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Learning to Play Trajectory Games Against
Opponents With Unknown Objectives

Xinjie Liu
and Javier Alonso-Mora

Abstract—Many autonomous agents, such as intelligent vehicles,
are inherently required to interact with one another. Game theory
provides a natural mathematical tool for robot motion planning in
such interactive settings. However, tractable algorithms for such
problems usually rely on a strong assumption, namely that the
objectives of all players in the scene are known. To make such
tools applicable for ego-centric planning with only local infor-
mation, we propose an adaptive model-predictive game solver,
which jointly infers other players’ objectives online and computes a
corresponding generalized Nash equilibrium (GNE) strategy. The
adaptivity of our approach is enabled by a differentiable trajectory
game solver whose gradient signal is used for maximum likelihood
estimation (MLE) of opponents’ objectives. This differentiability of
our pipeline facilitates direct integration with other differentiable
elements, such as neural networks (NNs). Furthermore, in contrast
to existing solvers for cost inference in games, our method han-
dles not only partial state observations but also general inequality
constraints. In two simulated traffic scenarios, we find superior per-
formance of our approach over both existing game-theoretic meth-
ods and non-game-theoretic model-predictive control (MPC) ap-
proaches. We also demonstrate our approach’s real-time planning
capabilities and robustness in two-player hardware experiments.

Index Terms—Trajectory games, multi-robot systems, inte-
grated planning and learning, human-aware motion planning.

1. INTRODUCTION

ANY robot planning problems, such as robot navigation
M in a crowded environment, involve rich interactions with
other agents. Classic “predict-then-plan” frameworks neglect
the fact that other agents in the scene are responsive to the
ego-agent’s actions. This simplification can result in inefficient
or even unsafe behavior [1]. Dynamic game theory explicitly
models the interactions as coupled trajectory optimization prob-
lems from a multi-agent perspective. A noncooperative equi-
librium solution of this game-theoretic model then provides
strategies for all players that account for the strategic coupling of
plans. Beyond that, general constraints between players, such as
collision avoidance, can also be handled explicitly. All of these
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Fig. 1. An ego-agent (red) merging onto a busy road populated by six sur-
rounding vehicles whose preferences for travel velocity and lane are initially
unknown. Our approach adapts the ego agent’s strategy by inferring opponents’

intention parameters 6 from partial state observations.

features render game-theoretic reasoning an attractive approach
to interactive motion planning.

In order to apply game-theoretic methods for interactive
motion planning from an ego-centric rather than omniscient
perspective, such methods must be capable of operating only
based on local information. For instance, in driving scenarios
as shown in Fig. 1, the red ego-vehicle may only have partial-
state observations of the surrounding vehicles and incomplete
knowledge of their objectives due to unknown preferences for
travel velocity, target lane, or driving style. Since vanilla game-
theoretic methods require an objective model of all players [2],
[3], this requirement constitutes a key obstacle in applying such
techniques for autonomous strategic decision-making.

To address this challenge, we introduce our main contribution:
a model-predictive game solver, which adapts to unknown op-
ponents’ objectives and solves for generalized Nash equilibrium
(GNE) strategies. The adaptivity of our approach is enabled by
a differentiable trajectory game solver whose gradient signal is
used for MLE of opponents’ objectives.

We perform thorough experiments in simulation and on hard-
ware to support the following three key claims: our solver (i) out-
performs both game-theoretic and non-game-theoretic baselines
in highly interactive scenarios, (ii) can be combined with other
differentiable components such as NNs, and (iii) is fast and
robust enough for real-time planning on a hardware platform.

II. RELATED WORK

To put our contribution into context, this section discusses four
main bodies of related work. First, we discuss works on trajec-
tory games which assume access to the objectives of all players
in the scene. Then, we introduce works on inverse dynamic
games that infer unknown objectives from data. Thereafter, we
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also relate our work to non-game-theoretic interaction-aware
planning-techniques. Finally, we survey recent advances in dif-
ferentiable optimization, which provide the underpinning for our
proposed differentiable game solver.

A. N-Player General-Sum Dynamic Games

Dynamic games are well-studied in the literature [4]. In
robotics, a particular focus is on multi-player general-sum games
in which players may have differing yet non-adversarial objec-
tives, and states and inputs are continuous.

Various equilibrium concepts exist in dynamic games.
The Stackelberg equilibrium concept [5] assumes a “leader-
follower” hierarchy, while the Nash equilibrium problem
(NEP) [2], [5] does not presume such a hierarchy. Within the
scope of NEP, there exist open-loop NEPs [3] and feedback
NEPs [2], [6]. We refer the readers to [4] for more details about
the difference between the concepts. When shared constraints
exist between players, such as collision avoidance constraints,
one player’s feasible set may depend on other players’ deci-
sions. In that case, the problem becomes a generalized Nash
equilibrium problem (GNEP) [7]. In this work, we focus on
GNEPs under an open-loop information pattern which we solve
by converting to an equivalent Mixed Complementarity Problem
(MCP) [8].

B. Inverse Games

There are three main paradigms for solving inverse games:
(i) Bayesian inference, (ii) minimization of Karush-Kuhn—
Tucker (KKT) residuals, and (iii) equilibrium-constrained
maximum-likelihood estimation. In type (i) methods, Le Cleac’h
et al. [9] employ an Unscented Kalman Filter (UKF). This
sigma-point sampling scheme drastically reduces the sampling
complexity compared to vanilla particle filtering. However, a
UKEF is only applicable for uni-modal distributions, and extra
care needs to be taken when uncertainty is multi-modal, e.g.,
due to multiple Nash equilibria. Type (ii) methods require full
demonstration trajectories, i.e., including noise-free states and
inputs, to cast the N-player inverse game as N independent
unconstrained optimization problems [10], [11]. However, they
assume full constraint satisfaction at the demonstration and
have limited scalability with noisy data [12]. The type (iii)
methods use KKT conditions of an open-loop Nash equilibrium
(OLNE) as constraints to formulate a constrained optimization
problem [12]. This type of method finds the same solution as
type (ii) methods in the noise-free cases but can additionally
handle partial and noisy state observations. However, encoding
the equilibrium constraints is challenging, as it typically yields a
non-convex problem, even in relatively simple linear-quadratic
game settings. This challenge is even more pronounced when
considering inequality constraints of the observed game, as this
results in complementarity constraints in the inverse problem.

Our solution approach also matches the observed trajectory
data in an MLE framework. In contrast to all methods above,
we do so by making a GNE solver differentiable. This approach
yields two important benefits over existing methods: (i) general
(coupled) inequality constraints can be handled explicitly, and
(i1) the entire pipeline supports direct integration with other
differentiable elements, such as NNs. This latter benefit is a
key motivation for our approach that is not enabled by the
formulations in [9] and [12].
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Note that Geiger et al. [13] explore a similar differentiable
pipeline for inference of game parameters. In contrast to their
work, however, our method is not limited to the special class of
potential games and applies to general GNEPs.

C. Non-Game-Theoretic Interaction Models

Besides game-theoretic methods, two categories of
interaction-aware decision-making techniques have been
studied extensively in the context of collision avoidance and
autonomous driving: (i) approaches that learn a navigation
policy for the ego-agent directly without explicitly modeling
the responses of others [14], [15], [16], and (ii) techniques
that explicitly predict the opponents’ actions to inform the
ego-agent’s decisions [17], [18], [19], [20], [21]. This latter
category may be further split by the granularity of coupling
between the ego-agent’s decision-making process and the
predictions of others. In the simplest case, prediction depends
only upon the current physical state of other agents [22]. More
advanced interaction models condition the behavior prediction
on additional information such as the interaction history [17],
the ego-agent’s goal [19], [20], or even the ego-agent’s future
trajectory [18], [21].

Our approach is most closely related to this latter body
of work: by solving a trajectory game, our method captures
the interdependence of future decisions of all agents; and by
additionally inferring the objectives of others, predictions are
conditioned on the interaction history. However, a key difference
of our method is that it explicitly models others as rational agents
unilaterally optimizing their own cost. This assumption provides
additional structure and offers a level of interpretability of the
inferred behavior.

D. Differentiable Optimization

Our work is enabled by differentiating through a GNE solver.
Several works have explored the idea of propagating gradient
information through optimization algorithms [23], [24], [25],
enabling more expressive neural architectures. However, these
works focus on optimization problems and thus only apply
to special cases of games, such as potential games studied
by Geigeretal. [13]. By contrast, differentiating through a GNEP
involves N coupled optimization problems. We address this
challenge in Section I'V-B.

III. PRELIMINARIES

This section introduces two key concepts underpinning our
work: forward and inverse dynamic games. In forward games,
the objectives of players are known, and the task is to find
players’ strategies. By contrast, inverse games take (partial)
observations of strategies as inputs to recover initially unknown
objectives. In Section IV, we combine these two approaches into
an adaptive solver that computes forward game solutions while
estimating player objectives.

A. General-Sum Trajectory Games

Consider an N-player discrete-time general-sum trajec-
tory game with horizon of T'. In this setting, each player ¢
has a control input ui € R™ which they may use to in-

fluence the their state z! € R™ at each discrete time t €
[T]. In this work, we assume that the evolution of each
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player’s state is characterized by an individual dynamical
system x} , = f'(x},uj). For brevity throughout the re-
mainder of the letter, we shall use boldface to indicate
aggregation over players and capitalization for aggregation
over time, e.g., x; = (2},...,2]), Ul := (ul,..., uk), X :=
(x1,...,x7). With a joint trajectory starting at a given initial
state X; := (#1,...,2Y), each player seeks to find a control
sequence U to minimize their own cost function J¢(X, U*; §%),
which depends upon the joint state trajectory X as well
as the player’s control input sequence U’ and, additionally,
takes in a parameter vector §*.! Each player must addition-
ally consider private inequality constraints Pg*(X*, U?) > 0
as well as shared constraints *g(X, U) > 0. This latter type of
constraint is characterized by the fact that all players have a
shared responsibility to satisfy it, with a common example being
collision avoidance constraints between players. In summary,
this noncooperative trajectory game can be cast as a tuple of [V
coupled trajectory optimization problems:
min

_ JH(X,U%0Y)
X‘L7U1 . . . .
st xp g = fr(xh,up), Ve [T —1]
2l = M
pgi(Xi7 Uz) >0
f¢g(X, U)=>0.

Vi € [N]

Note that each player’s feasible set in this problem may
depend upon the decision variables of others, which makes it
a GNEP rather than a standard NEP [7].

A solution of this problem is a tuple of GNE strategies U* :
(U, ..., UN*) that satisfies the inequalities .J*(X*, U™*; 6%)
JH(XE, X)), U 0) for any feasible deviation (X?, U?)
any player 7, with X% denoting all but player i’s states. Since
identifying a global GNE is generally intractable, we require
these conditions only to hold locally. At a local GNE, then, no
player has a unilateral incentive to deviate locally in feasible
directions to reduce their cost.

Running example: We introduce a simple running exam-
ple? which we shall use throughout the presentation to con-
cretize the key concepts. Consider a tracking game played
between N = 2 players. Let each agent’s dynamics be charac-
terized by those of a planar double-integrator, where states i =
(DL 4,1} 4, V% 1, VL, ;) are position and velocity, and control in-
puts ui = (a’, ;, al ,) are acceleration in horizontal and vertical
axes in a Cartesian frame. We define the game’s state as the con-
catenation of the two players’ individual states x; := (2}, 22).
Each player’s objective is characterized by an individual cost

2N I

T-1

J'= Y IPisr — Phoull’ + 0-Ll1uf3
t=1

+ 50max(0, dwin — [Ipf1 —piill2)®, ()

where we set py,, = p7 so that player 1, the tracking robot,
is tasked to track player 2, the target robot. Player 2 has
a fixed goal point pzoal. Both agents wish to get to their
goal position efficiently while avoiding proximity beyond a
minimal distance d,. Players also have shared collision

I'The role of the parameters will become clear later in the letter when we move
on to inverse dynamic games.

2Qur final evaluation in Section V features denser interaction such as the
7-player ramp-merging scenario shown in Fig. 1.
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avoidance constraints *g;y1(X¢11, Urt1) = [Prs1 — piyalle —
dmin > 0,Vt € [T — 1] and private bounds on state and controls
Pgi(X% U"). Agents need to negotiate and find an underlying
equilibrium strategy in this noncooperative game, as no one
wants to deviate from the direct path to their goal.

B. Inverse Games

We now switch context to the inverse dynamic game setting.
Let6 := (%1,62,...,0") denote the aggregated tuple of param-
eters initially unknown to the ego-agent with index 1. Note that
we explicitly infer the initial state of a game X; to account for the
potential sensing noise and partial state observations. To model
the inference task over these parameters, we assume that the
ego-agent observes behavior originating from an unknown Nash
game ['(0) := (%1, g, {f*,P g°, J'(-;0") }ic[n]), With objective
functions and constraints parameterized by initially unknown
values 0% and %1, respectively.

Similar to the existing method [12], we employ an MLE
formulation to allow observations to be partial and noise-
corrupted. In contrast to that method, however, we also allow for
inequality constraints in the hidden game. That is, we propose
to solve

o, p(Y [X,U)
s.t.  (X,U)isaGNE of I'() 3)

where p(Y | X, U) denotes the likelihood of observations Y :=
(y1,...,yr) given the estimated game trajectory (X, U) in-
duced by parameters . This formulation yields an mathematical
program with equilibrium constraints (MPEC) [26], where the
outer problem is an estimation problem while the inner problem
involves solving a dynamic game. When the observed game
includes inequality constraints, the resulting inverse problem
necessarily contains complementarity constraints and only few
tools are available to solve the resulting problem. In the next
section, we show how to transform (3) into an unconstrained
problem by making the inner game differentiable, which also
enables combination with other differentiable components.

Running example: We assign the tracker (player 1) to be the
ego-agent and parameterize the game with the goal position of
the target robot 6 = pZ, ;. That is, the tracker does not know the
target agent’s goal and tries to infer this parameter from position
observations. To ensure that (3) remains tractable, the ego-agent
maintains only a fixed-length buffer of observed opponent’s
positions. Note that solving the inverse game requires solving
games rather than optimal control problems at the inner level to
account for the noncooperative nature of observed interactions,
which is different from inverse optimal control (IOC) even in
the 2-player case. We employ a Gaussian observation model,
which we represent with an equivalent negative log-likelihood
objective ||Y — r(X, U)||3 in (3), where 7(X, U) maps (X, U)
to the corresponding sequence of expected positions.

IV. ADAPTIVE MODEL-PREDICTIVE GAME PLAY

We wish to solve the problem of model-predictive game
play (MPGP) from an ego-centric perspective, i.e., without
prior knowledge of other players’ objectives. To this end, we
present an adaptive model-predictive game solver that combines
the tools of Section III: first, we perform MLE of unknown
objectives by solving an inverse game (Section III-B); then, we
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solve a forward game using this estimate to recover a strategic
motion plan (Section III-A).

A. Forward Games as MCPs

We first discuss the conversion of the GNEP in (1) to an
equivalent MCP. There are three main advantages of taking this
view. First, there exists a wide range of off-the-shelf solvers
for this problem class [27]. Furthermore, MCP solvers directly
recover strategies for all players simultaneously. Finally, this
formulation makes it easier to reason about derivatives of the so-
lution w.r.t. to problem data. As we shall discuss in Section IV-C,
this derivative information can be leveraged to solve the inverse
game problem of (3).

In order to solve the GNEP presented in (1) we derive
its first-order necessary conditions. We collect all equality
constraints for player ¢ in (1) into a vector-valued function
hi (X% U 2%), introduce Lagrange multipliers z¢, PA* and *A
for constraints k' (X, U 2%), Pg*(X*,U"), and *g(X, U) and
write the Lagrangian for player ¢ as

L4X, U, 5t PA 54 0) = JH(X, U; 6°)

s)\ng(}(7 U) o p)»iTpgi(Xi, Uz)4)
(

Note that we share the multipliers associated with shared con-
straints between the players to encode equal constraint satisfac-
tion responsibility [28]. Under mild regularity conditions, e.g.,
linear independence constraint qualification (LICQ), a solution
of (1) must satisfy the following joint KKT conditions:

+p TR(X, U ) —

. V(XqivUi)Ei(X,U,,ui,pki, 5x0)=0
Vi € [N] {0 < pgi(Xi’Ui) | P)i >0

h(X,U;ﬁl) =0
0<°g(X,U) L2 >0, )

where, for brevity, we denote by h(X, U; X1 ) the aggregation of
all equality constraints. If the second directional derivative of the
Lagrangian is positive along all feasible directions at a solution
of (5)—a condition that can be checked a posteriori—this point
is also a solution of the original game. In this work, we solve
trajectory games by viewing their KKT conditions through the
lens of MCPs [8, Section 1.4.2].

Definition 1: A Mixed Complementarity Problem (MCP) is
defined by the following problem data: a function F'(2) : R%
R<, lower bounds ¢; € R U {—00} and upper bounds u; € R U
{0}, each for j € [d]. The solution of an MCP is a vector z* €
R™, such that for each element with index j € [d] one of the
following equations holds:

Z =45, F;(z") =2 0 (6a)
b <z} <wuy, Fj(2") =0 (6b)
Z5 = uy, Fj(27) <0. (6¢)

The parameterized KKT system of (5) can be expressed as a
parameterized family of MCPs with decision variables corre-
sponding to the primal and dual variables of (5),

5 — [XT7UT7“T’pk1T7 o 7pANT’sAT}T7
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and problem data

[ V(X17U1),Ci i —00 oo
V(XN’UN);EN — 00 oo
h —00 00

F(Zva): pgl 5 l= 0 , U= 0o’
pgN 0 00
L 9 L 0] [0

N

where, by slight abuse of notation, we overload F' to be
parametrized by 6 via £* and use oo to denote elements for
which upper or lower bounds are dropped.

B. Differentiation of an MCP Solver

An MCP solver may be viewed as a function, mapping
problem data to a solution vector. Taking this perspective, for
a parameterized family of MCPs as in (7), we wish to compute
the function’s derivatives to answer the following question: How
does the solution z* respond to local changes of the problem
parameters 6?

1) The Nominal Case: Let U(0) := (F(-;0),¢,u) denote an
MCP parameterized by 6§ € R? and let z* € R™ denote a so-
lution of that MCP, which is implicitly a function of 6. For
this nominal case, we consider only solutions at which strict
complementarity holds. We shall relax this assumption later. If
F is smooth, i.e., F(-;0), F(z*;-) € C*', we can recover the

Jacobian matrix Vgz* = (TZ) € R™*P by distinguishing two
possible cases. For brevity, below, gradients are understood to
be evaluated at z* and 0.

a) Active bounds: Consider first the elements z;‘ that are
either at their lower or upper bound, i.e., 27 satisfies (6a) or (6¢).
Since strict complementarity holds at the solution, F};(z*;6)
must be bounded away from zero with a finite margin. Hence,
the smoothness of F' guarantees that a local perturbation of

¢ will retain the sign of F;(2*;0). As a result, 2z} remains

at its bound and, locally, is identically zero. Let Z := {k €
[n] | z; =l V 2z}, = uy} denote the index set of all elements
matching this condition and Z* := [2*]; denote the solution
vector reduced to that set. Trivially, then, the Jacobian of this
vector vanishes, i.e., Vgz* = 0.

b) Inactive bounds: The second case comprises elements
that are strictly between the bounds, i.e., z; satisfying (6b). In this
case, under mild assumptions on F', for any local perturbation
of 6 there exists a perturbed solution such that F' remains at
its root. Therefore, the gradient ng; for these elements is
generally non-zero, and we can compute it via the implicit func-
tion theorem (IFT). Let Z :={k € [n] | Fr(2%;0) = 0,4, <
z,’;d< uy } be the index set of all elements satisfying case (b)
and let

2= [

F(z5,0) := [F(z%;0)]z (®)

denote the solution vector and its complement reduced to said
index set. By the IFT, the relationship between parameters 6 and

Authorized licensed use limited to: TU Delft Library. Downloaded on June 20,2023 at 07:15:28 UTC from IEEE Xplore. Restrictions apply.
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solution z*(#) is characterized by the stationarity of F:
0=V [F(2%(6),0)]

=VoF + (VF)(Voz) + (V2 F) (VeZ") (9

——
=0
Note that, as per the discussion in case (a), the last term in
this equation is identically zero. Hence, if the Jacobian Vz F'is
invertible, we recover the derivatives as the unique solution of
the above system of equations,

Voz' = — (Vo F) " (VoF). (10)

Note that (9) may not always have a unique solution, in which
case (10) cannot be evaluated. We discuss practical considera-
tions for this special case below.

2) Remarks on Special Cases and Practical Realization: The
above derivation of gradients for the nominal case involves
several assumptions on the structure of the problem. We discuss
considerations to improve numerical robustness for practical
realization of this approach below. We note that both special
cases discussed hereafter are rare in practice. In fact, across 100
simulations of the running example with varying initial states
and objectives, neither of them occurred.

a) Weak complementarity: The nominal case discussed
above assumes strict complementarity at the solution. If this
assumption does not hold, the derivative of the MCP is not
defined. Nevertheless, we can still compute subderivatives at 6.
Let the set of all indices for which this condition holds be denoted
by Z:={k € [n]| Fr(2";0) =0A z;, € {{x,u}}. Then by
selecting a subset of 7 and including it in Z for evaluation of
(10), we recover a subderivative.

b) Invertibility: The evaluation (10) requires invertibility
of Vz F. To this end, we compute the least-squares solution of
(9) rather than explicitly inverting V3 F'.

C. Model-Predictive Game Play With Gradient Descent

Finally, we present our pipeline for adaptive game-play
against opponents with unknown objectives. Our adap-
tive MPGP scheme is summarized in Algorithm 1. At each
time step, we first update our estimate of the parameters by
approximating the inverse game in (3) via gradient descent. To
obtain an unconstrained optimization problem, we substitute the
constraints in (3) with our differentiable game solver. Following
the discussion of (7), we denote by z* () the solution of the MCP
formulation of the game parameterized by . Furthermore, by
slight abuse of notation, we overload X (z*), U(z") to denote
functions that extract the state and input vectors from z*. Then,
the inverse game of (3) can be written as unconstrained opti-
mization,

p(Y | X(2"(6)), U(z"(0)))-

Online, we approximate solutions of this problem by taking
gradient descent steps on the negative logarithm of this objective,
with gradients computed by chain rule,

Vo [p(Y | X(7(6)), U(*(0))]
= (Vxp)(V=X)(Vp2") + (Vup) (V= U) (Vo).

Here, the only non-trivial term is Vyz*, whose computation we
discussed in Section IV-B. To reduce the computational cost,

an

max
0

(12)
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Algorithm 1: Adaptive MPGP.

Hyper-parameters: stopping tolerance: stop_tol, learning
rate: Ir ~
Input: initial 6, current observation buffer Y, new
observation y
Y < updateBuffer(Y,y)
/* inverse game approximation */
while not stop_tol and not max_steps_reached do
(2", Vaz")  solveDiffMCP(0) > sec. IV-B
Vop < composeGradient(z*, Voz*,Y) > eq. (12)
0« 0—Vop-Ir
end
2" <+ solveMCP(0)
applyFirstEgolnput(z*)
return 0,Y

> forward game, eq. (7)

we warm-start using the estimate of the previous time step and
terminate early if a maximum number of steps is reached. Then,
we solve a forward game parametrized by the estimated 6 to
compute control commands. We execute the first control input
for the ego agent and repeat the procedure.

V. EXPERIMENTS

To evaluate our method, we compare against two baselines
in Monte Carlo studies of simulated interaction. Beyond these
quantitative results, we showcase our method deployed on Jackal
ground robots in two hardware experiments.

The experiments below are designed to support the key claims
that our method (i) outperforms both game-theoretic and non-
game-theoretic baselines in highly interactive scenarios, (ii) can
be combined with other differentiable components such as NN,
and (iii) is sufficiently fast and robust for real-time planning
on a hardware platform. A supplementary video of qualita-
tive results can be found at https://xinjie-liu.github.io/projects/
gamehttps://xinjie-liu.github.io/projects/game. Upon publica-
tion of this manuscript, the code for our method and experiments
will be available at the same link.

A. Experiment Setup

1) Scenarios: We evaluate our method in two scenarios.

a) 2-player running example: To test the inference ac-
curacy and convergence of our method in an intuitive setting,
we first consider the 2-player running example. For evaluation
in simulation, we sample the opponent’s intent—i.e., their un-
known goal position in (2)— uniformly from the environment.
Partial observations comprise the position of each agent.

b) Ramp merging: To demonstrate the scalability of our
approach and support the claim that our solver outperforms
the baselines in highly interactive settings, we also test our
method on a ramp merging scenario with varying numbers of
players. This experiment is inspired by the setup used in [3]
and is schematically visualized in Fig. 1. We model each
player’s dynamics by a discrete-time kinematic bicycle with
the state comprising position, velocity and orientation, i.e.,
xf = (pl 4,1} +,vi,9}), and controls comprising acceleration
and steering angle, i.e., ul = (ai, ). We capture their individual
behavior by a cost function that penalizes deviation from a ref-
erence travel velocity and target lane; i.e., 0° = (vl p;mne). We
add constraints for lane boundaries, for limits on speed, steering,
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and acceleration, for the traffic light, and for collision avoidance.
To encourage rich interaction in simulation, we sample each
agent’s initial state by sampling their speed and longitudinal
positions uniformly at random from the intervals from zero to
maximum velocity vnm.x and four times the vehicle length I 4,
respectively. The ego-agent always starts on the ramp and all
agents are initially aligned with their current lane. Finally, we
sample each opponent’s intent from the uniform distribution over
the two lane centers and the target speed interval [0.40max , Umax]-
Partial observations comprise the position and orientation of
each agent.

2) Baselines: We consider the following three baselines.

a) KKT-constrained solver: In contrast to our method, the
solver by Peters et al. [12] has no support for either private or
shared inequality constraints. Consequently, this baseline can
be viewed as solving a simplified version of the problem in (3)
where the inequality constraints associated with the inner-level
GNEP are dropped. Nonetheless, we still use a cubic penalty
term as in (2) to encode soft collision avoidance. Furthermore,
for fair comparison, we only use the baseline to estimate the
objectives but compute control commands from a GNEP con-
sidering all constraints.

b) MPC with constant-velocity predictions: This baseline
assumes that opponents move with constant velocity as observed
at the latest time step. We use this baseline as a representative
method for predictive planning approaches that do not explicitly
model interaction.

¢) Heuristic estimation MPGP: To highlight the impor-
tance of online intent inference, for the ramp merging evaluation,
we also compare against a game-theoretic baseline that assumes
a fixed intent for all opponents. This fixed intent is recovered
by taking each agent’s initial lane and velocity as a heuristic
preference estimate.

To ensure a fair comparison, we use the same MCP back-
end [29] to solve all GNEPs and optimization problems with a
default convergence tolerance of 1¢~°. Furthermore, all planners
utilize the same planning horizon and history buffer size of 10
time steps with a time-discretization of 0.1s. For the iterative
MLE solve procedure in the 2-player running example and the
ramp merging scenario, we employ a learning rate of 2¢~2 for
objective parameters and le~3 for initial states. We terminate
maximum likelihood estimation iteration when the norm of the
parameter update step is smaller than 1e~*, or after a maximum
of 30 steps. Finally, opponent behavior is generated by solving a
separate ground-truth game whose parameters are hidden from
the ego-agent.

B. Simulation Results

To compare the performance of our method to the baselines
described in Section V-A2, we conduct a Monte Carlo study for
the two scenarios described in Section V-Al.

1) 2-Player Running Example: Fig.2 summarizes the results
for the 2-player running example. For this evaluation, we filter
out any runs for which a solver resulted in a collision. For our
solver, the KKT-constrained baseline, and the MPC baseline this
amounts to 2, 2 and 13 out of 100 episodes, respectively.

Figs. 2(a)—(b) show the prediction error of the goal position
and opponent’s trajectory, each of which is measured by ¢2-
norm. Since the MPC baseline does not explicitly reason about
costs of others, we do not report parameter inference error for
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Fig.2. Monte Carlo study for the 2-player tracking game for 100 trials. Solid
lines and ribbons in (a) and (b) indicate the mean and standard error of the mean.
Cost distributions in (c) are normalized by subtracting ground truth costs.

TABLE I
MONTE CARLO STUDY FOR THE RAMP MERGING SCENARIO DEPICTED
IN FIG. 1 wiTH 100 TRIALS FOR SETTINGS WITH 3, 5, AND 7 PLAYERS. EXCEPT
FOR COLLISION AND INFEASIBLE SOLVE TIMES, ALL METRICS ARE REPORTED
BY MEAN AND STANDARD ERROR OF THE MEAN

E Opp. Traj. | Param.
Set. | Method |  2° PP- | coll. | Inf. A raram e sl
cost cost err. [m] err.
064 | 0.06 129 | 041 | 0081
Ours 0 0
+ 036 | + 003 4005 | + 003 | + 0.002
1.8 . ‘ . .
[ kireon| 7 [ 005 [ [ [ B2 23 [ 00w
5 + 121 | + 002 4006 | +0.11 | + 0.002
<
= 73 . . . .
2 [ euriec | &7 000 [~ T, [ 79 [ 3% | o008
= 4240 | + 007 4+026 | +0.13 | + 0.001
150 | 033 240 0.009
MPC 28 | 218 /
+ 045 | £ 0.07 +o011 | " | 40002
056 | 0.16 166 | 047 0.29
Ours 0 2
+ 043 | + 0.06 4+ 007 | +003 | + 002
[ kkreon | 097 [ 006 [T 10 205 0.28
5 +032 | + 002 4006 | + 006 | +0.02
<
g 2. . . 291 01
2 [ eurisie | 206 | 035 [ [ o] 805 9 0.015
" 4+ 044 | +0.10 4+0.19 | + 007 | £ 0.001
573 | 042 287 0.014
MPC 44 | 552 /:
+291 | +0.13 +013 | M | +0002
160 | 0.06 189 | 046 | 0.68
Ours 1 1
+ 119 | + 0.02 +005 | +002 | +002
KkTeon | 311 | 000 [ [ 200 193 0.63
- + 172 | + 0.04 4006 | + 003 | =+ 0.06
(5]
B | 660 | 027 818 | 244 | 0031
=, | Heuristic 8 8
S + 1.67 | + 0.06 +0.15 | + 005 | £ 0.002
841 | 059 3.07 0.0274
MPC 43 | 848 /
4145 | + 0.09 +008 | M | +o0004

it in Fig. 2(a). As evident from this visualization, both game-
theoretic methods give relatively accurate parameter estimates
and trajectory predictions. Among these methods, our solver
converges more quickly and consistently yields a lower error.
By contrast, MPC gives inferior prediction performance with
reduced errors only in trivial cases, when the target robot is
already at the goal. Fig. 2(c) shows the distribution of costs
incurred by the ego-agent for the same set of experiments.
Again, game-theoretic methods yield better performance and
our method outperforms the baselines with more consistent and
robust behaviors, indicated by fewer outliers and lower variance
in performance.

2) Ramp Merging: Table I summarizes the results of for the
simulated ramp-merging scenario for 3, 5, and 7 players.
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a) Task performance: To quantify the task performance,
we report costs as an indicator for interaction efficiency, the
number of collisions as a measure of safety, number of infea-
sible solves as an indicator of robustness, and trajectory and
parameter error as a measure of inference accuracy. On a high
level, we observe that the game-theoretic methods generally
outperform the other baselines; especially for the settings with
higher traffic density. While MPC achieves high efficiency
(ego-cost) in the 3-player case, it collides significantly more
often than the other methods across all settings. Among the
game-theoretic approaches, we observe that online inference of
opponent intents—as performed by our method and the KKT-
constrained baseline—yields better performance than a game
that uses a heuristic estimate of the intents. Within the inference-
based game solvers, a Manning-Whitney U-test reveals that,
across all settings, both methods achieve an ego-cost that is
significantly lower than all other baselines but not significantly
higher than solving the game with ground truth opponent intents.
Despite this tie in terms of interaction efficiency, we observe
a statistically significant improvement of our method over the
KKT-constrained baseline in terms of safety: in the highly
interactive 7-player case, the KKT-constrained baseline collides
seven times more often than our method. This advantage is
enabled by our method’s ability to model inequality constraints
within the inverse game.

b) Computation time: We also measure the computation
time of each approach. The inference-based game solvers have
generally a higher runtime than the remaining methods due
to the added complexity. Within the inference methods, our
method is only marginally slower than the KKT-constrained
baseline, despite solving a more complex problem that includes
inequality constraints. The average number of MLE updates for
our method was 11.0, 19.2, and 22.7 for the 3, 5, and 7-player
setting, respectively. While our current implementation achieves
real-time planning rates only for up to three players, we note that
additional optimizations may further reduce the runtime of our
approach. Among such optimizations are low-level changes such
as sharing memory between MLE updates as well as algorithmic
changes to perform intent inference asynchronously at an update
rate lower than the control rate. We briefly explore another
algorithmic optimization in the next section.

3) Combination With an NN: To support the claim that our
method can be combined with other differentiable modules,
we demonstrate the integration with an NN. For this proof of
concept, we use a two-layer feed-forward NN, which takes the
buffer of recent partial state observations as input and predicts
other players’ objectives. Training of this module is enabled by
propagating the gradient of the observation likelihood loss of
(11) through the differentiable game solver to the parameters of
the NN. Online, we use the network’s prediction as an initial
guess to reduce the number gradient steps. As summarized in
Fig. 3, this combination reduces the computation time by more
than 60% while incurring only a marginal loss in performance.

C. Hardware Experiments

To support the claim that our method is sufficiently fast and
robust for hardware deployment, we demonstrate the tracking
game in the running example in Section III-A with a Jackal
ground robot tracking (i) another Jackal robot (Fig. 4(a)) and
(ii) a human player (Fig. 4(b)), each with initially unknown
goals. Plans are computed online on a mobile i7 CPU. We
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(a) Qualitative performance.

E; . Traj. | P: .
g0 | OPP- |y | g, | T | Param
cost cost err. [m] err.
2.19 0.17 5 2.34 091 0.274
+ 121 | + 0.07 4+ 0.08 | &£ 0.08 | £ 0.01

(b) Quantitative performance.

Fig. 3. Performance of our solver in combination with an NN for 100 trials of
the 7-player ramp merging scenario.

25

5 00
Horizontal position [m]

() (b)

Fig.4. Time lapse of the running-example in which a Jackal tracks (a) another
Jackal and (b) a human. Overlaid in (a) are the position of target robot (red) its
true goal (red star), the tracker (blue), and its goal estimate (blue star).

generate plans using the point mass dynamics with a veloc-
ity constraint of 0.8 ms~! and realize low-level control via
the feedback controller of [30]. A video of these hardware
demonstrations is included in the supplementary material. In
both experiments, we observe that our adaptive MPGP planner
enables the robot to infer the unknown goal position to track the
target while avoiding collisions. The average computation time
in both experiments was 0.035 s.

VI. CONCLUSION

In this letter, we presented a model-predictive game solver that
adapts strategic motion plans to initially unknown opponents’
objectives. The adaptivity of our approach is enabled by a dif-
ferentiable trajectory game solver whose gradient signal is used
for MLE of unknown game parameters. As a result, our adaptive
MPGP planner allows for safe and efficient interaction with other
strategic agents without assuming prior knowledge of their ob-
jectives or observations of full states. We evaluated our method in
two simulated interaction scenarios and demonstrated superior
performance over a state-of-the-art game-theoretic planner and
a non-interactive MPC baseline. Beyond that, we demonstrated
the real-time planning capability and robustness of our approach
in two hardware experiments.

In this work, we have limited inference to parameters that
appear in the objectives of other players. Since the derivation
of the gradient in Section IV-B can also handle other param-
eterizations of F—so long as they are smooth—future work
may extend this framework to infer additional parameters of
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constraints or aspects of the observation model. Furthermore,
encouraged by the improved scalability when combining our
method with learning modules such as NNs, we seek to extend
this learning pipeline in the future. One such extension would be
to operate directly on raw sensor data, such as images, to exploit
additional visual cues for intent inference. Another extension
is to move beyond MLE-based point estimates to inference
of potentially multi-modal distributions over opponent intents,
which may be achieved by embedding our differentiable method
within a variational autoencoder. Finally, our framework could
be tested on large-scale datasets of real autonomous-driving
behavior.
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