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A B S T R A C T   

Predicting the bending behaviours of a submarine power cable (SPC) is always a tough task due to its complex 
geometry and inner layer contact, not to mention the stick–slip mechanism. A full-scale finite element model is 
cumbersome during the early design stage and a more efficient model for practical use is required. Therefore, in 
this paper, a repeated unit cell (RUC) technique-based FE model is developed, which simplifies the bending 
analysis of SPCs using a short-length representative cell with periodic conditions. The verification of this RUC 
model is conducted from cable and component levels, respectively. The cable overall response is validated by the 
curvature-moment relationships from our cable bending tests regarding four cable samples whose material 
properties are obtained through a set of material tests. As for the component level, the behaviours of particular 
components are studied and compared with the results from a full-scale numerical model. Discrepancy is 
observed between the RUC model and the test, which can be explained by the distinctions of boundary conditions 
between these two methods. The proposed Cable-RUC model has been found robust and computationally effi
cient for studying SPCs under bending.   

1. Introduction 

The floating offshore renewable energy (ORE) industry is increas
ingly recognized as a crucial contributor to the global clean energy 
supply, offering a viable alternative to conventional energy sources. Its 
role in providing a substantial amount of clean energy continues to grow 
steadily. The existing available floating ORE includes wind energy, wave 
energy and tidal energy, etc. Among these, offshore wind energy is a 
young industry that began in 1991 when the first wind farm was 
installed off the Danish coast [1]. One of the immature technologies in 
this industry is the dynamic submarine power cables (SPC) that connect 
the power grid. SPCs experience various loadings during both deploy
ment and operation phases, including axisymmetric loadings such as 
tension, torsion, external pressure and bending. For example, during the 
installation process, SPCs are subjected to combined tension and 
bending [2]. During their operational lifespan, they endure continuous 
dynamic cyclic loading, particularly cyclic bending and tension [3]. This 
kind of loading during operation could expose SPCs to a high risk of 

fatigue failure that could be predicted and avoided based on the study of 
the cables’ mechanical behaviour. Even though studies regarding SPCs 
under axisymmetric loadings appeared recently [4,5], there is no 
enough research about their bending behaviour, and it is hard to find 
relevant information from specific SPC standards – such as from ISO 
13628–5 [6], DNV-RP-F401 [7]. 

SPCs are a type of contact-intensive structure characterized by 
multiple layers and materials, where the majority of components remain 
unbonded, as exemplified by the three-core SPC depicted in Fig. 1. 
Understanding the behaviour of SPCs presents significant challenges, 
primarily due to the intricate helical structures within their armour 
layer. This armour layer serves as a vital mechanical component, 
granting the organism the necessary flexibility for optimal performance. 
Under axisymmetric loadings, the assumption that the helical wires can 
be simulated via beam element has been proved acceptable [4,5]. This 
assumption greatly enhances the calculation speed, reaching levels that 
would be otherwise unimaginable, particularly when dealing with suf
ficiently long samples. Yet in bending simulation, contact issue plays a 
key role in its overall behaviour, thus the helical wires are no longer 
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suitable to be simulated by beam element. A traditional way to deal with 
this is to replace the beam element with another element that is able to 
capture the contact situation, such as the classical solid element[8]. 
However, this poses a huge challenge for the simulation because a 
sample from a bending test is normally quite long [9–12] and thus 
contains huge amount of elements. The calculation in this case is usually 

time-consuming and involves serious convergence issue, which makes 
the simulation challenging and full of uncertainties during the early 
design stage. Therefore, a reliable and efficient simulation model 
requiring less computational cost is in demand. 

A model as short as possible with less elements has the potential to 
solve the demand by taking advantage of the particular structure fea
tures of the components inside a SPC. The structure can be reduced to a 
very short length based on the homogenization method [13–16]. The 
starting point of this method is to offer an efficient and rigorous mean for 
reducing the size of the domain by cautiously taking care of the 
boundary conditions. These models have also been extended into flex
ible pipes [17–19], with prescribed requirements about wire number 
and pitch length. Based on the homogenization method, repeated unit 
cell (RUC) model has also been proposed and applied in flexible pipes 
and SPCs [20–23]. However, the kinematic restraints caused by the large 
curvature influence of the cable are not presented clearly in the previous 
studies. In addition, the material nonlinearity is not considered, and no 
experimental method is used to validate their model. 

This paper aims to propose a fundamental RUC model to predict the 
bending stiffness of SPCs by achieving a balance between efficiency and 
accuracy. Therefore, the loading type for the models in this study is 
limited to bending moment. The methodology encompassing the test, 
RUC model and the full-scale model is given in Fig. 2. The full-scale 
model termed in this paper is a long model whose length is deter
mined according to Paumier[24]. RUC model, the key delivery of this 

Nomenclature 

ORE Offshore renewable Energy 
SPC Submarine Power Cable 
RUC Repeated Unit Cell 
MPC Multi-point Constraint 
RP Reference Point 
DOF Degree of Freedom 
XDPE Cross-linked Polyethylene 
MDPE Medium-density Polyethylene 
RB Bending radius of the cable 
φ Rotation angle 
ϕ Rotation vector 
R(ϕ) Rotation matrix 
X,X Coordinate vector and its component 
U, u Displacement vector and its component 
ε Strain 
σ Stress 
L Cable length 

α Winding angle of wires 
E Young’s Modulus 
μ Poisson’s Ratio 
A Cross section area of a wire 
κ Cable curvature 
V Wire location along the cross section 
V* Critical transition angle between stick and slip area 
r Radius of the helical layer 
M Bending moment 
εe Elastic strain 
εp Plastic strain 
K Nonlinear modulus 
g the hardening exponent 
F Axial force 
LRUC Length of the RUC model 
p Wire pitch length 
m Number of wires 
r, r0, r1, r2, r3 Coefficient of quaternion parameter representation  

Fig. 1. A typical three-core SPC.  

Fig. 2. The methodology of the verification of the Cable-RUC model.  
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paper, is validated against the test results and verified through the full- 
scale model on the cable level. The component behaviours such as the 
displacement of the helical wire layer are verified through the full-scale 
model as well. The RUC model is introduced in Section 2. Following that, 
Section 3 details a series of tests employed for acquiring material 
properties and validating the RUC model through a comparison of the 
curvature-moment relationship. Section 4 outlines a full-scale numerical 
model with proper boundary conditions. Section 5 presents a case study 
regarding the power cable sample from Section 3. The results form a 
solid basis for the study of the overall SPCs. 

2. Development of RUC model 

RUC is a technique which utilizes the periodic boundary condition to 
reduce the cable length in numerical modelling [25]. The length of an 
RUC model is decided by the wire pitch length (p) and the wire number 
(m), given by the equation below: 

LRUC =
p
m

=
2πri

mtanαi
(1) 

The parameters ri and αi are illustrated in Fig. 3. For numerical 
reasons outlined in the next section, to make the centre plane as a 
symmetry plane, the RUC model is extended symmetrically to a length of 
2LRUC. 

2.1. Model configuration 

The layers inside the cables can be categorized into two types ac
cording to their structural configurations: cylinder/tubular layers and 

the helical wire layers. The RUC model is proposed to deal with real 
power cables under bending where a constant curvature is assumed on 
the cylinder layers. This will be given in detail in section 2.1.1. Then the 
periodic boundary conditions for the helical wire layer will be intro
duced in section 2.1.2. 

2.1.1. Constant curvature for the bent cable 
In order to simulate the bending behaviour by the RUC model, the 

curvature is assumed to be constant over the cable. The basic idea of 
forming the constant curvature can be illustrated in Fig. 4. As long as the 
reference points (RPs) in the cable centreline coupled to the corre
sponding cross section move in a certain way, the whole structure will 
achieve a constant curvature. The detailed coupling setup of these RPs is 
clarified in Section 2.2.2. Specifically, the degree of freedoms (DOFs) of 
all the RPs should be set in the following way, where U1, U2 & U3 are 
the translational DOFs in X, Y& Z direction, respectively, and U4, U5 & 
U6 are the rotational DOFs.  

• The symmetry point is fixed in all DOFs to avoid rigid body motion 
since it is in the symmetric plane.  

• U1, U5 and U6 of the master RPs are restricted, while a rotation angle 
φM

x is applied in the U4 direction.  
• U1, U5 and U6 of the slave RPs are all restricted, while the other 

DOFs are calculated based on the movement of the corresponding 
master RP. The calculation is automatically finished by building a 
series of multi-point constraint (MPC) user-subroutine in ABAQUS. 
The introduction to this user subroutine and the implementation of 
the MPC are outlined below. 

According to Diehl [26] and Abaqus [27], for ABAQUS to process a 
user-defined MPC, three components are supposed to be supplied:  

a. A matrix of DOF identifiers, JDOF(MDOF,N).  
b. Matrices representing derivatives of the constraint function 

regarding the nodal DOFs.  
c. The formulas expressing the movements of the slave DOFs based on 

the movements of the master DOF. 

The main tasks are finding the constraint equations for correspond
ing DOFs of the nodes involved in the user-defined MPC, and then 
transforming them into the three components that ABAQUS requires. 

As long as rotation angles are applied on the two master RPs, the 
bending radius RB can be expressed as: 

RB =
XM

z + uM
z

sinφM
x

(2)  

where X, u and φ are the initial coordinate, displacement and rotation 
angle, respectively. The superscript M denotes master RP while the 
subscripts mean the coordinate axes. Then the displacement of the 
master RP in the Y direction is: 

f1

(
uM

y ,φM
x

)
= uM

y − RB
(
1 − cosφM

x

)
= 0 (3) 

Then the movement of the slave RPs can be calculated according to 
the maser RP’s displacement, and the movement of the RPs are: 

φS
x = φM

x
XS

z

XM
z

(4)  

uS
y = RB

(
1 − cosφS

x

)
(5)  

uS
z = RsinφS

x − XS
z (6)  

where the superscript S denotes the slave node. Again, Eq. (4), Eq. (5) 
and Eq. (6) can be rewritten according to the form of the user subroutine 
MPC: 

Fig. 3. Helical wire on a cylinder.  

Fig. 4. Illustration of loading situation.  
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f1
(
φS

x ,φM
x

)
= φS

x − φM
x

XS
z

XM
z
= 0 (7)  

f2

(
uS

y , uM
z ,φ

M
x

)
= uS

y − RB
(
1 − cosφS

x

)
= 0 (8)  

f3
(
uS

z , uM
z ,φ

M
x

)
= uS

z + XS
z − RBsinφS

x = 0 (9) 

By inputting the partial derivatives of the constraint functions 
involving corresponding DOFs into the ABAQUS subroutine, a constant 
curvature can be achieved. 

2.1.2. Periodic condtions for the helical wire layer 
After dealing with the cylinder structure, the next step is to take care 

of the movement of the wires in the RUC model. The basic ideas of the 

periodic coupling setting-up of the wires will be illustrated and outlined 
in this section by considering the large curvature influence of the cable. 

As mentioned before, to make the centre plane a symmetry plane in 
the axial direction, the RUC model is extended symmetrically to a length 
of 2LRUC. Due to the symmetry property, a group of B nodes on the left 
edge and a group of A nodes in the middle plane are illustrated for the 
explanation, as shown in Fig. 5, where Ai and Bi are the corresponding A 
node and B node on the same generatrix. The nodes on the right edge 
should be tackled the same way. The corresponding A node and B node 
on the same generatrix are coupled with the left master RP, denoted as C 
in the middle of left cross section, in which way the DOFs of nodes B are 
eliminated by the periodic constraint while nodes A and the master RP C 
remain unaffected as the controlling nodes. This constraint is imple
mented in ABAQUS by the MPC user subroutine as well. The following 
gives the derivation of the constraint equations. 

The three groups of nodes A, B and C aforementioned satisfy a 
particular kinetic relation during the bending process, as illustrated by 
Fig. 6 where the three nodes on an undeformed and deformed config
uration are given, respectively. The original letters without a superscript 
denote the initial node while the letters with the superscript represent 
the node after deformation. According to Caleyron, F., et al. and Leroy, 
J.-M., et al. [20,21], the kinetic relation among these three nodes after 
deformation based on a rigid body rotation can be expressed by: 

C’B’
i

̅̅ →
= R

(
ϕC)

(
CBi
̅̅→

+ AiA’
i

̅̅ →)
,ϕC =

[
φC

x φC
y φC

z

]
(10)  

where φC
x ,φC

y and φC
z are the rotation angles of the master RP around X, Y 

and Z axis, respectively. R(ϕC) is the rotation matrix at point C. Now 
denoting the coordinates of A, B and C as XA, XB and XC, respectively, 
which are the knowns imported into the MPC user subroutine. Then the 
coordinate of A′, B′ and C′ can be described by XA + UA,XB+UB and XC +

UC, respectively. Here U is the displacement of each node. Therefore, 
Eq. (10) can be rewritten as: 

XB + UB − XC − UC = R
(
ϕC)( XB − XC + XA + UA − XA) (11) 

Eq. (11) can be reorganized according to the MPC form as: 

f
(
UB,UA,UC) = XB + UB − XC − UC − R

(
ϕC)( XB − XC + UA) = 0 (12) 

The derivation of the coefficient written in the MPC subroutine can 
be achieved by partial derivatives over the displacements of each node. 
It is clear that with respect to nodes A, B and C: 

AA =
∂f

∂UA = − R
(
ϕC) (13)  

AB =
∂f

∂UB = I (14)  

Fig. 5. Nodes involved in periodicity conditions on the helical wire layer.  

Fig. 6. (a) Undeformed and (b) deformed configuration illustrating the location 
of the nodes Ai, Bi and C. 

Fig. 7. Local coordinate system for a single wire.  
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AC
lt =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
0

− ∂R
(
ϕC)( XB − XC + UA)/∂UC

t

l = t
l ∕= t⩽3
t > 3

(15)  

where l = 1,2,3 and t = 1, …, 6.R(ϕC) has to be given in order to obtain 
AA and AC. Based on Krenk, S. et al. [28], R(ϕC) can be obtained through 
the quaternion parameter representation of a rotation φ about its rota
tion axis n consisting of a scalar r0 and a vector r, defined by: 

Fig. 8. The controlling nodes in the centreline of Layer I (left) and a coupling illustration in the symmetric plane (right).  

Table 1 
Coupling DOFs of the points.   

Master Symmetry point Slave  
U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6 

Layer I 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 
Layer II 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
Layer IV 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 

Note: 1 means the DOF is coupled to the corresponding RP, while 0 means uncoupled. 

Fig. 9. Cross section of the submarine power cable.  

Table 2 
Parameters of the cable specimens.  

Layer Component Thickness 
(mm) 

Outer diameter 
(mm) 

Materials 

1 Copper 
conductor  

–  11.4 Copper 

2 Conductor shield  0.8  13.0 XLPE 
3 Insulation  10.5  34.0 XLPE 
4 Insulation shield  1.0  36.0 XLPE 
5 Water-proof 

layer  
0.45  36.9 XLPE 

6 Copper wire  1.15  39.2 Copper 
7 Copper shield  0.2  39.6 MDPE 
8 Water-proof 

layer  
0.45  40.5 MDPE 

9 Sheath  2.5  45.5 MDPE  
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r0 = cos(
1
2

φ), r = sin(
1
2

φ)n (16) 

In full matrix form, the rotation representation is: 

R =

⎡

⎢
⎢
⎣

r2
0 + r2

1 − r2
2 − r2

3 2(r1r2 − r0r3) 2(r1r3 + r0r2)

2(r1r2 + r0r3) r2
0 − r2

1 + r2
2 − r2

3 2(r2r3 − r0r1)

2(r1r3 − r0r2) 2(r2r3 + r0r1) r2
0 − r2

1 − r2
2 + r2

3

⎤

⎥
⎥
⎦ (17) 

The coefficients in Eq. (13) and Eq. (15) thus can be obtained. 

2.2. Implementation of RUC technique in FEM 

Following the overview of the fundamental principles of the RUC 
technique, this section focuses on its implementation in the ABAQUS/ 
Standard finite element software package. It covers various aspects such 
as element selection, interaction modelling, algorithm implementation, 
boundary conditions, and loading strategies. 

2.2.1. Element & interaction 
C3D8R (An 8-node linear brick, reduced integration, hourglass 

control) is chosen to mesh the cable for all the components. In order to 
obtain the variables in the wire axial direction, a local discrete coordi
nate system that follows the winding direction of each helical wire is 
hence defined in ABAQUS, as shown in Fig. 7. 1 is the wire axial di
rection, 2 is the tangential direction while 3 is defined through the right- 
hand rule. 

Contact interactions among each component is a key factor affecting 
the final result and it is also the main source of the high computational 
cost and numerical instability, thus requiring careful selection of the 
tangential and normal interaction mechanisms. All the contact in
teractions among each component are taken into account. Surface-to- 
surface discretization method is used to model the contact between 
surfaces where both the tangential behaviour and normal behaviour 
employ penalty method. The contact stiffness is set to 2000 N/mm3 for 
optimally obtaining low CPU cost and enough contact solution accuracy 
while constant isotropic coulomb friction μ = 0.12 is selected in the 
tangential direction in accordance with Caleyron, F., et al. & Lukassen, 
T.V., et al. [20,29]. 

2.2.2. Algorithm & loading strategy 
The RUC model is implemented in the commercial software ABA

QUS/Standard by using Standard/static algorithm in order to simulate 

Fig. 10. The detailed dimensions of MDPE & XLPE.  

Fig. 11. Dumbbell shape of MDPE (left) & XLPE (right).  

Fig. 12. Tension test under an electronic universal testing machine.  
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the static process considering the loading process during the test is very 
slow. The points in the centreline of Layer I, as shown in Fig. 8, are 
defined to couple the DOFs belonging to the corresponding cross section. 
These points are corresponding to the points in Fig. 4. Three types of 
points are defined: Master, Slave & Symmetry point. The rest of the 
points that are not denoted in Fig. 8 are the slave points. The details of 
the coupling setup are given in Table 1. U3 and U4 DOFs of all the cross 
section nodes of Layer I are correspondingly coupled to all the centreline 
points. For Layer II and Layer IV, U3 and U4 DOFs on the most left and 
most right sides are coupled to master points, and meanwhile, all the 
DOFs of the symmetric cross section are coupled to the symmetry point. 
Finally, two opposite bending angles are applied on the ends of the 
cable. 

3. Mechanical tests 

The test is used to provide material properties and validate the 
curvature-moment relation from the RUC model. The test specimens in 
this paper are 35 KV alternative current power cables produced by 

Oriental Cable (NBO). They are composed of nine layers, and their 
configuration as well as detailed manufacturing dimension are shown in 
Fig. 9 and Table 2. 

In this section, the tests concerning the properties of the materials 
XLPE (cross-linked polyethylene) & MDPE (medium-density poly
ethylene) used in the cable sample and the bending behaviour of the 
cable sample are presented in Section 3.1 and Section 3.2, respectively. 

3.1. Material test (MDPE & XLPE) 

The cable investigated in this paper consists of nine layers, including 
a helical wire layer composed of 40 helical wires with a pitch length of 
400 mm. The primary materials used in this cable design are copper for 
the conductor, copper wire, and copper shield, XLPE for the insulation 
layer, and MDPE for the outermost sheath. The copper material exhibits 
a Young’s modulus of 90 GPa, a Poisson’s ratio of 0.32, and a yield 
strength of 130 MPa. However, it is important to note that XLPE and 
MDPE materials may exhibit altered behaviour once extruded into cy
lindrical shapes. Consequently, material testing for XLPE and MDPE 
involved cutting test samples directly from the cable product to accu
rately capture their mechanical properties. 

In order to obtain the strain–stress relation, according to ISO 
527–2012 [30], MDPE and XLPE cut from cable samples were made into 
dumb-bell shape and have a dimension in Fig. 10. Both MDPE and XLPE 
have five samples, respectively, as shown in Fig. 11. The strains during 
the tension process were recorded by extensometers on an electronic 
universal test machine, as shown in Fig. 12. The test machine has a 

Fig. 13. Ramberg-Osgood fit of MDPE and XLPE.  

Fig. 14. (a) Three-point bending and (b) four-point bending.  

Fig. 15. The sketch for the bending of a slender structure.  

Fig. 16. Cable specimens for bending test.  

Fig. 17. Dimension for the cable specimens.  
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measuring range of 2.5 KN, and the tension speed was controlled as 5 
mm/min for all the samples. 

After the test, the stress and strain relation of each sample can be 
obtained. Through the linear interpolation method and averaging pro
cess of the five samples of each material, the stress–strain relations can 
be obtained. The true stress and true strain are calculated according to: 

εTrue = ln(1 + εNominal) (18)  

σTrue = σNominal(1 + εNominal) (19) 

To facilitate the manipulation in the numerical model, an expression 
for the true stress–strain relationship is generated via Ramberg-Osgood 
equation [31]. The total strain εt is the sum of the elastic strain εe and the 
plastic strain εp, which results in: 

εt = εe + εp =
σ
E
+(

σ
K
)

g (20)  

where σ is the stress, K the nonlinear modulus, g the hardening expo
nent, E the Young’s modulus calculated as the secant modulus when the 
true strain is between 0.05% and 0.25% based on the standard ISO527- 
2012 [32]. The generated Ramberg-Osgood curves of the two types of 
material are shown in Fig. 13. 

3.2. Bending test 

The traditional techniques for the bending test of a slender structure 
can be a three-point bending or a four-point bending, as shown in 

Fig. 14. A four-point bending test is adopted here regarding four cable 
samples until the their final curvatures reach 1e − 3 mm− 1. In order to 
obtain the curvature, the vertical displacements at three spots should be 
paid attention to. As shown by points E, F and G in Fig. 15, three 
displacement sensors could be installed below them, and then the 
displacement of these three points could be captured for calculating the 
curvature. Since the curvature in the middle section is near constant, the 
three points we are interested in form a standard circle, based on which 
the curvature can be calculated. The general equation of a circle can be 
described by a quadratic polynomial: 

A(x2 + y2)+Bx+Cy+D = 0 (21) 

The above equation can be transformed into the standard equation 
for a circle: 

(x +
B

2A
)

2
+(y +

C
2A

)
2
=

B2 + C2 − 4AD
4A2 (22) 

The coordinate of the three points: E(x1,y1), F(x2,y2) and G(x2,y2) are 
replaced into Eq. (22), then the coefficients for the circle can be ob
tained. The bending radius of the cable RB is: 

RB =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B2 + C2 − 4AD

4A2

√

(23) 

At last, the curvature is obtained: 

κ =
1

RB
(24) 

Fig. 16 shows the cable samples that were used in the bending test. 
Their lengths are 600 mm. The geometry size of the samples in the 
length direction is shown in Fig. 17. They are then placed on a four-point 
bending test facility, which has two supports to hold the cables and two 
loading rings to apply the bending on them, as shown in Fig. 18. The 
bending results are given and discussed in Section 5. 

4. Full-Scale model 

To compare with the RUC model, a full-scale model is built, as shown 
in Fig. 19. All the model information such as the geometry, material, 

Fig. 18. Bending illustration of a cable sample.  

Fig. 19. Full-scale model of the cable.  

Table 3 
Parameters and materials used in the simplified model.  

Layers Thickness (mm) Outer diameter (mm) Materials 

I  –  11.4 Copper 
II  12.75  36.9 XLPE 
III  1.15  39.2 Copper 
IV  3.15  45.5 MDPE  
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algorithm and contact are the same as those in the RUC model, except 
that the length of the full model becomes 250 mm, 100 mm longer than 
the effective length of the test sample. The length is determined ac
cording to the rule that the model length is supposed to be 5 times longer 
than its diameter based on Paumier[24]. In this way, there are more 50 
mm longer over both sides respectively, in order to eliminate the 
boundary effect as much as possible under available calculation 
resources. 

According to the cross section in Fig. 9, in the 9 layers, a couple of 
layers are extremely thin compared to the other layers, which makes the 
contributions from these layers comparatively smaller. Therefore, the 
thin layers are combined into their neighbouring layers in order to 
simplify the numerical model. The simplified structure and the corre
sponding materials in each layer are shown in Table 3. Notice, even 
though the copper wires are not thick enough to contribute a lot, due to 
their special structure style, it is still of our interest to investigate their 
behaviour, therefore, the wires are kept originally in order to have a full 
study. In order to effectively compare with the RUC model, the middle 
section with the same length as RUC model will be cut out in the post 
process. The mesh result is given in Fig. 20, which contains 713,600 
elements and 1,304,480 nodes in total. 

The model is symmetric in the z direction as well, with three RPs in 
the centreline. These RPs are coupled to the corresponding nodes of 
Layer I, Layer II and Layer IV in the way listed in Table 4. Even though 
the model should be as long as possible to get rid of the boundary effect, 

considering current computation capability, a super long model is not 
allowed and current full-scale model is not perfect. Both end sides are set 
as rigid surfaces to apply the bending on the cable, therefore, a short 
section in the middle will be cut out to compare with the RUC model in 
Section 5 to eliminate the boundary effect as much as possible. To enable 
the free movement among each layer, U1, U2 & U6 of the RP-middle to 
Layer II and Layer IV in the symmetric cross section are decoupled to 
free the nodes in these directions. The helical wire layer, however, is not 
restricted on both sides. They are able to move inside the cable freely 
with only the contact restrictions from the neighbouring layers, which is 
not the situation in the RUC model that simulates a super long power 
cable. 

As for the boundary conditions, RP-middle is totally fixed. The nodes 
in the centreline of the inner conductor is fixed in U1, U5 and U6 di
rections. Finally, two opposite bending moment are applied on RP-left 
and RP-right. 

5. Model validation & verification 

Sections 2, 3 and 4 discuss RUC model, test and full-scale model of 
the cable under bending, respectively. Both the RUC model and the full- 
scale model are applied on the test cable. The RUC model has a length of 
20 mm while the full-scale model has a length of 250 mm. The material 
and geometry properties used in the following case study are given in 
Section 3.1 in detail. 

Fig. 20. Mesh result of the full-scale model.  

Table 4 
Coupling DOFs for the three RPs.   

RP-left & RP-right RP-middle  
U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6 

Layer I 1 1 1 1 1 1 1 1 1 1 1 1 
Layer II 1 1 1 1 1 1 0 0 1 1 1 0 
Layer IV 1 1 1 1 1 1 0 0 1 1 1 0  
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Fig. 21. Meshing of the RUC cable.  

Fig. 22. Curvature-bending moment relation from the test, RUC and the full-scale model.  
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The mesh results regarding the RUC cable and one of the wires are 
shown in Fig. 21. All the cylinder layers consist of 14 elements in the 
cable axial direction while the wire has 48 elements in the cable axial 
direction. This mesh strategy generates in total 990,455 nodes and 
564,696 elements. 

From the cable level, the curvature-moment relation from the RUC 
model is invalidated against test and verified through the full-scale 

Fig. 23. The movement of the helical wires relative to the inner layers at κG = 1e − 3 mm− 1 from the RUC model.  

Fig. 24. Node path along the left cross section.  

Fig. 25. Stick and slip zones on a cross section.  
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model in Section 5.1. From the component level, the stress and move
ment especially of the helical wire layer are discussed elaborately in 
Section 5.2. 

5.1. Cable overall behaviour 

Fig. 22 presents the curvature-bending moment curves from the 
experiment, RUC model and the full-scale model. All of the curves have 
the same trend. The moment increases with the increase of the curvature 
and it is observed that the slopes of the curves in the beginning phase are 
steeper than what is following. 

The bending stiffness, i.e., the slope of the curve, from the RUC 
model and the full-scale FEM model agrees better with the test result at 
the beginning phase when the curvature is less than 0.13e − 3 mm− 1. 
However, when the curvature overpasses this value, the bending mo
ments from the two numerical models increase faster than the test result. 
The discrepancy might be caused by the slip issue among the cylinder 
layers. The original cable sample shown in Fig. 9 has 9 layers, but they 
are simplified into 4 layers in total, which ignores much slip issue. More 
importantly, the test samples have two end cross sections totally relaxed 
and the restrictions on both sides can be largely disregarded, whereas 
the boundary conditions in the numerical models are not the same. 
Therefore, as the curvature increases, the moments from the two FEM 
models become higher than the test results, with an error near 14% 
between RUC model and test results when the curvature reaches 
1e − 3 mm− 1. However, one of the main reasons to cause the moment 
decrease in all the methods is the material nonlinearity. As the slope of 
the curve from the RUC model starts to decrease exactly when the 

copper in Layer I reaches its nonlinear phase, as shown in Fig. 22. 
Another phenomenon observed is that the results from the RUC 

model and the full-scale FEM model agree with each other quite well, 
with only 1.7% error regarding the moment when the curvature reaches 
1e − 3 mm− 1. At this moment, Mises stress of most of Layer I cross sec
tion has reached copper’s yield strength. The helical wires already slip 
far away from their original places. Even the mesh from the RUC model 
is denser than the full FEM model, the calculation time to finish the RUC 
model is only 60 min with 16 CPU cores. However, the calculation time 
for the full FEM model costs near 210 min with 32 CPU cores. Besides, 
the RUC model presents better convergence compared with the full FEM 
model. 

5.2. Component behaviour 

Fig. 23 presents the movement of the helical wires relative to the 
inner neighbouring layer when the curvature reaches κG =

1e − 3 mm− 1. The helical wires have witnessed quite obvious slip, 
especially the wires on the neutral plane, while the counterparts on the 
intrados and extrados of the cable hardly slip. This phenomenon fits the 
analytical model proposed by Papailiou[33] where the slip first appears 
near the neutral plane of the cable and extends to the intrados and 
extrados. In order to investigate the displacement of the nodes along the 
circumferential angular position, The path is created by stringing the 
centre node of each wire on the same cross section together, as illus
trated in Fig. 24. The path is from V = 0 to V = 360 deg illustrated in 
Fig. 25. The magnitudes of the displacement of the nodes along the cross 
section are then given in Fig. 26 regarding both the RUC model and the 
full-scale model, which shows that the displacements of the nodes near 
the cable neutral axis, i.e. V = 0 deg, are the largest, and the displace
ment gradually decreases to almost 0 near the extrados and intrados. 
This is also observed by the U contor plot in Fig. 27. However, it can also 
be observed that the highest value near the neutral plane of the cable has 
a discrepancy between these two numerical models. The RUC model 
gives a value 23.9% higher than that from the full-scale model. This can 
be explained by the fact that the boundary conditions of the helical wire 
layer in the full-scale model are totally free, whereas the helical wire 
layer is set as the periodic boundary conditions. These added boundary 
conditions are used to reflect the mechanical behaviour of a super long 
cable in practical situations where the helical wires are restricted on the 
boundary sides. 

Noteworthy, the materials exhibit serious nonlinear behaviour when 
the curvature of the cable surpasses 0.2e − 3 mm− 1, therefore, the 
comparison in the following discussion will be focused on the behaviour 
before this curvature. The distribution of the stresses in the local X1- 
direction of all the wires is given in Fig. 28 under a global curvature 
κG = 0.2e − 3 mm− 1. No significant stress concentration is observed due 
to boundary effects and the stress looking from one side is basically all 
tension while the one on the other side is compression, which is induced 

Fig. 26. The displacements of the nodes along the cross section at κG = 1e −
3 mm− 1 from RUC and full-scale model. 

Fig. 27. The displacement distribution along the wires at κG = 1e − 3 mm− 1 from the RUC model (left) & full-scale model (right).  
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by the geometry deformation of the wires about their own neutral plane. 
The axial tension stress distribution of all the wires from the full-scale 
model, as given in Fig. 29, however, is much smaller than that from 
the RUC model. This is because that both sides of the helical wire layers 
are totally free in the full-scale model and there is no other restriction 
about them except the contact. The helical wires are able to slip away 
easily in the model. In order to reasonably compare with the RUC model 
regarding the axial tension stress of the helical wires, a super long model 
should be built with restrictions on both sides of the helical wire layer. 

However, the calculation is hard to finish for this super long model 
considering current computation ability. 

6. Conclusions 

In this study, an RUC model for predicting the bending stiffness of 
SPCs is presented. The model is validated from the cable level through 
bending tests by studying the curvature-bending moment relations. 
Additionally, a full-scale numerical model is constructed to further 
verify the RUC model by examining the behaviour of the components. 
The developed RUC model holds potential for conducting bending 
studies on SPCs, and the key findings of this study can be summarized as 
follows:  

1) The bending stiffness predicted by the RUC model agrees well with 
that from the full-scale model. They are validated against the test 
results with explainable error.  

2) The bending stiffness from the RUC model and the tests is close to 
each other in the beginning phase. However, in the later phase, the 
stiffness from the test is smaller than the predicted. This is because 
the components are more easily to slip without restrictions on both 
sides during the test.  

3) A dominant reason to cause the decrease of the bending stiffness in 
all the methods is the material nonlinearity. It is observed from the 
RUC model that the stiffness starts to change when the material 
copper overpasses its elasticity.  

4) The magnitudes of the displacement of the wires are largest near the 
neutral plane of the cable and decrease to the smallest near the 
extrados and intrados. 

In conclusion, the paper demonstrates the effectiveness of the pro
posed RUC model in handling SPCs under pure bending conditions. 
However, in practical engineering, SPCs often experience combined 

Fig. 28. Contour plot of stress of wires in X1-direction for κG = 0.2e − 3 mm− 1 from the RUC model.  

Fig. 29. Contour plot of stress of wires in X1-direction for κG = 0.2e − 3 mm− 1 

from the full-scale model. 
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loadings. The current focus of this paper is primarily on the fundamental 
development of the RUC model, and as such, combined tension and 
bending scenarios are not addressed. Nevertheless, the study highlights 
the potential of the RUC model to tackle SPCs under combined loadings, 
and this aspect will be explored in our further research. 
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