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An Experimental Study of Two-level Schwarz
Domain-Decomposition Preconditioners on GPUs

Ichitaro Yamazaki†, Alexander Heinlein∗, Sivasankaran Rajamanickam†
†Sandia National Laboratories, Albuquerque, New Mexico, U.S.A

∗Delft University of Technology, Delft, Netherlands

Abstract—The generalized Dryja–Smith–Widlund (GDSW)
preconditioner is a two-level overlapping Schwarz domain de-
composition (DD) preconditioner that couples a classical one-level
overlapping Schwarz preconditioner with an energy-minimizing
coarse space. When used to accelerate the convergence rate of
Krylov subspace iterative methods, the GDSW preconditioner
provides robustness and scalability for the solution of sparse
linear systems arising from the discretization of a wide range of
partial different equations. In this paper, we present FROSch
(Fast and Robust Schwarz), a domain decomposition solver
package which implements GDSW-type preconditioners for both
CPU and GPU clusters. To improve the solver performance
on GPUs, we use a novel decomposition to run multiple MPI
processes on each GPU, reducing both solver’s computational
and storage costs and potentially improving the convergence rate.
This allowed us to obtain competitive or faster performance
using GPUs compared to using CPUs alone. We demonstrate
the performance of FROSch on the Summit supercomputer with
NVIDIA V100 GPUs, where we used NVIDIA Multi-Process
Service (MPS) to implement our decomposition strategy.

The solver has a wide variety of algorithmic and implementa-
tion choices, which poses both opportunities and challenges for
its GPU implementation. We conduct a thorough experimental
study with different solver options including the exact or inexact
solution of the local overlapping subdomain problems on a GPU.
We also discuss the effect of using the iterative variant of the
incomplete LU factorization and sparse-triangular solve as the
approximate local solver, and using lower precision for computing
the whole FROSch preconditioner. Overall, the solve time was
reduced by factors of about 2× using GPUs, while the GPU
acceleration of the numerical setup time depend on the solver
options and the local matrix sizes.

I. INTRODUCTION

Domain decomposition methods (DDMs) [13], [26] may be

used to build a class of effective parallel solvers for sparse

linear systems arising from the discretization of partial differ-

ential equations. In DDMs, the global problem is decomposed

into smaller local subproblems, which can be processed in

parallel. As a result, DDM preconditioners are well-suited

for solving large-scale linear systems on distributed-memory

computers. However, for one-level DDMs, the number of itera-

tions required for the solution convergence typically increases

with an increasing number of subdomains. As a remedy, a

second-level coarse system, which is determined by carefully-

designed coarse basis functions, is introduced. As a results

the condition number of the preconditioned matrix, and thus

the required number of iterations, becomes asymptotically

independent of the number of subdomains. In this paper, we

consider the generalized Dryja–Smith–Widlund (GDSW) [11]

two-level Schwarz DDM, which combines classical one-level

overlapping additive Schwarz preconditioner with energy-

minimizing coarse basis functions and has been shown to be

robust and scalable for solving many challenging problems.
Our focus is on the GPU performance of the GDSW

preconditioner. Several algorithmic and software options are

possible for the GDSW algorithm. Each of these options

has multiple tunable parameters, and a good choice of the

parameters can be architecture and problem specific. Some of

these options also have algorithmic implications in addition to

the implementation choices. For example, the computational

complexity of the local sparse solver increases more than

linearly to the local matrix size. Since there are typically more

CPU cores than the GPUs, decomposing the global domain

to one subdomain per GPU instead of one subdomain per

CPU core may increase the complexity of the local subdomain

solver. Moreover, a fewer subdomains lead to a smaller coarse

space, which could degrade the convergence behavior. Finally,

many of the kernels, which DDM solvers depend on, such as

sparse direct solver, incomplete factorization, sparse triangular

solver, and sparse matrix-matrix multiply, are difficult to

optimize on GPUs. All of these properties pose challenges

when implementing the solver and tuning its performance for

the GPU architectures. As a result, the comprehensive GPU

performance study of two-level DDM solver has been lacking,

especially at scale, to the best of our knowledge.
To fill this gap, we study the GPU performance of FROSch

(Fast and Robust Schwarz), a solver package, which im-

plements GDSW preconditioners within Trilinos software

framework; cf. [18]. Our implementation is also portable

to different hardware architectures with a single code base.

As architectures change rapidly, it is critical to design the

software stack such that the solver is portable to different

hardware architectures (e.g., isolating the hardware-specific

codes and optimizations from the high-level solver design and

implementation). Though this avoids the need of re-writing

the solver for each new architecture, in order to obtain high

performance on a specific architecture, including on a GPU

cluster, the software stack must be carefully designed and new

variants of the algorithms may be needed. We evaluate many

of the algorithmic and software choices that are critical for

the GPU performance of the GDSW preconditioners including

new solver capabilities added for this purpose, e.g.,

• single-reduce variant [30] of the Krylov solver, which

performs only one global-reduce for each iteration,
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used effects other options available

Krylov solver single-reduce GMRES improve data access standard, pipelined, comm-avoid
GDSW two-level rGDSW reduce coarse space size standard, multi-level
Direct solver GPU-enabled Tacho allows use of GPU CPU-only, e.g., SuperLU
Sparse triangular solve supernode-based Kokkos-Kernels improve GPU utilization element-based, partitioned inverse
Inexact solver iterative variants FastILU/FastSpTRSV expose more parallelism standard on CPU/GPU
Precision single precision HalfPrecisionOp reduce data volume uniform double precision
# of subdomains # of CPU cores reduce solver costs # of GPUs

& improve convergence

TABLE I: Solver options used in this paper: each solver option has multiple tunable parameters, e.g., GMRES with restart

length, orthogonalization scheme, rGDSW with size of overlap, Tacho with matrix ordering scheme, FastILU with number

of levels, and Jacobi iteration count and damping factor, just to name a few main parameters.

• the exact solution of the local overlapping subdomain

and coarse space problems based on the direct sparse LU

factorization on a GPU [21],

• a supernodal-based sparse triangular solver [28], which

reduces the number of kernel launches and exploit the

hierarchical parallelism available on a GPU, and

• iterative variants of ILU factorization and sparse-

triangular solver [8], which have much higher costs

of computation but expose more parallelism than the

standard substitution-based algorithm.

Table I lists some of the main solver options, which we will

evaluate in this paper, and other parameters we selected based

on our experience and past results.

Experimental results on the Summit supercomputer with

NVIDIA V100 GPUs demonstrate the potential of the two-

level DD solvers on the GPU clusters. We compare the GPU

performance with the CPU performance using all the CPU

cores on each node. We believe this provides a conservative but

fair performance comparison that an application is expected

to see. Using GPUs, the solve time for 3D elasticity problems

was reduced by factors of around 2×, while the effects on the

numerical solver setup time depends on the solver options and

the local matrix sizes. In cases of using local direct solvers,

the total solution time (the total of the numerical setup and

solve time) for a single linear system was reduced by a factor

of about 1.1× to 1.7×. If the application requires to solve a

sequence of the linear systems with different right-hand-sides,

the cost of the numerical setup can be amortized over multiple

solves and the speedups closer to 2× can be obtained.

The main contributions of this work are:

• A GPU implementation and large-scale GPU performance

study of a two-level DDM solver;

• A novel decomposition strategy that allows the use of

NVIDIA Multi-Process Service (MPS) to run multi-

ple MPI processes on each GPU, and significantly re-

duces both the computational and storage cost of the

DDM solver, and potentially improves convergence (Sec-

tion VI). We are not aware of other studies, which

use MPS with a production-ready linear solver. In our

performance studies of using MPS on Summit, both the

numerical setup and solve time of FROSch was reduced

by the factors of up to 3×.

• A detailed experimental study of several solver options

for the two-level DDM including direct, incomplete,

and approximate factorizations, with multiple parameter

choices for each of them.

• Numerical and GPU performance studies with inexact or

approximate local linear solver or with DDM precon-

ditioner in a lower precision, enabling the solution of

larger-scale linear systems than the linear system that the

typical DDM solvers can (the exact solution with local

direct solvers in double precision, which typical GDSW

in practice, and its theory, is based on).

II. RELATED WORK

As GPUs became a critical part in scientific computing,

there have been several works to optimize the computational

kernels, which are also needed for DDM solvers. On the

other hand, a GPU implementation of a two-level DDM solver

that uses these kernels in addition to other kernels has not

been demonstrated at scale. Luo et al. [22] investigated the

GPU performance of a one-level DDM, and the number of

MPI processes was limited by the number of GPUs. We will

show that this is sub-optimal in terms of performance and

convergence. Solver performance can be improved by using a

decomposition that maps one MPI process on each CPU core,

and multiple MPI processes on each GPU. In addition, they

used the GPU to only accelerate the local subdomain solver,

which was based on smooth-aggregate multi-grid with dense
coarse solver. Hence, the GPU performed only sparse-matrix

vector multiply, dense vector update, and dense triangular

solve, which are relatively easy to parallelize on a GPU (the

paper avoided using ILU since it is difficult to parallelize on

a GPU).

In parallel to our work, Šı́stek and Oberhuber employed

GPUs to speed up the local solves in the two-level balancing

domain decomposition by constraints (BDDC) method in [31];

in particular, they perform the factorization and forward and

backward solves of dense local Schur complement matrices

on the GPUs. For time-dependent simulations, where the

factorizations can be reused between different time steps, they

observed a speedup of up to 5×, compared to using CPUs

only, by simply storing the dense matrix on GPUs.

In this paper, we will study the GPU performance of

the two-level DDM solver using the kernels that are more

commonly used for the DDM solvers – sparse direct and

incomplete factorizations.
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(a) Original problem. (b) Nonoverlapping partition.

Fig. 1: Domain decomposition with local 4-by-4 problem. In

Fig.1(b), interior and interface are represented by circle and

square markers, respectively.

III. THE GDSW ALGORITHM

We consider the solution of the linear system of equations,

Ax = b.

The DDM solvers have been extensively studied for the

matrices arising from the discretization of an elliptic partial

differential equation, in both theory and practice, but they have

been successfully applied to many other problems [13], [26].

The two-level overlapping additive Schwarz preconditioner

is based on a decomposition of the global domain Ω into np

nonoverlapping subdomains Ω1, . . . ,Ωnp
. These subdomains

are then extended by � layers of mesh elements (alternatively

mesh nodes) to obtain corresponding overlapping subdomains

Ω′1, . . . ,Ω
′
np

. The preconditioner is then given by

M−1 = ΦA−10 ΦT +

np∑
i=1

RT
i A

−1
i Ri, (1)

where Ri is the restriction operator from the global domain Ω
to the ith overlapping subdomain Ω′i and Ai = RiART

i .

To construct a robust and efficient preconditioner, the critical

component is the coarse basis functions, the columns of the

matrix Φ, that yields the coarse matrix A0 = ΦAΦT .

The coarse basis functions Φ of GDSW [11] type precondi-

tioners are constructed as energy-minimizing extensions from

the interface Γ of the nonoverlapping DD to the interior I of

the subdomains; see Fig. 1 for an illustration of the decom-

position and see [18] for a discussion of the implementation

in FROSch. For our discussion, we reorder and partition the

global matrix A into a 2-by-2 block structure[
AII AIΓ

AΓI AΓΓ

]
,

such that the indices I and Γ correspond interior and the

interface degrees of freedom (dofs), respectively.

Let RΓ be the restriction operator from the global to the

interface dofs, such that AΓΓ = RΓAR
T
Γ , and nI and nΓ

denote the numbers of the interior and interface dofs, respec-

tively. Then, the GDSW coarse basis functions are defined as

follows:

1) The interface Γ is partitioned into nc connected compo-

nents, Γ1, . . . ,Γnc , potentially with overlaps, and RΓi is the

restriction operator from the global interface Γ to Γi.

2) To obtain a partition of unity on the interface while

accounting for the overlapping portions of the interface de-

composition, we introduce diagonal scaling matrices DΓi
,

nc∑
i=1

RT
Γi
DΓi

RΓi
= IΓ,

where IΓ is the identity matrix on Γ.

3) Now, to obtain a robust and efficient preconditioner M−1,

the critical component of GDSW type preconditioners is the

n-by-nn matrix Z, which contains the null space of the global

Neumann matrix corresponding to A as columns. This matrix

may be computed “algebraically” for some cases (e.g., just

one constant column for a Laplace problem), while in some

applications, the null space may be explicitly available.

In Section VIII, we present performance results for a 3D

linear elasticity problem, for which, the null space consists of

the (linearized) rigid body motions, i.e., translations and lin-

earized rotations. As discussed in [16], the linearized rotations

cannot simply be obtained algebraically, however, the method

might still perform well when only the translations are used.

4) Finally, given the null space matrix Z, the energy-

minimizing coarse basis functions are computed as

Φ =

[ −A−1II AIΓ

I

]
ΦΓ, (2)

where ΦΓ is an nI -by-(ncnn) matrix given by

ΦΓ = [RT
Γ1
ΦΓ1

, . . . , RT
Γnc

ΦΓnc
]

and each nI -by-nn matrix ΦΓi spans the null space restricted

to the ith interface, DΓi
RΓi

(RΓZ). Hence, ΦΓ has dimension

nI -by-(nnnc), while the dimension of Φ is n-by-(nnnc).
The computation of the subdomain problems in (1) par-

allelizes well since, in a distributed-memory implementation

with MPI, the ith subdomain Ai is assigned to the ith MPI

process and can be processed in parallel. The extensions (2)

can be parallelized similarly since AII has a block diagonal

structure, AII = diag(AI1I1 , . . . , AInp ,Inp
), where AIiIi cor-

responds to the interior part of the ith nonoverlapping subdo-

main. The GDSW coarse space can keep the condition number

of the preconditioned matrix AM−1, and hence the number of

iterations, asymptotically constant with an increasing number

of subdomains; see, e.g., [11].

There are several variants of GDSW including:

• As the number of subdomains and MPI processes in-

creases, the solution of the coarse problem A−10 even-

tually becomes a parallel performance bottleneck. To

alleviate this bottleneck a “reduced” variant of GDSW

(rGDSW) only uses only coarse basis functions corre-

sponding to vertices, but not to faces or edges; see [12],

[15]. Moreover, multi-level approaches have been pro-

posed to recursively apply GDSW on the coarse problem;

cf. [19].
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• To enhance the coarse space for problems with a highly

heterogeneous coefficient, potentially with high jumps,

“adaptive” GDSW (AGDSW) enriches the coarse space

by additional components that are computed by solving

local generalized eigenvalue problems; see, e.g., [17].

We do not use the adaptive or multi-level variants in this paper,

however several of our results from this study apply to these

variants as well. In addition, the behavior of GDSW has been

extensively compared to other two-level DDMs, and many of

the DDM solvers use similar underlying kernels. Hence our

experimental study may provide insights to other methods.

IV. FROSCH SOFTWARE

FROSch [18] implements GDSW type preconditioners

within the Trilinos software framework [2], a collection

of open-source software packages that can be used as build-

ing blocks for developing large-scale scientific applications.

Fig. 2 shows the core Trilinos packages for solving linear

systems of equations. These packages can be combined to

develop a flexible and adaptable solver for large-scale scientific

applications. For instance, FROSch has interfaces to these

solver packages for solving its local overlapping subdomain

and coarse problems: direct solvers (Amesos2 [5]), inex-

act and preconditioned Krylov solvers (Ifpack2 [23] and

Belos [5]), and even a local algebraic multigrid solver or

Schwarz methods (MueLu [6] and FROSch [18]). In addition,

FROSch can be used as a preconditioner for Belos, which

implements Krylov solvers, including variants which can be

optimized for the GPU architectures, such as single-reduce,

communication-avoiding, and pipelined variants [29].

Furthermore, FROSch builds on the Trilinos software

stack, specifically packages that provide the portable perfor-

mance on different hardware architectures: In particular,

• Kokkos [27] is a C++ performance-portable program-

ming ecosystem. It provides the memory abstraction and

functionality to dispatch particular functions for parallel-

operations on a specific execution space on a CPU

or GPU. This enables portable thread performance on

different manycore architectures using a single code base

(assuming algorithms are performance portable).

• Kokkos-Kernels [24] is a collection of Kokkos-based

kernels for on-node sparse or dense matrix, or graph

operations on CPUs and GPU.

• Tpetra [1] implements distributed graph, matrix, and

vector operations for CPU and GPU clusters.

Though we focus on the FROSch software stack, this is not the

only option for the portable performance stack. For instance,

previous studies have compared the performance of the on-

node portable layers and individual kernels [27].

V. GPU ACCELERATION

Many of the current high-performance computers are com-

posed of the heterogeneous compute node architectures, i.e.,

each node consists of multicore CPUs and multiple GPU

accelerators. A GPU with a large number of compute cores

and a high memory bandwidth is suited for a highly-parallel

computation with a regular memory access pattern, while some

operations are better suited for CPUs.

This poses both challenges and opportunities for designing

high performance sparse linear solvers, including FROSch,

where most of the required computational kernels have ir-

regular memory accesses and a small ratio of the computa-

tion to the data accesses. As a result, their performance is

often bounded not by the computation but by the memory

bandwidth, if not by memory latency. In order for the solver

to utilize the GPUs well, both the solver and its underlying

computational kernels must be carefully designed, and new

variants of the algorithms may need to be developed. In this

section, we discuss some of the specific approaches taken to

improve the performance of FROSch on GPU clusters.

A. Software Considerations

1) Software Structure: In many scientific and engineering

simulations, we often perform the numerical factorization mul-

tiple times for a given mesh with the same sparsity structure or

need to solve a sequence of linear systems with different right-

hand-side vectors. Hence, all the linear solvers in Trilinos
have three distinct phases:

(a) Symbolic Factorization, given a sparsity structure or a

graph, performs all the symbolic analysis and factorization

and allocate required GPU memories. Operations such as

the symbolic analysis for an LU factorization, computing

the level sets for a triangular solve, are done here. This is

typically done on a CPU.

(b) Numerical Factorization, given numerical values of the

input matrix, performs the numerical factorization; in

FROSch, this part includes the computation of the coarse

basis functions, computing the coarse space matrix, and

factoring the overlapping local subdomain and coarse

matrices. Steps such as the sparse matrix - sparse matrix

multiplication for computing A0, numerical factorization

of the LU factorization or incomplete factorization are also

part of this step. We compute these on the GPUs, when

appropriate.

(c) Solve Phase, given right-hand-side vector(s), compute the

solution to the linear system. The sparse triangular solve

for the direct or incomplete factorization of local matrix

is done on the GPU as part of this phase.

These distinct phases are critical, especially for GPUs since

large parts of the symbolic analysis are difficult to parallelize,

and the GPU memory allocations can take a significant amount

of time.

2) Lower Precision Preconditioning: Within Trilinos,

the software package Belos implements Krylov solvers. It

uses the Operator class for applying a preconditioner, in-

cluding algebraic multigrid (AMG) and domain decomposition

(DD) preconditioners, which are implemented in the MueLu
and FROSch packages, respectively. These preconditioners

are typically constructed from a sparse matrix class, called

CrsMatrix.

A new utility function that converts a CrsMatrix ob-

ject into a new object in half the precision was developed
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(a) Trilinos solver software stack.

Flexible Solver Interface
ShyLU Distributed DD preconditioner (FROSch) and

on-node factorization-based local solvers (Basker, Tacho)
MuLue Algebraic multigrid solver
Amesos2 Direct solver interfaces (e.g., KLU, PaRDISO, SuperLU, Tacho)
Belos Krylov solvers (e.g., CG, GMRES, BiCG, and

their communication-avoiding or pipelined variants)
Ifpack2 Algebraic preconditioners (ILU, relaxation, one-level Schwarz)

Portable Performance
Tpetra Distributed sparse/dense matrix-vector operations
Kokkos-Kernels Performance portable on-node graph and sparse/dense matrix operations
Kokkos C++ programming model for performance portable applications

on different node architectures (e.g., CPUs, NVIDIA/AMD GPUs)

(b) Linear solver package descriptions.

Fig. 2: Trilinos linear solver packages

(e.g., if the original matrix is in double precision, then the

new matrix will be in single precision), allowing users to

construct the preconditioner also in half the precision. The

new HalfPrecisionOperator class, which inherits the

base Operator class in the working precision and internally

holds the operator in half the precision as its member variable,

is also implemented. When this new operator is applied to

vectors, it internally type-casts the input vectors into half the

precision, applies the operator (e.g., preconditioner) in half

the precision, and then type-casts the resulting output vector

back into the working precision. Though it has the overhead of

type-casting, these new capabilities allow users to apply many

of the preexisting Trilinos preconditioners in half the precision

within the current Trilinos framework. Currently, MueLu and

FROSch (whose cost of applying is typically much higher

than that of type-casting vectors) have been extended to utilize

these new capabilities

B. Algorithmic Consideration
1) Sparse Direct Matrix Factorization: Most of the theo-

retical results for DD solvers (including the condition number

estimates for the preconditioned matrix) assume the exact

solution of the overlapping subdomain and coarse problems.

As a result, in practice, DD solver typically use sparse direct

solvers.
Sparse direct solvers are a critical component in many

scientific applications, and there have been extensive efforts

to develop high performance sparse direct solvers [9]. For

our experiments, we used SuperLU and Tacho software

packages that provide two different approaches to the sparse

direct solvers:

• SuperLU [10] implements left-looking sparse LU fac-

torization with partial pivoting. It mainly targets a single

CPU core, though it could be linked to threaded BLAS

or LAPACK for runing on multicore CPUs. It uses the

supernodal block structures of the LU factors in order to

exploit the memory hierarchy.

• Tacho [21] is based on multifrontal factorization with

pivoting only inside the frontal matrices. The original

Tacho used the task programming model of Kokkos.

Though the current implementation still uses Kokkos, it

exploits the hierarchical parallelism available on a GPU

through the combination of level-set scheduling and team-

level BLAS/LAPACK like kernels. It also has interface to

the vendor-optimized kernels (i.e., NVIDIA’s CuBLAS/-

cuSolver and AMD’s rocBLAS/rocSolver) to factorize

large frontal matrices with GPU streams. Tacho cur-

rently supports Cholesky, LDLT , or LU factorization of

a symmetric positive definite, symmetric indefinite, or

numerically nonsymmetric matrix but with symmetric

pattern, respectively.

2) Sparse Triangular Solve: When a direct sparse matrix

factorization is used, the resulting sparse triangular matrix

typically has the dense blocks called supernodes. It is possible

to exploit this supernodal structure to accelerate the triangular

solves. For instance, Kokkos-Kernels implements sparse-

triangular solver based on level-set scheduling of supernodal

blocks [28]. Working with blocks instead of matrix elements

may give several performance advantages on a GPU. For

instance, it reduces the height of the level-set trees and the

length of the critical path in the parallel execution (e.g.,

number of kernel launches) of the sparse triangular solve. In

addition, it allows the hierarchical parallelization, which fits

well to the hierarchical parallelism available on a GPU and can

be exposed using team-based kernels in Kokkos-Kernels.

The sparse-triangular solver in Kokkos-Kernels also

has an option to perform the partitioned inverse [3] that

transforms the sparse triangular solve into a sequence of

sparse-matrix vector multiply which provides more parallelism

than the standard substitution-based algorithm [28].

3) Incomplete Local Solver: Though DD theory is based on

exact solution of the local subdomain and coarse problems, an

inexact local solver may work well in practice, in particular,

if its application is somewhat spectrally equivalent to apply-

ing an exact solver. In this paper, we explore inexact local

solver based on level-based incomplete sparse LU factoriza-

tion. Though several parallel ILU implementations have been

proposed, the standard paralelization scheme for the ILU and

spares-triangular solve is based on the level-set scheduling [4].

In Trilinos, these are implemented as SpILU and SpTRSV in

Kokkos Kernels [24].
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(a) two subdomains. (b) Four subdomains.

Fig. 3: Overlapping domain decomposition into two or four

subdomains (e.g., one or two MPIs on each of two GPUs).

Instead of assigning two large subdomains to two GPUs (left),

we assign four small subdomains to two GPUs (right).

Though incomplete factorization leads to a fewer fills and

may expose more parallelism, it may still not provide enough

parallelism to utilize a GPU. To expose more parallelism,

iterative variants of sparse approximate factorization and of

sparse triangular solver are proposed [8]. It uses Jacobi it-

erations to approximate each entries of the LU factors or to

approximately solve the linear system with a sparse triangular

matrix. Though each iteration requires the about same number

of floating point operations as the standard algorithms, this

variant has significantly more parallelism. As a result, when

the solver needs a small number of iterations to obtain the

solution of the desired approximation accuracy (our default

is five iterations for both), it may obtain much shorter time

to solution on a GPU. In Trilinos, these are implemented as

FastILU and FastSpTRSV [7].

VI. DISCUSSION

Current heterogeneous node architectures typically have

more CPU cores than GPUs on each node (e.g., each node

of the Summit supercomputer has 42 IBM Power9 CPU cores

and 6 NVIDIA V100 GPUs). Such a heterogeneous node

architecture poses challenges for a node-to-node performance

comparison of the DD solver on CPUs and with GPUs. This

is because, in most cases, the computational complexity of

the local sparse solver increases more than linearly to the

local matrix size. For example, for a 3D problem, when the

nested dissection [14] is used to permute the local matrix

with dimension of ni, the sparse direct factorization and

corresponding sparse-triangular solve of the local problem

typically have the computational complexities of O(n2i ) and

O(n4/3i ), respectively. As a result, for our strong parallel-scale

studies, the computational cost of the DD solver decreases

superlinearly with the number of MPI processes. Since each

node typically has fewer GPUs than CPU cores, if we launch

one MPI process on each CPU core for CPU runs and one

MPI process on each GPU for GPU runs (these are the most

common setups in practice), each process has a much smaller

computational cost for the CPU runs than for the GPU runs.

Moreover, the condition number of the matrix precondi-

tioned with a GDSW preconditioner is bounded as follows:

κ
(
M−1
GDSWA

) ≤ C

(
1 +

H

δ

)(
1 + log

(
H

h

))2

;

where H is the maximum diameter of the subdomains and δ is

the width of the overlap cf. [11]. Hence, the condition number

will decrease with a smaller subdomain size (H/h), e.g., as

the number of subdomains increases with a fixed problem size.

For our experiments, we used NVIDIA Multi-Process Ser-

vice (MPS) to run multiple MPI processes on each GPU (see

Fig. 3). Compared to having just one process on each GPU,

this not only reduces the computational and storage costs of the

DD solver, but it may also improve the condition number of the

preconditioned matrix, and hence the convergence rate of the

Krylov solver. It is possible to obtain the same decomposition

by having multiple subdomains per MPI and using GPU

streams. However, this will require significant algorithmic

innovations and software efforts for a two-level solver. Though

it may not be optimal, MPS allows us to run the existing

code without these code changes and can provide significant

performance gain running multiple subdomains per GPU.

VII. EXPERIMENTAL SETUP

For all of our performance results presented in this paper,

we used the “reduced” GDSW coarse space with an algebraic

overlap of one . Then, as our Krylov solver, the single-reduce

variant [30] of the Generalized Minimum Residual (GMRES)

method [25] was used, which is a popular Krylov method

for solving nonsymmetric linear systems of equations. We

used the restart length of 30, and considered GMRES to be

converged when the residual norm is reduced by a factor of

10−7. Finally, we focused on solving 3D elasticity problems

in this paper. Though there are several other preconditioning

options in FROSch, since our focus is on the performance

comparison, and not on the numerical study of GDSW, these

setups provide representative performance of FROSch.

We present performance results on the Summit Supercom-

puter at Oak Ridge Leadership Computing Facility. Each node

of Summit has 42 IBM Power9 CPU cores and 6 NVIDIA

V100 GPUs. Unless specified otherwise, for our CPU runs,

we launched 42 MPI processes on each node (one MPI per

CPU core), while for our GPU runs, we used NVIDIA Multi-

Process Service (MPS) to run up to 7 MPI processes on

each GPU (up to 42 MPI processes per node). The codes

were compiled using CUDA 10.2.89 and GCC 7.5.0, and

linked to the vendor-optimized libraries, NVIDIA’s CUBLAS,

CuSparse on GPUs, and IBM’s Engineering and Scientific

Subroutine Library (ESSL) 6.3.

VIII. PERFORMANCE RESULTS

A. Exact Local Solvers

In this section, we study the performance of FROSch
using exact solution of the local overlapping subdomain and

coarse space problems. The nested dissection ordering from

Metis [20] was used to reduce the number of fills in the LU
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# comp. nodes 1 2 4 8 16

matrix size 375K 750K 1.5M 3M 6M

CPU 2.03 (75) 2.07 (69) 1.87 (61) 1.95 (58) 2.48 (69)

G
P

U

np/gpu = 1 1.43 (47) 1.52 (53) 2.82 (77) 2.44 (68) 2.61 (75)
2 1.03 (46) 1.36 (65) 1.37 (60) 1.52 (65) 1.98 (86)
4 0.93 (59) 0.91 (53) 0.98 (59) 1.33 (77) 1.21 (66)
6 0.67 (46) 0.99 (65) 0.92 (57) 0.91 (57) 0.95 (57)
7 1.03 (75) 1.04 (69) 0.90 (61) 0.97 (58) 1.18 (69)

speedup 2.0× 2.0× 2.1× 2.0× 2.1×

(a) SuperLU.

# comp. nodes 1 2 4 8 16

matrix size 375K 750K 1.5M 3M 6M

CPU 1.60 (75) 1.63 (69) 1.49 (61) 1.51 (58) 1.90 (69)

G
P

U

np/gpu = 1 1.17 (47) 1.37 (53) 1.92 (77) 1.78 (68) 2.21 (75)
2 0.79 (46) 1.14 (65) 1.05 (60) 1.18 (65) 1.70 (86)
4 0.85 (59) 0.81 (53) 0.78 (59) 1.22 (77) 1.19 (66)
6 0.60 (46) 0.86 (65) 0.75 (57) 0.84 (57) 0.91 (57)
7 0.99 (75) 0.93 (69) 0.82 (61) 0.93 (58) 1.22 (69)

speedup 1.6× 1.8× 1.8× 1.6× 1.6×

(b) Tacho.

TABLE II: Total iteration time in seconds and Iteration count

for Weak-scale 3D elasticity problems on Summit.

factors, and also to expose more parallelism. We used either

SuperLU or Tacho to factor our local and coarse matrices on

CPUs or GPUs, respectively. To apply the preconditioner on a

GPU with the LU factors computed by SuperLU, the supern-

odal sparse-triangular solver [28] from Kokkos-Kernels
was used, while on CPU, we used the SuperLU’s internal

triangular solver since Kokkos-Kernels solver is designed

to exploit the manycore architectures and is not suited on a

single CPU core. With Tacho, we used its internal sparse-

triangular solver for both CPU and GPU runs. We did not use

the partitioned inverse, and all the sparse-triangular solvers,

either on a CPU or on a GPU, are numerically equivalent.

Table II shows the the weak-parallel scaling of the total

iteration time required for the solution convergence, where

the local problem size on each compute node is fixed and

the global matrix size grows linearly to the number of the

compute nodes. We used MPS to run multiple MPI processes

on each GPU. As we discussed in Section VII, with the direct

factorization of of the local overlapping subdomain matrix,

the resulting sparse-triangular solve has the computational cost

that scales superlinearly to the size of the local matrix. Hence,
as we map more MPI processes on each GPU using MPS, the
local subdomain becomes smaller, and the iterative solution
time is reduced, significantly (with speedups of 1.3 ∼ 2.7×).
Overall, using GPUs, the solution time was reduced by a factor

of around 2×, compared to the CPU runs.

In some applications, the setup time can also take a sig-

nificant share of the total simulation time. Hence, we now

study the numerical setup time of FROSch. Fig. 4 shows the

breakdown of the numerical setup time on a single compute

node of Summit. As we expect, especially on CPUs, a signif-

icant part of the numerical setup time is spent by the sparse

direct solver. For both CPU and GPU runs with SuperLU, the

local overlapping and coarse matrices are factored on CPU,

and the factorization time are the same on CPUs and with

(a) SuperLU (b) Tacho

Fig. 4: Breakdown of the numerical setup time on one node

of Summit (n = 375K on 42 MPI processes).

# comp. nodes 1 2 4 8 16

matrix size 375K 750K 1.5M 3M 6M
CPU 2.5 3.0 3.3 3.8 3.6

G
P

U

np/gpu = 1 60.0 71.5 70.9 85.6 85.1
2 22.9 22.3 26.1 26.9 25.8
4 8.4 9.4 9.1 9.8 10.2
6 5.5 5.2 5.2 6.2 6.3
7 3.5 4.2 4.8 5.4 5.4

slowdown 1.4× 1.4× 1.5× 1.4× 1.5×
(a) SuperLU.

# comp. nodes 1 2 4 8 16

matrix size 375K 750K 1.5M 3M 6M
CPU 1.3 1.6 1.7 1.8 1.9

G
P

U

np/gpu = 1 3.2 3.5 3.9 5.4 5.6
2 2.1 2.3 2.9 3.3 3.4
4 1.4 1.8 2.1 2.2 2.3
6 1.5 1.6 1.7 2.0 2.3
7 1.2 1.6 1.7 2.0 2.2

slowdown 0.9× 1.0× 1.0× 1.1× 1.1×
(b) Tacho.

TABLE III: Numerical Setup Time in seconds for Weak-scale

3D elasticity problems on Summit. Number of MPI process

per GPU changes between every GPU row from 1 to 7. This

improves the numerical setup time up to 17x and 3x for

SuperLU and Tacho on GPU runs. The GPU runs are slightly

slower than CPU runs in this phase.

GPUs. On the other hand, Tacho can exploit the GPU, and
the local factorization time was reduced for the GPU run by
2.4×. This is the first benefit of using GPUs. Unfortunately,

we also see that some of the setup time beside the sparse

direct solver is running slower with GPUs (“black” part of the

bar)1, and a significant amount of time is spent setting up the

Kokkos-Kernels sparse-triangular solve with SuperLU:

• SuperLU performs partial pivoting during its numerical

factorization. This ensures the numerical stability of the

solver, but the sparsity structures of the LU factors

depend on the numerical values. As a result there is

very little work that can be reused from the symbolic

factorization. For instance, with SuperLU, both the sym-

bolic and numerical setups for the Kokkos-Kernels

1This is mostly due to sparse-sparse matrix product to form the coarse
matrix and communication to form the local overlapping subdomain matrix.
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(a) Numerical setup time. (b) Solve time.

Fig. 5: Strong parallel scaling with 3D elasticity (n = 1M).

sparse-triangular solver need to be performed after each

numerical factorization, which takes up significant part

of the difference between the setup times on CPUs and

with GPUs in the plot.

• On the other hand, Tacho performs the pivoting only

within its frontal matrices and given the same sparsity

structure of the input matrices, the sparsity structures

of the LU factors stay the same, allowing us to reuse

the symbolic setup for the numerical factorization of

different matrices. In addition, Tacho can utilize the

GPU. Overall, we see similar numerical setup times of

Tacho on CPUs and with GPUs.

Table III compares the the weak-scaling numerical setup

time of FROSch using up to 672 CPU cores and 96 GPUs. As

we discussed in Section VII, the computational cost for factor-

ing the local overlapping subdomain scales superlinearly to the

size of the local matrix. Hence, similar to the iterative solution
time, the numerical setup time was reduced significantly using
MPS (obtaining speedups of 15 ∼ 17× with SuperLU and
2 ∼ 3× with Tacho). Running multiple MPI processes on

each GPU also reduced the memory required to store the LU

factors, enabling the solution of a larger linear system.

Overall, using Tacho, the total solution time (the sum of
setup and solve time for solving a single linear system) was
1.1 ∼ 1.8× faster with GPUs. If the application requires to
solve a sequence of linear systems (the same matrix A but
with different right-hand-side b in sequence), then the cost of
the numerical factorization can be amortized over the multiple
solves, and speedups closer to 2× can be obtained.

To summarize our studies with the exact solver, Fig. 5 shows

the strong parallel-scaling results, where either 6 or 42 MPI

processes were used on each node. For our CPU runs with 6

MPI processes per node, we linked Tacho with the threaded

version of ESSL and used 7 threads for each MPI process.

We clearly see the advantage of having 42 MPI processes on

each node for both CPU and GPU runs. Overall, the GPUs
can provide speedups for both setup and solve time as long
as the local matrix sizes are large enough.

B. Approximate Local Solvers

1) Incomplete LU Factorization: We now study the effects

of using an incomplete LU (ILU) factorization as our local

solver on the performance of FROSch. For these experiments,

ILU level 0 1 2 3

C
P

U No 1.5 1.9 3.0 4.8
ND 1.6 2.6 4.4 7.4

G
P

U

KK(No) 1.4 1.5 1.8 2.4
KK(ND) 1.7 2.0 2.9 5.2
Fast(No) 1.5 1.6 2.1 3.2
Fast(ND) 1.5 1.7 2.5 4.5

speedup 1.0× 1.2× 1.4× 1.5×

(a) Setup (table on left) and total time (figure on right).

ILU level 0 1 2 3

C
P

U No 2.55 (158) 3.60 (112) 5.28 (99) 6.85 (88)
ND 4.17 (227) 5.36 (134) 6.61 (105) 7.68 (88)

G
P

U

KK(No) 3.81 (158) 4.12 (112) 4.77 (99) 5.65 (88)
KK(ND) 2.89 (227) 4.27 (134) 5.57 (105) 6.36 (88)
Fast(No) 1.14 (173) 1.11 (141) 1.26 (134) 1.43 (126)
Fast(ND) 1.49 (227) 1.15 (137) 1.10 (109) 1.22 (100)

speedup 2.2× 3.2× 4.3× 4.8×
(b) Solve time (iteration count).

TABLE IV: Performance of FROSch for 3D elasticity prob-

lems on one Summit node (n = 648K on 42 MPI processes)

using local Kokkos-Kernels ILU (KK) or FastILU
(Fast) and no reordering (No) or nested dissection (ND).

we used level-based ILU(k) as local solver only for solving

the local overlapping subdomain problems, while Tacho
was used for computing the basis function and for solving

the coarse problem. The inexact solvers reduce the required

storage cost, and hence, we are solving larger linear systems

in this section, compared to those solved in Section VIII-A.

Table IVa shows the effects of the number of ILU levels,

k, on the numerical setup time. Besides SpILU and SpTRSV
(based on level-set scheduling), we also show the performance

of their iterative variants, FastILU and FastSpTRSV,

where we performed three and five Jacobi iterations, respec-

tively. As we increase the level (and the computation required

to compute ILU factors increases), the speedup gained using

the GPUs for the numerical setup time increased.

Table IVb shows the total iteration time with increasing

levels for ILU. FastILU computes approximation to the

ILU factors, and FastSpTRSV solves the triangular system,

approximately. As a result, compared to SpILU, GMRES re-

quired more iterations to converge using FastILU. However,

they provide more parallelism, which the GPU can exploit.

Overall, GMRES had the fastest time to solution using the
iterative variants with the speedups of 2.8 ∼ 4.4×.

Finally, Table V shows weak-scaling results using the inex-

act ILU(1) local solver on up to 672 CPU cores and 96 GPUs.

For all these experiments, we used the original matrix ordering

since the matrix reordering did not improve the performance

significantly, while it could increase the iteration count. Even

with the inexact local solver, the iteration counts were almost

independent of the number of subdomains. It can be seen in

Table V that even with the higher iteration count, the inexact

(Fast) option is faster than the exact triangular solve (KK).
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# comp. nodes 1 2 4 8 16

matrix size 648K 1.2M 2.6M 5.2M 10.3M
CPU 1.9 2.2 2.4 2.4 2.6

G
P

U KK 1.4 2.0 2.2 2.4 2.8
Fast 1.5 2.2 2.3 2.5 2.8

speedup 1.3× 1.0× 1.0× 1.0× 0.9×
(a) Setup time (s).

# comp. nodes 1 2 4 8 16

matrix size 648K 1.2M 2.6M 5.2M 10.3M

CPU 4.0 (119) 3.8 (110) 3.7 (105) 3.3 (97) 4.1 (109)

G
P

U KK 4.3 (119) 3.9 (110) 4.8 (105) 4.3 (97) 4.9 (109)
Fast 1.2 (154) 1.0 (133) 1.1 (130) 1.3 (117) 1.6 (131)

speedup 3.3× 3.8× 3.4× 2.5× 2.6×

(b) Solve time (s) (iteration count).

TABLE V: Weak scaling Parallel Performance (42 MPIs on

each node) of 3D elasticity problems on Summit, using ILU(1)

as local subdomain solvers.

# comp. nodes 1 2 4 8 16

matrix size 375K 750K 1.5M 3M 6M

C
P

U

double 2.5 3.0 3.3 3.8 3.6
single 1.8 2.2 2.3 2.6 2.6
speedup 1.4× 1.4× 1.4× 1.5× 1.4×

G
P

U

double 3.5 4.2 4.8 5.6 5.4
single 2.6 3.2 3.4 4.0 4.0
speedup 1.3× 1.3× 1.4× 1.4× 1.4×

(a) SuperLU.

# comp. nodes 1 2 4 8 16

matrix size 375K 750K 1.5M 3M 6M

C
P

U

double 1.3 1.6 1.7 1.8 1.9
single 1.0 1.2 1.3 1.4 1.4
speedup 1.3× 1.3× 1.3× 1.3× 1.4×

G
P

U

double 1.2 1.6 1.7 2.0 2.2
single 1.0 1.3 1.4 1.7 2.0
speedup 1.2× 1.2× 1.2× 1.2× 1.1×

(b) Tacho.

TABLE VI: Numerical Setup Time in seconds, using single

or double precision FROSch: for Weak-scale 3D elasticity

problems on Summit.

We see 3.1 ∼ 4.4× speedups using the iterative variants on
GPUs. We also observe 2.5 ∼ 3.8× speedup using GPUs.
The setup times are nearly the same on CPUs and GPUs with
ILU(1) on multiple nodes.

2) Single-precision FROSch: Even though typical scientific

applications require double precision accuracy, some emerging

hardware delivers lower-precision arithmetic at higher perfor-

mance. There are other machines that provide the same per-

formance for double and single precision arithmetic. However,

even in that case, using a lower-precision arithmetic reduces

the required amount of data transfer. Since the performance of

the sparse solver is often limited by the memory bandwidth,

reducing the required communication volume alone could

reduce the solver time.

Table VII shows the performance results, where FROSch
in single precision is used to precondition GMRES in double

precision. For these particular problems, the setup time was

# comp. nodes 1 2 4 8 16

matrix size 375K 750K 1.5M 3M 6M

C
P

U

double 2.03 (75) 2.07 (69) 1.87 (61) 1.95 (58) 2.48 (69)
single 1.89 (76) 1.60 (69) 1.71 (62) 1.75 (58) 2.37 (69)
speedup 1.0× 1.3× 1.1× 1.1× 1.0×

G
P

U

double 1.03 (75) 1.04 (69) 0.90 (61) 0.97 (58) 1.18 (69)
single 1.01 (75) 1.03 (69) 0.98 (62) 1.10 (58) 1.28 (69)
speedup 1.0× 1.0× 0.9× 0.9× 0.9×

(a) SuperLU.

# comp. nodes 1 2 4 8 16

matrix size 375K 750K 1.5M 3M 6M

C
P

U

double 1.60 (75) 1.63 (69) 1.49 (61) 1.51 (58) 1.90 (69)
single 1.11 (76) 1.13 (69) 1.02 (62) 1.04 (58) 1.30 (69)
speedup 1.4× 1.4× 1.4× 1.4× 1.5×

G
P

U

double 0.99 (75) 0.93 (69) 0.82 (61) 0.93 (58) 1.22 (69)
single 1.00 (75) 0.92 (69) 0.84 (62) 0.93 (58) 1.21 (69)
speedup 1.0× 1.0× 1.0× 1.0× 1.0×

(b) Tacho.

TABLE VII: Total iteration time and Iteration count, using

double or single precision FROSch for Weak-scale 3D elas-

ticity problems on Summit.

reduced using single-precision FROSch, while the number of

iterations required for the convergence to same accuracy as
double precision use cases is maintained. Specifically, using
single precision, both on 672 CPU cores and 96 GPUs,
we observe 1.3 ∼ 1.5× speedup in SuperLU based setup,
while we observe 1.1 ∼ 1.4× speedup in Tacho based
setup. We do not see a benefit in solve times when using

single precision (Table VII). Nevertheless, GMRES converges
in similar number of iterations when using single or double
precision preconditioner.

C. Summary of Key Results

Using multiple subdomains per GPU improves the perfor-

mance considerably. In terms of the setup time using a direct

factorization for the subdomain solver, GPU-based factoriza-

tion in Tacho provides a distinct advantage over CPU-based

SuperLU. There is no distinct advantage in the solve time

on the GPUs when using SuperLU and Kokkos Kernels
combination or using Tacho. Incomplete factorizations allow

us to solve larger problems. Though we do not see noticeable

difference in performance over direct factorization due to the

trade-off between number of iterations and setup/solve times,

the solve time was reduced using GPUs. Iterative incomplete

factorizations and triangular solve result in significant speedup

compared to the standard incomplete factorizations even with

increased number of iterations. Using lower precision compu-

tations allows us to solve a larger linear system, and improved

the setup time though not the solve time.

IX. CONCLUSION

We presented FROSch, which implements the GDSW al-

gorithm for GPU cluster within Trilinos software frame-

work. Our performance results on Summit supercomputer with

NVIDIA V100 GPUs demonstrated the potential of FROSch:

with GPUs, the numerical setup times remain about the same
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as that on CPUs, while the solve time can be reduced by

factors of around 2×. We presented a thorough experimental

study varying several solver options from two direct solvers,

incomplete factorization techniques with different level of fill

and different orderings, inexact factorizations and the use

of lower precision arithmetic. Though we only showed the

performance results with NVIDIA GPUs, our implementation

is portable to other GPUs through the use of Kokkos. We plan

to study performance of FROSch with AMD GPUs.
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