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Incremental Generalized Policy Iteration for Adaptive Attitude Tracking
Control of a Spacecraft

Yifei Li1 and Erik-Jan van Kampen2

Abstract— This paper proposes a novel dynamic pro-
gramming algorithm for nonlinear system optimal control
problem, namely Incremental Generalized Policy Iteration
(IGPI). The proposed IGPI algorithm combines the advan-
tages of Incremental Control(IC) and Generalized Policy
Iteration(GPI). Incremental control can handle the nonlin-
earity and uncertainty in nonlinear systems without knowing
the nonlinear system information, GPI can learn an optimal
control law for dynamical systems. Based on the proposed
IGPI algorithm, a data-driven adaptive attitude controller
is designed for a spacecraft with sloshing liquid fuel. Simu-
lation results demonstrate the effectiveness of the spacecraft
attitude controller.

I. INTRODUCTION
Reinforcement learning (RL) is an effective method to

solve the Hamilton-Jacob-Bellman (HJB) equation for
discrete-time infinite horizon optimal control problems
for nonlinear systems[1]. Most RL algorithms, such
as Heuristic Dynamic Programming[2], Dual Heuristic
Dynamic Programming[3], Soft Actor-Critic[4], follow
the same basic idea, namely Generalized Policy Iteration
(GPI)[5]. GPI is a computational method that conducts
the policy evaluation and policy improvement steps
recursively to acquire the optimal control policy.

Compared to the well-known policy iteration (PI),
GPI does not precisely approximate the cost function
in the policy evaluation step, such that the computation
load is reduced. Theoretical results of GPI are mostly
focusing on the admissible initial control[5], convergence
and stability[6], and cost function approximation with
adaptive iteration[7]. However, GPI requires a system
model to predict the states in next time step, which
could be inaccurate in practice for physical systems with
high nonlinearity and model uncertainties.

Incremental control method can handle system non-
linearities and uncertainties by linearizing the nonlinear
system[8], [9], [10]. Recent works have combined incre-
mental control and reinforcement learning algorithms to
develop model-free optimal controllers[8], [9], [10]. In [8],
the incremental control is combined with approximate
linear dynamic programming for air vehicle angle of
attack tracking with output feedback. In [9], the partial

1Yifei Li is with Faculty of Aerospace Engineering, Delft
University of Technology, 2629HS Delft, The Netherlands Y.Li-
34@tudelft.nl

2Erik-Jan van Kampen is with Faculty of Aerospace Engineer-
ing, Delft University of Technology, Delft, 2629HS Delft, the
Netherlands E.vanKampen@tudelft.nl

observability problem is considered and the developed
incremental approximate dynamic programming algo-
rithm is applied for satellite attitude tracking problem
with sloshing liquid fuel. In [10], an Incremental Global
Dual Heuristic Programming (IGDHP) algorithm is
developed for F-16 aircraft flight control.

Following the idea of combining incremental control
and reinforcement learning algorithms, this paper devel-
ops a new model-free RL algorithm, namely Incremental
Generalized Policy Iteration (IGPI). IGPI adopts Re-
cursive Least Square (RLS) identification to learn an
incremental model of physical systems, the identified
incremental model is then used to predict model states
such that generalized policy iteration can be conducted.

The contributions of this paper are summarized as
follows.

• A new algorithm is developed to solve the HJB
equation, through combining system identification
and generalized policy iteration, namely incremen-
tal generalized policy iteration.

• Incremental control and RLS identification algo-
rithm are combined to achieve state prediction
without knowing the nonlinear system model per-
fectly. The resulting IGPI algorithm has the im-
proved online performance because it identifies a
linearized model.

• The IGPI algorithm is applied to develop an adap-
tive optimal attitude controller for a spacecraft, to
deal with the effect of unknown internal dynamics
caused by sloshing liquid.

The remainder of this paper is structured as follows.
Section II presents the HJB equation for the discrete-
time infinite horizon optimal control problem, and the
fundamental idea of the GPI algorithm. Section III
develops the IGPI algorithm by combining incremental
control and GPI. Section IV provides the continuous-
time longitudinal model of a spacecraft with sloshing
fuel, and discretizes it into an incremental model. Sec-
tion V provides the simulation results of IGPI algorithm
in adaptive attitude tracking problem of a spacecraft.
The conclusion of this paper is provided in Section VI.
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II. PROBLEM FORMULATION
A. Discrete-time Hamilton-Jacob-Bellman Equation

The control-affine nonlinear dynamical system in
discrete-time form is presented as[11]

xk+1 = f (xk)+g(xk)u(xk) (1)

where xk ∈ Rn, f (xk) ∈ Rn,g(xk) ∈ Rn×m, and the input
uk ∈ Rm. Assume that the system (1) is stabilizable on
a prescribed compact set Ω ∈ Rn.
Definition 1: Stabilizable System. A nonlinear dynamical
system is defined to be stabilizable on a compact set
Ω ∈Rn if there exists a control input uk ∈Rm such that,
for all initial conditions x0 ∈Ω, the state xk → 0 as k →∞.

It is desired to find the control action uk which
minimizes the infinite-horizon cost function given as

V (xk) =
∞

∑
n=k

[
Q(xn)+uT

n Run
]
, for all xn (2)

where Q(xn)> 0 and R > 0 ∈Rm×m. The controllers need
to be stable and also to guarantee that (2) is finite,
i.e., the control must be admissible. The definition of
admissible control is given as[11]
Definition 2: Admissible Control. A control u(xk) is
defined to be admissible with respect to cost function
(2) on Ω if u(xk) is continuous on a compact set Ω ∈Rn,
u(0) = 0, u stabilizes dynamical system (1) on Ω, and
∀x0 ∈ Ω, V (x0) is finite.

Equation (2) can be rewritten as

V (xk) =Q(xk)+uT
k Ruk +

∞

∑
n=k+1

(Q(xn)+uT
n Run)

=Q(xk)+uT
k Ruk +V (xk+1), for all xn

(3)

According to Bellman’s optimality principle[12], in
discrete-time infinite-horizon optimal control problem,
the optimal cost function V ∗(xk) is a constant which
makes the following HJB equation hold:

V ∗(xk) = min
uk

(xT
k Q(xk)xk +uT

k Ruk +V ∗(xk+1)) (4)

The optimal control u∗k for V ∗(xk) meets the following
partial differential equation:

∂ (xT
k Q(xk)xk +uT

k Ruk)

∂uk
+

(
∂xk+1

∂uk

)T ∂V ∗(xk+1)

∂xk+1
= 0 (5)

Solving (5) yields

u∗(xk) =−1
2

R−1g(xk)
T ∂V ∗(xk+1)

∂xk+1
(6)

Substitute (6) into (4)

V ∗(xk) = xT
k Q(xk)xk +

1
4

∂V ∗T (xk+1)

∂xk+1
g(xk)R−1g(xk)

T ∂V ∗(xk+1)

∂xk+1

+V ∗(xk+1)

(7)

Eq.(7) is the discrete-time HJB equation which de-
scribes the trajectory of optimal cost function V ∗(xk)(k =
0,1,2, · · ·). When the system is linear and the cost
function is in a quadratic form, Eq.(7) is solvable[5].
For a nonlinear system, it cannot be solved analytically,
which motivates the approximated numerical solution.

B. Generalized Policy Iteration Algorithm
In this subsection, the GPI algorithm will be intro-

duced to solve the HJB equation in Eq.(7) numerically.
The GPI algorithm includes two steps[5]: (1) policy
evaluation; (2) policy improvement.
Policy evaluation.

Vi, ji+1(xk) = Q(xk)+ vi(xk)
T Rvi(xk)+Vi, ji [F(xk,vi(xk))] (8)

Policy improvement.

vi(xk) =arg min
vi(xk)

{
Q(xk)+ vi(xk)

T Rvi(xk)

+Vi−1 [F(xk,vi(xk))]}
(9)

where the iteration index i denotes the ith policy
iteration, ji is the jth value iteration for fixed policy vi,
0 < i < Ni,0 < ji < N ji . F(xk,vi(xk)) = f (xk)+g(xk)vi(xk).
The initial value function Vi,0(xk) for fixed vi is calculated
using the results of (i−1)th iteration:

Vi,0(xk) =min
vk

{
Q(xk)+ vi(xk)

T Rvi(xk)+Vi−1 [F(xk,vi(xk))]}

=Q(xk)+ vi(xk)
T Rvi(xk)+Vi−1 [F(xk,vi(xk))]

(10)

Remark 1. The value of N ji determines two special
cases: (1)when N ji = 1, GPI algorithm reduces to a
value iteration (VI) algorithm; (2)when N ji → ∞, the
GPI algorithm turns to be a PI algorithm.

Algorithm 1: Generalized Policy Iteration (GPI) Algorithm[5]
Initialization:
Choose randomly states xk in Ωx, i.e., Xk = (x(1)k ,x(2)k , ...,x(p)

k ),
where p is a large positive integer;
Choose a computation precision ε;
Construct a sequence Ni, where Ni ≥ 0, i = 1,2, ... is an arbitrary
non-negative integer.
Iteration:
1: Let the iteration index i = 0. Obtain V1,0(xk) and v1(xk) ;
2: Let j1 increase from 0 to N1. For all xk ∈ Ωx, update the

iterative value function by
V1, j1+1(xk) =U(xk,v1(xk))+V1, j1 (F(xk,v1(xk)))
U(xk,v1(xk)) = Q(xk)+ v1(xk)

T Rv1(xk)
3: Let i = i+1. For all xk ∈ Ωx, do Policy Improvement

vi(xk) = argmin
uk

U(xk,uk)+Vi−1(F(xk,uk));
4: Let ji increase from 0 to Ni. Do Policy Evaluation

Vi, ji+1(xk) =U(xk,vi(xk))+Vi, ji (F(xk,vi(xk)));
5: Let Vi(xk) = vi,Ni(xk)

;
6: For all xk ∈ Ωx, if Vi−1(xk)−Vi(xk)< ε, the approximate

optimal cost function and the control law are obtained.
Go to Step 7. Else go to Step 3;

7: return vi(xk) and Vi, ji (xk).
end for

2

Authorized licensed use limited to: TU Delft Library. Downloaded on August 16,2023 at 05:12:16 UTC from IEEE Xplore.  Restrictions apply. 



III. Incremental Generalized Policy Iteration
Despite the fact that GPI can solve the HJB function,

it requires the full knowledge of system transition
function. When the system transition function is not
perfectly known, GPI will not work. This section firstly
introduces an incremental approach as a linearization
method for nonlinear control problems. The second
part explicates the implementation of a recursive least
squares algorithm. Finally, the incremental model-based
GPI algorithm is developed to solve the HJB function
when the system model is unknown.

A. Incremental Control Approach
The main ideal of incremental control approach is

to approximate a nonlinear system with a time-varying
linear model. This incremental model is then identified
using system identification methods at each local dis-
crete time step[13]. This technique has been used to
control unknown nonlinear systems in [14], [15].

Considering the discrete-time nonlinear system (1),
taking the Taylor expansion yields

xk+1 = xk +Fk−1(xk − xk−1)+Gk−1(uk −uk−1)+O(∆x2
k ,∆u2

k)
(11)

where Fk−1 = ∂ [ f (x) + g(x)u(x)]/∂x|xk−1,uk−1 ∈ Rn×n

is the system transition matrix, and Gk−1 =
∂ f (x,u)/∂u|xk−1,uk−1 ∈Rn×n is the input distribution ma-
trix at time step k−1 for discrete systems. O(∆x2

k ,∆u2
k)

is the higher-order term of Taylor series.
This discrete-time system can be written in an incre-

mental form as

∆xk+1 = Fk−1(∆xk)+Gk−1(∆uk)+O(∆x2
k ,∆u2

k) (12)

B. Recursive Least Squares Identification
Define the augmented state and the augmented sys-

tem matrix asXk =

[
∆xk

∆uk

]
Θ̂k−1 =

[
F̂k−1 Ĝk−1

]T
(13)

where F̂k−1, Ĝk−1 are approximations of Fk−1,Gk−1.
The one-step prediction of ∆xT

k+1 is calculated as

∆x̂T
k+1 = XT

k Θ̂k−1 (14)

The error between ∆xT
k+1 and ∆x̂T

k+1 is defined as

εk = ∆xT
k+1 −∆x̂T

k+1 (15)

The estimate of the augmented system matrix Θ̂k−1
is updated as

Θ̂k = Θ̂k−1 +
Λk−1Xk

κ +XT
k Λk−1Xk

εk (16)

where Λk−1 is the equal weighted estimation of the
covariance matrix Cov(Θ̂k − Θ̂k−1), which describes the
confidence of the estimated Θ̂k. κ ∈ (0,1) is the forgetting
factor. Λk−1 is updated by

Λk =
1
κ

[
Λk−1 −

Λk−1XkXT
k Λk−1

κ +XT
k Λk−1Xk

]
(17)

Remark 2. The value of κ provides a balance between
noise rejection and time-varying parameter estimation.
When κ → 1, the RLS algorithm becomes equally
weighted and behaves better at noise rejection; when
κ → 0, the RLS algorithm shows more adaptation to new
measurements, and thus adapts better to time-varying
parameters. For a satisfying performance in practice, κ
is suggested in [16] to be assigned as 0.9 < κ < 0.995.

C. Incremental Generalized Policy Iteration Algorithm
This subsection develops the Incremental Generalized

Policy Iteration (IGPI) algorithm, which combines the
incremental control and generalized policy iteration.
The IGPI algorithm firstly estimates a linear system
model using RLS system identification method, and
then iteratively calculates an optimal control policy. The
IGPI algorithm is seen in Algorithm 2.

The developed IGPI algorithm assumes that cost
function Vi, ji(xk) and control policy vi(xk) in each it-
eration step are known. However, the cost function is
the sum of infinite utility functions and difficult to
calculate. Meanwhile, the mathematical expression of
control policy is not known. In these cases, parameter-
ized approximators (neural networks in our work) can
be used to approximate the cost function and control
policy.
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Algorithm 2: Incremental Generalized Policy Iteration Algorithm
Initialization:
Choose randomly states xk in Ωx, i.e., Xk = (x(1)k ,x(2)k , ...,x(p)

k ),
where p is a large positive integer;
Choose a computation precision ε;
Construct a sequence Ni ≥ 0(i = 1,2, ...), Ni is an arbitrary
non-negative integer.
Choose initial value Θ̂0 = [F̂0, Ĝ0]

T ,Λ0
RLS Identification:
1: ∆x̂T

k+1 = XT
k Θ̂k−1

2: ∆xk+1 = xk+1 − xk
3: εεεk = ∆xT

k+1 −∆x̂T
k+1

4: Θ̂k = Θ̂k−1 +
Λk−1Xk

κ+XT
k Λk−1Xk

εk

5: Λk =
1
κ

[
Λk−1 −

Λk−1XkXT
k Λk−1

κ+XT
k Λk−1Xk

]
Iteration:
6: Let the iteration index i = 0. Obtain V1,0(xk) and v1(xk);
7: Define F(xk,uk) = xk + F̂k−1(xk − xk−1)+ Ĝk−1(uk −uk−1)
9: Let j1 increase from 0 to N1. For all xk ∈ Ωx, update the

iterative value function by
V1, j1+1(xk) =U(xk,v1(xk))+V1, j1 [F(xk,v1(xk))]

10: Let i = i+1. For all xk ∈ Ωx, do Policy Improvement
vi(xk) = arg min

vi(xk)
{U(xk,vi(xk))+Vi−1 [F(xk,vi(xk))]} ;

11: Let ji increase from 0 to Ni.
For all xk ∈ Ωx, do Policy Evaluation

Vi, ji+1(xk) =U(xk,vi(xk))+Vi, ji [F(xk,vi(xk))];
12: Let Vi(xk) = vi,Ni(xk)

;
13: For all xk ∈ Ωx, if Vi−1(xk)−Vi(xk)< ε, the approximate

optimal cost function and the approximate optimal control
law are obtained. Go to Step 7.
Else go to Step 3;

14: return vi(xk) and Vi, ji (xk).
end for

IV. Spacecraft Dynamical Model
This section provides the longitudinal dynamical

model of a spacecraft with sloshing liquid. Firstly, a
schematic of the spacecraft is introduced with basic def-
initions of state variables and coordinate systems. Sec-
ondly, the dynamical equations of rigid-body spacecraft
and sloshing liquid are introduced to mathematically
describe their motions. Finally, the rotational motions
of spacecraft and liquid fuel are derived, which are used
to design attitude controllers.

Fig. 1. A schematic of spacecraft model with sloshing liquid
fuel. The coordinate system (X ,Z) is fixed on spacecraft body,
X is the central axis of spacecraft body and points to the
front, Z is perpendicular to X and points down. The vx axis in
velocity coordinate system (vx,vz) is defined as the direction of
the projection of spacecraft velocity in longitudinal plane, vz is
perpendicular to vx and points down. S is the center of mass of
rigid-body spacecraft

Figure 1 provides a schematic of the spacecraft with
sloshing liquid fuel. The effect of sloshing liquid is

caused by the oscillating movement of the liquid in
a compartment. From the oscillation mode side, the
movement of the sloshing liquid generates the wave in
all oscillation modes, in which the first and the second
modes cause the largest disruption in the system of a
rigid-body spacecraft. In terms of the other oscillation
modes, they show less aggressive behaviors than those of
the first and the second modes. To avoid establishing a
complex fluid model of the sloshing liquid, one can con-
sider using an equivalent mechanical pendulum model
to approximate the liquid dynamics[17]. The transitional
and rotational models of spacecraft longitudinal plane
are derived by using Lagrange equations, as in Refs.[9],
[17], [18]. As a result, the rigid-body spacecraft and
liquid fuel transitional motions are described as

(ms +mp)(v̇x + vzθ̇)+msbθ̇ +mpa(ψ̈ + θ̈)sin(ψ̈)

+mpa(ψ̈ + θ̇)2 cos(ψ) = Fs
(18)

(ms +mp)(v̇z − vxθ̇)+msbθ̈ +mpa(ψ̈ + θ̈)cos(ψ)

−mpa(ψ̇ + θ̇)2 sin(ψ) = fs
(19)

where vx,vz are velocities of spacecraft center of mass
along x,z axis of velocity coordinate system (vx,vz).
ms, Is,θ are the mass, moment of inertia, pitch angle
of spacecraft. θ is defined as the angle between axis vz
in (vx,vz) and axis X in (X ,Z). mp, Ip,ψ are the fuel mass,
moment of inertia, angle with respect to the longitudinal
axis of a spacecraft. Fs is the constant thrust. fs is the
transverse force. a represents the overall length of the
pendulum. b represents the relative distance between
the center of mass of satellite and the connected point
of pendulum. The values of spacecraft and liquid fuel
can be seen in Table I.

The rigid-body spacecraft and liquid fuel rotational
motions are modelled as a second-order dynamical
nonlinear systems

msb(v̇z − vxθ̇)+(Is +msb2)θ̈ −κψ̇ = Ms +b fs (20)

(mpa2 + Ip)(ψ̈ + θ̈)+mpa[(v̇x + vzθ̇)sin(ψ)

+(v̇z − vxθ̇)cos(ψ)]+κψ̇ = 0
(21)

Rewrite (18), (19) as

v̇x =
Fs −mbbθ̇ −mpa(ψ̈ + θ̈)sin(ψ)−mpa(ψ̇ + θ̇)2 cos(ψ)

ms +mp
− vzθ̇

(22)

v̇z =
fs −msbθ̈ −mpa(ψ̈ + θ̈)cos(ψ)+mpa(ψ̇ + θ̇)2 sin(ψ)

ms +mp
+ vxθ̇

(23)
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Substitute (22),(23) into (20),(21)

θ̈ =
(ms +mp)(Ms +b fs)+(ms +mp)κψ̇

(ms +mp)(Is +msb2)−m2
s b2 −msmpabcos(ψ)

−
msb[ fs −mpaψ̈ cos(ψ)+mpa(ψ̇ + θ̇)2 sin(ψ)]

(ms +mp)(Is +msb2)−m2
s b2 −msmpabcos(ψ)

(24)

ψ̈ =−
mpasin(ψ)[Fs −msbθ̇ −mpaθ̈ sin(ψ)−mpa(ψ̇ + θ̇)2 cos(ψ)]

(ms +mp)(mpa2 + Ip)−mpasin(ψ)mpasin(ψ)−mpacos2(ψ)

−
mpacos(ψ)[ fs −msbθ̈ −mpaθ̈ cos(ψ)+mpa(ψ̇ + θ̇)2 sin(ψ)]

(ms +mp)(mpa2 + Ip)−mpasin(ψ)mpasin(ψ)−mpacos2(ψ)

−
(ms +mp)(mpa2 + Ip)θ̈ − (ms +mp)κψ̇

(ms +mp)(mpa2 + Ip)−mpasin(ψ)mpasin(ψ)−mpacos2(ψ)
(25)

It is worth noting that the rotational motions of
spacecraft and liquid fuel described as in (24),(25) are
not affected by translational variables vx,vz, so that it
can be simulated independently.

V. Simulation Results
This section provides the simulation results of a space-

craft attitude tracking problem using IGPI algorithm.
The controller tracks the square-wave reference pitch
angle θref. The amplitude and frequency of θref are
17.2◦ and 1

300 Hz, respectively. To implement the IGPI
algorithm, two neural networks, namely critic and actor,
are used. The updates of hyperparameters in critic
and actor networks use gradient descent method[19].
The simulation environment is MATLAB R2021b with
Intel(R) Core(TM) i5-9300H CPU @2.40GHz and 16GB
RAM. The physical coefficients of the spacecraft are
provided in Table I.

TABLE I
Spacecraft Physical Coefficients

Parameter Value
Mass of spacecraft ms 600kg
Mass of liquid fuel mp 100kg
Spacecraft moment of inertia Is 720kg/m2

Fuel moment of inertia Ip 90kg/m2

Thrust Fs 500N
Pendulum coefficient κ 0.19 (kg· m2)/s
Length of pendulum a 0.3m
Distance from spacecraft center of mass
to the pendulum connected point b 0.3m

A. Pitch Angle θ Set-point Tracking
Figure 2 shows that the spacecraft pitch angle θ

follows the reference θref in 60s. When the sign of θref
turns, θ tracks θref in less than 50s. The pitch rate θ̇
converges to 0 after each change of reference θref. The
pitching moment Ms, the transverse force fs are two
control inputs of dynamical system consists of rigid-
body spacecraft and liquid fuel. The results in Figure
3 show that Ms and fs are capable of accomplishing
tracking task of spacecraft pitch angle in the ranges

[−5,+5] and [−3,+3], respectively. The stabilization of
fuel attitude angle ψ is required for spacecraft attitude
control. The motion of ψ is affected through interacting
with spacecraft dynamics, as shown in Eq.(22),(23). In
Figure 4, the results show that ψ̇ is driven close to 0◦/s,
ψ oscillates near 0◦.

B. Update of Critic and Actor Network Weights

Figure 5 provides the results of critic and actor
networks weight matrices. The weight matrices of critic
and actor networks Ycritic,Wcritic,Yactor,Wactor start from
their random initial values with 0 expectations. As a
result, the elements of the critic network weight matrices
converge in 100s and remain stable. The elements of the
actor network weight matrices converge in less than 20s.
As a result, the control command outputted by actor
network can drive the pitch angle θ to its reference value
θref, while keeping the attitude angle ψ stable.

Fig. 2. Pitch Angle θ and pitch rate θ̇ .

Fig. 3. Input moment Ms and input force fs.

5

Authorized licensed use limited to: TU Delft Library. Downloaded on August 16,2023 at 05:12:16 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Liquid attitude angle ψ and angle rate ψ̇.

Fig. 5. Critic and actor network weight matrices.

VI. CONCLUSIONS
A reinforcement learning algorithm, namely incre-

mental generalized policy iteration, is introduced to
solve the discrete-time HJB function for infinite-time
horizon optimal control problems. The uncertainties and
nonlinearities of the system are dealt with by using
RLS identification. As a result, the IGPI algorithm can
be model-free. Simulation results of IGPI applied to a
spacecraft attitude tracking problem demonstrate that
it can deal with the uncertainty of the dynamical system
caused by sloshing liquid fuel.
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