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Abstract—Efficient prediction of embedded element patterns
(EEPs) is including the mutual coupling (MC) effects in the
optimization of irregular planar arrays is studied for the first
time in the literature. An ANN-based methodology is used to
predict the pattern of each element in the whole visible space for
a flexible planar array topology in milliseconds. The technique
is proposed is validated on a 4-element planar non-uniform sub-
array structure. Excellent accuracy on the EEP prediction while
providing great efficiency in computational time and load in
comparison to the full-wave simulations is demonstrated.

Index Terms— artificial neural network (ANN), embedded
element pattern (EEP), irregular antenna array, mutual coupling
(MC), phased array antenna.

I. INTRODUCTION

Over the past decades, with the advances in integrated
circuit technology, phased array antennas have proven their
advantages in achieving high gain, low side-lobe-level (SLL),
shaped and multiple agile beams [1]. Therefore, they are
widely preferred in wireless communication systems, radar,
radio astronomy, and remote sensing [2]. Due to current
demands from active integrated phased arrays, such as having
reasonable hardware/signal processing complexity, low-cost
implementation, fast response time, and low calibration efforts
[3], unconventional array architectures are becoming more and
more popular [4].

In particular, non-uniformly spaced phased array antennas
have attracted wide attention because of their superior potential
to achieve better radiation pattern performance, statistical sys-
tem performance and even thermal performance as compared
to the regular arrays [5]. There are several studies in the non-
uniform array literature focusing on obtaining a low SLL in a
desired field of view (FoV), while having either an optimum
number of elements [6], or reconfigurable shaped radiation
patterns [7], or multiple steerable pencil beams [8].

Although many studies proposed powerful synthesis tech-
niques for non-uniformly spaced arrays, one crucial challenge,
the mutual coupling (MC) effect, was often neglected or has
not been efficiently implemented in the synthesis process
due to its highly complex nature [9]. However, MC causes
significant variations in the embedded element patterns (EEPs)

and often degrades the performance of the array pattern. In
commonly used iterative synthesis algorithms [8], [10], the
obtained EEP for a single element differs in each iteration
due to element position change, yielding different interactions
between the neighboring elements. This currently makes the
reliability of the outcome of the proposed layout optimization
techniques questionable.

Various techniques have been proposed to include the MC
effects in the synthesis of the non-uniformly spaced arrays,
such as infinite-to-finite array approach [11], spherical wave
expansion [12]-[14], impedance matrix analysis [15] and the
virtual active element pattern expansion method [16]. How-
ever, most of the mentioned studies are valid for a particular
type of an antenna element, computationally expensive, or do
not allow sufficient flexibility in array geometries.

Another and a more straightforward methodology is to
perform full-wave simulations during the synthesis to obtain
EEPs at each design iteration. Although proven to be effective
[17], [18], these techniques increase the computation time and
load, which prevent the designers from (i) synthesizing large
arrays, (ii) testing different what-if scenarios efficiently for
different input parameter selections, (iii) having a large amount
of optimized array topologies, and (iv) achieving fast adaptive
layout modulation when applicable.

Machine learning (ML) techniques have recently drawn
attention due to their potential for efficiently solving non-linear
complex problems with remarkable time and accuracy. Specif-
ically, artificial neural network (ANNs) were efficiently used
in solving electromagnetics (EM) problems due to their ability
to approximate the highly non-linear input-output mappings.
Therefore, ML techniques have been exploited in some studies
for realistic array pattern estimation and synthesis [19], [20], or
to predict EEPs to include MC effects in the synthesis. For the
latter, in [21] the author presents an efficient model to achieve
accurate MC prediction by building a virtual active element
model using Gaussian process regression (GPR). Another
recent study aims to include the MC effects in nonuniform
linear array synthesis by building a surrogate model for the
EEPs using a multi-layer perceptron neural network (MLPNN)
[22]. Although the mentioned studies illustrated the potential
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of ML in linear non-uniformly spaced arrays, to the best of
our knowledge, none of the studies in the literature focus on
predicting EEPs in the whole visible space (e.g., in theta-phi,
0, ¢ plane) for a flexible planar irregular array topology.

To fill the mentioned gap in the literature, a novel ANN-
based methodology is introduced to predict the EEPs on the
0, ¢ plane in the far field for a planar non-uniform array.
A 4-element planar non-uniformly spaced sub-array topology
with adjustable element positions is used to test the proposed
approach. In our original approach, two neural networks have
been cascaded. First, a fully-connected neural network is de-
signed and trained to predict low-resolution EEPs, and then the
efficient sub-pixel convolutional neural network (ESPCN) [23]
is used to upscale the results to the desired high-resolution.
The trained model is planned to be integrated into an optimizer
to significantly decrease the computational time and load
by efficiently providing the EEPs for the desired sub-array
configuration during the optimization process.

The rest of the paper is organized as follows. Section II
presents the problem formulation and introduces the case
study. Section III explains the proposed ANN structures.
Section IV presents the simulation settings with the obtained
results. The conclusions are given in Section V.

II. PROBLEM FORMULATION

The far-field equation for an N-element rectangular array
can be formulated as:

N
F(0,9¢) = Z Ep(0, p)eik(@nsindcos dtynsinfsing) ()
n=1

where F,,(0,¢) is the EEP of the n-th element, & = 27 /A
where ) is the wavelength at the operating frequency, x,, and
Yy, indicates the elements positions in x and y coordinates,
respectively. During an aperiodic array optimization, the EEPs
become quite important due to the change in element positions.
The ultimate aim of this study is to accurately estimate the EEP
for any given element position, E, (0, ¢), which is as close
as possible to the full-wave simulated one, F, (6, ¢), in any
given array layout with certain constraints (on the maximum
aperture size, minimum element spacing etc.). This problem
can be simply formulated by the minimization of the mean
squared error (MSE):
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where p is the MSE of the given problem and M is the total
number of samples for each pattern. For this minimization
problem, an ANN framework can efficiently be trained to
predict the EEP of an element for a given topology. In this
way, the predicted patterns can be provided in real-time with

high-precision with a fully-trained network for further use.
In order to realize and test the proposed solution in a small
scale, a 4-element planar irregular sub-array architecture that is
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Fig. 1. Irregular sub-array structure for N = 4.

being studied for a future array design, was chosen for the case
study as illustrated in Fig. 1. In this figure, D,, forn =1, ..., 4
indicates the array elements. The n-th element can move on
the corresponding element circle which has a fixed origin point
O,, and a radius, r,. Furthermore, the element angle, a,, is
defined as the angle between the x-axis and the radius vector,
which is the vector from O,, to E,,.

In this study, the radius of the the circles are kept equal and
the allowable minimum distance between the elements, d,;, is
defined to be 0.3\ introducing more freedom to the elements
and stronger coupling, unlike the conventional 0.5\ minimum
element distance constraint. To validate the methodology,
dipole antennas are used as an array element where the center
frequency was chosen as 12 GHz. The EEPs for the training
of the network are generated with CST Microwave Studio
and exported in 6, ¢ plane. Since the proposed methodology
requires low- and high-resolution data, as explained in the
next section, the exported patterns have sizes of 36 x 36 and
180 x 180, respectively.

III. PROPOSED ANN ARCHITECTURE

Artificial neural networks have been proven to be universal
function approximators, given enough layers and sufficient
training data [24]. For this reason, an ANN is designed
in this work to estimate the EEP of four elements given
the array topology. However, it is essential to note that
this estimation will be done inside a large aperiodic array
optimization algorithm in the future, and thus, the ANN is
designed for computational efficiency. Consequently, the size
of the networks has been tried to maintain as small as possible.

In this work, the input variables are the four «,, angles,
and the goal is to estimate high-resolution EEP (i.e., EEPs
discretized every degree) of each element, taking into account
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Fig. 2. Block diagram of the proposed neural network architecture. It comprises two networks: the EEP estimation network and the upscaling network. The
first one is a fully connected network, while the second is a convolutional neural network based on the ESPCN architecture.
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Fig. 3. Evolution of the training and validation loss for the EEP estimation
network. The validation loss converges to a value of 2 x 10~%.

the MC effects. Thus, the number of variables to be estimated
is 180 x 180 x 4 = 129600. For this reason, a Feed-Forward
NN architecture is unfeasible since it will require an enormous
number of parameters to optimize. To overcome this problem,
a novel approach that involves the concatenation of two NN is
designed, where first low-resolution EEPs are estimated, and
then they are upscaled to the desired resolution.

IV. RESULTS

The first ANN is a fully connected network that has as
input the four «, and outputs a low-resolution estimation
of the absolute value of each EEP, with 36 x 36 size. An
incremental approach is followed, where the number of layers
in each layer is doubled until it reaches 5184 (36 x 36 x 4),
corresponding to the dimension of the four EEP. Therefore, the
first ANN consists of 12 layers, the first 11 with a hyperbolic
tangent activation function and the last with a linear activation

CST Generated EEP (dBi)
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)

-150 -100 -50 0
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Fig. 4. On the top plot an example of a low-resolution EEP generated with
CST. In the lower figure the EEP predicted with the ANN for the same array
with the proposed ANN for the same array topology showing very good
agreement.

function. Then, once the first network is trained and can
acurrately estimate low-resolution EEPs, a second network
is designed to upscale them to a higher resolution. With an
efficient implementation in mind, the ESPCN network is used,
which provides good upscaling performance while maintaining
a simple architecture. This network uses two convolutional
layers for feature map extraction and a sub-pixel convolution
layer that aggregates the feature maps from the low-resolution
space and builds the high-resolution image. In this work, the
two hidden convolutional layers have n=32 filters and 3 x 3
kernel size, while the sub-pixel layer has r?=25 filters to
achieve five times the input resolution (upscaling from 36 x 36
to 180 x 180). A diagram of these two networks can be seen
in Fig. 2.

In total, 9000 random sub-array topology simulations were
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Fig. 5. One example of EEP prediction for a realization where the elements are at 170°, 65°, 175°, and 150°. In (a) the EEPs computed with CST, and in

(b) the EEPs computed with the trained neural network.
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Fig. 6. Evolution of the training and validation loss for the upscaling network.
The validation loss converges to a value of 2.1 x 10~4.

run for the low-resolution dataset by taking into account the
minimum element spacing criterion, and 3000 simulations
were run for the high-resolution dataset. After each simulation,
the EEPs are exported and post-processed with MATLAB to
obtain desired input for the proposed ANN models.

As explained in the previous section, the two networks are
trained independently, but both use ADAM optimizer [25]
with the default hyperparameters (n=0.001, 5,=0.9, 52=0.999,
e=1e-7) and the MSE metric as loss function. The 9000 4-tuple
EEPs generated with CST are used as labels using 90% of
them for training the networks and 10% for validation. First,
the EEP estimation network is trained, and the evolution of the
MSE over iterations can be seen in Fig. 3. As expected, the
training loss is lower than the validation loss but still converges

to a very low value of around 2 x 10~%. As an example of the
output of the trained network, a low-resolution EEP generated
with CST and with the network itself is shown in Fig. 4.

Once the first NN is trained, the upscaling network can
be concatenated and trained to generate high-resolution EEPs.
Fig. 6 shows the evolution of the pixel-wise MSE, and it can
be seen how it converges again to a value close to 2.1 x 1074,
Moreover, now that both networks are trained, the four high-
resolution EEPs can be estimated given the four angles. Fig. 5
shows one estimation example for a oy = 170, ag = 65, az =
175 and ay = 150, for the CST-generated EEPs and for the
ANN-based proposed method. It is important to highlight that
the ANN estimation took only 0.15ms, while the computation
with CST took 240s.

Finally, it is important to quantify the prediction error,
beyond the good visual agreement of Fig. 5a. To this end,
the mean error in the peak (e,) between the CST-generated
EEPs and the ANN-generated EEPs is computed over all the
validation tests as:

€p = 20 lgz (\/ |Ek: mk7¢mk - ‘Ek mka¢mk ) ) (3)
with 0 and ¢ are the angles where the maximum of the
EEP for the k-th element is observed. K is the number of
realizations, yielding -39.61dB mean peak error. Moreover,
the point-wise error can be computed as:

€(0,¢) = 201g <¢E(0, ¢) —\/ E(0, ¢>> : @)

As an example, the point-wise error for the same antenna
configuration is shown in Fig. 7. As can be seen, the error
in all the EEPs is very low, with the maximum error for this
specific sample being -17.88dB.
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Fig. 7. Point-wise error for the CST and ANN generated EEPs. The elements
are at 170°, 65°, 175°, and 150°. The maximum error is -17.88dB

V. CONCLUSION

An ANN-based methodology has been applied to predict the
EEPs of the antenna elements in the whole visible space for a
flexible non-uniform array topology. A fully-connected and the
ESPCN networks have been concatenated in order to achieve
high-resolution in the predicted EEPs. The model has been
trained and tested by using a 4-element non-uniform planar
sub-array which is currently being used in the development
of a large phased array. Excellent agreement between the full-
wave simulated and ANN-predicted EEPs has been obtained.
The error always remains below -18 dB, which is observed
in the low-gain regions, while it is below -30 dB when the
gain is relatively high. Future work will focus on extension to
the optimization of large irregular phased arrays of patch-type
antenna elements where the interaction between the sub-arrays
will also be considered.
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