
 
 

Delft University of Technology

DIPS: Debug Intermittently-Powered Systems Like Any Embedded System

de Winkel, J.; Hoefnagel, T.S.; Blokland, B.T.; Pawełczak, P.

DOI
10.1145/3560905.3568543
Publication date
2022
Document Version
Final published version
Published in
SenSys 2022 - Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems

Citation (APA)
de Winkel, J., Hoefnagel, T. S., Blokland, B. T., & Pawełczak, P. (2022). DIPS: Debug Intermittently-
Powered Systems Like Any Embedded System. In SenSys 2022 - Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems (pp. 222–235). (SenSys 2022 - Proceedings of the
20th ACM Conference on Embedded Networked Sensor Systems). ACM.
https://doi.org/10.1145/3560905.3568543
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3560905.3568543
https://doi.org/10.1145/3560905.3568543


DIPS: Debug Intermittently-Powered Systems Like Any
Embedded System

Jasper de Winkel
Delft University of

Technology
Delft, The Netherlands
j.dewinkel@tudelft.nl

Tom Hoefnagel
Delft University of

Technology
Delft, The Netherlands
t.s.hoefnagel@student.-

tudelft.nl

Boris Blokland
Delft University of

Technology
Delft, The Netherlands
b.t.blokland@student.-

tudelft.nl

Przemysław Pawełczak
Delft University of

Technology
Delft, The Netherlands
p.pawelczak@tudelft.nl

ABSTRACT
Debugging and testing battery-free intermittently-powered sys-
tems is notoriously difficult. This is not only due to the additional
complexity of maintaining state through power failures but also
due to the lack of proper tools to test and debug these systems. As
a solution, we present DIPS: a fully-featured hardware debugger
for battery-free intermittently-powered systems capable of auto-
matically verifying memory and peripheral state between power
failures. Our solution seamlessly integrates an emulator allowing
for emulation of any power scenario to the device under test. This
allows our debugger to pause emulation and program execution
when debugging or when state restoration issues are detected. Our
new system is built around GNU Debugger (GDB): a widely-used
debugging tool. Therefore, DIPS allows for a debugging process
identical to state-of-the-art debuggers for continuously-powered
devices. User studies found that our debugger is easy and intuitive
to use. It allows embedded system developers to find bugs quicker
in code written for battery-free devices. With our debugger we
found unseen errors in state-of-the-art software frameworks for
intermittently-powered systems.

CCS CONCEPTS
• Hardware→ Simulation and emulation; Analysis and design of
emerging devices and systems; • Computer systems organization
→ Embedded systems; • Software and its engineering→ Software
testing and debugging.

KEYWORDS
Intermittent Systems, Debugging, Software Testing, Emulation

ACM Reference Format:
Jasper deWinkel, TomHoefnagel, Boris Blokland, and Przemysław Pawełczak.
2022. DIPS: Debug Intermittently-Powered Systems Like Any Embedded
System. In The 20th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’22), November 6–9, 2022, Boston, MA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3560905.3568543

SenSys ’22, November 6–9, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9886-2/22/11.
https://doi.org/10.1145/3560905.3568543

Figure 1: Photography of Debugger for Intermittently-
Powered Systems (DIPS) hardware. DIPS is a new hard-
ware/software ecosystem specifically designed for debugging
and testing intermittently-powered battery-free devices.

1 INTRODUCTION
Intermittently-powered devices [27] are a new class of low-power—
often battery-free [46]—embedded systems that can guarantee cor-
rect and forward-progressing computation despite frequent power
interrupts. These interrupts are caused by the incoming energy
from ambient (therefore intermittent) energy sources that power
the device. That incoming energy charges a small energy storage,
i.e. (super-)capacitor, that cannot buffer incoming energy as much
as the battery, elevating intermittency rate further. Despite this
inconvenience, the benefit of using intermittently-powered devices
instead of ‘classical’ battery-based ones is twofold. First, removal of
a battery creates a more environmentally-friendly device and pow-
ering embedded systems from ambient sources is sustainable [17].
Second, battery-free operation promises perpetual operation: as
long as there is an ambient energy source, battery-free devices
will continue operating [40]. These advantages lead to battery-free
intermittently-powered operation being applied to many embed-
ded applications. These include a battery-free handheld gaming
console [11], battery-free computational Radio Frequency Iden-
tification (RFID) tags [44], battery-free sensors [10] and sensor
networks [3], battery-free eye tracker [26], as well as battery-free
edge computing platform [33].

222

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3560905.3568543
https://doi.org/10.1145/3560905.3568543
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3560905.3568543&domain=pdf&date_stamp=2023-01-24


SenSys ’22, November 6–9, 2022, Boston, MA, USA de Winkel et al.

Unfortunately, despite the increasing number of battery-free
intermittently-powered platforms, they are still hard to program [23,
Section 7]. This difficulty stems from ensuring correct continuation
of program execution after a restart from a power interrupt. The ap-
plication developer must programmatically account for two events.
That is, whenever a power interrupt happened, at any place in the
code, the device (i) must resume operation from the moment that
power interrupt happened, and (ii) the state of the device’s memory
and its peripherals must be correctly restored. To assure that event
(i) and (ii) happens the programmer instruments the code by means
of two approaches. The first one is the inclusion of checkpoints that
force saving of program state from volatile to non-volatile memory
(examples of such approaches include [24, 56]). The second one be-
ing code transformations, where code is divided into atomic blocks
(in the context of intermittently-powered devices called tasks [28]
or threads [59]) whose execution time matches the specific energy
budget of the intermittently-powered device. Whichever of the
two methods of code instrumentation has been chosen (either be-
ing compiler-supported or requiring programmer labour) the code
for intermittently-powered device needs to be debugged during
development. Sadly, debugging of software written for battery-
free intermittently-powered devices is itself hard [7, Section 2.2].
This is because above the existence of ‘normal‘ bugs (not related
to intermittently-powered operation) one has to additionally deal
with bugs resulting from these power failures. Unfortunately, the
debuggers developed for battery-powered embedded systems, such
as [45], assume the target device/Device Under Test (DUT) is con-
tinuously powered in order to debug. This effectively removes the
ability of code debugging, as with every power failure the debugger
has to be reconnected manually.

To the best of our knowledge there is only one dedicated de-
bugger targeting intermittently-powered devices, i.e. EDB [7] that
addresses some of the core limitations of existing debuggers for em-
bedded systems. Nonetheless, to debug code with EDB one has to
instrument the code manually with EDB-specific API for software
based assertions and breakpoints. This results in a time-consuming
debug process, as for each new assertion or breakpoint the code
must be recompiled and the bug scenario has to be recreated. Then,
each breakpoint has to be manually enabled when starting the
debugging session. When an assertion is triggered, each variable
responsible for triggering the assertion has to be individually in-
vestigated by first looking up the address of the variable and then
reading the memory at that address. This does not allow the user to
(i) easily inspect all memory variables or the call stack in a break-
point or (ii) transitions from one task to another. But what is more
important, EDB breakpoints themselves might mask intermittency-
specific code bugs—as we will show later in this paper—which is
detrimental to the debugging process.

Furthermore, EDB does not allow for replay of energy traces
powering the battery-free device. Instead, EDB makes sure that the
device storage capacitor is charged from the instrumented asser-
tion/breakpoint to keep the device alive, discharging it after the
assertion as if no assertion was included in the code. This allows
for code checking without an energy penalty to the device. Energy
trace replay, however, would allow for repeatable results and the
ability to induce time-specific power interrupts. This is unfortu-
nately impossible with EDB-style debugging where the DUT is

System on

In
te

rm
itt

en
t

Co
m

pu
tin

g

System O�

Time

Power failure

Re
st

or
e

Ch
ec

kp
oi

nt

Se
ns

e

Re
st

or
e

Ch
ec

kp
oi

nt

Co
m

pu
te

Re
st

or
e

Ch
ec

kp
oi

nt

Tr
an

sm
it

St
or

ed
En

er
gy

Figure 2: Schematic representation of intermittent opera-
tion: periods of system ‘on‘ state are intervened by periods
of ‘power failure‘ state (when the system’s capacitor is be-
ing re-charged). The power intermittency is caused by the
unpredictable nature of ambient harvested energy. There-
fore, intermittently-powered devices need to checkpoint and
restore the intermediate state to and from non-volatile mem-
ory to guarantee forward progress despite power interrupts.

powered from uncontrollable energy harvesting sources (in the
case of EDB—an RFID transmitter).

To solve the debugging problem for intermittently-powered de-
vices our idea is to bring two necessary embedded debugging com-
ponents together in a single debugging platform. These components
being: (i) a fully featured hardware debugger based on GNU Debug-
ger (GDB) [39, 48]—to enable step-by-step debugging in the way
the majority of existing (non-intermittently-powered) embedded
platforms are being debugged right now, and (ii) an energy emulator
capable of replaying energy traces, allowing to power battery-free
platforms from the same energy trace (either pre-recorded or syn-
thetically generated) repeatably—to emulate specific intermittency
patterns, such as in [12]. The result is a new debugging platform
named Debugger for Intermittently-Powered Systems (DIPS), as
shown in Figure 1.

The contributions presented in our paper are as follows.
• Hardware-based debugging on intermittently-powered
systems: We introduce the first hardware based debugger
for intermittently-powered systems, capable of utilizing the
hardware debugging features of the microcontroller under
test, despite being intermittently-powered. Our debugger
does not require any software modification to the Device
Under Test (DUT) and is based on GDB, resulting in di-
rect integration into most Integrated Developer Environ-
ments (IDEs). This allows for rapid debugging of code for
intermittently-powered devices—in an identical fashion com-
pared to battery-based (classical) embedded devices. This
observation is echoed by the user experience study of DIPS
vis-a-vis state-of-the-art debugger: EDB [7].

• Tightly-coupled energy emulator: Unlike other systems
our emulator tightly interconnects with the debugger and
pauses emulation when, e.g. breakpoints are triggered, keep-
ing the DUT powered and seamlessly resuming emulation
after the user resumes execution. Our emulator is not only ca-
pable of providing synthetic test patterns to power the DUT
but is also capable of mimicking the power supply circuit

223



DIPS: Debug Intermittently-Powered Systems Like Any Embedded System SenSys ’22, November 6–9, 2022, Boston, MA, USA

Intermittent Operation Bugs

RTC1_Start();
while(RTC1 >= 100)
  Checkpoint(); 
  NOP();

➊ Peripheral Restoration ➋ Memory Restoration
Common Bugs

while(i < 50) {
  j++;
}

while(RTC1 >= 100)  
  Checkpoint();
  NOP();

P
ow

er
 F

ai
lu

re !=

Power Failure

i[0] = 5 i[0] = 7

i[n] = 2 i[n] = 2

0x00

0x05

0x00

0xff 0xff

➌ Task Sequence

Sense

Compute

Transmit

int* i = 0;
...

*i = 5;

0x05

Figure 3: Two major classes of code bugs are present in intermittently-powered battery-free systems: common bugs such as
using the wrong iterator or writing to null pointers and bugs related to intermittent operation. These include peripheral
restoration, memory restoration and task sequence bugs.

commonly used in state-of-the-art intermittently-powered
systems: the buck-boost converter and the storage (super-)
capacitor. This allows for easy and quick experimentation
to determine the energy input requirements of the DUT and
to find an optimal capacitor size for the system. For the first
time, these features allow the developers to debug and test
energy-related bugs in a repeatable fashion.

• Automated testing for intermittency-related bugs: In-
termittent systems rely on saving and restoring the state
of the system to a non-volatile on-board memory. Using an
automated scripting framework we are able to verify if the
volatile memory of the intermittently-powered device has
correctly been restored from the last checkpoint. Not only
volatile memory consistency is automatically checked using
DIPS but also peripheral state is verified by comparing pe-
ripheral configuration registers prior to a checkpoint and
post restoration.

All hardware, software and tools pertaining to DIPS, together
with its documentation, will be made available open-source to
the research community via our artifact [1]. We will also provide
fully assembled and calibrated DIPS boards to the community. We
envision DIPS becoming the de facto standard debugging tool for
intermittently-powered systems, simplifying testing and debugging
of these novel embedded systems.

2 INTERMITTENTLY-POWERED SYSTEMS:
BACKGROUND

Battery-free embedded systems forgo batteries where the energy
reservoir is replaced by a (super-)capacitor. Capacitors are cheaper,
often smaller and less polluting than conventional batteries [54].
These advantages are powerful considering the already-massive
(and growing) number of Internet of Things (IoT) devices [55]—
think of labor and monetary costs of monitoring this magnitude
of batteries worldwide. Such battery-free systems are powered by
ambient energy (like solar radiation, vibrations, electromagnetic
waves, wind or temperature difference) [41].

The small energy density of a super-capacitor and unpredictable
nature of harvested energy makes operation of battery-free system
often intermittent, see Figure 2—periods of useful energy availabil-
ity are intervened by intervals of power unavailability. This means
that tasks performed by an embedded device, such as ‘sense‘ (signals

from the environment), ‘compute‘ (process collected data locally)
and ‘transmit‘ (transmit processed data to the central point) would
have to be ‘sliced‘ in time in order to complete them. Therefore state
of the embedded device (volatile memory with its all registers and
peripherals) needs to be saved regularly in a non-volatile memory
to protect from state loss and from complete system restart from
an initial state. This way battery-free system continues to work
perpetually, as long as ambient energy is present [31, Section II-B].

As a consequence of intermittently-powered operation the re-
search on such systems has focused on hardware and software
support that perform operations of device state storing and restor-
ing correct and fast. Some of the relevant works include [24, 25,
28, 51, 56, 58, 59]. These frameworks lead to building increasingly
complex battery-free systems, including, battery-free gaming plat-
forms [11], battery-free hobbyist platforms [23], battery-free small
robots [58] and battery-free embedded prototyping platforms [16].

Many of these frameworks perform transformations on the exist-
ing (mostly C) code—either by introducing memory checkpoints at
predefined locations in the code, e.g., [24, 25, 56] or transforming the
code into a state machine-like structure, e.g. using tasks [28, 51, 58]
or threads [59]. These transformations increase code complexity
and might introduce new type of errors. Therefore, as with any
other code written for embedded systems these supporting frame-
works (and the output code that results from them) need to be
developed, debugged and then tested. However, debugging of code
written for intermittently-powered devices poses unique challenges.

3 DEBUGGING INTERMITTENTLY-POWERED
SYSTEMS

Debugging of embedded systems code is different from PC-based
code debugging [4, Chapter 8]. As PC-based code can mostly be
directly debugged using tools such as GDB in an IDE as it runs
on the same device, unlike embedded systems where the code is
running on an external embedded system. Therefore, the developer
must rely on external hardware—such as [45]—acting as an inter-
face between GDB and the Microcontroller (MCU) on-board debug
hardware.

3.1 Bugs Type Classification
We can categorise bugs present in the software for intermittently-
powered devices into two classes presented in Figure 3. First class

224



SenSys ’22, November 6–9, 2022, Boston, MA, USA de Winkel et al.

Listing 1: Masked Write After Read (WAR) error due to
breakpoint insertion (listing (b)). When function calls are
instrumented as checkpoints such as in [24], the addition
of software-based breakpoints as required by the EDB [7]
debugger can mask WAR-related errors, see listing (a), since
the breakpoint itself will be instrumented with a checkpoint.
nv_x refers to a variable stored in non-volatile memory.

(a) WAR error

1 Checkpoint()
2 y = nv_x // wrong
3 // after restart
4 z = y + 1
5

6 nv_x=z
7 # Power failure
8 ...
9 Checkpoint()

(b) Masked WAR error

1 Checkpoint()
2 y = nv_x // correct
3 // after restart
4 z = y + 1
5 EDB_Breakpoint(0)
6 nv_x = z
7 # Power failure
8 ...
9 Checkpoint()

are the common programming language and embedded system-
related bugs. Example of such bugs are algorithm implementation
bugs (for example increment of the wrong variable in a while loop
while (i < 50){j++;}) or code errors in embedded system-related
functionalities (for example, inaccurate peripheral initialisation).
These bugs are extensively analysed since the dawn of program-
ming languages and will not be discussed here. The second class
are the intermittent operation-related bugs and these are the ones
which the designed debugger will specifically target.

We can further categorise intermittent operation bugs into: (i)
peripheral restoration bugs, (ii) memory restoration bugs, and (iii)
task sequence bugs (see again Figure 3).

(1) Peripheral restoration bugs occur due to inaccurate reini-
tialization after checkpoint restoration, as seen in Figure 3.
In this example: after the power failure the program restarts
from within the while loop without reinitializing the pe-
ripheral causing an infinite loop from a not re-initiated Real
Time Clock (RTC). Peripheral bugs also occur when the state
of any external peripherals such as displays, sensors and
radios is not carefully considered, especially when these pe-
ripherals have persistent state or are continuously powered.
Examples of such bugs include: (i) persistent configuration
registers where the process of configuring the register could
not be confirmed due to a power failure, (ii) a failure to
gracefully power down an E-Ink display resulting in a faded
background, and (iii) synchronization issues where the exter-
nal peripherals state is not aligned with the expected state.

(2) Memory restoration bugs come from errors in the check-
point process. In the first place they can come from thewrong
placement of checkpoints (function Checkpoint()), as illus-
trated in Listing 1 (a) where a write after read error occurs
due to the lack of a checkpoint in-between reading from and
writing to non-volatile memory. But the implementation of a
checkpoint itself can also contain bugs. For example, check-
pointing is often based on double buffering (such as in [23]
where the whole memory is checkpointed to a non-volatile

Table 1: Feature comparison of DIPS (i.e. this work) against
EDB [7]—debugger for intermittently-powered battery-free
embedded systems and J-link [45]—popular debugger for
battery-based embedded systems.

Feature EDB J-Link DIPS

Energy breakpoints Yes ✓ No ✗ Yes ✓

Software breakpoints Yes ✓ Yes ✓ Yes ✓

Hardware breakpoints No ✗ Yes ✓ Yes ✓

Single step No ✗ Yes ✓ Yes ✓

Watchpoints Yes ✓ Yes ✓ Yes ✓

GDB support No ✗ Yes ✓ Yes ✓

IDE support No ✗ Yes ✓ Yes ✓

ARM support No ✗ Yes ✓ Yes ✓

MSP430 support Yes ✓ No ✗ Pending
Software testing No ✗ No ✗ Yes ✓

Energy trace emulation No ✗ No ✗ Yes ✓

memory at a predefined time interval), where usually a bi-
nary flag specifies to which memory region a checkpoint
needs to be stored and from which region data needs to be
restored. If a power failure happens at the moment of the flag
update, the checkpoint will be corrupted. The more compli-
cated checkpointing routines, like differential-checkpointing
of [11] where the only changed memory regions since the
last checkpoint are checkpointed, or undo logging-based
checkpointing as used in [25]—the higher the probability of
error in the implementation of checkpoint.

(3) Task sequence bugs are specific to special type of run-
time systems for intermittently-powered devices where in-
put code is transformed into tasks (such as ‘Sense’, ‘Com-
pute’ and ‘Transmit’) and checkpointing is performed always
at the task transition. Examples of such systems include
InK [58], Alpaca [28] or ImmortalThreads [59]. Bugs can not
only occur with incorrect implementation of the task state
machine (as in case of example in Figure 3 ‘Compute’ task
connects back to ‘Sense’ instead of ‘Transmit’). Bugs can also
occur when defining the volatile memory associated with
each task—if not accurately defined it could result in writing
to and reading from unrestored memory.

3.2 Why Debugging Intermittently-Powered
Systems is Still Hard

We need a dedicated debugger that would aid in spotting all errors
shown in Figure 3 and EDB [7] was the first one that addressed
this need. EDB introduced new debugging features, as listed in
Table 1. Sadly, in special cases EDB can hinder bug finding. As
we mentioned in Section 1 EDB debugger [7] inspects the code by
inserting software based assertion flags and breakpoints (to trace po-
tential intermittent operation-related bugs). These however might
mask the write after read bugs, as shown Listing 1 (b), as software
breakpoints are implemented as a function this might interact with
compiler-based runtime systems [24] that apply compiler based
optimizations and instrument each function. A software breakpoint

225



DIPS: Debug Intermittently-Powered Systems Like Any Embedded System SenSys ’22, November 6–9, 2022, Boston, MA, USA

1  int i = 0; 
2  for(int i = 0; i < 50; i++){ 
3    int x = compute(); 
4    printf("Result: %d \n", x); 
5    printf("Iterration: %d \n", i); 
6    log_result(x);  
7  }

Source

Compilation

*.elf

Register
file 

*.svd

Code generation

Software Testing

IDE Support

Break & Watchpoints
Energy Guards
Energy Breakpoints

Hardware Debugger

GDB

Energy Emulator

Device
Under
Test

Synthetic
Emulation

Virtual Buck-
Boost Emulation

DIPS

Energy Neutral
Debugging

Memory
Restoration

Peripheral
State

Programmer

Step 1: Compile
the application.

Step 2: Program
and verify. 

Step 3: Debug as any embedded system,
optionally enable software testing.

Step 4: Replay pre-recorded energy traces or
emulate synthetic energy traces.

Figure 4: DIPS architecture and workflow, enabling seamless debugging of intermittent systems. In the code view marks
an energy neutral section, marks the current line and hardware breakpoints are indicated by . Arrows in the figure denote
information flow between individual blocks.

(EDB_Breakpoint(0)) would then result in an undesired check-
point on the breakpoint location masking the write after read issue.
A release build without the software debugging functions would
then re-expose the hidden ‘write after read bug’. Apart from in-
troducing potentially unwanted checkpoints, software debugging
calls could also prevent further compiler optimization such as loop
unrolling.

For the record, one can consider using a CPU emulator, such
as [37] as used in [24], as a replacement for EDB’s inability to fulfill
its debugging task completely. However, the timing of the instruc-
tions is not always perfect in emulation. Most importantly how-
ever, in most emulators the peripheral state is mocked—disallowing
detection of peripheral-related bugs. Even with a cycle accurate
emulation of the CPU and the associated peripherals forming the
complete MCU, emulators do not emulate the starting sequence
that occurs when power is applied to the actual chip. The CPU only
starts execution after, e.g., voltage rails stabilize and stable clocks
are present. These processes determine the start-up time and are
subject to per component/design variation.

We thus conjecture that a debugger for intermittently-powered
systems needs to have the same list of functionalities as debuggers
for ‘classical‘ embedded systems, e.g. [45], which are listed in Ta-
ble 1. Moreover, it needs to support intermittently-powered systems
specific features, which we denote as energy breakpoints, software
testing and energy trace emulation. Inspecting Table 1 neither EDB,
nor J-Link supports complete set of debugging features needed.

4 DIPS: DEBUGGER FOR
INTERMITTENTLY-POWERED SYSTEMS

Driven by requirements listed in Table 1 we propose a new method
of developing and testing battery-free intermittently-powered de-
vices. These development and testing methods are implemented as
a new debugger named DIPS. DIPS combines a hardware debugger
(described in Section 4.1) and an energy emulator (described in Sec-
tion 4.2), enabling seamless debugging of intermittently-powered
systems. The energy emulator acts as a controllable power source

capable of emulating intermittent operation to the Device Under
Test (DUT). The architecture of DIPS is shown in Figure 4.

4.1 DIPS Hardware Debugger
A core part of debugging any embedded system is the hardware
debugger. It interfaces with the DUT’s MCU enabling the use of
the MCU’s debugging features. These features usually include (i)
halting, (ii) reading and writing memory, (iii) setting breakpoints,
and (iv) setting watchpoints.

As intermittently-powered systems switch on and off repeatedly,
any state that is not specifically stored prior to a power failure is lost.
This includes the configuration of the debugging registers. Even
worse, these debugging registers are usually not configurable from
within the MCU itself due to the security risk associated. Hence
the hardware debugger must be able to quickly reconnect after
power failures on intermittently-powered systems. To address this
requirement DIPS keeps track of all debugging attributes, such as
breakpoints and watchpoints, restoring those when the MCUs re-
covers from the power failure. To implement these features we have
taken a popular open-source hardware debugger—the Black Magic
Debug Probe [38]—as a base and build upon its functionality, adding
the required features to debug and test intermittently-powered sys-
tems. Many popular MCUs are supported—for a full list please refer
again to [38].

4.1.1 Energy Neutral Debugging. One core feature of DIPS is the
energy isolated interface between DUT and DIPS. This allows DIPS
to monitor the DUTwhilst not interfering with the power consump-
tion of the DUT. If the DUT is paused by any debugging action
e.g., a breakpoint, the hardware debugger automatically pauses the
energy emulator, making sure the DUT remains powered. When
execution is resumed the energy emulator restores the energy state
prior to the breakpoint and continues from where it paused.

We introduce two debugging modes with DIPS, (i) attached and
(ii) detached, where each of them is described below. The hard-
ware implementation of the energy isolation is further described in
Section 4.4.

226



SenSys ’22, November 6–9, 2022, Boston, MA, USA de Winkel et al.

Table 2: DIPS extensions to the GDB Command Line In-
terface (CLI) implementing debugging functionality for
intermittently-powered devices and an optional C language
API for quick and simple debugging of intermittently-
powered systems. An extended description is provided in [1].

GDB CLI Description

energy_breakpoint Defines a voltage-dependant breakpoint
energy_guard Defines an energy neutral section

C API Description

DIPS_PRINTF Energy-neutral printf
DIPS_ASSERT Halts code execution upon assertion
DIPS_ATTACH Connect debugger (Detached mode)

Attached Debugging. In the attached debugging mode, the de-
bugger reconnects to DUT after every power failure and any debug-
ging attributes such as breakpoints are restored. When the DUT is
connected to the hardware debugger, additional power will be con-
sumed by the MCUs on-board debugging hardware. This is compen-
sated for during emulation by measuring the power consumption
at idle with and without the debugger attached. The attached mode
gives most flexibility to the user as the intermittently-powered
system appears as a normal embedded system to the developer,
masking any effects of intermittency. We envision this mode to
be used in a scenario of active software development and during
preliminary testing/evaluation of intermittent systems. For exam-
ple, during development of new checkpoint frameworks or when
testing if peripheral configuration is correctly restored after power
failures.

Detached Debugging. This mode is intended for when the DUT
powers itself, for example by an external harvested energy source. In
thismode the debugger only connects when it receives the hardware
interrupt from the DUT, generated by e.g. the DIPS_ATTACH call
to the C API listed in Table 2, if not already connected. When an
interrupt is generated, the emulator takes over powering DUT. Next
the debugger connects, allowing the debugger to interact with the
DUT. After the user resumes code execution or when the debug
operation finishes, the debugger detaches and the energy state of
the DUT is restored to the level prior to intervention as further
described in Section 4.2.1. This mode is intended for debugging
scenario’s close to final deployment where minimal interference is
desired. More specifically, in scenarios where the device operates
on its own, whilst still offering an option to debug the system when,
for example, an assert fails.

4.1.2 Energy-Aware Debugging Features. Most of DIPS’s debug-
ging features utilize the build-in MCUs debugging hardware. Thus
unlike the software-based debuggers DIPS does not require the us-
age of a specific API to debug the DUT. We extend GDB with
the CLI commands listed in Table 2 to implement two key in-
termittent specific debugging functions: (i) energy breakpoints
(energy_breakpoint)—extending traditional breakpoints by only
triggering when the DUT’s capacitor voltage is lower than the

provided threshold, and (ii) energy neutral sections defined by en-
ergy guards (energy_guard)—allowing users to execute debug code
whilst emulation is paused and steady power is provided.

Apart from the GDB extensions, we introduce a limited C API
listed in Table 2, providing some optional convenience functions
to the user. The function DIPS_PRINTF implements a print to the
console. When DIPS_ASSERT parameters assert to false, code ex-
ecution is halted. DIPS_ATTACH triggers the debugger to connect
and halts execution until the debugger is connected.

All hardware debugging features and C API calls cause the emu-
lator to pause whilst keeping the DUT powered. When normal code
execution is resumed, the emulator also resumes. Compensating
for the power consumption of the debug features itself.

Programmer. DIPS is also capable of programming/flashing of
supported MCUs. The programming/flashing feature completes the
all-in-one suite of features served by DIPS for the developer of
intermittently-powered systems.

4.2 DIPS Energy Emulator
The second core part of our design is the energy trace emulator.
State-of-the-art intermittently-powered systems harvest energy
and store this energy into a (super-)capacitor. The voltage of this
capacitor is often used as a threshold to determine when the volt-
age regulator powering the MCUs turns on and off. In this case
the MCU only is provided a regulated supply that is switched on
and off according to the voltage of the (super-)capacitor. Often the
harvesting and regulator circuit is implemented using a boost con-
verter and buck converter to generate the MCU supply stepping
down the voltage of the (super)capacitor.

Unlike other emulation platforms such as Ekho [14] and Shep-
herd [12] we emulate the buck-boost converter and the storage
capacitor, and directly provide the resulting on/off output to the
DUT. We do not aim to fully replicate the buck-boost converter but
to attain similar behavior with a simplified model. This approach
only requires a voltage/current input trace, greatly simplifying
capacitor size selection and makes it capable of simulating any
buck-boost converter that outputs a steady supply by adjusting the
converters specific parameters such as efficiency.

The emulator is implemented as configurable power supply and
is able to quickly switch off/on its supply to DUT. It is also capable
of accurately measuring the power consumption of the DUT, as
depicted in Figure 5.

Virtual Buck-Boost Emulation. We have chosen to emulate the
Texas Instruments’ BQ25570 ultra low power harvester power man-
agement IC [52], as it is one of the most frequently used buck-boost
converters in intermittently-powered systems. Our approach is
centered around the current voltage relation of a capacitor defined
as

𝑉cap (𝑡) =
1
𝐶

∫ 𝑡

𝑡0

𝐼 (𝜏)𝑑𝜏 +𝑉cap (𝑡0), (1)

where 𝑉cap (𝑡) is the capacitor voltage, 𝐶 the capacitance, 𝐼 (𝜏) is
the instantaneous current flowing into (i.e. harvested) and out (i.e.
consumed) of the capacitor, and 𝑉cap (𝑡0) is the initial capacitor
voltage at 𝑡 = 0. Using a look up table we compensate the input
current according to the efficiency of the boost converter in the

227



DIPS: Debug Intermittently-Powered Systems Like Any Embedded System SenSys ’22, November 6–9, 2022, Boston, MA, USA

Vout

LDO
Regulator

Vref

Current
Sense

Vin 

R
di

sc
ha

rg
e

Energy
Emulator

Virtual Buck-
Boost Emulation

Synthetic
Emulation

I/O 
UART

SWD 
SBW

Hardware
Debugger

Programmer

GDB Server

DIPS
Hardware

Device Under Test

Energy Isolation

Integrated Development
Environment

1  int i = 0; 
2  while(i < 50){ 
3    ENERGY_GUARD_START; 
4    printf("Iterration: %d \n", x); 
5    ENERGY_GUARD_STOP; 
6    i++; 
7  }

GDB Client

PC Energy Emulator
Graphical User Interface

Mode: Replay

BreakpointStatus:

Figure 5: DIPS simplified implementation overview of both
hardware and software. The full hardware and software im-
plementation of DIPS can be found in DIPS’s artifact [1].

BQ25570 according to the input voltage. The outgoing current is the
current measured by the emulator which is also compensated by
the efficiency of the buck converter. Adding thresholds for turning
the output on (𝑉high) and off (𝑉low), over-voltage protection (𝑉max)
and compensating for leakage and quiescent current completes our
simplified model. If the hardware debugger is running in attached
mode, the additional quiescent current of the MCUs debug hard-
ware is also compensated for as mentioned in Section 4.1.1. Our
emulator is capable of operating with a static input current and with
replaying pre-recorded voltage/current input traces. The emulator
is compatible with Shepherd’s [12] Hierarchical Data Format (HDF)
format traces.

Synthetic Emulation Modes. Apart from operating as a virtual
buck-boost converter, our emulator is also able to generate arbitrary
signals. These signals include square wave and sawtooth modes
with adjustable frequency and duty cycle. Synthetic emulation is
needed to stress test any intermittently-powered device.

4.2.1 Hardware Debugger Integration. If the energy emulator is
actively powering the DUT when a debugging feature is triggered
such as a breakpoint, emulation is paused whilst keeping the DUT
powered. When execution is resumed, emulation also resumes. Any
calls to the DIPS API also pauses emulation until completed. The en-
ergy emulator also implements a passive mode compatible with the
debuggers detached mode, intended for a scenario of debugging an

intermittently-powered system operating using its own (harvested)
energy supply. In this mode when a DIPS API call occurs, the DUT
voltage is first sampled. Then the emulator supplies a safe slightly
higher voltage than the system voltage to the DUT—taking over
and powering the DUT until the debugging action is completed.
Then the original voltage of the DUT is restored. This mode should
be used with care as back-feeding could occur.

4.2.2 PC Client Software Architecture. To control, configure and
monitor the emulator we have designed a PC Graphical User Inter-
face (GUI) client build around the QT framework [42]. The client
communicates with DIPS through USB using an extendable Pro-
tobuf [13] interface. When the emulator is connected to the PC,
the client automatically attempts to connect to DIPS. Through the
Protobuf interface the client is able to select and configure the
emulation modes. For example, in square wave mode (i) the duty
cycle, (ii) period and (iii) voltage are configurable. One notable
option specific to the virtual buck-boost mode is to stream HDF
voltage/current input traces to the emulator for replay. The emula-
tor also has an option to stream the measured voltage and current of
the DUT to the client, where this data is visualized by an interactive
chart. Finally, a status indicator is present in the GUI, indicating
when emulation is paused by the hardware debugger.

4.3 DIPS Automated Software Testing
As DIPS integrates a hardware debugger it is able to provide full
access to the memory space of the MCU under test. By leveraging
GDB and its interpretation of the debugging symbols in the com-
piled code, DIPS is able to provide a full debugging context to the
developer, including rendering of the call stack, variable values and
all other default debugging features of normal embedded systems.
Leveraging the emulator we are able to detect issues that are tra-
ditionally present in intermittently-powered systems. Central to
the hardware debugger is the GDB server. Through the use of GDB
many popular IDEs can directly integrate with DIPS. In the debug
environment of the PC, a GDB client interfaces with the GDB server
on the debugger. We utilize a transparent Python wrapper around
the GDB client to extend the interface and automate specific testing
for intermittent systems.

4.3.1 Software Testing Scripts. Through the wrapper’s extended
interface we introduce two software testing scripts. The first script
verifies checkpoint correctness by comparing the volatile memory
of the DUT before the last checkpoint prior to a power failure and
after restoration, at which point the memory should be identical.
The second script compares peripheral configurations of the DUT
prior to the checkpoint and after restoration, by comparing the
relative configuration registers. Both scripts are designed to run in
attached mode of the hardware debugger and are implemented in
an extendable fashion so that more scripts could be added in the
future.

Memory Restoration. To check memory restoration correctness
through power failures, the user must specify the checkpointing
function and the first function called after restoration when using
the script. Additionally the volatile memory regions that should be
checked need to be specified.

228



SenSys ’22, November 6–9, 2022, Boston, MA, USA de Winkel et al.

Figure 6: The DIPS hardware debugger and emulator PCB.
The hardware debugger components marked as A○– E○ and
energy emulator components as F○– J○ are explained in Sec-
tion 4.4.

When running GDB with the script, the script automatically
downloads and saves the specified memory ranges at every check-
point. It then compares the latest stored memory against the mem-
ory after a restore. When a mismatch occurs, the symbolic name is
retrieved through GDB of the offending memory address and the
debugger remains in a breakpoint. The memory address together
with its current contents and the content at the point of the latest
checkpoint are then presented to the user for further investigation.
The script also is optionally able to to monitor the time between
checkpoints, if no checkpoints are made within a user definable
time, code execution is halted for further investigation by the user.
As an extended period without checkpoints on intermittent systems
is often a good indicator for the DUT getting stuck.

Peripheral State Restoration. Since DIPS has full access to the
address space, including the peripheral address space, we are also
able to monitor peripheral configurations during checkpoints and
verify if these are properly restored. In addition to specifying the
checkpoint and restore functions, the user also needs to specify the
configuration registers to be checked. Then based on the register
name, the configuration registers addresses are retrieved by parsing
the DUT MCU’s .svd file—a .svd file that is commonly provided as
part of a software development kit for MCU’s. Again, prior to the
checkpoint, the state of the peripheral configuration registers is
retrieved and stored. Upon restoration the register state is compared
against the stored state. Any issues are reported to the user and the
debugger remains in a breakpoint.

4.4 DIPS Hardware Implementation
As described earlier DIPS is composed of two subsystems: (i) the
hardware debugger and (ii) energy emulator. Both subsystems, shown
in Figure 6 and marked by blue and orange polygon, respectively.
The details of each subsystem hardware implementation are as
follows.

4.4.1 Hardware Debugger. The hardware design of the debugger
centers around a STM32F103RET [50] MCU A○ and is based on the

Table 3: DIPS energy emulator specification. Measurements
were performed with a Keithley 2450 Source Measurement
Unit [22] and a Saleae Logic Pro 8 [43].

Feature Parameter Specification

Replay Resolution 1 ms
Sampling rate Voltage 50 kHz

Current 50 kHz
Range Voltage 0.1 V–3.6 V

Current 1 µA–20 mA
Accuracy Voltage ±50 mV

Current (1 µA–100 µA) 5 % ±1 µA
Current (100 µA–20 mA) 5 %

Rise Time 0–3 V (Switch) 28 µs
0.1–3 V (Adjust) 836 µs

Black Magic Debug Probe [38]. It is able to communicate with the
energy emulator through SPI. The MCU interfaces with the DUT
through SWD/JTAG or SBW E○, I/O interrupt pins and acts as a
UART-USB bridge D○. To translate the signals to the DUT voltage,
first, the DUT voltage is buffered using a low input bias current
buffer amplifier OPA192 [19]. Next, all the interfaces with the DUT
are level shifted by level translators C○ [34] using the buffered DUT
voltage. The debugger connects to the PC with USB B○.

4.4.2 Energy Emulator. Central to the energy emulator is the low
noise TPS7A87 [20] I○ linear regulator. The regulator generates the
adjustable supply rail to the DUT J○. Power consumption by the
DUT is measured by two INA186 current sense amplifiers [21] H○.
The first amplifier with a 5.6 Ω sense resistor measures large cur-
rents without imposing a high burden voltage. The second amplifier
with a 1000 Ω sense resistor measures low currents and is able to be
bypassed at large currents preventing high burden voltages. Two
analog switches [18] allow for quickly disabling the output and
discharging the output through a 47 Ω resistor. The emulator is con-
trolled by a STM32F373 [49] MCU G○. With its on-board DAC DIPS
is able to adjust the linear regulator and samples the output voltage
and the output of the current sense amplifiers (each using one of
its dedicated on-board Sigma Delta ADCs). The energy emulator
connects to the PC with USB F○.

5 DIPS EVALUATION
We now proceed with the evaluation of DIPS. The evaluation is split
in three parts. First, we characterise DIPS. Second, we perform user
studies aiding in finding whether DIPS is a useful (and better then
state of the art) tool for debugging battery free systems. Finally,
we show how DIPS can be used to find bugs in recently presented
battery-free intermittently-powered systems.

5.1 DIPS Characterization
To evaluate DIPS we conduct several measurements to evaluate
the performance of our debugger. These measurements are divided
into two categories: (i) the specification of the energy emulator and
(ii) characterization of the hardware debugger.

229



DIPS: Debug Intermittently-Powered Systems Like Any Embedded System SenSys ’22, November 6–9, 2022, Boston, MA, USA

Table 4: DIPS debugger characterization: 𝑡init (initial connec-
tion time) and 𝑡rec (re-connection time) while connected to
different devices. Data points were collected using a Saleae
Logic Pro 8 [43], and averaged over ten measurements.

Device Under Test 𝑡init (ms) 𝑡rec (ms)

nRF52 [Arm-M4] [35] 311.1 72.7
SAM4L8 [Arm-M4] [32] 324.7 75.8

MKL05Z [Arm-M0+] [36] 309.6 105.8
STM32F3 [Arm M4] [49] 318.6 68.2
Apollo 3 [Arm M4] [47] 331.1 95.6

Energy Emulator Characterization. In Table 3 a specification of
DIPS’ energy emulator is provided. Notable attributes are the fast
sample rate, wide current measurement range capability and quick
rise time. These attributes enable DIPS to accurately emulate the
simplified buck-boost converter behaviour using real-world energy
traces as input; the 1 ms resolution enables dynamic scenarios emu-
lating abrupt energy changes at DUT. For other synthetic operation
modes such as sawtooth or square wave, voltage accuracy is crucial
to trigger voltage-based thresholds for the DUT.

Hardware Debugger Characterization. An overhead of DIPS’ hard-
ware debugger operating in attached mode is the requirement of
establishing a connection to the debug hardware of the DUT. This
can occur prior to starting execution after a reboot, or when the
system is running. When the hardware debugger connects whilst
the device is running, early breakpoints might be missed. When
this is unacceptable, DIPS_ATTACH can be placed at the start of the
program. The hardware debugger then connects prior to any code
execution at the cost of a slight delay. The time required to establish
a connection is listed in Table 4.

5.2 DIPS User Experience Study
To assess the effectiveness of bug finding in code written for inter-
mittently powered systems, we have designed a user experience
study. In this study, participants were asked to experiment with
DIPS and EDB [7]—the state-of-the-art debugger for intermittently-
powered systems. In particular, we asked to search for three bugs
in a single simple program consisting of multiple files (written sep-
arately for both debugging platforms, containing bugs of similar
complexity—DIPS and EDB) using two respective debuggers. Af-
ter the bug search process participants were asked to assess their
debugging experience with each platform through an anonymous
survey. The study was approved by the human ethics committee of
the institution the authors of this work are associated with.

We have performed two versions of experience studies: (i) a
pre-study (denoted as Study 1) with small number of participants,
with limited time given to find bugs in each program and (ii) main
study (denoted as Study 2), with twice the size of the user pool of
the Study 2 and with double the time allowed to find bugs in each
program.

5.2.1 User Experience Study Participants. We have invited seven
participants to Study 1 and 16 participants to Study 2. Participants

were recruited through professional mailing lists and personal con-
tacts. Special care was taken of not recruiting people that are in
a current or former relation with the responsible persons for this
study.

Based on the anonymous post-study online self-assessment sur-
vey, among all study participants the following information was
found: Study 1’s participants included six men and one woman
and for Study 2 fourteen men and two women. The median age
of participants was 26 (youngest: 23, oldest: 44) for Study 1, and
26,5 (youngest: 20, oldest: 36) for Study 2. The most comfortable
programming language in which participants code was C/C++ (four
participants in both studies) followed by Python (three participants
in Study 1 and four participants in Study 2). All participants in
Study 1 and all but one in Study 2 have used an IDE before when
developing their applications and all but one participant from Study
1 and five out of 16 participants from Study 2 preferred to develop
their applications using an IDE. In Study 1 and Study 2, respectively:
four and three participants self-assessed themselves as having a lot
embedded programming skills, two and six—some experience, one
and five—little experience, and none and two—no experience. Large
majority (i.e. five) participants used hardware-based debuggers for
their embedded project (such as Segger J-link [45]) among Study 1
participants, while only 5 out of 16 for Study 2.

All participants used at least one of the following debugging
techniques while debugging an embedded system, such as break-
points, watchpoints, memory views, peripheral views, etc. of Study
1, while for Study 2 11 out of 16 participants were exposed to these
debugging techniques. The most used debugging techniques by
participants were breakpoints (six and ten participants of Study 1
and Study 2, respectively), printf (mentioned by six participants
of Study 1 and six participants of Study 2), single step (three par-
ticipants of Study 1 and nine participants of Study 2) and memory
inspection (mentioned by three participants of Study 1 and three
participants of Study 2) and ‘measuring voltage‘ (mentioned by one
participant of Study 1).

Only two participants did not hear about battery-free intermit-
tently powered systems before the start of Study 1, while only two
out of 16 participants of Study 2 heard about such systems, while
just one participant of Study 2 programmed them before. Based on
a Likert scale, the question ‘how difficult is the application devel-
opment for battery-free intermittently-powered systems?’ gave the
following responses: five participants of the Study 1 and 13 of Study
2 answered ‘somewhat difficult’ and two participants of Study 1 and
three of Study 2 answered ‘similar to battery-powered embedded
systems’. For the record, nobody found them either ‘very difficult’,
‘easy’ or ‘very easy’ to program.

Based on the above information we can conclude that user experi-
ence study participants were skilled (considering their background
and experience) and well informed to take part in this user experi-
ence study.

5.2.2 User Experience Study Setup. We asked each participant to
enter a room with two pre-configured PCs. One PC was connected
to DIPS that in turn connected to a Nordic Semiconductors NRF52
development kit [35]. Another PC was connected to EDB, where
EDB was connected to a Wireless Identification and Sensing Plat-
form (WISP) [44] (version 5.1). Both platforms were powered from a

230



SenSys ’22, November 6–9, 2022, Boston, MA, USA de Winkel et al.

DIPS emulator configured either as constant voltage or square wave
supply simulating intermittency. This emulation was not part of
the user study but required in order to power the devices under test.
Both PCs had VSCode [9] as a code editor and all requisite tooling
to compile and use the debuggers installed. The PC with DIPS-only
had the IDE open, while the other PC also displayed a console
environment with the EDB program and means to recompile the
code.

Before the debugging session started each participant was re-
quested to read a short description on intermittently-powered sys-
tems and to read an instruction how to use DIPS and EDB.1 After
reading the instruction, the participant was asked to debug a piece
of code for one of the systems (with which debugger system the
user starts the study was randomly determined for each partici-
pant). After 15 minutes of debugging in case of Study 1 and 30
minutes in the case of Study 2 the participant was asked to fill-in
the survey with a questionnaire regarding the debugging experi-
ence. This survey section was enabled only when the participant
asked for a password—this reduced the chance that the participant
would answer survey questions without first debugging with the
system. The same process (bug finding and password-protected
survey fill-in) was repeated for the second debugger. During the
survey neither DIPS nor EDB was mentioned and both PCs were
referred to as ‘System A‘ and ‘System B‘ with name cards attached
to the PC’s monitor—to remove any bias in assessing both systems
and not reveal which system originates from the institution with
which all experience study participants were associated with. We
note that the questions in the questionnaire were given as compar-
ative (i.e. how system A performed against system B for the issue
in question).

5.2.3 User Experience Study Results—Pre-Study. The first result of
the user experience pre-study (Study 1) is presented in Figure 7a.
We see that more users would use DIPS than EDB. Moreover, a large
majority of users found DIPS more intuitive to use than EDB. Only
a small minority of participants would use EDB instead of DIPS. No
participants stated that they are only familiar with the way that the
EDB debugging process works—the majority of them are familiar
with the ‘regular’ way programs are debugged. All these results
hint that DIPS suits debugging tasks of intermittently-powered
devices better than the state-of-the-art system.

The results of the bug session finding are presented in Figure 8a.
One surprising result is that nobody was able to find any bug with
EDB, while majority the participants were able to localise at least
one bug with DIPS. We speculate that such extremely low bug
finding rate for EDB (and inability to localize two or more bugs
with DIPS) was due to insufficient time allocated to find all bugs
in a session. On the other hand, a short time for bug finding was
a stress test for both systems, suggesting that DIPS is more useful
in code debugging compared to EDB (even for complex and still
unexplored systems such as intermittently-powered devices). With
the main study (Study 2), with more time allocated to debugging,
we shall find whether this extra time would result in significantly

1The exact text given to the participants, with the code given for debugging for both
systems, together with the user experience study results, is available as part of the
open-source repository of DIPS [1].

I would use it

I am familiar with it

Intuitive to use

Easy to use

14.3%

14.3%

28.6%

42.9%

14.3%

42.9%

28.6%

85.7%

57.1%

14.3%

14.3%

42.9%

EDB Both DIPS Neither

(a) Study 1, i.e pre-study

I would use it

I am familiar with it

Intuitive to use

Easy to use

12.5%

6.2%

6.2%

6.2%

87.5%

81.2%

87.5%

93.8%

12.5%

6.2%

EDB Both DIPS Neither

(b) Study 2, i.e main study

Figure 7: Responses to questions given to user experience
study participants after the completion of bug finding ses-
sions for DIPS and EDB. Note that numbers in this figure and
in Figure 8 are rounded to the nearest decimal digit.

Bugs found with EDB

Bugs found with DIPS

100.0%

28.6% 71.4%

Zero One Two Three

(a) Study 1, i.e pre-study

Bugs found with EDB

Bugs found with DIPS

81.2%

12.5%

18.8%

56.2% 25.0% 6.2%

Zero One Two Three

(b) Study 2, i.e. main study

Figure 8: Number of bugs found by users participating in
both studies, categorized per debugger system.

better perception of EDB. The results are presented in the next
section.

5.2.4 User Experience Study Results—Main Study. The results of
the main study (Study 2) are presented in Figure 7b and Figure 8b.
Comparing them with Figure 7a and Figure 8a, respectively, we can
conclude that the increased time to find bugs, from 15 minutes to
30 minutes per debugging session, did not significantly affect the
perception of which system is better (Figure 7b). Actually, the main
study shows that participants are more positive about DIPS than
about EDB, as less participants were pointing to EDB or pointing
to both debugging systems (Figure 7b). Most importantly, however,
the additional time assigned to the participants of the user study
resulted in more bugs to be found with EDB, but also more bugs
with DIPS (Figure 8b).

5.2.5 Generic Observations by Study Participants. In addition to
closed questions given to the participants, which results are pre-
sented in Figure 7a and Figure 8a for Study 1 and in Figure 7b and
Figure 8b for Study 2, we have asked four open-ended questions
asking to specify positive and negative aspects of DIPS and EDB,
respectively. Considering EDB, the positive aspects listed were as

231



DIPS: Debug Intermittently-Powered Systems Like Any Embedded System SenSys ’22, November 6–9, 2022, Boston, MA, USA

follows: it suits those developers better who prefer terminals over
GUIs allowing for scripting and automation (which, on the other
hand, other study participants found as negative for developers
used to GUI-driven development2); one person found ability to set
breakpoints and seeing the capacitor voltage as valuable. The nega-
tive aspects of EDB listed were as follows: not intuitive as a whole
and having non-intuitive commands; forcing to re-flash code for
breakpoints; being erroneous when debugging and has no ability
to resolve symbols. Conflicting points were listed however—one
person described EDB as ‘programmer friendly’ while other found
no positive aspects of EDB.

Considering DIPS, the positive aspects listed were: very similar
to existing debuggers—“people will have an easier time learning
how to use [it]”—being able to use already-accustomed GUI debug-
ging buttons; being “tightly integrated to IDE” and being able to
“set breakpoints in editor”; no need to compile code for every debug
session. The negative aspects of DIPS listed: two users were expect-
ing even more user-friendly system (not requiring to “switching
between tabs for building/loading” whereas “restart button doesn’t
seem to function correctly”); one user still found DIPS difficult to
use (who nota bene made the same remark about the EDB).

As an overarching conclusion stemming from all questions posed
to the participants—users found DIPS easier to use, more intuitive
and more familiar than EDB.

5.3 Software Testing with DIPS
Next, we show how DIPS helps in finding bugs in existing intermit-
tently powered systems. We will demonstrate this ability of finding
bugs using DIPS and its features based on two case studies.

5.3.1 Case Study: BFree—Peripheral Bug.

Experimental Setup. We start with a state-of-the-art intermit-
tently powered system, BFree [23], as the selected DUT with the
E-Ink application programmed. We have connected DIPS to the
DUT, as shown in Figure 9 and powered the system using DIPS’s
energy emulator in a square wave mode.

Symptoms. When inducing frequent power failures to the BFree,
the background of the E-Ink display fades. This fading seems to
occur when BFree experiences a power failure during an update of
the screen.

Diagnosis. First to rule out any obvious issues we ran DIPS’s
software testing memory restoration script for 15 minutes. During
testing no discrepancy was detected between BFree’s volatile mem-
ory prior to checkpointing and after restoration. The peripheral
state script of DIPS also did not find any related mismatches in
BFree’s peripheral register configuration.

In Listing 2 the BFree code is shown that partially updates the
display. Checkpoints are temporarily disabled during the execution
of this function (see line 5 and 12 in Listing 2), meaning the code
has to be executed in full without any power failures. However, if a
power failure would occur in-between line 5 and 12, the peripheral
could be left with an unknown state. When BFree restarts, BFree

2We speculate that due to the setup of the user study participants thought that DIPS
was developed to be integrated only with IDE. However, we note that DIPS can also
be used as stand-alone debugger in the console.

Figure 9: DIPS connected to BFree [23] aiding in finding
BFree’s peripheral bug. The bug causes the background of
the E-Ink display to be almost completely faded.

Listing 2: BFree code snippet partially updating E-Ink display.
1 void epd_draw_temp(uint8_t temp) {
2 uint8_t unit = temp % 10;
3 uint8_t tens = (temp/10) % 10;
4

5 checkpoint_disable();
6

7 epd_init_temp();
8 epd_font_show(0, 2, unit);
9 epd_font_show(0, 1, tens);
10 epd_deep_sleep();
11

12 checkpoint_enable();
13 }

will resume at the last checkpoint and the code will be executed
again from that checkpoint.

By single stepping through this code of BFree using the DIPS
debugger and forcing a power failure at each code line, we discov-
ered that this partial execution causes the fading of the display.
That is, if a power failure occurs between epd_font_show() and
epd_deep_sleep(), the state of the display is not “locked” and
remains in a high voltage state causing the fading, potentially dam-
aging the E-Ink display over time. This issue could be resolved by for
example, checking if enough energy is present before starting the
screen update or to gracefully power down the BFree peripherals
when a power failure is immanent.

In this case study DIPS assisted by quickly finding a major prob-
lem with the DUT, i.e. a peripheral-related bug3. Using the ability
of DIPS to single step through code and the ability to generate

3DIPS’ software testing scripts do not test the state of external peripherals connected
to the DUT—only the configuration of the MCU’s peripherals of the DUT.

232



SenSys ’22, November 6–9, 2022, Boston, MA, USA de Winkel et al.

power failure patterns using DIPS’s energy emulator, we quickly
identified the underlying issue within BFree.

5.3.2 Case Study: Engage—Memory Restoration Bug.

Experimental Setup. As a second case study we chose Engage,
the system used in the Battery-Free Game Boy [11]—a battery-free
intermittently-powered handheld gaming console, as the selected
DUT. Engage uses an optimized version of checkpoining, where
only the memory regions that were changed since the last check-
point (denoted as patches) are stored in a non-volatile memory
at each new checkpoint. We have connected DIPS to the DUT, as
shown in Figure 9 and powered Engage using the energy emulator
of DIPS in square wave mode.

Symptoms. After an extended period of timewhen power failures
are induced frequently to Engage, no game content is displayed on
the screen when powered and Engage appears not being able to
start (i.e., only black screen is seen instead of game content). After
this failure has occurred—even when continues power is supplied
to Engage—Engage fails to start the game it was intended to play.

Diagnosis. The symptoms hint at a memory restoration issue,
where either Engage’s memory gets corrupted or something is
preventing the Engage to boot. First, we ran our software testing
memory restoration script for 15 minutes, verifying that the volatile
memory is correctly checkpointed and restored. Whilst running
the test we did not detect any discrepancies in Engage’s memory.
Then, by running the peripheral state script for another 15 minutes
we ruled out any inconsistencies between peripheral configuration
that could prevent Engage from, for example, accessing the external
non-volatile FRAM where the checkpoints are stored.

As these 15 minute long tests were unable to reproduce the
symptomswe have extended the testing time. After extended testing
using the memory restoration script, DIPS paused code execution.
This pause was triggered as no checkpoint has occurred within the
predefined time window of five minutes, hinting that most likely
no forward progress has been made. At this point Engage exhibited
the previously mentioned symptoms.

Engage’s execution was paused by the hardware debugger of
DIPS at the moment of the restoration process, i.e. where memory
is restored from a chain of memory patches. By further manual
investigation with DIPS by breakpoints and stepping through the
code we deduced that the process of applying the patches could
not finish and formed an infinite loop preventing the system from
starting.

In this case study DIPS assisted by quickly ruling out major prob-
lems. The description of the process (from unsuccessful 15 minute
tests to a successful automated test) shows the usefulness of DIPS
in directly pointing the developer to the issue (which preventing
Engage from starting).

6 LIMITATIONS AND FUTURE WORK
Despite the advantages DIPS is bringing in debugging intermittently-
powered systems, the research on debugging platforms for such
intermittently-powered systems is not over. We list the most im-
portant limitations of DIPS, with its current study below.

Figure 10: DIPS connected to Engage [11] aiding in finding a
memory restoration bug. After a certain time of continuous
intermittent execution a checkpoint of Engage is corrupted,
resulting in the handheld console failing to start.

Support for non-ARM MCU Architectures. DIPS does not yet sup-
port of debugging of non-ARM MCU architectures, refer again to
Table 1. One particular MCU series that requires immediate sup-
port from DIPS is Texas Instruments’ MSP430 MCUs [53]—used in
numerous previous projects on intermittently-powered systems,
including [15, 28, 58]. Luckily there are no technical limitations
that would disallow to support MSP430 by DIPS. DIPS’ support for
MSP430 and its implementation is further described in [1, DIPS
Support for MSP430].

Per-Line Code Inspection. What DIPS currently cannot do is to
point to the exact code line that caused the program error. Such
per-line code inspection for intermittently-powered systems was
presented in [29], where WAR dependencies are found using code
analysis. Then at each of these dependencies a power interrupt was
emulated and memory regions were inspected for any inconsis-
tencies. With additional scripting, DIPS could single step through
the code and generate a power failure at every potential WAR, this
method however, will be significantly slower than simulation based
methods.

Further Development of DIPS. The overarching aim of the DIPS
project is to be useful to the developers working on intermittently-
powered systems. This can only be achieved by the introduction
of new functionalities and support for new platforms, such as in-
cluding MSP430 MCUs [53] support as mentioned above. Since we
make DIPS available to the wider community, additional features,
further improvements and evaluation can be contributed to the
project by the community itself.

7 RELATEDWORK
The field of testing intermittently-powered embedded systems can
be categorised into (i) energy trace generation—for harvested en-
ergy trace replay and synthesis, (ii) testbeds—for controllable per-
formance assessment of battery-free systems, and (iii) debugging
systems (both hardware and software)—for finding individual errors
in the code. For the record, a high-level introduction to embedded
systems testing (thus also conventional battery-based systems) can
be found in [6].

233



DIPS: Debug Intermittently-Powered Systems Like Any Embedded System SenSys ’22, November 6–9, 2022, Boston, MA, USA

Energy Trace Generation. Considering the first category, Ekho [14]
is a platform capable of replaying pre-recorded current/voltage
traces that targets energy-harvesting devices. Such platforms aid in
providing repeatable conditions during testing and could operate
as a stress test by feeding different power supply traces to the DUT,
e.g. to see at which conditions DUT stops working. Energy trace
generation is also an integral feature of DIPS.

Battery-Free Systems Testbeds. Considering the second category,
Shepherd [12] is the first (and the only one, to the best of our
knowledge) complete battery-free intermittently-powered testbed4.
It extends the energy trace recording and replay features introduced
by Ekho [14], allowing to replay energy traces simultaneously and
in synchrony for different spatially-separated sensors.

Hardware and Software Debugging Systems. Considering the
third category, the reference point for DIPS (and the only available
debugger for intermittently-powered systems) is EDB [7], which
has already been discussed extensively in this paper. To the best of
our knowledge, the systems that target software-only techniques of
bug finding in intermittently-powered systems are [29, 51]. Please
note however that [29] does not work on a real embedded system,
so memory region and peripheral inspection of the actual DUT
is impossible. Then, work of [51] considered the problem of bugs
caused by I/O operations of intermittently-powered devices, which
was addressed by the static code analysis and dynamic information
flow tracking to detect bugs at runtime. However, the bug detec-
tion of [51] needs (i) code instrumentation, (ii) targets a specific
framework for intermittently-powered systems (i.e. task-based sys-
tem [28]), and (iii) requires complete code compilation for each new
memory inspection. Another example of static analysis tool for
task-based programs is CleanCut [8]. CleanCut optimizes placing
of task boundaries to reduce task-specific bugs, i.e. non-terminating
tasks due to too few task boundaries. Still, unlike DIPS, CleanCut
does not allow for real code debugging of the resulting transformed
code.

Intermittently-Powered Computing Systems. Many new research
frameworks are proposed each year for intermittently-powered
computing systems. These frameworks focus on the speed of exe-
cution [24], adaptability to energy conditions [30], compiler sup-
port [8], ease of use [23], or dependency on external hardware [57],
to name a few. For a good (and recent) comparative overview of
intermittently-powered computing systems we refer to [5, Table 1]
and to [11, Table 2].

8 CONCLUSION
We have presented DIPS, a new debugging platform for intermit-
tently powered battery-free devices. It closely couples a hardware
debugger for embedded systems capable of debugging intermittent
systems and an energy emulator allowing to replay real-life and
synthesised energy traces. The close interaction of the debugger
and emulator allows for seamless pausing of emulation during de-
bugging actions (such as a breakpoints) whilst keeping the Device
Under Test (DUT) powered and resumes emulation as the DUT con-
tinues operation. DIPS’ software testing scripts allow for automatic
4For the record, the first idea of such testbed in a preliminary form was presented
in [2].

verification of memory/peripheral restoration during intermittent
operation. User experience studies have shown that DIPS enables
debugging of intermittently-powered devices the same way as one
would debug battery-powered embedded devices. Moreover, as a
case study, using DIPS we were able to identify bugs in state-of-
the-art intermittently-powered battery-free computing systems.

ACKNOWLEDGMENTS
We thank our anonymous reviewers, shadow program committee
reviewers and our shepherd for their useful comments. We would
also like to thank Vito Kortbeek for his assistance with the BFree
case study. This research was supported by the Netherlands Organ-
isation for Scientific Research (NWO), partly funded by the Dutch
Ministry of Economic Affairs, through TTW Perspective program
ZERO (P15-06) within Project P1.

REFERENCES
[1] TU Delft Sustainable Systems Lab. 2022. DIPS Artifact Repository: Including

Hardware, Software, Tools and Documentation. https://github.com/TUDSSL/
DIPS. Last accessed: Oct. 28, 2022.

[2] Henko Aantjes, Amjad Y. Majid, and Przemysław Pawełczak. 2016. A Testbed for
Transiently Powered Computers. https://arxiv.org/abs/1606.07623.

[3] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo Caslini,
Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-
mad Hamad Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2020. Battery-
Less Zero-Maintenance Embedded Sensing at the MithræUm of Circus Max-
imus. In Proc. SenSys (Nov. 16–19). ACM, Virtual Event, 368–381. https:
//doi.org/10.1145/3384419.3430722.

[4] Brian Amos. 2020. Hands-On RTOS with Microcontrollers: Building Real-Time
Embedded Systems using FreeRTOS, STM32 MCUs, and SEGGER Debug Tools. Packt
Publishing Limited, Birmingham, United Kingdom.

[5] Abu Bakar, Alexander G. Ross, Kasım Sinan Yıldırım, and Josiah Hester. 2021.
REHASH: A Flexible, Developer Focused, Heuristic Adaptation Platform for
Intermittently Powered Computing. ACM Interact. Mob. Wearable Ubiquitous
Technol. 5, 3 (Sept. 2021), 87:1–87:42. https://doi.org/10.1145/3478077.

[6] Abhijeet Banerjee, Sudipta Chattopadhyay, and Abhik Roychoudhury. 2016. On
Testing Embedded Software. Advances in Computers 101 (2016), 121–153.

[7] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson Sample. 2016. An
Energy-interference-free Hardware/Software Debugger for Intermittent Energy-
harvesting Systems. In Proc. ASPLOS (April 2–6). ACM, Atlanta, GA, USA, 577–
589. https://doi.org/10.1145/2980024.2872409.

[8] Alexei Collin and Brandon Lucia. 2018. Termination Checking and Task Decom-
position for Task-Based Intermittent Programs. In Proc. CC (Feb. 24–25). ACM,
Vienna, Austria, 183:1–183:31. https://dl.acm.org/doi/10.1145/3360609.

[9] Microsoft Corp. 2022. Visual Studio Code. https://code.visualstudio.com.
[10] Jasper de Winkel, Carlo Delle Donne, Kasım Sinan Yıldırım, Przemysław

Pawełczak, and Josiah Hester. 2020. Reliable Timekeeping for Intermittent Com-
puting. In Proc. ASPLOS (March 16–20). ACM, Lausanne, Switzerland, 53–67.
https://doi.org/10.1145/3373376.3378464.

[11] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemysław Pawełczak. 2020.
Battery-Free Game Boy. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 3
(Sept. 2020), 111:1–111:34. https://doi.org/10.1145/3411839.

[12] Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling. 2019. Shepherd: a
Portable Testbed for the Batteryless IoT. In Proc. SenSys (Nov. 9–13). ACM, New
York, NY, USA, 83–95. https://doi.org/10.1145/3356250.3360042.

[13] Google LLC. 2022. Protocol buffers for Serializing Structured Data Product
Website. https://developers.google.com/protocol-buffers. Last accessed: Oct. 15,
2022.

[14] Josiah Hester, Timothy Scott, and Jacob Sorber. 2014. Ekho: Realistic and Repeat-
able Experimentation for Tiny Energy-Harvesting Sensors. In Proc. SenSys (Nov.
3–5). ACM, Memphis, TN, USA, 1–15. https://doi.org/10.1145/2668332.2668336.

[15] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the Coulombs:
Federating Energy Storage for Tiny, Intermittently-Powered Sensors. In Proc.
SenSys (Nov. 1–4). ACM, Seoul, South Korea, 5–16. https://doi.org/10.1145/
2809695.2809707.

[16] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-
less Internet-of-Things. In Proc. SenSys (Nov. 6–8). ACM, Delft, The Netherlands,
19:1–19:13. https://doi.org/10.1145/3131672.3131674.

[17] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is Batteryless, Inter-
mittent, and Awesome. In Proc. SenSys (Nov. 6–8). ACM, Delft, The Netherlands,
21:1–21:6. https://doi.org/10.1145/3131672.3131699.

234

https://github.com/TUDSSL/DIPS
https://github.com/TUDSSL/DIPS
https://arxiv.org/abs/1606.07623
https://doi.org/10.1145/3384419.3430722
https://doi.org/10.1145/3384419.3430722
https://doi.org/10.1145/3478077
https://doi.org/10.1145/2980024.2872409
https://dl.acm.org/doi/10.1145/3360609
https://code.visualstudio.com
https://doi.org/10.1145/3373376.3378464
https://doi.org/10.1145/3411839
https://doi.org/10.1145/3356250.3360042
https://developers.google.com/protocol-buffers
https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/2809695.2809707
https://doi.org/10.1145/3131672.3131674
https://doi.org/10.1145/3131672.3131699


SenSys ’22, November 6–9, 2022, Boston, MA, USA de Winkel et al.

[18] Texas Instruments Inc. 2005. TS5A23159 1-Ω 2-Channel Single Pole Double Throw
(SPDT) Analog Switch 5-V / 3.3-V 2-Channel 2:1 Multiplexer / Demultiplexer.
ttps://www.ti.com/lit/ds/symlink/ts5a23159.pdf. Last accessed: May 9, 2022.

[19] Texas Instruments. 2015. OPAx192, Precision, Low Input Bias Current Op Amp.
https://www.ti.com/lit/ds/symlink/opa192.pdf. Last accessed: May 9, 2022.

[20] Texas Instruments. 2016. TPS7A87 Dual, 500-mA, Low-Noise, LDO Voltage
Regulator. https://www.ti.com/lit/ds/symlink/tps7a87.pdf. Last accessed: May 9,
2022.

[21] Texas Instruments. 2021. INA186, Current-Sense Amplifier. https://www.ti.com/
lit/ds/symlink/ina186.pdf. Last accessed: May 9, 2022.

[22] Keithley Instruments, LLC. 2021. 2450 SourceMeter Source Measurement Unit In-
strument. https://download.tek.com/datasheet/1KW-60904-2_2450_Datasheet_
072021.pdf. Last accessed: Sep. 11, 2021.

[23] Vito Kortbeek, Abu Bakar, Stefany Cruz Kasım Sinan Yıldırım, Przemysław
Pawełczak, and Josiah Hester. 2020. BFree: Enabling Battery-free Sensor Proto-
typing with Python. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 4 (Dec.
2020), 135:1–111:39. https://doi.org/10.1145/3432191.

[24] Vito Kortbeek, Souradip Ghosh, Josiah Hester, Simone Campanoni, and Prze-
mysław Pawełczak. 2022. WARio: Efficient Code Generation for Intermittent
Computing. In Proc. PLDI (June 13–17). ACM, San Diego, CA, USA, 777–791.
https://doi.org/10.1145/3519939.3523454.

[25] Vito Kortbeek, Kasım Sinan Yıldırım, Abu Bakar, Jacob Sorber, Josiah Hester,
and Przemysław Pawełczak. 2020. Time-sensitive Intermittent Computing Meets
Legacy Software. In Proc. ASPLOS (March 16–20). ACM, Lausanne, Switzerland,
85–99. https://doi.org/10.1145/3373376.3378476.

[26] Tianxing Li and Xia Zhou. 2018. Battery-Free Eye Tracker on Glasses. In Proc.
MobiCom (October 29 — November 2). ACM, New Delhi, India, 67–82. https:
//doi.org/10.1145/3241539.3241578.

[27] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent Computing: Challenges and Opportunities. In Proc. SNAPL.
Schloss Dagstuhl, Alisomar, CA, USA, 8:1–8:14. https://drops.dagstuhl.de/opus/
volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf.

[28] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent
Execution without Checkpoints. In Proc. OOPSLA (Oct. 22–27). ACM, Vancouver,
BC, Canada, 96:1–96:30. https://doi.org/10.1145/3133920.

[29] Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid Haroon
Siddiqui. 2021. Discovering the Hidden Anomalies of Intermittent Comput-
ing. https://www.ewsn.org/file-repository/ewsn2021/Article1.pdf. In Proc. EWSN
(Feb. 17–19). ACM, Delft, The Netherlands, 1–12.

[30] Amjad Yousef Majid, Carlo Delle Donne, KiwanMaeng, Alexei Colin, Kasım Sinan
Yıldırım, Brandon Lucia, and Przemysław Pawełczak. 2020. Dynamic Task-based
Intermittent Execution for Energy-harvesting Devices. ACM Trans. Sens. Netw.
16, 1 (Feb. 2020), 5:1–5:24. https://doi.org/10.1145/3360285.

[31] Geoff V. Merrett and Bashir M. Al-Hashimi. 2017. Energy-Driven Computing:
Rethinking the Design of Energy Harvesting Systems. In Proc. DATE. IEEE, Lau-
sanne, Switzerland, 960–965. https://doi.org/10.23919/DATE.2017.7927130.

[32] Microchip Technology Inc. 2016. SAM4L8 Xplained Pro Evaluation Kit. https://
www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO. Last accessed:
Jun. 16, 2022.

[33] Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Alloulah,
Lorena Qendro, and Fahim Kawsar. 2020. ePerceptive: Energy Reactive Embedded
Intelligence for Batteryless Sensors. In Proc. SenSys (Nov. 6–19). ACM, Virtual
Event, 382–394. https://doi.org/10.1145/3384419.3430782.

[34] Nexperia. 2021. 74LVC2T45; 74LVCH2T45 Dual Supply Translating Transceiver;
3-state. https://assets.nexperia.com/documents/data-sheet/74LVC_LVCH2T45.
pdf. Last accessed: May 9, 2022.

[35] Nordic Semiconductor ASA. 2021. Bluetooth Low Energy and Bluetooth Mesh
development kit for the nRF52810 and nRF52832 System on Chips (SoCs). https://
www.nordicsemi.com/Products/Development-hardware/nrf52-dk. Last accessed:
Jun. 11, 2022.

[36] NXP Semiconductors N.V. 2013. Freedom Development Platform for the
Kinetis KL05 and KL04 MCUs. https://www.nxp.com/design/development-
boards/freedom-development-boards/mcu-boards/freedom-development-
platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z. Last accessed: Sep.
11, 2021.

[37] Open Source Community Contributors. 2021. Unicorn: a Lightweight, Multi-
platform, Multi-architecture Central Processing Unit (CPU) Emulator Framework
based on QEMU. https://github.com/unicorn-engine/unicorn. Last accessed:
May 19, 2022.

[38] Open Source Community Developers. 2022. Black Magic Debug Repository.
https://github.com/blackmagic-debug. Last accessed: May 9, 2022.

[39] Open Source Community Developers. 2022. GDB: The GNU Project Debugger
Repository. https://sourceware.org/git/binutils-gdb.git. Last accessed: May 10,
2022.

[40] Matthai Philipose, Joshua R. Smith, Bing Jiang, Alexander Mamishev, Sumit
Roy, and Kishor Sundara-Rajan. 2005. Battery-Free Wireless Identification and
Sensing. IEEE Pervasive Comput. 4, 1 (Jan.–Mar. 2005), 37–45. https://doi.org/10.
1109/MPRV.2005.7.

[41] R. Venkatesha Prasad, Shruti Devasenapathy, Vijay S. Rao, and Javad Vazife-
hdan. 2014. Reincarnation in the Ambiance: Devices and Networks with Energy
Harvesting. IEEE Commun. Surveys Tuts. 11, 1 (First Quarter 2014), 195–213.
https://doi.org/10.1109/SURV.2013.062613.00235.

[42] Qt Group. 2022. Qt Software Development Framework Product Website. https:
//www.qt.io/product/framework. Last accessed: Oct. 15, 2022.

[43] Saleae Inc. 2021. Logic Pro 8 USB Logic Analyzer. http://downloads.saleae.com/
specs/Logic+Pro+8+Product+Fact+Sheet.pdf. Last accessed: Jun. 16, 2022.

[44] Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexander V. Mamishev,
and Joshua R. Smith. 2008. Design of an RFID-based battery-free programmable
sensing platform. IEEE Trans. Instrum. Meas. 57, 11 (Nov. 2008), 2608–2615.
https://doi.org/10.1109/TIM.2008.925019.

[45] SEGGER Microcontroller GmbH. 2021. J-Link Educational Debug Probe. https:
//www.segger.com/products/debug-probes/j-link/models/j-link-edu. Last ac-
cessed: May 16, 2022.

[46] Esther Shein. 2021. A Battery-Free Internet of Things. Commun. ACM 64, 7
(2021), 16–18. https://doi.org/10.1145/3464937.

[47] SparkFun Electronics. 2019. RedBoard Artemis ATP. https://www.sparkfun.com/
products/15442. Last accessed: Jun 16, 2022.

[48] Richard Stallman, Roland H. Pesch, and Stan Shebs. 2011. Debugging with GDB:
The GNU Source-Level Debugger, V 7.3.1. Free Software Foundation, Boston, MA,
USA.

[49] STMicroelectronics. 2016. Mainstream Mixed signals MCUs Arm Cortex-M4
core with DSP and FPU, 256 kB of Flash memory, 72 MHz CPU, MPU, 16-bit
ADC comparators. https://www.st.com/en/microcontrollers-microprocessors/
stm32f373cc.html. Last accessed: May 9, 2022.

[50] STMicroelectronics. 2018. Mainstream Performance Line, Arm Cortex-M3 MCU
with 512 kB of Flash memory, 72 MHz CPU, Motor control, USB and CAN. https:
//www.st.com/en/microcontrollers-microprocessors/stm32f103re.html. Last
accessed: May 9, 2022.

[51] Miljana Surbatovich, Limin Lia, and Brandon Lucia. 2019. I/O Dependent Idempo-
tence Bugs in Intermittent Systems. In Proc. OOPSLA (Oct. 23–25). ACM, Athens,
Greece, 183:1–183:31. https://dl.acm.org/doi/10.1145/3360609.

[52] Texas Instruments Inc. 2013. BQ25570 Ultra Low power Harvester power
Management IC with Boost Charger, and Nanopower Buck Converter. https:
//www.ti.com/lit/ds/symlink/bq25570.pdf. Last accessed: Jun. 19, 2022.

[53] Texas Instruments Inc. 2017. MSP430FR59xx Mixed-Signal Microcontrollers (Rev.
F). Last accessed: May 18, 2022, http://www.ti.com/lit/ds/symlink/msp430fr5969.
pdf.

[54] Maria-Magdalena Titirici. 2021. Sustainable Batteries—Quo Vadis? Adv. Energy
Mater. 11, 10 (mar 2021), 2003700:1–2003700:11. https://doi.org/10.1002/aenm.
202003700.

[55] Lionel Sujay Vailshery. 2021. Internet of Things (IoT) and non-IoT Active
Device Connections Worldwide from 2010 to 2025. Last accessed: May
18, 2022, https://www.statista.com/statistics/1101442/iot-number-of-connected-
devices-worldwide/.

[56] Joel VanDerWoude andMatthewHicks. 2016. Intermittent ComputationWithout
Hardware Support or Programmer Intervention. In Proc. OSDI (Nov. 2–4). ACM,
Savannah, GA, USA, 17–32. https://www.usenix.org/system/files/conference/
osdi16/osdi16-van-der-woude.pdf.

[57] Harrison Williams, Michael Moukarzel, and Matthew Hicks. 2021. Failure Sen-
tinels: Ubiquitous Just-in-time Intermittent Computation via Low-cost Hardware
Support for Voltage Monitoring. In Proc. ISCA (June 14–19). ACM/IEEE, Virtual
event, 665–678. https://doi.org/10.1109/ISCA52012.2021.00058.

[58] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemysław Pawełczak, and Josiah Hester. 2018. InK: Reactive Kernel for Tiny
Batteryless Sensors. In Proc. SenSys (Nov. 4–7). ACM, Shenzhen, China, 41–53.
https://doi.org/10.1145/3274783.3274837.

[59] Eren Yıldız, Lijun Chen, and Kasım Sinan Yıldırım. 2022. Immortal Threads:
Multithreaded Event-driven Intermittent Computing on Ultra-Low-Power Mi-
crocontrollers. In Proc. OSDI (July 11–13). USENIX, Carlsbad, CA, USA, 339–355.
https://www.usenix.org/system/files/osdi22-yildiz.pdf.

235

ttps://www.ti.com/lit/ds/symlink/ts5a23159.pdf
https://www.ti.com/lit/ds/symlink/opa192.pdf
https://www.ti.com/lit/ds/symlink/tps7a87.pdf
https://www.ti.com/lit/ds/symlink/ina186.pdf
https://www.ti.com/lit/ds/symlink/ina186.pdf
https://download.tek.com/datasheet/1KW-60904-2_2450_Datasheet_072021.pdf
https://download.tek.com/datasheet/1KW-60904-2_2450_Datasheet_072021.pdf
https://doi.org/10.1145/3432191
https://doi.org/10.1145/3519939.3523454
https://doi.org/10.1145/3373376.3378476
https://doi.org/10.1145/3241539.3241578
https://doi.org/10.1145/3241539.3241578
https://drops.dagstuhl.de/opus/volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/7131/pdf/LIPIcs-SNAPL-2017-8.pdf
https://doi.org/10.1145/3133920
https://www.ewsn.org/file-repository/ewsn2021/Article1.pdf
https://doi.org/10.1145/3360285
https://doi.org/10.23919/DATE.2017.7927130
https://www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO
https://www.microchip.com/en-us/development-tool/ATSAM4L8-XPRO
https://doi.org/10.1145/3384419.3430782
https://assets.nexperia.com/documents/data-sheet/74LVC_LVCH2T45.pdf
https://assets.nexperia.com/documents/data-sheet/74LVC_LVCH2T45.pdf
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-the-kinetis-kl05-and-kl04-mcus:FRDM-KL05Z
https://github.com/unicorn-engine/unicorn
https://doi.org/10.1109/MPRV.2005.7
https://doi.org/10.1109/MPRV.2005.7
https://doi.org/10.1109/SURV.2013.062613.00235
https://www.qt.io/product/framework
https://www.qt.io/product/framework
http://downloads.saleae.com/specs/Logic+Pro+8+Product+Fact+Sheet.pdf
http://downloads.saleae.com/specs/Logic+Pro+8+Product+Fact+Sheet.pdf
https://doi.org/10.1109/TIM.2008.925019
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu
https://doi.org/10.1145/3464937
https://www.sparkfun.com/products/15442
https://www.sparkfun.com/products/15442
https://www.st.com/en/microcontrollers-microprocessors/stm32f373cc.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f373cc.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f103re.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f103re.html
https://dl.acm.org/doi/10.1145/3360609
https://www.ti.com/lit/ds/symlink/bq25570.pdf
https://www.ti.com/lit/ds/symlink/bq25570.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
http://www.ti.com/lit/ds/symlink/msp430fr5969.pdf
https://doi.org/10.1002/aenm.202003700
https://doi.org/10.1002/aenm.202003700
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.usenix.org/system/files/conference/osdi16/osdi16-van-der-woude.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-van-der-woude.pdf
https://doi.org/10.1109/ISCA52012.2021.00058
https://doi.org/10.1145/3274783.3274837
https://www.usenix.org/system/files/osdi22-yildiz.pdf

	Abstract
	1 Introduction
	2 Intermittently-Powered Systems: Background
	3 Debugging Intermittently-Powered Systems
	3.1 Bugs Type Classification
	3.2 Why Debugging Intermittently-Powered Systems is Still Hard

	4 DIPS: Debugger for Intermittently-Powered Systems
	4.1 DIPS Hardware Debugger
	4.2 DIPS Energy Emulator
	4.3 DIPS Automated Software Testing
	4.4 DIPS Hardware Implementation

	5 DIPS Evaluation
	5.1 DIPS Characterization
	5.2 DIPS User Experience Study
	5.3 Software Testing with DIPS

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

