this underlying long-run relationship. This phenomenon would 

be particularly in effect in peak hours because concentrated demand then would lead to higher 

crowding which causes the unreliability. 
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Table 4: Estimation results 

  Peak Hours (06:00-09:00) Off-peak Hours (09:00-16:00) 

  Scheduled values only With reliability param. Scheduled values only With reliability param. 

 Initial LL -22420.31 -22420.32 -62909.21 -62909.21 

 Final LL -20964.06 -20938.99 -57663.89 -57544.00 

 Parameter Coeff. p-val Scaled Coeff. p-val Scaled Coeff. p-val Scaled Coeff. p-val Scaled 

Number of transfers 
trans  -1.960 0.000 10.103 -1.520 0.000 7.958 -2.420 0.000 14.405 -2.060 0.000 12.118 

Path size factor 
ps  0.373 0.004 -1.923 0.234 0.076 -1.225 -0.208 0.017 1.238 -0.117 0.183 0.688 

Scheduled in-vehicle times 

ivt

0,bus
 

-0.086 0.004 0.445 -0.079 0.016 0.414 -0.186 0.000 1.107 -0.184 0.000 1.082 

ivt

0,tram
 

-0.194 0.000 1 -0.191 0.000 1 -0.168 0.000 1 -0.170 0.000 1 

Scheduled waiting times 

owt

0,bus
 

-0.338 0.000 1.742 -0.337 0.000 1.764 -0.281 0.000 1.673 -0.287 0.000 1.688 

owt

0,tram
 

-0.167 0.000 0.861 -0.155 0.000 0.812 -0.204 0.000 1.214 -0.262 0.000 1.541 

twt

0,bus
 

-0.223 0.000 1.149 -0.227 0.000 1.188 0 (fixed) 0 0 (fixed) 0 

twt

0,tram
 

-0.179 0.021 0.923 -0.244 0.010 1.277 -0.104 0.000 0.619 -0.216 0.000 1.271 

Regular deviations 

owt

d,bus
 

   0 (fixed) 0    -0.135 0.013 0.794 

owt

d,tram
 

   -0.130 0.000 0.681    -0.269 0.000 1.582 

twt

d,bus
 

   0 (fixed) 0    0 (fixed) 0 

twt

d,tram
 

   0 (fixed) 0    -0.247 0.000 1.453 

Irregular deviations  

(standard deviation) 

owt

std,bus
 

   0.141 0.035 -0.738    -0.323 0.000 1.900 

owt

std,tram
 

   0.053 0.000 -0.280    -0.053 0.000 0.314 

twt

std,bus
 

   0 (fixed) 0    0 (fixed) 0 

twt

std,tram
 

   -0.169 0.000 0.885    0 (fixed) 0 
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Waiting times 
Other parameters in the study are generally in line with expectations. In the off-peak hours at 

origin stops, for both, trams and buses, 1 minute of waiting time is about 1.55 in-vehicle minutes 

in the respective modes. This is comparable to previous revealed preferences studies which 

have found similar values in urban public transport networks with ratios ranging between 1.5–

1.7 (Kim et al., 2019; Nassir et al., 2018; Yap et al., 2018). Transfer waiting time to in-vehicle 

time ratios for trams in the off-peak hours is about 1.27, indicating that waiting time at transfers 

has a smaller impact on route choice than that at origin. While most studies lump origin and 

transfer waiting times together, results from Guo and Wilson (2011), who focus on transfer 

inconvenience, also indicate that the latter has a lower effect. The lower weight attached to 

transfer waiting time compared to origin waiting time may be indicative of travellers adopting 

a strategy-based decision rule where the transfer waiting time would depend on the line boarded 

at the origin. Another possible reason could be that travellers value waiting time costs closest 

to them more whilst discounting future losses. That is, the anticipated disutility of waiting at a 

transfer stop is lower or the traveller pays less attention to it simply because it is further in the 

future. Since the route observations suitable for choice analysis do not contain journeys with 

more than one transfer, we are unable to check if the impact of waiting time at subsequent 

transfers would be even lower. 

Transfer penalties 
We estimate transfer penalties of more than 8 and 12 in-tram minutes in the peak and off-peak 

hours, respectively. In comparison, other revealed preference studies for public transport 

networks have reported values ranging from as low as 3–5 minutes (Guo and Wilson, 2011; 

Yap et al., 2018) to values in the vicinity of ours (Nassir et al., 2018) to extremely high penalties 

of 0.5–2 hours (Han, 1987; Jánošíková et al., 2014; Kim et al., 2019). A higher transfer penalty 

in the off-peak hours could be a result of travellers having more modest time constraints than 

commuters in the morning peak or because travellers are more worried about missing a transfer 

as the frequencies are slightly lower in this time period. 

Effect of overlapping alternatives 
Since the logarithm of the path size factor is itself negative, a positive coefficient indicates a 

penalty that corrects for correlation due to overlapping routes. Negative coefficients have also 

been found for public transport networks which have been interpreted as overlapping routes 

adding robustness thus making them more attractive (Hoogendoorn-Lanser et al., 2005). We 

find positive and negative coefficients for the peak and off-peak hours, respectively. The 

negative sign for the off-peak hours may, again, be indicative of travellers seeking more 

robustness in light of slightly higher headways in this time period. 

Tram bonus 
Previous research (both stated and revealed preference studies) has indicated that travellers in 

urban networks find each minute on a bus to be equivalent to 1.2–1.67 minutes on a tram 

(Axhausen et al., 2001; Bunschoten, 2012; Yap et al., 2018). We too find a consistent tram 

bonus on the lower end of this range. Although in Table 4, peak hour in-bus coefficients are 

much lower than those for in-tram, closer inspection reveals that, correspondingly, origin 

waiting times for trams are weighted much lower than those for buses. Using mode-agnostic 

(generic) coefficients for waiting times reveals a bus to tram in-vehicle time ratio of 1.2, 

indicating a small preference for trams. For the off-peak hours, using either mode-specific or 

generic coefficients for waiting times, one minute in a bus is perceived as approximately 1.1 
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minutes in a tram. Furthermore, in the off-peak hours waiting for buses is valued slightly worse 

than trams. Since many stops in The Hague serve both trams and buses, it is unlikely that this 

is caused by different waiting conditions. A more likely reason may be that travellers perceive 

waiting for trams to be less uncertain than for buses. Note that this would not necessarily be 

captured in the schedule deviation terms as this perception may be independent of empirical 

values. 

Regular and irregular deviations in waiting time 
Regular deviations for trams in the off-peak hours are evaluated as 1.03 and 1.14 times the 

scheduled values at origin and transfer stops, respectively. This may indicate that travellers do 

not really consider these values separately but rather internalize the distribution of actual 

waiting times in their decision making. In contrast, regular deviations for buses are weighted 

about half of their scheduled waiting times. A possible reason for this is that of the observations 

suitable for choice analysis, the majority of those choosing a bus at the origin (in the off-peak 

hours) are along a corridor served by two bus lines and a tram line. Since the two bus lines are 

along a common corridor, they form a single choice alternative with a net higher frequency 

which may have reduced the importance of regular deviations. 

 

We calculate the reliability ratio to compare our dispersion parameter estimates against a fairly 

large number of studies who also calculate this indicator albeit typically for total travel time 

rather than only waiting time. The reliability ratio is defined as the ‘marginal rate of substitution 

between average travel time and travel time variability’ (Li et al., 2010) and can be calculated 

as the ratio of the coefficients of time variability to the coefficient of average time in the utility 

function. A smaller value indicates a weaker impact of travel time variability (irregular 

deviations in our case) relative to the impact of average travel times (scheduled waiting times 

in our case). In the morning peak, at transfer stops, we find a reliability ratio of 0.69 for trams. 

In the off-peak hours at origin stops, reliability ratios for trams and buses are found to be 0.20 

and 1.12, respectively.  

 

Since previous studies calculate reliability ratios for total travel time there is little empirical 

evidence that can be directly compared. However, in comparison to these values, our findings 

are overall in agreement. Literature reviews (Carrion and Levinson, 2012 (Figure 3); Li et al., 

2010) have found a wide range of reported reliability ratios from 0.1 to 3.3. These studies 

focussing mostly on car traffic contain results from both stated and revealed preference studies. 

In their meta-analysis, Carrion and Levinson (2012) do not find the type of data (stated or 

revealed preferences) to have a significant effect on the value of reliability. However, amongst 

the studies they reviewed, those that had carried out analysis on both stated and revealed 

preferences, reported that estimates from the latter were typically higher (e.g., Ghosh (2001); 

Small et al. (2005)). In contrast, Bates et al. (2001) argue that protest responses in stated 

preference experiments may lead to higher value of reliability ratios for public transport. Recent 

empirical evidence concurs with these expectations: studying crowding valuations using smart 

card data, Yap et al. (2018) conclude that stated preferences tend to overestimate values. Leahy 

et al. (2016), whose study using smart card data is the closest to ours, find reliability ratios for 

the London Underground to be below 0.6 in two model specifications (higher ratios were found 

for light and heavy rail modes), in line with our results.  

 

The fact that our estimates find that travellers do not react too strongly to irregular deviations, 

means that these measures contribute fairly little to improving model performance; especially, 
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given the limited disturbances (indicating a reliable service) in the public transport network in 

The Hague. 

Model validation 
Model validation using a k-fold procedure returned an aggregate log-likelihood of -57725.09 

and -57799.80 for off-peak models with and without reliability parameters, respectively. Both 

of these have a poorer fit in comparison with models estimated with the entire dataset (Table 

4). However, this is expected with models estimated from cross-validation folds. Moreover, the 

performance gap between them is smaller although the likelihood ratio test confirms that the 

model with reliability parameters is still better (p < 0.001). Analysis of predicted probabilities 

for observed choices did not reveal any obvious patterns between difference in performance of 

the two models and reliability attributes of the alternatives. Thus, the model with reliability 

parameters did not, as such, describe behaviour better for OD pairs with greater differences in 

reliability. Given the generally small deviations from schedule in the public transport network 

of The Hague and the relatively small coefficients for reliability, the fact that reliability 

parameters add little predictive power is not surprising. Validation tests for the peak hour 

models found aggregate log-likelihoods of -21535.88 and -21412.92 for models with and 

without reliability parameters, respectively, indicating that the model with reliability 

parameters was overfitting the data. This could possibly support our hypothesis that the 

unexpected signs of irregular deviation coefficients in the peak hours models were caused by 

data resulting from a specific situation rather than describing the underlying behaviour. 

5 Conclusion 

In this study, we evaluate the impact of waiting time reliability on route choice behaviour in 

public transport networks. Unlike the majority of studies on this topic, rather than stated 

preference surveys or laboratory experiments, we use revealed preferences derived from 

passively collected AFC data. While several studies have used smart card data for analysing 

choice behaviour, to the authors’ best knowledge, this is the first study explicitly analysing the 

impact of waiting time reliability using all AFC transactions in the network. As a case study, 

we analyse the urban public transport network of The Hague in the Netherlands. Different 

models are estimated for peak and off-peak hours; and, as far as possible, separate coefficients 

are estimated for different modes, and origin and transfer stops. Furthermore, we used both 

statistical range and buffer time type waiting time dispersion measures to evaluate which best 

represents travellers’ perceptions of reliability. 

 

All tested dispersion measures performed nearly equally well although in comparison with most 

previous studies, we find a relatively small effect of unreliability on route choice behaviour. 

Reliability ratios estimated with standard deviation were in the range of 0.20–1.12. In addition 

to the possibility that our values are lower because we use passively collected revealed 

preferences rather than stated preferences, the fact that public transport in The Hague is overall 

quite reliable may have also contributed to smaller reliability coefficients. In other networks 

where travellers have to regularly face delays, we may find more risk averse behaviour. This 

may be investigated further in future studies, particularly because a number of studies (e.g., 

Bordagaray et al. (2014); Soza-Parra et al. (2019)) have found that reliability is usually on of 

the most important stated satisfaction determinants. Differences in behaviour between the two 

time periods are also found, arising mainly from travellers being wary of missing transfers in 

the off-peak hours. Further, small differences are found in travel time weights for different 

modes and origin/transfer stops. 
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This study has several limitations stemming from the nature of passively collected data. Due to 

privacy regulations, we do not have unique identifiers that link different journeys in the data. 

Typically, assuming each choice observation to be independent (as we do here) leads to poorer 

model fit. Moreover, we also cannot comment on the nature of the heterogeneity in taste 

preferences of travellers. Although the AFC system used in The Hague allows us to record 

complete trips, origin waiting times are not observed, forcing us to make an overarching 

assumption regarding passenger arrivals at stops. This may have led to overestimation of 

waiting times and subsequently underestimation of the impact of waiting time. Furthermore, 

the absence of fare data from this period meant that we could not include it in our model. 

However, we do not expect this particular limitation to have a significant impact on our model.  

 

Passively collected revealed preferences have a number of advantages over stated preferences, 

in particular the absence of hypothetical bias and the need to convey probabilistic information. 

However, by their nature, such data lacks experimental control. Thus, we did not necessarily 

observe all trip types (with/without transfer) of all modes (trams/buses) in equal numbers, which 

may have resulted in some of our coefficients being insignificant. More importantly, the lack 

of control over causality may have led to anomalies such as travellers preferring more unreliable 

lines. Experimental setups that can disentangle causally linked variables are an interesting 

avenue for future research into using such revealed preferences. 

 

Finally, we reiterate an important assumption made in this study (and similar revealed 

preferences-based studies in literature): although we use observations of choices made in real-

life, our analysis is made under the assumption that travellers are able to internalize and 

integrate empirical measures (such as median or standard deviation) of waiting time 

distributions into their decision-making process. The idea is that, on average, these measures 

should represent travellers’ perception of travel time but, clearly, this assumption will not 

always hold true. Even experienced travellers, who may be fairly aware of waiting time 

distributions, would be influenced by personal beliefs and subjective probability weighting. 

Future work may also want to focus efforts on this—explicitly accounting for such uncertainties 

by using more complex models of decisions under risk and uncertainty (Li and Hensher, 2019). 
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Subjective Waiting Time Uncertainty 

Although waiting times are inherently uncertain in public transport networks, like the previous 

chapter, most research has primarily studied route choice behaviour under (objective) risk. In 

this chapter we propose a method to assess travellers’ route choice behaviour under natural 

ambiguity. Specifically, we devise a realistic route choice situation whereby travellers’ attitudes 

and perceptions towards waiting time uncertainty as well as the effects of situational contexts 

thereon can be quantified in terms of a certainty equivalent. The proposed method provides 

snapshots of travellers’ behaviour under uncertainties in real-world public transport systems 

and can be used to improve transportation models, provide more tailored travel advice, and test 

the efficacy of different policies. 

 

Two case studies are performed: first, the identified choice situation is contextualised for the 

Dutch railways within a stated choice experiment; and second, a natural experiment is 

developed by extracting the situation from smart card data of the urban public transport network 

of Amsterdam. Using choice observations from the two experiments, we estimate travellers’ 

uncertainty evaluation in the two networks and discuss the impact of explicitly accounting for 

waiting time uncertainty. The chapter is concluded with an outline of the main contributions, 

outcomes, and limitations.  

  

This chapter is based on edited versions of the following article and conference presentation: 

Shelat, S., Cats, O., van Lint, J.W.C. Quantifying travellers’ evaluation of waiting time uncertainty in public 

transport networks. Travel Behaviour and Society (2021). 

 

Shelat, S., Dixit, M., Cats, O., van Oort, N., van Lint, J.W.C. What does smart card data reveal about 

subjective beliefs regarding waiting time uncertainty? 8th International Symposium on Transport Network 

Reliability (2021). 
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1 Introduction 

Analysing route choice behaviour in public transport networks is important for both supply and 

demand management. It is an essential input for determining network flows which authorities 

use to manage service levels and prioritize relevant investments. Furthermore, knowing how 

such decisions are made, travellers can be nudged into choices that are more optimal for them 

and the system, and can be suggested options that are likely to result in higher traveller 

satisfaction. Route choice decisions are largely governed by travellers’ attitudes and attributes 

of the public transport system. Increasingly, route choice models have incorporated service 

attributes beyond travel time components, including, for instance, graphical distortions of 

transit network representation (Raveau et al., 2011), transfer station layouts (Guo and Wilson, 

2011), and on-board crowding (Yap et al., 2018). This study contributes to this line of research 

by assessing travellers’ evaluations of waiting time uncertainty above and beyond nominal 

values. Given the various sources of stochasticity in public transport networks, its travel time 

attributes are inherently uncertain; however, as we will show in our literature review, this has 

not been accounted for properly in existing studies. In order to describe and explain route choice 

decisions more completely, we develop in this study a route choice model that explicitly 

accounts for travellers’ behaviour under waiting time uncertainties in public transport networks. 

 

First, we clarify what we mean by ‘uncertainty’. The Knightian (Knight, 1921) classification of 

uncertainty is based on whether, for a set of possibly infinite events, objective probabilities exist 

or not. Decisions under the former regime are said to be made under ‘risk’ while those under 

the latter are under ‘ambiguity’ or ‘uncertainty’. Objective probabilities exist either when they 

are made available to decision-makers (and are trusted by them), there is a consensus amongst 

decision-makers regarding them, or when they are integrated within the decision problem itself. 

However, these assumptions are quite stringent and are seldom fulfilled in the real world. 

Outside of artificial games such as casinos and lotteries, real-world events occur under 

ambiguity where decisions are based on personal beliefs (Machina and Siniscalchi, 2014). 

Travellers in public transport networks also do not have access to such objective probabilities 

for the different attributes involved and make their decisions under uncertainty. Even if 

information is provided on the various aspects of travel time, it is distorted by travellers’ beliefs 

arising from personal characteristics, habits, experiences, and contemporary contextual 

variables.  

 

Next, we delineate why uncertainty in waiting time is of special interest. Similar to other 

industries in the service sector, in public transport systems too, waiting times have been found 

to play a crucial role in consumers’ decision-making and satisfaction (Abenoza et al., 2018). 

While the cost of waiting can usually be objectively calculated in the manufacturing industry, 

to describe its manifestation in the service sector, Maister (1985) quotes the copywriters of a 

parcel delivery service: ‘waiting is frustrating, demoralizing, agonizing, aggravating, [and] 

annoying…’. Arguably, these feelings arise from the uncertainty that is often inherently 

involved with waiting time as well as the context in which it is experienced. In the service 

industry, apart from the objective magnitude, the perception of waiting time is critical for 

customer satisfaction (Maister, 1985) and any disparity between objective and subjective 

expectations of waiting times may lead to sub-optimal decision-making. Therefore, it is vital to 

analyse travellers’ attitudes and perceptions regarding waiting time uncertainty. 

 

The impact of waiting time on route choice behaviour has been typically studied using either 

expected values or objective probabilities of risk. Both of these approaches fail to account for 

travellers’ beliefs regarding uncertainties associated with waiting time. To that end, the present 
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study proposes a method to assess travellers’ route choice behaviour under natural ambiguity 

without using objective probabilities or assuming specific learning behaviour—important 

drawbacks in existing studies. Specifically, a realistic route choice situation is proposed 

whereby travellers’ beliefs towards waiting time uncertainty can be quantified in terms of a 

certainty equivalent. For any gamble, its certainty equivalent is a risk-less value such that the 

decision-maker is indifferent between receiving this risk-less value and playing the gamble. For 

example, if a decision-maker is indifferent between (a) gambling on a fair coin toss winning $0 

on heads and $5 on tails; and (b) winning $2 for sure, then $2 is the certainty equivalent of the 

gamble offered in (a) for this decision-maker. The certainty equivalent in this case indicates the 

decision-maker’s attitude towards risk—risk-aversion in this case. When the gamble is 

ambiguous/uncertain, such as wining $0 if a train departs within 1 minute of its scheduled time, 

$5 otherwise, in addition to attitude towards the uncertainty, the certainty equivalent will also 

indicate how uncertain an outcome is felt to be by the decision-maker. For instance, if the 

certainty equivalent for the above was $1, we can infer that the decision-maker feels that the 

train is more likely to be on time than to be late. The identified choice situation also permits the 

estimation of the effects context variables have on the certainty equivalent for waiting time. 

The conditions required for the proposed situation are simple enough that it is fairly common 

for it to take place structurally (i.e., because of service or network design) in real-world public 

transport networks; also implying that most travellers will be able to identify with the situation. 

As case studies, the proposed choice situation is (i) contextualized for the Dutch railways and 

used in a stated preferences experiment and (ii) extracted from the smart card data of the 

Amsterdam urban public transport network for a (natural) field experiment. 

 

In the next section, studies on travel behaviour under uncertainty are reviewed, classifying them 

on the type of uncertainty observed. Section 3 lays out a theoretical framework of choice 

behaviour under uncertainty and section 4 presents the proposed choice situation. This is 

followed by the design and results of the two case studies in sections 5 and 6. Finally, the main 

contributions, outcomes, and limitations are outlined in section 7. 

2 Literature review 

In this section, we briefly review the large body of literature dedicated to analysing the effect 

of variability in different aspects of travel time on travellers’ decisions. While these studies may 

fulfil their own objectives, here we analyse drawbacks specifically with respect to observing 

and analysing behaviour under uncertainty. Decisions have been typically observed under risk, 

simulated uncertainty, or natural ambiguity. Research approaches—stated preference 

experiments, laboratory experiments, or analysis of actual trips—have been closely associated 

with the type of uncertainty under which decision-making has been observed and is accounted 

for in the analysis.  

 

As discussed above, in the real-world, decisions are made under ambiguity—in the absence of 

objective probabilities. In contrast, however, travel behaviour under uncertainty is most 

commonly studied by presenting hypothetical route alternatives with objective distributions of 

travel times. Furthermore, since such probabilities are usually not available to travellers, 

conveying objective probabilities is notoriously difficult (Bates et al., 2001; Carrion and 

Levinson, 2012). This is exclusively the type of uncertainty observed in stated preferences (e.g., 

Small et al. (1999); Swierstra et al. (2017); Tilahun and Levinson (2010)). 
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A few laboratory experiments have observed choice in traffic networks under partial uncertainty 

by offering different levels and accuracies of information to respondents within the context 

created in a ‘travel simulator’ (e.g., Ben-Elia et al. (2013); Ben-Elia and Shiftan (2010); Bogers 

et al. (2005); Bogers et al. (2006); Ramos et al. (2011)). Unlike stated preference questionnaires, 

respondents do not make single-shot decisions but are required to consider a number of choice 

situations with or without feedback. These experiments typically focus on analysing learning 

mechanisms (e.g., Avineri and Prashker (2005, 2006)) and the effects of different uncertainty 

levels (e.g., Ben-Elia et al. (2008)). In an interesting setup, Kemel and Paraschiv (2013) observe 

choices under artificial ambiguity using Ellsberg’s urns (Ellsberg, 1961). Artificial ambiguity 

is typically created using an unknown mix of differently coloured balls in an urn. This approach 

is often used in ambiguity studies to control for likelihood beliefs in a laboratory setting. Since 

participants do not have any information regarding the proportions of different colours, they 

cannot form any beliefs about this. Kemel and Paraschiv (2013) as well as a number of authors 

(as summarized in Baillon et al. (2018)) note that the external validity of such studies could be 

improved by using natural (real-world) events (for example, stock market prices or actual 

departure times of public transport vehicles). 

 

Studies observing behaviour under natural ambiguity are sparse and typically use revealed 

preferences from real-world observations in car traffic. While revealed preferences offer high 

behavioural validity, unlike stated preferences and laboratory experiments, there is little 

experimental control. A series of papers observed route choice behaviour in two road-pricing 

demonstrations in California, involving  a free but congested route and a (time-varying) tolled 

route with low congestion levels (and hence an almost certain travel time), just before the 

beginning of this millennium (see Brownstone and Small (2005) for an overview). While these 

fairly unique opportunities offered reasonable choice experiment settings, the studies faced 

significant issues in data collection and preparation.  

 

While in reality travellers do not have access to objective probabilities, studies using 

observations of choices under risk face an additional problem that is related to the difficulties 

in conveying probabilities. Empirical findings suggest that for choices under risk, people do not 

fully distinguish between different levels of probability (Wakker, 2010, section 7.1) as is 

assumed in the commonly adopted expected utility regime. In recent years, however, a few 

studies (see Li and Hensher (2011a, 2019); Rasouli and Timmermans (2014) for a review) have 

used rank-dependent utility (Quiggin, 1982) and cumulative prospect theory (Tversky and 

Kahneman, 1981) which apply subjective probability weighting that can account for such 

likelihood insensitivity. However, only a few studies estimate the functional form and 

parameters of the probability weighting function (Li and Hensher, 2011a, 2019). Finally, an 

important issue in studies using revealed preferences data is that, although decisions are made 

under ambiguity, analysis has been commonly carried out using objective probabilities (Carrion 

and Levinson, 2012) under the assumption that these probabilities are known to the traveller 

through experience (Ghosh, 2001; Lam and Small, 2001; Small et al., 2005). 

 

An alternative to analysing travellers’ attitudes and perceptions regarding uncertainty through 

choice observations could be to directly ask them about their perceived and expected travel 

times. The idea is that reported travel time values will incorporate any uncertainties experienced 

by travellers. This approach has been implemented in a number of studies researching the effect 

of various aspects of travelling, such as real-time information provision (Dziekan and 

Vermeulen, 2006; Watkins et al., 2011), on perceived waiting times (see Meng et al. (2018) for 

a brief overview). This approach is useful to assess a posteriori travel satisfaction. However, 

Peer et al. (2014) find that reported values do not accurately describe those used for decision 
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making, suggesting that discrepancies between objective and reported values may arise from a 

number of reasons that do not actually affect travellers’ behaviour. Furthermore, even 

incentivising travellers to report their true beliefs through scoring rules (see Winkler et al. 

(1996) for an overview) does not seem to reduce discrepancies or improve interpretability (Dixit 

et al., 2019). 

 

From this review, several drawbacks in existing studies can be identified with respect to 

analysing route choice behaviour under uncertainty in public transport networks. In most 

studies, choices observed have been made and/or analysed using objective probability 

distributions, which are not only missing in the real-world but are also distorted by travellers’ 

prior beliefs that arise from a number of factors such as previous experiences, habits, and 

contexts, leading to possibly biased outcomes. Studies where choices observed have been made 

under uncertainty—as in revealed preferences and laboratory studies—were only performed in 

the context of car traffic networks leaving an important gap for studying behaviour in public 

transport networks.  

 

To overcome these drawbacks, we identify a choice situation wherein travellers’ assessment of 

waiting time uncertainty in public transport networks can be explicitly quantified directly from 

observed choices; without external psychometric measurements or collection of reported 

values. First, however, we present a generic theoretical framework of travel behaviour under 

uncertainty that outlines the various factors affecting choice and their interactions with the aim 

of placing the current study in context. 

3 Theoretical framework 

In order to describe decision-making under uncertainty, we divide the process into three main 

parts: (i) uncertainty evaluation, (ii) decision-making, and (iii) learning (Figure 12). Evaluation 

of uncertainty in attributes is a result of the decision-maker’s attitudes (e.g., risk aversion) as 

well as their perception of the system (e.g., feeling that the system is unreliable). Both attitudes 

and system perceptions, and therefore the uncertainty evaluation, can be affected by the context, 

which can be situational or affective. The former affects the environment in which the decision 

is made while the latter relates to the moods and feelings of the decision-maker at the time. 

These evaluations are then used to assess and compare alternatives leading to a choice. After 

making a choice, the resolution of some or all of the uncertainty may be observed by the 

decision-maker, which feeds back to their experience memory. Previous experiences can lead 

to longer-lasting changes to their attitudes or shorter-term changes to their system perception. 

This can take place either over several decision outcomes or after a few extreme ones. 

Experiences also lead to habit formations and the regularity with which the same choices are 

made can affect perceptions (e.g., regular cyclists might perceive cycling to be safer than 

occasional cyclists). Finally, the effect the decision-maker’s system perception has on their 

experienced utility (travel satisfaction) and habits closes this short-term learning loop. Note that 

we do not propose this framework as a validated scheme but use it to highlight and conceptually 

place the aspects considered in this study. 

 

In this study, we focus on the evaluation of uncertainty which is dependent on personal 

characteristics developed over a long period of time and system perceptions that are updated 

more frequently, as well as the effects contexts (we only study situational contexts and not 

affective ones) have on them. We assume decisions are made under the random utility 

maximization paradigm. Furthermore, the focus is on capturing snapshots of travellers’ 
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attitudes and perceptions; therefore, we do not study the feedback and learning mechanism 

involved in uncertainty evaluation. 

Personal characteristics + system perceptions = uncertainty evaluation 
Theoretically, personal characteristics and (subjective) perceptions of risk are distinguished to 

study which of these are the driving forces behind behaviour under uncertainty (Weber and 

Milliman, 1997). Anticipation of regret and attitudes towards risk and uncertainty are amongst 

the most influential personal characteristics for decisions under uncertainty. These personal 

characteristics are developed over a long period of time and are not susceptible to frequent 

changes. They have been quantified in literature in a number of ways from Likert scales to 

various mathematical formalizations in decision models including expected utility, cumulative 

prospect theory, and regret theory. Unlike attitudes, subjective perceptions are updated 

frequently based on habits and experiences (gaps between expectations and outcomes). A 

number of models (e.g., Bayesian updating, weighted average learning) have been proposed for 

the learning mechanism through which these three aspects—perceptions, habits, and 

experiences—interact with one another.  

 

Practically, however, it is difficult to disentangle the effects of personal characteristics and 

perceptions in observed behaviour. For instance: does a person buy theft insurance because she 

feels theft is likely to occur or because she is generally risk averse in these matters? In single 

attribute experiments, outcome valuation and subjective probabilities have been successfully 

disentangled, for instance using the trade-off method (Wakker, 2010) but it is not obvious how 

this would be done in multi-attribute decisions such as route choice. When using non-expected 

utility models for decisions under natural ambiguity, only recently have studies explicitly 

measured ambiguity aversion whilst controlling for likelihood beliefs (Baillon et al., 2018). 

Indeed some (Nau, 2001) have argued that the separation of preferences arising from personal 

characteristics and beliefs is neither possible nor required for decision analysis or economic 

modelling. Therefore, for this study we consider travellers’ uncertainty evaluation as a whole 

which, in fact, is formed by their personal characteristics and perceptions. We will continue 

using this term in the remainder of the chapter. Note that, we use ‘uncertainty evaluation’ as an 

all-encompassing term; referring not only to how likely a decision-maker feels that a particular 

event will occur but also the impact (or value) thereof. 

Situational contexts 
Contemporary contexts affect how an attribute (e.g., waiting time) is experienced. For waiting 

time, Maister (1985) makes a number of propositions that define which contexts make waiting 

seem longer or shorter than reality; for instance, occupied time feels longer than unoccupied 

time or that unexplained waits are longer than explained ones. Jones (1996) reviews these 

propositions in terms of the degree to which service managers can control the related contexts 

and their impacts on customers. Previous studies in transportation have also explored the 

differences in value of travel time for different contexts such as free-flow traffic, stop-and-go 

traffic, and on-ramp delays (Hensher, 2001; Levinson et al., 2004). Ongoing experience is 

important because it will be taken into account by customers when anticipating the value of 

uncertain attributes in the upcoming future.  

 

With increasingly prevalent real-time information, seemingly irrelevant information may also 

affect travellers’ evaluation of uncertainty. For instance, delay predictions along the corridor of 

a traveller or even in other parts of a transportation network might cause increased anxiety and 



Subjective Waiting Time Uncertainty 53 

 

a breakdown of trust in the system, leading to choices that indicate a disproportionately higher 

degree of pessimism or risk/ambiguity aversion. 

 

As a contextual variable, the amount of waiting time already experienced by the time of decision 

may have two opposite effects of varying magnitude. On the one hand, greater experienced 

waiting time translates to increasing stress, frustration (Osuna, 1985), and tiredness (based on 

waiting conditions); on the other, there may be a sunk-cost effect (Thaler, 1980) wherein having 

waited for some time is in itself an impetus to wait some more. In an explicit study on the sunk-

cost effect for time (rather than money which most authors examine), Soman (2001) finds that 

because people do not have the ability to account for time in the way they do for money, the 

effect is not found. However, he does not consider travel time in transportation choices where, 

often, one time component is traded-off with another in the same trip which could make it easier 

for people to open and keep mental accounts of time. 

4 Choice situation 

In this section, we present the choice situation that will be analysed to obtain travellers’ 

evaluations of uncertainty in waiting time and the effects of contexts thereon. Amongst the 

sequence of choices faced by a traveller, we look at the decision of whether to board a particular 

vehicle in the following situation. 

 

Consider a traveller who arrives at a public transport stop. From here, either of the next two 

vehicles can take her to her destination. Both of these vehicles are identical in every way except 

for their departure and arrival times at the origin and destination stations, respectively. 

Furthermore, both of these vehicles will take her directly, without any transfers, to the 

destination station. As is prevalent in many transit systems worldwide, real-time information 

regarding anticipated departure times and delays is displayed alongside scheduled departure 

times. Moreover, the traveller is assumed to know the time both vehicles will take to reach her 

destination station (either from experience or a travel planner). When the first vehicle (VEH1) 

arrives, she must make a decision, based on the information available to her and her own 

uncertainty evaluation for the network, whether to board it or to wait for the next one (VEH2). 

Figure 13 shows the proposed choice situation in a timeline format. 

 

Although the vehicles are identical, the options available to the traveller (unlike route 

alternatives in most choice situations) are not unlabelled, that is, they have alternative-specific 

properties—in fact, the traveller is comparing a certain (as in risk-less) option against an 

ambiguous one. The vehicle that has already arrived has a certain waiting time which is almost 

zero due to the, usually, negligible difference between boarding, doors closing and departure. 

Although the anticipated waiting time for the next vehicle is displayed (either directly or as 

anticipated departure time of the next vehicle), it is ambiguous for the traveller since no concrete 

probabilities regarding its accuracy are supplied. Rather, she will draw from her own evaluation 

of this natural source of ambiguity and make a decision. 
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Figure 12: Theoretical framework of decision-making under uncertainty. Components 

in bold-italics are the focus of this study 

 

Figure 13: Choice situation presented in a timeline format 
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Aside from trading-off the difference in in-vehicle times against the anticipated waiting time, 

the traveller may assign an alternative-specific value to the certain option which represents her 

uncertainty evaluation for the anticipated waiting time. Thus, from this situation, the certainty 

equivalent of the ambiguous waiting time for the second (uncertain) option can be obtained by 

estimating the value assigned, holding other things equal, to the certain option. The traveller’s 

uncertainty evaluation, and by extension her value of certainty, may also be affected by 

situational contexts such as delays in the system and the time she already spent waiting before 

the decision point. Since travellers are not likely to believe that the actual waiting time will be 

significantly lower than the displayed prediction, it is reasonable to expect that they do not 

dislike certainty—they are either indifferent or like certainty. This implies that if travellers, in 

general, believe the shown anticipated waiting time, the value of certainty would be lower than 

if there is a general perception of poor reliability. 

 

For the proposed situation to take place, there must be a difference in in-vehicle times between 

the travel options. Moreover, the schedules or real-time delays must be such that the slower and 

faster vehicles are the certain and uncertain options, respectively (i.e., the slower vehicle arrives 

first at the origin). To assess the value of certainty in waiting time, choices between non-

(strictly)-dominated alternatives must be observed. Assuming that travellers either like or are 

indifferent to certainty in waiting time, to ensure that the certain alternative does not dominate 

the uncertain one, the former must arrive at the destination later than the latter taking into 

account any weighting of travel time components. The uncertain vehicle can arrive at the 

destination before the certain one (i) if it can overtake the latter along a common path or (ii) if 

they serve two distinct lines. 

 

The conditions outlined for the proposed situation to arise are not stringent and a number of 

examples can be found in the real world. Using published timetables of real-world public 

transport networks, specific examples can be found. For instance, the situation arises in the New 

York City subway and Mumbai commuter railways because express trains can overtake local 

ones (e.g., local and express lines 1 and 2 between 96 St and Chamber St in New York City; 

local and express trains between Borivali and Churchgate in Mumbai) (Indian Railways: 

Western Railway, 2021; MTA New York City Transit, 2020). Examples of the situation arising 

due to stops being connected by lines with distinct routes can also be found in the New York 

City subway as well as in the tram network of The Hague (e.g., lines 2 and 4 between 149 St 

and Franklin Av; lines 9 and 16 between Loevensteinlaan and Station Hollands Spoor) (HTM, 

2021; MTA New York City Transit, 2020). Furthermore, even if the situation does not occur in 

a particular public transport network, given that the setup is fairly common in other networks, 

it is likely that travellers can identify with the situation. We emphasise that the proposed 

situation is a probe that permits the measurement of a relevant factor in travel behaviour, that 

is, uncertainty evaluation. There is little reason to believe that travellers’ evaluation of waiting 

time uncertainty in this situation would be any different in other situations in the networks. 

 

In the following sections, we make use of the proposed choice situation in two case studies: 

first, within a stated preferences experiment, and second, in a natural field experiment. For each 

case study, we discuss the experiment design, data collection, choice analysis, and the results. 

5 Case study I: Stated choice experiment 

In the first case study, we assess the waiting time reliability beliefs of travellers in the Dutch 

railways by implementing the choice situation presented in the previous section in a stated 
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preferences experiment. In the Netherlands, the railways are used widely, for different trip 

purposes and over a large range of travel times. Since trains may—and different services such 

as express (Intercity) and non-express (Sprinter) indeed do—overtake one another by skipping 

stations, the choice situation would not seem unrealistic to travellers. Furthermore, as required 

in the proposed choice situation, throughout all railway platforms in the Netherlands, real-time 

departure information is displayed in a uniform manner.  

 

When the proposed choice situation is presented as a stated preference questionnaire, it has two 

important advantages over conventional travel time reliability behaviour stated preference 

experiments. First, since there are no objective probabilities, they do not have to be conveyed 

to respondents so that everyone can understand them; thus, circumventing a major issue in such 

experiments. Second, unlike conventional choice experiments where respondents are known to 

provide protest answers in such experiments to demonstrate (in an exaggerated manner) their 

dislike towards delays and irregularities in public transport services (Bates et al., 2001), it is 

less obvious to survey-takers what is being measured and therefore they are likely to indicate 

their ‘true’ preferences. Next, we discuss the experiment design, data collection, and the choice 

analyses. 

5.1 Experiment design 

The choice situation consists of the following variables: (i) time already waited or the 

experienced waiting time; (ii) the anticipated delays of the two trains; (iii) the in-vehicle times 

of the two trains; and (iv) the anticipated waiting time for the second train. The first variable, 

experienced waiting time, is a context variable as it holds true irrespective of the alternative 

chosen. Since, the objective is to understand how they affect the value of certainty (rather than 

their marginal disutility), the anticipated delays for the two trains are changed together. Thus, 

the anticipated delay in the two trains can also be considered to be a context variable. 

 

Attribute values are based on the need to adhere to reality and the ability to obtain the required 

estimates from choice observations. Since there is no clear indication on the direction or 

magnitude of the effect context variables have on the value of certainty, it is interesting to test 

them more closely. To this end, four attribute levels are used for each context variable allowing 

testing for non-linearity. The selected values (Table 5) are quite realistic as delay information 

in the Dutch railways is indeed shown in five-minute intervals while experienced waiting time 

is often rounded as it is difficult to be more precise when thinking about elapsed time. 

 

The selection of attribute values for in-vehicle times and anticipated waiting times is a little 

trickier. The values of in-vehicle times and anticipated waiting times must be such that, given 

the expectations of traveller preferences, alternatives presented must not be dominated for a 

range of trade-off ratios between anticipated waiting time and in-vehicle time. Commonly, 

studies have found that waiting time is weighed 1.5-2 times compared to in-vehicle time (e.g., 

Yap et al. (2018)). However, it is also possible that travellers directly compare expected arrival 

times at the destination, in which case the waiting time and in-vehicle time are weighted equally. 

Thus, the range of waiting time – in-vehicle time trade-offs considered here is from 1 (arrival 

time differences) to 2 (higher end amongst most findings). A trial-and-error approach is used 

to find which attribute values satisfy the set of objectives and constraints described below.  

 

For all three variables—in-vehicle times for the two trains and anticipated waiting time for the 

second train—only two attribute levels are chosen. This results in 8 (2×2×2) possible utility 

differences for a given waiting to in-vehicle time coefficient ratio. We would like to select 
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attribute values for these variables such that for both the lowest and highest ratios (i.e., 1 & 2), 

considering the alternatives to be unlabelled (i.e., without an alternate specific constant), 

amongst the 8 possible utility differences, there are at least: (i) 4 that are in favour of the second 

train, (ii) 1 that is neutral, and (iii) 1 that is in favour of the first train. The objectives are tilted 

in favour of the second train because people are expected to be neutral at the least but in general 

have a preference for certainty and therefore the alternative-specific utility of a certain waiting 

time is expected to be positive. The latter two objectives are set to prevent respondents from 

learning that the first train always arrives second at the destination as well as to allow 

observations to indicate that our expectation regarding the sign of utility of certainty is 

incorrect. In addition to these objectives, the following constraints are set on the attribute 

values: (i) the minimum anticipated waiting time is 4 minutes, (ii) the minimum in-vehicle time 

is 4 minutes, and (iii) the range of all attributes is at least 4 minutes. The first two constraints 

ensure realism of attribute values. A minimum attribute value range is set because a larger 

difference in alternative utilities requires fewer observations to estimate parameters. Note that 

only even values were used in order to reduce the search space. Table 5 shows the attribute 

values used in the experiment. 

 

With these attributes and values, a simultaneous orthogonal fractional factorial design is found 

with NGENE. To limit the number of questions per respondent, the design is blocked into two 

parts. With this specification, a design with a total of 16 choice situations is found with 8 choice 

situations per respondent. 

5.2 Data collection 

The choice experiment was included within a larger survey that consisted of four parts, in this 

order: (0) screening, (1) socio-demographics, (2) choice experiment, and (3) qualitative 

measurements. The structure, content, and design of an initial draft of the survey were refined 

based on comments received from a small pilot of about 20 persons. The final version of the 

survey was offered in Dutch and had an expected completion time of 10 minutes. It was 

distributed to a predefined sample size of 700 respondents through an online panel, PanelClix. 

Given that most people in the Netherlands have access to the internet, this method of data 

collection does not create any obvious biases. The data collection took place in November–

December 2018.  

Screening and socio-demographics 
Respondents were screened out if they used the trains less than once per month on the basis that 

if respondents do not meet this criterion, they are likely to not have well-formed evaluations of 

uncertainties in the railways. Regarding trip purpose, the survey aimed to collect about 80% of 

responses (550 responses) from those who used the railways for commuting either to work or 

education, and the rest from those with other purposes. The greater focus on commuters and 

efforts was, again, to ensure that those travelling more frequently are included since this group 

is more likely to have more well-formed value systems and uncertainty evaluations. Based on 

previous experience with the online panel, it was known that unemployed persons and those 

working part-time were slightly over-represented. Therefore, it was agreed, before the 

beginning of the distribution, that an additional restriction would be placed in the form of a 

minimum frequency of travel by commuters, at least twice per week, if too many respondents 

chose a frequency of once per week or less (enforced after collecting 325 responses).  
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Table 5: Attribute values used in the choice experiment 

Attribute Attribute values (in minutes) 

Experienced waiting time 0, 5, 10, 15 

Anticipated delays in both trains 0, 5, 10, 15 

In-vehicle time for the first train 14, 28 

In-vehicle time for the second train 4, 8 

Anticipated waiting time for the second train 4, 10 

 

Desired socio-demographic quotas were obtained from data collected between 2011 and 2015 

in a national, one-day, trip diary survey, OViN (Onderzoek Verplaatsingen in Nederland) 

conducted by the Dutch Central Bureau of Statistics (Centraal Bureau voor de Statistiek, 2015). 

The distribution of age, gender, and household incomes of respondents in that survey who use 

the railways at least once (during the day of reporting) are used as the desired stratification. It 

should be noted that these distributions were not weighted by the individual weights given in 

the survey as the group was reasonably large in itself. 

 

To ensure response validity, those taking less than 4 minutes to complete the survey (40% of 

the expected time) were eliminated and more responses were added until the predefined target 

(of 700 responses) was reached. Eventually, a total of 918 responses were collected of which 

703 met the completion time threshold.6 While the survey was expected to take about 10 

minutes on average, analysis of completion times after the collection of the required sample 

size revealed an average of about 6 minutes (after removing 12 respondents taking more than 

20 minutes) and a median completion time of a little more than 5 minutes. Table 6 shows the 

distribution of respondent characteristics for the final set of valid responses. 

Choice experiment 
The choice experiment section begins with an explanation of the choice situation. Next, the 

respondent first faces a sample question which is not used in the analysis and then the 8 choice 

situations that will be used for the analysis. Each choice situation is prefaced by the instruction 

that there were two trains that could take them to their destination from the platform. To evoke 

the feeling of actually being at a station, respondents are shown information regarding the 

waiting times and anticipated delays of the two trains (TRN1, TRN2) in a format similar to the 

signboards found at platforms of the Dutch railways (Figure 14). Respondents are informed that 

the images displayed are the state of the signboards at the decision point (as described in section 

4). To remind survey-takers of the information shown in different parts of the signboard, an 

annotated version is also displayed in the example question. Separately from the signboard, 

information regarding the in-vehicle times and the time already waited is shown as a table and 

a line of text, respectively. Finally, the respondents are asked to choose whether they would 

board TRN1 or wait for TRN2. The order of the 8 situations as well as that of the two options 

in each situation were scrambled to avoid any biases. Figure 15 shows a translated screenshot 

of a question in the choice experiment. 

 

 
6 Analysis of the removed responses revealed very different behaviour from the rest of the sample confirming our 

suspicion that they were invalid. Using the original sample of 918 respondents, we also did not find any (non-

negligible) systematic effects of completion times on attribute weights. 
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Table 6: Sample characteristics 

Total respondents 703   

  Distribution (%) 

Attribute Value Actual Required 

Gender 
Female 54.8% 50% 

Male 45.2% 50% 

Age 

<18 0.1% 0% 

18-24 32.7% 36% 

25-34 24.0% 17% 

35-44 15.4% 13% 

45-54 13.2% 16% 

55-64 10.8% 12% 

>64 3.7% 6% 

Trip Purpose: Commuting 
Work 53.3% 

~80% 
Education 27.9% 

Trip Purpose: Others 

Errands 0.7% 

~20% Recreation 18.1% 

Others 0.0% 

Trips per Week 

0 1.8%  

1 13.2%  

2 18.8%  

3 18.9%  

4 22.0%  

5 22.0%  

6 2.4%  

7 0.7%  

 

It is likely that respondents’ uncertainty evaluations are affected by the time-of-day. Therefore, 

when not explicitly testing how this belief changes across different time periods in a day, it 

would be ideal reduce potential bias by not presenting any clock times. However, since the 

Dutch railways is a schedule-based system, train arrivals are associated with a particular clock-

time and travellers are used to seeing this information on the signboards. Therefore, the planned 

departure time of the first train is fixed at 10:23. This time is somewhat neutral in the sense that 

it is just outside the morning peak (06:00-09:00) and not too far into the midday off-peak hours. 

Moreover, respondents may still be able to imagine using this train for different purposes. 

Finally, a rounded-off time such as 10:00 or 10:15 is intentionally not chosen because it might 

seem artificial and may induce respondents to act differently than they normally would; for 

instance, they may become more likely to calculate and focus on the final arrival time as it is 

easier to do so with round clock-times. 

 

It should be noted that regardless of whether they choose to board the arrived train or wait for 

the next, respondents are not given any feedback on the outcomes, thus avoiding any learning 

effects and forcing respondents to continue to depend on evaluations formed in the real-world. 
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Figure 14: Information displays at a real station (annotated) 

 

Figure 15: Screenshot of a question in the choice experiment (translated to English) 

Qualitative measurements 
Finally, the following factors are measured qualitatively on a Likert scale (with 7 levels): (i) 

regret anticipation, (ii) perception of reliability, and (iii) engagement level while waiting. The 

intention is not to include them in the modelling of uncertainty evaluation itself but rather 

analyse potential relationships between these indicators and stated preferences. The first, 

anticipation of regret, is considered to be one of the main psychological driving forces of risk 

aversion which leads to a preference for certainty. A standardized regret scale consisting of five 

items adopted from Schwartz et al. (2002) is used to measure it. This contains statements such 

as ‘Whenever I make a choice, I try to get information about how the other alternatives turned 

out’ to which respondents indicate their level of agreement. The second factor assesses the 

perception of reliability of the network in general and in the presence of delays, and the 

perceived accuracy of displayed real-time information. This is tested using questions such as 

‘How reliable do you feel is the train arrival information?’ Finally, as discussed in section 3, 

context can affect how waiting time is experienced. Occupied time has been consistently shown 

to reduce perceived waiting time (Jones, 1996; Molin et al., 2020) which could in turn affect 

Current Time Scheduled departure TRN1 Anticipated delay TRN1

Scheduled departure TRN2 Anticipated delay TRN2

There are two identical trains (TRN1 and TRN2) that can 

take you to your destination

TRN1 has arrived.

You have waited 15 minutes 

at the platform

Travel time

Choose what you do:

Board TRN1

Wait for TRN2
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beliefs regarding anticipated waiting time; therefore, the level of engagement of respondents at 

train platforms is measured through the following question: ‘Usually, how engaged are you 

with the activity you perform while waiting at a railway platform?’. The complete set of 

questions can be found in Table 7. 

5.3 Choice analysis 

The decisions observed in the stated preference experiment are analysed using discrete choice 

models under the conventional framework of random utility maximization (RUM). To 

formulate the utility equations for the two options, we consider the four attributes involved in 

the choice situation described above: two main variables—in-vehicle times (IVT) and 

anticipated waiting time (AWT)—and two contextual variables—experienced waiting time 

(EWT) and anticipated delay (DEL). Furthermore, as the alternatives are labelled, the vehicle 

that arrives at the origin first (VEH1, the certain option) is assigned an alternative-specific 

constant (βcertainty) that represents the value of certainty attached to it. Since there are only two 

alternatives and only differences in utility matter, we set the utility of the second vehicle 

(VEH2) to zero. The (systematic parts of the) utilities of the two alternatives are then specified 

as follows: 

 

 
VEH1

VEH2

certainty IVT AWT EWT DEL

1 2( )

0

V IVT IVT AWT EWT DEL

V

    = +  − +  +  + 

=
 [8] 

 

Table 7: Questions used for psychometric indicators (in English) 

Variable Name Question (less [1] → more [7]) 

Regret: A Once I make a decision, I don’t look back. (the response 

order is reversed) 

Regret: B Whenever I make a choice, I’m curious about what would 

have happened if I had chosen differently. 

Regret: C Whenever I make a choice, I try to get information about 

how the other alternatives turned out. 

Regret: D If I make a choice and it turns out well, I still feel like 

something of a failure if I find out that another choice would 

have turned out better. 

Regret: E When I think about how I’m doing in life, I often assess 

opportunities I have passed up. 

Reliability Perception: A How reliable do you feel is the train arrival information? 

Reliability Perception: B How reliable do you feel is the Dutch Railways in general? 

Engagement while Waiting Usually, how engaged are you with the activity you perform 

while waiting at a railway platform? 

Effect of Delay When you are at an NS platform, to what extent is your 

perception of reliability (for your trip) affected if the next 

two consecutive trains that you can take to your destination 

are delayed? 

 

Using the above utility equations, first multinomial logit (MNL) models are estimated to 

demonstrate the effect of accounting for the value of certainty (or the cost of uncertainty) on 

other choice parameters and to explore non-linear effects of contextual variables. In the RUM 
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paradigm, the utility of an alternative a , aU , consists of systematic ( aV ) and random ( ) 

components. The systematic component is the product of the vector of taste preferences (  ) 

and the vector of alternative attributes ( ax ). Given that the random component in an MNL model 

is Gumbel distributed, the probability of choosing alternative i  from I  alternatives is given by 

the following: 
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Next, heterogeneity in behaviour is assessed using latent class choice models (LCCM) which 

capture decision-maker heterogeneity through a discrete mixture of choice models. In LCCM, 

individuals are probabilistically allocated to latent classes each of which have their own choice 

models. Depending on the objective, different choice models may be used in each class but in 

this study, the MNL model, based on the utility equations discussed above, is used as the 

underlying behaviour model for each class. To represent this mathematically, consider 

individual n  who belongs to class s  (amongst S  classes) with probability ns . Then the 

probability that this individual selects alternative i  is the product-sum of the class membership 

probabilities and the probability of selecting that alternative for each class (given the vector of 

taste parameters in that class, s ): 
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If we assume intra-individual homogeneity in sensitivities, that is, account for panel effects, we 

essentially say that a particular individual is allocated to each class with the same probability 

for all choices they make. Thus, the likelihood of observing the sequence of choices 1: , , Ti i i  

by individual n  over T  situations is given by the following: 
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Apart from accounting for heterogeneity in tastes, an important advantage of LCCM is that 

individuals’ preferences can be explained by using a class membership model to link 

membership probabilities with individuals’ characteristics. The commonly used, logit function 

is also used here as the class membership model. We use the socio-demographic and qualitative 

measures collected (see Table 8) as the individual characteristics influencing class membership. 

For this vector of individual characteristics, nz , and to-be-estimated, class-specific regression 

parameters, coefficient vectors, s , and constants, s , the class membership probability is given 

by: 
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The flexibility of the LCCM means that there are a number of ways to specify the model. The 

researcher needs to decide the number of classes, the parameters to be included in the choice 

models in each class, and the parameters to be included in the class membership model. Since 

there are no prescribed methodologies to arrive at the final model, we define here the sequence 

of steps taken to obtain our models. First, we include all choice parameters and class 

membership model constants and find the optimal number of classes. The model fit with 

different number of classes is assessed using the Bayesian information criterion (BIC) which 

explicitly penalizes the inclusion of extra parameters. Then for the optimal number of classes, 

the choice models in each class are finalized by removing highly insignificant (p > 0.2) 

parameters one-by-one. Next, all observable individual characteristics (socio-demographics) 

are added to the class membership function and the model is finalized by removing those that 

do not have a significant effect. Table 8 shows an overview of all the attributes used in the 

choice analysis. All choice model estimations are carried out using PythonBiogeme (Bierlaire, 

2016). 

 

As noted previously, the collected psychometric indicators were not included in the model 

itself; instead, the distribution of the unobservable qualitative measures in each class is used for 

characterising class composition through a posterior analysis of class membership. However, 

we also estimate a hybrid choice model (HCM) where the class membership model is directly 

related to the indicators through a measurement model in a framework similar to that employed 

by Atasoy et al. (2013) and Hurtubia et al. (2014). In this model, the likelihood function given 

for individual n  in the latent class choice model (Equation [11]) is modified. In addition to the 

likelihood of observing a particular sequence of choices ( 1: , , Ti ii ), the likelihood of obtaining 

a particular response pattern ( 1: , , Kr rr ) for the indicators ( K ) is also included (Equation [13] 

below). The probability of obtaining a particular response (
,k r ) is treated as a constant for 

each class and is estimated directly as a parameter in the model using the indicator responses. 

Thus, as Atasoy et al. (2011) note, the measurement model for the psychometric indicators helps 

identifying the latent classes by using responses to these indicators. Since the HCM accounts 

for these responses, it might lead to different latent classes or newer insights that do not surface 

in the posterior analysis of the LCCM. 
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5.4 Results and discussion 

As discussed in section 5.3, we first present results of the multinomial logit models; specifically, 

the effect of accounting for uncertainty and context variables. Then, heterogeneity in behaviour 

is presented through distinct behavioural profiles identified by a latent class choice model which 

also explains membership to these profiles with socio-demographic and other personal factors. 
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Table 8: Overview of attributes included in the choice analysis 

Attributes Symbol Explanation Range 

Alternative attribute 

coefficients 

   

Certainty constant βcertainty – – 

In-vehicle time βIVT 

All time attributes are in minutes 

4-28 

Anticipated waiting time βAWT 4-10 

Experienced waiting 

time 

βEWT 0-15 

Anticipated delays βDEL 0-15 

    

Personal 

characteristics 

   

Socio-demographics    

Age βage Ordinal in ascending order: 

<18, 18-24, 25-34, 35-44, 45-54, 55-64, 

>64 

1-7 

Gender βfemale Categorical (effect coded): 

female, male 

 

Net personal income βincome Ordinal in ascending order: 

unemployed, €0-11K, €11K-19K, €19K-

30K, €30-60K, >60K 

1-6 

Trip purpose βcommuting Categorical (effect coded):  

commuting, non-commuting 

 

Train use frequency βfrequency Average number of days train is used in a 

week 

0-7 

 

Multinomial logit models 
To analyse the effect of including a certainty parameter, as opposed to conventional route choice 

models that consider alternatives to be unlabelled, in addition to the labelled MNL model 

(MNLL) that uses the equations presented in section 4, an unlabelled version (MNLU) that does 

not include βcertainty is also estimated (Table 9). The significant and positive alternative-specific 

constant in the MNLL model clearly rejects the null hypothesis that there is no effect of 

uncertainty and shows a preference for certainty. The coefficients for travel time components 

in both models are also significant and have the expected signs: as the anticipated waiting time 

increases or the first train is less slow in comparison, the preference for the first train increases. 

Since the context variable parameters in MNLL model are small and insignificant (p > 0.2), in 

the model shown in Table 9 they are fixed to zero. The most likely reason for finding these 

parameters significant in MNLU but not in MNLL is that, in the absence of an alternative-

specific constant in the former model, these parameters also partially capture respondents’ 

overall preference for certainty. In the MNLU model, where the contextual variable parameters 

are significant, the signs of the context variables seem to be reasonable. Regarding delays, one 

can expect travellers to be increasingly wary of waiting for TRN2 as the delays increase. For 

experienced waiting time, as discussed in section 3, there is no clear intuition regarding the 

effect direction since travellers might either experience frustration/increasing tiredness or take 

into account sunk costs. Moreover, some people may begin to engage in an activity that distracts 

them from waiting after some threshold of experienced waiting time. An overall positive effect 
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is found and it may be justified—the more time has elapsed, the more travellers just want to 

take the train that comes first, all other things being equal (Osuna, 1985). 

 

A log-likelihood ratio test between the models shows that, the MNLL model clearly outperforms 

its unlabelled counterpart (p < 0.001). We cross-validate this improvement using a k-fold 

procedure with 14 folds such that all observations from one individual are either in the training 

or testing data set. The cross-validation reveals similar improvements in likelihood of chosen 

alternatives in the test dataset: -3335.37 versus -3371.20 with the MNLL and MNLU models, 

respectively. An important difference between these models is in the βAWT–βIVT ratio. In the 

unlabelled model this ratio is 1.22, a value close to results in literature which have commonly 

found that waiting time weighs higher in travellers minds than in-vehicle time (e.g., Yap et al. 

(2018)). However, once the waiting time uncertainty is accounted for in the MNLL model, the 

ratio becomes 0.65 indicating the large role of uncertainty in the travellers’ assessment of 

waiting time. Furthermore, the MNLL model also shows that travellers are willing to trade-off 

7.70 minutes (0.947÷0.123) of in-vehicle time for certainty in their waiting time. 

 

Although the context variables seem to have no effect in the MNLL model, since four levels 

were included for each variable, it is possible to check whether they really do not affect 

decision-making or they have a non-linear nature which averages out. While this is less likely 

for delays where we have a clear intuition regarding the effect direction, it may very well be 

true for experienced waiting time where there is an interplay between the effects of frustration 

and sunk time costs. The variables are effect coded with the level with 0 minutes as the 

reference. Effect coding allows us to separate the effect of the reference level from the constant. 

The variables for 10 and 15 minutes of delay, and for 5 minutes of experienced waiting time 

have high p-values (p > 0.2) and are therefore fixed to zero. The final model is shown in Table 

9 as MNLL-nl. The results include the coefficient for the reference level which is computed as 

the sum of the negatives of all the other coefficients for that attribute. Using the log-likelihood 

ratio test, this model is found to perform better than the MNLL model (p < 0.001). The signs for 

anticipated delays are not as expected and it is difficult to hypothesize why a delay of 5 minutes 

seems to make it more likely that the second train will be chosen. The signs for experienced 

waiting time, however, can be explained by a combination of frustration/anxiety/increasing 

fatigue effects and sunk time/activity engagement effects. The likelihood of choosing TRN1 

first increases up to 5 minutes (arguably due to frustration/anxiety/fatigue), then stabilizes 

between 5 to 10 minutes (more likely to be engaged in an activity), and then falls again (sunk 

time/activity engagement). 

Latent class choice models 
Using the steps defined in section 5.3 yields a 4-class model as the one with the best trade-off 

between efficiency and model fit. However, two classes have a membership of less than 10% 

which means that the choice parameter estimations within these models would likely have high 

errors. Therefore, we remove one class and estimate a 3-class model which has a comparable 

model fit, has reasonable class sizes and offers better interpretability. Table 10 shows the final 

model. To report results, the class with the smallest size is used as the reference for the class 

membership model (i.e., for the smallest class, 0, 0s s = = ). 
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Table 9: Estimation results of the different multinomial logit models (case study I) 

Model MNLU MNLL MNLL-nl 

# parameters 4 

-3898.260 

-3366.782 

0.135 

6768.102 

3 

-3898.260 

-3331.959 

0.145 

6689.822 

6 

-3898.260 

-3321.126 

0.147 

6694.06 

Initial LL 

Final LL 

Adjusted ρ2 

BIC 

Parameter Coeff. p-val Coeff. p-val Coeff. p-val 

βcertainty – – 0.947 0.00 0.94 0.00 

βIVT -0.108 0.00 -0.123 0.00 -0.124 0.00 

βAWT 0.132 0.00 0.080 0.00 0.081 0.00 

βEWT 0.023 0.00 – – – – 

βDEL 0.015 0.00 – – – – 

βEWT-0 – – – – -0.206 – 

βDEL-0 – – – – 0.094 – 

βEWT-5 – – – – – – 

βDEL-5 – – – – -0.094 0.03 

βEWT-10 – – – – 0.091 0.06 

βDEL-10 – – – – – – 

βEWT-15 – – – – 0.115 0.02 

βDEL-15 – – – – – – 

 

Table 10: Estimation results of the 3-class latent class choice model (case study I) 

Model LCCM 3-Class 

# parameters 

Initial LL 

Final LL 

Adjusted ρ2 

BIC 

12 

-4159.808 

-3063.483 

0.261 

6230.584 

   

   

   

   

   

 Class 1 Class 2 Class 3 

Class Size 54.74% 28.41% 16.84% 

 Class-specific choice models 

Parameter Coeff. p-val Coeff. p-val Coeff. p-val 

βcertainty 1.61 0.00 – – 0.983 0.01 

βIVT -0.301 0.00 -0.061 0.00 -0.0487 0.01 

βAWT 0.258 0.00 – – 0.126 0.00 

βEWT – – – – 0.0268 0.12 

βDEL 0.019 0.18 – – – – 

 Class membership model 

 Class 1 Class 2 Class 3 (ref.) 

 Coeff. p-val Coeff. p-val Coeff. p-val 

βintercept 2.00 0.00 – – 0 – 

βage -0.236 0.00 0.134 0.00 – – 
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In the largest class (55%), behaviour is similar to the MNLL model with an additional effect 

wherein the value of certainty increases slightly with delays. Travellers in this class are willing 

to trade-off about 5.3 minutes of extra in-vehicle time to remove uncertainty in their waiting 

time. With each minute of delay, travellers are willing to further accept approximately 4 seconds 

of additional in-vehicle time. Similar to the MNLL model, once the value of certainty is 

accounted for, they weigh anticipated waiting time slightly less than in-vehicle time (0.86:1). 

Membership of this group is more likely for younger travellers. Similar to their preference for 

certainty here, younger travellers are also found to be more risk averse by de Palma and Picard 

(2005) in their departure time choice study.  

 

The second group (28%) shows lexicographic preferences (at least in the range of the attribute 

levels presented in the stated preferences experiment) for faster trains, making decisions only 

on the basis of in-vehicle time and, apparently, not caring about other factors. In addition to 

their inherent preferences, it is possible that those who strongly prefer the faster train, may have 

translated the offered alternatives into real-life services, where the trains are, in fact, different, 

and thus chosen one train type over another for reasons not measured in the survey. In the 

Netherlands, the express trains (Intercity) offer additional services such as air-conditioning, Wi-

Fi internet, and toilets that are not available in some commuter trains (Sprinter). Seating 

configurations are also different with commuter trains typically having more standing space. 

Older travellers are more likely to be in this class.  

 

Although, the third group (17%) shows some compensatory behaviour, travellers in this group 

seem to strongly dislike uncertainty and are willing to accept more than 20 minutes of extra in-

vehicle time for certainty in their waiting time. Thus, their preferences are nearly lexicographic 

in favour of the first train to arrive. Furthermore, frustration and/or cumulative waiting fatigue 

seems to play a substantial role for this group: with every minute spent waiting in the past 

(which should therefore be irrelevant for the decision at hand), there is a willingness to accept 

an additional 33 seconds of in-vehicle time for certainty in waiting time. In any case, we note 

that imagining this frustration/anxiety/fatigue may be somewhat difficult for respondents. 

 

Posterior analysis of the class membership does not reveal substantial differences between 

classes in terms of distribution of psychometric indicators (Figure 16). Visual inspection of the 

trends shows that those showing fully compensatory behaviour (Class 1) have a slightly lower 

trust in the reliability (indicators Reliability Perception A and B) of the system. Moreover, based 

on regret indicators C, D, and E, respondents in this group are also a little less regret-averse 

than the sample is on average. 

Hybrid choice models 
Instead of estimating the LCCM followed by a posterior analysis of the psychometric indicators, 

we can estimate a hybrid choice model. In the adopted hybrid choice modelling approach, a 

large number of parameters has to be estimated: if all indicators are used, a total of 162 

parameters have to be estimated to obtain the indicator response likelihood (162 = 3 classes × 

9 indicators × (7-1) levels). Therefore, we reduce the number of indicators by selecting only 

one each for regret and reliability perception (from a set of 5 and 2, respectively), and the 

indicators for engagement while waiting and effect of delays. The indicators for regret and 

reliability perception are selected based on an exploratory factor analysis and overall model 

fitness. The full results of the HCM can be found in Table 117.  

 
7 Since the results are not used (as discussed in the next paragraph), we did not refine the model further after the 

first estimation (e.g., by removing parameters with p-values above our assumed thresholds of insignificance). 
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Figure 16: Class profiles of the psychometric indicators (see Table 7) 

 

Table 11: Estimation results of the hybrid choice model (case study I) 

Model LCCM 3-Class (with indicators) 

# parameters 90   

Initial LL -12911.755   

Final LL -7902.731   

Adjusted ρ2 0.381   

BIC 16582.593    
Class 1 Class 2 Class 3 

Parameter Value p-val Value p-val Value p-val 

Choice parameters 

βcertainty 1.410 0.000 0.361 0.160 0.811 0.030 

βIVT -0.284 0.000 -0.080 0.000 -0.033 0.260 

βAWT 0.251 0.000 -0.004 0.860 0.116 0.000 

βEWT 0.010 0.470 -0.003 0.820 0.025 0.220 

βDEL 0.026 0.230 -0.007 0.700 0.002 0.930 

Class membership parameters 

βintercept 1.99 0 – – 0 – 

βage -0.235 0.01 0.15 0.01 – – 
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Table 11 (continued) 

Model LCCM 3-Class (with indicators) 

 Class 1 Class 2 Class 3 

Parameter Value p-val Value p-val Value p-val 

Indicator probability: Regret B 

πRegret_B,1 0.018 0.310 0.136 0.000 0.100 0.080 

πRegret_B,2 0.114 0.010 0.136 0.010 0.162 0.060 

πRegret_B,3 0.129 0.000 0.105 0.010 0.094 0.080 

πRegret_B,4 0.169 0.000 0.177 0.000 0.122 0.070 

πRegret_B,5 0.288 0.000 0.203 0.000 0.290 0.040 

πRegret_B,6 0.224 0.000 0.144 0.000 0.178 0.050 

πRegret_B,7 0.058 – 0.101 – 0.054 – 

Indicator probability: Reliability Perception B 

πReliabilityPercep_B,1 0.011 0.120 0.030 0.040 0.013 0.410 

πReliabilityPercep_B,2 0.065 0.000 0.036 0.070 0.046 0.240 

πReliabilityPercep_B,3 0.127 0.000 0.051 0.060 0.096 0.170 

πReliabilityPercep_B,4 0.183 0.000 0.172 0.020 0.175 0.140 

πReliabilityPercep_B,5 0.374 1.000 0.208 0.010 0.305 0.130 

πReliabilityPercep_B,6 0.236 0.000 0.371 0.000 0.305 0.110 

πReliabilityPercep_B,7 0.004 – 0.132 – 0.060 – 

Indicator probability: Engagement while Waiting 

πWaitEngage,1 0.090 0.000 0.170 0.030 0.163 0.150 

πWaitEngage,2 0.214 0.000 0.148 0.040 0.186 0.170 

πWaitEngage,3 0.235 0.000 0.130 0.070 0.168 0.190 

πWaitEngage,4 0.257 1.000 0.258 0.030 0.202 0.180 

πWaitEngage,5 0.173 0.000 0.207 0.040 0.205 0.180 

πWaitEngage,6 0.029 0.020 0.051 0.050 0.054 0.210 

πWaitEngage,7 0.003 – 0.036 – 0.023 – 

Indicator probability: Effect of Delay 

πDelayEffect,1 0.000 1.000 0.074 0.040 0.048 0.190 

πDelayEffect,2 0.049 0.160 0.065 0.070 0.046 0.160 

πDelayEffect,3 0.105 0.090 0.085 0.030 0.116 0.100 

πDelayEffect,4 0.262 0.070 0.223 0.020 0.286 0.070 

πDelayEffect,5 0.382 0.060 0.325 0.030 0.245 0.060 

πDelayEffect,6 0.155 0.060 0.148 0.020 0.170 0.080 

πDelayEffect,7 0.049 – 0.079 – 0.088 – 
Indicator descriptions can be found in Table 7. The parameters included 

in the model without indicators are in bold.  

Note: 
6,7 ,
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Estimates for the parameters common to the hybrid choice and latent class choice models 

(highlighted in bold in Table 11) were found to be fairly similar. Moreover, the parameters 

estimated for the indicators in the HCM follow the same trends as their corresponding class 
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profiles in the LCCM posterior analysis. Similarities in the two models may be because, in the 

HCM, the measurement model does not contribute substantially to the identification of the 

latent classes in comparison to the class membership model or choice models. Therefore, we 

choose not to use the HCM results because: first, the more complex HCM offers similar 

interpretation of the heterogeneity in choice behaviour, hence the parsimonious LCCM is 

considered superior; and second, the extra information obtained in the HCM as class profiles 

of indicators can also be obtained through the posterior analysis mentioned above. 

6 Case study II: Field experiment 

For the second case study, we conduct a natural field experiment wherein real-world instances 

of the proposed choice situation are extracted from passively collected smart card data in the 

urban public transport network of Amsterdam, Netherlands. With this analysis of revealed 

preferences, we make the following contributions: (i) demonstrate the presence of the proposed 

situation in a real-world network (in addition to the examples cited in section 4); (ii) establish 

constraints and methodology to study waiting time beliefs from smart card data; and (iii) 

overcome typical drawbacks of stated choice experiments, in particular, the inability to ‘feel’ 

the effects of contextual variables.  

 

In the following, we first layout data requirements for field experiments with this choice 

situation under different smart card systems. Next, we describe our case study and the choice 

analysis. Finally, we present the results and discussion.  

6.1 Data requirements 

In general, to analyse route choice from smart card data, information about available and chosen 

alternatives as well as relevant attributes have to be extracted. Data available from smart cards, 

depends on the system employed by the operator. These systems vary mainly by how fare is 

calculated and where the interaction with travellers happens. The fare structure determines 

whether the traveller interacts with the smart card system at only one end (flat fare) or at both 

ends (distance- or zone-based) of a trip or journey (sequence of trips without intervening trip-

generating activities). Interaction location—that is, where travellers present their smart card—

governs where travellers interact with the system and thus what information is available 

regarding the chosen alternative. Interaction locations may be at stations or on vehicles. 

Furthermore, for flat fare, station-based systems, interactions may be at the origin or 

destination. In order to derive feasible8 route alternatives, the origin and destination station 

locations must be known. These are directly available from vehicle-based, non-flat fare systems 

but for flat fare or station-based systems, trip origins or destinations may have to be inferred. 

Similarly, for data from the latter system type, route assignment is required to obtain the 

selected route alternatives. Naturally, confidence in the final route choice models is strongly 

linked to the confidence in each of the required inferences. 

 

The specific situation proposed here, considers the choices to be: (i) board the first feasible 

alternative to depart or (ii) wait for the next one. Thus, when a traveller arrives at the origin 

stop in relation to the departure of feasible route alternatives is important. Traveller arrival times 

are known in pay-as-you-enter, station-based systems but not in vehicle-based or pay-as-you-

leave, station-based systems. This problem can be circumvented by analysing transfer trips 

 
8 Given that the feasible choice set will be typically small, it is assumed to be equal to the considered set. 
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where the end time and location of the previous journey leg is known or can be inferred. 

Travellers’ arrival times at the origin stop for the transfer trip can thus be directly known or 

inferred using assumed walking speeds (depending on whether the destination of the previous 

leg and the origin of the transfer trip are the same). As an example, consider a two-leg journey 

in a flat-fare, vehicle-based system where travellers are required to present their smart card 

every time they board a vehicle. While the traveller’s arrival time at the origin stop for the first 

leg cannot be known, it might be possible to confidently infer the destination location (based 

on the origin of the next leg) and thereby the alighting time (from vehicle location data). The 

arrival time at the origin stop of the transfer trip can then be inferred by adding an assumed 

walking time to the inferred alighting time of the first leg. Note that this workaround assumes 

that travellers’ evaluation of waiting time uncertainty in direct journeys (i.e., with no transfers) 

and in the first leg of non-direct journeys is the same as that in latter legs. Our macroscopic 

route choice analysis using smart card data from The Hague could not conclusively say whether 

uncertainty was perceived differently in the first and transfer legs. 

 

Using the arrival times of travellers at their origin stop their experienced waiting times (EWT) 

can be calculated. Anticipated waiting times (AWT) and anticipated delays (DEL) are given by 

the real-time information displayed for the next relevant vehicle at the decision point (i.e., at 

the arrival of the first alternative). In-vehicle times (IVT) are assumed to be known to the 

travellers; thus, we could use planned values or a central tendency of historical realizations. 

Finally, we reiterate the need for choice situations to be non-(strictly)-dominated alternatives. 

Given the assumption that travellers do not dislike certainty, these are situations where, based 

on the displayed AWT and known IVT difference, there would be an objective expectation for 

the alternative with riskless waiting time to arrive at the destination later than the one with 

uncertainty, potentially taking into account any weighting of travel time components. 

6.2 Data collection 

For this case study, we use smart card data from Amsterdam’s tram and bus networks. We use 

data from 28 May to 1 July, 2018 when 15 tram lines and 41 bus lines were operational (Figure 

17). As nearly all of the trips on these networks are paid for using public transport smart card 

(OV-chipkaart), we can reliably use the data to make inferences regarding behaviour in the 

population. Both these networks employ a vehicle-based smart card system with a distance-

based fare structure, which means that we are able to observe the origin and destination of each 

trip but not traveller arrival times. For transactions where the travellers fails to check-out at the 

destination (~4.2% of smart card trips), the destination is inferred based on Trépanier et al. 

(2007). Trips are combined into journeys by matching them with AVL data and employing 

existing transfer inference algorithms (Gordon et al., 2013; Yap et al., 2017), resulting in a total 

of 18.7 million inferred journeys.  

6.3 Experiment setup 

As discussed in the previous section, to overcome the problem of unobservable arrival times, 

we use transfer trips. Out of the journeys inferred above, more than 2.5 million have a transfer 

to the tram or bus network. Travellers’ arrival time at the transfer boarding stop, is calculated 

by their arrival time at the previous alighting stop plus the time required to walk to the current 

boarding stop. Euclidean distances and a median walking speed of 1.12 m/s (Hänseler et al., 

2016) are assumed. 
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Figure 17: Amsterdam tram (orange) and bus (gray) networks in 2018 

Next, a choice set is constructed for each transfer trip. For this, we first add possible alternative 

destinations within 150m of the original destination (as the crow flies) and then extract which 

public transport lines the traveller could potentially take. Trips that do not have at least two 

distinct line options are removed and the options in the remaining trips are assigned the first 

vehicle of the respective line to arrive after the traveller. Based on this, attributes of the choice 

alternatives, median planned in-vehicle time, experienced waiting time, anticipated waiting 

time, and anticipated delay, can be obtained. As the anticipated waiting time and delay 

information was not available directly, it was derived using the algorithm used for displaying 

real-time information. The planned arrival time of the vehicle is used to display the anticipated 

waiting time unless the vehicle is delayed by more than 10% of the planned in-vehicle time, in 

which case, it is assumed that the driver will cover the distance in 90% of the planned in-vehicle 

time (and the remaining delay is displayed as the anticipated delay).  

 

To ensure that each choice set is reasonably feasible, further filtering steps are required. 

Alternatives with an anticipated waiting time of more than 30 minutes are removed, since it is 

unlikely that anyone would wait so long without an intermediate activity. Furthermore, to 

ensure that all travellers have the possibility to board the first alternative, choice sets with an 

experienced waiting time of less than one minute are removed9. Also, choice sets with all 

alternatives arriving at the same time are removed since they do not provide any information 

on travellers’ waiting time beliefs. Two-thirds of the 1.05 million trips remaining consist of 

only two alternatives. Since analysing trips with more than two alternatives would require 

further assumptions regarding how travellers’ aggregate the value of not boarding the first 

alternative (e.g., as only the utility of the next alternative or the log-sum of all the remaining 

alternatives), we choose to discard these, leaving us with 686,000 trips. Most of these trips are, 

however, dominated (that is, the first alternative reaches the destination first) and thus not useful 

for the analysis. Based on whether AWT is weighted twice as important as IVT for the 

dominance check, we obtain unweighted, (4563 trips) and weighted (2128 trips) non-dominated 

trip sets for the choice analysis. 

 
9 We note that this did not have a large impact on the final choice model. 
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6.4 Choice analysis 

As in the previous case study, the observed choices are analysed under random utility 

maximization (RUM). However, since we do not have access to unique smart card identifiers, 

all observations are treated as independent and modelled using multinomial logit (MNL). 

Furthermore, given the nature of natural experiments, unlike the previous case study, the two 

alternatives in each trip have some more differences than just certainty in waiting time. 

However, we are able to explicitly account for these differences by including them in the utility 

equations for the two vehicles (Equation [14]). The vehicles can be either a tram or bus (effect 

coded as TRAM = 1 if tram), the anticipated delays for the two alternatives can be different 

(DEL_1, DEL_2), or the destination (DEST) can be at most 150m away from the original 

destination. As the alternative destination will never be chosen, the latter parameter does not 

offer any interpretation but is merely a correction for the constant. Figure 18 shows the 

distribution of attributes included in the choice analysis. Separate models are estimated for the 

unweighted (MNLUW) and weighted (MNLW) non-dominated trip sets. 
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6.5 Results and discussion 

Similar to the previous case study, to analyse the impact of including the certainty parameter, 

we estimate both, labelled (-L) and unlabelled (-UL) versions of the choice model for both trip 

sets. Table 12 shows the results of the four models after removing insignificant parameters (p 

> 0.2). To allow comparison between the labelled and unlabelled models using likelihood ratio 

tests, we included all the parameters that were significant in at least one version (except βcertainty 

in the unlabelled versions) to form nested models for each trip set. Note that, as in the previous 

case study, we tested for non-linear effects of anticipated delay and experienced waiting time 

but they did not improve the fit of labelled models significantly. Therefore, to reduce model 

complexity we do not include these in any of the final models or comparison tests. Likelihood 

ratio tests and 5-fold cross-validations show that the labelled models significantly (p < 0.001) 

improve model fit over their unlabelled counterparts10. 

 

Anticipated waiting time, in-vehicle time difference, and the certainty parameter all have a 

significant effect in the expected direction. The positive certainty parameter shows a clear 

preference for certainty, higher anticipated waiting time results in a preference for the first 

vehicle, and a higher in-vehicle time difference (in favour of the second vehicle) corresponds 

to a larger likelihood of choosing to wait. Since anticipated delays in the system would increase 

the level of associated uncertainty, we expected larger delays on either vehicle to be associated 

with a stronger preference for the certain alternative. While we generally find this to be true, in 

the labelled models, we find a small effect in the opposite direction for delays associated with 

the first vehicle. We do not find any effect of experienced waiting time or mode on the labelled 

choice models (p > 0.8) but similar to the previous case study, these parameters are significant 

 
10 Labelled models show a significantly (p < 0.05) better fit in the likelihood ratio test even if non-linear parameters 

(up to three degrees) are included. Note that where non-linear parameters were significant (in the unlabelled 

models), the change in effect direction did not lie within the observed range of values. 
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in the unlabelled versions: higher experienced waiting time reduces the likelihood of choosing 

to wait. Again, we hypothesise that the significance of these parameters is because they partially 

capture respondents’ overall preference for certainty. In all cases, there is a stronger preference 

for trams over buses. 

 

Like the previous case study, the inclusion of the certainty parameter reduces the βAWT–βIVT 

ratio (from 0.90 to 0.45 and from 1.22 to 0.77, in the unweighted and weighted trip sets 

respectively). This re-emphasises our earlier hypothesis that uncertainty plays a large role in 

the value of waiting time. Finally, we find that travellers in the Amsterdam urban public 

transport network are willing to trade-off about 3.5–3.7 minutes (βcertainty ÷ βIVT) of in-vehicle 

time for certainty in their waiting time: nearly half the value found for travellers in the Dutch 

railways. 

 

  
Figure 18: Distribution of choice attributes in the unweighted and weighted non-

dominated trip sets 
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Table 12: Estimation results (case study II) 

Model MNLUW-UL MNLUW-L MNLW-UL MNLW-L 

# parameters 7 8 

-3162.830 

-1700.787 

0.460 

3468.980 

7 8 

-1475.017 

-801.943 

0.451 

1665.189 

Initial LL -3162.830 -1475.017 

Final LL -1809.283 -843.362 

Adjusted ρ2 0.426 0.423 

BIC 3677.547 1740.723 

Parameter Coeff. p-val Coeff. p-val Coeff. p-val Coeff. p-val 

βcertainty – – 1.482 0.00 – – 1.340 0.00 

βIVT -0.247 0.00 -0.400 0.00 -0.244 0.00 -0.384 0.00 

βAWT 0.223 0.00 0.182 0.00 0.297 0.06 0.296 0.06 

βEWT 0.134 0.00 – – 0.122 0.00 – – 

βDEL_1 – – -0.034 0.07 – – -0.029 0.23 

βDEL_2 -0.085 0.00 -0.034 0.02 -0.091 0.00 -0.040 0.08 

βDEST 1.747 0.00 1.771 0.00 1.291 0.00 1.432 0.00 

βTRAM_1 0.584 0.00 0.153 0.03 0.536 0.00 0.152 0.13 

βTRAM_2 0.286 0.00 0.208 0.00 0.367 0.00 0.270 0.00 

 

7 Conclusion 

Although decisions in the real world are almost always taken under uncertainty, that is, in the 

absence of objective probabilities, most existing studies on the effects of waiting time reliability 

on travel behaviour observe or analyse travel decisions (as if) made using objective 

probabilities. Capturing travellers’ evaluations, which are a result of complex interactions 

between their perceptions and attitudes, regarding uncertainty in public transport waiting times 

is difficult. Therefore, this study identifies a realistic route choice situation where such 

evaluations can be quantified under natural ambiguity without using objective probabilities or 

assuming specific learning behaviour. In the slow/fast lines experiment proposed, uncertainty 

evaluations can be quantified as a certainty equivalent or, as shown, an alternative-specific 

constant under the random utility maximization regime. Studies in behavioural economics and 

psychology have indicated that contexts are important in decision making. In addition to 

quantifying the evaluations in general, we are also able to estimate the effect of contextual 

attributes on them; for instance, the effect of time spent waiting before making a decision based 

on anticipated time to be waited. 

 

In the first case study, through a stated preferences experiment with the identified choice 

situation, we find a strong preference for certainty in travellers of the Dutch railways. 

Accounting for uncertainty explained away some of the waiting time parameter, reducing the 

waiting to in-vehicle time ratio to less than one. Contextual attributes do not seem to have an 

effect on average although small, non-linear effects were found for both experienced waiting 

time and anticipated delays. A latent class choice model indicated three groups of travellers: 

the biggest group making fully compensatory choices, weighing uncertainty against travel time 

attributes, and two others showing lexicographic behaviour, choosing the fastest and the first 

train, respectively. While age seems to affect association with different behavioural profiles, 

there are only minor differences between the distribution of psychometric indicators in different 

classes. 
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Although the choice situation and stated choice experiment are carefully designed, two 

limitations potentially affecting estimation and interpretation of results remained. In our 

experiment, we assume that travellers usually make a conscious choice regarding boarding a 

train or waiting for the next one. While it is likely that this is a conscious choice, especially for 

regular travellers who are aware of different lines that can take them to their destination, it is 

possible that by presenting this choice situation we highlight the uncertainty involved in waiting 

times thereby making people more averse to it. Another potential limitation of the case study is 

related to the experiment type itself. We would like to measure the effects of contextual 

attributes on subjective beliefs but, arguably, it is difficult for respondents to account for such 

effects separately from their general aversion to uncertainty. For example, respondents may not 

be able to feel the effect of having waited ten minutes when making a choice in a stated 

preference questionnaire, yet anecdotal evidence would suggest that this variable indeed has an 

impact on boarding decision. It is possible that this may be why we do not find strong effects 

of contextual variables in our case study. Using incentivized laboratory experiments, common 

in behavioural economics, does not help either because, since these are contextual variables, 

they cannot be incentivized one way or another.  

 

Since the proposed choice situation is realistic, both of these limitations can be overcome by 

measuring choice behaviour in a revealed preferences setting, that is, from observations of real-

world trips where travellers actually experience the context. We do this in our second case study 

using smart card data from the urban public transport network of Amsterdam. Results of this 

natural, field experiment largely follow the first case study. Travellers in this network are 

willing to trade-off an average of 3.6 minutes of in-vehicle (compared to the average of 7.7 

minutes obtained for travellers in the Dutch railways). Similar to the stated choice experiment, 

accounting for waiting time uncertainty explained away some of the waiting time parameter, 

reducing the waiting to in-vehicle time ratio. Although, the revealed preferences experiment is 

intuitively a better method to measure the impact of contextual variables, once we account for 

the value of uncertainty, we no longer found a significant impact of experienced waiting time 

or vehicle type. However, this is not necessarily a general result and could be a result of the 

range of values present in the experiment or the specific nature of urban transportation. 

 

While the field experiment overcomes some limitations of the stated choice experiment it is not 

without its own limitations. First, while fairly common, the choice situation may not occur in 

all public transport networks. Moreover, even where the choice situation occurs, the proportion 

of observations available for analysis may be very small relative to the overall dataset. This 

problem is particularly compounded in systems such as the one in our case study where we can 

only utilise observations from transfer trips. Secondly, given the nature of field experiments, 

we have little control over the range of attribute values available for the choice analysis, limiting 

the validity of our conclusions for other situations. In the case study here, we note that the 

distribution of anticipated waiting time and planned in-vehicle time differences is heavily 

skewed towards zero.  

 

The choice situation proposed in this study offers a relatively simple method to obtain snapshots 

of evaluations of uncertainties in a real-world public transport network. With respect to 

planning of services, transportation models can benefit from the added accuracy obtained by 

explicitly quantifying the effects of uncertainty (as indicated by the improved model fit and 

predictive value). The proposed situation is used to measure uncertainty evaluation and 

inferences are not limited to this exact situation—for instance, the finding that associated 

uncertainty has a large role in travellers’ assessment of waiting time holds over all decisions of 

the type ‘whether to board or wait’ and could be useful for agent-based models (e.g., Cats and 
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Gkioulou (2017)) that commonly simulate this choice. Often when biases are pointed out to 

decision-makers, they choose to correct their choices to more ‘rational’ ones (Gilboa, 2009). 

Journey planner applications may use choice observations in situations similar to the one used 

in this study to provide feedback highlighting such potential biases (e.g., loss aversion, 

overweighting of small probabilities) that travellers might want to correct on reconsideration. 

Moreover, through association of behaviour under uncertainty with introspective psychological 

measures, such applications can offer targeted actions to specific groups of travellers to bring 

their evaluations in line with empirical realities. For instance, applications may work on 

distracting travellers from the boredom of waiting by engaging them in an activity such as 

reading. Since the experiment also permits measuring the effects of contextual variables, it may 

be used to analyse situations which exaggerate feelings of uncertainty and take suitable actions 

for this. On a related note, the certainty equivalent presented here may also be used as an 

indicator for A/B type tests when transportation authorities wish to introduce new measures 

aimed at improving feelings regarding uncertainty. For instance, indicating the cause of delays 

has been proposed to reduced anxiety associated with uncertainty in waiting time (Maister, 

1985). The extent to which this measure is effective may be quantified by comparing certainty 

equivalents obtained for the identified choice situation in the control and treatment groups. 

 

As discussed in the theoretical framework for this study, we measure the combined outcome of 

travellers’ perceptions and attitudes on their decisions under uncertainty as subjective beliefs. 

However, disentangling the effects of these individual determinants on travel behaviour may 

allow more effective policies and travel advice. In order to analyse attitudes and perceptions 

separately, we might need to model more complex decision rules and, perhaps, observe different 

choice situations or sequence of decisions. The challenge will be to do this also directly from 

observations of real-world trips (i.e., not in a laboratory experimental context), without having 

to observe risky choices or ask for matching probabilities of uncertain events, both of which 

require interaction between the researcher and travellers. 

 

Apart from the limitation outlined above, other avenues of research may also be found in the 

theoretical framework presented in this study. In our analysis, we considered the effects of two 

situational contexts, namely, experienced waiting time and delays on the travellers’ corridor. 

Similarly, other situational contexts such as the effects of delays in other parts of the network, 

or the differences between trip purposes, such as travelling to and from work may be studied. 

Furthermore, the effects of affective contexts on subjective beliefs can be investigated to assess 

the indirect effects of various factors affecting moods, such as station lighting. In decisions 

under ambiguity, such as route choice in public transport networks, where decision-makers can 

observe the choices of others, herding effects also become important and may be analysed. 

Finally, while our method provides a snapshot of subjective beliefs towards waiting time 

uncertainties in real-world networks, it would be interesting to observe the evolution of such 

snapshots over time for different individuals in various networks. 
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COVID-19 related Uncertainty 

The COVID-19 pandemic (2020–) has led to drastic changes in travel behaviour, particularly a 

widespread drop in public transport ridership. Not only are travellers more likely to focus on 

transmission risk determinants in public transport now but, given the sustained the nature of the 

crisis, also in the post-pandemic phase, leading to a permanent shift to private travel modes. 

Therefore, in this chapter, we evaluate this change in behaviour and assess traveller responses 

to future developments in the pandemic. We specifically analyse behaviour related to three 

criteria affecting the risk of COVID-19 transmission: (i) crowding, (ii) exposure duration, and 

(iii) prevalent infection rate. 

 

Using stated choice observations from train travellers in the Netherlands at the end of the first 

infection wave, we model travellers’ (heterogeneous) valuation of the aforementioned factors. 

This is supplemented with an analysis of covariates that include socio-economic characteristics 

and Likert scale-based risk perceptions and attitudes. Special attention is paid to discussing the 

heterogeneity in traveller behaviour and comparison of current valuations with those from pre-

pandemic analyses. The chapter concludes with a discussion of potential policy implications, 

limitations of the study, and future avenues of research. 

  

This chapter is an edited version of the following article: 

Shelat, S., Cats, O., van Cranenburgh, S. Traveller Behaviour in Public Transport in the Early Stages of the 

COVID-19 Pandemic in the Netherlands. Transportation Research Part A: Policy and Practice (2022). 
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1 Introduction 

The COVID-19 pandemic has led to unprecedented restrictions on public life globally. Some 

of the first restrictions in many places were on public transport which, by its very nature of 

moving people in dense, enclosed spaces, could be a major transmission risk for this highly 

contagious virus11. While some public authorities completely stopped service (e.g., India 

(Union Home Secretary, 2020)), others restricted or discouraged use other than by essential 

workers or for urgent needs (e.g., Netherlands, United Kingdom (Department for Transport; 

Openbaar Vervoer Nederland, 2020a)). Then, at the end of the first infection wave, many 

authorities, pressed with a need to restart economies and provide essential transportation, eased 

restrictions and cautiously resumed public transport. Demand levels, however, did not return to 

pre-pandemic levels (Citymapper, 2021; Google LLC, 2021), at least partly, due to heightened 

(awareness of the) risk of infection (Beck and Hensher, 2020). 

 

The effect of on-board crowding on travel behaviour has received much attention in literature 

and has been widely accepted to be a significant influence on various choice dimensions 

(Hensher et al., 2011; Li and Hensher, 2011b; Tirachini et al., 2013; Wardman and Whelan, 

2011). Using choice observations, mainly from stated choice experiments (e.g., Kroes et al. 

(2013); Sahu et al. (2018)) but also from revealed preferences (e.g., Hörcher et al. (2017); Yap 

et al. (2018)), a number of studies have estimated the value of crowding in terms of the 

willingness to pay to reduce it or its impact on the value of travel time. The disutility of 

crowding in these studies arises primarily from physical and psychological discomfort and 

exhaustion. However, given the wide and sustained impact of the COVID-19 pandemic, 

travellers are now likely to want to avoid crowds even more so than under normal circumstances 

as a measure towards minimizing their exposure to the virus (Tirachini and Cats, 2020).  

 

Travellers may now focus on factors contributing to COVID-19 transmission and for service 

planners to be able to respond to these changes in behaviour it is essential to have an empirical 

underpinning of those. The question is then: given the COVID-19 pandemic, how will travellers 

respond to crowdedness on public transport vehicles and future changes in infection rates? 

Studies on the COVID-19 pandemic as well as those on previous epidemics resulting from 

viruses spread through similar means (such as SARS, MERS, swine flu) have shown that people 

perceive avoiding public transport as a preventive measure (Gerhold, 2020; Kim et al., 2017a; 

Lau et al., 2003; Rubin et al., 2009). A number of COVID-19 related analyses also indicate a 

significant mode shift to private modes such as bicycles and automobiles demand (e.g., Bucsky 

(2020)). While these studies focus on perceptions and aggregate statistics, only a few studies 

have analysed public transport travellers’ choice behaviour.  

 

A Scopus search12 and other modes of literature collection found only a handful of studies 

conducting choice analysis in the context of public transport and epidemics. Scorrano and 

Danielis (2021) conduct a mode choice analysis for before and during COVID-19 in Trieste, 

Italy. The impact of the pandemic on mode choice is parametrised as mode-specific penalties 

which they find to be negative (and even more so for COVID-19 risk averse travellers) for 

 
11 However, there is no conclusive evidence to this end and indeed some suggest that if recommended mitigation 

measures are implemented, the risk of contracting COVID-19 in public transport could be low (Gkiotsalitis and 

Cats, 2020; Goldbaum, 2020) 
12 Scopus search term (initial search on 25 March 2021 revealed only two relevant studies; the overview was 

updated to briefly include studies published during the review based on a search on 25 December 2021): 
( TITLE-ABS-KEY ( pandemic  OR  epidemic  OR  sars  OR  mers  OR  "swine flu"  OR  h1n1  OR  ebola  OR  
covid )  AND  TITLE-ABS-KEY ( "public transport*"  OR  transit  OR  bus  OR  tram  OR  train  OR  metro 
)  AND  TITLE-ABS-KEY ( ( choice  OR  logit  OR  probit )  W/2  ( model*  OR  analys* ) ) )   
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public transport. Cho and Park (2021) and Aghabayk et al. (2021) also conduct a before-after 

experiment but focus on estimating crowding multipliers using stated choice data from Seoul 

and Tehran, respectively. They find that crowding multipliers are 1.04–1.44 times higher during 

the pandemic, confirming expectations that travellers would be more wary of crowds. Awad-

Núñez et al. (2021) and Aaditya and Rahul (2021) focus on the impact of COVID-19 safety 

measures (such as reducing on-board crowding and improving cleaning) on the willingness to 

use and pay for public transport. They find that a higher safety perception increased willingness 

to use public transport. Finally, Hensher et al. (2022) present choice models of commuting, 

work-from-home, or not working using revealed choice data from Sydney and South East 

Queensland. 

 

We contribute to the growing literature on COVID-19 and public transport by analysing how 

travellers have adapted their behaviour under these exigent circumstances. A stated choice 

experiment is conducted to analyse traveller behaviour specifically related to three criteria 

affecting the risk of COVID-19 transmission (Hu et al., 2020; Prather et al., 2020): (i) distance 

to other people, (ii) duration of exposure, and (iii) prevalent infection rate. In the context of 

public transport travel, the first two correspond to on-board crowding and in-vehicle time, 

respectively. With the choice experiment, we measure travellers’ crowding valuation in the 

backdrop of the ongoing pandemic and how these valuations are affected by factors that might 

affect the perception of related risk. These model estimates will not only be useful for demand 

forecasting but could also provide insights that may be valuable for policy designs aimed at 

managing demand (Gkiotsalitis and Cats, 2020) not only for the ongoing crisis but also the next 

pandemic. In this study, we report findings from the stated choice experiment conducted with 

train travellers in the Netherlands towards the end of the first infection wave, just as the first 

restrictions were being lifted. 

 

In the next section, we describe the survey design, data collection, and choice analysis 

methodology. This is followed by the results and discussions in section 3. Finally, a summary 

of the results, potential policy implications, limitations of the study, and future avenues of 

research are outlined in section 4. 

2 Stated choice experiment 

To understand traveller behaviour under the new circumstances presented by the pandemic, a 

stated choice experiment was conducted with Dutch train travellers. The experiment was part 

of a larger survey that collected, among other things, travellers’ socio-demographics, mobility 

choices, and pandemic-related qualitative measures. Discrete choice analysis is applied on 

observations from the experiment to measure crowding valuation while the personal 

characteristics are used to explain heterogeneity in behaviour either a posteriori or as part of 

the choice model. 

2.1 Experiment design and presentation 

The experiment consists of a series of choice situations in which respondents were asked to 

assume that they had arrived at a train station from which two trains were available for their 

destination. They were informed that they were travelling with the same purpose for which they 

had indicated they most frequently used the train before the pandemic-related restrictions. The 

train alternatives varied only in terms of on-board crowdedness (distance to other people) and 

waiting time. We note that this means that crowding valuation will be obtained in terms of 
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waiting time savings instead of the usual money amounts. We did not use different travel costs 

directly to avoid interactions with respondent income and expectations from a higher travel 

class. Implying that a more costly train would be less crowded (and therefore safer) could also 

lead to protest answers. Contextual information about factors potentially affecting the 

perception of contracting the disease, namely travel time (exposure duration) in either train and 

prevalent infection rate, was also given. The latter was provided in terms of the proportion of 

Dutch population that is infectious and capable of transmitting the virus to others. To ensure 

that only in-vehicle time was considered as the duration of exposure, we noted that it was 

possible to maintain social distance while waiting. Furthermore, respondents were reminded of 

the mandatory face mask regulations on-board public transport vehicles (Openbaar Vervoer 

Nederland, 2020b). While this was not mentioned explicitly in the survey, we note that in 

majority of the trains, windows cannot be opened, meaning that ventilation conditions cannot 

be easily changed. Respondents were asked to rank the two train alternatives and the option of 

not travelling by train for each choice situation. We asked for a ranking rather than a single best 

choice to enable us to obtain trade-off estimates in the case that the majority of respondents 

chose to opt-out altogether.  

 

On-board crowding was presented graphically as the seated section in a single coach of a 

commuter train (known as Sprinter in the Netherlands). Five levels of crowdedness were used: 

5, 18, 23, 28, and 36 seats occupied (out of 40), colloquially corresponding to the following 

labels: ‘almost empty’, ‘able to sit alone’, ‘unable to sit alone but not too crowded’, ‘quite 

crowded’, and ‘packed’ (Table 13). To avoid confusion, respondents were informed that the 

indicated crowding level was after everyone else (but the respondent) had boarded. While these 

trains do have some standing space near the doors (not shown in the graphics), we excluded the 

option to stand in order to simplify the choice situation. By only offering seating space, we may 

miss out on capturing the (possibly different) crowding valuation of those who would prefer to 

stand. However, given the limited and confined standing space, and the relatively long in-

vehicle time levels used in the study (see below), it is likely that most travellers would have 

preferred to find a seat for their trip. As such, we expect the impact of this simplification to be 

small. To trigger respondents to consider where they would sit, they were asked, in a series of 

questions prior to the choice experiment, to indicate where they would sit in each of the five 

crowding levels. Three levels of waiting times were used: 3, 12, and 25 minutes. A wide range 

was deliberately used to ensure that we would observe trade-offs between on-board crowding 

and waiting time savings.  

 

It is likely that respondents would find it difficult to respond to infection rate numbers without 

any real-world references on which to anchor their evaluation of this variable. To help 

respondents interpret the infection rate numbers, we sought to provide them a best estimate of 

the infection levels (i) at the time of the survey when restrictions had begun to be lifted (0.1%) 

and (ii) at the peak of the pandemic (in terms of daily reported cases and hospitalizations) in 

mid-April (0.43%). The proportion of infectious people in the population is innately 

unknowable due to the presence of asymptomatic and pre-symptomatic cases, limited testing 

capacity, and reluctance to get tested. Therefore, in the absence of official estimates (at the time 

of the survey13), we obtained the above numbers from back-of-the-envelope calculations using 

daily reported infections. In the experiment, five levels around these reference infection rates 

were used: 0.01% (pre-restriction levels), 0.1% (at the time of the survey), 0.5% (mid-April 

 
13 Since then, the Dutch government has published these figures (also retroactively) (Rijksoverheid, 2021). Their 

estimates for April 15 and May 20 (at the time of the survey) are 0.34% and 0.08%, respectively. Although these 

values are fairly close to ours, they estimate the peak of the infection rate to be around the end of March rather 

than mid-April. 
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level), 2% 10% (extremely high). For the other contextual variable, in-vehicle time, three levels 

were used: 10, 25, and 40 minutes.  

Table 13: Graphical presentation of crowding levels 

Crowding Level Graphic 

Almost empty 

 

Able to sit alone 

 

Unable to sit alone but not too crowded 

 

Quite crowded 

 

Packed 

 
 

We used a semi-random experiment design: weakly dominated and symmetrical choice 

situations were removed from the full factorial of the above-described attribute levels; and from 

these, 4 subsets of 15 choice situations were randomly picked. Respondents then faced one of 

these subsets at random. Walker et al. (2018) argue that semi-random designs, where dominated 

choice tasks are eliminated, perform as well as efficient designs, particularly because they are 

robust against a large range of parameter estimates and model specifications. A screenshot of 

the experiment is shown in Figure 19. 

2.2 Data collection 

In March 2020, the Dutch government urged travellers to use public transport only ‘if it is really 

needed’. By May 2020, having achieved a reduction in the daily reported cases, Dutch 

authorities announced that certain professions, services, and educational activities could resume 

by the end of that month (Rijksoverheid, 2020). Furthermore, public transport could be used 

once again by mid-June 2020 but with new regulations such as mandatory face masks and  seat 

blocking to maintain distance (the latter was stopped in July 2020) (Openbaar Vervoer 

Nederland, 2020b). Data collection took place from 20 to 25 May, after announcements 

concerning these measures had been made. A total of 513 valid responses14 were collected via 

an online panel. The survey was offered in Dutch and we expected a completion time of 12–15 

minutes. In addition to the stated choice experiment described above, three categories of 

 
14 About 40 responses completed in less than 6 minutes were removed as this was considered to be too fast to have 

been properly answered. Response time was not a significant indicator in a simple linear-additive multinomial 

logit model and a model with just these responses returned many insignificant (p < 0.05) parameters indicating 

randomness in the responses given. 



84 Route Choice Behaviour under Uncertainty in Public Transport Networks 

 

personal characteristics were collected to explain potential differences in behaviour: (i) mobility 

factors, (ii) socio-demographic factors, and (iii) COVID-19-related qualitative measures. 

Screening 
The survey was distributed to Dutch train travellers who travelled by this mode at least once 

per month before March 2020 when the first pandemic-related restrictions were imposed. 

Furthermore, we sought to collect a sample representative of the overall Dutch population in 

terms of age, gender, and education level (Table 14). 

 

 

Figure 19: Screenshot of the choice experiment (translated to English) 
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Table 14: Sample characteristics 

Total respondents 513   

  Distribution (%) 

Attribute Value Actual Required15 

Gender 

Female 49% ~50% 

Male 50% ~50% 

Other 0%  

    

Age 

18-24 15% 11% 

25-34 18% 16% 

35-44 17% 15% 

45-54 17% 18% 

55-64 19% 17% 

65-74 13% 14% 

 >74 2%16 10% 

    

Education17 

Elementary school  

(basisonderwijs) 

1%  

~29% 

Secondary school  

(HAVO/VWO/VMBO) 

27% 

Vocational diploma  

(MBO) 

34% ~37% 

Higher professional education  

(HBO) 

25%  

~33% 

University education  

incl. bachelor, master, PhD  

(WO) 

13% 

 

Personal characteristics 
In the first category of personal characteristics, we asked travellers how often they travelled 

with the train before and during the pandemic-related restrictions, the crowding level they 

usually experienced, their most frequent purpose of travel, and which alternative modes were 

available for these trips. In the second category, common socio-demographic questions (age, 

gender, income, employment status, zip code, highest education attained, and household size) 

were asked. In addition, some variables more specific to the current context were also collected; 

in particular, ages of household members and past, current, and expected future status of 

working or studying from home. The final category consists of questions regarding the 

perceived likelihood of the respondent or someone in their household getting infected and the 

severity of the disease if they do. Respondents were also asked about the degree to which they 

think they, themselves, and others follow pandemic related advice and regulations such as 

frequent hand sanitization and social distancing in public places. Finally, this category also 

includes questions about institutional trust and frequency of information seeking in relation to 

the pandemic. Note that all variables in this category except the last one noted here are 

qualitative Likert scale measures. 

 
15 Source: Centraal Bureau voor de Statistiek (2020) 
16 The under-sampling here is potentially due to the minimum train trip frequency requirement 
17 Translated to international equivalents 
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2.3 Choice analysis 

Observations are analysed under the conventional random utility maximization framework 

where the utility of an alternative i for individual n, Uin, consists of a systematic (Vin) 

component, capturing the utility associated with factors observed by the analyst, and a random 

(εin) component. We assume that the systematic component is linear-additive and is computed 

by taking the sum of the alternate specific constant (βi) and the product of taste preferences (βij) 

and the values of attributes, j (xijn) (Equation [15]). The probability of choosing alternative i 

from I alternatives in a multinomial logit (MNL) model, is given by Equation [16]. 
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To assess heterogeneity in traveller behaviour we use a latent class choice model (LCCM) 

which is a discrete mixture of choice models to which individuals are probabilistically allocated. 

Although the choice models can have different attributes, structures, or even belong to a 

completely different framework, we use the same model in each class. The probability of an 

individual n, belonging to class s (amongst S classes) with probability πns, choosing alternative 

i is the product-sum of the class membership probabilities and the probability of selecting that 

alternative for each class (given the vector of taste parameters in that class, βs) (Equation [17]

). Panel effects are accounted for by assuming that a particular individual is allocated to each 

class with the same probability for all their choices. The likelihood of observing an individual’s 

sequence of choices i:i1,…,iT by individual n over T situations is given by Equation [18]. 
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An important aspect of LCCM is the ability to explain behavioural heterogeneity though class 

membership probabilities using values of individual characteristics, k (zkn) (Equation [19]). We 

use socio-demographic and mobility characteristics to explain class membership. For other, 

generally unobservable variables (such as, worrying about transmitting the infection to someone 

in the household), we conduct a posterior analysis to find the distributions of these variables in 

the classes of the estimated model. 
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The class-specific taste parameters (βs) and membership coefficients (γks, δs) are simultaneously 

estimated using PythonBiogeme (Bierlaire, 2016). 
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3 Results and discussion 

Since the experiment was conducted in the context of the COVID-19 pandemic, one fear was 

that a large number of respondents would simply opt-out of using trains altogether. Ultimately, 

this was not the case and only about 4% of the respondents always opted-out while 13% never 

opted-out in the 15 situations they faced. A substantial number of respondents always ranked 

waiting higher than the crowded train (~13%) or vice versa (~3%). However, only about 1% 

and 3% always chose waiting or taking the crowded train as their top option, respectively. As 

expected, the proportion of observations where the respondent takes the crowded train rises 

with the extra waiting time required to reduce one person on-board (Figure 20). 

 

We tried a number of utility specifications, in particular varying whether attributes were 

modelled as having a linear or non-linear effect. Since, perceived infection risk (and, therefore, 

disutility of a train alternative) may be higher when two contributing factors are higher together, 

we also included interaction effects of crowding with infection rate and in-vehicle times in the 

utility specification. Ultimately, the specification in Equation [20] within MNL was found to 

provide the most informative model parameters. Table 15 gives an overview of attributes 

included in the final model. 

 

The MNL model shown in Table 16 is finalized by removing insignificant (p > 0.10) parameters 

one-by-one. As shown, all parameters have the expected signs and magnitudes: the likelihood 

of choosing an option generally decreases with increasing crowding and waiting time while the 

likelihood of opting out increases with increasing infection rate. A small and large non-linear 

effect is found for the highest attribute levels of crowding and infection rate, respectively. Since 

respondents were only shown graphics for on-board crowding, meaningful non-linear effects 

possibly indicate that respondents may be applying subjective labels (Li and Hensher, 2013); 

for instance (as will be shown in the LCCM results) assigning a much higher utility to being 

able to sit alone than to a similar reduction in crowding otherwise. Although the coefficients 

for in-vehicle time and the interaction between crowding and in-vehicle time were not 

significant for the MNL model, we keep them in the specification tested for the LCCM. 

 

 

Figure 20: Proportion of observations choosing crowded train versus extra waiting time 

to reduce one person on-board 
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We examined whether removing respondents who consistently ranked the crowded train higher 

or lower than the other train alternative (~16% of the sample) affected the results. The MNL 

model estimated from this reduced sample shows a slightly lower impact of crowding and 

infection rates, and a higher (negative) impact of opting out. A possible reason for this is that 

those who consistently ranked less crowded trains higher often selected opting out as their most 

preferred option. We also tested consistency in responses to check for respondent fatigue. To 

do this, we split the choice dataset into two—responses to the first eight choice situations and 

the last seven choice situations—and estimate the described MNL model for each set. While 

the value of crowding (relative to waiting time) remains similar, the model for the last seven 

situation shows larger and smaller impacts for infection rate and opting out, respectively. We 

suspect that as respondents gain experience with the choice situation, they are able to better 

discriminate between the contextual variable that is infection rate. 

 

For the LCCM, we first find the optimal number of classes using an intercept-only class 

membership function. Typically, this is done using the model fit indicators, particularly the 

Bayesian information criterion (BIC), which explicitly penalizes the number of parameters in 

the model. In our case, model fit indicators continued to improve as we increased the number 

of classes (we checked up to 6 classes). Therefore, we chose the 2-class model as it, in our 

opinion, best described heterogeneity in behaviour. While the 2-class model clearly delineated 

two behavioural types, adding more classes yielded intermediate groups without adding more 

insights. Moreover, adding more groups resulted in higher standard errors of estimated 

parameters and even led to unexpected parameter signs for higher number of classes. Next, the 

choice models in each class are finalized in the same way as the MNL model: by removing 

insignificant (p > 0.10) parameters one-by-one. Finally, all non-correlated observable 

individual characteristics are included in the class membership function and eliminated one-by-

one if they are insignificant to arrive at the final model shown in Table 16.  

 

The choice parameters in both classes have signs and magnitudes in line with expectations. 

Results show that, in general, higher levels of crowdedness, waiting times, and infection rates 

all reduce travellers’ willingness to board a particular train alternative and increase the 

probability of opting out. Surprisingly, for the LCCM too, in-vehicle time—time to be spent in 

an enclosed train coach—does not affect travellers’ decisions indicating that they might be 

underestimating the importance of duration of exposure on the risk of infection. 
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Table 15: Overview of attributes included in the final choice model 

Attributes Symbol Explanation Range 

Choice coefficients    

Crowding (level i) βcrowd: i Categorical (effect coded)  

Waiting time βWT 
All time attributes are in minutes 

3-25 

In-vehicle time βIVT 10-40 

Infection rate (level i) βinfect: i Categorical (effect coded)  

Opt-out constant βopt-out   

    

Personal 

characteristics 

   

Age βage Ordinal in ascending order: 

18-24, 25-34, 35-44, 45-54, 55-64, 65-74, 

75-84 

1-7 

Gender βfemale Categorical (effect coded): 

female, male 

 

Train use frequency 

during COVID  

βtrain freq. covid Ordinal in ascending order: 

never, once per month, 1-3 times per 

month, more than 4 times per week 

1-4 

 

To enable comparisons of coefficients across models, we calculate the ratio of each attribute 

coefficient to the waiting time coefficient under the scaled values columns in Table 16. As can 

be seen from the scaled columns, the two estimated classes differ strongly on the relative impact 

of level of crowdedness and infection rates. Moreover, the general propensity to opt-out has a 

very large effect in both classes but is in opposite directions. Based on these differences, we 

call the first class ‘COVID Conscious’ as decisions in this group are more strongly driven by 

the level of crowdedness, infection rates, and the expected number of infected persons on-board 

(approximated by the interaction effect of crowdedness and infection rate). In contrast, the 

second class, which we call ‘Infection Indifferent’, is affected by these factors to a lesser degree 

and is also less likely to opt-out on average. 

 

Since respondents are assigned to classes probabilistically, econometric indicators calculated 

for the two classes do not directly apply to individual respondents. Instead, they form the lower 

and upper boundaries for individual indicators which are obtained as the weighted average of 

the estimates for the two classes. Averaging the individual-specific indicators gives an 

aggregate value over the whole sample. The weights—posterior membership probabilities—are 

calculated by multiplying the prior probabilities (obtained by applying the class membership 

model) with the likelihood of observing individual respondents’ sequence of choices and then 

normalizing (Hensher et al., 2015). The sum of the posterior probabilities for each class gives 

the class sizes shown in percentage in Table 16. To examine the extent to which individuals 

belong to either class, in Figure 21, we plot the distribution of absolute difference between 

posterior class membership probabilities (higher values indicate a more deterministic 

assignment to either class). As can be seen, about 85% of respondents are assigned to one class 

with a probability of 95% or more. In the following, we discuss traits of the two latent classes—

alternatively referring to prototypical (i.e., representative) travellers of either class—rather than 

focussing on aggregate estimates. Note that, given the posterior probability distribution, for 

most respondents, individual-specific estimates would be close to those calculated for one of 

the classes. 
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Table 16: Estimation results 

Model MNL LCCM 2-Class 

# Parameters 10 23 

Initial LL -8453.822 -8054.030 

Final LL -7572.643 -6498.217 

Adjusted ρ2 0.103 0.190 

BIC 15234.77 13202.246 

    Class-specific choice models 

    Class 1:  

COVID Conscious Travellers 

Class 2: 

Infection Indifferent Travellers 

Class Size    53.73% 46.27% 

          

 Coeff. p-val Scaled Coeff. p-val Scaled Coeff. p-val Scaled 

βcrowd: almost empty 1.317 – -42.76 2.230 – -159.29 0.690 – -18.16 

βcrowd: can sit alone 0.245 0.00 -7.95 0.792 0.00 -56.74 0 – – 

βcrowd: not crowded -0.188 0.00 6.10 -0.531 0.00 37.93 0.110 0.01 -2.89 

βcrowd: quite crowded -0.558 0.00 18.12 -0.921 0.00 65.79 -0.262 0.00 6.89 

βcrowd: almost full -0.816 0.00 26.49 -1.570 0.00 112.14 -0.538 0.00 14.16 

βWT -0.031 0.00 1 -0.014 0.02 1 -0.038 0.00 1 

βcrowd×infect -0.0012 0.00 0.004 -0.0046 0.00 0.33 -0.0026 0.00 0.07 

βcrowd×IVT – – – – – – – – – 

βinfect: 0.01 -0.397 – 12.89 -0.720 0.00 51.43 0 – – 

βinfect:0.1 0.059 – -1.92 -0.213 – 15.21 -0.488 – 12.84 

βinfect: 0.5 0 – – 0.133 0.08 -9.5 0 – – 

βinfect: 2 0.387 0.00 -12.56 0.521 0.00 -37.21 0.254 0.00 -6.68 

βinfect: 10 0.375 0.00 -12.18 0.279 0.05 -19.93 0.234 0.00 -6.16 

βIVT – – – – – – – – – 

βopt-out -0.424 0.00 13.77 0.927 0.00 -66.21 -2.02 0.00 53.16 
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Table 16 (continued) 

Model MNL LCCM 2-Class 

    Class membership model 

    Class 1:  

COVID Conscious Travellers 

Class 2: 

Infection Indifferent Travellers 

    Coeff. p-val Scaled Coeff. p-val Scaled 

βintercept    0 – – -1.160 0.00 1 

βage    – – – -0.107 0.08 0.09 

βfemale    – – – -0.275 0.01 0.24 

βtrain freq. covid    – – – 0.820 0.00 -0.71 
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Figure 21: Distribution of absolute difference between posterior class membership 

probabilities 

 

Typically, the effect of crowding has been modelled as an in-vehicle time multiplier (Li and 

Hensher, 2011b; Wardman and Whelan, 2011). The idea being that the disutility of 

crowdedness should be larger for longer trips because passengers have to be in a crowded 

vehicle for a longer time. We included crowding in our model both as a constant penalty as well 

as an interaction effect with in-vehicle time (i.e., as a multiplier). As shown in Table 16, the 

time multiplier parameters were not significant. When constant penalties are excluded, the time 

multiplier parameters are significant but, similar to Kroes et al. (2014), the model has a 

significantly lower goodness of fit. We note that constant penalties may only be performing 

better for the range of in-vehicle times that were tested in this survey or because in-vehicle 

times were only included as context effects in the experiment.  

 

Equation [21] shows how the values of crowding are calculated. Since we estimate parameters 

for each crowding level (i), the coefficient for change in crowding between two levels 

(βcrowd:i→i+1) is given by the difference in the utility contributions divided by the difference in 

the number of persons on-board (xi). This crowding coefficient divided by the coefficient for 

waiting time gives the value of crowding in terms of waiting time between those levels (ϒ i→i+1). 

The average value of crowding (ϒ) is given by the weighted average of these individual values 

of crowding. 
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Prototypical travellers of the COVID Conscious class, are willing to wait an extra 8.75 minutes, 

on average, to reduce just one person on-board. As shown in Figure 22, travellers in this class 

are willing to wait the most when there is a possibility to sit alone. This is indicative of the 

aversion towards infection risk in this class as well as the general framing of the choice 

situations in the context of the pandemic. Note that this is in contrast to previous studies which 

typically report that the impact of crowding increases with the number of persons on-board, 

especially after 60–80% load factor (Hörcher et al., 2017; Wardman and Whelan, 2011; Yap et 

al., 2018). The value of crowding for Infection Indifferent travellers seems to be more in line 

with values from previous studies (albeit on the higher end) with an average willingness to wait 

of 1.04 minutes to reduce one person on-board. (The average willingness to wait in the MNL 

model is 2.23 minutes per person.) 

 

Previous studies that evaluate the effect of seating occupancies—either as constant penalties or 

in-vehicle time multipliers—and waiting times can be compared with our results. To convert 

coefficients from such studies to units comparable to ours, where required, we assume a total 

seat capacity of 40 and an in-vehicle time range of 10–40 minutes. Preston et al. (2017) 

observed stated choices in an experiment where respondents chose between two trains: the first 

which was due but with no possibility to sit and the second with a given expected waiting time 

and one of two lower crowding levels. They report constant crowding penalties that lead to 

values of crowding in the range of 0.52–0.96 minutes per person. From an experiment similar 

to ours, Kroes et al. (2013) find a willingness to wait of 0.15 and 0.33 minutes per person to 

reduce crowdedness from 75% to 50% and from 100% to 75%, respectively. Assuming 

expected waiting times to be half of headways, Tirachini et al. (2013) find similar values of 

0.15–0.6 minutes per person from a mode choice experiment. For comparison, note that we 

found the COVID Conscious and Infection Indifferent classes willing to wait 8.75 and 1.04 

minutes per person, respectively. Douglas and Karpouzis (2006) and Sahu et al. (2018) use 

similar stated choice experiments for Sydney and Mumbai. They find that travellers are willing 

to wait 1.88–7.52 minutes and 3.58–14.32 minutes, respectively, for an uncrowded seat over a 

crowded seat alternative. Assuming ‘not crowded’ and ‘almost full’ to be the corresponding 

categories in our model, we find an extremely high value of 74 minutes and a more moderate 

17 minutes in the COVID Conscious and Infection Indifferent classes, respectively. Using 

revealed preferences from smart card data in The Hague, however, Yap et al. (2018) found 

significantly lower values between 0.015 and 0.06 minutes per person (depending on in-vehicle 

times) for trams. Thus, while both the COVID Conscious and Infection Indifferent classes show 

higher values of crowding, the latter is much closer to pre-pandemic estimates from stated 

choice experiments. 

 

As shown in Figure 23, for both classes, the tendency to opt-out increases as a concave function 

of the prevalent infection rate. The effect plateaus at extreme infection rates (2% and 10%) 

indicating that travellers may be considering a threshold level beyond which the infection rate 

itself no longer contributes to perceived risk. A t-test could not reject the null hypothesis that 

the coefficients for these extreme infection rate levels are equal in either class (p-values: 0.17 

and 0.91 for each class, respectively). Other consecutive levels are statistically different (p-

value < 0.01). The graph for COVID Conscious prototypical travellers demonstrates, again, the 

strong preference to sit in an almost empty coach or to sit alone. Furthermore, note that the opt-

out rates for crowded vehicles in the COVID Conscious class are fairly inelastic in relation to 

infection rates. This might indicate that travellers in this group would not feel safe travelling in 

crowded vehicles even when infection rates are back to pre-pandemic levels. 
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Amongst the individual characteristics collected, three variables contributed to explaining the 

differences in behaviour between the two classes. Older and female respondents were over-

represented amongst COVID Conscious travellers whereas those reporting higher train use 

during the COVID-19 restrictions were likely to be Infection Indifferent. Presumably, older 

people, are more risk averse due to a higher vulnerability to the disease. While the disease does 

not seem to affect women more severely than men, female respondents have often been shown 

to be more risk averse in their decisions (e.g., de Palma and Picard (2005)). Kluwe-Schiavon et 

al. (2021) also find that older and female respondents had a lower COVID-19 risk tolerance for 

economic opportunity. The causal relationship between higher train use during the pandemic 

and lower risk aversion may be in either direction. Travellers with a higher probability of being 

Infection Indifferent may have used the train more frequently because they are not particularly 

averse to the COVID-19 risk. Conversely, lower risk aversion amongst those who use the train 

more frequently during the pandemic might be explained by the existence of the description-

experience gap when evaluating risky choices. When judging the likelihood of contracting 

COVID-19 on public transport, these travellers may be depending more on their experience 

rather than the risk described by authorities (Barron and Erev, 2003). When people make 

decisions based on experience, they do not account for rare events as much as the objective 

probabilities of such events suggest they should (Hertwig and Erev, 2009). A little surprisingly, 

having the possibility to conduct the trip with a private mode (e.g., car, bicycle, walk) was not 

related to the propensity to opt-out of the train alternatives. 

 

 

Figure 22: Value of crowding (in terms of waiting time minutes per person on-board) 

between levels in the two traveller classes18 

 
18 The value of crowding interpolated between can sit alone and not crowded in the Infection Indifferent class 
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Figure 23: Probability of not using trains versus infection levels for different crowding 

levels in the two groups (wait time for trains is 12 minutes) 

 

Figure 24 shows the posterior distributions of some unobserved COVID-19-related qualitative 

measures. To obtain these distributions, the posterior membership probabilities are summed 

class-wise for all respondents who select a particular level for an indicator. The class-wise sums 

are then normalized by the respective class-sizes to find the percentage of each class that would 

select a given level on the indicator being analysed. Since respondents are only probabilistically 

assigned to either class, we note that the distributions convey the characteristics of the latent 

class rather than that of the individuals. Although the two classes do not differ too strongly on 

these factors, small differences can be noted. The COVID Conscious class tends to be more 

worried about the pandemic, specifically, about being hospitalized and spreading the infection 

to someone in their household. A moderate correlation exists between age and worrying about 

being hospitalized but not with other factors (older travellers are over-represented in this class). 

Additionally, travellers highly likely to be COVID Conscious reported themselves to be more 

rule-following, indicating that they followed advice such as frequently sanitizing hands and 

maintaining 1.5 m distances in public places. Moreover, they also had a more negative opinion 

about the degree to which others followed these rules. Indicative of the long drawn national 

debate over it (DutchNews.nl, 2020), face mask use is unpopular with both classes and largely 

uncorrelated with the degree to which other measures are followed. 

4 Conclusion 

The COVID-19 pandemic has had an extensive impact on public transport. As a result of actions 

and advisories aimed at containing the disease, public transport ridership has declined sharply, 

perceptions regarding this mode have become more negative, and there has been a shift to 

personal transport modes. Consequently, changes in traveller behaviour in order to minimize 

exposure to the virus are expected. Moreover, these changes may be sustained through different 

stages of the pandemic and even have a significant effect on public transport demand after the 

pandemic. While a number of studies examine current ridership patterns and anticipated 

transport preferences, few have investigated trade-offs in the age of COVID-19 via choice 

analysis in detail.  
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Figure 24: Class profiles of personal, unobserved, qualitative measures related to the COVID-19 pandemic 
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In this study, we analysed traveller behaviour related to factors affecting the risk of COVID-19 

transmission in public transport with a stated choice experiment. Since one of the most 

important ways to avoid exposure is to reduce contact with other people, we measured 

travellers’ (potentially updated) valuation for on-board crowding. To do this, we obtained 

respondents’ preferences between a crowded-but-low-wait-time and a less-crowded-but-

higher-wait-time (and an opt-out) alternative. Choices were presented in the context of exposure 

duration (operationalised as the in-vehicle time of the alternatives) and infection rate to examine 

the effects of these risk-contributing factors on choice behaviour.  

 

Responses were collected from train travellers in the Netherlands at the end of the first infection 

wave (May 20-25, 2020), just as the first restrictions were being lifted and new regulations were 

setup for travel in public transport. We believe that behavioural insights from this study will 

contribute to better demand forecasting. In addition to providing insights regarding when 

travellers opt-out (i.e., choose not to travel), by modelling decisions of the type ‘to board or to 

wait’ we can provide an important behavioural input to agent-based models (e.g., Cats and 

Gkioulou (2017)) that commonly simulate this choice situation. These results will also be 

valuable in informing public transport policy decisions, not only in the current pandemic but 

also future ones. 

 

Applying a latent class choice model, we found two, nearly equal-sized traveller segments: 

COVID Conscious and Infection Indifferent. While higher crowding levels and infection rates 

reduce the willingness to board a train in both, the effect of these factors is much larger in the 

COVID Conscious segment. Value of crowding, measured as the number of minutes travellers 

are willing to wait to reduce one person on-board, is also significantly higher in this class (on 

average 8.75 minutes/person) and increases sharply with the possibility to sit alone. In contrast, 

Infection Indifferent travellers’ value of crowding (on average 1.04 minutes) is comparable to, 

although slightly on the higher end of, pre-pandemic evaluations. Moreover, unlike their 

counterparts, COVID Conscious travellers are highly affected by the prevalent infection rate, 

particularly at low crowding levels, and are more likely to opt-out in general. Surprisingly, 

neither group took the exposure duration into account. Older and female respondents are over-

represented in the COVID Conscious class while those who report higher train use during the 

pandemic are more likely to belong to the Infection Indifferent class. Finally, distributions of 

COVID-19-related indicators showed that COVID Conscious travellers were more worried 

about the pandemic, considered themselves and household members more likely to be 

hospitalised if infected, and reported themselves to be following related measures to a higher 

degree. 

 

Although the crowding valuation for the COVID Conscious class is high, we note that it does 

not necessarily imply that travellers are willing to accept hour-long waits. Firstly, respondents 

had the option to opt-out and secondly, applications of the choice model must, technically, be 

within the range of waiting times included in the experiment (3–25 minutes). Thus, the COVID 

Conscious class model, in fact, indicates a very strong preference for either selecting the less 

crowded train or opting out altogether. On the other hand, prototypical travellers of the Infection 

Indifferent class, show a more nuanced decisions between taking the crowded train or waiting. 

Furthermore, while we cannot rule out the possibility that the COVID Conscious class has an 

inherently lower value of time, the results as a whole strongly suggest that the high values of 

crowding are driven by sensitivity to pandemic risks. For instance, the COVID Conscious class 

has a higher likelihood of opting out and is impacted more strongly by infection rates. 

Moreover, it also scores higher on indicators such as worrying about COVID-19, likelihood of 



98 Route Choice Behaviour under Uncertainty in Public Transport Networks 

 

being hospitalized, hygiene-related rule following, etc.; all of which imply a strong impact of 

the pandemic. 

 

A variety of direct and indirect effects of the pandemic have led public transport ridership to 

plummet. Given the importance of public transport in economic recovery and sustainable 

mobility, authorities and operators need to work to improve travellers’ perception about public 

transport and slow down the shift to non-sustainable modes. Ridership levels have typically 

returned to normal at the end of previous localized catastrophic events, such as epidemics and 

security threats (Gkiotsalitis and Cats, 2020). However, the COVID-19 pandemic is 

unprecedented in its spatial and temporal scale with regions around the world going in and out 

of lockdowns over an extended period of time. Thus, authorities cannot depend on ridership to 

improve by itself but must actively work towards increasing public transport demand while 

providing this essential service safely.  

 

The apprehension of the COVID Conscious segment seemingly follows calls from authorities 

to avoid public transport. While such calls are compatible with the intuition that sharing 

confined spaces may be unsafe, there is little to no hard evidence of outbreaks linked to public 

transport. This might suggest that public transport travel could be safe if recommended 

measures are implemented (Gkiotsalitis and Cats, 2020; Goldbaum, 2020; Schive, 2020; UITP, 

2020). Yet, the fact that over two-thirds of COVID Conscious travellers in our sample are 

unwilling to travel if they cannot find an empty row, regardless of infection level, is an 

indication of how difficult it will be to restore travellers’ confidence and foreshadows lingering 

behavioural adaptations from the pandemic in the future. Where trips cannot be replaced by 

telecommuting or active modes, providing crowding information for public transport can be the 

key. For low infection rates (0.1%), when there is a possibility to sit in an almost empty coach 

or with the adjacent seat empty, 50-80% of COVID Conscious travellers in our sample indicated 

that they would use the train. By highlighting which trains and coaches will be less crowded, 

these travellers can adjust their departure times, routes, and even the choice of which coach to 

board. Assuming that these travellers overestimate the likelihood of contracting COVID-19 on-

board public transport, more experience with travelling (even in less crowded vehicles) could 

bring their assessments in line with reality. Future studies may also look into the effect of other 

risk mitigating actions, such as mask mandates and increased cleaning, as well as the 

(perceived) extent to which these are followed on travellers’ risk perceptions. 

 

While public transport may be safe with recommended measures, their overall lower concern 

regarding the virus and absence of substantial behavioural change, indicates that Infection 

Indifferent travellers may not be motivated to follow them carefully. Poor compliance from 

these travellers could increase the real as well as perceived risk for everyone and further drive 

the apprehension of other travellers. Therefore, we must continue to emphasize the need for 

simple measures such as face masks and recognize that returning to pre-pandemic levels of 

crowding while the prevalent infection levels are still significant would be reckless.  

 

Although the stated choice experiment provides important behavioural estimates, we note 

limitations arising from the information provided to respondents and the nature of such 

experiments. Firstly, the prevalent infection rates given as a contextual attribute can only be 

estimated, and trusted estimations may not be available everywhere. Even if they were 

available, one might question whether travellers actually consider this information directly or 

respond to more abstract cues, such as the intensity of regulations or media coverage. However, 

since it is difficult to recreate the entire context for the experiment, we used this single indicator 

(which is correlated to such cues). Furthermore, travellers were helped in anchoring the 
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prevalent infection rates to abstract cues by providing the prevalent infection rates at two 

different dates. Nevertheless, care must be taken when transferring estimations to other 

situations. Future studies could focus on analysing the impacts of specific societal, political, 

and media cues on pandemic-related travel behaviour. 

 

Secondly, crowding information is not commonly available although a growing number of 

public transport networks and trip planning applications now try to provide predictions in some 

format (see review in (Drabicki et al., 2020)). In their smartphone application, the Dutch 

railways show a (qualitative) three-level crowding indicator for most trains and a more precise 

‘seat-finder’ on some trains, showing seat availability in different coaches (Nederlandse 

Spoorwegen). By prominently displaying crowding information, we may have drawn 

respondents’ attention to this aspect more than usual, leading to higher crowding valuation. 

Previous studies (e.g., Yap et al. (2018)) have also claimed that travellers tend to demonstrate 

a higher value of crowding in stated choice experiments than is observed from passively 

collected data. Moreover, while we presented crowding (and waiting time) information as 

objectively true, in real life, depending on factors such as trust in the information provided by 

the operator, travellers may consider attributes of the second train to be uncertain and therefore 

attach a higher disutility to it. We believe reliable crowding information could be key in 

regaining travellers’ trust. Since, crowding is likely to be affected by subjective perceptions, 

studies assessing travellers’ responses to different presentation formats and reliability levels 

would be critical for such developments. 

 

Thirdly, we note that choices observed here are hypothetical and the situations do not directly 

reflect the various constraints arising from societal positions of individuals. These constraints 

have been previously found to play a significant role in travellers actual capacity to change 

behaviour (Kim et al., 2017a). Thus, although we find an intent to avoid trains amongst COVID 

Conscious travellers their ability to do so may be limited because of employer constraints. In 

contrast, some Infection Indifferent travellers may indicate intent to use the trains but do not 

actually do so as they can work/study from home. We attempted to control for such factors by 

marking the opt-out option as ‘I will not make this trip by train’ and asking respondents if they 

had alternative modes for the stated trip purpose. We also asked respondents’ family income 

range and (for working/studying individuals) how effectively they could work/study at home 

as well as the frequency of doing so. None of these variables were found to contribute towards 

explaining choice behaviour. Nevertheless, the precise distribution of travellers between the 

different classes and their propensity to opt-out must be used with care in applications, 

accounting for other individual constraints that might affect behaviour. We can, however, 

confidently interpret crowding valuations and the existence of significant risk-averse and 

indifferent traveller segments. 

 

Finally, we stress that we have observed a snapshot of behaviour (and intent) for present and 

future circumstances. Since the global outbreak of the COVID-19 pandemic in March 2020, the 

situation has developed quickly and unpredictability. Given the widespread and extended 

impact of this pandemic, people have been rapidly adopting and changing behaviours for the 

evolving new realities encountered during the course of this crisis. Yet, these acquired 

behaviours also fluctuate as the level of precaution changes depending on a number of factors, 

such as local infection rates, vaccination status, personal impact assessment, and ‘pandemic 

fatigue’. Thus, the trade-offs estimated here may change with new and significant 

developments; for instance, if a cure for COVID-19 emerges.  
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However, we emphasise that this does not obviate the utility of our findings and policy 

recommendations (or those of similar studies) for two reasons. First, given the uncertainty 

surrounding COVID-19, it has become almost impossible to confidently predict the ‘end’ of 

the pandemic and a return to a state of stability. With the emergence of new variants and 

questions surrounding the duration of vaccine protection and efficacy against new variants, we 

cannot rule out a return to a situation similar to the one analysed here. Second, and more 

importantly, our analysis contributes to a larger picture of traveller preferences (and subsequent 

policy recommendations) in key stages of the pandemic. In time, a meta-analysis charting 

traveller preferences over the pandemic may also be recommended. What we learn about travel 

behaviour from this pandemic will be instrumental in supporting policy-makers to act 

proactively in the next one. 
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Conclusions and Recommendations 

1 Main scientific findings 

This thesis studied route choice behaviour under uncertainty in public transport networks with 

the objective of contributing to the research gaps identified in chapter 1. This objective was 

broken down into four research questions each of which has been the focus of one of the 

preceding chapters. Here, we summarise the answers to these questions and briefly discuss 

empirical and methodological findings. 

How to infer route choice sets from passively observed choices using minimal 
assumptions and producing transferable behavioural insights? 
Having identified several drawbacks in existing methods for identifying route consideration 

sets, a choice set generation method using (deterministic) elimination-by-aspects as its basis is 

proposed. This decision heuristic combines attribute ranking and setting thresholds (acceptable 

change over the best possible value), working thus: relevant attributes are listed and ranked, the 

most important attribute is selected, all alternatives that do not meet the threshold for this 

attribute are removed, this attribute is removed from the list, this is repeated until all attributes 

have been checked. An important advantage of this non-compensatory heuristic is that it is 

likely reflecting the actual underlying process of consideration set formation (as opposed to 

simply matching the final empirical outcome). Therefore, in addition to route choice sets, 

insights into their formation are also uncovered from the calibration of the model.  

 

The calibration uses generated feasible and observed routes from GTFS and smart card data, 

respectively. Generating feasible routes consists of the following steps: (i) representation of the 

infrastructure and service components of the network as efficient graphs, (ii) constrained 

enumeration of logical (no loops, no transfers between common lines) routes, and (iii) attribute 

assignment and removal of infeasible (i.e., unavailable) and state-wise dominated routes. This 

is followed by the calibration of the elimination-by-aspects model through an optimization 
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procedure with the objective of balancing demand-weighted coverage (of observed routes) and 

efficiency (of generated routes).  

 

The methodology thus needs as input the list of relevant attributes, the threshold measure (either 

ratio or absolute), and the required balance between coverage and efficiency. Application to the 

tram and bus networks in The Hague found that travellers ranked number of transfers as the 

most important attribute for consideration set formation, followed by waiting and in-vehicle 

time. Travellers do not seem to include alternatives with extra transfers or with travel times 

worse by more than 10% in their consideration set. The overall demand-weighted coverage was 

63.9% but analysis of the coverage and efficiency trends indicates that this can potentially be 

improved by modelling closer and farther origin-destination pairs separately. 

What is the impact of waiting time uncertainty, expressed as different statistical 
representations of its historical values, on route choice behaviour? 
For this research question, we modelled the impact of waiting time uncertainty as if it were a 

known risk (i.e., objective uncertainty). The choices analysed were, however, made under 

natural ambiguity and were obtained from smart card data of the tram and bus networks of The 

Hague. Travel time characteristics were obtained from GTFS and AVL (automatic vehicle 

location data). Waiting time uncertainty is included in the choice model by directly introducing 

statistical measures of its historical values to the utility functions of route alternatives. For this, 

waiting time is split into (i) scheduled waiting time—the planned value of waiting time, (ii) 

regular deviations—the difference between the median of realised values and the planned value, 

and (iii) irregular deviations—the dispersion of the realised values. For the latter, we tested 

different statistical range and buffer time representations. 

 

We estimated separate multinomial logit models for morning peak (06:00–09:00) and off-peak 

(09:00–16:00) hours with mode- and origin/transfer station-specific coefficients. Fairly similar 

fits and coefficient ratios were found for the different statistical measures of irregular 

deviations, indicating that (at least for this network) these measures can be used interchangeably 

(our final models use standard deviation). Similar results for total travel time have also been 

found previously. In the peak hour model, the coefficient for irregular deviations is in the 

direction opposite to expectations. We proposed that this is likely because we are not able to 

control for causality in this experiment and the fact that crowding and dispersion of waiting 

times are positively correlated. Thus, when the effect waiting time unreliability is already low 

(but still negative), our experiment would find that travellers tend to choose the more unreliable 

alternative (because their choices and unreliability are not independent). This effect is likely to 

be more prominent in the peak hours because of the larger demand then. 

 

Our results find reliability ratios (ratios of the coefficients of irregular deviations to the 

coefficients of scheduled waiting times) in the range of 0.20–1.12. This is on the lower end of 

reliability ratios reported in literature, implying that our findings concur with recent empirical 

evidence that revealed preferences analyses find smaller effects of negative attributes (e.g., 

crowding, unreliability) than their stated preferences counterparts. The overall high reliability 

of the networks in The Hague could also be a reason why travellers are less averse to waiting 

time uncertainty. Furthermore, there is also evidence that travellers weight waiting for buses 

higher than that for trams, potentially indicating that travellers perceive waiting for trams to be 

less uncertain. 
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How to evaluate subjective beliefs regarding waiting time for route choices made 
under the ambiguity that is naturally present in the real-world? 
To measure travellers’ subjective beliefs regarding waiting time uncertainty, that is, not 

assuming that waiting time is a known risk, we devise an experiment that takes advantage of a 

commonly occurring choice situation. Travellers’ decisions to either (i) board a public transport 

vehicle (towards the destination) that departs imminently or (ii) wait for a vehicle that reaches 

the destination earlier are observed and used to quantify their attitudes and perceptions of 

waiting time uncertainty in terms of a certainty equivalent. Moreover, the effects of situational 

context variables, such as elapsed waiting time or time-of-day, thereon can also be measured. 

The setup is suitable for stated choice experiments as it avoids learning effects or the need to 

present reliability information. Respondents are thus forced to draw from their own beliefs 

about the network in question when making decisions. And, as it occurs fairly commonly in the 

real-world, revealed choices (say, from smart card data) can also be used to perform a more 

natural experiment. We demonstrate both types of experiments in our case studies with the 

Dutch railways and the urban public transport networks of Amsterdam, respectively. 

 

From the stated choice experiment with travellers of the Dutch railways, we find that accounting 

for subjective waiting time uncertainty in the choice model improves both the model fit and 

prediction performance. Moreover, the waiting to in-vehicle time ratio halves, indicating that 

uncertainty plays a large role in travellers’ assessment of waiting time. On average, travellers 

are willing to trade-off more than 8 minutes of in-vehicle time to obtain certainty in waiting 

time. Heterogeneity is analysed through a latent class choice model wherein we find three types 

of behavioural classes—fully compensatory and in line with the average behaviour (55%), 

lexicographic preference for faster trains (28%), and very high dislike for uncertainty (17%). 

Effects of contextual variables (elapsed waiting time, delays) and inter-class differences in 

qualitative measures of regret propensity and system perception were minor. 

 

We also outlined the data requirements for revealed preference analysis and used smart card 

data from Amsterdam’s tram and bus networks for a case study. Since traveller arrivals at origin 

stops are not observed (which prevents us from knowing which feasible options were not 

chosen), transfer trips are used for the analysis (as we know the arrivals from the AVL data). 

These trips are further filtered to those that meet the requirements for the experiment. 

Estimation of multinomial logit models on these observations find results very similar to the 

stated preferences case study. Model fit is improved and including the certainty equivalent 

causes the waiting to in-vehicle time ratio to shrink. On average, we find that travellers in this 

system are willing to accept an extra 3.6 minutes of in-vehicle time to remove waiting time 

uncertainty. 

What are the impacts of COVID-19 transmission risk determinants on public 
transport travellers’ route choice behaviour? 
In order to analyse public transport travellers’ route behaviour during the COVID-19 pandemic 

we conducted a stated choice experiment with train travellers in the Netherlands at the end of 

the first infection wave there (20–25 May 2020). The experiment was distributed within an 

online survey which also collected socio-economic factors and COVID-19 related qualitative 

measures. The stated choice experiment focussed on three prominent risk criteria in public 

transport: (i) on-board crowding, (ii) exposure duration, and (iii) prevalent infection rate. In 

each scenario respondents ranked two train alternatives (described by their waiting time and 

on-board crowding) and an opt-out option in the context of a given exposure duration (i.e., in-

vehicle time), prevalent infection rate, and their typical trip purpose. 
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We found that a 2-class latent class choice model best described the heterogeneity in behaviour. 

The two classes, which we call COVID Conscious and Infection Indifferent, indicate distinct 

behaviour somewhat at the extremes of the spectrum of behavioural response to COVID-19. 

While the first class has a high propensity of opting-out and its decisions are strongly driven by 

on-board crowding, infection rates, and the expected number of infected persons on-board; the 

latter behaves much more as if it is business-as-usual and is less likely to opt-out on average. 

 

The COVID Conscious class is willing to wait on average 8.75 minutes to reduce one person 

on their carriage and shows the highest preference for sitting alone (i.e., with empty 

neighbouring seat). Note that this high value does not mean that travellers are willing to accept 

extremely long waits because the waiting time range tested in the experiment was only 3–25 

minutes. On the other hand, the Infection Indifferent class is willing to wait only 1.04 minutes 

to reduce one person, slightly higher than pre-pandemic (stated preference) evaluations. In both 

classes, the propensity to opt-out increases with prevalent infection rate up to 2% and then 

plateaus (for context, the estimated infection rate at the peak of the first infection wave the 

estimated rate was ~0.95% (Rijksoverheid, 2021)). Although the increase is much more in the 

COVID Conscious class, at high crowding levels when opt-out rate is already high, it is fairly 

inelastic to infection rate. This indicates that travellers in this class may not feel safe in crowded 

trains even when infection rate goes down. The tested range of exposure duration did not have 

an effect on route choice behaviour. 

 

We find that travellers that are older, female, and who had a lower train use during the pandemic 

were likely to be COVID Conscious. Posterior analysis of the classes also revealed that 

travellers likely to be in this group tended to be more worried about the pandemic, about being 

hospitalized, and spreading the infection. They also reported themselves to be more rule-

following than others even though face mask use remained unpopular with both groups. 

2 Implications for practice 

Our research objective of modelling and analysing the impact of uncertainty on public transport 

travellers’ route choice and our approach to this objective has resulted in a number of practical 

contributions that are relevant for public transport planners, operators, and policy-makers. First, 

we improve the performance of route choice models and provide updated estimates of choice 

behaviour. Second, we propose and demonstrate better experimentation methods that encourage 

data-driven decision-making and reduce reliance on expert and (post-hoc) traveller judgements. 

Finally, we provide actionable insights that public transport providers can employ for various 

objectives, from better system design to tailoring marketing campaigns. 

Improved models 
Demand estimation and assignment models are critical for planning and designing adequate 

levels of service in public transport system. Our research improves these models on two fronts. 

First, we explicitly account for the impact of waiting time uncertainty which is potentially 

linked with travel satisfaction and negative responses such as anxiety and stress. Both objective 

and subjective representations of uncertainty led to significantly better model performance (i.e., 

fit and predictive value). Moreover, the latter was estimated from a ‘to board or not’ choice 

situation that could be particularly interesting for agent-based simulations. The models also 

accounted for various situational contexts (e.g., experienced waiting time) and estimated travel 

time weights for different modes and origin/transfer stops, that planners may also consider for 

improving the accuracy of their forecasts. 
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Second, we estimate choice parameters under the new uncertainties presented by the COVID-

19 pandemic. The pandemic has caused significant disruption to public transport travel and it 

is very likely that travellers now pay much more attention to factors that increase the risk of 

transmission. Our estimates, which include propensity-to-travel for different infection rates and 

updated crowding valuations, can help public transport providers accurately forecast demand 

and the required supply under these new circumstances. Existing models can also be calibrated 

by comparing similar coefficient ratios to our updated values. Considering travellers’ revised 

trade-offs and planning for sufficient supply will be especially critical in light of the dwindling 

ridership levels. 

Better experimentation 
Different studies in this thesis, demonstrate the use of passively collected revealed preferences 

that have the least hypothetical bias. In particular, we develop a route choice set generation 

methodology that is necessary because often direct identification of choice sets is either not 

possible or not suitable. As the methodology requires minimal behavioural assumptions and 

can be directly calibrated with observed data, it empowers data-driven decision-making and 

reduces reliance on domain experts. Furthermore, by producing transferable results it enables 

choice analysis on new (sections of) networks where little data has been observed, thus, 

improving forecasts and consequently network and supply design. Finally, we note that while 

the methodology is demonstrated in this thesis on a large dataset of passively observed choices, 

it can also be used for smaller sets of active observations (e.g., Ton et al. (2020)). Thus, it can 

also be used to analyse preferences, such as station choices, that are not easily evident from 

passively collected data but can be known from smaller-scale surveys. 

 

We also propose an experimentation method to quantify subjective beliefs regarding waiting 

time uncertainty. In addition to improving models as noted above, policy-makers can use this 

experiment to explicitly calculate the cost of being perceived as unreliable. Here too, the method 

encourages a shift away from qualitative, post-hoc judgements of travellers to a data-driven 

paradigm. Along these lines, we also propose that operators leverage the snapshots of 

uncertainty evaluations captured by this experiment as indicators of satisfaction and anxiety. 

Using the experiment then, they can analyse which situational or environmental variables cause 

higher uncertainty perception and assess the efficacy of various measures (from station lighting 

to provision of extra information) on anxiety reduction via randomized trials. As passively 

collected data can be used, operators do not have to make any changes other than the treatment 

(i.e., the applied measure) and can continuously monitor the indicator. 

Actionable insights 
The models and experimentation methods proposed in this thesis can (or have through the case 

studies) provide insights on which public transport providers can act. First, from the proposed 

route choice set generation model, we obtain parameters that give information about how the 

considered choice set is derived. Policy-makers can use this information to further understand 

how public transport can be made more attractive. Moreover, results from the non-

compensatory model also add to insights from traditional choice models that are fully-

compensatory by indicating which trade-offs travellers will not make at all. The derived 

attribute rankings and thresholds can also be used by journey planner applications (in markets 

with dense travel options) to provide mode and route recommendations. 
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Second, the analysis of the impact of waiting time uncertainty gives insights into how it 

manifests in choice models when it is not accounted for explicitly. When uncertainty is analysed 

as if it were objective, we find that perceptions that are not captured by the regular and irregular 

deviations are partially represented in other components such as the tram bonus for waiting time 

(higher waiting time tolerance for trams over buses). When we account for the subjectivity in 

uncertainty, we find (in two separate case studies) that the anticipated waiting time to in-vehicle 

time ratio falls by about half, indicating the large role of uncertainty in the value of waiting 

time. Policy-makers and planners can use these insights to adjust previously determined values 

of different travel time components. The quantification of subjective beliefs can also be used to 

(better) calculate the value of uncertainty for the prioritisation of investments aimed at reducing 

anxiety associated with public transport travel. Furthermore, as waiting time perceptions that 

are not aligned with reality can lead to sub-optimal decisions, journey planner applications can 

use the proposed quantification to highlight biases to travellers and assist them with making 

better decisions. This could be particularly important in mitigating cascading effects of 

disruptions. 

 

Finally, we estimate latent classes of travel behaviour during the early stages of the COVID-19 

pandemic. In line with anecdotal evidence, we find two distinct segments of traveller behaviour 

in response to the pandemic, one that is very conscious about the risks and another that is more 

indifferent. Given the large-scale disruption to public transport systems around the world, 

policy-makers now have the dual aims of stemming the mode shift trend (i.e., bringing travellers 

back to public transport) but also doing so safely. The insights into taste heterogeneity and 

differences in class profiles can be useful to tailor marketing campaigns and policies that 

balance these dual aims. While we also estimate travellers’ intentions under prevalent infection 

rates, we do note that travel behaviour may evolve with the rapidly changing pandemic. Even 

so, the estimated behavioural parameters give policy-makers an insight into this behavioural 

evolution supporting them in becoming more prepared and proactive for the next pandemic. 

3 Recommendations for future research 

Next, we propose avenues for future research which are designed around research gaps that 

have arisen from the studies in this thesis. This research agenda serves not only as a natural 

extension to our research but also as standalone topics to further develop our understanding of 

route choice behaviour in public transport networks. 

Stochastic and heterogeneous route choice set generation 
In chapter 2, we develop a route choice set generation methodology that employs the 

elimination-by-aspects heuristic. The choice sets produced are deterministic (relative to the best 

possible attribute value amongst the feasible alternatives) and identical for all travellers (with 

the same origin and destination). However, it is unlikely that the same set of alternatives would 

have been considered by all travellers and even by the same traveller each time they make a 

choice. Therefore, we recommend formulating a stochastic version of the elimination-by-

aspects heuristic that can account for this. For instance, this could be accomplished by including 

a random component to the threshold estimation for each attribute. Further heterogeneity can 

be accounted for by estimating discrete mixtures of ranking and threshold combinations that 

are used by different travellers. While this might increase computational effort, it could help 

improve the coverage for individual travellers. 
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Extending analysis of waiting time uncertainty 
We propose extending the waiting time analysis in this thesis in four directions by analysing: 

(i) the gap between measurements of uncertainty evaluations from stated and revealed 

preferences; (ii) the development of such subjective beliefs, that is, learning behaviour, (iii) the 

link between travel satisfaction and waiting time uncertainty evaluations, and (iv) the impact of 

unplanned and significant disruptions on subjective beliefs.   

 

First, analysing the gap between measured waiting time uncertainty evaluations from stated and 

revealed preferences. In chapter 4, we analysed stated choices from train travellers in the 

Netherlands and smart card observations from the public transport networks of Amsterdam. 

While we found similar results, it would be useful to understand the extent to which stated 

choice experiment results match those from natural experiments in the same network and under 

similar conditions. Given these results, operators or policy makers may choose to perform the 

experiment in a stated choices context if the required situation occurs rarely in their public 

transport network. 

 

Second, chapter 4 focussed on a limited portion of the theoretical framework proposed therein 

for decision-making under uncertainty. Previous studies have analysed different components of 

the framework independently, typically using stated choices. We suggest using longitudinal 

smart card data in combination with the proposed experimental method for measuring waiting 

time beliefs in order to study components such as the impact of experienced uncertainty 

resolution and habit. A sufficiently large (in terms of number of travellers and time span) dataset 

could help us understand how travellers develop their evaluations of waiting time uncertainty. 

For example, perceived waiting time distributions may be fuzzier for irregular travellers (or 

they might be very dependent on displayed information). Using revealed preferences can help 

overcome some drawbacks of current analyses; specifically, requiring assumptions about initial 

perceptions and the absence of consequences. However, some aspects of decision-making under 

uncertainty may not be possible to study without stated choices, such as the effect of affective 

contexts. 

 

Third, while a link between travel satisfaction and waiting time uncertainty is suggested in the 

thesis, we do not explicitly analyse this. This relationship could be explored with Likert scale 

measures of travel satisfaction (e.g., Soza-Parra et al. (2019)) and their impact on the certainty 

equivalent can be analysed through a structural equation model. The methodology proposed to 

assess travellers’ evaluation of waiting time uncertainty can thus be used to analyse satisfaction. 

As we show in the case study in Amsterdam, smart card data can be used to continuously 

monitor subjective beliefs and consequently travel satisfaction. 

 

Finally, we attempted to analyse the impact of contextual effects on waiting time uncertainty 

evaluations by analysing the relationship between experienced waiting time and (spontaneous 

and minor) delays. However, more disruptive events are likely to have a more significant impact 

on perceptions; for instance, a series of delays or a larger-than-normal crowd on the platform. 

Moreover, if these perceptions are not in line with reality, they may exacerbate the disruption 

or worsen levels of service (as more travellers attempt to board whichever vehicle arrives first). 

Therefore, we propose studying the impacts of such disruptions on subjective beliefs and 

carrying out a simulation analysis of its impact on cascading failures in public transport 

networks. 
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A retrospective assessment of travel behaviour in the pandemic 
The travel behaviour scientific community has rapidly responded to the pandemic since March 

2020. A plethora of studies related to COVID-19 perceptions, aggregate statistics, and to a 

lesser extent choice behaviour quickly followed. Most studies (including the one in this thesis) 

analysed a snapshot of travel behaviour during one or two phases of the pandemic and drew 

comparisons with the pre-pandemic situation. Few exceptions related to mode use and activity 

location patterns (e.g., Beck et al. (2021); Ton et al. (2022)) aside, longitudinal analysis of 

traveller behaviour through the crisis is missing. In particular, travellers’ (heterogeneous) 

valuations of on-board crowding and other risk mitigating factors such as mask-mandates or 

vehicle cleaning are likely to have evolved throughout the pandemic. Therefore, we propose 

conducting a meta-analysis of choice experiments on this topic. Analysing these valuations may 

help public transport authorities develop strategies for a robust response to similar crises in the 

future. 
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Summary 

Research motivation 
Arguably, nearly all real-world decisions are made under uncertainty. Most of these decisions, 

including travel choices, are inherently associated with subjective uncertainty where decision-

makers’ personal beliefs regarding the likelihood of events play a significant role. Such 

uncertainty is largely associated with negative affective responses and has been strongly linked 

with anxiety and stress. This has also been demonstrated for travel behaviour in public transport 

systems where several authors have noted that the two main sources of uncertainty—reliability 

and safety—constitute the most basic of needs. Amongst sources of uncertainty, waiting time 

is perhaps the single most important aspect of travelling with public transport; it is inherently 

frustrating and its inevitability in public transport and travellers’ apparent lack of control can 

induce stress and dissatisfaction. More recently, safety-related uncertainty brought about by the 

outbreak of the COVID-19 pandemic has induced anxiety and public transport avoidance. It is 

critical that the impact of such pervasive uncertainty is analysed in order to achieve the 

overarching aim of making public transport a viable and satisfying alternative to motorized 

individual modes. 

Research objective, scope, and questions 
Given this ultimate aim, the objective of this thesis is to model and analyse the impact of 

pervasive uncertainty on public transport travellers’ route choice behaviour. Because of their 

significant impact, we study the impact of uncertainty related to waiting time, focussing on 

research gaps arising from the source of behavioural data and the type of uncertainty analysed. 

Furthermore, we also assess recent changes in public transport travel behaviour due to the 

COVID-19 pandemic. To achieve its objective, the thesis aims to answer the following four 

research questions (RQ) (as also shown in the thesis structure in Figure 1): 

 

RQ1 How to infer route choice sets from passively observed choices using minimal 

assumptions and producing transferable behavioural insights? (chapter 2) 

RQ2 What is the impact of waiting time uncertainty, expressed as different statistical  

representations of its historical values, on route choice behaviour? (chapter 3) 
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RQ3 How to evaluate subjective beliefs regarding waiting time for route choices made under 

the ambiguity that is naturally present in the real-world? (chapter 4) 

RQ4 What are the impacts of COVID-19 transmission risk determinants on public transport  

travellers’ route choice behaviour? (chapter 5) 

Research approach 
In order to address research gaps related to the source of behavioural data, we use both stated 

and revealed preferences. The former have been collected from (online) stated choice 

experiments with travellers in the Dutch railways, while the latter have been obtained from 

passively collected smart card observations from the public transport networks of The Hague 

and Amsterdam. We contribute to the next set of research gaps by modelling route choice 

behaviour under different assumptions of waiting time uncertainty. First, we make the 

conventional assumption that travellers are aware of objective distributions of waiting times 

and include it as such in our model. Then, we move closer to modelling the real-world by 

accounting for the subjective nature of uncertainty. Finally, research gaps related to the new 

uncertainties brought about by the COVID-19 pandemic are addressed by analysing the impact 

of key transmission risk determinants. While the case studies presented in the thesis use 

observations from travellers in the Netherlands, the methodologies and, to a limited extent, 

findings are applicable to developed public transport networks around the world. 

 

In the first chapter, we propose a choice set generation methodology (using smart card data) to 

answer the first research question. For the remaining questions, choice experiments are carried 

out; underpinned, as is conventional in transportation modelling, by the random utility 

maximization paradigm. In particular, multinomial logit models are employed, which assume 

Gumbel distributed random components, and where panel information is available, taste 

heterogeneity is analysed with latent class choice models. As shown in Figure 1, the data for 

choice analyses is obtained from (i) dedicated stated choice experiments for subjective waiting 

time uncertainty (chapter 4, first case study) and COVID-19 risk determinants (chapter 5) and 

(ii) smart card data for objective (chapter 3) and subjective waiting time uncertainty (chapter 4, 

second case study). 

 

 
Figure 1: Thesis outline 

Scientific contributions 
By addressing the research gaps and answering the research questions above, this thesis makes 

the following scientific contributions: 
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Development of an assumption-parsimonious and transferable route choice generation 

methodology for public transport networks (chapter 2): A route choice set generation 

methodology is developed where consideration set formation is modelled as an elimination-by-

aspects process and the parameters of this model are calibrated with passively observed choices 

from smart card data. Elimination-by-aspects is a non-compensatory heuristic which combines 

attribute ranking and setting thresholds. It is well-aligned to the actual cognitive process and 

requires minimal behavioural assumptions while resulting in actionable and transferable 

insights. The calibration involves an optimization procedure balancing demand-weighted 

coverage of observed routes and efficiency of generated routes. 

 

Analysis of the impact of waiting time uncertainty on route choices in public transport networks 

using revealed preferences (chapters 3, 4): In two case studies, we use revealed preferences to 

analyse route choice behaviour under (objective and subjective) waiting time uncertainty, 

overcoming hypothetical bias related shortcomings of previous stated preference analyses on 

the impact of travel time uncertainty. Travellers’ choices are obtained from smart card data and 

combined with vehicle location and schedule data to enable choice analyses. 

 

Suitability comparison of different statistical representations of waiting time uncertainty in 

route choice models for public transport networks (chapter 3): The impact of waiting time 

uncertainty is modelled as if it were objective—that is, travellers were aware of historical values 

and used them for decision-making. Waiting time is included in a choice model by splitting it 

into scheduled values, regular deviations (median difference between realised and scheduled 

values), and irregular deviations (dispersion of realised values). For the latter, we tested 

different statistical range and buffer time representations and their suitability in representing 

travellers’ perception of uncertainty is assessed by comparing model fits and the face validity 

of other coefficient ratios. 

 

Development of an experimentation method to observe and analyse public transport route 

choice behaviour under natural waiting time ambiguity (chapter 4): An experimentation 

method involving a realistic route choice situation is developed to enable quantification of 

travellers’ subjective beliefs regarding waiting time uncertainty and the impact of situational 

contexts thereon in terms of a certainty equivalent. The choice situation occurs fairly commonly 

in public transport networks, allowing us to generalize findings beyond the scope of the specific 

situation. The method lends itself to both controlled and natural route choice experiments as is 

demonstrated in two case studies. 

 

Analysis of the (heterogeneity in the) impact of COVID-19 transmission risk determinants on 

public transport route choice behaviour (chapter 5): A choice analysis is performed to examine 

the trade-offs between on-board crowding, exposure duration, prevalent infection rate, and 

travel time attributes, with the aim of deriving latent classes of travellers and comparing their 

crowding valuations and propensities to avoid public transport. Furthermore, class profiles 

composed of socio-demographics and pandemic-related attitudes and opinions are derived. 

Main empirical findings 
Next, we discuss the case studies in this thesis and their main empirical findings: 

 

Route choice set calibration (chapter 2): Application of the proposed route choice set generation 

methodology to the urban public transport network of The Hague found that travellers ranked 

number of transfers as the most important attribute for consideration set formation, followed by 
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waiting and in-vehicle time. Travellers do not seem to include alternatives with extra transfers 

or with travel times worse by more than 10% in their consideration set. The overall demand-

weighted coverage was 64% but analysis of the coverage and efficiency trends indicates that 

this can potentially be improved by modelling closer and farther origin-destination pairs 

separately. 

 

Empirical waiting time uncertainty (chapter 3): We used smart card data from The Hague to 

model the impact of waiting time uncertainty as an objective risk. Different statistical 

representations of irregular deviations performed fairly similarly indicating that (at least for this 

network) they can be used interchangeably. Relatively low reliability ratios (coefficients of 

irregular deviations divided by the coefficients of scheduled waiting times)—in the range of 

0.20–1.12—are found. Furthermore, there is also evidence that travellers weight waiting for 

buses higher than that for trams, potentially indicating that travellers perceive waiting for trams 

to be less uncertain. 

 

Subjective waiting time uncertainty (chapter 4): We perform two case studies with our proposed 

experimentation method. The first uses stated choice data from a survey of travellers in the 

Dutch railways and the second uses smart card data from the urban public transport network of 

Amsterdam. In both case studies, we find that explicitly accounting for subjective waiting time 

uncertainty through a certainty equivalent improves the model fit and predictive performance. 

Moreover, it causes the waiting to in-vehicle time coefficient ratio to shrink, indicating that 

uncertainty plays a large role in travellers’ assessment of waiting time.  

 

On average, railway travellers are willing to trade-off more than 8 minutes of in-vehicle time 

to obtain certainty in waiting time. Latent class choice analysis finds three types of behavioural 

classes in these travellers—fully compensatory and in line with the average behaviour (55%), 

lexicographic preference for faster trains (28%), and very high dislike for uncertainty (17%). 

Tram and bus travellers in Amsterdam are willing to accept an extra 3.6 minutes of in-vehicle 

time to remove waiting time uncertainty. 

 

COVID-19 related uncertainty (chapter 5): A stated choice experiment was distributed to 

travellers in the Dutch railways at the end of the first infection wave in the Netherlands. We 

find that the response to COVID-19 risk determinants is best described by two latent classes of 

behaviour: COVID Conscious and Infection Indifferent. The two classes are willing to wait, on 

average, 8.75 minutes (with a strong preference to sit alone) and 1.04 minutes (only slightly 

higher than pre-pandemic stated preference evaluations), respectively, to reduce one person on 

their carriage. While the COVID Conscious class is more strongly affected by the prevalent 

infection rate, at high crowding levels when opt-out rate is already high, it is fairly inelastic to 

infection rate. This indicates that travellers in this class may not feel safe in crowded trains even 

when infection rates are lower. The class membership model shows that women, older 

travellers, and those who had a lower train use during the pandemic were more likely to be 

COVID Conscious. 

Practical implications 
The thesis makes several contributions relevant for public transport planners, operators, and 

policy-maker. First, we produce improved models of public transport route choice behaviour 

by explicitly including waiting time uncertainty (e.g., through irregular deviations, certainty 

equivalent) in choice models, estimating updated crowded valuations (in light of the pandemic) 

and the impact of prevalent infection rates, and reducing hypothetical bias by using revealed 
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preferences. These suggested attributes and relevant coefficient ratios can be incorporated into 

existing models or analyses (e.g., by calibrating against common coefficient ratios) for better 

forecasting and, consequently, improved system design. Second, our proposals for route choice 

set generation and capturing subjective beliefs should lead to better experimentation. The 

former enables experiments with revealed preferences (with minimal behavioural assumptions 

and when direct identification is not possible), leading to behavioural analysis with smaller 

hypothetical bias. The latter captures travellers’ true perceptions of waiting time uncertainty; 

and the snapshots of certainty equivalents captured by this method can be used to analyse which 

situational or environmental variables cause higher uncertainty perception. Third, we provide 

directly actionable insights, such as: using outputs from the choice set generation methodology 

(attribute rankings and thresholds) to provide travellers with better route recommendations; 

making use of descriptive analysis of travellers’ waiting time perceptions for prescriptive 

purposes; or applying knowledge of travellers’ response to COVID-19 risk determinants to re-

plan supply, tailor marketing campaigns, and support anticipatory preparation for similar future 

events. 

Recommendations for future research 
Based on the research gaps arising from the studies in this thesis a research agenda is sketched 

containing the following topics: 

 

Stochastic and heterogeneous route choice set generation: Formulate a stochastic version of 

the elimination-by-aspects heuristics and use discrete mixtures of ranking and threshold 

combinations to account for intra- and inter-traveller heterogeneity in consideration set 

formation. This will bring the choice set generation methodology further in line with actual 

behaviour and improve coverage for individual travellers. 

 

Extending analysis of waiting time uncertainty: Analyse (i) the gap between measurements of 

uncertainty evaluations from stated and revealed preferences; (ii) the development of such 

subjective beliefs, that is, learning behaviour; (iii) the link between travel satisfaction and 

waiting time uncertainty evaluations; and (iv) the impact of unplanned and significant 

disruptions on subjective beliefs. These analyses have the overarching objectives of improving 

our understanding of travel behaviour under uncertainty and applying that to improve public 

transport services.  

 

A retrospective assessment of travel behaviour in the pandemic: Conduct a meta-analysis of 

travellers’ (heterogeneous) valuation of (perceived) risk determinants and mitigating factors, 

such as on-board crowding and vehicle cleaning through the COVID-19 pandemic to develop 

strategies for a robust response to similar crises in the future. 

 

  



122 Route Choice Behaviour under Uncertainty in Public Transport Networks 

 

 

 



 

123 

Samenvatting 

Onderzoeksmotivatie 
Het is redelijk om te stellen dat bijna alle beslissingen in de echte wereld worden genomen 

onder onzekerheid. De meeste van deze beslissingen, waaronder reiskeuzes, zijn inherent 

verbonden met subjectieve onzekerheid waarbij de persoonlijke overtuigingen van 

besluitvormers over de waarschijnlijkheid van gebeurtenissen een belangrijke rol spelen. Deze 

onzekerheid gaat grotendeels gepaard met negatieve affectieve reacties en is sterk verbonden 

met angst en stress. Dit is ook aangetoond voor reisgedrag in het openbaar vervoer, waar 

verschillende auteurs hebben opgemerkt dat de twee belangrijkste bronnen van onzekerheid - 

betrouwbaarheid en veiligheid - de meest fundamentele behoeften vormen. Onder de bronnen 

van onzekerheid is wachttijd misschien wel het belangrijkste aspect van reizen met het openbaar 

vervoer; het is inherent frustrerend en de onvermijdelijkheid ervan in het openbaar vervoer en 

het schijnbare gebrek aan controle van reizigers kunnen stress en ontevredenheid veroorzaken. 

Meer recentelijk heeft de onzekerheid over de veiligheid als gevolg van de uitbraak van de 

COVID-19-pandemie geleid tot angst en vermijding van het openbaar vervoer. Het is essentieel 

dat de impact van dergelijke alomtegenwoordige onzekerheid wordt geanalyseerd om het 

overkoepelende doel te bereiken om het openbaar vervoer een levensvatbaar en bevredigend 

alternatief te maken voor gemotoriseerde individuele vervoerswijzen. 

Onderzoeksdoel, reikwijdte en vragen 
Gezien dit uiteindelijke doel, is het doel van dit proefschrift om de impact van 

alomtegenwoordige onzekerheid op het routekeuzegedrag van reizigers in het openbaar 

vervoer te modelleren en te analyseren. Vanwege hun significante impact bestuderen we de 

invloed van onzekerheid met betrekking tot wachttijd, waarbij we ons richten op 

onderzoeksgaten die voortkomen uit de bron van gedragsgegevens en het type onzekerheid dat 

wordt geanalyseerd. Bovendien beoordelen we ook recente veranderingen in het reisgedrag met 

het openbaar vervoer als gevolg van de COVID-19-pandemie. Om dit doel te bereiken, heeft 

de scriptie tot doel de volgende vier onderzoeksvragen te beantwoorden (V) (zoals ook 

weergegeven in de structuur van het proefschrift in Figure 1): 
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V1 Hoe kunnen routekeuzesets worden afgeleid uit passief waargenomen keuzes met 

minimale aannames en het produceren van overdraagbare gedragsinzichten? (hoofdstuk 

2) 

V2 Wat is de impact van wachttijd onzekerheid, uitgedrukt in verschillende statistische 

representaties van de historische waarden, op het routekeuzegedrag? (hoofdstuk 3) 

V3 Hoe evalueer men subjectieve overtuigingen over wachttijd voor routekeuzes gemaakt 

onder de ambiguïteit die van nature aanwezig is in de echte wereld? (hoofdstuk 4) 

V4 Wat zijn de effecten van COVID-19 transmissierisicodeterminanten op het 

routekeuzegedrag van reizigers in het openbaar vervoer? (hoofdstuk 5) 

Onderzoeksbenadering 
Om onderzoeksgaten met betrekking tot de bron van gedragsgegevens aan te pakken, maken 

we gebruik van zowel gestelde voorkeuren als onthulde voorkeuren. De gestelde voorkeuren 

zijn verzameld via (online) gestelde keuze-experimenten met reizigers in de Nederlandse 

spoorwegen, terwijl de onthulde voorkeuren zijn verkregen uit passief verzamelde smartcard-

waarnemingen van het openbaar vervoer in Den Haag en Amsterdam. We dragen bij aan het 

volgende set van onderzoeksgaten door het modelleren van routekeuzegedrag onder 

verschillende aannames van wachttijd onzekerheid. Allereerst maken we de conventionele 

aanname dat reizigers op de hoogte zijn van objectieve verdelingen van wachttijden en nemen 

we dit op die manier op in ons model. Vervolgens komen we dichter bij het modelleren van de 

echte wereld door rekening te houden met de subjectieve aard van onzekerheid. Ten slotte 

worden onderzoeksgaten met betrekking tot de nieuwe onzekerheden die voortkomen uit de 

COVID-19-pandemie aangepakt door de impact van belangrijke determinanten van het 

transmissierisico te analyseren. Hoewel de casestudy's in het proefschrift gebruikmaken van 

waarnemingen van reizigers in Nederland, zijn de methodologieën en, in beperkte mate, 

bevindingen toepasbaar op ontwikkelde openbaarvervoersnetwerken over de hele wereld. 

 

In het eerste hoofdstuk stellen we een methodologie voor het genereren van keuzeset voor (met 

behulp van smartcard-gegevens) om de eerste onderzoeksvraag te beantwoorden. Voor de 

overige vragen worden keuze-experimenten uitgevoerd die, zoals gebruikelijk is in de 

vervoersmodellering, gebaseerd zijn op het paradigma van de willekeurige nutsmaximalisatie. 

In het bijzonder worden multinomiale logit-modellen toegepast, die uitgaan van willekeurige 

componenten met een Gumbel-verdeling. Als er panelinformatie beschikbaar is, wordt 

smaakheterogeniteit geanalyseerd met latente klasse-keuzemodellen. Zoals weergegeven in 

Figuur 1, worden de gegevens voor de keuzeanalyses verkregen uit (i) specifieke gestelde 

keuze-experimenten voor subjectieve wachttijd onzekerheid (hoofdstuk 4, eerste casestudy) en 

COVID-19-risicodeterminanten (hoofdstuk 5) en (ii) smartcard-gegevens voor objectieve 

(hoofdstuk 3) en subjectieve wachttijd onzekerheid (hoofdstuk 4, tweede casestudy). 
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Figure 1: Proefschrift-overzicht 

 

Wetenschappelijke bijdragen 
Door de onderzoeksgaten aan te pakken en de bovenstaande onderzoeksvragen te 

beantwoorden, levert deze proefschrift de volgende wetenschappelijke bijdragen: 

 

Ontwikkeling van een aannamearme en overdraagbare methodologie voor het genereren van 

routekeuzes in het openbaar vervoer (hoofdstuk 2): Een methodologie voor het genereren van 

routekeuzesets wordt ontwikkeld, waarbij het vormen van de overwegingsset wordt 

gemodelleerd als een eliminatie-per-aspecten proces en de parameters van dit model worden 

gekalibreerd met behulp van passief waargenomen keuzes uit smartcard-gegevens. Eliminatie-

per-aspecten is een niet-compensatoire heuristiek die attribuutrangschikking combineert met 

het stellen van drempels. Het sluit goed aan bij het daadwerkelijke cognitieve proces en vereist 

minimale gedragsaannames, terwijl het resulteert in bruikbare en overdraagbare inzichten. De 

kalibratie omvat een optimalisatieprocedure waarbij een balans wordt gezocht tussen de 

vraaggewogen dekking van waargenomen routes en de efficiëntie van gegenereerde routes. 

 

Analyse van de impact van wachttijd onzekerheid op routekeuzes in het openbaar vervoer met 

onthulde voorkeuren (hoofdstukken 3, 4): In twee casestudies gebruiken we onthulde 

voorkeuren om het routekeuzegedrag te analyseren onder (objectieve en subjectieve) wachttijd 

onzekerheid, waarbij we tekortkomingen van eerdere gestelde voorkeur analyses met 

betrekking tot hypothetische vertekening over de impact van reistijd onzekerheid overwinnen. 

De keuzes van reizigers worden verkregen uit smartcard-gegevens en gecombineerd met 

voertuiglocatiegegevens en dienstregelingsgegevens om keuzeanalyses mogelijk te maken. 

 

Geschiktheidsvergelijking van verschillende statistische representaties van wachttijd 

onzekerheid in routekeuzemodellen voor het openbaar vervoer (hoofdstuk 3): De impact van 

wachttijd onzekerheid wordt gemodelleerd alsof het objectief is—dat wil zeggen dat reizigers 

de historische waarden kennen en gebruiken voor hun besluitvorming. Wachttijd wordt 

opgenomen in een keuzemodel door deze op te splitsen in geplande waarden, reguliere 

afwijkingen (mediaan verschil tussen gerealiseerde en geplande waarden) en onregelmatige 

afwijkingen (dispersie van gerealiseerde waarden). Voor deze laatste hebben wij verschillende 

statistische bereik- en buffertijdrepresentaties getest en hun geschiktheid om de perceptie van 

onzekerheid door reizigers weer te geven is beoordeeld door modelpassingen en de 

gezichtsvaliditeit van andere coëfficiëntverhoudingen te vergelijken. 
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Ontwikkeling van een experimentele methode voor het observeren en analyseren van 

routekeuzegedrag in het openbaar vervoer bij natuurlijke wachttijd ambiguïteit (hoofdstuk 4): 

Een experimentele methode met een realistische routekeuzesituatie wordt ontwikkeld om de 

subjectieve overtuigingen van reizigers over wachttijd onzekerheid en de impact van 

situationele contexten daarop in termen van een zekerheidsequivalent te kwantificeren. De 

keuzesituatie komt vrij vaak voor in openbaar vervoersnetwerken, waardoor we bevindingen 

kunnen generaliseren buiten de specifieke situatie. De methode is geschikt voor zowel 

gecontroleerde als natuurlijke routekeuze-experimenten, zoals gedemonstreerd wordt in twee 

casestudies. 

 

Analyse van de (heterogeniteit in de) impact van COVID-19-transmissierisicodeterminanten op 

het routekeuzegedrag in het openbaar vervoer (hoofdstuk 5): Er wordt een keuzeanalyse 

uitgevoerd om de afwegingen tussen drukte aan boord, blootstellingsduur, prevalente 

besmettingsgraad en reistijdattributen te onderzoeken, met als doel latente klassen van reizigers 

af te leiden en hun druktewaarderingen en neiging om het openbaar vervoer te vermijden te 

vergelijken. Daarnaast worden klasseprofielen afgeleid die bestaan uit sociodemografische 

gegevens en pandemiegerelateerde attitudes en meningen. 

Belangrijkste empirische bevindingen 
Vervolgens bespreken we de casestudies in dit proefschrift en hun belangrijkste empirische 

bevindingen: 

 

Kalibratie van de routekeuzeset (hoofdstuk 2): Toepassing van de voorgestelde methodologie 

voor het genereren van routekeuzesets op het stedelijke openbaar vervoersnetwerk van Den 

Haag heeft aangetoond dat reizigers het aantal overstappen als het belangrijkste attribuut 

beschouwen bij het vormen van hun overwegingset, gevolgd door wachttijd en reistijd in het 

voertuig. Reizigers lijken geen alternatieven op te nemen met extra overstappen of met 

reistijden die meer dan 10% langer zijn in hun overwegingset. De algehele vraag-gewogen 

dekking bedroeg 64%, maar de analyse van de trends in de dekking en efficiëntie geeft aan dat 

dit mogelijk verbeterd kan worden door het modelleren van dichterbij gelegen en verder weg 

gelegen herkomst-bestemmingsparen apart. 

 

Empirische wachttijd onzekerheid (hoofdstuk 3): We hebben smartcard-gegevens uit Den Haag 

gebruikt om de impact van wachttijd onzekerheid als een objectief risico te modelleren. 

Verschillende statistische representaties van onregelmatige afwijkingen presteerden redelijk 

vergelijkbaar, wat aangeeft dat ze (ten minste voor dit netwerk) onderling uitwisselbaar kunnen 

worden gebruikt. We hebben relatief lage betrouwbaarheidsratio's (coëfficiënten van 

onregelmatige afwijkingen gedeeld door de coëfficiënten van geplande wachttijden) gevonden, 

variërend van 0,20 tot 1,12. Bovendien is er ook bewijs dat reizigers wachten op bussen hoger 

waarderen dan wachten op trams, wat mogelijk aangeeft dat reizigers het wachten op trams als 

minder onzeker ervaren. 

 

Subjectieve wachttijd onzekerheid (hoofdstuk 4): We voeren twee casestudies uit met onze 

voorgestelde experimentele methode. De eerste gebruikt gestelde keuzes uit een enquête onder 

reizigers in de Nederlandse spoorwegen, en de tweede gebruikt smartcard-gegevens uit het 

stedelijke openbaar vervoersnetwerk van Amsterdam. In beide casestudies vinden we dat 

expliciete verwerking van subjectieve wachttijd onzekerheid via een zekerheidsequivalent de 

model-fit en voorspellende prestaties verbetert. Bovendien zorgt dit ervoor dat de verhouding 
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tussen de coëfficiënten van wachten en voertuig reistijd kleiner wordt, wat aangeeft dat 

onzekerheid een grote rol speelt in de beoordeling van wachttijd door reizigers.  

 

Gemiddeld zijn treinreizigers bereid meer dan 8 minuten reistijd in het voertuig in te ruilen voor 

zekerheid over de wachttijd. Een latente klasse-keuzeanalyse identificeert drie soorten 

gedragsklassen onder deze reizigers—volledig compenserend en in lijn met het gemiddelde 

gedrag (55%), lexicografische voorkeur voor snellere treinen (28%) en zeer sterke afkeer van 

onzekerheid (17%). Tram- en busreizigers in Amsterdam zijn bereid om een extra 3,6 minuten 

reistijd in het voertuig te accepteren om de onzekerheid over de wachttijd weg te nemen. 

 

COVID-19-gerelateerde onzekerheid (hoofdstuk 5): Aan het einde van de eerste 

besmettingsgolf in Nederland werd een gestelde keuze-experiment verspreid onder reizigers in 

de Nederlandse. We vinden dat de reactie op COVID-19-risicodeterminanten het best wordt 

beschreven door twee latente gedragsklassen: COVID Bewust en Infectie Onverschillig. De 

twee klassen zijn bereid om gemiddeld respectievelijk 8,75 minuten (met een sterke voorkeur 

om alleen te zitten) en 1,04 minuten (slechts iets hoger dan pre-pandemische gestelde 

voorkeursevaluaties) te wachten om één persoon in hun rijtuig te verminderen. Hoewel de 

COVID Bewuste klasse sterker wordt beïnvloed door de prevalente besmettingsgraad, is deze 

klasse bij hoge drukte, wanneer het afmeldpercentage al hoog is, redelijk inelastisch ten 

opzichte van de besmettingsgraad. Dit geeft aan dat reizigers in deze klasse zich mogelijk niet 

veilig voelen in drukke treinen, zelfs wanneer de besmettingsgraad lager is. Het model voor 

klasse-lidmaatschap toont aan dat vrouwen, oudere reizigers en degenen die minder met de trein 

hebben gereisd tijdens de pandemie meer geneigd waren om COVID Bewust te zijn. 

Praktische implicaties 
Dit proefschrift heeft verschillende bijdragen die relevant zijn voor openbaar-vervoersplanners, 

exploitanten en beleidsmakers. Ten eerste produceren wij verbeterde modellen van openbaar 

vervoer route keuzegedrag door expliciet wachttijd onzekerheid (bv. door onregelmatige 

afwijkingen, zekerheid equivalent) in keuzemodellen op te nemen, het schatten van 

geactualiseerde drukte waarderingen (in het licht van de pandemie) en de impact van prevalente 

besmettingsgraad, en het verminderen van hypothetische vertekening door het gebruik van 

onthulde voorkeuren. Deze voorgestelde attributen en relevante coëfficiëntratio's kunnen 

worden geïntegreerd in bestaande modellen of analyses (bv. door af te stemmen op 

gemeenschappelijke coëfficiëntratio's) voor een betere prognose en bijgevolg een verbeterd 

systeemontwerp. Ten tweede zouden onze voorstellen voor het genereren van keuzesets en het 

vastleggen van subjectieve overtuigingen moeten leiden tot beter experimenteel onderzoek. Het 

eerste maakt experimenten met onthulde voorkeuren mogelijk (met minimale gedragsaannames 

en wanneer directe identificatie niet mogelijk is), wat leidt tot gedragsanalyse met minder 

hypothetische vertekening. Het laatste legt de werkelijke percepties van reizigers over wachttijd 

onzekerheid vast; de momentopnamen van zekerheidsequivalenten die met deze methode 

worden vastgelegd, kunnen worden gebruikt om te analyseren welke situationele of 

omgevingsvariabelen een hogere perceptie van onzekerheid veroorzaken. Ten derde bieden we 

direct bruikbare inzichten, zoals: gebruik van de resultaten van de methodologie voor het 

genereren van de keuzeset (attribuutrangschikkingen en drempels) om reizigers betere 

routeaanbevelingen te geven; gebruik van de beschrijvende analyse van de wachttijdperceptie 

van reizigers voor prescriptieve doeleinden, of toepassing van de kennis van de reactie van 

reizigers op COVID-19-risicodeterminanten om het aanbod opnieuw te plannen, 

marketingcampagnes op maat te maken en de anticiperende voorbereiding op soortgelijke 

toekomstige gebeurtenissen te ondersteunen. 
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Aanbevelingen voor toekomstig onderzoek 
Op basis van de onderzoeksgaten die voortkomen uit de studies in dit proefschrift, wordt een 

onderzoeksagenda geschetst met de volgende onderwerpen: 

 

Stochastische en heterogene generatie van keuzesets: Formuleer een stochastische versie van 

de eliminatie-per-aspecten heuristiek en gebruik discrete mengsels van rangschikkings- en 

drempelcombinaties om rekening te houden met intra- en inter-reizigers heterogeniteit in het 

vormen van de overwegingset. Hierdoor komt de methodologie voor het genereren van 

keuzesets beter overeen met het werkelijke gedrag en verbetert de dekking voor individuele 

reizigers. 

 

Uitbreiding van de analyse van wachttijd onzekerheid: Analyseer (i) het verschil tussen 

metingen van onzekerheidsevaluaties uitgesteld en onthulde voorkeuren; (ii) de ontwikkeling 

van dergelijke subjectieve overtuigingen, oftewel leerprocessen; (iii) de relatie tussen reis 

tevredenheid en evaluaties van wachttijd onzekerheid; en (iv) de impact van ongeplande en 

significante verstoringen op subjectieve overtuigingen. Deze analyses hebben als 

overkoepelende doelstellingen het verbeteren van ons begrip van reisgedrag onder onzekerheid 

en het toepassen daarvan om het openbaar vervoer te verbeteren.  

 

Een retrospectieve beoordeling van reisgedrag tijdens de pandemie: Voer een meta-analyse uit 

van de (heterogene) waardering van reizigers voor (waargenomen) risicodeterminanten 

factoren en mitigatiepunten, zoals drukte in het voertuig en voertuigreiniging, gedurende de 

COVID-19-pandemie om strategieën te ontwikkelen voor een robuuste respons op 

vergelijkbare crises in de toekomst. 
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