
 
 

Delft University of Technology

Quantization Analysis and Robust Design for Distributed Graph Filters

Ben Saad, Leila; Beferull-Lozano, Baltasar; Isufi, Elvin

DOI
10.1109/TSP.2021.3139208
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Signal Processing

Citation (APA)
Ben Saad, L., Beferull-Lozano, B., & Isufi, E. (2022). Quantization Analysis and Robust Design for
Distributed Graph Filters. IEEE Transactions on Signal Processing, 70, 643 - 658. Article 9665348.
https://doi.org/10.1109/TSP.2021.3139208

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSP.2021.3139208
https://doi.org/10.1109/TSP.2021.3139208


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022 643

Quantization Analysis and Robust Design for
Distributed Graph Filters

L. Ben Saad , Member, IEEE, B. Beferull-Lozano , Senior Member, IEEE, and
Elvin Isufi , Member, IEEE

Abstract—Distributed graph filters have recently found applica-
tions in wireless sensor networks (WSNs) to solve distributed tasks
such as reaching consensus, signal denoising, and reconstruction.
However, when implemented over WSNs, the graph filters should
deal with network limited energy constraints as well as processing
and communication capabilities. Quantization plays a fundamental
role to improve the latter but its effects on distributed graph
filtering are little understood. WSNs are also prone to random
link losses due to noise and interference. In this instance, the filter
output is affected by both the quantization error and the topological
randomness error, which, if it is not properly accounted in the
filter design phase, may lead to an accumulated error through the
filtering iterations and significantly degrade the performance. In
this paper, we analyze how quantization affects distributed graph
filtering over both time-invariant and time-varying graphs. We
bring insights on the quantization effects for the two most common
graph filters: the finite impulse response (FIR) and autoregressive
moving average (ARMA) graph filter. Besides providing a
comprehensive analysis, we devise theoretical performance
guarantees on the filter performance when the quantization stepsize
is fixed or changes dynamically over the filtering iterations. For
FIR filters, we show that a dynamic quantization stepsize leads to
more reduction of the quantization noise than in the fixed-stepsize
quantization. For ARMA graph filters, we show that decreasing the
quantization stepsize over the iterations reduces the quantization
noise to zero at the steady-state. In addition, we propose robust
filter design strategies that minimize the quantization noise
for both time-invariant and time-varying networks. Numerical
experiments on synthetic and two real data sets corroborate our
findings and show the different trade-offs between quantization
bits, filter order, and robustness to topological randomness.
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I. INTRODUCTION

GRAPH filters are enjoying an increasing popularity in
graph signal processing (GSP) and graph convolutional

neural networks [1], [2]. Their ability to be convolved with
a graph signal renders graph filters versatile in a variety of
applications ranging from recommender systems to spectral
clustering [3]–[8]. Graph filters find also applications in wireless
sensor networks (WSNs) [9]–[13]. Here, the signal represents
the sensor measurements and the WSN serves as a platform to
perform distributed operations as well as a proxy to represent
signal similarities in adjacent sensor nodes. Graph filters are
useful for distributed signal representation [14], reconstruc-
tion [15], [16], denoising [17], [18], consensus [19], [20] and
network coding [21]. Motivated by these applications, this paper
focuses on distributed graph filtering, considering also practical
constraints within the context of WSNs.

Distributed graph filtering can be implemented with two types
of recursions over the nodes: finite impulse response (FIR)
and autoregressive moving average (ARMA) recursions. In FIR
graph filters, neighboring nodes communicate the input signal
for a finite number of iterations [17], [21]–[23]. In ARMA
graph filters, neighboring nodes communicate both the input
and former iterative output signal. Both implementations can
be used interchangeably as basic filtering blocks and often
lead to a different tradeoff between accuracy and robustness
to topological perturbations. The works in [10], [24] show that
ARMA filters can provide closed-form solutions to different
inverse problems on graphs and are more robust than FIRs
to deterministic topological changes (e.g. sensor movements),
while [25] shows that higher order FIR graph filters suffer less
from random topological changes (e.g. link losses).

For either implementation, in distributed filtering over WSNs,
we should account for the understringent energy, processing and
communication limitations of individual sensors. This motivates
strongly the need of quantization to save energy and bandwidth
of the sensor nodes performing cooperative actions in control,
surveillance and weather monitoring tasks [9]. Thus, the quan-
tization plays an important role prior to data communication in
distributed graph filtering, where local node-to-node communi-
cation is required to reach a common objective in the network.
Since traditional temporal filters and graph filters operate in
different domains and are radically different [1], the quantization
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analysis in distributed graph filters is fundamentally different
of that in the case of temporal filters and is more related to
distributed signal processing. Quantization has been extensively
studied in distributed systems in the context of communications
and signal processing through consensus algorithms [26]–[33],
which present many similarities with graph filtering from a
distributed problem point-of-view. However, in consensus, the
goal is to exchange quantized data to reach a consensus with
respect to some global quantity, while with graph filters the goal
is to exchange quantized data to perform any graph filtering task.
The importance of quantization from the graph signal processing
perspective has been recently recognized in [34]–[36]. In partic-
ular, [34] –the most related to our work– discusses the impact of
fixed-stepsize quantization on FIR graph filters. The work in [36]
approximates the graph spectral dictionaries as polynomials of
the graph Laplacian operator and learns polynomial dictionaries
that are robust to signal quantization. Finally, [35] develops
an adaptive quantization scheme for FIR graph filters that
minimizes the quantization errors by bounding the exchanged
messages and optimizing the bit allocation. While being relevant
contributions on the quantization aspects of graph filtering, the
limitation of these works is that they focus solely on FIR graph
filters and fixed-stepsize quantization. Furthermore, they con-
sider only time-invariant WSN topologies. This is a limitation
in WSNs since sensor nodes are prone to local malfunctions or
failure of communication links with a certain probability.

In this work, we analyze quantization effects of distributed
graph filters (FIR and ARMA) on both time-invariant and
time-varying topologies. Besides providing a broader analysis
with an additional focus on time-varying graphs, we devise
theoretical performance guarantees on the filter performance
when the quantization stepsize is fixed or changes dynamically
over the filtering iterations. We highlight also the benefits of such
dynamic stepsize to reduce the quantization errors. Further, we
consider dithered quantization [37], [38] to make the assumption
of quantization noise uncorrelated with input signals over the
different graph filter iterations hold; an assumption commonly
made in other current works but unjustified. To reduce the
communication cost, this work focuses on the quantization of
the signals. To decrease further the energy consumption, the
computational complexity of implementing the filter may be
considered but this is beyond the current scope of the paper.

Our quantization effect analysis sheds light on different trade-
offs in distributed graph filtering over WSN: FIR versus ARMA
graph filter; fixed-stepsize quantization versus dynamically de-
creasing quantization stepsizes; and quantization rate versus link
loss probability. The overall research question we are interested
in is how quantization affects distributed graph filtering over
both time-invariant and time-varying graphs. The specific con-
tributions of this paper in relation to this question are fourfold:

1) We investigate the quantization effects on distributed FIR
graph filters. We analyze the impact of fixed and dynamic
quantization stepsize on the filtering performance and an-
alyze their tradeoffs. We show that a dynamic quantization
stepsize allows to reduce more the quantization mean
squared error (MSE) than in fixed-stepsize quantization.
We devise also a robust filter design that minimizes the
quantization noise.

2) We investigate the quantization effects on distributed
ARMA graph filters. We analyze the impact of fixed
and dynamic quantization stepsize on the filtering perfor-
mance and analyze their tradeoffs. We develop an ad-hoc
dynamic quantization stepsize strategy that reduces the
quantization MSE to zero at the steady-state.

3) We perform a statistical analysis to quantify the quantiza-
tion effects on FIR and ARMA graph filters over random
time-varying networks, which has not been considered in
previous work. We propose a novel filter design strategy
that is robust to quantization and topological changes.

4) We characterize the different tradeoffs between the FIR
and ARMA graph filters in terms of fixed-stepsize versus
dynamically decreasing quantization stepsize and between
the quantization rate and the link loss probability.

The rest of this paper is organized as follows. Section II
provides the background material. Sections III and IV analyze
the quantization effects on FIR and ARMA graph filters, respec-
tively. Section V contains the quantization analysis for random
time-varying graphs. Section VI presents the numerical results.
The paper conclusions are provided in Section VII.

II. BACKGROUND

Consider a graph G = (V, E) with node set V = {1, . . . , N}
and E ⊆ V × V the set ofM edges, where E is composed of the
tuples (j, i) if there is a link from node j to i. The set of all nodes
connected to node i is denoted by Ni = {j ∈ V|(j, i) ∈ E}.
The graph can be represented by its adjacency matrix A whose
(j, i)th entry is nonzero only if nodes j and i are connected. If
the graph is undirected, it can also be represented by the graph
Laplacian matrixL, such as the discrete LaplacianLd = D−A
or normalized Laplacian Ln = D−1/2LD−1/2, with D is the
diagonal degree matrix.

On the vertices of G, a graph signal can be defined as a
map from the vertex set (node set) to the set of real numbers,
i.e., x : V → R. We can denote the graph signal by a vector
x = [x1, . . . , xN ]T, whose ith entryxi denotes the signal at node
i. WSNs match the above terminology: the nodes represent the
sensors; the edges the communication links; and the signal the
sensor data. On the graph G, we can also define the graph shift
operator [1], [6], which is a local operation that replaces the
signal value xi at node i with a linear combination of values
at the neighbors of node i. To keep the discussion general for
both directed and undirected graphs, we will use as graph shift
operator the matrix S, which has plausible candidates A, L or
any of their normalized and translated forms [1]. We consider
graphs for which S is real-valued and diagonalizable, and thus
admits an eigenvalue decomposition S = UΛU−1 with eigen-
vector matrixU = [u1, . . . ,uN ] and diagonal eigenvalue matrix
Λ = diag(λ1, . . . , λN ) [1], [22], where λ1 up to λN denote the
graph frequencies. In this work, we assume that the eigenvalues
are real-valued and can be readily ordered from small to large.
Complex eigenvalues can have ordering using the total variation
measure, as proposed in [6]. This eigendecomposition holds
for all undirected graphs based on the graph Laplacian and
some directed graphs based on the adjacency matrix [6], [39],
[40]. By considering the eigendecomposition of the graph shift
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operator, we can alternatively analyze the graph signal x by
projecting it onto the shift operator eigenspace as x̂ = U−1x.
This projection is referred to as the graph Fourier transform
(GFT) because the ith element x̂i denotes how much eigenvector
ui represents the variation of x over G and because the variation
of the different eigenvectors can be ordered. The inverse GFT is
x = Ux̂. We shall assume that the shift operator has an upper
bounded spectral norm, i.e., ‖S‖2 ≤ ρ <∞ where ρ denotes
the spectral radius of S. Since any matrix S with entries Sij has
bounded spectral norm ‖S‖2 <∞, in practice, this also means
the graphs of interest have finite dimension and edge weights,
as shown in [41], [42]. An upper bounded spectral norm of the
shift operator S implies also that the maximum eigenvalue of
S is upper bounded. For example, for Laplacian matrices L
belonging to a set L, the minimum eigenvalue is bounded below
byλmin and the maximum eigenvalue is bounded above byλmax

i.e., ||L||2 ≤ ρ = max{|λmin|, |λmax|}. More specifically, for
discrete Laplacian L = Ld, we can take λmin = 0 and λmax

related to the maximum eigenvalue of any of the graphs, while
for the normalized LaplacianL = Ln, we can takeλmin = 0 and
λmax = 2.

A. Graph Filter

A one-hop filtering operation on a graph combines locally
the signal from node i and the signals {xj} from all neighbors
j ∈ Ni of node i to generate the output:

yi =
∑
j∈Ni∪i

φijxj (1)

for some scalar coefficients φij . By stacking all nodes’ outputs
in one vector y = [y1, . . . , yN ]T, and performing several con-
secutive one-hop filtering operations as in (1) with exchanges
of information among neighbors, we obtain y = H(S)x, where
the matrixH(S) : RN → RN denotes the graph filter. The graph
filter can be expressed as a function of the shift operator S in
different ways. Two widely used approaches1 are the FIR graph
filter [21], [22] and the ARMA graph filter [10], [40].

FIR: An FIR graph filter is a polynomial of order K in the
shift operator S with output:

y = H(S)x =

K∑
k=0

φkS
kx (2)

and scalar coefficients φ0, . . . , φK . The filtering behavior of
H(S) can be viewed by means of the GFT:

h(λ) =
K∑
k=0

φkλ
k for λ ∈ [λmin, λmax] (3)

which is a polynomial in the generic graph frequency λ. This
spectral representation allows to define a filtering operator
by specifying the analytic function h(λ) : [λmin, λmax] → R;
hence, by approximating the latter with the polynomial in (3),

1Recent works consider also more general approaches such as the node-
variant [21] and the edge-variant graph filter [23]. To keep the exposition simple,
we will discuss quantization of the two baseline approaches and leave the
extension to the other methods for future research.

we can implement it distributively over the nodes through the
recursion (2) [17]. The distributed implementation is feasible be-
cause the shifted signalx(1) = Sx can be obtained through local
exchanges between neighboring nodes in one communication
iterate [cf. (1)]. The kth shifted signal can be obtained recur-
sively as x(k) = Sx(k−1), where nodes communicate to their
neighbors the shifted signal x(k−1) obtained in the (k − 1)th
communication iterate. The output y of the FIR graph filter is
obtained after K iterations of exchanges between neighbors,
implying that in total, each node i exchangesKdeg(i) messages
with its neighbors. This yields a communication complexity of
order O(MK) [10].

ARMA: The ARMA graph filter extends (3) to a rational
spectral response [10]:

h(λ) =

∑Q
q=0 bqλ

q

1 +
∑P
p=1 apλ

p
=

K∑
k=1

(
ϕk

1− λψk

)
+

L∑
l=1

φlλ
l

for λ ∈ [λmin, λmax] (4)

which allows for more flexibility when designing the filter
coefficients a1, . . . , aP and b0, . . . , bQ (or the respective roots
ϕ1, . . . , ϕK , poles ψ1, . . . , ψK , and direct term φ1, . . . , φL co-
efficients) [40]. Without loss of generality, we consider L = 0
and refer to the filter in right-side of (4) as an ARMAK graph
filter [10].

We can implement the ARMAK graph filter through the
iterative recursion:

w
(k)
t = ψkSw

(k)
t−1 + ϕkx

yt =
K∑
k=1

w
(k)
t for t ≥ 1 (5)

where yt is the ARMA K output at iteration t and w
(k)
t is the

output of the k th branch at iteration twith arbitrary initialization
w(0). Recursion (5) builds the overall output yt at iteration t as
the sum of all K parallel branches outputs w(k)

t and converges
(t→ ∞) to a steady-state only if the roots satisfy |ψk| ≤ ρ for
all k = 1, . . . ,K, where ρ is the spectral radius of S [10].

The output of each branch w
(k)
t can be implemented distribu-

tively in a similar way as the FIR filters. The difference is that
neighboring nodes exchange now the former output w(k)

t−1. Node

i combines the shifted outputs w(k)
jt from all neighbors j ∈ Ni

with its input signalxi with coefficients (as given in (5)) to obtain
the output w(k)

it . Finally, node i combines locally all branches’

outputsw(1)
ti , . . . , w

(K)
ti to obtain the overall ARMAK output yit

at iteration t. This procedure accounts for K communications
between neighbors at each iteration t; hence, the overall com-
munication cost of the ARMAK filter for t = tmax iterations is
of order O(MKtmax) [10].

Expressions (2) and (5) represent two fundamental algorithms
to implement distributed GSP operations over WSNs. Our goal is
to analyze the effects of dithered quantization to the filter outputs
and account for it in the filter design phase. We shall analyze
first quantization effects for static topologies in Sections III and
IV and later for random time-varying topologies in Section V.
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Before proceeding with this analysis for the FIR graph filters,
let us briefly introduce the conceptual terminology of dithered
quantization.

B. Dithered Quantization

Quantization consists of encoding the data prior to its trans-
mission with a certain number of bits, reducing the amount of
information to be transmitted as compared to the initial data [43].
During the quantization, the information is compressed in a lossy
manner due to a round-off error generated in a finite-precision
machine.

Uniform quantizers map each input signal value to the nearest
value of a finite set of quantization levels, where the quantiza-
tion stepsize between two adjacent levels is constant [44]. The
mapping of a uniform quantizer Q : R → [−r, r] is expressed
as Q(x) � Δ([ xΔ ] + 1

2 ) for |x| < r, where B is the number of
levels, b = log2(B) is the number of bits, r is the dynamic range,
and Δ = 2 r

B is the stepsize. We denote the quantized version of
signal x as x̃ = Q(x), and it is given by:

x̃ = x+ nq (6)

where nq is the quantization noise. Although the quantization
noise is deterministic, for a sufficiently small quantization step-
size Δ (high rate conditions), it can be well modeled as a
uniformly random variable with zero-mean and varianceΔ2/12,
that is independent from the input [38], [45].

In order to give the quantization noise certain desirable prop-
erties that ensure the zero-mean uniform random variable as-
sumption with varianceΔ2/12 and independence from the input,
we consider in this work dithering quantization [37], [38], [45].
Dithering consists of adding a random additive signal nd, called
dither, to the input signal x prior to quantization. Dithering is
widely used in distributed signal processing [27], [30], [33], [46],
which consists of iterative algorithms akin to distributed graph
filtering. In subtractive dithered quantization, the dither signal is
generated by a pseudo-random generator at the transmitter node
and it is subtracted at the receiving node after transmission. The
receiver node uses the same pseudo-random generator, which
needs to be agreed prior to starting the communication. Let
us denote xd = x+ nd the dithered signal of x. By applying
quantization to the dithered signal xd, the transmitted signal
becomes:

x̃d = Q(xd) = Q(x+ nd) = x+ nd + nq = x̃+ nd (7)

where signal x̃ can be recovered by the receiver node by sub-
tracting the dither nd from the received signal x̃d.

The dither signalnd follows an i.i.d. uniform distribution with
first and second order moments:

E[nd] = 0 and Σd = σ2
d I =

Δ2

12
I. (8)

The quantization noise nq also follows a uniform distribution
with statistical properties:

E[nq] = 0 and Σq = σ2
q I =

Δ2

12
I (9)

and with realisations independent of the input.

Note that for this model to hold, we are considering that the
entries ofx+ nd should be scaled to reside with high probability
in the dynamic quantization range (not overfloading) and the
probability of overfloading of the quantizer is sufficiently small
i.e., Pr(|(x+ nd)i)| > ri) ≈ 0 for each i ∈ 1 · · ·N , by fixing
r2i = ϑ2E{(x+ nd)

2
i }, with ϑ is some multiple number, as

adopted in [47], [48].
Two possible cases can be adopted when performing quan-

tization with substractive dithering, namely, a constant quan-
tization stepsize for all iterations or a dynamically decreasing
quantization stepsize over the iterations, which offers a benefit
as compared to a fixed quantization stepsize. Decreasing the
quantization stepsize implies transmitting more bits over the
iterations, but it can reduce the quantization noise or even make
it converge to zero. In the sequel, we will analyze both cases.

III. FIR QUANTIZATION ANALYSIS

This section analyzes the quantization effects in FIR graph
filters. We first discuss the fixed quantization stepsize and then
the dynamically decreasing stepsize. Next, we formulate a filter
design problem that is robust to quantization noise.

A. Fixed Quantization Stepsize

Consider the kth shifted signal x(k) = Skx exchanged with
the neighbors. The quantized form of the latter is x̃(k) =

Q(x(k)) = x(k) + n
(k)
q . At the filter initialization, we have

x(0) = x, which quantized form is x̃(0) = x(0) + n
(0)
q . This

quantized signal is exchanged with neighbors leading to the
quantized shifted signal x(1) = Sx̃(0) = S(x(0) + n

(0)
q ). Signal

x(1) is further quantized into x̃(1) and subsequently transmitted
to the neighboring nodes. The process is repeated K times.
Based on the derivation in Appendix A, the FIR filter output
[cf. (2)] with quantization becomes:

yq =
K∑
k=0

φkS
kx+

K∑
k=1

φk

k−1∑
κ=0

Sk−κn(κ)
q (10)

where the second term on the right-hand side of (10) accounts
for the accumulated quantization error on the output:

ε = yq − y =

K∑
k=1

φk

k−1∑
κ=0

Sk−κn(κ)
q . (11)

We analyze next this quantization error in the spectral domain
to ease the filter design. The following proposition provides a
closed-form expression of the quantization MSE.

Proposition 1: Consider the FIR graph filter of order K in
(2) with coefficients φ0, . . . , φK and quantization error ε in
(11) under fixed quantization stepsize. Consider also the graph
Fourier transform ε̂ = U−1ε of the error with respect to the shift
operatorS = UΛU−1. The average quantization MSE per node
ζ̂q = E[ 1N tr(ε̂ε̂H)] is:

ζ̂q =
σ2

q

N

K∑
k=1

φ2k

k−1∑
κ=0

‖Λk−κ‖2F . (12)

where ‖ · ‖F denotes the Frobenius norm and σq is the uniform
quantizer standard deviation.
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Proof: See Appendix B. �
Proposition 1 characterizes the impact of the graph frequen-

cies Λ on the quantization in FIR graph filters. A shift operator
with large eigenvalues amplifies the quantization MSE. This
is because the high frequency terms contribute more to the
quantization noise. In other words, shift operators with small
spectral radius bounds are preferred (e.g., normalized Laplacian
or adjacency matrix). The filter coefficients φ1, . . . , φK play
also a role in the quantization error. As such, we can leverage
expression (12) to reduce the quantization MSE in the design
phase, as suggested by [34]. While expression (12) is useful if
the eigendecomposition of the shift operator is computationally
feasible, we can easily bound it by using the maximum eigen-
value. The latter can be estimated with a lighter computational
cost via power methods [49].

Corollary 1.1: Given the hypothesis of Proposition 1, the
quantization MSE on the filter output ζ̂q is always lower and
upper-bounded. If the shift operator S has a maximum eigen-
value λmax �= 1, we can find closed form for these lower and
upper bounds2:

σ2
q

N

K∑
k=1

φ2k ηk ≤ ζ̂q ≤ σ2
q

K∑
k=1

φ2k ηk (13)

where ηk = (1− λ2max)
−1(λ2max − (λ2max)

k+1).
Proof: See Appendix C. �
The bounds in (13) suggest that by working with a fixed

quantization stepsize, the MSE has always a Cramer-Rao lower-
bound equivalence [50], which cannot be overcome even by
tuning the FIR coefficients in the design phase. In other words,
even with a robust design strategy as the one in [34], we have
an unavoidable error due to quantization that will affect the
filter frequency response. To tackle this issue, next, we propose
an approach based on dynamically decreasing the quantization
stepsize, which has the benefit to reduce the MSE.

B. Dynamically Decreasing Quantization Stepsize

Consider the quantization stepsizeΔk, which is defined as the
ratio of the quantization range rk at iterate k over the number
of quantization intervals, is given by Δk = rk/2

bk , where bk is
the number of bits transmitted at iterate k. Let us assume that
with high probability, the entries of the input signal are such
that xlow ≤ (x+ nd)i ≤ xupp for i ∈ 1 · · ·N . The quantization
stepsize can then be expressed as Δk = (xupp − xlow)/2

bk . We
assume here a fixed quantization range over the iterations and a
fix length codeword. By decreasing Δk at each iterate k, more
bits bk = log2((xupp − xlow)/Δk) will be transmitted for the
higher filter iterates (k → K). The main result is given by the
following proposition.

Proposition 2: Consider the FIR graph filter with shift opera-
tor S such that 0 ≤ λmax ≤ 1. Consider also that the input signal
is quantized with a uniform quantizer, where the quantization
stepsize Δk = (λmax)

kΔ0 is decreasing over the iterates k.

2If the maximum eigenvalue λmax is exactly 1, we can still add a small
perturbation to it to make our assumption hold.

Then, the quantization MSE ζ̂q of the FIR graph filter is upper
bounded by3:

ζ̂q ≤ Δ2
0

12
r�φ1 (14)

where r = [1, 2, . . . ,K]� and φ1 = [φ21, φ
2
2, . . . , φ

2
K ]� is the

vector containing squared FIR coefficients for k = 1, . . . ,K.
Proof: See Appendix D. �
As opposed to Proposition 1, expression (14) shows that

we can clearly minimize the quantization MSE through φ1.
Indeed, during the filter design phase, if we impose for the
filter coefficients the condition that r�φ1 ≈ 0, we can reduce
significantly the quantization MSE.

There exists clearly a trade-off between the quantization MSE
and the number of transmitted bits. For a small filter order K,
a decreasing stepsize can be adopted, providing lower quanti-
zation MSE at the cost of more bits transmitted, as compared
to the use of a fixed quantization stepsize, while for large
filter orders K, a fixed stepsize can be adopted at the cost of
higher quantization MSE. To reduce the quantization MSE at
the beginning and limit the communication cost in the end, an
alternative could be using decreasing stepsizes at the beginning
and then switching to start using the initial given stepsize Δ0

if the number of bits transmitted after some iterates exceeds a
certain threshold.

C. Filter Design

Given a desired frequency response h∗(λ), we propose to
design an FIR graph filter by solving the following convex
optimization problem:

minimize
φ0,...,φK

∫
λ

∣∣∣∣∣
K∑
k=0

φkλ
k − h∗(λ)

∣∣∣∣∣
2

dλ

subject to
1

12

K∑
k=1

φ2k

k−1∑
κ=0

Δ2
κ(λ

2
max)

k−κ ≤ ε

r�φ1 ≤ γ
δmin ≤ Δk ≤ δmax, k ∈ [0, 1, 2, . . . ,K]

(15)

For a finite small constant ε, the first constraint upper bound
the quantization MSE in the cases of both fixed and decreasing
quantization stepsizes [cf. (52)]. The second constraint aims to
further reduce the quantization MSE where decreasing quanti-
zation stepsize is used through φ1. For an infinite value of γ,
(15) leads to a similar optimization problem in [34] for the case
of fixed quantization stepsize, while for the case of decreasing
quantization stepsize, a finite small γ can be used. In the last
constraint, δmin and δmax represents, respectively, the minimum
and maximum quantization stepsize at each iterate. The mini-
mum quantization stepsize δmin implies also a restriction on the
maximum number of bits χ that can be used at each iterate.

Let b be the average number of bits transmitted over
the iterates. By quantizing the initial data of b0 bits with
b (i.e., b < b0), the communication cost of FIR graph filter in

3The condition 0 ≤ λmax ≤ 1 can be easily met in practice by appropriately
selecting the shift operator (e.g, translated forms of Laplacian).
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term of number of bits exchanged reduces to O(MKb). The
latter can be obtained similarily to Section II-A or in [10], [23],
[25].

IV. ARMA QUANTIZATION ANALYSIS

This section analyzes the quantization effects on distributed
ARMA graph filters. Since ARMA filters reach the designed
frequency response at steady-state, the signal quantization will
have also an effect on the filter convergence. We show in this
section that the overall quantized MSE converges to zero if
a dynamically decreasing quantization stepsize is considered,
while this is not the case for the fixed stepsize-size quantizer.

A. Fixed Quantization Stepsize

Consider the parallel ARMAK graph filter in (5) and
let us indicate by w

q(k)
t = Q(w

(k)
t ) = w

(k)
t + n

q(k)
t the

quantized signal of branch k at iteration t, i.e., w
(k)
t .

Here, n
q(k)
t denotes the respective quantization noise.

Let also wt = [w
(1)
t

�
,w

(2)
t

�
, . . . ,w

(K)
t

�
]� be the NK × 1

stacked vector containing all branches outputs and nqt =

[n
q(1)
t

�
,n

q(2)
t

�
, . . . ,n

q(K)
t

�
]� the NK × 1 stacked vector of

quantization noise. Then, we can write the ARMA output yt
due to quantization with the following compact notation:

wq
t = (Ψ ⊗ S)(wq

t−1 + nqt−1) +ϕ⊗ x
yqt = (1� ⊗ IN )wq

t
for t ≥ 1 (16)

where ⊗ indicates the Kronecker product, Ψ =
diag(ψ1, ψ2, . . . , ψK) is theK ×K diagonal matrix containing
the former-output coefficients in the main diagonal and
ϕ = [ϕ1, ϕ2, . . . , ϕk]

� is theK × 1 coeffcient vector associated
to the input. By unfolding wq

t in (16) to all its terms, we have:

wq
t =(Ψ ⊗ S)tw0 +

t−1∑
τ=0

(Ψ ⊗ S)τ (ϕ⊗ x)

+
t−1∑
τ=0

(Ψ ⊗ S)t−τnqτ (17)

where the first two terms on the right-hand side account for
the ARMA output up to iteration t, while the third term εq

t =∑t−1
τ=0(Ψ ⊗ S)t−τnqτ accounts for the accumulated quantization

noise.
To analyze the MSE for the ARMA filter, let us first denote

by w∗ = limt→∞ wq
t and by y∗ = limt→∞ yqt the steady-state

values of wq
t and yqt in (16), respectively. Let us also define the

error:

ε∗t = (Ψ ⊗ S)tw0 +
t−1∑
τ=0

(Ψ ⊗ S)τ (ϕ⊗ x)−w∗ (18)

which indicates how close the output of all brancheswt (without
quantization) at iteration t are w.r.t. the steady-state value w∗.
We consider also the error εyt = yqt − y∗ between the quantized
ARMA output yqt in (16) and the steady-state output y∗, which
can be written as follows:

εyt = (1� ⊗ IN )ε∗t + (1� ⊗ IN )εqt = ε∗yt + εqyt (19)

where ε∗yt = (1� ⊗ IN )ε∗t indicates how close the unquantized
ARMA filter output yt at iteration t is w.r.t. its steady-state
y∗ and εqyt = (1� ⊗ IN )εqt accounts for the propagation of the
quantization noise over the iterations. Then by simple algebra,
the average MSE deviation per node of the error εyt in (19) can
be similarly split as:

ζyt =
1

N
E[tr(εytε

H
yt)] = ζ∗yt + ζqyt (20a)

with:

ζ∗yt =
1

N
E[tr((1� ⊗ IN )ε∗tε

∗
t

H(1� ⊗ IN )H)] (20b)

ζqyt =
1

N
E[tr((1� ⊗ IN )εqtε

q
t

H
(1� ⊗ IN )H)] (20c)

where we have used the linearity of the expectation w.r.t the trace
and the independence of x, w0 and nqτ . ζ∗yt is the MSE for the
case of unquantized filter output from the steady-state output
and ζqyt is the quantization MSE at iteration t. The following
proposition provides an upper bound on the quantization MSE.

Proposition 3: Consider the ARMAK graph filter of orderK
in (16) with coefficients Ψ and ϕ, and quantization error εqyt.
Let ψmax = max(|ψ1|, |ψ2|, . . . , |ψK |) be the ARMAK coeffi-
cient with largest magnitude and let all ARMAK branches be
stable i.e., ψmaxλmax < 1 for all k = 1 · · ·K. Consider also that
the signal is quantized with a uniform quantizer with a fixed
quantization stepsize Δ. The quantization MSE ζqyt of the filter
at iteration t is upper bounded by:

ζqyt ≤ Kσ2
q

(ψmaxλmax)
2 − ((ψmaxλmax)

2
)t+1

1− (ψmaxλmax)2
. (21)

Further, the steady-state (t→ ∞) quantization MSE is:

ζq
yt→∞ ≤ Kσ2

q
(ψmaxλmax)

2

1− (ψmaxλmax)2
. (22)

Proof: See Appendix E. �
Proposition 3 shows that the quantization MSE ζqyt of ARMA

graph filters is upper bounded by a term that depends on the
shift operator maximum eigenvalue. At steady-state t→ ∞, the
overall ARMA MSE in (20a) is governed by the quantization
MSE ζqyt since the deviation ζyt from the steady-state vanishes
ζ∗yt→∞ → 0 for convergent stable filters. Therefore, we conclude
that a fixed quantization stepsize heavily affects the ARMA filter
behavior, which even at the steady-state, although not divergent,
might lead to a completely different filtering behavior.

The filtering behavior of the ARMA recursion will not be
considerably affected by the quantization noise in the early
regime (i.e., small value of t) as long as:

ζ∗yt � ζqyt. (23)

However, for larger t, this inequality will be violated and the
overall ARMA MSE will by dominated by the quantization
MSE ζqyt. While we might control (3) in the design phase of
FIR graph filters, we should consider the challenges encountered
when designing convergent distributed ARMA filters [10], i.e.,
the difficulty to guarantee an accuracy-quantization robustness
tradeoff. Rephrasing a non-convex design problem akin to (15)
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is possible, but because of non-convexity that may lead to sub-
optimal design solutions, in this work, we tackle this challenge
by considering a decreasing quantization stepsize with t.

B. Dynamically Decreasing Quantization Stepsize

Consider now a dynamic quantization stepsize Δt that de-
creases with t in a form that the quantization MSE ζq

yt decreases
with t at least with the rate of the unquantized ARMA error ζ∗yt
in (20a). The following proposition shows this can be achieved.

Theorem 1: Consider the ARMAK graph filter of orderK in
(16) with coefficients Ψ and ϕ, and quantization error εqyt. Let
ψmax = max(|ψ1|, |ψ2|, . . . , |ψK |) be the ARMAK coefficient
with largest magnitude and let all ARMAK branches be stable
i.e., ψmaxλmax < 1 for all k = 1 · · ·K. Consider also that the
signal is quantized with a uniform quantizer with a decreas-
ing stepsize over the iterations t as Δt = (ψmaxλmax)

tΔ0. The
quantization MSE ζqyt of the filter output at iteration t is upper
bounded by:

ζqyt ≤
KΔ0

12
t(ψmaxλmax)

2t (24)

which at the steady-state converges to zero (ζqyt→∞ → 0) at a
rate of t(ψmaxλmax)

2t.
Proof: See Appendix F. �
Theorem 1: shows the advantage of adopting a decreasing

quantization stepsize, which leads to vanishing the quantization
MSE for the ARMA filters at the steady-state. This behavior is
similar to the convergence error of the unquantized ARMA ζ∗yt
and suggests that at the steady-state, we can reach the designed
filter response. However, the quantization MSE converges with a
rate t(ψmaxλmax)

2t instead of (ψmaxλmax)
2t. Faster convergence

rates can be achieved by decreasing the quantization stepsize at
a faster rate over time but this requires transmitting more bits
for larger values of t.

Despite vanishing the quantization MSE at the steady-state,
the dynamic quantization stepsize comes together with a cost.
In particular, for large values of t, this implies that the quan-
tization stepsize becomes infinitesimal; hence, the number of
bits transmitted per iteration becomes that of the conventional
ARMA graph filter [cf. (5)] after some iteration numbers t ≥ t∗.
Nevertheless, this strategy reduces the communication efforts in
the first iterations, i.e., we can start with a coarser Δ0. For bt
being the number of bits transmitted at iteration t, the commu-
nication cost of the ARMAK graph filter per iteration is of order
O(MKbt). If b is the average number of bits transmitted over
tmax iterations, the ARMAK communication complexity is of
order O(MKtmaxb). The benefits of following this approach is
that the ARMA design is readily available from the unquantized
setting [10].

A related problem that can be of interest is to find the
best sequence of quantization stepsizes Δ0,Δ1, . . . ,Δt by
taking into account the constraints of a given total bit bud-
get B available and a maximum number of iterations tmax,
where Δt = (ψmaxλmax)

tΔ0. Note that the quantization step-
size Δt is defined as the ratio of the quantization range
rt at iteration t over the number of quantization intervals,

which is given by Δt = rt/2
bt = (xupp − xlow)/2

bt . Thus,
the best sequence of quantization stepsizes can be obtained
for ψmaxλmax �= 0 and ψmaxλmax < 1 by solving the problem∑tmax
t=0 log2(

(xupp−xlow)
(ψmaxλmax)tΔ0

) = B, which implies:

Δ0 = 2(−
B

1+tmax ) (xupp − xlow) (ψmaxλmax)
− tmax

2 (25)

V. QUANTIZATION ANALYSIS OVER TIME-VARYING GRAPHS

We now extend the quantization analysis to cases where the
graph connectivity changes randomly over the filtering itera-
tions. This scenario is expected to occur in applications of graph
filtering over WSNs. For our analysis, we consider directly the
more general dynamically decreasing quantization stepsize and
the random edge sampling model from [25].

Definition 1 (Random edge sampling model [25]): Consider
an underlying graph G = (V, E). A random edge sampling
(RES) graph realization Gt = (V, Et) of G is composed of the
same set of nodes V and a random set of links Et ⊆ E that are
activated (i.e., (i, j) ∈ Et) with a probability pij (0 < pij ≤ 1).
The links are activated independently over the graph and time
and are mutually independent from the graph signal.

We consider the RES graph realization to model the link losses
that occur at each filter iteration. As such, the RES model states
that the realization Gt = (V, Et) at iteration t is drawn from the
underlying connectivity graph G = (V, E), where the links Et ⊆
E are generated via an i.i.d. Bernoulli process with probability
pij . Let then P ∈ RN×N denote the matrix that collects the
link activation probabilities pij . Let also S, St, and S̄ denote,
respectively, the shift operator of the underlying graph G, the
graph realization Gt at iteration t, and the expected graph Ḡ.
Since graph G has an upper bounded shift operator ‖S‖2 ≤ ρ,
all its realizations Gt have also an upper bounded shift operator
‖St‖2 ≤ ‖S‖2 ≤ ρ [51], [52].

Before, we proceed with the filter analysis, the following
remark is in order. Under the RES model, if S = A then the ex-
pected shift operator is S̄ = E[At] = P ◦A. If S = L, then the
expected shift operator4 is S̄ = E[Lt] = D̄− (P ◦A), where
D̄ = E[Dt] is a diagonal matrix whose non zero entries are given
by [D̄]ii =

∑N
j=1 aijpij .

A. FIR Graph Filters

When the FIR filter is run over RES graph realizations, the
instantaneous shift operator St is present in the filtering expres-
sion (2) and affects the output. To characterize this output, let
us define the transition matrix of the RES graph realisations
Gt, . . . ,Gt′ , Θ(t′, t) =

∏t′
τ=t Sτ if t′ ≥ t and I if t′ < t. The

FIR filter output over a sequence of K time-varying graphs is:

yt =

K∑
k=0

φk Θ(t− 1, t− k) x (26)

where the filter output is computed by considering all graph
realizations from the iteration t−K to t. From the independence

4Note that if P has equal rows so that pij = pi for all j ∈ V or has equal
entries i.e. pij = p, we have E[Lt] = P ◦ L.
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of RES graph realizations, the expected FIR output is:

ȳt = E [yt] =

K∑
k=0

φkS̄
kx. (27)

As shown in Appendix G, the quantized FIR filter output over
RES graph realizations can be written as yqt = yt + εt where
the quantization error εt has the expression:

εt =

K∑
k=1

k−1∑
κ=0

φkΘ(t−κ− 1, t−k) n(κ)
q . (28)

The latter accounts for the percolation of the quantization
noise n

(κ)
q over different random graph realizations. Since the

quantization noise has a zero mean, the expected FIR output with
quantization is E[yqt ] = ȳt [cf. (27)]. That is, in expectation, the
FIR graph filter behaves as the filter in (26) operating on the
expected graph with unquantized data.

To quantify the statistical impact of the quantization noise,
we analyze the second order moment of the quantized output yqt
in the following proposition.

Proposition 4: Consider the FIR graph filter operating over
the RES graph realizations Gt [cf. Def. 1] with shift operators St
upper bounded as ‖St‖2 ≤ ρ. Let also the filter input signal be
quantized with a dynamic quantization stepsize Δt at iteration
t. The MSE of the filter output due to quantization and graph
randomness ζq

t = E[ 1N tr(εtεtH)] is upper bounded by:

ζqt ≤ 1

12

K∑
κ=1

Δ2
κ−1

( K∑
k=κ

ρk−κ+1|φk|
)2

. (29)

Proof: See Appendix H. �
Note that Proposition 4 represents the worst-case bound for

the graph randomness. This is similar to the unquantized graph
filters over RES graphs [25] because the spectral radius ρ
accounts for all potential link losses (it is independent on the
probabilities pij). On the other hand, this result serves as a proxy
for the MSE to design a graph filter that is robust to both link
losses and quantization error.

Filter design: Our goal is to design the filter coefficients
φ0, . . . , φK to reduce the quantization MSE in (29) while keep-
ing the quantized graph filter output yqt close in expectation
to the unquantized output over the deterministic graph G; we
denote the latter as y� =

∑K
k=0 φ

�
kS

kx. Then, let us consider
the expected error due to quantization (bias):

ē = E [yqt − y�] = E [yqt ]− y�. (30)

While we can design the coefficients to minimize this bias,
they will not account for the deviation around it. Therefore,
we consider the more involved problem of finding the filter
coefficients as a trade-off between the expected error of the
filter output and the quantization MSE. For this, let us define
the filtering matrix difference Ē:

Ē =
K∑
k=0

(
φk S̄k − φ�k Sk

)
(31)

that accounts for the response difference between the graph
filtering over the expected graph Ḡ and the graph filtering over

the deterministic graph G. Then, we find the filter coefficients
by solving the convex problem:

minimize
φk

∥∥Ē∥∥
F
+

γ

12

K∑
κ=1

Δ2
κ−1

( K∑
k=κ

ρk−κ+1|φk|
)2

(32)

where ‖Ē‖F is the Frobenius norm of (31) and γ is a weighting
factor trading-off the expected error and quantization MSE.

B. ARMA Graph Filters

The parallel ARMA filter operating over random graphs has
the branches outputs:

wt = (Ψ ⊗ St−1)wt−1 +ϕ⊗ x (33)

which in the presence of quantization noise becomes:

wq
t = (Ψ ⊗ St−1)(w

q
t−1 + nqt−1) +ϕ⊗ x. (34)

By expanding (34) to all the terms, we can write the overall
ARMA filter output due to quantization as:

wq
t =

(
t−1∏
τ=0

Ψ⊗Sτ

)
w0+ϕ⊗x

+

t−1∑
τ=1

( t−1∏
τ ′=t−τ

Ψ⊗Sτ ′

)
(ϕ⊗x)+εqt

yqt = (1� ⊗ IN )wq
t (35)

where in order to ease notation, we have denoted by εqt =∑t−1
τ=0(

∏t−1
τ ′=τ Ψ ⊗ Sτ ′)nqτ the percolation of the quantization

noise nqτ over the parallel ARMA branches up to time t. Then,
let us consider the filter output error εyt = yqt − y∗ from the
steady-state expected ARMA output y∗:

εyt = εqyt + ε∗yt (36)

where εqyt = (1� ⊗ IN )εqt is the quantization error on the out-
put; ε∗yt = (1� ⊗ IN )ε∗t is the unquantized ARMA graph filter
error at iteration tw.r.t. to its steady-state y∗. Then, let us denote
by ε∗t the unquantized ARMA error w.r.t. to the steady-state w∗,
which is given by:

ε∗t =
( t−1∏
τ=0

Ψ ⊗ Sτ

)
w0 +ϕ⊗ x

+

t−1∑
τ=1

( t−1∏
τ ′=t−τ

Ψ ⊗ Sτ ′

)
(ϕ⊗ x)−w∗. (37)

Under the RES graph model and given the zero-mean quan-
tization noise, it can be easily shown from (33) and (34) that
E[wq

t ] = E[wt]; i.e., in expectation both the quantized and
unquantized ARMA filters give the same output. However, the
quantization impacts on the second order moment of the filter
output error εyt in (36). We analyze next the MSE of the latter,
which by simple algebra, can be split as:

ξyt =
1

N
E[tr(εytε

H
yt)] = ξ∗yt + ξqyt. (38a)
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where:

ξ∗yt =
1

N
E[tr((1� ⊗ IN )ε∗t(ε

∗
t)

H(1� ⊗ IN )H)] (38b)

ξqyt =
1

N
E[tr((1� ⊗ IN )εqt (ε

q
t )

H(1� ⊗ IN )H)] (38c)

and where we have used the linearity of the expectation w.r.t the
trace, the cyclic property of the trace, and the independence of
x, w0 and nqτ . ξ∗yt is the MSE for the case of unquantized filter
w.r.t. to its steady-state output. The next Theorem provides an
upper bound on the MSE of the filter output due to quantization
and graph randomness ξqyt, when the quantization stepsize Δt

decreases at each iteration t.
Theorem 2: Consider the ARMAK graph filter operat-

ing over RES graph realizations Gt [cf. Def. 1] with shift
operators St upper bounded as ‖St‖2 ≤ ρ. Let ψmax =
max(|ψ1|, |ψ2|, . . . , |ψK |) be the ARMAK coefficient with
largest magnitude and let all ARMAK branches be stable i.e.,
ψmax ρ < 1 for all k = 1 · · ·K. Let also the filter input signal be
quantized with a uniform quantizer having a stepsize decreasing
over the iterations t as Δt = (ψmax ρ)

tΔ0. The MSE of the
ARMA filter output at iteration t due to quantization and graph
randomness ξqyt can be upper bounded by:

ξq
yt ≤

K2 Δ0

12
t (ψmax ρ)

2t (39)

making the quantization MSE converge to zero (ξqyt→∞ → 0) at
a rate of t(ψmax ρ)

2t.
Proof: See Appendix I. �
Theorem 2 highlights that the quantization MSE converges to

zero when using a decreasing quantization stepsize, despite the
random topological changes and the presence of quantization.
This implies that there is no need to consider the quantization
MSE in the design phase. However, contrarily to time-invariant
graphs, the overall MSE of ARMA filters, which is affected
by both the quantization ξqyt and the random variation part ξ*

yt,
can not reach the desired filter response at steady-state (t→
∞), because even if the quantization MSE ξqyt can be made to
converge to zero, the unquantized MSE ξ*

yt does not converge
to zero due to graph topological changes.

Similarly to time-invariant graphs in Section IV-B, where
we consider the constraints of a given total bit budget B
available and a maximum number of iterations tmax, the
best sequence of quantization stepsizes is given by Δ0 =

2(−
B

1+tmax
) (ψmaxρ)

− tmax
2 (xupp − xlow) and Δt = (ψmax ρ)

tΔ0,
for ψmax ρ �= 0 and ψmax ρ < 1.

Corollary 2.1: Consider same settings as Theorem 2 with the
input signal quantized with a uniform quantizer having a fixed
quantization stepsize Δ. The MSE of the filter output due to
quantization and graph randomness ξqyt can be upper bounded
by:

ξqyt ≤ K2σ2
q
(ψmax ρ)

2 − [(ψmax ρ)
2]t+1

1− (ψmax ρ)2
(40)

which in the steady-state (t→ ∞) becomes:

ξqyt→∞ ≤ K2σ2
q

(ψmax ρ)
2

1− (ψmax ρ)2
(41)

Fig. 1. (a) NSE of FIR graph filters over time-invariant graphs, when approx-
imating an ideal low-pass filter. The filter coefficients are optimized by solving
(15), whereN = 200, as = 220m,S = 0.5Ln,Δ0 = 0.044 andχ = 32 bits.
FIR filters with fixed stepsize (FIRΔ in green) and decreasing stepsize (FIRΔτ

in pink) are compared to the Robust Filter Design (RobFD) proposed in [34]. (b)
Decreasing quantization stepsize over iterations is given by Δτ = (0.71)τΔ0

for bτ ≤ χ.

Proof: By considering a fixed quantization stepsize Δ, the
upper bound of the MSE of ARMA filter due to quantization
and graph randomness in (76) becomes:

ξqyt ≤ K2σ2
q

t∑
τ=1

(ψmax ρ)
2τ (42)

By considering the upper bound in (42) is finite geometric series
with argument smaller than 1, ξqyt can be upper bounded by (40).

�

VI. NUMERICAL EXPERIMENTS

This section corroborates our theoretical findings with nu-
merical experiments on both synthetic and real data from the
NOAA [54] and the Intel Berkely sensor network [55].

A. Synthetic Data

We consider up to N = 10000 sensor nodes, which are ran-
domly and uniformly distributed over a square area of side
as. Each node can communicate with the neighbors within the
transmission rangeR = 50m. The latter forms a communication
network that can be used to perform distributed graph filtering
operations. In the sequel, we evaluate our quantized filtering
designs in three different applications: baseline ideal-low pass
filter, signal denoising, and change-point detection. To account
for the graph randomness, we average the results over 1000
different realizations. The FIR filter coefficients are optimized
by solving (15) or (32) for time-invariant and time-varying
graphs, respectively.

Ideal low-pass filter: We consider the FIR graph filter to
approximate an ideal low-pass filter with frequency response
h(λ) = 1 if λ ≤ λc and zero otherwise. The shift operator is
0.5Ln. The cut off frequency λc is half the spectrum. The input
signal x is such that its GFT is all one.

Fig. 1(a) shows the Normalized Squared Error NSE = ‖ŷq −
ŷ‖22/‖ŷ‖22 between the quantized output ŷq and the unquantized
desired signal ŷ in the graph frequency domain, when the FIR
filters run over time-invariant graphs. The quantization stepsize
Δk is limited through χ, which restricts the maximum num-
ber of bits used at each iteration. The results show that both
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Fig. 2. (a) NSE between the quantized output and the unquantized output
of FIR and ARMA filtering over time-invariant graphs for the Tikhonov de-
noising problem, whereN = 10000, as = 2200 m, S = λ−1

maxL andw = 0.3,
ψmaxλmax = 0.3. The FIR filter coefficients are optimized by solving (15),
with Δ0 = 0.15 and χ = 25 bits. The x-axis is the number of iterations for
the ARMA1 filter, while for the FIR filter “Iterations = K”. (b) Decreasing
quantization stepsize over iterations is given by Δτ = (0.3)τΔ0 for bτ ≤ χ.

our designed FIR graph filters and the Robust Filter Design
(RobFD) [34] achieve similar performance for low filter orders
(K < 8). However, the FIR graph filter with decreasing quan-
tization stepsize performs better than the other two alternatives
for higher filter orders. The theoretical MSE upper-bounds of
FIR filters, computed by using (13) for fixed stepsize and using
(14) for a decreasing stepsize, are 4.49 10−1 and 3.49 10−1,
respectively. These upper-bounds are in concordance with our
simulated results obtained in Fig. 1(a).

Tikhonov denoising: We now evaluate the performance of the
proposed solutions in distributed denoising. We assume a noisy
graph signal x = z+ n, where z is the signal of interest and n
is a zero mean additive noise. To recover signal z, we solve the
Tikhonov denoising problem:

z∗ = argmin
z∈RN

‖x− z‖22 + w z�Sz (43)

for S = L or S = Ln and where the regularizer z�Sz is based
on the prior assumption the graph signal varies smoothly with
respect to the underlying graph and w is the weighting factor
trading smoothness and noise removal [1]. The closed-form
solution of (43) is an ARMA1 filter z∗ = (I+ wS)−1z with
coefficients ψ = −w and ϕ = 1 [10]. Hence, we can employ
the ARMA1 filter to solve distributively the Tikhonov denoising
problem.

In Fig. 2(a), we compare the NSE= ‖yq
t − yt‖22/‖yt‖22 be-

tween the quantized and the unquantized outputs of FIR and
ARMA graph filters over time-invariant graphs. We use a nor-
malized shift operator5 S = λ−1

maxL. The noise in this instance
is zero-mean Gaussian with variance σ2 = 0.2. The theoretical
MSE upper-bounds of ARMA, computed by using (21) for
fixed stepsize and using (24) for a stepsize decreasing over
twelve iterations, are respectively 2.33 10−3 and 4.23 10−14.
Once again, these upper-bounds are in concordance with our
simulated results obtained in Fig. 2(a). We observe also the
ARMA graph filter with decreasing quantization stepsize sig-
nificantly outperforms both the ARMA with fixed quantization
stepsize and the FIR graph filter with optimized filter coefficients

5This improves the stability of the ARMA filter and ensures a small spectral
radius bound that can reduce the filtering and the quantization error.

Fig. 3. Squared norm of unquantized and quantized filtered streaming graph
signals for the change point detection problem, when using the ARMA4 filter
of NOUGAT algorithm [53], where N = 200, as = 300 m, S = Ln − I,
Δ0 = 1.19,χ = 5 bits. The change-point is set at tc = 1400 and the NOUGAT
detection is expected at t∗ = tc + 128 for the same NOUGAT parameter values
of [53].

and decreasing quantization stepsize. The latter corroborates our
finding in Theorem 1: ARMA filters reach machine precision
with a decreasing quantization stepsize.

We now evaluate the filters over time-varying graphs, by
analyzing the average NSE between the quantized output over
the time-varying graph yqt and the unquantized output yt over
the deterministic graph. As shown in Fig. 4(a), the ARMA
graph filter presents significantly better performance than the
FIR graph filter, when the link activation probability is p = 0.95
and the quantization stepsize is decreasing over the iterations.
This is because the quantization MSE with ARMA converges to
zero when using a decreasing quantization stepsize, as stated in
Theorem 2. This also explains why we observe that the average
NSE for ARMA filters reduces considerably when the number
of iterations increases. Notice also that the NSE floor of the
ARMA filter is the value when the signal is quantized with
all the available bits and where Δτ is very small. The latter
corresponds to the machine precision accuracy, corroborating
our results in Theorem 2. The theoretical MSE upper-bounds
computed with (29) and (39) respectively for FIR and ARMA,
when the stepsize is decreased over the five first iterations, are
1.17 10−3 and 5.41 10−7. These upper-bounds are in a total
concordance with the results obtained in Fig. 4(a).

In Fig. 4(c)-(d), we analyze the average NSE for different
probabilities of link activation and different maximum numbers
of bits used for quantization. ARMA filters with decreasing
quantization stepsize achieves always the highest filtering ac-
curacy with a significant margin compared to other filters due
to the convergence of its quantization MSE to zero, as shown
in Theorem 2. Fig. 4(c) shows that, as expected, better link
connectivities (higher p) lead to lower errors. It is also worth
noticing that the graph filtering accuracy is less affected by
topological changes (due to link losses) for lower filter or-
ders K\number of iterations t, as compared to higher filter
orders\iterations. This is because the exchanges between nodes
through problematic links reduce. This highlights the trade-off
between the filter order\iteration number and the robustness to
topological changes. In a highly stable topology, a higher filter
order\iteration number improves the graph filtering accuracy.
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Fig. 4. (a), (c), and (d) Average NSE between the quantized output over time-varying graph and the unquantized output over a deterministic graph for both FIR
and ARMA filters for the Tikhonov denoising problem, whereN = 10000, as = 2200 m, S = λ−1

maxL,w = 0.25, Δ0 = 1.36 and ψmaxρ = 0.25. The FIR filter
coefficients are optimized by solving (32). (a) Average NSE vs. iterations, where p = 0.95 and χ = 15 bits. The x-axis is the number of iterations for the ARMA1

filter, while for the FIR filter “Iterations = K”. (b) Decreasing quantization stepsize over iterations is given by Δτ = (0.25)τΔ0 for bτ ≤ χ. (c) Average NSE
vs. the probability p of link activation, where χ = 15 bits. (d) Average NSE vs. the maximum number of bits χ at each iteration, where K = 10 for FIR filter and
t = 10 for ARMA1 filter.

Fig. 4(d) shows that the average NSE decreases when the max-
imum number of bits used for quantization at each iteration is
higher. This is because increasing the quantization bits decreases
the quantization stepsize at each iteration, which reduces as well
the quantization errors accumulated among iterations. We can
also observe that increasing the quantization bits does not lead
necessarily to a noticeable improve of the filtering accuracy,
especially for low probability of link activation, as compared to
higher probability of link activation. We attribute this behavior
to the large number of links that fall, therefore, the error due to
link losses dominates that of quantization.

Change-point detection: We now evaluate the performance
of the proposed solutions in the application of change point
detection of streaming graph signals. The change-point detection
aims to localize the switching time instant from which the
statistical properties of a signal change. This problem can be
solved distributively by using the NOUGAT algorithm [53],
which performs an ARMAK filter. Based on NOUGAT al-
gorithm steps, a point-change can be detected if the squared
norm of the filtered streaming graph signal is higher than a
certain threshold. Fig. 3 illustrates the detection performance
by comparing the squared norm of unquantized and quantized
graph filter outputs. The change-point is set at tc = 1400, and
given window lengths of 128 samples, the NOUGAT detection
is expected at t∗ = tc + 128. It can be clearly seen that by using
an ARMA4 with decreasing quantization stepsizes, the detection
performance is very close to the unquantized case. Moreover, the
change-point is better localized as compared to the case of fixed
quantization stepsize.

B. Real Data

We now illustrate the performance of the proposed solutions
for the graph signal interpolation task over time-invariant and
time-varying topologies with two real data sets.

NOAA data set: This data set contains hourly observations of
temperature measurements of N=109 stations collected in the
United States in 2010 [54], for a total of 8759 hours. We use
the same graph structure as [12], which is built from the nodes
coordinates by using the default 7-NN nearest neighbor. The
graph signal at node i is the temperature value at i-th station.

Let x′ be the observed graph signal x with missing values.
We aim at reconstructing the overall graph signal x from the
observationsx′ by exploiting the smoothness ofxover the graph.
This problem can be formulated as [56], [57]:

x� = argmin
x∈RN

‖T(x− x′)‖22 + w x�Sx (44)

where T is a diagonal matrix with Tii = 1 if xi is known and
Tii = 0 otherwise and w is the weighting factor. The optimal
solution of the convex optimization problem (44) is x� = (T+
wS)−1x′ = (I− S̃)−1x′, which is an ARMA1 filter for the shift
operator S̃ = T+ wS− I [10]. To generate missing values in
the NOAA data set, we randomly remove signal values with
a certain percentage. Then, we analyze the NSE between the
quantized output and the unquantized output of graph filters, for
different percentages of missing values.

Fig. 5(a) shows the NSE decreases considerably at each
iteration, particularly for ARMA filters. It is also worth noticing
this decrease enhances when less data are missing.

Intel Lab data set: The Intel Berkeley Research Lab data
set contains light data of N = 54 Mica2Dot sensor nodes dis-
tributed in an indoor environment over an area of 1200 m2

[55]. The communication between the sensor nodes is wireless
and prone to channel noise and interference, leading to time-
varying graph topological changes due to link losses [58]. The
probability of link activation of the nodes is about 0.13 with a
standard deviation of 0.18. The underlying graph topology has
high connectivity with an average node degree of 47, implying
multiple communication paths exist between nodes, helping to
make signal exchanged between nodes robust to link losses. The
graph signal at node i is the light value at i-th sensor. We perform
graph signal interpolation to reconstruct the missing light values.

In Fig. 5(b), we analyze the average quantized NSE as a
function of the missing values for the FIR and ARMA graph
filters. Even though the graph filtering accuracy is affected
by the accumulated quantization errors over iterations and the
graph topological changes, ARMA filters provide a signifi-
cant decrease in terms of NSE, when the number of iterations
grows and the percentage of missing data is low. Notice that
in practical settings with decreasing quantization stepsizes over
time-varying graphs, it is preferable to use FIR graph filters
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Fig. 5. (a) NSE between the quantized output and the unquantized output of graph filters, when interpolating the missing temperature values in NOAA data set
and where Δ0 = 3.18 and S = Ln. The FIR filter coefficients are optimized by solving (15). (b) Average NSE between the quantized output and the unquantized
output of graph filters, when interpolating the missing light values in Intel Lab data set and where Δ0 = 0.7 and S = λ−1

maxL. The FIR filter coefficients are
optimized by solving (32). (a)-(b) The x-axis is the number of iterations for ARMA1 filter while for FIR filter “Iterations =K”. (c) NSE between the quantized
output and the graph signal to be reconstructed. Here, we plot NSE vs. probability of link activation p for Intel data, where Δ0 = 5.3 and 10 iterations (left), and
NSE vs. % missing data for different data sets and 20 iterations (right). (a), (b), and (c) Parameters are w = 0.3 and χ = 15 bits.

for low filter orders. However, for large filter orders\iterations,
ARMA graph filters are the best choice since they provide better
performance than FIR filters, and the quantization MSE can be
significantly decreased.

Fig. 5(c) (left) represents the NSE between the quantized
graph signal output and the true signal for the Intel lab data as a
function of the probability of link activation p. As expected,
better link connectivities lead to lower graph filtering errors
and better signal reconstruction, especially with ARMA filters.
Fig. 5(c) (right) depicts the NSE between the quantized graph
signal output and the true signal for the two data sets as a function
of the missing values. The results show that for both data sets a
good performance in terms of signal reconstruction is achieved,
especially with ARMA graph filters. This confirms our findings
in Theorem 2, which means that with a decreasing quantization
stepsize, there is no need to perform a robust ARMA filter design
since the proposed strategy achieves the optimal steady-state
solution.

VII. CONCLUSION

In this work, we provided a broader analysis of the quanti-
zation effects of both FIR and ARMA graph filters over time-
invariant and time-varying graphs. We analyzed the impact of
fixed and dynamic quantization stepsize on the filtering perfor-
mance. For FIR filters, we first showed that a dynamic quan-
tization stepsize leads to a more reduction of the quantization
MSE than in fixed-stepsize quantization and then we proposed
a robust filter design that minimizes the quantization noise. For
ARMA graph filters, we showed that decreasing the quantization
stepsize over iterations reduces the quantization MSE to zero at
steady-state. We extended our quantization effects analysis of
FIR and ARMA graph filters to networks affected by random
topological changes due to link losses and propose a novel filter
design strategy that is robust to quantization and topological
changes. Extensive numerical experiments with synthetic and
real data show the different trade-offs between quantization
bits, filter order, and robustness to topological randomness,
ultimately, highlighting the efficiency of the proposed solutions.

As our work puts a new practical paradigm for distributed
aspects of graph filters, we identify as relevant future research

direction the application of these filters for digital and
distributable graph neural networks, network coding, and
finite-time consensus.

APPENDIX

A. Quantized FIR Graph Filter Output

Considering x(0) = x and the quantized message at iterate k,
x̃(k) = x(k) + n

(k)
q , the output of the shifted graph signal with

quantization is:

x(1) = Sx̃(0) = S(x(0)+n(0)
q ) = Sx(0)+Sn(0)

q

x(2) = Sx̃(1) = S2x(0)+S2n(0)
q +Sn(1)

q

...

x(k) = Sk x(0) +

k−1∑
κ=0

Sk−κ n(κ)
q , k ≥ 1. (45)

From (45), the FIR graph filter output with quantization is:

yq = φ0x+ φ1(Sx+ Sn(0)
q ) + φ2(S

2x+ S2n(0)
q + Sn(1)

q )

+ · · ·+ φk(S
Kx+ SKn(0)

q

+ SK−1n(1)
q + · · ·+ S2n(K−2)

q + Sn(K−1)
q )

=

K∑
k=0

φkS
kx+

K∑
k=1

φk

k−1∑
κ=0

Sk−κn(κ)
q . (46)

B. Proof of Proposition 1

By applying the GFT on both sides of (11), the quantization
error has the spectral response:

ε̂ =
K∑
k=1

φk

k−1∑
κ=0

Λk−κn̂(κ)
q (47)

where n̂
(κ)
q is still i.i.d. with same statistics as n

(κ)
q iff Σqκ =

σ2
qκ I. From the linearity of the expectation and from the matrix

property (AB)H = BHAH, the quantization noise covariance
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matrix becomes:

E[ε̂ε̂H] =
K∑

k1,k2=1

φk1φk2

k1−1∑
κ1=0

k2−1∑
κ2=0

Λk1−κ1

× E

[
n̂(κ1)

q (n̂(κ2)
q )H

]
(Λk2−κ2)H. (48)

Given the quantization noise has independent realizations and
a constant quantization stepsize Δ for all iterations, we can
rewrite (48) as:

E[ε̂ε̂H]=

K∑
k=1

φ2k

k−1∑
κ=0

Λk−κΣqκ(Λ
k−κ)H

=σ2
q

K∑
k=1

φ2k

k−1∑
κ=0

Λk−κ(Λk−κ)H. (49)

Then, by substituting (49) into the MSE expression ζ̂q =
1
N tr(E[ε̂ε̂H ]) and using the relation between the Frobenius norm
and the trace ‖A‖F =

√
tr(AAH), result (12) yields.

C. Proof of Corollary 1.1

From (12) and the relation between the l2-norm and the
Frobenius norm ‖A‖F ≤ √

r‖A‖2 with r the rank of A (at
most N ), ζ̂q can be upper bounded as:

ζ̂q ≤ N
σ2

q

N

K∑
k=1

φ2k

k−1∑
κ=0

‖Λk−κ‖22 ≤ σ2
q

K∑
k=1

φ2k

k−1∑
κ=0

(λ2max)
k−κ.

(50)
Similarly, by exploiting again the relationship between the

l2-norm and Frobenius norm of matrices (‖A‖2 ≤ ‖A‖F ) in
(12), ζ̂q can be likewise lower bounded as:

ζ̂q ≥ σ2
q

N

K∑
k=1

φ2k

k−1∑
κ=0

(λ2max)
k−κ (51)

where (50) and (51) bound the quantization MSE. If λmax �=
1 and making the index change

∑k−1
τ=0 a

k−τ =
∑k
τ=1 a

τ , we
obtain the finite geometric series whose argument is different
from one; thus, ζ̂q can be lower and upper bound as in (13).

D. Proof of Proposition 2

By equivalence to (12), the MSE on the filter output due to
the quantization noise has the form:

ζ̂q =
1

N

K∑
k=1

φ2k

k−1∑
κ=0

σ2
qκ‖Λk−κ‖2F ≤

K∑
k=1

φ2k

k−1∑
κ=0

σ2
qκ(λ

2
max)

k−κ.

(52)
To decrease the MSE, we choose, for the convenience of the
proof, the stepsize Δκ = (λmax)

κΔ0, which implies:

ζ̂q ≤ Δ2
0

12

K∑
k=1

φ2k k λ
2 k
max. (53)

Under the assumption 0 ≤ λmax ≤ 1 in (53), we can write:

ζ̂q ≤ Δ2
0

12

K∑
k=1

φ2k k (54)

where the final bound can be written as (14).

E. Proof of Proposition 3

By using (20c), the trace cyclic property tr(ABC) =
tr(CAB), the inequality tr(AB) ≤ ‖A‖2tr(B) –which holds
for any positive semi-definite matrix B � 0 and square matrix
A of appropriate dimensions [59]–, and the linearity of the
expectation w.r.t the trace, we can write:

ζqyt =
1

N
E[tr((1� ⊗ IN )H)(1� ⊗ IN )εqt (ε

q
t )

H]

≤ 1

N
‖(1� ⊗ IN )H(1� ⊗ IN )‖2 tr(E[εqt (ε

q
t )

H]). (55)

Then, by substituting εqt =
∑t−1
τ=0(Ψ ⊗ S)t−τnqτ in (55),

E[nqτ (n
q
τ )

H] = σ2
q I which holds for fixed quantization stepsize

in each iteration, and since ‖(1� ⊗ IN )H(1� ⊗ IN )‖2 = K, we
can write:

ζqyt ≤
Kσ2

q

N

t−1∑
τ=0

tr
(
(Ψ ⊗ S)t−τ ((Ψ ⊗ S)t−τ )H

)
. (56)

By using in (56) the index change
∑t−1
τ=0 A

t−τ (At−τ )H =∑t
τ=1 A

τ (Aτ )H, the Frobenius norm ‖A‖F =
√

tr(AAH), the
inequality ‖A‖F ≤ √

r‖A‖2, with r the rank of A (at mostN ),
and the triangle inequality of the norms ‖A2‖2 ≤ ‖A‖22, we
have:

ζqyt ≤
Kσ2

q

N

t∑
τ=1

‖(Ψ ⊗ S)τ‖2F ≤ Kσ2
q

t∑
τ=1

‖(Ψ ⊗ S)‖2τ2 .
(57)

Then, from the Kronecker product identity ‖A⊗B‖2 =
‖A‖2‖B‖2 and the l2-norm matrix norm expression ‖A‖2 =√

max eig(AHA), we can further rewrite (57) as:

ζqyt ≤ Kσ2
q

t∑
τ=1

‖Ψ‖2τ2 ‖S‖2τ2 ≤ Kσ2
q

t∑
τ=1

(ψmaxλmax)
2τ .

(58)
Finally, since (58) is a finite geometric series with an argu-
ment smaller than one, the quantization MSE ζqyt can be upper
bounded by (21).

F. Proof of Theorem 1

By equivalence to (56), but with a dynamic quantization
stepsize, the MSE on the filter output due to the quantization
noise is upper bounded by:

ζqyt ≤
K

N

t−1∑
τ=0

σ2
qτ tr((Ψ ⊗ S)t−τ ((Ψ ⊗ S)t−τ )H)

≤ K

12 N

t∑
τ=1

Δ2
t−τ‖(Ψ ⊗ S)τ‖2F ≤K

12

t∑
τ=1

Δ2
t−τ (ψmaxλmax)

2τ

(59)

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2022 at 12:17:12 UTC from IEEE Xplore.  Restrictions apply. 



656 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

where similarily to (57) and (58), we changed the summatiom
index, used the expression of the Frobenius norm ‖A‖F =√

tr(AAH), and leveraged the norm properties.
For the quantization stepsize Δτ = (ψmaxλmax)

τΔ0, (59) can
be further upper bounded as:

ζqyt ≤
K

12

t∑
τ=1

(ψmaxλmax)
2tΔ0 (60)

which can be easily rephrased as in (24).

G. Quantized FIR Graph Filter Over Time-Varying Graphs

Considering x(0) = x and the quantized message at iterate k,
x̃(k) = x(k) + n

(k)
q , the output of the shifted graph signal with

quantization performed over Gt is:

x(1) = St−1x̃
(0) = St−1(x

(0)+n(0)
q ) = St−1x

(0)+St−1n
(0)
q

x(2) = St−2x̃
(1) = St−2St−1x

(0)+St−2St−1n
(0)
q +St−2n

(1)
q

...

x(k)=

( t−k∏
τ=t−1

Sτ

)
x(0)+

k−1∑
κ=0

( t−k∏
τ=t−1−κ

Sτ

)
n(κ)

q , k ≥ 1.

(61)

The quantized output of FIR graph filter at iteration t, per-
formed over Gt with quantization effects, is given by:

yqt = φ0 x+

K∑
k=1

φk x(k) = φ0 x

+
K∑
k=1

φk

(
Θ(t−1, t−k) x(0) +

k−1∑
κ=0

Θ(t−1−κ, t−k) n(κ)
q

)

=

K∑
k=0

φkΘ(t−1, t−k)x+

K∑
k=1

k−1∑
κ=0

φk Θ(t−1−κ, t−k) n(κ)
q .

(62)

H. Proof of Proposition 4

By using ‖x‖22 = tr(xxH) and rearranging the summation in-
dices, we can write the MSE of the filter output due quantization
and graph randomness as:

ζqt = E

[
1

N
tr(εtεt

H)

]
=

1

N
E[‖εt‖22]

=
1

N
E

[∥∥∥∥
K∑
κ=1

K∑
k=κ

φk Θ(t−κ, t−k) n(κ−1)
q

∥∥∥∥
2

2

]
. (63)

Let then vector ω(κ, t) =
∑K
k=κ φkΘ(t−κ, t−k) n(κ−1)

q ac-
count for the accumulated quantization noise over time-varying
graphs. By using ‖x‖22 = xHx, we can write:

E

[∥∥∥∥
K∑
κ=1

ω(κ, t)

∥∥∥∥
2

2

]
=

K∑
κ1=1

K∑
κ2=1

E

[
ω(κ1, t)

Hω(κ2, t)

]
. (64)

Since the quantization errors are zero mean and independent
from graph topology processes, we have:

E

[
ω(κ1, t)

Hω(κ2, t)

]
=

{
0 if κ1 �=κ2
E[‖ω(κ1, t)‖22] if κ1=κ2.

(65)

Therefore, we can rewrite (65) as:

E

[∥∥∥∥
K∑
κ=1

ω(κ, t)

∥∥∥∥
2

2

]
=

K∑
κ=1

E

[∥∥ω(κ, t)
∥∥2
2

]
. (66)

Using once again the norm property ‖x‖22 = tr(xxH), the
cyclic property of the trace tr(ABC) = tr(CAB), and the
commutativity of the trace to respect to the expectation, we can
write:

E[‖εt‖22]

=
K∑
κ=1

E

[
tr

(( K∑
k=κ

φkΘ(t−κ, t−k)
)

n(κ−1)
q (n(κ−1)

q )H

×
( K∑
k=κ

φkΘ(t−κ, t−k)
)H)]

=

K∑
κ=1

tr

(
E

[( K∑
k=κ

φkΘ(t−κ, t−k)H

)( K∑
k=κ

φkΘ(t−κ, t−k)
)]

× E

[
n(κ−1)

q (n(κ−1)
q )H

])
. (67)

By using the inequality tr(AB) ≤ ‖A‖2 tr(B), we obtain:

E[‖εt‖22] ≤
K∑
κ=1

tr

(
E

[
n(κ−1)

q (n(κ−1)
q )H

])

×
∥∥∥∥E
[( K∑

k=κ

φkΘ(t−κ, t−k)H

)( K∑
k=κ

φkΘ(t−κ, t−k)
)]∥∥∥∥

2

.

(68)

Since tr(E[n(κ)
q (n

(κ)
q )H]) = tr(σ2

qκI) = Nσ2
qκ and using the

Jensen’s inequality of the spectral norm (‖E[A]‖2 ≤ E[‖A‖2]),
we can further write:

E[‖εt‖22] ≤ N

K∑
κ=1

σ2
qκ−1

E

[∥∥∥∥
( K∑
k=κ

φkΘ(t−κ, t−k)H
)( K∑

k=κ

φkΘ(t−κ, t−k)
)∥∥∥∥

2

]

≤ N

12

K∑
κ=1

Δ2
κ−1 E [Υ (t, κ)] (69)
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where Υ (t, κ) is:

Υ (t, κ)

=

∥∥∥∥
( K∑
k=κ

φkΘ(t−κ, t−k)H
)( K∑

k=κ

φkΘ(t−κ, t−k)
)∥∥∥∥

2

. (70)

By using the spectral norm sub-multiplicativity ‖AB‖2 ≤
‖A‖2‖B‖2 and subadditivity ‖A+B‖2 ≤ ‖A‖2 + ‖B‖2
along with the upper bound of the shift operator ‖St‖2≤‖S‖2≤ρ
for all t, we upper bound (70) as:

Υ (t, κ) ≤
∥∥∥∥
K∑
k=κ

φkΘ(t−κ, t−k)H
∥∥∥∥
2

∥∥∥∥
K∑
k=κ

φkΘ(t−κ, t−k)
∥∥∥∥
2

≤
( K∑
k=κ

ρk−κ+1 |φk|
)2

. (71)

Finally, by substituting (71) into (69) and computing the
expectation, ζqt can be upper bounded by (29).

I. Proof of Theorem 2

Similarly to (55), we can write the MSE of ARMA filter due
to quantization and graph randomness (38c) as:

ξqyt ≤
1

N
‖(1�⊗ IN )H(1�⊗ IN )‖2tr(E[εqt (ε

q
t )

H])

≤K

N
tr(E[εqt (ε

q
t )

H]). (72)

Then, by substitutingεqt with its expression, using the linearity
of the expectation w.r.t the trace, the cyclic property of the trace
tr(ABC) = tr(CAB), we can write:

tr(E[εqt (ε
q
t )

H]) =

t−1∑
τ1=0

t−1∑
τ2=0

E

[
tr

((
t−1∏
ς=τ2

Ψ ⊗ Sς

)H

×
(
t−1∏
ς=τ1

Ψ ⊗ Sς

)
nqτ1(n

q
τ2
)H

)]

=
t−1∑
τ1=0

t−1∑
τ2=0

tr

(
E

[(
t−1∏
ς=τ2

Ψ ⊗ Sς

)H( t−1∏
ς=τ1

Ψ ⊗ Sς

)]

× E[nqτ1(n
q
τ2
)H]

)
. (73)

By considering E[nqτ1(n
q
τ2
)H] = 0 if τ1 �= τ2, using the inequal-

ity tr(AB) ≤ ‖A‖2 tr(B), assuming unified quantization with
dynamic stepsize i.e., tr(E[nqτ (n

q
τ )

H]) = KNσ2
q,τ and using the

Jensen’s inequality of the spectral norm (‖E[A]‖2 ≤ E[‖A‖2]),
we can write:

tr(E[εqt (ε
q
t )

H]) ≤ KN

t−1∑
τ=0

σ2
q,τ

E

[∥∥∥∥
(
t−1∏
ς=τ

Ψ ⊗ Sς

)H(t−1∏
ς=τ

Ψ ⊗ Sς

)∥∥∥∥
2

]
. (74)

By using the sub-multiplicativity property of the spectral norm of
a square matrix i.e., ‖AB‖2 ≤ ‖A‖2‖B‖2, the property ‖A⊗
B‖2 = ‖A‖2‖B‖2 and assuming that the spectral norm of the
shift operator used is upper bounded i.e., ‖S‖2 ≤ ‖St‖2 ≤ ρ for
all t, we have:

∥∥∥∥
(
t−1∏
ς=τ

Ψ ⊗ Sς

)H(t−1∏
ς=τ

Ψ ⊗ Sς

)∥∥∥∥
2

≤
(
t−1∏
ς=τ

‖Ψ‖2‖Sς‖2
)(

t−1∏
ς=τ

‖Ψ‖2‖Sς‖2
)
.

≤ (ψmax ρ)
2t−2τ . (75)

By applying the expectation to (75) and combining it with (74)
and (72), and making an index change using

∑t−1
τ=0 cτa

t−τ =∑t
τ=1 ct−τa

τ , we can write:

ξqyt ≤ K2
t−1∑
τ=0

σ2
q,τ

(
(ψmax ρ)

2
)t−τ

≤ K2
t∑

τ=1

σ2
q,t−τ

(
(ψmax ρ)

2
)τ

≤ K2

12

t∑
τ=1

Δ2
t−τ (ψmax ρ)

2τ . (76)

With the choice of the quantization stepsizeΔτ = (ψmax ρ)
τΔ0,

the final bound in (76) becomes:

ξqyt ≤
K2

12

t∑
τ=1

(ψmax ρ)
2tΔ0. (77)

Therefore, ξqyt can be upper bounded by (39).
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