
 
 

Delft University of Technology

Variables in Practice. An Observation of Teaching Variables in Introductory Programming
MOOCs

Van Der Werf, Vivian; Zhang, Min Yi; Aivaloglou, Efthimia; Hermans, Felienne; Specht, Marcus

DOI
10.1145/3587102.3588857
Publication date
2023
Document Version
Final published version
Published in
ITiCSE 2023 - Proceedings of the 2023 Conference on Innovation and Technology in Computer Science
Education

Citation (APA)
Van Der Werf, V., Zhang, M. Y., Aivaloglou, E., Hermans, F., & Specht, M. (2023). Variables in Practice. An
Observation of Teaching Variables in Introductory Programming MOOCs. In ITiCSE 2023 - Proceedings of
the 2023 Conference on Innovation and Technology in Computer Science Education (pp. 208-214). (Annual
Conference on Innovation and Technology in Computer Science Education, ITiCSE; Vol. 1). ACM.
https://doi.org/10.1145/3587102.3588857
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3587102.3588857
https://doi.org/10.1145/3587102.3588857


Variables in Practice. An Observation of Teaching Variables in
Introductory Programming MOOCs

Vivian Van Der Werf
Leiden University

Leiden, The Netherlands
Delft University of Technology

Delft, The Netherlands
v.van.der.werf@liacs.leidenuniv.nl

Min Yi Zhang
Leiden University

Leiden, The Netherlands
m.y.zhang@umail.leidenuniv.nl

Efthimia Aivaloglou
Delft University of Technology

Delft, The Netherlands
e.aivaloglou@tudelft.nl

Felienne Hermans
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

f.f.j.hermans@vu.nl

Marcus Specht
Delft University of Technology

Delft, The Netherlands
m.m.specht@tudelft.nl

ABSTRACT
Motivation.Many people interested in learning a programming
language choose online courses to develop their skills. The con-
cept of variables is one of the most foundational ones to learn, but
can be hard to grasp for novices. Variables are researched, but to
our knowledge, few empirical observations on how the concept is
taught in practice exist. Objective. We investigate how the con-
cept of variables, and the respective naming practices, are taught
in introductory Massive Open Online Courses (MOOCs) teaching
programming languages.Methods.We gathered qualitative data re-
lated to variables and their naming from 17 MOOCs. Collected data
include connections to other programming concepts, formal defi-
nitions, used analogies, and presented names. Results.We found
that variables are often taught in close connection to data types, ex-
pressions, and program execution and are often explained using the
‘variable as a box’ analogy. The latter finding represents a stronger
focus on ‘storing values’, than on naming, memory, and flexibility.
Furthermore, MOOCs are inconsistent when teaching naming prac-
tices. Conclusions. We recommend teachers and researchers to
pay deliberate attention to the definitions and analogies used to
explain the concept of variables as well as to naming practices, and
in particular to variable name meaning.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Applied computing → E-learning.

KEYWORDS
programming education, variables, naming practices, analogies
ACM Reference Format:
Vivian Van DerWerf, Min Yi Zhang, Efthimia Aivaloglou, Felienne Hermans,
and Marcus Specht. 2023. Variables in Practice. An Observation of Teaching
Variables in Introductory Programming MOOCs. In Proceedings of the 2023

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0138-2/23/07.
https://doi.org/10.1145/3587102.3588857

Conference on Innovation and Technology in Computer Science Education V. 1
(ITiCSE 2023), July 8–12, 2023, Turku, Finland. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3587102.3588857

1 INTRODUCTION
Variables are a hard concept to grasp for novice programmers
[13, 18, 21]. At the same time, variables are important for reading
and understanding code, which are both core skills for a proficient
programmer [10, 25, 26, 28, 29]. Variables are at the core of many
programs, as they are able to store and retrieve data from memory
ever since the introduction of “variable cards” in The Analytical
Engine, which was designed in the 1830s and laid the foundation for
modern-day programming. Many programming concepts expand
on the concept of variables, for example, loops, functions, and con-
trol flow, and it is essential that variables are well understood by
novice programmers. Furthermore, naming is an important aspect
of variables, especially concerning the act of reading and under-
standing code. It is commonly accepted that meaningful identifier
names help readers understand code more easily than when ab-
breviations or (random) letters are used [2, 23], although it has
also been found that full names can be misleading if they do not
correctly represent their contents or purpose [1, 7].

Little empirical research has investigated how variables are taught,
hence we are interested in conducting an observational study to
gain insights into current teaching practices regarding variables.
Since online platforms such as edX and Coursera grow increasingly
popular [22], we use Massive Open Online Courses (MOOCs) as a
case study for our observation study. Our research questions are:

(1) How is the concept of variables taught in introductory
programming MOOCs? We investigate (a) the connection
to other programming concepts when variables are intro-
duced, (b) how variables are defined, and (c) what analogies
are used to explain variables.

(2) How are variable naming practices taught in introduc-
tory programming MOOCs? We examine naming prac-
tices that (a) are taught explicitly, and (b) are used by the
instructors, and therefore taught implicitly.

During our analysis, we found that variables are often taught in
close connection to data types, expressions, and program execution,

208

https://orcid.org/0000-0002-6435-0531
https://orcid.org/0009-0009-0214-786X
https://orcid.org/0000-0002-6531-2166
https://orcid.org/0000-0003-0722-0156
https://orcid.org/0000-0002-6086-8480
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3587102.3588857
https://doi.org/10.1145/3587102.3588857
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588857&domain=pdf&date_stamp=2023-06-30


ITiCSE 2023, July 8–12, 2023, Turku, Finland Vivian Van Der Werf, Min Yi Zhang, Efthimia Aivaloglou, Felienne Hermans, & Marcus Specht

and are often explained using the ‘variable as a box’ analogy. This
represents a stronger focus on ‘storing values’ than on naming,
computer memory, and the flexibility gained by using variables.
Furthermore, we found inconsistencies in the taught naming prac-
tices – if they were taught at all. We recommend teachers and
researchers to pay deliberate attention to naming practices, specif-
ically to meaning, and to the definitions and analogies used to
explain the concept.

2 RELATEDWORK
Analogies are used to explain programming concepts [12]. In edu-
cation, an analogy, metaphor or notional machine is a ‘tool’ that
supports learning by simplifying a concept through a represen-
tation that highlights the most important aspects of the concept,
while obscuring less important aspects [12]. For example, ‘variables
as parking spaces’ simplifies the concept of variables, transferring
our knowledge about parking spaces to our comprehension of a
variable. Waguespack [35] explains a variable of a particular data
type as a ‘container with the corresponding shape’ (shape refers to
the data type). In this explanation, a container can hold only a single
value. This assumption is important since a common misconception
is that variables can hold multiple values at the same time [6, 9, 18].
Any analogy might only partly or incorrectly represent a concept
and thus can leave novice students with an incorrect understanding
or misconception. Nevertheless, Doukakis et al. [11] found that
using an analogy still appears preferable over using none.

Thirty years ago, teaching variable naming was rarely included
in programming textbooks [20]. There is no recent research on this
topic, however, since then a considerate amount of work focused on
the effect of naming on program comprehension, code quality and
coding skills [2–5, 8, 19, 23, 24, 31, 32, 34]. Some results indicate
that meaningful identifier names are most beneficial for code com-
prehension and debugging, and that “better names” are associated
with better code quality. Few studies with a focus on naming aim
at improving programming education. In the context of improving
online curricula, Glassman et al. [14] developed a tool and a quiz
for their MOOC to assess naming on length and vagueness. They
found that feedback on naming practices, as well as both good and
bad examples, was highly valued by students. Other studies on
variable naming in education found that novice programmers often
fail to name variables correctly [15] and that Scratch students are
misled by variables named with a letter, probably because of prior
knowledge from their mathematics education [17].

Observation studies on variable naming often target code quality
and efficiency, and are based on names “found in the wild”, meaning
used by professional developers and/or taken from open source
projects [3, 16, 27]. Although Swidan et al. [33] investigated nam-
ing practices in Scratch, a programming language for children, to
the best of our knowledge no empirical observations investigate
classroom practices on teaching variables or their naming.

3 METHODS
To answer our research questions, we analyzed seventeen MOOCs
on the platforms Coursera and EdX throughout March and April
2022. We searched for the MOOCs using the keyword “program-
ming”, filtering for ‘courses’ and ‘available now’, excluding archived

courses. Additionally, we applied the following selection criteria:
the MOOC has to be (1) a beginner’s course without programming
prerequisites, that (2) focuses on (fundamental) programming skills
and concepts. This information is obtained from the title and course
descriptions. Furthermore, the course is (3) provided by a university,
(4) taught in English, and (5) has at least one of its objectives to
teach Python, Java, or C. Lastly, the course (6) should be freely
available to anyone. Thus, courses that cover some programming
but mainly focus on data science or web development are excluded,
as well as courses that are created by companies.

Following the criteria, we looked at the first two pages of search
results on both platforms, as we argue that these courses are most
likely to be chosen by those interested in learning the skill. Arguably,
these are the most popular and relevant courses, with a significant
number of students enrolled and high ratings (between 4.3 and 4.8
out of 5 stars). This led to the selection of seventeen MOOCs.

Of these seventeen MOOCs, seven are dedicated to Python pro-
gramming (labeled P1-P7), six to Java (J1-J6), and four to C (C1-C4).
One course (C1) teaches multiple languages, but as the C language
was focused on most, we treat the MOOC as teaching C. Most of
the courses are offered by US institutions, including prestigious
universities such as Harvard (P3, C1), Princeton (J4), and the Uni-
versity of Pennsylvania (P6, J5). Only P5, J1, and J2 are respectively
from Canada, Hong Kong and Spain. Ten MOOCs are taught by
multiple instructors. Two teachers were (co-)teaching two MOOCs
within our selection. In total there are thirty instructors.

To collect our data, we enrolled for the selected courses as would
a regular student. The data that we used were: (1) the pre-recorded
video lessons, (2) the lecture slides, (3) the practice materials and
exercises, and (4) the additional explanations in between the video
lessons. We used MS Excel to collect all relevant quotes, examples,
and screenshots from the MOOCs. Data collection was carried out
by the second author of this work. The first and second authors
worked in close collaboration for the analysis, and uncertainties
were discussed and resolved during regular sessions.

For RQ1a, we looked at the concepts explained right before,
together with, and right after the introduction of the concept of
variables. For RQ1b, we gathered the formal definitions given to
variables and counted often recurring terms. We are specifically
interested in how the definitions answer “what is a variable” and
“what does a variable do”. For RQ1c, we collected the analogies
addressing the concept of variables, including visualizations that
we found in the course material. For of RQ2a, we collected the ex-
planations, tips, and explicit examples concerning variable naming
practices. From these we established two categories: language rules,
and human guidelines (conventions and variable name meaning).
For RQ2b, we analyzed the variable names that were presented to
students in videos, exercises and other learning materials.

4 RESULTS
4.1 How is the concept of variables taught?
4.1.1 Connection to other programming concepts. Most often the
analyzedMOOCs introduce variables at the beginning of the course;
either right before, simultaneously with, or right after introducing
data types and/or arithmetic expressions (see Table 1). In P3 and
P5, variables and functions are explained together, and in C1 and

209



Variables in Practice ITiCSE 2023, July 8–12, 2023, Turku, Finland

Figure 1: Analysis of variable definitions. The concepts are extracted from 12 definitions.

Table 1: Concepts related to variables and when they are
introduced. DT=data types; EXP=expressions.

Variables are introduced... MOOCs
...right before DT and EXP C4, J1
...together with EXP, usually before DT P1, C3, J2, J3, J6
...together with DT, usually before EXP P2, P4, C2, J2, J5
...right after EXP and DT, but before FUNCTIONS P6, P7, J4
...together with FUNCTIONS P3, P5
...after FUNCTIONS C1, C2

C2, variables are introduced after functions, control flow, and loops.
P4 introduces variables together with the concept of control flow
and code order: “Variables are possibly the most fundamental ele-
ment of programming. There really isn’t much you can do without
[them]. (...) We use variables to represent the information in which
we are interested, like stock prices or user names, and we will also
use variables to control how our programs run, like counting repeated
actions or checking if something has been found.”

4.1.2 Definitions. A formal definition of a variable is given by
twelve MOOCs (70%), from which we can identify four recurring
elements: variables (1) store, (2) values or data in (3) memory,
and (4) can be referred to with a name. As shown in Figure 1, almost
all definitions agree on what variables do (storing values or data),
but there is no consensus on what a variable is (container, name,
place in memory). Both memory and naming are less frequently
included than “storing values.” Only P1 and J3 explicitly cover a
‘complete’ definition, for example, “A variable is a named place (4)
in the memory (3) where a programmer can store (1) data (2) and
later retrieve the data using the variable name (4)” (P1). An example
of an incomplete definition is “A variable is just a container for some
value (2) inside a computer or inside of your own program” (P3). Five
MOOCs do not give a definition at all (P5, C4, J2, J5, J6).

An interesting finding is that, although not in the definition, C2
is the only MOOC to demonstrate that flexibility is also a major
benefit, or even purpose, of using variables.

4.1.3 Analogies. Eight MOOCs (P3, P4, P5, C2, C3, J1, J3, J6) use
analogies to explain the concept of variables. Of these, five (bold)
also use matching visualizations. The identified analogies relate to
the memory address and to the contents of a variable.

Most common is the analogy ‘variable as a box’, or variations
of it, such as ‘variables as a mailbox’ (J1, Figure 2a). Boxes are
often drawn with values inside and labels attached to the boxes
(see Figure 2). The analogy also appears as only a visualization (P1)
and without any visualizations but during ‘live’ coding: “what we’d
like to memorize is an integer value. Suppose I want to memorize this
‘17’ right here. To do so, I need to first create a variable. So a memory
box with room to store the 17 in. And then I need to place that 17 into
this memory box” (C2).

Some instructors explicitly relate variables to the computer’s
memory. J1 introduces a figure (Figure 3a) to explain that the current

(a) J1, Variables as amailbox. “Eachmailbox is labeled by its owner
(or identifier) and different kinds of mails (or values) can be put
into the mailbox”

(b) J3, Variables as a labeled box (c) P1, Variables as a box

Figure 2: Visualizations of the analogy “variables as a box”

210



ITiCSE 2023, July 8–12, 2023, Turku, Finland Vivian Van Der Werf, Min Yi Zhang, Efthimia Aivaloglou, Felienne Hermans, & Marcus Specht

(a) J1, memory (b) P5, box analogy and memory

Figure 3: Visualizations connected to computer memory

Figure 4: Three different stages of program execution (C3)

value of a variable can be retrieved by referring to its name; in the
illustration, an arrow is drawn from the variable name to this piece
of memory. P5 draws a variable name with a box (Figure 3b) and
emphasizes that the value does not go into that box but lives at
a particular memory address. To clarify, he draws another square
with the value ‘20’, picking an arbitrary memory address marked
with ‘x3’, explaining that the assignment statement takes ‘x3’, and
puts it in the box associated with the variable name. P5: “So ‘base’
contains ‘x3’ and (...) what that means is that [it] points to the memory
address ‘x3’ where the value ‘20’ lives. (...) Python keeps track of [the
variable’s] value in that little box, and its value is a memory address.”
He continues “[the memory address is] arbitrary, Python is in charge
of that choice, and so I don’t need to worry about exactly what the
memory address is as long as I know that this relationship between
variables and their values exists.”

A recurring visualization addresses the declaration and initializa-
tion of variables, by also covering the topics of program execution
and tracing (J4, C3, J6, Figure 4). After highlighting the importance
of drawing pictures of what happens during program execution,
and in line with the box-analogy, the instructors of C3 and J6 create
a box labeled with the variable name for a first statement, entering
a question mark as the variable is still uninitialized. They then
illustrate that executing a second statement will put a value in the
previously created box. As a result, the question mark disappears.

Another analogy we encountered is that of a “question-and-
answer” format, which connects well to variable naming practices.
P4: “If you’re ever confused about what a variable means, treat it as

a question.” As an example, the instructor shows that “num cats”
can become the question “Number of cats?”. “The value, then, is the
answer to this question.”.

4.2 How are naming practices taught?
4.2.1 Which practices are taught? We observe two primary aspects
that are explicitly taught: (1) ‘syntax rules’ that need to be applied
for the language to interpret correctly, and (2) ‘human guidelines’
that can be applied to aid a human interpreter. The first category,
syntax rules, includes legal characters, reserved keywords, and case
sensitivity. The latter category, human guidelines, breaks down into
two subcategories: standardized conventions and the variable name
meaning, both supporting code readability. An overview of which
topic was represented per MOOC is provided in Table 2. MOOCs
mostly focus on conventions and syntax whereas variable name
meaning is covered in only half of the MOOCs, often superficially
and with the interpretation of ‘meaningful’ varying per course and
context. Three MOOCs do not cover naming practices at all and
two more only cover syntax rules.

1. Syntax. Nine out of ten MOOCs covering syntax rules mention
which characters variables may contain: i.e. in Python variable
names cannot start with a number character or contain spaces. Four
MOOCs mention that certain words are reserved keywords, such
as ‘if’, ‘for’, and ‘return’, as explained by J3: “To avoid confusing the
compiler, you can’t use reserved words as identifiers. Reserved words
are words that are already given specific meanings in Java.” Finally,
six MOOCs bring up case sensitivity, for example, P1: “And it’s case
sensitive, but we don’t want you to depend on that. So ‘spam’, ‘Spam’
with one upper case, and ‘SPAM’ all are different variable names, but
you’re not doing anybody any favor if you think that’s being clever.”

Table 2: Overview of taught variable naming practices, or-
dered by meaning, conventions then syntax. When meaning
is discussed, conventions are always discussed too, but not
the other way around. Syntax sometimes stands on its own

MOOC syntax conventions meaning
P1 x x x
P4 x x x
C2 x x x
C4 x x x
J1 x x x
J2 x x x
P2 x x
P7 x x
C1 x x
P5 x x
J3 x x
J5 x
P6 x
C3 x
P3
J4
J6

Total (N=17) 10 12 9

211



Variables in Practice ITiCSE 2023, July 8–12, 2023, Turku, Finland

2a. Conventions. Twelve MOOCs introduce naming conventions,
such as using underscores or camel case words. For example, P5
states, “every programming language has a set of conventions for
how to choose a name, much like websites have a particular style and
layout. In Python most variable names use only lowercase letters with
underscores to separate words, we call this pothole case.” Three (P7, C1
and J2) also specify using capitalized words for constant variables
only as a subtle visual reminder: “Kind of like you’re yelling, but it
really just visually makes it stand out. So (...) like a nice rule of thumb
that helps you realize, oh, that must be a constant. Capitalization
alone does not make it constant, but [it] is just a visual reminder that
this is somewhere, somehow a constant” (C1).

2b. Variable name meaning. Nine MOOCs bring up the topic
of meaningful or mnemonic names. They generally highlight that
names are important for the readability of the code, but not so much
for the language interpreter, as explained by P1: “I emphasize that
one of the key things about variable names is that you get to name
them.We have a technique called mnemonic, and the idea is that when
you choose a variable name, you should choose a variable name to be
sensible. Python doesn’t care whether you choose mnemonic variable
names or not. The name that you choose for a variable does not
communicate any additional information to Python (...) so mnemonic
variables are only for humans.”

Even though teachers mention to use meaningful names, the
interpretation of ‘meaningful’ varies between teachers and contexts.
One example is choosing between letters and words. Some teachers
find the use of letters as variable names not that meaningful, and
rather replace ‘x’, ‘y’ and ‘z’ by “more meaningful names such as
‘radius’, ‘area’, ‘scores’, if possible” (J1). Also ‘i’ and ‘j’ could be more
meaningful by using ‘row’ and ‘column’ in certain contexts, P7:
“Notice that if we chose ‘row’ and ‘column’, we’d immediately know
by reading the names that they’re indices. And more importantly,
we’d know if we’re looking at the vertical index or the horizontal
index” (...) “I think that you’ll find, if you pay a little bit of attention
to your variable names, this won’t be much of a burden, and it’ll lead
to significantly better code”. P7 thus indicates that smart naming
improves code quality and belongs to good programmer’s prac-
tice. However, the instructor of C1 expresses that choosing a good
name is all about context. In particular, in the context of arithmetic
expressions (‘x + y’), letters can be “totally fine,” as changing ‘x’
and ‘y’ to ‘first number’ and ‘second number’ “isn’t really adding
anything semantically to help my comprehension” (C1).

One teacher (C4) spends extra time to highlight the importance
of context when it comes to good naming practices. He first shows
names that are usually considered ‘bad’, such as ‘grx33’, ‘pp_25’ and
‘i_am_FourWords’, pointing to that these names give no clue of what
they might be, and the latter even mixes two conventions. However,
he also says: “we are not going to necessarily know if [the names are]
good or bad, (...) they’re going to have to have the right context. So
‘data’ may or may not be good, it may not be adequately descriptive.
Maybe you need ‘height data’, or ‘weight data’, or something else.”
He continues with several other examples, one of them being: “(...)
Again, if you were writing some movie with Superman and Mxyzptlk,
[Mxyzptlk] might be an appropriate identifier.”

To summarize, about half of the MOOCs address variable name
meaning, but what is considered meaningful, or ‘good naming’

is hard to define: it differs per instructor and context. Only the
instructors of C1 and C4 acknowledge the importance of context
when choosing a name and sought to clarify this by presenting
several examples.

4.2.2 Which practices are used by teachers? Most instructors apply
the naming convention that is related to the language, so for Python
and C that means lowercase letters and an underscore between
words, and for Java it means using the camel case style. However,
the instructors of MOOCs P4, C2 and C3 use the opposite style.
Whereas the instructors of C2 and C3 do not give a clarification,
P4’s teacher tells the students: “Each programming language has its
own accepted style. In Python, you should use underscores. In Java
and C#, you would use camel case. Other languages have their own
conventions. ‘But wait!’ you say, ‘You are using camel case in the
videos!’ That’s right! I learned to program first in C++, and then in
Java, and then in C#, three languages that use camel case instead of
underscores. Old habits are hard to break!”

Although nine MOOCs address the importance of meaningful
variable names, only the instructor of P1 takes the students along
to experience that importance. In the beginning of his course, he
uses “silly” names such as ‘eee’, ‘sval’, ‘xr’ and ‘nsv’. Later in the
course, he uses examples such as ‘count’, ‘largest_so_far’, ‘sum’,
and ‘found’. He highlights that some names could be good names
e.g. ‘sval’, ‘fval’ (string value, float value), but confusing to novices
because they are unfamiliar with the terminology. However, in his
explanations, he also stresses the unimportance of a name to the
language interpreter, which reflects a stronger focus on ‘names do
not matter’ than on ‘what is a meaningful name’: “So you’ll notice
as I write, especially in these first two chapters, some of my codes
use really dumb variable names and some of them use really clever
ones. So I go back and forth to emphasize to you that the name of a
variable, as long as it’s consistent within a program, doesn’t matter.
And Python is perfectly happy” (P1).

The instructor of C2 chooses to ‘lead the way’ by using more
meaningful names right from the start all the way through to the
end of the course. Examples of these names are ‘age’, ‘balance’,
‘numberOfHazelnuts’, and ‘distanceTraveled’. In contrast, we ob-
served that sometimes ‘meaningless’ names (for novices) are chosen
to explain or show a specific concept, for example, C1 introduces
the concept of variable scope with the help of ‘foo’. Lastly, in almost
all MOOCs, single letters, such as ‘a’, ‘b’, ‘c’, ‘x’, ‘y’, and ‘z’, are used
to refer to variables holding numbers. Only the instructors of P4
and J1 do not use single letters and instead choose names such as
‘aNumber’, ‘aInt”, and ‘aDouble’.

5 DISCUSSION
We investigated teaching practices regarding the concept of vari-
ables and their naming, by systematically observing how variables
are taught in introductory programming MOOCs.

We found that variables are usually taught together or in close
connection with data types and arithmetic expressions, most often
at the very beginning of the course. Furthermore, we recognized a
pattern in how the concept of variables is defined. A definition is
given in twelve MOOCs (70%) and centers around ‘storing’ ‘data’.
Some MOOCs also refer to a computer’s memory and/or naming.
Although there is a clear consensus on what variables do, we have

212



ITiCSE 2023, July 8–12, 2023, Turku, Finland Vivian Van Der Werf, Min Yi Zhang, Efthimia Aivaloglou, Felienne Hermans, & Marcus Specht

seen no consensus on what variables are (i.e. part of memory, box,
name). This might partly be due to the definitions of variables found
in literature, such as ‘containers that hold values’ [35] and the origin
of the concept from The Analytical Engine, where variables were
used to store data. However, accessing, re-using, and modifying
data is as important to the concept, but is little represented in our
observation. Consistent with [30], the ‘variable as a box’ analogy
was often used while explaining variables. Since we already know
this analogy might cause certain misconceptions [9, 18], we suggest
teachers should keep this in mind. We also found a questions-and-
answer format as an analogy and some definitions that refer to
variables as references. It would be interesting to further investigate
how these latter analogies influence students learning, as well as
the effect of a shift from ‘storing data’ towards other aspects of
variables such as how and why we use them.

Naming practices are explicitly taught in most MOOCs, with
syntax rules and conventions more often attended to than meaning-
ful variable naming. Only half of the MOOCs allocate time to such
naming practices, and when meaning is touched upon, a discussion
on ‘what is meaningful’ is rarely implemented. Although plenty of
provided examples concern syntactically acceptable names, few ex-
amples concern variable name meaning. This shows that not much
seems to have changed since 1990 when Keller [20] established
that choosing meaningful names for variables is rarely covered in
programming textbooks. Moreover, our results could explain why
many novice programmers fail to name variables correctly [15].

When we look at implicit naming practices, in particular, how
instructors use naming in the provided materials, we found that not
all instructors used the naming convention style that is generally
accepted for the respective language. However, Shariff and Maletic
[32] indicate that underscore-styles versus camel case-styles do
not influence a programmer’s accuracy, which suggests that this
inconsistency should not make much difference in student learning.

Furthermore, we found that instructors used different approaches
regarding the meaning of a name. Only few MOOCs explicitly
provided good and bad examples throughout the course or led the
way from the start by always using names conveying the meaning
of the content. In most MOOCs, letters were primarily used in
demonstrations of code, and sometimes meaningless names were
chosen to explain a certain concept. These findings reflect issues
regarding naming practices in programming education. Firstly, they
stress that meaningful naming practices are not very common in
online education [20]. Secondly, the dichotomy in using letters as
names, both when explicitly taught or solely used in the provided
materials, is also reflected in the literature. For example, Lawrie
et al. [23, 24] found that full word names are more effective for
comprehension than letters, whereas Beniamini et al. [3] conclude
that letters can be meaningful when they convey information that
is commonly attributed to that letter. However, we observed that
there sometimes exists no consistency in naming practices, which
may leave students confused.

To conclude, it is becoming clear that appropriate variable names
impact how quickly and how well a code is understood [2–5, 8, 19,
24, 31, 34]. We, therefore, might assume that, for this reason alone,
they influence how learners learn a programming language, yet,
still little is known about how these practices are taught and how
exactly they influence learners. Based on our results, we feel a

strong urge for both teachers and researchers to pay more attention
to variable name meaning as part of naming practices.

5.1 Limitations
Since our study only covered the free-to-follow part of MOOCs,
we did not include premium content features such as additional
tests, assignments, or videos. It is possible that we have missed
certain practices because of this, however, we wanted to examine
what was available to everyone. Nevertheless, our answers on RQ2b,
which naming practices do teachers use themselves, may have been
influenced most, since it would have been valuable to see how in-
structors named their variables on the spot, a practice that was
not always freely available. Furthermore, most of the MOOCs were
created at US institutions, which might not be representative for
online courses made and followed in other parts of the world. This
is most likely an effect of our selection criterion that the MOOCs
should be taught in English, or the fact that we used edX and Cours-
era. It would be interesting to compare our results with courses
from other parts of the world, taught in local languages. Especially
on the topic of variable name meaning, we would expect to see
compelling variances.

6 CONCLUSION
We gained insight into how variables are taught in introductory
programming education, in particular in MOOCs teaching Python,
C, or Java. We found that the concept of variables is embedded
through connections with other concepts such as data types, ex-
pressions, and program execution. There is a strong focus on storing
data, whereas memory and naming are less well represented. Even
flexibility as a benefit or purpose of variables is rarely mentioned.
Furthermore, naming does not get consistent attention. Only a few
MOOCs discuss the topic consistently with special attention to the
meaning and context of names, whereas other MOOCs show incon-
sistency between taught and used practices, or show no discussion
regarding meaningful naming at all.

Based on our results, we stress the importance for both teach-
ers and researchers to pay more attention to naming practices, in
particular to variable name meaning, and think about how these
might influence the learning process of students. For future work
we suggest extending our research by including observations from
courses offered by tech companies and on YouTube, as many pro-
grammers might learn their skills there. Furthermore, we have
conducted in-depth interviews with teachers of secondary-level
and university-level education to complement the current research,
with a special focus on naming practices (in review). Finally, it could
be interesting to connect our results to known misconceptions, as
suggested by [18].

ACKNOWLEDGMENTS
This project was funded by the Leiden-Delft-Erasmus Centre for
Education and Learning.

REFERENCES
[1] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2016. Lin-

guistic antipatterns: what they are and how developers perceive them. Empirical
Software Engineering 21, 1 (Feb. 2016), 104–158. https://doi.org/10.1007/s10664-
014-9350-8

213

https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1007/s10664-014-9350-8


Variables in Practice ITiCSE 2023, July 8–12, 2023, Turku, Finland

[2] Eran Avidan and Dror G. Feitelson. 2017. Effects of Variable Names on Compre-
hension: An Empirical Study. In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC). 55–65. https://doi.org/10.1109/ICPC.2017.27

[3] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach, and Dror G. Feitelson.
2017. Meaningful Identifier Names: The Case of Single-Letter Variables. In 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC). 45–54.
https://doi.org/10.1109/ICPC.2017.18

[4] Dave Binkley, Dawn Lawrie, SteveMaex, and ChristopherMorrell. 2009. Identifier
length and limited programmer memory. Science of Computer Programming 74, 7
(2009), 430–445. https://doi.org/10.1016/j.scico.2009.02.006

[5] Scott Blinman and Andy Cockburn. 2005. Program Comprehension: Investigating
the Effects of Naming Style and Documentation. In AUIC.

[6] Benedict Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (1986), 57–73. https://doi.org/10.2190/3LFX-
9RRF-67T8-UVK9 arXiv:https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

[7] Bruno Caprile and Paolo Tonella. 2000. Restructuring program identifier names.
In Proceedings 2000 International Conference on Software Maintenance. IEEE, San
Jose, CA, USA, 97–107. https://doi.org/10.1109/ICSM.2000.883022

[8] Roee Cates, Nadav Yunik, and Dror G. Feitelson. 2021. Does Code Structure
Affect Comprehension? On Using and Naming Intermediate Variables. In 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC). 118–
126. https://doi.org/10.1109/ICPC52881.2021.00020

[9] Luca Chiodini, IgorMoreno Santos, Andrea Gallidabino, Anya Tafliovich, André L.
Santos, and Matthias Hauswirth. 2021. A Curated Inventory of Programming
Language Misconceptions. In Proceedings of the 26th ACM Conference on Innova-
tion and Technology in Computer Science Education V. 1 (Virtual Event, Germany)
(ITiCSE ’21). Association for Computing Machinery, New York, NY, USA, 380–386.
https://doi.org/10.1145/3430665.3456343

[10] Malcolm Corney, Raymond Lister, and Donna Teague. 2011. Early Relational
Reasoning and the Novice Programmer: Swapping as the "<i>Hello World</i>"
of Relational Reasoning. In Proceedings of the Thirteenth Australasian Comput-
ing Education Conference - Volume 114 (Perth, Australia) (ACE ’11). Australian
Computer Society, Inc., AUS, 95–104.

[11] Dimitrios Doukakis, Maria Grigoriadou, and Grammatiki Tsaganou. 2007. Under-
standing the programming variable concept with animated interactive analogies.
In Proceedings of the 8th Hellenic European Research on Computer Mathematics &
its Applications Conference, HERCMA’07.

[12] Sally Fincher, Johan Jeuring, Craig S. Miller, Peter Donaldson, Benedict du Boulay,
Matthias Hauswirth, Arto Hellas, Felienne Hermans, Colleen Lewis, Andreas
Mühling, Janice L. Pearce, and Andrew Petersen. 2020. Notional Machines in
Computing Education: The Education of Attention. In Proceedings of the Work-
ing Group Reports on Innovation and Technology in Computer Science Education
(Trondheim, Norway) (ITiCSE-WGR ’20). Association for Computing Machinery,
New York, NY, USA, 21–50. https://doi.org/10.1145/3437800.3439202

[13] Michelle Gienow. 2017. Code n00b: The (Variable) Naming Is the Hardest Part.
https://thenewstack.io/code-n00b-naming-hardest-part/.

[14] Elena L. Glassman, Lyla Fischer, Jeremy Scott, and Robert C. Miller. 2015. Foobaz:
Variable Name Feedback for Student Code at Scale. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC,
USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA,
609–617. https://doi.org/10.1145/2807442.2807495

[15] Abdul Rahman Mohamad Gobil, Zarina Shukor, and Itaza Afiani Mohtar. 2009.
Novice difficulties in selection structure. In 2009 International Conference on
Electrical Engineering and Informatics, Vol. 02. 351–356. https://doi.org/10.1109/
ICEEI.2009.5254715

[16] Remo Gresta, Vinicius Durelli, and Elder Cirilo. 2021. Naming Practices in Java
Projects: An Empirical Study. In XX Brazilian Symposium on Software Quality
(Virtual Event, Brazil) (SBQS ’21). Association for Computing Machinery, New
York, NY, USA, Article 10, 10 pages. https://doi.org/10.1145/3493244.3493258

[17] Shuchi Grover and Satabdi Basu. 2017. Measuring Student Learning in In-
troductory Block-Based Programming: Examining Misconceptions of Loops,
Variables, and Boolean Logic. In Proceedings of the 2017 ACM SIGCSE Tech-
nical Symposium on Computer Science Education (Seattle, Washington, USA)
(SIGCSE ’17). Association for ComputingMachinery, New York, NY, USA, 267–272.
https://doi.org/10.1145/3017680.3017723

[18] Felienne Hermans, Alaaeddin Swidan, Efthimia Aivaloglou, and Marileen Smit.
2018. Thinking out of the Box: Comparing Metaphors for Variables in Pro-
gramming Education. In Proceedings of the 13th Workshop in Primary and Sec-
ondary Computing Education (Potsdam, Germany) (WiPSCE ’18). Association
for Computing Machinery, New York, NY, USA, Article 8, 8 pages. https:

//doi.org/10.1145/3265757.3265765
[19] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt. 2017. Shorter identifier

names take longer to comprehend. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 217–227. https:
//doi.org/10.1109/SANER.2017.7884623

[20] Daniel Keller. 1990. A guide to natural naming. ACM SIGPLAN Notices 25 (1990),
95–102.

[21] Tobias Kohn. 2017. Variable Evaluation: An Exploration of Novice Programmers’
Understanding and Common Misconceptions. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (Seattle, Washington,
USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY, USA,
345–350. https://doi.org/10.1145/3017680.3017724

[22] Ilker Koksal. 2020. The Rise Of Online Learning. https://www.forbes.com/sites/
ilkerkoksal/2020/05/02/the-rise-of-online-learning/?sh=28f26e472f3c.

[23] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name?A Study of Identifiers. In 14th IEEE International Conference on Program
Comprehension (ICPC’06). 3–12. https://doi.org/10.1109/ICPC.2006.51

[24] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Effec-
tive identifier names for comprehension and memory. Innovations in Systems and
Software Engineering 3, 4 (Dec. 2007), 303–318. https://doi.org/10.1007/s11334-
007-0031-2

[25] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (Paris, France) (ITiCSE
’09). Association for Computing Machinery, New York, NY, USA, 161–165. https:
//doi.org/10.1145/1562877.1562930

[26] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships between reading, tracing and writing skills in introductory pro-
gramming. In ICER’08 - Proceedings of the ACM Workshop on International Com-
puting Education Research (New York, New York, USA). ACM Press, 101–111.
https://doi.org/10.1145/1404520.1404531

[27] Christian D. Newman, Reem S. AlSuhaibani, Michael J. Decker, Anthony Peruma,
Dishant Kaushik, Mohamed Wiem Mkaouer, and Emily Hill. 2020. On the gener-
ation, structure, and semantics of grammar patterns in source code identifiers.
Journal of Systems and Software 170 (2020), 110740. https://doi.org/10.1016/j.jss.
2020.110740

[28] Thomas Pelchen and Raymond Lister. 2019. On the Frequency of Words Used in
Answers to Explain in Plain English Questions by Novice Programmers. Association
for Computing Machinery, New York, NY, USA, 11–20. https://doi.org/10.1145/
3286960.3286962

[29] Jorma Sajaniemi. 2002. An empirical analysis of roles of variables in novice-
level procedural programs. In Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments. 37–39. https://doi.org/10.1109/HCC.
2002.1046340

[30] André L. Santos and Hugo Sousa. 2017. An Exploratory Study of How Pro-
gramming Instructors Illustrate Variables and Control Flow. In Proceedings of the
17th Koli Calling International Conference on Computing Education Research (Koli,
Finland) (Koli Calling ’17). Association for Computing Machinery, New York, NY,
USA, 173–177. https://doi.org/10.1145/3141880.3141892

[31] Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeister, Till
Riedel, and Michael Beigl. 2018. Descriptive Compound Identifier Names Improve
Source Code Comprehension. In Proceedings of the 26th Conference on Program
Comprehension (Gothenburg, Sweden) (ICPC ’18). Association for Computing
Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/3196321.3196332

[32] Bonita Sharif and Jonathan I. Maletic. 2010. An Eye Tracking Study on camelCase
and under_score Identifier Styles. In 2010 IEEE 18th International Conference on
Program Comprehension. 196–205. https://doi.org/10.1109/ICPC.2010.41

[33] Alaaeddin Swidan, Alexander Serebrenik, and Felienne Hermans. 2017. How
do Scratch Programmers Name Variables and Procedures?. In 2017 IEEE 17th
International Working Conference on Source Code Analysis and Manipulation
(SCAM). 51–60. https://doi.org/10.1109/SCAM.2017.12

[34] Barbee E. Teasley. 1994. The effects of naming style and expertise on program
comprehension. International Journal of Human-Computer Studies 40, 5 (1994),
757–770. https://doi.org/10.1006/ijhc.1994.1036

[35] Leslie J. Waguespack. 1989. Visual Metaphors for Teaching Programming Con-
cepts. SIGCSE Bull. 21, 1 (feb 1989), 141–145. https://doi.org/10.1145/65294.71203

Received 22 January 2023; accepted 6 March 2023

214

https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/ICPC.2017.18
https://doi.org/10.1016/j.scico.2009.02.006
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://arxiv.org/abs/https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1109/ICSM.2000.883022
https://doi.org/10.1109/ICPC52881.2021.00020
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3437800.3439202
https://thenewstack.io/code-n00b-naming-hardest-part/
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1109/ICEEI.2009.5254715
https://doi.org/10.1109/ICEEI.2009.5254715
https://doi.org/10.1145/3493244.3493258
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1145/3265757.3265765
https://doi.org/10.1145/3265757.3265765
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1145/3017680.3017724
https://www.forbes.com/sites/ilkerkoksal/2020/05/02/the-rise-of-online-learning/?sh=28f26e472f3c
https://www.forbes.com/sites/ilkerkoksal/2020/05/02/the-rise-of-online-learning/?sh=28f26e472f3c
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1007/s11334-007-0031-2
https://doi.org/10.1007/s11334-007-0031-2
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/1562877.1562930
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1016/j.jss.2020.110740
https://doi.org/10.1016/j.jss.2020.110740
https://doi.org/10.1145/3286960.3286962
https://doi.org/10.1145/3286960.3286962
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1145/3141880.3141892
https://doi.org/10.1145/3196321.3196332
https://doi.org/10.1109/ICPC.2010.41
https://doi.org/10.1109/SCAM.2017.12
https://doi.org/10.1006/ijhc.1994.1036
https://doi.org/10.1145/65294.71203

	Abstract
	1 Introduction
	2 Related work
	3 Methods
	4 Results
	4.1 How is the concept of variables taught?
	4.2 How are naming practices taught?

	5 Discussion
	5.1 Limitations

	6 Conclusion
	Acknowledgments
	References



