

Delft University of Technology

Sentiment overflow in the testing stack
Analyzing software testing posts on Stack Overflow
Swillus, Mark; Zaidman, Andy

DOI
10.1016/j.jss.2023.111804
Publication date
2023
Document Version
Final published version
Published in
Journal of Systems and Software

Citation (APA)
Swillus, M., & Zaidman, A. (2023). Sentiment overflow in the testing stack: Analyzing software testing posts
on Stack Overflow. Journal of Systems and Software, 205, Article 111804.
https://doi.org/10.1016/j.jss.2023.111804

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jss.2023.111804
https://doi.org/10.1016/j.jss.2023.111804

The Journal of Systems & Software 205 (2023) 111804

M
D

o
t
s
M
I
a
t
c
T
s
a
s
h
w
a
u
c
2

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Sentiment overflow in the testing stack: Analyzing software testing
posts on Stack Overflow✩

ark Swillus ∗, Andy Zaidman
elft University of Technology, Van Mourik Broekmanweg 6, 2628XE Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 31 May 2022
Received in revised form 15 March 2023
Accepted 14 July 2023
Available online 22 July 2023

Keywords:
Stack Overflow
Software testing
Sentiment analysis
Grounded theory

a b s t r a c t

Software testing is an integral part of modern software engineering practice. Past research has not
only underlined its significance, but also revealed its multi-faceted nature. The practice of software
testing and its adoption is influenced by many factors that go beyond tools or technology. This paper
sets out to investigate the context of software testing from the practitioners’ point of view by mining
and analyzing sentimental posts on the widely used question and answer website Stack Overflow.
By qualitatively analyzing sentimental expressions of practitioners, which we extract from the Stack
Overflow dataset using sentiment analysis tools, we discern factors that help us to better understand
the lived experience of software engineers with regards to software testing. Grounded in the data that
we have analyzed, we argue that sentiments like insecurity, despair and aspiration, have an impact
on practitioners’ attitude towards testing. We suggest that they are connected to concrete factors like
the level of complexity of projects in which software testing is practiced.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science
Board.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

We already know for over 40 years that software testing is
ne of the most pragmatic mechanisms by which we can ensure
he quality of the software artifacts that we engineer (Athana-
iou et al., 2014; Carstensen and Sørensen, 1995; Hetzel, 1988;
yers et al., 2012; Yourdon, 1988; Zaidman et al., 2008, 2011).

n the light of the unquestionable growing impact that software
nd software supported devices are having on our daily lives,
he role of software testing becomes ever more important. Just
onsider the year 2017, which has been earmarked ‘‘The Year
hat Software Bugs Ate the World’’ because of the astonishing
oftware failures that cost the economy $1.7 trillion in 2017
lone (McCracken, 2017). Crucially, Ko et al. (2014) report on
oftware failures that can be directly linked to the loss of 1500
uman lives. However, to this day there is a schism between
idespread recommendations for software engineering practice
nd our knowledge of how software testing actually happens. The
rgency to solve this conflict was also signaled by others with a
all to arms to better understand the testing process (Bertolino,
007; Mäntylä et al., 2012).

✩ Editor: Nicole Novielli.
∗ Corresponding author.

E-mail addresses: m.swillus@tudelft.nl (M. Swillus), a.e.zaidman@tudelft.nl
A. Zaidman).
ttps://doi.org/10.1016/j.jss.2023.111804
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
We have recently seen studies emerge that have observed
how software developers test. Beller et al. (2019, 2015a,b) have
investigated when and how developers write test cases in their
Integrated Development Environment. They observed that around
50% of the studied projects do not employ automated testing
methods at all. But they also found out that for almost all cases
testing happens far less frequently than developers estimate. If
testing is truly considered a last line of defense against software
defects, we need to understand why developers do or do not
engineer and execute test cases.

We have already seen glimpses of this in literature. Studies
have shown that company culture or time pressure leads to
cognitive biases during testing (Mohanani et al., 2020; Çalıklı and
Bener, 2013; Salman et al., 2022), estimations of the time it takes
to write tests are often inaccurate (Beller et al., 2019; Kasurinen
et al., 2009), availability of documentation shapes the develop-
ment of tests (Aniche et al., 2022), and that the cost/benefit of
testing is often unclear (Begel and Zimmermann, 2014). Addition-
ally, Kasurinen et al. (2009), Runeson (2006), and Daka and Fraser
(2014) highlight issues with motivating developers to test soft-
ware: only half of them have positive feelings about testing, and
approachability of tools is a major factor. Like Prado and Vincenzi
(2018) who studied the perspective of developers during the re-
view process of unit tests to build tools that encourage testing, we
follow and put the human into the center of attention. This paper
sets out to investigate the circumstances that influence software
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111804
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111804&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:m.swillus@tudelft.nl
mailto:a.e.zaidman@tudelft.nl
https://doi.org/10.1016/j.jss.2023.111804
http://creativecommons.org/licenses/by/4.0/

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

e
o
o
s
F
c
a
c
t
w
p
p
a

t
d
s
S
a
h
a
w
i
o
s
t
a
i
t
t
q
c
G
f
e
t

s
a
p
t
s
t

H
(
m
a
p
a
d
a
i
w

ngineers when engineering tests going beyond technical aspects
f the discipline. Like Sharp et al. (2000), we believe that in
rder to improve the discipline, it is essential to understand the
ocio-technical world in which software engineering is practiced.
or example, software development practices which form social
ircumstances, like pair programming, are very likely to have
n impact on testing. To gain a broad overview of what these
ircumstances are, we take negative and positive sentiments on
he process of automated testing as a proxy. To gather documents
hich describe the experience of software developers from their
oint of view, we mine the most popular question and answer
latform for software engineers, namely Stack Overflow (Baltes
nd Diehl, 2019).

RQ1

How do software engineers express sentiment about testing
on Stack Overflow?

On the Q&A platform Stack Overflow, on which social interac-
ion plays a key role, practitioners ask questions about software
evelopment which are answered by a global community of
oftware developers (Mustafa et al., 2022). Others have used the
tack Overflow dataset to investigate technical and non-technical
spects of software engineering. For example, Lopez et al. (2018)
ave analyzed security questions on Stack Overflow, and provide
n overview of the most discussed topics but also discuss the
ay in which authors discuss security questions. Our goal is to

dentify factors that affect practitioners and influence adoption
f, or attitude towards testing. We hypothesize that an analy-
is of sentimental content on Stack Overflow not only reveals
echnical factors that can influence adoption or attitudes, but
lso descriptions of the social or human context of practice. To
dentify those socio-technical factors, we deeply examine 200
esting related questions on Stack Overflow instead of analyzing
he whole dataset quantitatively. We do not only scrutinize the
uestion asked by the practitioner, but also incorporate answers,
omments and the edit history of questions into our analysis.
oing beyond an analysis of questions about technical issues, we
ocus on the broader context that causes sentiment in practition-
rs. We therefore use the term post instead of question to refer
o the documents we analyzed for the remainder of this paper.

RQ2

Which factors affect sentiment of software engineers to-
wards testing practices?

From research done by other authors we know that only a
mall fraction of posts on Stack Overflow contains strong opinions
nd emotional statements as they mostly discuss how to use a
iece of technology (Lin et al., 2018; Sengupta and Haythorn-
hwaite, 2020). This motivates us to create an emotionally rich
ubset by filtering the dataset using a semi-automated approach
hat employs sentiment analysis tools.

To answer both research questions we apply strategies of
oda’s basic stage for socio-technical grounded theory (STGT)
Hoda, 2022) with a constructivist stance as suggested by Char-
az (2014). STGT provides us with a framework to venture into
broad analysis of testing practice, seen not only as a technical
henomenon, but as a phenomenon in which social factors play
n essential role. We focus our analysis on the socio-technical
imension of posts on Stack Overflow and show that such an
nalysis indeed reveals descriptions of social aspects. Our analysis
nforms about issues that contribute to problems and attitudes to-

ards software testing. More concretely, we analyze the dataset

2

which consists of 200 posts using initial and focused coding
and techniques for systematic comparison of posts, codes and
memos like diagramming and clustering. Concluding this paper
with a presentation of preliminary categories and a preliminary
interpretive theory, we motivate consecutive targeted data col-
lection (theoretic sampling) to test and extend our analysis and
conclusions. Grounded in the data we analyze, this paper makes
the following contributions:

• We discuss preliminary hypotheses which explore stimuli
and inhibitors to testing at a socio-technical level

• We present a computer aided approach for qualitative anal-
ysis of sentimental expressions in big datasets

• We motivate a research agenda that includes concrete ideas
for targeted data collection (theoretic sampling) to develop
a mature theory of stimuli and inhibitors of software testing
that go beyond tools and technology

2. Background

2.1. Sentiment analysis

Sentiment analysis is the computational study of opinions,
sentiments and emotions expressed in text. It essentially tries
to infer people’s sentiments based on their language expressions.
Sentiment classification is a widely studied research topic of sen-
timent analysis that focuses on the classification of opinionated
documents as expressing positive or negative opinion (Indurkhya
and Damerau, 2010). Automatic classification of sentiment has
been applied in various fields of research over the past 20 years as
access to vast amounts of written text about various topics have
become available through the internet. Already in 1999 Wiebe
et al. (1999) worked on a dataset for automatic classification of
news articles to identify whether information is being presented
as fact or opinion. While sentiment analysis is still being used to
analyze media platforms like those of news agencies (Balahur and
Steinberger, 2009; Pelicon et al., 2020), its application today also
includes platforms on which a wide variety of people contribute
content such as social media or internet forums. Here sentiment
analysis has been used recently to identify personal attacks or
obscene behavior of users (Saeed et al., 2018).

Techniques for sentiment analysis have also been applied in
the context of software engineering. Mantyla et al. (2017) ana-
lyzed sentiment in comments on the Jira issue tracker to detect
burnout among software developers. They calculated sentiment
scores for each sentence using a dictionary that contains rat-
ings for the affective meaning of 13,915 English words. Despite
their positive results, they have also raised the issue, echoed by
others (Jongeling et al., 2017), that general purpose sentiment
analysis tools lack precision when applied to the domain of soft-
ware engineering. Lin et al. (2018) even question the validity of all
quantitative studies in software engineering based on sentiment
analysis tools as they demonstrate how hard it is to reproduce
results. For example, they judge that there is still a long way to
go before researchers and practitioners can use state-of-the-art
sentiment analysis tools to identify the sentiment expressed in
Stack Overflow discussions. To stimulate more research into the
direction of sentiment analysis, they published the dataset that
was developed in Lin et al. (2018) which contains 1500 anno-
tated sentences. Similarly, to support empirical research in the
direction of emotion detection, Novielli et al. (2018) developed
a dataset containing 4800 Stack Overflow posts. Motivated by
these voices of criticism and encouragement, others then tried
to develop tools tailored to the domain of software engineering
like Islam et al. who have developed the dictionary-based tool
DEVA (Islam and Zibran, 2018), and a machine-learning based

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

t
e
a
c
e
I
t
a
d
a
e
t
e
k
t
f
s

2

s
m
d
n
a
l

b
d
v
t

t
s
W
E
r
t
s
l
s
u
m
c
t
t
f
s
i
d
a
e
p

c
p

ool called MarValous that focuses on emotion detection (Islam
t al., 2019). In that same period the SentiStrength tool, which
lready existed as a general purpose tool for sentiment classifi-
ation, was tweaked for an application in the domain of software
ngineering by Ahmed et al. (2017), who created the tool SentiCR.
n 2020 Zhang et al. (2020) address the issue again, comparing
he accuracy of this new generation of tailor-made sentiment
nalysis tools for software engineering with the accuracy that
eep neural network architectures, namely transformer models,
chieve. They suggest that transformer models like RoBERTa (Liu
t al., 2019) are indeed one big step forward on the long way
owards reliable results in sentiment classification for software
ngineering. Finally, in 2021, Lin et al. (2022) summarize the
nowledge gained in one decade of research for opinion mining
ools. Among other insights into the field they provide a guideline
or the selection, usage and evaluation of opinion mining tools for
oftware engineering research.

.2. Grounded theory

Grounded theory (GT) is an analytic approach used to con-
truct ethnographic knowledge (Deener, 2018). Its framework is
ade up of data-gathering techniques and strategies to analyze
ata. What distinguishes GT from other approaches is its iterative
ature. While theory development progresses, the GT approach
lternates between data collection and analysis to sustain a high
evel of involvement with the data (Charmaz, 2014).

GT was suggested as an approach for qualitative research
y Glaser and Strauss (2010) and has been reinterpreted by
ifferent scholars, resulting in the development of different fla-
ors of GT. Flavors of GT differ in details on how to execute
echniques and how tightly strategies need to be followed.1 Cru-
cially, they also rest on different epistemological stances. Where
the original Glaserian GT takes an objective, positivist stance,
Constructivist GT proposed by Charmaz, for example, acknowl-
edges the researchers’ subjective perspective. Constructivist GT
moves away from positivism, incorporating the beliefs and pre-
conceptions of the researcher into analysis. Situating the GT ap-
proach into the field of software engineering research, Hoda
has recently proposed another flavor of GT. She designed Socio-
echnical GT (STGT) to ease application of GT in her field, where re-
earchers often struggle to understand and apply it (Hoda, 2022).
ith STGT, Hoda proposes to divide GT into distinct phases.
mbracing the iterative nature of GT, STGT encourages explo-
ation in a Basic Stage and helps the socio-technical researcher
o transition into an Advanced Stage of theory development. The
eparation into those two stages, which are accompanied by
ean and focused literature reviews, help the socio-technical re-
earcher to cover epistemological blind-spots. All flavors of GT
se comparative- (e.g., clustering, diagramming), and analytical
ethods (e.g., coding, memo writing), that are accompanied by a
ontinuous collection of new data samples (theoretical sampling)
o saturate emerging categories that describe data and to enable
he development of mature theories which transparently emerge
rom the data. Regarding the analysis of documents, which we
et out to do in this paper, Charmaz states that GT of documents
s able to address not only content but also their audience, pro-
uction and presentation. Analysis of documents can reveal what
nd whom they affect, as they do not only serve as records but
xplore, explain, justify and/or foretell actions (Charmaz, 2014,
. 46).

1 For a more elaborate discussion of the historic development of GT and a
omplete comparison of its flavors see Charmaz (2014, p. 4) and Hoda (2022,
. 9).
3

In this paper we follow Hoda’s STGT and present the results
of the Basic Stage of our STGT study. Publication of emerging
results of this exploratory phase is encouraged by both Hoda
and Charmaz. GT guidelines describe steps and a path through
a long research process. Depending on the task and project at
hand, GT invites using those steps flexibly to raise the analysis to
the desired level of theory construction (Charmaz, 2014). Within
the framework of STGT we use strategies and epistemology from
Charmaz Constructivist GT, raising the data analysis of our dataset
that we take from Stack Overflow to a preliminary theory. We
present our work following Hoda’s recommendation who states
that publication even of partial results is important to receive
feedback from both practitioners and the research community to
assesses relevance and improve rigor (Hoda, 2022).

2.3. Stack Overflow

Stack Overflow is the most popular question- and answer web-
site for software developers (Baltes and Diehl, 2019). The website
has become an important resource that often complements of-
ficial documentation of software libraries and tools. Its strong
presence on search engines, where a link to the website is very of-
ten shown on the first page of results when searching for software
development related topics, indicates its reach that goes far be-
yond the 17 million registered users (Barzilay et al., 2013). Studies
that often use the official and open Stack Overflow dataset, have
underlined the prominence of Stack Overflow by showing for
example that 11% of open source software projects on GitHub
that were analyzed in a large scale field study contain source
code snippets that were copied from Stack Overflow (Baltes and
Diehl, 2019). Over 22 million questions that often contain such
code snippets were posted by users in a wide range of topics
that are related to software engineering since its launch in 2008.2
Apart from contributions in the form of questions and answers,
users are also encouraged to take part in moderation efforts. Up-
and down voting, tagging and editing of questions and answers is
rewarded with badges, medals and reputation points. Questions
on Stack Overflow generate living documents, which are edited
by their authors and moderators, updated, and extended with
comments sometimes even a decade after they were asked. Ques-
tions and their answers can thus take the character of knowledge
base articles. Barzilay et al. (2013) even argue that the moderation
and reward system has transformed Stack Overflow from a mere
Q&A site into a community project that gives users a sense of
belonging which not only generates high quality knowledge but
also trust in the content that is accumulated. To emphasize these
traits of the content on Stack Overflow that goes beyond ques-
tions, we refer to the content on Stack Overflow not as questions
but as posts.

Before taking part in the community by asking a question for
the first time, users can take a virtual tour that explicates the
goals of Stack Overflow. It is explained here, that Stack Overflow
is ‘‘all about getting answers. It’s not a discussion forum. There
is no chit-chat’’. Furthermore, it asks users to avoid questions
that are primarily opinion-based, or that are likely to generate
discussion.3 The platform’s focus to avoid chit-chat is also re-
flected in what Vadlamani and Baysal (2020), and Zagalsky et al.
(2016) identified as the primary drivers behind contributions.
Going beyond a meta analysis of the platform, scholars used Stack
Overflow to investigate various aspects of software engineering,
including for example the analysis of trends (Barua et al., 2014;
Yang et al., 2016) or developers’ interests (Lee and Lo, 2017).
Similar to our aim, the Stack Overflow data set has also been used

2 stackexchange.com/sites
3 stackoverflow.com/tour

https://stackexchange.com/sites?view=list#traffic
https://stackoverflow.com/tour

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

t
a
a
i
e

3

O
S
e
S
i
a
c
W
t
m
t
e
i
f
d
d
f

r
a
n
t
t
c
i
o
h
c
i
e
p
a
o

o
w
u
a
w
d

G
s
q
u
i
a
c
t
t

f
i
p
t
p
c
m
t
t
p
i
t
s
f
2

3

w
s
w
O
t
2
S
g
a
a
p
o

o investigate challenges of software developers. Based on the
ssumption that questions and answers on Stack Overflow cover
wide range of issues, Alshangiti et al. (2019) analyzed questions
n a mixed method study to identified challenges of software
ngineers when developing machine learning applications.

. Method

To investigate the lived experience of practitioners on Stack
verflow we take a qualitative approach that aligns with Hoda’s
ocio-Technical Grounded Theory (STGT) (Hoda, 2022). Acknowl-
dging its iterative nature, we focus on what Hoda defined as
TGT’s Basic Stage for data collection and analysis. We take our
nitial sample from the Stack Overflow data dump, which we
nalyze using initial and focused coding while we write memos to
onstantly compare documents, codes and emerging categories.
e then present preliminary hypotheses and an interpretive

heory that summarizes our findings. Presenting our findings we
otivate for the next iteration of our STGT study that leads

o the collection of more data (theoretic sampling) to test and
xtend our findings. As Hoda (2022) suggests, we publish our
nitial findings to assess the relevance of our work and to receive
eedback from the research community. Successive rounds of
ata collection and analysis in future work can then lead to the
evelopment of more mature theories that are valuable for the
ield.

Our stance with regard to our research questions is that the
eality of testing practices and the experience of practitioners in
complex socio-technical environment is highly individual and
ot reflected by a Stack Overflow post in its entirety. Within
he framework of Hoda’s STGT we adopt a subjective, construc-
ivist epistemology. Therefore, we follow Charmaz’s version of
onstructivist Grounded Theory (Charmaz, 2014) to provide our
nterpretation of these complex matters. Despite our awareness
f the limitations that an analysis of non-interactive documents
as as they can only provide thin descriptions that lack contextual
ues (Hine, 2008), we hypothesize that observation and thorough
nvestigation of attitudes and sentiments expressed by practition-
rs in posts on Stack Overflow can yield valuable insights into
ractice. Furthermore, we claim that our analysis contributes to
better understanding of socio-technical dynamics in the context
f software testing.
To analyze the Stack Overflow dataset for our specific purpose

f investigating the sentiment associated with software testing,
e first retrieve Stack Overflow posts related to testing. We then
se sentiment analysis tools to identify posts that contain neg-
tive and positive sentimental expressions. The whole process,
hich starts with this filtering process of the Stack Overflow
ata dump 0 and ends with the construction of preliminary

hypotheses and an interpretive theory 22 , is visualized in Fig. 1.
rounded theory studies usually undergo a phase of piloting and
tudy preparation as a means to verify that the chosen tools like
uestionnaires or interview questions are appropriately config-
red and comprehensible to the studies’ subjects. As our study
s only involving the analysis of non-interactive documents such
verification process is not applicable. Study preparation in our
ase is thus limited to the extraction of a subset of posts that we
ake from the Stack Overflow data dump and the configuration of
he sentiment analysis tools that we use (1 to 5).

3.1. Filtering by tags

The Stack Overflow dataset contained 53,086,328 posts con-
cerning all domains of software development when we obtained
4

it in August 2021.4 To extract a subset with a size that is ap-
propriate for manual analysis, we filter all posts using a 2-step
process that is outlined in this section. As illustrated in Fig. 1,
we begin with the full Stack Overflow Post-dataset 0 on the
left side and end this process with importing post-documents
into a CAQDA-software5 7 on the right side. To extract posts
related to automated software testing, we first filter the dataset
using tags. One or more tags are assigned to every post by their
authors. The list of tags is then often edited by moderators to
facilitate categorization. Tags represent categories that among
others include general concepts or methods (e.g., testing, tdd),
technologies like programming languages (e.g., java, python),
or specific frameworks and tools (e.g., codecov, mockito, re-
actjs). Posts are usually tagged with multiple, complementary
tags (e.g., post 878848 is tagged with 5 tags: java, unit-testing,
ibdc, mocking and resultset). Similar to Yang et al. (2016), we
utilized a two-step process to extract posts by searching for
tags which represent general concepts and methods related to
software testing. We first select all posts from the dataset that are
assigned a tag that contains the word testing, which produces a
set of 134,109 posts 1 . We choose the term testing as it is used
as a suggestion on the Stack Overflow platform whenever the tag
test is used and because the tags testing and unit-testing are
the two most prominent tags when searching for test using the
tag-search.6 We then manually analyze the list of 13,006 tags
that were assigned to those posts and remove tags that were
used less than 6 times, or were not directly referring to general
concepts of automated software testing 2 . The tag codecov for
example was removed from the list because it only occurred 5
times, and reactjs was removed as it relates to a programming
ramework that is not directly related to automated software test-
ng. We also exclude tags that are related to testing but focus on a
articular technology or tool (e.g., mockito), as we try to remain
esting tool- and development language agnostic. Following this
rocedure, we have produced a list of 30 tags that all refer to
onceptual aspects of automated software testing, like unit-test,
ocking, or tdd. Using this list we again extracted posts from
he original dataset. We extract all posts that contain at least one
ag that is present on the tag list and obtain a set of 147.833
osts 3 . Post 878848 which is tagged with java, unit-testing,
bdc, mocking and resultset was for example selected because
he presence of tags mocking and unit-testing. We provide the
ource code of the program that we used to filter posts and the
iltered dataset in our replication package (Swillus and Zaidman,
022, filter-by-tags.zip).

.2. Filtering by sentiment

We aimed to examine posts deeply instead of quantitatively
hich limits our investigation to an analysis of a small sub-
et of the 147,833 posts. From research done by other authors
e know that only a small fraction of content posted on Stack
verflow contains strong opinions and emotional statements as
hey mostly discuss how to use a piece of technology (Lin et al.,
018). Sengupta et al. report that only every 10th comment on
tack Overflow expresses some standalone form of emotion (Sen-
upta and Haythornthwaite, 2020). This motivated us to create
n emotionally rich subset by filtering the dataset using a semi-
utomated approach that employs sentiment analysis to select
osts that contain sentimental expressions. Following the advice
f Zhang et al. (2020) to not rely on a single tool we used the

4 archive.org/details/stackexchange
5 CAQDA = Computer-Assisted Qualitative Data Analysis software; we have

mostly used ATLAS.TI, see: https://atlasti.com.
6 stackoverflow.com/tags

http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/878848
https://archive.org/details/stackexchange
https://atlasti.com
https://stackoverflow.com/tags

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

a
a
o
d
u

P

N

B

N

R

a
o
w
s
a
R
p
o
e
a
a
d
c
w
p
l
l
s

Fig. 1. Filtering and annotating Stack Overflow posts using a semi-automated approach, followed by systematic qualitative data analysis process that leads to the
construction of preliminary hypotheses and an interpretive theory.
N
a
t
a
d
w
a
t
p
l
i
p
u
p
i
s
d
s
T
o
a

3

m
f
o
f
i

w
o
a

transformer model RoBERTa (Liu et al., 2019) in combination with
the SentiCR tool (Ahmed et al., 2017). We trained both tools
with a labeled dataset of Stack Overflow provided by Lin et al.
(2018) 4 .7 Their dataset contains 1500 sentences from Stack
Overflow posts discussing Java libraries which were manually
labeled by the authors with sentiment polarities positive, negative
nd neutral (Lin et al., 2018). We then used the trained tools, to
utomatically annotate sentiment polarities to every paragraph
f every post of our tag-filtered dataset 5 . From this annotated
ataset we then randomly extracted posts from 5 categories,
sing a simple condition for each category 6 .

ositive: both tools classified at least one paragraph as positive
and none as negative

egative: both tools classified at least one paragraph as negative
and none as positive

oth: both tools classified at least one paragraph as positive and
at least one as negative

eutral: both tools classified all paragraphs as neutral

andom: randomly selected independent of classification

Especially because of concerns raised by Lin et al. (2018)
nd Jongeling et al. (2017) who state that sentiment analysis tools
ften do not provide good results for software engineering texts,
e used the last two categories Neutral and Random in a later
tage of our analysis to validate our semi-automated filtering
pproach. We evaluate whether filtering posts with the tools
oBERTa and SentiCR provides a dataset with more sentimental
osts than a random selection. We choose paragraphs instead
f finer grained sentence-level separation because we hypoth-
size that a paragraph is more likely to hold a comprehensive
nd conclusive thought as compared to short sentences that
re taken out of context. We argue that sentiment classification
one on that level better supports our goal to group posts into
ategories of positive and negative posts. Contrarily to what we
ant to achieve, one short and slightly negative remark in a
ost of an otherwise very positive paragraph, is much more
ikely to determine a wrong result in a finer grained sentence-
evel classification. The sentiment analysis tools we used in this
tudy both support the approach of classifying text with multiple

7 Replication package from Lin et al. (2018) containing training data:
https://sentiment-se.github.io/replication.zip.
5

sentences. The posts obtained by our semi-automated filtering
approach were imported into a CAQDA software 7 that was
used to aid all further steps of the data analysis. To avoid bias
during our manual assessment of a post’s sentiment, we did not
include the tool’s classification result in those imported posts.
Automatically assigned sentiment was not visible to the authors
during manual analysis. Initially we analyzed 25 posts from each
category (Random, Neutral, Positive, Negative and Both). We then
added another 25 posts from each sentimental category (Positive,
egative and Both), to reach a point at which the analysis of
dditional posts did not provide new insights or perspectives in
he form of new codes. After adding the second batch of 75 posts,
nd before reaching the 200th post we reached saturation. Posts
id not provide new content that did not fit into the categories
hich had emerged already at this point. We therefore analyzed
total amount of 200 posts. Fig. 2 shows the 20-most occurring
ags that were assigned by authors and moderators to those 200
osts. When creating our dataset and selecting the posts, we
ooked for sentimental discussions about testing without select-
ng or excluding specific technologies. We do not focus on how
ractitioners sentimentally evaluate specific tools, e.g., the Java
nit testing library junit. We instead take a broader, tool agnostic
erspective. Nevertheless, to provide context to our dataset, it
s interesting to observe which tags (both tool agnostic and tool
pecific) are assigned to the questions that are included in our
ataset. In particular, these tags indicate that our dataset tran-
cends a particular programming language or technology stack.
he replication package we provide contains the source code of
ur implementation of the sentiment analysis pipeline (Swillus
nd Zaidman, 2022, filter-by-sentiment.zip).

.3. Data analysis

We employed strategies from grounded theory as recom-
ended by Hoda (2022) and Charmaz (2014) to analyze the

iltered Stack Overflow dataset. To begin the iterative process
f constructing abstract analytic categories out of which we
ormulated preliminary hypotheses as illustrated in Fig. 1, we use
nitial coding 8 , applying codes to the dataset line by line in
three rounds. We started without any preliminary codes, remain-
ing open to all possible theoretical directions especially during
the first coding cycle. In addition to coding posts with gerunds
(e.g., describing instead of description), we use In-Vivo codes,
hich are quotations of what the author of a post wrote in their
wn language. In-Vivo codes are put in between quotation marks
nd used whenever authors express themselves in a strong and

https://sentiment-se.github.io/replication.zip
https://sentiment-se.github.io/replication.zip

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

j

e
t
n
c
–

s

w

i
a
u
p
b
D
c
f
i
e
(
r
i
O
w
o
d
c
a
a
p
t
d
a
F

t

Fig. 2. 20 most occurring tags of the 200 posts we analyzed. The most occurring tags include technology-agnostic tags like testing and technology specific tags like
unit. Technology specific tags are assigned to posts complementary to the 30 more general tool agnostic tags that we selected during the filtering process.
motionally rich way (e.g., ‘‘is my code just bad?") 9 . In order
o provide basic statistical information about the occurrences of
egative and positive sentiment in the dataset, we use magnitude
oding as suggested by Saldaña (2013), adding the symbols + and
to codes where applicable 10 . Negative expressions are coded

with a minus (e.g., –Reflecting unclean approach), and positive
entiments with a plus (e.g., +Embracing change) respectively.
We write memos during all stages of our data analysis 11 which
e use at a later stage to develop preliminary hypotheses 12 .
After three rounds of initial coding, we reassess the signif-

cance of all codes to decide which ones contribute most to
n incise and complete categorization. As Charmaz suggests, we
se this technique to condense the work of the initial coding
hase to advance the theoretical direction of the work and to
egin with a second cycle of focused coding 13 (Charmaz, 2014).
uring focused coding cycles we develop focus codes 14 and
ategorize documents while we construct and continuously re-
ine a codebook 15 . In our codebook we spell out details like
nclusion- and exclusion criteria, descriptions, and examples for
ach focused code. Because of suggestions made by Lopez et al.
2019), who have shown that comments on Stack Overflow can
eveal expressions of pride and emotional involvement, we also
ncorporate comments made on Stack Overflow into our analysis.
ther additional information obtainable via the Stack Overflow
ebsite, like the history of changes made by the original author
r a moderator are also considered during focused coding. We un-
erstand a post as a potential entryway into a deeper and richer
ontext of an author’s question. Details including the sentimental
ctivity in comments, the editing history of a post both by the
uthor and moderators, the reasons for a moderator to close a
ost, the time it took the community to answer the question or
he fact that it was never answered. Where a post offers these
etails (not all of them do), we capture the information by writing
nalytical memos. One memo about post 55357595 with the title
ruitless pursuit written by one of the authors for example reads:

Memo: Fruitless Pursuit

The author of this post did not receive any feedback from the
community. But almost a month after posting this question,
the author just comments: ‘‘Ended up setting up a webpack
from the ground up’’ Which I think indicates that this person
has gone through quite some torment. However, they do not
express this explicitly.

During the process of focused coding, we also assign a sen-
iment of positive, negative, both, or neutral to each post. Here
6

the assigned sentiment represents the overall attitude of the
author towards testing practices 16 . We use both the coding of
sentiment 10 and assignment of the overall sentiment 16 , to
determine the accuracy of the sentiment analysis pipeline 17 and
to evaluate its use in our filtering process 18 . During the focused
coding cycles, preliminary analytic categories became visible to
us 19 . A large amount of negative posts containing expressions of
desperation for example, developed into the category Discourage-
ment early on. We refine categories that become visible through
the process of coding, using a diagramming technique described
by Saldaña (2013) 20 . Starting with a code like Expressing des-
peration or a post that creates ambiguity when assigned with a
category, we sketch a network of connections to other posts, cate-
gories or codes on paper to explore detailed features of the coded
dataset from different angles. We then use the clustering strategy
as described by Charmaz (2014), grouping posts together and
writing memos, concentrating on commonalities and differences
among those groups of posts 21 . Taking a different perspective
each time, we find different explanations for the meaning and
context of sentiment expressed by practitioners in posts. We con-
tinue the process of analyzing the dataset using these strategies,
until they no longer yield new perspectives and we were able to
formulate preliminary hypothesis and an interpretive theory that
emerged from the process 22 .

3.4. Constructing interpretive theory

Synthesizing the insights and hypothesis we obtained by en-
gaging with the data through the whole data analysis process
described above, we formulate an interpretive theory. Interpre-
tive theory aims to offer accounts for what is happening, how it
arises and explains why it happens (Charmaz, 2014, p. 230). In
this work we approach interpretive theory and its construction
from a pragmatist viewpoint. We recognize that our statements
can only correlate our interpretation of the experience of indi-
viduals with our own experience, and the body of knowledge
from the field that is available and known to us (Mead et al.,
2015). Taking this viewpoint we emphasize practice and action
rather than trying to explain the empirical phenomena described
in the analyzed data by providing laws that are testable by
empirical objective observation. Concretely, interpretive theory
in this paper concerns what authors of posts assume about what
they describe, how these assumptions or views might have been
constructed, and how the authors seem to act on their views. By
taking this approach of theory construction, we want to make
phenomena and relationships between them visible in order to

http://stackoverflow.com/questions/55357595

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

e

4

a
u
s
t
t
s
n
t
s
H
p
s
o
a

Fig. 3. Visualization of flows that display how our manual classification of posts (column two and three) matches with the automatic classification of our sentiment
analysis pipeline (column one). The numbers in brackets in column two and three indicate the agreement of our manual classification with the automatic classification
(first column). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
open up new vantage points for our own and the future work of
others. We understand theorizing as an ongoing activity that can
be continued through this future work (Charmaz, 2014).

4. Results

In this section we describe our findings and offer an interpre-
tation of the data we analyze to answer the research questions.
We first discuss the result of applying sentiment analysis tools
to create a dataset that is rich in sentimental expression. We
then present the results of our qualitative data analysis of this
dataset to first show how software engineers express sentiment
about testing and which underlying factors contribute to their
sentiment. We then present a preliminary interpretive theory
that synthesizes our findings. The data in which this preliminary
theory is grounded, and all artifacts that are discussed in this
section are contained in our replication package (Swillus and
Zaidman, 2022, coded-dataset.qdpx).

We invite the reader to import the dataset contained in the
replication package in the CAQDA-Software of their choice, and
we also want to invite the reader to follow our analysis by
using the online content on Stack Overflow. We enable this by
providing a link to the original post on the Stack Overflow website
that can be followed by clicking on the ID next to the quotation
of a post. Example quotation: ‘‘This is all working as I would
xpect’’(3340677) .

.1. Sentiment analysis for qualitative research

Our sentiment analysis pipeline takes a Stack Overflow post
s its input, classifies each paragraph of the post independently
sing two different sentiment analysis tools and takes the re-
ult of both tools into account to indicate if a post is likely
o be positive, negative, neutral, or mixed in sentiment. Using
his pipeline we created buckets of positive, negative and mixed
entiment posts, containing 50 documents each and added 25
eutral and 25 randomly selected posts to our analysis in order
o validate our method. Our motivation to filter the dataset using
entiment analysis tools stems from research by Sengupta and
aythornthwaite (2020), which indicates that randomly selecting
osts from the Stack Overflow dataset will only provide few
entimental posts, as the majority of posts is objective or focused
n technical issues. Our approach relies on multiple sentiment
nalysis tools to address a problem that was identified by Lin
7

et al. (2018) demonstrating that sentiment analysis can introduce
a strong bias when relying on a single tool. In Fig. 3 we compare
the classification of our sentiment analysis pipeline (left column)
with the sentiment that we actually identified in posts during
initial coding (center and right column). We differentiate between
occurrences of sentimental expressions in documents (center col-
umn) and the overall sentiment of a document (right column).
Using the metrics which are visualized in Fig. 3 we evaluate, how
suitable our method is to create a dataset that can be used to find
answers for our research questions and if it is applicable for other
qualitative studies on Stack Overflow.

4.1.1. Occurrences of sentimental expressions in posts
Occurrences of sentimental expressions in posts were iden-

tified and annotated during the first coding cycle when posts
were coded line by line. The line ‘‘I understand that using
aunit can be a time-saver’’(3412892) was classified as positive
for example, but the same post also contains the expression ‘‘I
looked at the aunit manual and I didn’t find easy examples
to start with’’ , which was classified as negative. Post 3412892,
which we took from the positive bucket, was therefore assigned
the category of both sentiments at the level of expressions. The
flow from the first to the second column in Fig. 3 shows this
relation, presenting which posts from each of the sample buck-
ets contained expressions of the respective sentiment. 20 posts
from the bucket of positive posts for example indeed contained
one or more positive sentimental expressions and no negative
ones. In Fig. 3 this relation is represented by the flow from
positive in column one to positive in column two, highlighted
in green. However, 2 of the 50 posts from the same bucket
did not contain a positive expression but at least one negative
expression (flow from positive to negative), 7 posts contained
at least one expression of each sentiment (flow from positive to
both) and 21 posts from the positive bucket did not contain any
sentimental expressions (flow from positive to neutral). Flows
from the negative and positive buckets to the neutral category in
column two indicate that a lot of posts identified as positive or
negative by our pipeline in fact did not contain any sentimental
expressions. Comparing this lack of accuracy with the results for
documents that we obtained from the random bucket suggests
however that our sentiment analysis pipeline indeed managed
to select more sentimental posts than a random selection would
have. Crucially, we did not find a single positive expression in the
set of 25 randomly selected posts. Additionally, comparing the

http://stackoverflow.com/questions/3340677
http://stackoverflow.com/questions/3412892
http://stackoverflow.com/questions/3412892

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

r
t
e
T
a
a
a
p

4

o
c
s
f
n
t
t
i
(
a
a
t
t
o
p
s
T
c
n
i
t
n
o
p
t
t
t
f
d
s
s
p
i
e
t
t
t
(
p
W
c
b
t
a

4

t
f
w
t

emaining flows between column one and two in Fig. 3, we see
hat the majority of posts that turned out to contain sentimental
xpressions were indeed extracted from the respective bucket.
he findings of this first analysis of the accuracy of the sentiment
nalysis pipeline therefore supports our hypothesis that a semi-
utomated approach proves beneficial when used to create and
nalyze a subset of Stack Overflow posts with both negative and
ositive sentiment.

.1.2. Overall sentiment of posts
In Fig. 3 the last column shows the conformity or difference

f the overall sentiment of posts determined manually by us in
omparison with our tool pipeline. We determined the overall
entiment of a user towards software testing during the second,
ocused coding cycle and assigned a polarity of neutral, positive,
egative, or both to each post. During this analysis, we realized
hat 39 posts were not usable for further inquiry. The majority of
hose posts were too short (34); one author simply asks ‘‘Which
s the best framework for automatic testing in octave? Why?’’
2073244) . The other five of those unusable posts were identified
s unrelated to our work, like a post in which a practitioner
sks ‘‘How to use Jquery Ajax Cache’’(2398092) , mentioning
esting but referring to something that is unrelated to automated
esting. The dark green and dark red flows in Fig. 3, from column
ne via column two to column three show that posts from the
ositive and negative buckets that contain expressions with that
entiment were mostly leaning into that direction overall as well.
here are only a few outliers of posts that were for example
lassified as negative by our pipeline and indeed only contained
egative expressions but were found to express an overall pos-
tive sentiment. One such post contains the negative expression
hat ‘‘[it] is copy-paste code, which I thought was generally
ot recommended’’(9271925) , not mentioning anything positive
r negative apart from that. However, the overall sentiment of the
ost was interpreted as positive as the author shows a construc-
ive willingness to improve while being open and concious of
heir own mistakes. In total, there were only 12 such cases where
he sentiment classification of the pipeline completely diverged
rom our classification. Documents from the both bucket of our
ataset, even when they indeed contained expressions of both
entiments were in most cases negative overall. The analysis also
hows that the both bucket contributed the most sentimental
osts to our dataset. Our analysis of the overall sentiment of posts
ndicates that subtle remarks and the context of a sentimental
xpression makes the overall classification of posts difficult. Sub-
racting unrelated (5) posts, randomly selected posts (25) and
hose that were too short for analysis (34), we can report that
he sentiment prediction was correct for 46% of all documents
65 of 141). Overall our approach yielded a dataset in which ap-
roximately half of all documents were sentimental (108 of 200).
e provide an annotation file with our replication package that

ontains sentiment annotations for each post that we analyzed on
oth the level of expression and overall, including the source code
o generate graphs and statistics from that annotation file (Swillus
nd Zaidman, 2022, data/annotations.json).

.2. Sentiments that affect attitudes

Before describing and comparing occurrences of sentimen-
al expressions which we identify in the dataset by presenting
ocused codes and analytical categories, we provide examples
hich demonstrate how we moved from the data, through codes,
owards a more abstract interpretive theory. Document 878848
was first coded line by line and was assigned, among others, the
initial code –Expecting a lot of Work From Mocking. The code
with the prefix ‘‘–", which indicates that the expression reflects
8

negative sentiment, was assigned to the following line: ‘‘Use Easy-
Mock, write looooong mocking sequence. VERY BAD solution: hard to
add initial data, hard to change data, big test debugging promices’’..
During the second and third initial coding cycle the code was
then changed to – Expecting Mocking to be Bad Solution. Other
posts hold similar notions and were coded with the same code
(e.g., ‘‘There is no point in mocking out a whole ngrx entity
store, so I would just like the selector to return exactly that
object and be done with it.’’(58840818)). During focused coding,
the code changed once again and became more abstract and
analytical: ‘‘Judging subjectively". The comparison of posts with
similar codes revealed that expectations which are expressed
sentimentally, like the examples above, are not based on objective
observations but on subjective perceptions often connected to
personal experience. The intention (or action) of the author here
does not seem to be the objective revelation of their expectations,
but the subjective judgement in order to position themselves. In
one memo titled Experienced ambiguity this notion of subjective
judgement and ambiguity was noted by one of the authors during
focused coding.

Memo: Experienced ambiguity

The practitioner is struggling with adopting a new framework.
Some things are easy and some are challenging. The prac-
titioner is faced with a situation in which there is no easy
or obvious way forward. They are stuck and forced to make
an uncomfortable decision. However the willingness to resolve
the ambiguity here still reflects a very positive attitude. The
practitioner already has some clues and they are reasoning
from experience. Looking at the comments, I realized that the
post was closed quite quickly. It only took about 10 h and
the issue was solved by a maintainer of the framework project
which is mentioned in the post. The fact that the author of the
post reacts very enthusiastically supports my hunch that their
attitude was actually quite positive all along.

The memo was originally created when analyzing another
post (823276), but was then connected to post 878848 as well.
Later, during a diagramming session, the aforementioned memo,
some related focused codes and both posts (823276 and 878848)
were assigned to a collection labeled Confidence which generated
new memos and more abstract perspectives. Both this collection
and the memo mentioned above also contributed to the forming
of the categories Aspiration and Exploration. Post 878848, which
ultimately ended up in the category Aspiration and was cate-
gorized to reflect both positive and negative sentiment, further
revealed what might be the conditions for aspiration to arise
in the context of software testing. We compared the post with
others of the same category and identified that knowledge and
experience seems to enable practitioners to stay positive despite
being stuck in situations where there is no obvious way forward.
Concretely, we hypothesize that the notion of explicitly com-
paring capabilities of approaches, not only in terms of features,
but also in terms of maintainability, indicates confidence and
experience of the author on Stack Overflow. Ultimately, memos
written about those considerations and others enabled us to
construct the preliminary interpretive theory which we present
at the end of this section. Specifically, the aforementioned post
878848 supports the hypothesis that experience and knowledge
can give practitioners an extra degree of trust and confidence,
from which an aspirational attitude towards testing seems to
emerge.

http://stackoverflow.com/questions/2073244
http://stackoverflow.com/questions/2398092
http://stackoverflow.com/questions/9271925
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/58840818
http://stackoverflow.com/questions/823276
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/823276
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/878848

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

4

(
o
a
d
w

t
t

i
T
c

p
a
o
a
t
p
w
a
[
s
t
o
c

a
o
a
a
(
a
d
i
w
l
s
a
i
W
m
m
f
u
t
b

t
.2.1. Focused codes
Using focused coding techniques as recommended by Charmaz

2014), we identified 22 codes that were assigned to a total
f almost 700 different text sections of the 200 posts that we
nalyzed. Table 1 lists all codes, a description for each, and a
iagram that indicates how many posts that contained the code
ere identified to be either positive, negative, neutral or of both

sentiments. The full codebook that we provide as part of the
replication package of this paper contains inclusion and exclusion
criteria, and examples for each code (Swillus and Zaidman, 2022,
codebook.ods).

Comparing the codes and corresponding posts with each other
reveals underlying sentiment of practitioners that relate to testing
practice. The codes reveal patterns that affect attitude and testing
practices of software engineers and allow us to propose answers
to RQ1.

RQ1

How do software engineers express sentiment about testing
on Stack Overflow?

In total, the dataset that we have analyzed contains 108 sen-
imental posts. In 32 posts, practitioners expressed positive sen-
iments, 63 posts were negative, and 13 contain both sentiments.

Total amount of sentimental posts:
32 13 63 (108)

To highlight some of the patterns which show how sentiment
s expressed, we elaborate on the eight most occurring codes from
able 1 and explain with examples what was captured with those
odes.
Judging Subjectively (F.7). About one third of sentimental

osts (32 of 108) contained an explicit subjective statement about
pparent characteristics or value. Subjective expressions like that
f one practitioner who ‘‘fell in love with the crisp syntax [of
framework] immediately’’(1072952) underline the attitude of

he author. Negative attitudes connected to judgement like one
ractitioner reflecting on a specific practice which ‘‘seems like a
aste of time’’(29894788) were rarer in the dataset than positive
ttitudes. One practitioner for example reflects positively ‘‘that
running tests concurrently] will force [them] to refactor
ome code to make it thread-safe, but [they] consider that
o be a good thing :-)’’(4970907) . In total, more than one third
f all positive posts (14 of 32) contained a subjective judgement
ompared to only every fifth negative post (12 of 63).
Lack of Knowledge (F.8), Facing Uncertainties (F.5) and Re-

ssuring the Reader (F.2). Outlining the limits or lack of their
wn knowledge and abilities by stating for example that they
re ‘‘a newbie’’(29894788) , or indirectly pointing out that they
re ‘‘stuck trying to [...] test an extremely simple project’’
62177256) occurs both in positive and negative posts in around
quarter (27 of 108) of all sentimental posts. In addition to
escribing their own limits by admitting a lack of knowledge, we
dentified descriptions of ambivalence (‘‘Which is the correct
ay?’’(41262775)), doubt (‘‘Has anyone done anything simi-
ar before or is this crazy?’’(7213917)), or uncertainty (‘‘It
eems to me that, I maybe should be creating a Fake Materi-
lRepository, rather than mocking it?’’(23534123)) expressing
nsecurity in around a third (35 of 108) of all sentimental posts.
e also found statements indicating that the author is trying to
aintain or restore their confidence by reassuring the reader in
ore than a third of sentimental posts (43 of 108). One author

or example is stuck in a situation where they observe something
nexpected and they ‘‘want to understand why that is like
his’’(39592949) , wondering if ‘‘there is a better way’’ , even
eing afraid that their ‘‘code is just bad’’ but still holding on to
9

heir approach as they reassure the audience that ‘‘When [they]
change [something,] everything works fine’’ .

Pursuing Ambition (F.3) and Willing to Improve (F.4). Un-
certainties and a lack of knowledge were found equally frequent
in negative and positive posts, but descriptions of constructive
attitudes to achieve a goal that goes beyond just getting the job
done were mostly found in positive posts, or posts that contain
both sentiments. We identified direct expressions of ambition
by practitioners for example ‘‘to create a support library that
could be used by all test projects’’(18399610) , or mentioning
the context of a challenge that underlines its ambitious nature
like ‘‘writing acceptance tests for a single feature of a large
App [, needing] a lot of data for this and [having] a lot of
scenarios to test’’(28129825) . Those expressions were found
in over a third of positive posts (13 of 32) but contrary only
in around one fourth of negative posts (15 of 63). Related, and
very similar to these expressions are verbalized intentions to
improve, for example by wanting to ‘‘structure [a] unit test in
a better way’’(43275116) or by asking for ‘‘the best practice in
[a particular] case’’(46177956) . Just like mentions of ambitions,
expressions of a willingness to improve occurred in more than
one third of all positive posts (14 of 32), and contrarily only in less
than a fourth of negative posts (11 of 63). Together, expressions of
ambition and willingness to improve cover almost three quarters
of all positive posts (23 of 32).

Expressing Desperation (F.6) and Unexpected Behavior
(F.1). Contrarily to ambitions we also found expressions of de-
spair by practitioners who are stuck saying that they for example
‘‘googled wide and far, but did not get any answer’’(58840818)
, or remain completely helpless, begging for support like one
practitioners who asks: ‘‘Can somebody please, please, please
for Pete’s sake [...] fix this bug that thousands are having?’’
(44762082) . We did not observe expressions of desperation in
positive posts or posts with both sentiments, but we did find
them in almost half (31 of 63) of negative posts. Additionally, we
identify descriptions of unexpected behavior in more than half of
negative posts (41 of 63). Covering a big fraction of the dataset,
unexpected behavior is experienced by practitioners in many dif-
ferent contexts, referring to testing practices or the development
environment (‘‘When I test it in browser, everything is OK,
because App\User exists, but when I test my plugin, App\User
doesn’t exists’’(52760148)), or referring to something that is not
directly related to testing but discovered through it like facing
a floating point precision error for the first time, noticing that
‘‘When I’m running the tests it’s broken because 0.1 is not
equal to 10%’’(63886733) .

4.2.2. From codes to categories
We use codes to compare posts with each other in a structured

way. Codes enable us to scrutinize the dataset from different
perspectives. Co-occurrences of codes within posts for example
reveal patterns in the data that can be indicators for categories.
We identified four major factors that describe the non-technical,
situational context of sentimental posts with which we can cat-
egorize the posts. In this section we present each category and
their characteristics, highlighting key insights that emerged from
the data during our analysis when categories were outlined.
The categories reveal underlying currents that affect the testing
practices of software engineers. Categories which highlight what
influences their attitude and motivation are the basis of what we
propose as answers to RQ2.

RQ2

Which factors affect sentiment of software engineers to-
wards testing practices?

http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/29894788
http://stackoverflow.com/questions/4970907
http://stackoverflow.com/questions/29894788
http://stackoverflow.com/questions/62177256
http://stackoverflow.com/questions/41262775
http://stackoverflow.com/questions/7213917
http://stackoverflow.com/questions/23534123
http://stackoverflow.com/questions/39592949
http://stackoverflow.com/questions/18399610
http://stackoverflow.com/questions/28129825
http://stackoverflow.com/questions/43275116
http://stackoverflow.com/questions/46177956
http://stackoverflow.com/questions/58840818
http://stackoverflow.com/questions/44762082
http://stackoverflow.com/questions/52760148
http://stackoverflow.com/questions/63886733

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804
Table 1
Focused codes, their description and the co-occurrences with respective sentiments. The co-occurrence
bar-chart indicates in how many documents of the overall sentiments positive, negative, neutral or both
the respective code was identified. Codes are ordered by the amount of documents in which they were
found.
Focused Code (F.X) Sentiment occurrence

Description Positive Both Negative Neutral (Σ)

Observing Unexpected Behavior (F.1) 1 41 20 (62)

An expression that reveals that something does not work as the author expects. Like a dump of error
logs that seem to be nonsensical to the author.

Reassuring the Reader (F.2) 13 4 26 18 (61)

Making a statement to restore confidence. Like a claim that a manual has been read, or a tutorial has
been followed.

Pursuing Ambition (F.3) 13 4 15 15 (47)

Constructive attitude to achieve a goal. The implementation of something, extension of knowledge or
something else that goes beyond just getting the job done.

Willing to Improve (F.4) 14 4 11 13 (42)

Author indicates that they have an ambition to change and improve something.

Facing Uncertainties (F.5) 10 9 16 8 (43)

Expression of insecurity through description of ambivalence or doubt.

Expressing Desperation (F.6) 31 7 (38)

Author expresses their desperation directly, either by asking a question or by indicating that they are
clueless.

Judging Subjectively (F.7) 14 6 12 2 (34)

Explicit subjective valuation of the apparent characteristics, behavior or value of something.

Admitting Lack of Knowledge (F.8) 5 6 16 9 (36)

Direct or indirect expression of a lack of knowledge.

Searching for a New Path (F.9) 10 5 5 14 (34)

The goal or approach has been thought through but the author hunches that there is another, better
way.

Contemplating Complexity (F.10) 7 5 10 9 (31)

Author is describing something that has to do with the complexity of a setup or use-case. Complexity
is either highlighted reflected implicitly.

Missing Capability (F.11) 2 4 13 11 (30)

Description of issues, circumstances, hurdles or other discomforts that stop one from reaching a goal.
Capabilities can be the capabilities of a software, its limitations, but also the own capabilities to solve
an issue.

Referring to External Information (F.12) 8 3 10 8 (29)

Reference is made to a resource that is accessible to the author. Documentation, blog posts, books etc.

Contemplating Failure / Difficulties (F.13) 5 3 15 4 (27)

Author shares their opinion about what they find difficult or failure they are facing.

Looking for Starting Point (F.14) 7 1 11 8 (27)

Request for a starting point to tackle something that is unknown or unclear.

Facing an Obstacle (F.15) 1 1 14 3 (19)

An obstacle makes it impossible to continue with a task. The author is stuck because of the obstacle.

Reflecting Experience (F.16) 6 4 4 1 (15)

Positive or negative reflection which is related to past experience.

Struggling to Understand (F.17) 1 3 9 2 (15)

Author is struggling to grasp the meaning of a faced problem or a concept they want to learn. Like
admitting that they are not able to comprehend something or that something is hindering them to
learn something.

Seeing Own Mistakes (F.18) 4 1 3 7 (15)

Realization of an error or a misconception. Revelation of having done something in the wrong way or
in a way that can be improved.

Comparing Different Approaches (F.19) 6 2 2 5 (15)

Description of multiple angles to solve an issue or a task.

Trial and Error (F.20) 7 5 (12)

Describing different attempts to get to a solution which are all unsuccessful.

Aiming at a workaround (F.21) 6 5 (11)

Practitioner identifies that a situation can be solved by using some workaround which is probably not
the ideal solution.

Excluding Solution (F.22) 2 2 (4)

There is a solution for a problem but the author does not want or cannot use it.
10

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

D

)

i
f
t

d

o
b

u
o
t
A
p
i
1
s
o
6
e
e
o
4

Fig. 4. Focused codes and how they are related to the analytical category
iscouragement .

Discouragement (C.1) 42 10 (52

We found that attitude in negative sentimental posts
s often (42 out of 63) expressing discouragement (C.1)
rom testing. Unexpected behavior (F.1) can bring efforts
o a halt [6441026, 37439708, 53935108, 44095109, 31052776,
32408965, 55644155, 56577906], sometimes made explicit in posts
by references to an obstacle that is faced (F.15) [8338348,
32622060, 20480791, 38932495, 6376925, 6376925]. Expressions of
espair (F.6) underline the weight of these setbacks in

those posts [3736614, 58840818, 67734277, 53935108, 17068154,
33607092, 44762082, 61782427]. When authors sentimentally
express discouraging setbacks in their testing efforts by
contemplating difficulties or failure (F.13) they are at the same time
ften reassuring the reader (F.2), implying that the problem cannot
e blamed on them [63795587, 14942409, 19490583, 18083834,

19799393, 25264248, 26370705]. Statements that a tutorial or doc-
mentation (F.12) was followed and thoroughly read, or reports
f elaborate debugging (F.20) demonstrate the confidence of
he author [13309278, 32009877, 34889215, 6579379, 14701609].
complex development environment (F.10), including company

olicies or unique infrastructure configuration is mentioned
n the context of such cases [6475042, 42211311, 14554366,
8038203, 17068154, 43435227]. In complex situations, even a
mall step, like writing a unit test, can cause a lengthy and
ften fruitless pursuit [52760148, 37527179, 55357595, 36608077,
7734277, 14942409]. When tools, methods, and concepts are not
asily understandable (F.17), especially when documentation is not
xtensive enough (F.11), practitioners are discouraged to hold
n to their ambition [44010437, 63795587, 61769730, 19799393,
3435227, 7292700, 62177256] (see Fig. 4).

Recapitulation: Emergent Category Discouragement

Discouraging sentiment about testing is provoked in com-
plex development environments. This includes company
policies or unique infrastructure configuration. When such
factors combine with technical issues, experienced by the
practitioner as unexpected behavior, they create obstacles
that discourage practitioners from testing. A complex en-
vironment makes the usage of a standard testing tool chain
unexpectedly challenging, especially when practitioners lack
experience in testing. Documentation or other external re-
sources do not help in these cases and long fruitless pursuits
of trial and error are reported (see Fig. 4).
11
Fig. 5. Focused codes and how they are related to the analytical category
Exploration.

Exploration (C.2) 13 5 10 16 (44)

Contrary to posts in which a discouraging sentiment is expressed,
posts of practitioners who approach testing with an exploratory
(C.2) sentiment, reflect both positive and negative attitudes. In the
context of exploration, reaching out to the Stack Overflow com-
munity is motivated by an ambition (F.3) to overcome difficulties
or failure (F.13). [57299238, 29305776, 53376098, 3340677]. We ob-
serve that practitioners have a positive attitude when they indi-
cate a willingness to improve(F.4), [53657417, 41135403]especially
if they are searching for a new path (F.9) [14602848, 946069,
6022092, 7213917]to solve a problem by asking for available best
practices in a particular situation. Resources (F.12) like a blog
post or documentation or other external factors seem to trigger
positive ambitions of practitioners in those cases [67709670,
32046670, 4659714]. When practitioners are struggling with basic
concepts however, for example by looking for a starting
point (F.14), they show a negative attitude [61342139, 55176792,
3412892, 57609818]. Exploration with this negative attitude is
connected to acknowledgement of a lack of knowledge
(F.8) [59729159, 46713912], or uncertainties (F.5) about practices.
[12659810, 7960832, 4288448, 2894608, 823276]. Crucially, in cases
where practitioners that explore testing report unexpected be-
haviour (F.1), their attitude is exclusively negative [49480999,
37439708, 29305776](see Fig. 5).

Recapitulation: Emergent Category Exploration

Exploratory sentiment to discover and learn is expressed
both positively and negatively by practitioners. Trust into
method or technology based on experience or inspiring
external impulses arouses positive attitudes. When explo-
ration serves clarification in situations of uncertainty, it
is the experience of unexpected behavior of technology
that causes negativity especially when practitioners lack
experience (see Fig. 5).

Reflection (C.3) 8 3 11 8 (30)

We identify negative and positive posts in which practitioners
sentimentally and critically reflect on their testing practices or
understanding. Reflection of experiences (F.16) and expressions
of an ambition to improve (F.4) when they are facing
uncertainties (F.5) form the baseline of this category [398004,
59781140, 49713083]. Similar to the posts we categorized as
exploration, uncertainties of practitioners (F.5) are directly ex-
pressed or indicated through attempts to reassure the reader (F.2)
[41262775, 58684292, 687748, 29894788]. In this category how-
ever, we observe that practitioners are more aware of their
mistakes (F.18) or their struggle to understand (F.17) aspects of

http://stackoverflow.com/questions/6441026
http://stackoverflow.com/questions/37439708
http://stackoverflow.com/questions/53935108
http://stackoverflow.com/questions/44095109
http://stackoverflow.com/questions/31052776
http://stackoverflow.com/questions/32408965
http://stackoverflow.com/questions/55644155
http://stackoverflow.com/questions/56577906
http://stackoverflow.com/questions/8338348
http://stackoverflow.com/questions/32622060
http://stackoverflow.com/questions/20480791
http://stackoverflow.com/questions/38932495
http://stackoverflow.com/questions/6376925
http://stackoverflow.com/questions/6376925
http://stackoverflow.com/questions/3736614
http://stackoverflow.com/questions/58840818
http://stackoverflow.com/questions/67734277
http://stackoverflow.com/questions/53935108
http://stackoverflow.com/questions/17068154
http://stackoverflow.com/questions/33607092
http://stackoverflow.com/questions/44762082
http://stackoverflow.com/questions/61782427
http://stackoverflow.com/questions/63795587
http://stackoverflow.com/questions/14942409
http://stackoverflow.com/questions/19490583
http://stackoverflow.com/questions/18083834
http://stackoverflow.com/questions/19799393
http://stackoverflow.com/questions/25264248
http://stackoverflow.com/questions/26370705
http://stackoverflow.com/questions/13309278
http://stackoverflow.com/questions/32009877
http://stackoverflow.com/questions/34889215
http://stackoverflow.com/questions/6579379
http://stackoverflow.com/questions/14701609
http://stackoverflow.com/questions/6475042
http://stackoverflow.com/questions/42211311
http://stackoverflow.com/questions/14554366
http://stackoverflow.com/questions/18038203
http://stackoverflow.com/questions/17068154
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/52760148
http://stackoverflow.com/questions/37527179
http://stackoverflow.com/questions/55357595
http://stackoverflow.com/questions/36608077
http://stackoverflow.com/questions/67734277
http://stackoverflow.com/questions/14942409
http://stackoverflow.com/questions/44010437
http://stackoverflow.com/questions/63795587
http://stackoverflow.com/questions/61769730
http://stackoverflow.com/questions/19799393
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/7292700
http://stackoverflow.com/questions/62177256
http://stackoverflow.com/questions/57299238
http://stackoverflow.com/questions/29305776
http://stackoverflow.com/questions/53376098
http://stackoverflow.com/questions/3340677
http://stackoverflow.com/questions/53657417
http://stackoverflow.com/questions/41135403
http://stackoverflow.com/questions/14602848
http://stackoverflow.com/questions/946069
http://stackoverflow.com/questions/6022092
http://stackoverflow.com/questions/7213917
http://stackoverflow.com/questions/67709670
http://stackoverflow.com/questions/32046670
http://stackoverflow.com/questions/4659714
http://stackoverflow.com/questions/61342139
http://stackoverflow.com/questions/55176792
http://stackoverflow.com/questions/3412892
http://stackoverflow.com/questions/57609818
http://stackoverflow.com/questions/59729159
http://stackoverflow.com/questions/46713912
http://stackoverflow.com/questions/12659810
http://stackoverflow.com/questions/7960832
http://stackoverflow.com/questions/4288448
http://stackoverflow.com/questions/2894608
http://stackoverflow.com/questions/823276
http://stackoverflow.com/questions/49480999
http://stackoverflow.com/questions/37439708
http://stackoverflow.com/questions/29305776
http://stackoverflow.com/questions/398004
http://stackoverflow.com/questions/59781140
http://stackoverflow.com/questions/49713083
http://stackoverflow.com/questions/41262775
http://stackoverflow.com/questions/58684292
http://stackoverflow.com/questions/687748
http://stackoverflow.com/questions/29894788

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

R

t

p
t
1

i
i
d
c
w
o
t
t
t
8
d
[

[
a
t

e
s
t
t
p
p
o
P
a
t
i
c
i
t
o
t
b
a
p
c
r
t
t
p
a
p
i
p

4

a
O
t
t
t
a
a
i

Fig. 6. Focused codes and how they are related to the analytical category
eflection.

esting [42275344, 4991264, 4970907, 67746901, 39892949]. Posts
that reflect a positive attitude contain analysis and comparisons
of approaches (F.19) [46177956, 41816229]. In contrast, when
ractitioners contemplate failure (F.13) or complexity (F.10)
heir attitude is almost exclusively negative [64464005, 1064403,
8941509, 25325133, 42374231](see Fig. 6).

Recapitulation: Emergent Category Reflection

Application of testing practices can lead to ambiguity. Ap-
plying the right method in a particular situation for example
can be challenging. Awareness of blind spots and knowl-
edge of the great variety of tools and methods, is a factor
that allows practitioners to keep a positive attitude. Variety
and ambiguity can than even be appreciated. When fail-
ure or complications cause ambiguity however, sentimental
reflection is negative (see Fig. 6).

Aspiration (C.4) 11 3 5 (19)

Opposite to posts from the category of discouragement, we
dentify aspiration in posts which express almost exclusively pos-
tive attitudes towards testing. Specifically, aspiration reflects a
egree of freedom that allows exploration and discovery in a
onstructive way. In particular, the motivation is not to find a
orkaround or to overcome an obstacle, nor do authors elab-
rate on extensive debugging or trial and error. Instead, au-
hors pursue ambitions (F.3) that go beyond a particular situa-
ion [34657563, 22246656]and express intentions to improve (F.4)
heir testing practices [16938742, 14961412, 48113464, 6684337,
78848]. Facing complex situations (F.10) is here not a cause for
istress, but rather a motivation to improve testing practices
28129825, 1072952, 23062243]. Motivation is expressed by au-
thors through explicit positive judgments of value (F.7) of testing
280645]. The post on Stack Overflow can in those cases be an
ttempt to find a new way (F.9) to tackle a problem [9271925]or
o probe for a starting point (F.14) [1006189, 52539907](see Fig. 7).

Recapitulation: Emergent Category Aspiration

Understanding of long term goals and the value of testing
arouses aspirational sentiment. Not being trapped in a prob-
lematic or complicated situation and not having to deal with
an immediate obstacle creates space that is required for this
aspirational attitude. It allows practitioners to build essen-
tial knowledge before their ignorance produces problems
(see Fig. 7).
12
Fig. 7. Focused codes and how they are related to the analytical category
Aspiration.

4.2.3. Factors that arouse sentiment
To answer RQ2 (Which factors affect sentiment of software

ngineers towards testing practices?), we summarize key in-
ights we gained by developing the above categories. We identify
hat practitioners on Stack Overflow express sentiments when
hey are either discouraged (C.1) from pursuing their goal, as-
iring (C.4) towards something that goes beyond their usual
ractice, reflect (C.3) on their testing experience and knowledge,
r when they are exploring (C.2) what is still unfamiliar to them.
osts which indicate aspiration (C.4) are positive in sentiment,
nd posts that describe notions of discouragement (C.1) from
esting mostly reflect negative sentiment. Common factors can be
dentified even among those two almost inverse categories. Con-
retely, we identify that the experience of unexpected behavior
s an important factor that leads to negative sentiment expressed
hrough discouragement. Even when exploring (C.2) or reflecting
n (C.3) testing practices to learn and gain knowledge practi-
ioners express negative sentiments when they face unexpected
ehavior that causes ambiguity. Additionally, data suggests that
n absence of those unexpected setbacks enables conditions for
ractitioners to aspire. Through reflection and exploration, these
onditions allow them to build knowledge and experience. Expe-
ience, which is likely to prevent those unexpected setbacks in
he future. Trust in testing practices that is established through
hese experiences contributes to positive sentiments when new
ractices are explored. We find the same to be the case for
n awareness of blind spots. Reflection (C.3) on their testing
ractices that express an awareness of blind spots reflects pos-
tive sentiment and attitude. Uncertainty in those cases inspire
ractitioners instead of discouraging them.

.3. Trust, complexity and testing – preliminary theory

We set out to discover what makes practitioners sentimental
bout testing by looking at how they express sentiment on Stack
verflow. We want to know which factors and situations con-
ribute to sentiment. By analyzing, categorizing, and comparing
he dataset, we got a glimpse of what the experience of practi-
ioners, who ask questions on Stack Overflow must be like. Codes
nd categories described in the previous sections enabled us to
nalyze the dataset systematically using techniques like cluster-
ng and diagramming. In this section we present a preliminary

http://stackoverflow.com/questions/42275344
http://stackoverflow.com/questions/4991264
http://stackoverflow.com/questions/4970907
http://stackoverflow.com/questions/67746901
http://stackoverflow.com/questions/39892949
http://stackoverflow.com/questions/46177956
http://stackoverflow.com/questions/41816229
http://stackoverflow.com/questions/64464005
http://stackoverflow.com/questions/1064403
http://stackoverflow.com/questions/18941509
http://stackoverflow.com/questions/25325133
http://stackoverflow.com/questions/42374231
http://stackoverflow.com/questions/34657563
http://stackoverflow.com/questions/22246656
http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/14961412
http://stackoverflow.com/questions/48113464
http://stackoverflow.com/questions/6684337
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/28129825
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/23062243
http://stackoverflow.com/questions/280645
http://stackoverflow.com/questions/9271925
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/52539907

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

i
p
t
p
q
t
F
m
s
o
i
m
c
w
p

d
(
c
(
‘
f
r
d
n
b
o
p

t
a
w

t
t
a
f
m
e
c
a
p
a
g
t
o

nterpretive theory that describes what became visible from our
erspective, which is grounded in the analyzed dataset. To let
he data speak for itself, we provide references to the original
osts on Stack Overflow immediately in the text. With each
uotation from posts, we also provide a reference to the code
hat was assigned to the respective text section where applicable.
ig. 8 illustrates our preliminary theory as an interplay of the
ost crucial factors which we identified to have an influence on
entiment towards testing on Stack Overflow. We first elaborate
n the right side of the figure, which shows discouragement (C.1)
n the context of software testing, and how the negative senti-
ent around it is aroused in situations where complexity plays a
entral role. We then turn to the left side of the figure, elaborating
hich role exploration (C.2), reflection (C.3) and aspiration (C.4)
lay in the context of testing.
‘‘I was starting to break as much as I was fixing. So I

ecided I’ll start from scratch, with TDD this time’’(29894788)
F.3). Testing practices and approaches are multi faceted. Even in
ases where practitioners are just ‘‘having a play with testing’’
28129825) (F.4) to improve their code base, or just to
‘understand the essence of it’’(44202672) (F.3), they are quickly
aced with multiple tools and have to make difficult choices
egarding the technique or tools to adopt for a use-case. The
ataset that we analyzed demonstrates that testing software is
ot a single tool or single method practice. We observe that the
ig landscape of software testing tools and the resulting diversity
f possibilities to practice testing amplifies ambivalence when
ractitioners lack experience and knowledge [878848, 1006189,

12950163, 601973, 17320143]. The question whether or not ‘‘I [am]
missing something in my pursuit of cool and trendy stuff
[...] ditching the old proven [ways]’’(2894608) (F.5) expresses
he lingering insecurities of practitioners who are plunging into
world where many and often unexpected aspects of soft-
are engineering suddenly come together [823276, 43435227,

1454949]. As software projects get more complex, the ambition
‘‘to fully automate testing [...] in the most simple way pos-
sible’’(16938742) (F.3) using advanced practices that are able to
tackle this increased complexity grows as well. Our investigation
indicates that this clash of lack of experience in testing on the
one hand, and complicated challenges on the other hand drives
attitudes around software testing [4991264, 43435227]. As shown
in Fig. 8, as a circular pattern, we identify that a growth in com-
plexity of either the development environment or the software
project itself makes practitioners ambitious to learn (more) about
software testing [1072952, 16938742, 1006189]. But a high level
of complexity of production code (top of Fig. 8) also requires
complex testing code which in turn requires more than basic
knowledge of testing (bottom of Fig. 8). The interplay of growing
ambition, a complex environment, and a lack of knowledge is
reflected in a question about an easy way to write a unit test. The
practitioner asks: ‘‘I’m refactoring one big complicated piece
of code [...]. So, I need to write a unit test’’ (F.3) ‘‘[...]. After
googling I came up with 2 ideas’’ (F.8) ‘‘[...]. Am I missing some
silver bullet? Possibly, DBUnit is the tool for this?’’(878848)
(F.9). Unfortunately, practitioners only start to face their ambi-
guities and insecurities around testing when they are ‘‘starting
a new project, that promises to be much bigger and more
involved than anything [they] have done in the past’’(6684337)
(F.4). In other words: instead of learning testing practices, start-
ing with simple comprehensible setups and then iteratively build-
ing knowledge as the complexity of test suites and source code
under test grow simultaneously, practitioners throw themselves
into cold water when it is too late for simple, approachable so-
lutions [19490583, 6475042, 53657417, 4659714]. When the silver
bullet is not found, they get discouraged to continue with their
ambition [878848, 63795587, 14942409, 7960832]. Our data analy-
sis suggests that discouragement (C.1) is often connected to this
13
phenomenon as expressions of desperation (F.6) indicate strong
negative sentiment when practitioners are stuck (F.15), some-
times after they already ‘‘googled wide and far’’(58840818) (F.6),
‘‘searching for days to find an answer’’(43435227) (F.6). Un-
helpful gathered information (F.12) which is often referenced in
Stack Overflow posts only increase negative sentiment, and some-
times leads practitioners to identify unexpected behavior (F.1) of
testing tools and libraries as weird or ‘‘strange behavior, because
documentation says [that something should work. But:] Well,
this is not happening.’’(63795587) (F.7) [19490583, 26370705]. An
explanation for this could be that documentation of testing tools
and tutorials for beginners are more likely to focus on simple
and standard use-cases [57609818, 6475042, 13309278, 37527179,
34889215, 14701609]. Based on our anecdotal experience as soft-
ware engineers using testing practices, we hypothesize that a
divergence from best-practices in both software design and de-
velopment environment, requires practitioners to rely on testing
experience. In the context of highly inventive or original ap-
proaches, simple tutorials for testing are not applicable. It is very
likely that more than one testing library is required in those
complex non-standard software environments.

Complexity in Testing Practice

Before we set out to investigate what lies behind sentiment
around software testing on Stack Overflow, we assumed
that it will mostly be connected to tool failure or bugs.
We expected to find sentimental complaints about specific
(missing) features in a specific version of libraries for ex-
ample. Our analysis shows however that it is more likely to
be a struggle in overcoming overwhelming complexity with
methods or combinations of tools that practitioners are not
experienced enough with which causes negative sentiment.

Testing software can confront practitioners with misconcep-
tions or flaws of their software projects. One practitioners asks:
‘‘Is this a valid unit test? If not, is it because I have bad design
[...]? Because currently, I see absolutely no benefit in writing
this test’’(44202672) (F.5). Even as the majority of sentimental
post that we analyzed reveal discouragement and negativity as
described in the preceding paragraphs, some authors maintain
a constructive and even aspirational attitude (C.4), even when
they are facing difficulties (F.15). We observe that positive posts
rarely contain descriptions of unexpected behavior or expressions
of desperation. In contrast, even in difficult situations, practition-
ers even express hope [59729159, 1072952, 34657563, 53376098,
41135403]. In a post of a practitioner looking for a way to test a
WebAPI, they contemplate that‘‘Back whenWCF was the coolest
thing, I did tests like this [...]. All programatically. It worked
like a charm’’(25325133) (F.16). Even though they experience
difficulties (F.13), explaining that ‘‘for some reason [it] is REALLY
hard to get to work (as in, I haven’t succeeded yet)’’ (F.13),
hey do not seem to be discouraged and eventually find a solution
hat works for them. Another practitioner mentions that‘‘in Kat-
lon [there] is a very nice way to parameterize the selectors
or GUI elements’’(52539907) (F.16), searching for a way (F.9) to
ake their testing code cleaner. Yet another practitioner judges
nthusiastically (F.7) that‘‘[validating the correctness of every
omponent in their system is] obviously going to be quite
lot of work! It could take years, but for this kind of

roject it’s worth it’’(1006189) (F.7), also emphasizing that they
lready‘‘have a very comprehensive unit-test suite’’ (F.7) and
oing so far as defining what they believe to be meaningful
ests (F.10). We find that a commonality of positive posts is a sign
f confidence of practitioners, or a trust in tools or methods that

http://stackoverflow.com/questions/29894788
http://stackoverflow.com/questions/28129825
http://stackoverflow.com/questions/44202672
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/12950163
http://stackoverflow.com/questions/601973
http://stackoverflow.com/questions/17320143
http://stackoverflow.com/questions/2894608
http://stackoverflow.com/questions/823276
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/1454949
http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/4991264
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/6684337
http://stackoverflow.com/questions/19490583
http://stackoverflow.com/questions/6475042
http://stackoverflow.com/questions/53657417
http://stackoverflow.com/questions/4659714
http://stackoverflow.com/questions/878848
http://stackoverflow.com/questions/63795587
http://stackoverflow.com/questions/14942409
http://stackoverflow.com/questions/7960832
http://stackoverflow.com/questions/58840818
http://stackoverflow.com/questions/43435227
http://stackoverflow.com/questions/63795587
http://stackoverflow.com/questions/19490583
http://stackoverflow.com/questions/26370705
http://stackoverflow.com/questions/57609818
http://stackoverflow.com/questions/6475042
http://stackoverflow.com/questions/13309278
http://stackoverflow.com/questions/37527179
http://stackoverflow.com/questions/34889215
http://stackoverflow.com/questions/14701609
http://stackoverflow.com/questions/44202672
http://stackoverflow.com/questions/59729159
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/34657563
http://stackoverflow.com/questions/53376098
http://stackoverflow.com/questions/41135403
http://stackoverflow.com/questions/25325133
http://stackoverflow.com/questions/52539907
http://stackoverflow.com/questions/1006189

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

i
1
p
t
c
w
(
t
a
m
a
i
a
t
t
t
g
p
[
r
t
B
t
d
t
t
t
m
1
s
t
r
7
a
a

m
w
t
t
a
t
o
t
d

s grounded in positive experience (F.16) [67709670, 46177956,
4961412, 1072952]. We also identify that ambition (F.3) and as-
iration (C.4) in positive posts is connected by practitioners to
heir long term goals. One practitioner contemplates that ‘‘the
ode works ‘properly’ [...] but [they] think automated tests
ould be good for the longevity of the program’’(48113464)
F.7), and another reports that they are ‘‘starting a new project,
hat promises to be much bigger and more involved than
nything [they] have done in the past.’’(6684337) (F.4), which
otivates them to ‘‘keep a good workflow with [their] test
nd make sure [they are] not creating gaps in [their] test-
ng as [they] go’’ (F.9). As indicated in Fig. 8, it is experience
nd knowledge that gives those practitioners an extra degree of
rust and confidence, from which an aspirational attitude (C.4)
owards testing seems to emerge. Their attitude enables them
o reflect (C.3) on and explore (C.4) solutions for long term
oals [4659714]. They build knowledge proactively without ex-
eriencing setbacks that discouraged (C.1) practitioners report
57609818]. On the left side in Fig. 8 we visualize that explo-
ation (C.2) and reflection (C.3) contribute to building knowledge
hat will eventually allow them to build trust and confidence.
ut, more crucially, seen at the top of the figure, we indicate
hat it is the context in which the ambition to test arises, that
etermines the sentiment towards testing when they engage in
his process of building up knowledge. More concretely, when
heir environment and experience gives them confidence and if
heir ambition is grounded in an aspirational attitude, they re-
ain positive [1006189, 3340677, 23062243, 16938742, 53657417,
072952, 4659714]. But when their ambition to test emerges in
ituations when the complexity of their software projects begins
o overwhelm them, the process of reflection (C.3) and explo-
ation (C.2) is negative [37527179, 67746901, 58840818, 4991264,
960832, 25325133, 6475042, 18941509]. Testing is then perceived
s an obstacle that might even push complexity further and not
s something that is good for the future of a project.

Trust and Confidence – Degrees for Aspiration

Knowledge and experience in testing practices allow prac-
titioners to aspire and enables them to consider and realize
long term goals. It also enables them to reflect on their
practice and explore new possibilities in a positive light.
When exploration and reflection of testing practices are
however motivated by pressure, for example an increase in
complexity of a project, which rendered manual testing im-
possible, their ambition might be abandoned. Testing then
turns into yet another obstacle.

5. Discussion

The qualitative analysis of 200 Stack Overflow posts revealed
any different facets of software testing to us. In this section,
e revisit our research questions in the light of these observa-
ions, their implications, and the recommendations we draw from
hem. We then present threats to the validity of these findings
nd close the chapter elaborating future work, that will open
he next stage of our grounded theory research. Before revisiting
ur research questions and elaborating future work, we want to
urn the focus once more on the filtering process that yielded the
ataset that was analyzed in this paper.
14
5.1. Semi-automated filtering of datasets for qualitative and quanti-
tative research

To narrow down our qualitative analysis of the Stack Overflow
dataset we have used a semi-automated two-step process. We
first filtered the dataset using tags and then employed senti-
ment analysis tools to extract posts which contain sentimental
expressions. We therefore consider the first, tag based filtering
approach that is inspired by Yang et al. (2016) suitable for quali-
tative studies like ours. The low failure rate of the method in our
case suggests that the approach is also suitable for quantitative
studies of testing posts on Stack Overflow.

Regarding the second step, for which sentiment analysis tools
were used, our evaluation is more differentiated. Our analysis
supports previous observations by Lin et al. (2018) and Sengupta
and Haythornthwaite (2020): authors on Stack Overflow indeed
tend to discuss technology in an objective, non-sentimental way.
Our analysis of 25 randomly selected (only tag-filtered) posts
indicates that authors who express sentiment when asking ques-
tions about testing topics on Stack Overflow are more often
expressing negative sentiment than positive. Out of those 25
posts, not a single one contained positive sentiment. In the light
of those observations we argue that sentiment analysis indeed
supported the goal to extract a subset of posts that contains both
positive and negative sentiment. Deliberately extracting posi-
tive and negative sentimental posts provided an improvement in
terms of balance in sentiment. In other words: a random selection
would have only provided very few positive posts. However, we
do not consider our approach applicable for quantitative studies
where results and implications are directly discerned from the
output of sentiment analysis tools. The accuracy of predictions
for sentiment was simply not accurate enough to provide mean-
ingful insights when only evaluating numbers. Posts predicted
as positive and negative only turned out to be correct in 50%
of all cases (50 out of 100). In 5 cases the sentiment was even
the opposite of what was predicted. We also learned that the
sentiment analysis pipeline is most accurate in identifying neu-
tral posts. Out of 25 samples that were predicted to be neutral
only 2 contained sentiment. Depending on the research question,
an approach to identify content with neutral sentiment could
therefore yield good results. We identified that 28 posts of our
dataset were too short for meaningful analysis. For studies similar
to ours we recommend to exclude short posts. Posts are more
likely to contain subjective opinions and valuable content, when
they contain more than 2 paragraphs of text. Our experience
with analyzing the dataset by focusing on sentiment taught us
that finding the right approach and selecting the right tools is
challenging. We acknowledge that low accuracy of the tools we
used is also due to the choices we made. For example, instead
of using a training dataset containing sentences, we could have
used a dataset with paragraphs (Wang et al., 2019), and instead
of focusing on sentiment we could have focused on emotion de-
tection (Novielli et al., 2018). The choices we made were founded
on the literature that was known to us at the time. In the mean-
time however, Lin et al. (2022) published a literature review
that contains a guideline for the appropriate usage of tools and
approaches for opinion mining in software engineering. We can
only encourage using their recommendations to navigate the field
and to gain confidence in making the right choices.

5.2. How and why is sentiment expressed

We set out with our analysis of Stack Overflow posts to in-
vestigate how practitioners express sentiment in the context of
software testing and which factors play a role when sentiment
is expressed. We identified 22 codes which describe different
expressions that are used by practitioners on Stack Overflow.

http://stackoverflow.com/questions/67709670
http://stackoverflow.com/questions/46177956
http://stackoverflow.com/questions/14961412
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/48113464
http://stackoverflow.com/questions/6684337
http://stackoverflow.com/questions/4659714
http://stackoverflow.com/questions/57609818
http://stackoverflow.com/questions/1006189
http://stackoverflow.com/questions/3340677
http://stackoverflow.com/questions/23062243
http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/53657417
http://stackoverflow.com/questions/1072952
http://stackoverflow.com/questions/4659714
http://stackoverflow.com/questions/37527179
http://stackoverflow.com/questions/67746901
http://stackoverflow.com/questions/58840818
http://stackoverflow.com/questions/4991264
http://stackoverflow.com/questions/7960832
http://stackoverflow.com/questions/25325133
http://stackoverflow.com/questions/6475042
http://stackoverflow.com/questions/18941509

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

b
c
t

t
h
a
e

Fig. 8. Interdependence of factors which lead to sentiments around testing and how they are aroused and amplified in the context of complexity, trust and confidence
through (the lack of) knowledge and experience.
RQ1

How do software engineers express sentiment about testing
on Stack Overflow?

In sentimental posts on Stack Overflow practitioners are re-
ferring to external information like blogs or documentation,
they reassure readers, share their ambition and subjective
judgement of the value of testing practices and tools, com-
pare different approaches, inquire for workarounds or new
ways to solve a problem, admit their own lack of knowledge
and their mistakes, reflect experiences, contemplate failure
and sometimes exclude solutions that could solve their is-
sues. Sentiment is expressed when desperation, unexpected
behavior, uncertainties, complex issues, missing capabilities,
or a willingness to improve is described.

The categorization of posts has allowed us to take our analysis
eyond the level of expressions. We developed the four mayor
ategories discouragement, exploration, reflection, and aspira-
ion, which illuminate factors that can lead to sentimentality.

RQ2

Which factors affect sentiment of software engineers to-
wards testing practices?

Lack of experience and knowledge, especially in complex
environments is often indicated in posts with negative sen-
timent on Stack Overflow, when practitioners describe dis-
couraging experiences. Trust and confidence into practice
and understanding of long term goals on the other hand
gives practitioners space for aspiration, expressed with pos-
itive sentiment. Practitioners who explore testing express
negative sentiment when they experience unexpected be-
havior and positive sentiment when they are inspired by re-
sources like books and blog entries. When reflecting on their
practice, an awareness of their own blind-spots allows prac-
titioners to be positive, while ambiguity, when practitioners
are completely in the dark, is reflected negatively.

Going beyond this analysis which highlights factors that lead
o sentiment, we presented a preliminary theory that suggests
ow those factors go hand in hand in manifesting sentiment
round testing. The preliminary theory also describes situational
lements that seem to lead to sentiment.
15
Preliminary Interpretive Theory

On Stack Overflow we see complexity and aspiration as
important factors that make people ambitious about testing.
Complexity of projects can make manual testing impossi-
ble and motivates (or forces) practitioners to use testing.
Trust and confidence in testing practices on the other side
makes people aspire to pursue long term goals using testing
practices. In both cases experience and knowledge influ-
ences whether this ambition leads to a positive or negative
experience.

5.3. Implications

The results of our analysis of Stack Overflow posts about
software testing carries implications for education of software
developers, and management of software development teams.
Based on the data we have seen, we hypothesize that the im-
plementation of automated testing practices in simple projects,
when manual testing is still possible, could allow an iterative
development of testing skills while reducing the likelihood of
discouraging experiences. Having obtained these skills, we argue,
would then also influence the experience of testing complex
systems in a positive way. Rejecting or approving this hypothesis
could help to clarify the role that teaching of software testing
can have in the early stages of software engineering careers
(e.g., in undergraduate courses of universities). Connected to this
hypothesis, our preliminary theory suggests that on Stack Over-
flow, testing practices are perceived as especially valuable when
the complexity of a software project grows. Refining and testing
this theory in other contexts could generate new insights into
how practitioners and students of software engineering can be
motivated to learn software testing. Pham et al. (2014) for ex-
ample identify the same issue in a study with bachelor students.
Their study confirms that the perception of the complexity of
code affects students’ motivation to practice testing. They also
report that students see the cost of testing but fail to understand
its benefit as projects are often not critical or complex enough.
(Re-)introduction of testing practices, when complex software
development methods are taught, so we hypothesize, could teach
students the value of software testing. Introducing testing prac-
tices like mocking in the context of distributed systems and
socket programming is one example. Regarding managers of soft-
ware engineering teams, our preliminary theory implies that
giving employees time and space to develop simple test cases for

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

s
p
r
t
o
w
i
t
g
c
t
s

5

t
p
t
o

5

u
a
t
r
S
t
t
p
b
(
s
f
s
c
o
p
o
d
a
h
m
w
r
l

t
e
t
o
i
t
f
t
m
o
o
u
p
r

imple projects is beneficial. Being comfortable with simple test
ractices, practitioners seem to gain confidence and trust. As a
ecommendation that should be tested in future work, we suggest
hat the development process should allow a steady increase
f complexity instead of tackling huge challenges directly. The
ords of one author reflecting his work in a project where they

ntroduced testing echoes this last implication of our interpreta-
ion: ‘‘While I no longer work on this project [...], I think it
ave me some enormous insight into how bad some projects
an be written, and steps one developer can take to make
hings a lot cleaner, readable and just flat out better with
mall, incremental steps over time.’’(1064403)

.4. Threats to validity

Our systematic analysis of 200 Stack Overflow posts has led
o insights that have enabled us to formulate preliminary hy-
otheses to answer our research questions and an interpretive
heory. In this section we present the threats to the validity of
ur findings.

.4.1. Internal validity
To select samples from the Stack Overflow dataset we filtered

sing user-assigned tags and the sentiment analysis tools SentiCR
nd RoBERTa. The dataset from Lin et al. (2018), which we used
o train the tools, was evaluated by Zhang et al. (2020), who
eport macro- and micro-averaged F1-scores of 0.59 and 0.82 for
entiCR and 0.80 and 0.90 for RoBERTa respectively. However,
heir evaluation was done with a dataset of sentences and not at
he level of paragraphs. We do not know if applying the tools on
aragraphs, like we did, leads to poorer performance. We com-
ined both tools to reduce inaccuracy as suggested by Zhang et al.
2020). We only selected posts that were classified with the same
entiment polarity by both tools. We checked the accuracy of the
iltering approach by including and evaluating two groups of test
amples in our analysis (25 random and 25 neutral posts) and
lassifying the sentiment of each post. Even though the precision
f the tools combined provided only a 50% accuracy for positive
osts, we argue that the inaccuracy does not pose a threat to
ur results. The results presented in this paper were produced by
eep and thorough qualitative analysis for which the sentiment
nalysis was only a tool to narrow down the focus. The accuracy
as no direct influence on the results of our analysis. To avoid
istakes in the implementation of the sentiment analysis tools,
e used the open-source implementation of SentiCR from the
eplication package of Zhang et al. (2020),8 and the open-source
ibrary PyTorch9 which provides an implementation of roBERTa.

To extract posts from the dataset that are relevant to software
esting we extended an existing open-source tool.10 With our
xtension of the tool we first filtered for all post with a tag
hat includes the word testing. We then generated an include list
f tags by manually removing all irrelevant tags that occurred
n this subset of posts. Starting with a generic wild-card and
hen snowballing to generate a more accurate list of tags was
ound to be a valid method by Yang et al. (2016). Errors in
he implementation of the filtering tool and mistakes during the
anual selection of tags pose a possible threat to the validity of
ur results. To reduce the chance of implementation errors we
nly made minimal changes to the open-source software that was
sed for filtering. To minimize errors in the manual tag selection
rocess, the final list was reviewed by two software engineering
esearchers who were otherwise not involved in this study.

8 GitHub sorasmu/SA4SE
9 PyTorch fairseq/roberta

10 GitHub SkobelvIgor/stackexchange-xml-converter
16
5.4.2. Experimenter bias
We took measures to ensure that the influence of the au-

thors’ subjectiveness on the results of this paper stays within the
boundaries of what is reasonable and expected in the context of
a constructivist GT study. It is possible that the authors made
mistakes in the interpretation of the dataset. To reduce the
likelihood of a misinterpretation that would pose a threat to the
validity of our results, the interpretation of the data recorded
in memos and developed into sentiment classification, codes,
categories and theory was discussed between the first and second
author. Disagreements were resolved in a cooperative manner.
We do not provide a quantitative analysis of this process of
reliability verification as such an analysis would suggest a level
of objectivity that we do not want to claim (McDonald et al.,
2019). Aligned with our epistemological stance and the inter-
pretive nature of constructivist GT, we instead acknowledge our
biased perspective. Instead of claiming a high level of absolute
objectivity, we argue that taking the view from nowhere, would
not be appropriate to answer the research question that we
propose. Instead, we present a transparent account of the grounds
on which our interpretation rests. We use pertinent quotes and
provide references to original documents whenever we explain
our interpretations. The reader is invited to go through all the
references in the text and the analyzed material that we provide
with our replication package. Inspection of the material should
reveal to the reader that we only make the material to speak
for itself (Swillus and Zaidman, 2022, coded-dataset.qdpx). High
involvement with the data, enabled by following the systematic
strategies of constructivist GT, and not our preconceptions led to
what we present in this paper.

We use sentiment analysis tools to filter the Stack Overflow
dataset. It allowed us to narrow down the dataset to what is
relevant for our study. To ensure that our own, manual evaluation
of sentiments of posts and expressions is not biased by the out-
come of this tool-based classification, documents were analyzed
in random order and the results of the tool’s classification were
hidden during analysis.

5.4.3. External validity
Qualitative research searches for a deep understanding of the

particular. Knowledge generated from such research is context
dependent. We therefore cannot claim that the preliminary result
that our analysis produces has a high external validity that goes
beyond the scope of the Stack Overflow community. Stack Over-
flow posts, which are non-interactive documents, cannot provide
a full or thick description of sociological circumstances (Geertz
and Darnton, 2017; Hine, 2008). In other words: Stack Overflow
posts only provided us a shallow view of the circumstances that
practitioners experience; there are many things we are unable to
see through an analysis of Stack Overflow posts. By sharing our
preliminary interpretive theory we motivate inquiries that add
more depth. More in-depth inquiries that either challenge the
generalizability of what we have learned on Stack Overflow, or
extend on it to fit a broader context than the one we investigated.
To broaden the context of the posts, we considered comments,
edits, and links that are referred to in posts and evaluated post’s
edit-history and the profiles of users that posted content. Further,
the conclusions that allowed us to construct the results of this
paper are based on the qualitative analysis of a small part of
the full Stack Overflow dataset. As analyzing the full dataset is
not feasible, we choose to focus our analysis on a fraction of
sentimental posts. By not analyzing the whole dataset we risk
missing details that could lead to different interpretations and
hence different theories. We reduced this risk by consecutively
adding posts to our analysis until we reach a point, when the
analysis of further posts does not reveal any new answers to

http://stackoverflow.com/questions/1064403
https://github.com/soarsmu/SA4SE
https://pytorch.org/hub/pytorch_fairseq_roberta/
https://github.com/SkobelevIgor/stackexchange-xml-converter

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

t
s
p
r
c
f
a

5

t
p
a
s
S
t
r
b
i
W
c
t
a
u

5

u
c
t
a
r
l

5

v
s
d
w
t
r
a
t
(
g
(

w
w
c
b
n
s
w
c
b
[

he research questions we pose. We are aware that reaching
uch a point does not rule out the possibility that adding more
osts can reveal new insights. It only signals that the effort
equired to obtain these insights gets disproportionate. Instead,
oncluding at this point allows moving forward to obtain insights
rom richer sources of data. Our analysis concluded in this way
fter reviewing 200 posts.

.4.4. Construct validity
We investigate the role of sentiment in software testing posts

o learn about the experience of software developers when they
ractice software testing. We use sentimentality as a construct
nd proxy to analyze content that goes beyond technical discus-
ions and touches on this experience. By analyzing sentimental
tack Overflow posts we infer interpretations about how sen-
iments come about and how they affect testing practices. The
oot causes for sentiment of practitioners are manifold and might
e due to variables which we were not able to consider in our
nvestigation. This poses a threat to the validity of our results.
e reduced this threat by analyzing the data qualitatively, taking

ontextual information of posts like comments, edit history and
he time it took for the question to be answered into account. We
re therefore not only relying on sentimentality as a variable to
nderstand what affects practitioners.

.5. Future work

The analysis described in this paper brought us closer to
nderstanding what arouses sentiment in practitioners in the
ontext of testing. However, as mentioned in the threats to ex-
ernal validity, the implications we present need to be taken with
grain of salt. Before suggesting which steps can be taken to

aise our work to a higher level of maturity, we reflect on the
imitations of the analysis presented in this paper.

.5.1. Limitations
Stack Exchange, the parent website of Stack Overflow, pro-

ides insights about Stack Overflow by conducting an annual user
urvey. Their surveys’ results and independent research about
iversity on the platform reveals that the user base lacks diversity
hen it comes to ethnicity and gender (Ford et al., 2016). In
heir own report it is stated that people of color are under-
epresented among professional developers on Stack Overflow
nd that the company has considerable work to do, to ensure
he platform is inclusive.11 According to Vadlamani and Baysal
2020), and Zagalsky et al. (2016) it is not only ethnicity and
ender, but also professional factors that are strong reasons for
a lack of) engagement in the community. They lead to an expert-
bias as novice contributors may even be confronted with subtle
or overt bullying on Stack Overflow. Another bias is introduced
through strict community guidelines.12 During our investigation
e were directly confronted with this limitation. Two posts that
ere rich in sentiment were closed because they violate the
ommunity guidelines. In one of those post, the message posted
y a moderator reads: ‘‘as it currently stands, this question is
ot a good fit for our Q&A format. We expect answers to be
upported by facts, references, or expertise, but this question
ill likely solicit debate, arguments, polling, or extended dis-
ussion’’(16938742) . In the other post, an author who has ‘‘been
anging [their] head against the wall trying to understand
...] concepts for a week’’(2978843) simply suggested a ‘‘very
understandable and simple’’ explanation so that others can also
enjoy an ‘aha’ moment. Examples like this make it evident that

11 insights.stackoverflow.com/survey/2021#section-demographics-gender
12 stackoverflow.com/help/how-to-ask
17
practitioners cannot express themselves freely on Stack Overflow.
When they post exclusively sentimental content or ask questions
that provoke discussion, they are sanctioned. The aforementioned
post also suggests another limitation: practitioners posting on
Stack Overflow are biased towards negativity. What is discussed
on Stack Overflow are problems. If there is no problem to solve,
the post is closed. Success stories or exclusively positive accounts
of practitioners on Stack Overflow are therefore rare.

5.5.2. Theoretic sampling
Early stages in grounded theory are supposed to open up

discussion and motivate for focused inquiries to follow. Theories
mature as they are refined and backed by collection and analysis
of more data. In grounded theory, this crucial process is called
theoretic sampling (Charmaz, 2014). Apart from refining, verify-
ing or rejecting our theory, such a focused collection of samples
can answer questions that we derive directly from our analysis.

1. If ambition to test arises when practitioners are suddenly
confronted with overwhelming project complexity, how do
project management frameworks like Agile affect adoption
of testing methods compared to projects that use long term
fixed planning?

2. How are practitioners first confronted with testing prac-
tices? How does this first encounter with testing in a pro-
fessional setting influence their ambitions to adopt testing
in other contexts?

3. If the complexity of projects under test and the required
complexity of techniques to test them grows proportionally
like our preliminary theory suggests, how do developers of
testing tools relate to this connection in terms of provided
documentation and design of tools?

4. The analysis showed that sentiment around testing highly
depends on context. In this study we looked at expressions
of practitioners. How do researchers and educators in soft-
ware engineering relate to testing in comparison to what
we observed in our study? How does ambition differ, espe-
cially in cases where they have not been confronted with
the factors that cause discouragement which we described
in this paper?

As we highlight in Section 5.5.1, the dataset which was analyzed
in this paper only provides a narrow perspective on the lived
experience of practitioners. While Stack Overflow provides in-
sights into what testers do outside their Integrated Development
Environment (IDE), it only rarely provides insights into what
testers do when they are not working on their computer. Posts
rarely describe the social world in which testing is practiced.
Derived from the things we did not see in the dataset, we propose
the following questions for future inquiries:

1. How does the social context of individuals affect sentiment
of testers when they are exploring or reflecting experi-
ences?

2. Which role does the experience of peers play in shaping
the testing experience of individual practitioners?

3. How do practitioners express sentiment about testing in
informal settings?

4. How do practitioners express sentiment online, when am-
biguous and sentimental content which provokes discus-
sion is not sanctioned but encouraged?

In order to investigate the above questions, we propose dif-
ferent approaches. Through a quantitative analysis of Stack Over-
flow, Alshangiti et al. (2019) revealed that different challenges in
the field of machine learning are present because implementation
of application requires a wide set of skills. More concretely, they
suggest that data preprocessing is especially challenging as it

http://stackoverflow.com/questions/16938742
http://stackoverflow.com/questions/2978843
https://insights.stackoverflow.com/survey/2021#section-demographics-gender
https://stackoverflow.com/help/how-to-ask

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

i
c
t
t
l
f
m
a

s often overlooked in education of practitioners. A quantitative
ontent analysis like the one of Alshangiti et al. (2019) about
esting posts on Stack Overflow could identify aspects of testing
hat are difficult to handle for practitioners on a more technical
evel. Further qualitative studies of non-interactive documents
rom platforms like Reddit13 or Twitter,14 which encourage senti-
ental and ambiguous content, can complement our analysis on
non-technical level. Conducting a meta analysis of publications

on socio-technical aspect of software testing is another way of
grounding our work in more theoretical and empirical data that
others investigated in the past. But most crucially, we want to
meet practitioners where they are confronted with testing prac-
tices. Field studies in which individuals or groups of practitioners
are observed and interviewed during practice can provide in-
sights that go beyond what non-interactive documents can reveal.
Direct observations of practitioners will provide crucial insights
into lived experience that allow the formulation of a mature
theory.

6. Related work

With our investigation of sentimental posts on Stack Overflow,
the categorization of posts and the development of a preliminary
theory we highlighted different aspects that influence motivation
of practitioners, the effect of emotions on practice, and the role of
software testing as a part of software development. In this section
we relate our findings to what others have uncovered in relation
to those topics.

A study by Graziotin et al. (2018) emphasizes the detrimen-
tal effects that unhappiness can have on software engineering
practitioners. Some of what they describe what happens when
developers are (un)happy is relevant to our paper. According to
their report, developers distance themselves from tasks to which
their unhappiness relates. Our analysis reveals that confronta-
tion with testing can under some circumstances cause negative
feelings of discouragement. Discouragement can thus lead to
withdrawal from testing resulting in process deviation and re-
duced code quality. On the positive side, findings of Graziotin
et al. (2018) show that emotions related to happiness like aspira-
tion increase process adherence and stimulate creativity, leading
to a stronger commitment to writing tests.

A literature review by Beecham et al. (2008) compares the
findings of 92 papers about the topic of motivation of software
engineers from the 1980s to 2006. The review highlights that
software engineers display a very high need for growth and
that they are concerned about learning new technology. Software
engineers are motivated by the exploration of new techniques
and want to work on identifiable pieces of quality work. Accord-
ing to the review, problem-solving and the confrontation with
challenges can be an enhancing factor for motivation. While those
factors are present in many studies, the literature review con-
cludes that the needs of software engineers are highly dependent
on the context of individuals. Our study confirms this conclusion.
Exploration can increase motivation or ambition in the case of
software testing, but we indeed see that whether challenges or
exploration lead to increased motivation highly depends on con-
text. Contrary to the studies included in the review, we see that
a confrontation with challenges can also lead to discouragement.
Our results on this aspect are more aligned with the results of
a qualitative study by Sharp et al. (2009), that suggests that
challenges, even when mentioned as a reason to stay in the job,
are not so much a factor that gives practitioners satisfaction. Not
challenges, but creativity and being able to make a difference is

13 Reddit /r/softwaretesting
14 Twitter #softwaretesting
18
what makes software engineering worthwhile (Sharp et al., 2009).
Similarly, Meyer et al. (2021) found out that on good workdays,
developers make progress and create value for projects they
consider meaningful. On good days, they spend their time effi-
ciently, with little administrative work, and infrastructure issues;
what makes a workday typical and therefore good is primarily
assessed by the match between developers’ expectations and
reality (Meyer et al., 2021). Two things here relate to our own
findings. First, we also find that practitioners who already identify
testing as good and meaningful practice, for example because
they are motivated by books or blogs about testing, are indeed
ambitious and aspirational about testing. Second, we also see
that challenges created by infrastructure issues, for example in
complicated development environments lead to discouragement
because of unexpected behavior. With a survey study conducted
in multiple companies Runeson (2006) also found supporting
evidence for the negative impact of unexpected challenges caused
by complexity. A good integration of unit testing into the internal
tool landscape that is provided by the company is key for the
adoption of testing. However, this integration is especially hard
when the modules under test interact with a complex system
state or a complex system environment (Runeson, 2006). When
an integration of testing into practice is too challenging it is
mostly perceived as de-motivating for software developers. In
this context, Daka and Fraser (2014) report that practitioners rank
the isolation of testing code as one of most challenging tasks.
Crucially, it is perceived as a difficult challenge more often by
novice software developers. We see the same in our investigation.
Our analysis suggests that inexperienced practitioners are often
discouraged from testing by complicated environments in which
an isolation of the method under test becomes difficult. On the
other hand, aligned with our results, Pham et al. (2014) identified
that novice developers adjust their testing effort according to the
perceived complexity of code. A project has to be complex to war-
rant testing to be beneficial. Complexity can thus, as we saw on
Stack Overflow as well, be a motivating factor. Pham et al. (2014)
and Daka and Fraser (2014) also report that developers’ feelings
about unit testing are often negative. Concretely, only half of
the practitioners interviewed by Daka and Fraser (2014) had
positive feelings about testing and students interviewed by Pham
et al. (2014) were not fond of testing because to them writing
tests did not feel like an accomplishment. Some students even
developed an anxious attitude towards testing. This aligns with
our observation in so far that we saw an overwhelming amount
of negative posts in random samples. A general negative bias
towards testing could therefore also be an explanation for the
high amount of negative post that we saw in our dataset.

In relation to Sharp et al. (2009) and Meyer et al. (2021) and
their finding that meaningful contributions and being able to
make a difference are important. However, from our own work it
is not evident that testing in itself is always recognized as a mean-
ingful contribution to projects by practitioners and their peers.
Positive ambitions mentioned in posts on Stack Overflow mostly
seem to be self-aroused for example through engagement with
inspiring resources like books or blogs. Daka and Fraser (2014)
indeed identified that peer pressure is only rarely mentioned as
a motivating factor to write unit tests; the driving force for a
developer to use unit testing is supposedly their own conviction.

Finally, Kasurinen et al. (2011) investigated how new testing
practices are adopted by companies and found out that when
confronted with new techniques that could improve testing pro-
cesses, most companies are not interested in adoption if there
is no first-hand knowledge in the team or company. Only rarely
they do give new practices a try, and if they do, they only eval-
uate new techniques in small projects. However, Kasurinen et al.

(2011) also report that companies adopt new techniques when

https://reddit.com/r/softwaretesting
https://twitter.com/search?q=%23softwaretesting

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

c
s
p
a
p
S
t
f
o
i
s
l
l
d

7

s
t
o
d
o
a

e
f
b
w
o
c
o
t
h

a
c
e
t
w
t
d
s
c
h
a
c
v
t
p
o
i
t

i
e
w
s
e
f
m

C

M
F

lear need arises. According to the theory they propose in their
tudy, development of processes only happens when the existing
rocess obviously has a need to develop; required resources for
doption of new practices like testing need to be justified. Our
reliminary theory has at its core this very point. We observe on
tack Overflow, that an increase of complexity of a project leads
o spontaneous adoption of testing practices. While it is not clear
rom the report of Kasurinen et al. (2011), what the motivation
r rational reason of a company that evaluates testing practices
n small projects is, a suggestion could be taken from our own
tudy. We suggest that evaluation of techniques in small projects
eads to an advantage when the need for those techniques can no
onger be ignored. In other words, first-hand knowledge should
evelop in a company before it is really needed.

. Conclusion

In this study we set out to understand the sentiments of
oftware engineers regarding software testing in the context of
he popular question and answer platform Stack Overflow. In
rder to do so, we have used a semi-automated approach to
etect sentiment in Stack Overflow posts. In particular, we start
ut by using automatic sentiment analysis tools to classify posts,
fter which we perform an in-depth, qualitative analysis.
Through this in-depth study of 200 posts we find that develop-

rs are in fact sentimental about software testing on Stack Over-
low; we find that they express their sentiment when unexpected
ehavior, uncertainties, complex issues, missing capabilities, or a
illingness to improve is part of the post. Additionally, we have
bserved that lack of experience and knowledge, especially in
omplex environments can lead to a negative sentiment. On the
ther hand, software engineers express positive sentiment when
hey have trust and confidence in their practice, especially if they
ave an understanding of long term goals of their projects.
Through the observations that we have made, we construct
preliminary interpretive theory that explains how a projects’
omplexity and the tacit knowledge of individuals shapes the
xperience and attitude of practitioners in the context of software
esting. Practitioners, we argue, get motivated to practice soft-
are testing as the complexity of their project increases. Reaching
hat point without enough knowledge of testing practices leads to
iscouraging experiences. We argue that testing practices are also
een by practitioners as something to aspire to, especially when
onsidered for example in the context of long term goals. This
as implications for both the education of software engineers,
nd for managing software development teams that engineer
omplex software. Our findings suggest that taking both moti-
ation and complexity into account in future studies of software
esting practices can reveal more about practitioners’ sentimental
erspectives. Our preliminary results show that an investigation
f the motivation and capabilities of software engineers to engage
n effective testing practices needs to go beyond the analysis of
echnical tools and their usage.

We acknowledge that we need to extend and deepen our
nterpretive theory, and our overall understanding of software
ngineers’ sentiments towards testing. In particular, in our future
ork we envision to study the social context and its relation to
entiment, the connection to the experience levels of software
ngineers, their sentimental expressions in informal settings, and
inally how project management culture influences attitudes and
otivation of individual software engineers in the area of testing.

RediT authorship contribution statement

Mark Swillus: Data curation, Formal analysis, Investigation,
ethodology, Software, Writing – original draft. Andy Zaidman:
unding acquisition, Supervision, Writing – review & editing.
19
Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: Andy Zaidman reports financial support was provided
by Dutch Research Council Domain Science.

Data availability

Data will be made available on request.

Acknowledgment

This research was partially funded by the Dutch science foun-
dation NWO through the Vici ‘‘TestShift’’ grant (No. VI.C.182.032).

References

Ahmed, Toufique, Bosu, Amiangshu, Iqbal, Anindya, Rahimi, Shahram, 2017.
SentiCR: A customized sentiment analysis tool for code review interactions.
In: 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, pp. 106–111. http://dx.doi.org/10.1109/ASE.2017.
8115623.

Alshangiti, Moayad, Sapkota, Hitesh, Murukannaiah, Pradeep K., Liu, Xumin,
Yu, Qi, 2019. Why is developing machine learning applications challenging?
a study on stack overflow posts. In: 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE, pp. 1–11.
http://dx.doi.org/10.1109/ESEM.2019.8870187.

Aniche, Maurício, Treude, Christoph, Zaidman, Andy, 2022. How developers
engineer test cases: An observational study. IEEE Trans. Softw. Eng. 48 (12),
4925–4946. http://dx.doi.org/10.1109/TSE.2021.3129889.

Athanasiou, Dimitrios, Nugroho, Ariadi, Visser, Joost, Zaidman, Andy, 2014. Test
code quality and its relation to issue handling performance. IEEE Trans.
Softw. Eng. 40 (11), 1100–1125. http://dx.doi.org/10.1109/TSE.2014.2342227.

Balahur, Alexandra, Steinberger, Ralf, 2009. Rethinking sentiment analysis in the
news: from theory to practice and back. Proc. WOMSA 9, 1–12.

Baltes, Sebastian, Diehl, Stephan, 2019. Usage and attribution of Stack Overflow
code snippets in GitHub projects. Empir. Softw. Eng. 24 (3), 1259–1295.
http://dx.doi.org/10.1007/s10664-018-9650-5.

Barua, Anton, Thomas, Stephen W., Hassan, Ahmed E., 2014. What are developers
talking about? An analysis of topics and trends in Stack Overflow. Empir.
Softw. Eng. 19 (3), 619–654. http://dx.doi.org/10.1007/s10664-012-9231-y.

Barzilay, Ohad, Treude, Christoph, Zagalsky, Alexey, 2013. Facilitating crowd
sourced software engineering via stack overflow. In: Finding Source Code
on the Web for Remix and Reuse. Springer New York, pp. 289–308. http:
//dx.doi.org/10.1007/978-1-4614-6596-6_15.

Beecham, Sarah, Baddoo, Nathan, Hall, Tracy, Robinson, Hugh, Sharp, Helen,
2008. Motivation in Software Engineering: A systematic literature review. Inf.
Softw. Technol. 50 (9–10), 860–878. http://dx.doi.org/10.1016/j.infsof.2007.
09.004.

Begel, Andrew, Zimmermann, Thomas, 2014. Analyze this! 145 questions for data
scientists in software engineering. In: Proceedings of the 36th International
Conference on Software Engineering. ACM, pp. 12–23. http://dx.doi.org/10.
1145/2568225.2568233.

Beller, Moritz, Gousios, Georgios, Panichella, Annibale, Proksch, Sebastian,
Amann, Sven, Zaidman, Andy, 2019. Developer testingin the IDE: Pat-
terns, beliefs, and behavior. IEEE Trans. Softw. Eng. 45 (3), 261–284.
http://dx.doi.org/10.1109/TSE.2017.2776152, URL https://ieeexplore.ieee.org/
document/8116886/.

Beller, Moritz, Gousios, Georgios, Panichella, Annibale, Zaidman, Andy, 2015a.
When, how, and why developers (do not) test in their IDEs. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering.
In: ESEC/FSE 2015, ACM, pp. 179–190. http://dx.doi.org/10.1145/2786805.
2786843.

Beller, Moritz, Gousios, Georgios, Zaidman, Andy, 2015b. How (much) do de-
velopers test? In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. 2, pp. 559–562. http://dx.doi.org/10.1109/ICSE.2015.
193.

Bertolino, Antonia, 2007. Software testing research: Achievements, challenges,
dreams. In: Future of Software Engineering (FOSE ’07). pp. 85–103. http:
//dx.doi.org/10.1109/FOSE.2007.25.

Carstensen, Peter H., Sørensen, Carsten, 1995. Let’s talk about bugs!. 7.

http://dx.doi.org/10.1109/ASE.2017.8115623
http://dx.doi.org/10.1109/ASE.2017.8115623
http://dx.doi.org/10.1109/ASE.2017.8115623
http://dx.doi.org/10.1109/ESEM.2019.8870187
http://dx.doi.org/10.1109/TSE.2021.3129889
http://dx.doi.org/10.1109/TSE.2014.2342227
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb5
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb5
http://dx.doi.org/10.1007/s10664-018-9650-5
http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1007/978-1-4614-6596-6_15
http://dx.doi.org/10.1007/978-1-4614-6596-6_15
http://dx.doi.org/10.1007/978-1-4614-6596-6_15
http://dx.doi.org/10.1016/j.infsof.2007.09.004
http://dx.doi.org/10.1016/j.infsof.2007.09.004
http://dx.doi.org/10.1016/j.infsof.2007.09.004
http://dx.doi.org/10.1145/2568225.2568233
http://dx.doi.org/10.1145/2568225.2568233
http://dx.doi.org/10.1145/2568225.2568233
http://dx.doi.org/10.1109/TSE.2017.2776152
https://ieeexplore.ieee.org/document/8116886/
https://ieeexplore.ieee.org/document/8116886/
https://ieeexplore.ieee.org/document/8116886/
http://dx.doi.org/10.1145/2786805.2786843
http://dx.doi.org/10.1145/2786805.2786843
http://dx.doi.org/10.1145/2786805.2786843
http://dx.doi.org/10.1109/ICSE.2015.193
http://dx.doi.org/10.1109/ICSE.2015.193
http://dx.doi.org/10.1109/ICSE.2015.193
http://dx.doi.org/10.1109/FOSE.2007.25
http://dx.doi.org/10.1109/FOSE.2007.25
http://dx.doi.org/10.1109/FOSE.2007.25
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb15

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

Ç

C

D

D

F

G

G

G

H

H

H

I

I

I

J

K

K

K

L

L

L

L

alıklı, Gül, Bener, Ayşe Başar, 2013. Influence of confirmation biases of develop-
ers on software quality: an empirical study. Softw. Qual. J. 21 (2), 377–416.
http://dx.doi.org/10.1007/s11219-012-9180-0.

harmaz, Kathy, 2014. Constructing grounded theory, second ed. In: Introducing
Qualitative Methods, Sage.

aka, Ermira, Fraser, Gordon, 2014. A survey on unit testing practices and prob-
lems. In: 2014 IEEE 25th International Symposium on Software Reliability
Engineering. IEEE, pp. 201–211. http://dx.doi.org/10.1109/ISSRE.2014.11.

eener, Andrew, 2018. The architecture of ethnographic knowledge: Narrowing
down data and contexts in search of sociological cases. Sociol. Perspect. 61
(2), 295–313. http://dx.doi.org/10.1177/0731121418755121.

ord, Denae, Smith, Justin, Guo, Philip J., Parnin, Chris, 2016. Paradise un-
plugged: identifying barriers for female participation on stack overflow. In:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, pp. 846–857. http://dx.doi.org/
10.1145/2950290.2950331.

eertz, Clifford, Darnton, Robert, 2017. The interpretation of cultures: selected
essays, third ed. In: Basic book-s, Basic Books.

laser, Barney G., Strauss, Anselm L., 2010. The Discovery of Grounded Theory:
Strategies for Qualitative Research, 5. paperback print Aldine Transaction.

raziotin, Daniel, Fagerholm, Fabian, Wang, Xiaofeng, Abrahamsson, Pekka, 2018.
What happens when software developers are (un)happy. J. Syst. Softw. 140,
32–47. http://dx.doi.org/10.1016/j.jss.2018.02.041.

etzel, William C., 1988. The Complete Guide to Software Testing, second ed.
QED Information Sciences.

ine, Christine, 2008. Virtual ethnography: Modes, varieties, affordances. In: The
SAGE Handbook of Online Research Methods. SAGE Publications, Ltd, pp.
257–270. http://dx.doi.org/10.4135/9780857020055.n14.

oda, Rashina, 2022. Socio-technical grounded theory for software engineering.
IEEE Trans. Softw. Eng. 48 (10), 3808–3832. http://dx.doi.org/10.1109/TSE.
2021.3106280.

ndurkhya, Nitin, Damerau, Fred J. (Eds.), 2010. Handbook of Natural
Language Processing. Chapman and Hall/CRC, http://dx.doi.org/10.1201/
9781420085938.

slam, Md Rakibul, Ahmmed, Md Kauser, Zibran, Minhaz F., 2019. MarValous:
machine learning based detection of emotions in the valence-arousal space
in software engineering text. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. ACM, pp. 1786–1793. http://dx.doi.org/
10.1145/3297280.3297455.

slam, Md Rakibul, Zibran, Minhaz F., 2018. DEVA: sensing emotions in the
valence arousal space in software engineering text. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing. ACM, pp. 1536–1543.
http://dx.doi.org/10.1145/3167132.3167296.

ongeling, Robbert, Sarkar, Proshanta, Datta, Subhajit, Serebrenik, Alexander,
2017. On negative results when using sentiment analysis tools for software
engineering research. Empir. Softw. Eng. 22 (5), 2543–2584. http://dx.doi.
org/10.1007/s10664-016-9493-x.

asurinen, Jussi, Taipale, Ossi, Smolander, Kari, 2009. Analysis of problems in
testing practices. In: 2009 16th Asia-Pacific Software Engineering Conference.
IEEE, pp. 309–315. http://dx.doi.org/10.1109/APSEC.2009.17.

asurinen, Jussi, Taipale, Ossi, Smolander, Kari, 2011. How test organizations
adopt new testing practices and methods? In: 2011 IEEE Fourth International
Conference on Software Testing, Verification and Validation Workshops. IEEE,
pp. 553–558. http://dx.doi.org/10.1109/ICSTW.2011.63, URL http://ieeexplore.
ieee.org/document/5954463/.

o, Amy J., Dosono, Bryan, Duriseti, Neeraja, 2014. Thirty years of software
problems in the news. In: Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering. In: CHASE 2014,
ACM, pp. 32–39. http://dx.doi.org/10.1145/2593702.2593719.

ee, Roy Ka-Wei, Lo, David, 2017. GitHub and stack overflow: Analyz-
ing developer interests across multiple social collaborative platforms. In:
Ciampaglia, Giovanni Luca, Mashhadi, Afra, Yasseri, Taha (Eds.), Social In-
formatics. Springer International Publishing, pp. 245–256. http://dx.doi.org/
10.1007/978-3-319-67256-4_19.

in, Bin, Cassee, Nathan, Serebrenik, Alexander, Bavota, Gabriele, Novielli, Nicole,
Lanza, Michele, 2022. Opinion mining for software development: A system-
atic literature review. ACM Trans. Softw. Eng. Methodol. 31 (3), 38:1–38:41.
http://dx.doi.org/10.1145/3490388.

in, Bin, Zampetti, Fiorella, Bavota, Gabriele, Di Penta, Massimiliano,
Lanza, Michele, Oliveto, Rocco, 2018. Sentiment analysis for software
engineering: how far can we go? In: Proceedings of the 40th
International Conference on Software Engineering. ACM, pp. 94–104.
http://dx.doi.org/10.1145/3180155.3180195.

iu, Yinhan, Ott, Myle, Goyal, Naman, Du, Jingfei, Joshi, Mandar, Chen, Danqi,
Levy, Omer, Lewis, Mike, Zettlemoyer, Luke, Stoyanov, Veselin, 2019.
RoBERTa: A robustly optimized BERT pretraining approach. arXiv:1907.11692
[cs], URL http://arxiv.org/abs/1907.11692.
20
Lopez, Tamara, Tun, Thein T., Bandara, Arosha, Levine, Mark, Nuseibeh, Bashar,
Sharp, Helen, 2018. An investigation of security conversations in stack over-
flow: perceptions of security and community involvement. In: Proceedings
of the 1st International Workshop on Security Awareness from Design To
Deployment. ACM, pp. 26–32. http://dx.doi.org/10.1145/3194707.3194713.

Lopez, Tamara, Tun, Thein, Bandara, Arosha, Mark, Levine, Nuseibeh, Bashar,
Sharp, Helen, 2019. An anatomy of security conversations in stack overflow.
In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS). IEEE, pp. 31–40. http://dx.doi.
org/10.1109/ICSE-SEIS.2019.00012.

Mäntylä, Mika V., Itkonen, Juha, Iivonen, Joonas, 2012. Who tested my software?
Testing as an organizationally cross-cutting activity. Softw. Qual. J. 20 (1),
145–172. http://dx.doi.org/10.1007/s11219-011-9157-4.

Mantyla, Mika V., Novielli, Nicole, Lanubile, Filippo, Claes, Maelick, Kuutila, Mi-
ikka, 2017. Bootstrapping a lexicon for emotional arousal in software
engineering. In: 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, pp. 198–202. http://dx.doi.org/10.1109/
MSR.2017.47.

McCracken, Harry, 2017. The Year That Software Bugs Ate The World. Fast
Company, URL https://web.archive.org/web/20230307155438/https://www.
fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world.

McDonald, Nora, Schoenebeck, Sarita, Forte, Andrea, 2019. Reliability and inter-
rater reliability in qualitative research: Normsand guidelines for CSCW and
HCI practice. Proc. ACM Hum.-Comput. Interact. 3 (CSCW), 72:1–72:23. http:
//dx.doi.org/10.1145/3359174.

Mead, George Herbert, Morris, Charles W., Huebner, Daniel R., Joas, Hans, 2015.
Mind, Self, and Society, The definitive edition University of Chicago Press.

Meyer, André, Barr, Earl T, Bird, Christian, Zimmermann, Thomas, 2021. Today
was a good day: The daily life of software developers. IEEE Trans. Softw.
Eng. 47 (5), 863–880. http://dx.doi.org/10.1109/TSE.2019.2904957.

Mohanani, Rahul, Salman, Iflaah, Turhan, Burak, Rodriguez, Pilar, Ralph, Paul,
2020. Cognitive biases in software engineering: A systematic mapping study.
IEEE Trans. Softw. Eng. 46 (12), 1318–1339. http://dx.doi.org/10.1109/TSE.
2018.2877759.

Mustafa, Sohaib, Zhang, Wen, Naveed, Muhammad Mateen, 2022. What moti-
vates online community contributors to contribute consistently? A case study
on Stackoverflow netizens. Curr. Psychol. http://dx.doi.org/10.1007/s12144-
022-03307-4.

Myers, Glenford J., Sandler, Corey, Badgett, Tom, 2012. The Art of Software
Testing, third ed. John Wiley & Sons.

Novielli, Nicole, Calefato, Fabio, Lanubile, Filippo, 2018. A gold standard for
emotion annotation in stack overflow. In: Proceedings of the 15th Inter-
national Conference on Mining Software Repositories. MSR ’18, ACM, pp.
14–17. http://dx.doi.org/10.1145/3196398.3196453.

Pelicon, Andraž, Pranjić, Marko, Miljković, Dragana, ṽSkrlj, Blaž, Pollak, Senja,
2020. Zero-shot learning for cross-lingual news sentiment classification.
Appl. Sci. 10 (17), 5993. http://dx.doi.org/10.3390/app10175993.

Pham, Raphael, Kiesling, Stephan, Liskin, Olga, Singer, Leif, Schneider, Kurt,
2014. Enablers, inhibitors, and perceptions of testing in novice software
teams. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. In: FSE 2014, ACM, pp. 30–40.
http://dx.doi.org/10.1145/2635868.2635925.

Prado, Marllos Paiva, Vincenzi, Auri Marcelo Rizzo, 2018. Towards cognitive
support for unit testing: A qualitative study with practitioners. J. Syst. Softw.
141, 66–84. http://dx.doi.org/10.1016/j.jss.2018.03.052.

Runeson, P., 2006. A survey of unit testing practices. IEEE Softw. 23 (4), 22–29.
http://dx.doi.org/10.1109/MS.2006.91.

Saeed, Hafiz Hassaan, Shahzad, Khurram, Kamiran, Faisal, 2018. Overlapping
toxic sentiment classification using deep neural architectures. In: 2018
IEEE International Conference on Data Mining Workshops (ICDMW). pp.
1361–1366. http://dx.doi.org/10.1109/ICDMW.2018.00193.

Saldaña, Johnny, 2013. The Coding Manual for Qualitative Researchers, second
ed. SAGE.

Salman, Iflaah, Rodriguez, Pilar, Turhan, Burak, Tosun, Ayse, Gureller, Arda, 2022.
What leads to a confirmatory or disconfirmatory behaviour of software
testers? IEEE Trans. Softw. Eng. 48 (4), 1351–1368. http://dx.doi.org/10.1109/
TSE.2020.3019892.

Sengupta, Subhasree, Haythornthwaite, Caroline, 2020. Learning with comments:
An analysis of comments and community on Stack Overflow. In: Proceedings
of the 53rd Hawaii International Conference on System Sciences. URL https:
//core.ac.uk/reader/286030414.

Sharp, Helen, Baddoo, Nathan, Beecham, Sarah, Hall, Tracy, Robinson, Hugh,
2009. Models of motivation in software engineering. Inf. Softw. Technol.
51 (1), 219–233. http://dx.doi.org/10.1016/j.infsof.2008.05.009, URL https:
//linkinghub.elsevier.com/retrieve/pii/S0950584908000827.

http://dx.doi.org/10.1007/s11219-012-9180-0
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb17
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb17
http://dx.doi.org/10.1109/ISSRE.2014.11
http://dx.doi.org/10.1177/0731121418755121
http://dx.doi.org/10.1145/2950290.2950331
http://dx.doi.org/10.1145/2950290.2950331
http://dx.doi.org/10.1145/2950290.2950331
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb21
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb21
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb21
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb22
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb22
http://dx.doi.org/10.1016/j.jss.2018.02.041
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb24
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb24
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb24
http://dx.doi.org/10.4135/9780857020055.n14
http://dx.doi.org/10.1109/TSE.2021.3106280
http://dx.doi.org/10.1109/TSE.2021.3106280
http://dx.doi.org/10.1109/TSE.2021.3106280
http://dx.doi.org/10.1201/9781420085938
http://dx.doi.org/10.1201/9781420085938
http://dx.doi.org/10.1201/9781420085938
http://dx.doi.org/10.1145/3297280.3297455
http://dx.doi.org/10.1145/3297280.3297455
http://dx.doi.org/10.1145/3297280.3297455
http://dx.doi.org/10.1145/3167132.3167296
http://dx.doi.org/10.1007/s10664-016-9493-x
http://dx.doi.org/10.1007/s10664-016-9493-x
http://dx.doi.org/10.1007/s10664-016-9493-x
http://dx.doi.org/10.1109/APSEC.2009.17
http://dx.doi.org/10.1109/ICSTW.2011.63
http://ieeexplore.ieee.org/document/5954463/
http://ieeexplore.ieee.org/document/5954463/
http://ieeexplore.ieee.org/document/5954463/
http://dx.doi.org/10.1145/2593702.2593719
http://dx.doi.org/10.1007/978-3-319-67256-4_19
http://dx.doi.org/10.1007/978-3-319-67256-4_19
http://dx.doi.org/10.1007/978-3-319-67256-4_19
http://dx.doi.org/10.1145/3490388
http://dx.doi.org/10.1145/3180155.3180195
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://dx.doi.org/10.1145/3194707.3194713
http://dx.doi.org/10.1109/ICSE-SEIS.2019.00012
http://dx.doi.org/10.1109/ICSE-SEIS.2019.00012
http://dx.doi.org/10.1109/ICSE-SEIS.2019.00012
http://dx.doi.org/10.1007/s11219-011-9157-4
http://dx.doi.org/10.1109/MSR.2017.47
http://dx.doi.org/10.1109/MSR.2017.47
http://dx.doi.org/10.1109/MSR.2017.47
https://web.archive.org/web/20230307155438/https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
https://web.archive.org/web/20230307155438/https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
https://web.archive.org/web/20230307155438/https://www.fastcompany.com/40505226/the-year-that-software-bugs-ate-the-world
http://dx.doi.org/10.1145/3359174
http://dx.doi.org/10.1145/3359174
http://dx.doi.org/10.1145/3359174
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb44
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb44
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb44
http://dx.doi.org/10.1109/TSE.2019.2904957
http://dx.doi.org/10.1109/TSE.2018.2877759
http://dx.doi.org/10.1109/TSE.2018.2877759
http://dx.doi.org/10.1109/TSE.2018.2877759
http://dx.doi.org/10.1007/s12144-022-03307-4
http://dx.doi.org/10.1007/s12144-022-03307-4
http://dx.doi.org/10.1007/s12144-022-03307-4
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb48
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb48
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb48
http://dx.doi.org/10.1145/3196398.3196453
http://dx.doi.org/10.3390/app10175993
http://dx.doi.org/10.1145/2635868.2635925
http://dx.doi.org/10.1016/j.jss.2018.03.052
http://dx.doi.org/10.1109/MS.2006.91
http://dx.doi.org/10.1109/ICDMW.2018.00193
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb55
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb55
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb55
http://dx.doi.org/10.1109/TSE.2020.3019892
http://dx.doi.org/10.1109/TSE.2020.3019892
http://dx.doi.org/10.1109/TSE.2020.3019892
https://core.ac.uk/reader/286030414
https://core.ac.uk/reader/286030414
https://core.ac.uk/reader/286030414
http://dx.doi.org/10.1016/j.infsof.2008.05.009
https://linkinghub.elsevier.com/retrieve/pii/S0950584908000827
https://linkinghub.elsevier.com/retrieve/pii/S0950584908000827
https://linkinghub.elsevier.com/retrieve/pii/S0950584908000827

M. Swillus and A. Zaidman The Journal of Systems & Software 205 (2023) 111804

S

S

V

W

W

Y

Y

Z

Z

harp, H., Robinson, H., Woodman, M., 2000. Software engineering: community
and culture. IEEE Softw. 17 (1), 40–47. http://dx.doi.org/10.1109/52.819967.

willus, Mark, Zaidman, Andy, 2022. Replication package for sentiment overflow
in the testing stack. http://dx.doi.org/10.5281/zenodo.6595110.

adlamani, Sri Lakshmi, Baysal, Olga, 2020. Studying software developer ex-
pertise and contributions in stack overflow and GitHub. In: 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 312–323. http://dx.doi.org/10.1109/ICSME46990.2020.00038.

ang, Shaohua, Phan, NhatHai, Wang, Yan, Zhao, Yong, 2019. Extracting API
tips from developer question and answer websites. In: 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). pp.
321–332. http://dx.doi.org/10.1109/MSR.2019.00058.

iebe, Janyce M., Bruce, Rebecca F., O’Hara, Thomas P., 1999. Development and
use of a gold-standard data set for subjectivity classifications. In: Proceedings
of the 37th Annual Meeting of the Association for Computational Linguistics
on Computational Linguistics. Association for Computational Linguistics, pp.
246–253. http://dx.doi.org/10.3115/1034678.1034721.

ang, Xin-Li, Lo, David, Xia, Xin, Wan, Zhi-Yuan, Sun, Jian-Ling, 2016. What secu-
rity questions do developers ask? A large-scale study of stack overflow posts.
J. Comput. Sci. Tech. 31 (5), 910–924. http://dx.doi.org/10.1007/s11390-016-
1672-0.

ourdon, Edward, 1988. Managing the system life cycle, second ed. In: Yourdon
Press Computing Series, Yourdon Press.

agalsky, Alexey, Teshima, Carlos Gómez, German, Daniel M., Storey, Margaret-
Anne, Poo-Caamaño, Germán, 2016. How the R community creates and
curates knowledge: a comparative study of stack overflow and mailing lists.
In: Proceedings of the 13th International Conference on Mining Software
Repositories. ACM, pp. 441–451. http://dx.doi.org/10.1145/2901739.2901772.

aidman, Andy, Van Rompaey, Bart, Demeyer, Serge, van Deursen, Arie, 2008.
Mining software repositories to study co-evolution of production & test
code. In: 1st International Conference on Software Testing, Verification and
Validation 2008. pp. 220–229. http://dx.doi.org/10.1109/ICST.2008.47.
21
Zaidman, Andy, Van Rompaey, Bart, van Deursen, Arie, Demeyer, Serge, 2011.
Studying the co-evolution of production and test code in open source and
industrial developer test processes through repository mining. Empir. Softw.
Eng. 16 (3), 325–364. http://dx.doi.org/10.1007/s10664-010-9143-7.

Zhang, Ting, Xu, Bowen, Thung, Ferdian, Haryono, Stefanus Agus, Lo, David,
Jiang, Lingxiao, 2020. Sentiment analysis for software engineering: How
far can pre-trained transformer models go? In: 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, pp. 70–80.
http://dx.doi.org/10.1109/ICSME46990.2020.00017.

Mark Swillus, is a Ph.D. candidate in software engineering at Delft University
of Technology, The Netherlands. He received his M.Eng in Information Systems
Engineering from the University of Applied Sciences in Aachen, Germany, in
2018. He currently researches the interplay of social and technical aspects of
software engineering, focusing on software quality and testing practices. Having
worked as a software engineer for multiple open source software projects, he is
particularly interested in the diverse human aspects of cumbersome processes
that lead to a finished software product.

Andy Zaidman, is a Full Professor in software engineering at Delft University
of Technology, The Netherlands. He received his M.Sc. and Ph.D. degrees in
Computer Science from the University of Antwerp, Belgium, in 2002 and 2006,
respectively. His main research interests include software evolution, program
comprehension, mining software repositories, software quality, and software
testing. He is an active member of the research community and involved in
the organization of numerous conferences (WCRE’08, WCRE’09, VISSOFT’14 and
MSR’18). In 2013 he was the laureate of a prestigious Vidi midcareer grant,
while in 2019 he received the most prestigious Vici career grant from the Dutch
science foundation NWO.

http://dx.doi.org/10.1109/52.819967
http://dx.doi.org/10.5281/zenodo.6595110
http://dx.doi.org/10.1109/ICSME46990.2020.00038
http://dx.doi.org/10.1109/MSR.2019.00058
http://dx.doi.org/10.3115/1034678.1034721
http://dx.doi.org/10.1007/s11390-016-1672-0
http://dx.doi.org/10.1007/s11390-016-1672-0
http://dx.doi.org/10.1007/s11390-016-1672-0
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb65
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb65
http://refhub.elsevier.com/S0164-1212(23)00199-1/sb65
http://dx.doi.org/10.1145/2901739.2901772
http://dx.doi.org/10.1109/ICST.2008.47
http://dx.doi.org/10.1007/s10664-010-9143-7
http://dx.doi.org/10.1109/ICSME46990.2020.00017

	Sentiment overflow in the testing stack: Analyzing software testing posts on Stack Overflow
	Introduction
	Background
	Sentiment Analysis
	Grounded Theory
	Stack Overflow

	Method
	Filtering by tags
	Filtering by sentiment
	Data Analysis
	Constructing Interpretive Theory

	Results
	Sentiment analysis for qualitative research
	Occurrences of sentimental expressions in posts
	Overall sentiment of posts

	Sentiments that affect attitudes
	Focused codes
	From Codes to Categories
	Factors that arouse sentiment

	Trust, Complexity and Testing – Preliminary Theory

	Discussion
	Semi-automated filtering of datasets for qualitative and quantitative research
	How and why is sentiment expressed
	Implications
	Threats to validity
	Internal Validity
	Experimenter Bias
	External Validity
	Construct validity

	Future Work
	Limitations
	Theoretic sampling

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

