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CoPR: Toward Accurate Visual Localization With
Continuous Place-Descriptor Regression

Mubariz Zaffar , Liangliang Nan , and Julian Francisco Pieter Kooij

Abstract—Visual place recognition (VPR) is an image-based
localization method that estimates the camera location of a query
image by retrieving the most similar reference image from a map of
geo-tagged reference images. In this work, we look into two funda-
mental bottlenecks for its localization accuracy: 1) reference map
sparseness and 2) viewpoint invariance. First, the reference images
for VPR are only available at sparse poses in a map, which enforces
an upper bound on the maximum achievable localization accuracy
through VPR. We, therefore, propose Continuous Place-descriptor
Regression (CoPR) to densify the map and improve localization
accuracy. We study various interpolation and extrapolation models
to regress additional VPR feature descriptors from only the existing
references. Second, we compare different feature encoders and
show that CoPR presents value for all of them. We evaluate our
models on three existing public datasets and report on average
around 30% improvement in VPR-based localization accuracy us-
ing CoPR, on top of the 15% increase by using a viewpoint-variant
loss for the feature encoder. The complementary relation between
CoPR and relative pose estimation is also discussed.

Index Terms—Continuous Place-descriptor Regression (CoPR),
pose estimation, visual localization (VL), visual place recognition
(VPR).

I. INTRODUCTION

ONE of the key research problems for robotics and com-
puter vision is accurate visual localization (VL), i.e., to

localize a robot in a map using as input only an image from
the robot’s camera [1]. Various parallel research directions have
emerged within VL. A top-level distinction can be made be-
tween purely image-based approaches and 3-D-structure-based
approaches. The former ones are simple and efficient but have
lower localization accuracy while the latter ones are more ac-
curate at the cost of increased computation complexity and
maintenance effort [2]. Purely image-based approaches could
be further divided into visual place recognition (VPR) [3],
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absolute pose regression (APR) [4], and relative pose estimation
(RPE) [5]. Given their efficiency and scalability, VPR techniques
are often used in robotics for loop closure detection or 3-D
reconstruction. However, improving their performance remains
an ongoing research challenge [6], [7].

In VPR, the task is to find for a query image the best matching
reference image from a set of prerecorded geo-tagged reference
images (i.e., the reference map) [8]. Each reference image is
considered a “place,” and the geo-location of the best-matched
reference is then the estimated location (“place”) of the query
image. Whereas VPR relies on image retrieval, in APR, a neural
network directly regresses the global coordinates for a query
image, and the map is implicitly represented by the network
weights. However, such APR methods do not generalize across
viewpoints, as has been studied by Sattler et al. [9]. RPE on the
other hand operates on two images with assumed nearby view-
points and estimates from the overlapping image contents the
relative translation and orientation between their corresponding
camera coordinate frames. Since VPR performs coarse global
localization, and RPE performs fine-grained localization by
assuming coarse localization is solved, both techniques are often
combined in the multistage approach, referred to as Coarse-to-
Fine localization (CtF) [5], [10], [11]. RPE is, therefore, not an
alternative to VPR, but a refinement step that is only successful
if VPR was able to retrieve a nearby reference.

VPR remains less accurate than structure-based and CtF ap-
proaches [12], with a crucial reason being the discrete nature
of the reference map in VPR. When a query image appears
between two anchor locations in the reference map, a VPR
system could at best only match this to the nearest spatial
anchor location, incurring some minimal Euclidean distance
error. This can become worse when query images and existing
reference images span the same area but at offsets of parallel
lines, as shown in Fig. 1. Therefore, we seek to add more
references to the map (such as the blue poses in Fig. 1), a notion
referred to as map densification. A trivial but often impractical
solution to densification is by collecting more reference images.
Alternatively, densification could be achieved by creating a 3-D
model of the environment and rendering images at novel poses.
However, creating and maintaining up-to-date 3-D models is
computationally and storagewise expensive, and the resulting
images are not photo-realistic [9], [13].

Since the VPR reference maps comprise compact feature de-
scriptors of images, we suggest performing map densification in
the feature space rather than the image space. We propose Con-
tinuous Place-descriptor Regression (CoPR) in feature space for

1552-3098 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 16,2023 at 09:49:14 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9368-2391
https://orcid.org/0000-0002-5629-9975
https://orcid.org/0000-0001-9919-0710
mailto:m.zaffar@tudelft.nl
mailto:J.F.P.Kooij@tudelft.nl
mailto:liangliang.nan@gmail.com
https://doi.org/10.1109/TRO.2023.3262106


2826 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 4, AUGUST 2023

Fig. 1. Discrete treatment of VPR that leads to lower localization accuracy. Provided that only the yellow anchor reference poses are available in the map, the black
query images could only be matched as close as possible to the base error. Regressing descriptors for the blue target viewpoints using interpolation or extrapolation
given anchor reference descriptors could lead to improved localization accuracy for query images in VPR and, thus, reduce the base error. The scene shown in this
figure is taken from the work of Sattler et al. [9].

VPR map densification.1 Since, in CtF, the RPE step assumes the
initial VPR step was performed correctly, we note that improving
VPR could also address CtF errors that cannot be corrected by
RPE, as we will also show in this work.

We argue for two requirements to benefit from such map
densification: 1) a method of regressing meaningful feature
descriptors for VPR at novel target viewpoints given anchor
point feature descriptors, 2) an image-retrieval system that is
viewpoint-variant and, therefore, could utilize the regressed
descriptors at target viewpoints. Furthermore, the model for de-
scriptor regression should only need existing anchor descriptors
and relative poses between anchor locations and target view-
points, at its input, and it should not require images of the scene
from target viewpoints or expensive scene reconstruction [9].

To study the problem of descriptor regression, we further
consider two possible schemes: 1) interpolation and 2) ex-
trapolation. Both of these are relevant for map densification,
where interpolation [see Fig. 1(a)] refers to interpolating to
an intermediate location between some anchor points on the
reference trajectory, while extrapolation [see Fig. 1(b)] refers
to regressing descriptors around a given anchor reference pose.
Since interpolation could even be performed using averaging of
the nearest anchor points along the trajectory, i.e., by simply
following the trend in the local feature space, we expect it to be
an easier problem to solve than extrapolation. Extrapolation, on
the other hand, is a more important requirement for map densi-
fication, because it enables us to potentially regress descriptors
at or close to the query. Interpolation can at best only densify
within an existing reference trajectory.

Finally, for a VPR system to benefit from map densifica-
tion, it needs to retrieve the Euclidean closest match in the
physical space as the best match in the feature space. This is

1This discrete nature of the reference map is also problematic for APR
as reported in [9]. We hypothesize that APR could also benefit from map
densification via descriptor regression, but this aspect is not explored in this
work and we limit its scope to VPR.

not enforced in VPR techniques trained with triplet-loss [3],
classification-loss [14], and ranking-based-loss [15], where the
correct/incorrect ground-truth (GT) match is discrete (leading to
viewpoint invariance), instead of the continuous GT in distance-
based loss [16]. If a VPR technique is viewpoint-invariant,
both the blue trajectories in Fig. 1(b) would be incorrectly
considered equally valid. Thus, we hypothesize that map den-
sification and viewpoint variance should work hand in hand to
make VPR-based localization more accurate. We show that a
highly viewpoint-variant VPR technique in a densified reference
map leads to the highest localization accuracy, among all the
combinations originating from the different feature encoders and
levels of map densification.

In summary, our contributions are as follows.
1) We investigate CoPR to densify a sparse VPR map through

either interpolation or extrapolation of the feature descrip-
tors to target poses, without requiring any new measure-
ments (i.e., reference images).

2) We propose linear-regression-based techniques and a non-
linear deep neural network for map densification and
demonstrate the improvement in localization accuracy on
three existing public datasets.

3) We report that different feature encoders can benefit from
map densification and the best performance is achieved by
using the most viewpoint-variant descriptors in a densified
map.

4) We discuss the VPR failure cases where RPE cannot
recover the correct pose without CoPR, highlighting the
complementarity of these approaches for improving VL
accuracy. We demonstrate the existence of such cases with
real-world data.

II. RELATED WORK

In this section, we expand on the existing body of literature for
VL, as reviewed in [2]: A system that consists of retrieving the
pose (position + orientation) of a visual query material within a
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known space representation. Such systems are further classified
into direct and indirect methods. The direct methods consist of
APR, structure-based localization, and CtF. The indirect meth-
ods are VPR approaches, which is a robotics problem, and image
retrieval, which is a computer vision problem. Both of these
mostly represent the same formulation but with a few differences
regarding evaluation metrics and experimental setup as dis-
cussed in [7]. In this research, our scope is limited to VPR-based
localization and its limitations, however, to understand these
limitations and due to the significant overlap between various
fields of VL and the collective benefit from map densification,
we expand on all these fields in the following.

Structure-based approaches: These approaches use 2-D–3-D
matching given 2-D pixels and 3-D scene coordinates to yield
highly accurate pose estimates. Recent benchmarks [9], [12],
[17] have shown that such structure-based approaches are state-
of-the-art when it comes to accurate localization. The work
of Li et al. [18] is seminal in this field that shows large-scale
structure-based localization by proposing a co-occurrence prior
to RANSAC and bidirectional matching of image features with
3-D points. Efficiency is of importance and Liu et al. [19]
propose the use of global contextual information derived from
the covisibility of 3-D points for 2-D–3-D matching. InLoc [20]
presents a formulation for structure-based localization in in-
door environments by using dense feature matching for texture-
less indoor scenes and view synthesis for verification. Active-
Search [21] uses 2-D-to-3-D and 3-D-to-2-D matching for pose
regression and candidate filtering while DSAC++ [22] uses
learned scene-coordinate regression building upon DSAC [23].
Both of these techniques form the state of the art for structure-
based 6-DoF camera localization [9]. While structure-based
approaches are highly accurate, they require significant com-
putations and have limited scalability, and maintaining and
updating the corresponding potentially large-scale 3-D models
is challenging.

Absolute Pose Regression: APR started from the seminal
works of PoseNet [4] and the incremental build-up by the authors
in [24] and [25] and has since seen many different variants of it
e.g., the works in [26], [27], [28], and [29]. The objective of APR
approaches is to memorize an environment given a set of images
and their corresponding GT poses, such that given a new image,
the network can generalize from the poses seen at training time
and directly regress the new pose. In [30], an encoder–decoder
architecture is employed with a final regressor network to regress
the camera pose. Radwan et al. [31] present a multitask learning
framework for visual-semantic APR and odometry. While APR
methods are simple and efficient, they have been shown to suffer
from degeneralization across viewpoints and appearances, and
are unable to extrapolate to parallel trajectories [9].

Coarse-to-Fine localization: Another approach to the prob-
lem of accurate localization is a two-staged coarse-to-fine for-
mulation, where the first stage is VPR and the second stage is
RPE. This need for CtF approaches arises because the query
trajectories and reference trajectories are usually far apart, and
the coarse VPR stage can only at best retrieve the closest pose
on the reference trajectory. Thus, there is always a base error
in the coarse VPR stage, which is then reduced by the RPE

module for fine-grained localization. Laskar et al. [5] propose
a CtF approach by using a Siamese network architecture for
RPE. RelocNet [10] uses camera frustum overlap information
at training time while CamNet [11] models the CtF localization
approach in three separate modules with increasing fineness.
The work in [32] models pose estimation by discovering and
computing relative poses between predefined anchor locations
in the map. Most of these CtF approaches model RPE as a pose
regression problem given global descriptors leading to a lack of
scene generalization. Thus, Sarlin et al. in PixLoc [33] instead
learn local features useful for geometric 2-D-to-3-D matching,
which can generalize to new scenes. SANet [34] also models
the CtF localization pipeline using 2-D-to-3-D matching by
learning scene coordinate regression and generalizes to new
scenes. However, both of these approaches require a coarse 3-D
model of the environment at their inputs.

VPR and image retrieval: VPR and image retrieval in essence
represent the same problem: i.e., given a query image and a
map of reference images, retrieve the nearest neighbor (NN)
reference matches for that query image. Depending on whether
the closest match is required (VPR) or all of the possible
matches need to be retrieved (image retrieval), the problem
favors loop-closure or 3-D modeling, as discussed in [7]. In
this work, we use the two terminologies interchangeably to
refer to the same problem. Both these tasks are usually treated
as viewpoint-invariant and trained with losses such as triplet-
loss [3], [35], [36], classification-loss [14], and ranking-based-
loss [15]. These losses aim to align the feature representation
for viewpoint-varied images of the same place, which explicitly
favors viewpoint-invariance. On the other hand, more recent
distance-based loss functions explicitly force the network to en-
code geometric information within the feature descriptors, such
that the top-most retrieved images are also the geometrically-
closest images [16], [37]. For our work, such a distance-based
loss is highly relevant, since map densification could offer
more benefit to VPR-based localization using viewpoint-variant
feature descriptors than viewpoint-invariant descriptors.

Before dedicated datasets were developed for VPR, off-the-
shelf convolutional neural network (CNN) features were uti-
lized, Chen et al. [38] used features from the Overfeat Net-
work [39] and combined them with the spatial filtering scheme of
Seq-SLAM. The use of off-the-shelf features of AlexNet trained
on ImageNet for VPR was studied by Sunderhauf et al. [40],
who found that some layers were most robust to conditional
variations than others. Chen et al. [14] proposed two neural net-
works, namely AMOSNet and HybridNet, which were trained
specifically for VPR on the Specific Places Dataset (SPED).

Recently, contrastive learning has been the dominant trend
in VPR, as shown in [3] and [36], which classifies a place as
the same or different in a hard (0/1) manner, i.e., an image is
considered as either the same place or a different place. But
with multiple viewpoint-varied images of the same place, such
a hard distinction is not possible and a soft distinction is required.
For this purpose, Leyva-Vallina et al. in [41] present the concept
of generalized contrastive loss based on image-content overlap.
Previously discussed distance-based loss functions can also be
classified as soft losses since they can distinguish between
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multiple viewpoint-varied images of the same place. Other than
this, VPR literature includes the use of ensembles of VPR
techniques to reject false positives [42], [43].

Implicit scene representations: In addition to the concept of
explicit 3-D models for structure-based approaches, implicit
scene representation has been more popular recently, where the
structure is stored within the parameters of a neural network.
Such implicit scene representation could come from neural
implicit representations [44], [45], differentiable volumetric ren-
dering [46] or the more recent trends in Neural Radiance Fields
(NeRF) [47]. If the structure is known, whether implicitly or
explicitly, it is possible to synthesize images at new viewpoints
of the scene. These synthesized images could be directly used
for map densification in a VPR-based localization system [48],
for pose verification in a CtF system [49] or for creating more
training data for APR approaches [13]. Yen-Chen et al. [50]
invert the NeRF process to refine the camera pose estimate
given an initial coarse estimate. However, implicit scene repre-
sentation approaches offer similar challenges as structure-based
approaches for localization regarding maintaining and updating
the scene representations. They also suffer from scalability and
artifacts created in the image space, as reported in [13].

In summary, VPR is an efficient and easy-to-maintain lo-
calization method compared to structure-based approaches, it
is more generalizable than APR techniques and simpler than
multistaged CtF approaches; however, it remains less accurate
than CtF and structure-based approaches, where this accuracy
is related to the sparseness of the reference map at creation and
viewpoint-variance of the feature encoder. One possibility to
increase this localization accuracy as surveyed here is to use the
CtF approaches in a retrieval-followed-by-regression manner;
however, this itself depends on the quality of the initial coarse
retrieval stage, i.e., VPR, such that an incorrectly retrieved coarse
estimate leads to a definite failure of the complete CtF pipeline.

Therefore, we instead look in a different direction than CtF
and explore some of the fundamental reasons for the inaccuracy
of VPR. We investigate whether it is possible to increase VPR-
based localization accuracy even without relying on RPE as a
second stage and without requiring any additional measurements
of the scene. For this, we look into densifying the map of de-
scriptors and the benefits of such map densification for different
types of VPR feature encoders.

III. METHODOLOGY

In this section, we first provide an overview of our problem
statement. We then dedicate sections to introduce the concept of
map densification (CoPR), the descriptor regression strategies
for CoPR, and the different feature encoders for VPR. Finally,
we discuss the relationship between CoPR and RPE.

A. Problem Statement

Given a set of reference images with known poses, VPR
constructs a map M = (R,P ), where R is a set of reference
descriptors, such that fi ∈ R is an N -dimensional feature de-
scriptor with a corresponding pose pi ∈ P . Each feature de-
scriptor fi = G(Ii) is obtained from a reference image Ii using

an already trained and fixed feature extractor G, typically a
neural network. The pose pi is a 6-degree-of-freedom pose that
specifies the location as a translation vector ti = (x, y, z), and
a quaternion vector oi specifying the 3-D orientation.

At test time, the objective is to find the pose pq of a query im-
age Iq , for which the query descriptor fq = G(Iq) is computed.
The descriptor fq is matched to all the reference descriptors
in the set R, and the NN match rnn = argminr∈R ||fr − fq||2
is retrieved. The pose of the query image is then considered
the same as that of the retrieved reference descriptor, i.e.,
pq = pnn. Ideally, the feature descriptors are constructed such
that the resulting Euclidean translation error e = ||tq − tnn||2
is minimal. Hence, the assumption pq = pnn is essentially an
approximation pq ≈ pnn and would only be true in the unlikely
event that the query is collected at the same pose as that of the
retrieved reference in the map. Thus, the expected error E[e] is a
nonzero base error of a VPR system. This base error is directly
affected by the sparseness in the reference map: The further
apart the reference samples are, the higher the base error could
be.2 Therefore, this work proposes to apply map densification
for VPR as shown in Fig. 1.

B. Map Densification

To reduce the base error, we seek to extend the number
of descriptors and poses in a given sparse map Msparse. Since
collecting more reference images is not always possible, we
aim to perform densification using only existing reference de-
scriptors in Msparse without the need to collect more images
at novel viewpoints. Such densification in feature space also
has computational benefits since image-description is more
computationally expensive than descriptor-regression, as shown
in Section IV-H. Concretely, we propose to densify a sparse
map Msparse = (R,P ) by defining a set of target poses P ′ for
which the corresponding descriptors R′ are predicted via CoPR
using one or more existing reference descriptors in R, which
we will refer to as anchor descriptors. The resulting densified
map Mdense = (R ∪R′, P ∪ P ′) thus extends the original map
Msparse with the newly regressed target references.

Different strategies could be employed to define (a) which
set of target poses P ′ to regress to, and (b) how to regress
the descriptors for a target pose using the available anchor
descriptors. We here explore two specific strategies for defining
the set P ′, namely 1) interpolating between the anchor points on
the reference trajectory, and 2) extrapolating to nearby poses of
an anchor pose that do not necessarily lie along the reference
trajectory. Regression approaches will be discussed later in
Section III-C.

The interpolation scheme assumes that the references in the
sparse map are obtained in a sequence. Additional poses P ′ can
be selected along the trajectory in between the poses available in
P . Hence, any two subsequent references a1 ∈ R and a2 ∈ R
can be selected as anchors, and one or more new target poses

2Clearly, if the query images appear at the exact same spot as that of the
reference trajectory, map densification would not help. This, however, is highly
unlikely and unrealistic in real-world situations as evident in existing VPR
datasets [7].
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Fig. 2. Test setup for the interpolation and extrapolation experiments on the
Heads scene of the 7-scenes dataset in 2-D. The anchor reference points are
to be used by regression techniques to interpolate/extrapolate descriptors at
target poses. Since in the case of extrapolation we do not subsample along
the reference trajectory as in interpolation, there are nonanchor reference points
in the extrapolation experiment but not in the interpolation experiment.

pnew can be selected on the path between the anchor poses pa1
and pa2.

In the extrapolation scheme, the set of target extrapolation
poses P ′ is selected in the vicinity of the poses in P , but
not necessarily on a path between them. One possibility is to
generate these target poses in a uniform grid within a certain
distance threshold around each anchor. Another possibility is to
define a single global uniform grid and only evaluate grid points
using the nearest anchor points (within some distance threshold)
similar to the work in [9]. The former approach leads to a denser
grid, although it is globally nonuniform.

Examples of the reference, query, and target poses are shown
in Fig. 2 to illustrate interpolation and extrapolation for map
densification on the 7-scenes dataset [51].

C. Descriptor Regression Strategies

We consider several strategies to predict a new descriptor
fnew ∈ R′ for a given target pose pnew ∈ P ′ and the sparse

Fig. 3. Locally-fit plane given three anchor points in a 2-D world. Note that
this plane is for a single feature dimension; so, in practice, there will be N such
planes.

reference map Msparse, which could be applied to the extrapola-
tion and/or interpolation tasks. In principle, a regression method
fits a model to express the dependent variable(s) as a function
of the independent variables, thereby capturing the local trend
in the space around the fitted samples. For feature descriptor
regression, our objective is to express the feature space as a
function of the pose. Since this feature space is latent, it is unclear
to what extent we can assume it to be globally or locally linear
for changing pose; hence, we consider both linear and nonlinear
regression techniques for CoPR, as follows.

1) Linear Interpolation: The simplest strategy only applies
to interpolation, where we only use the translation and not the
orientation of each pose. We aim to predict the descriptor for an
intermediate translation between two known translations. The
target descriptor in this case is a linear weighted combination of
its two anchors

fnew = (1− αa1)× fa1 + (1− αa2)× fa2 (1)

αa1 = β1 / (β1 + β2) (2)

αa2 = β2 / (β1 + β2) (3)

where β1 = ||tnew − ta1||2, β2 = ||tnew − ta2||2, and fa1, fa2
are the two anchor feature descriptors.

2) Linear Regression Using Local Plane Fit: As a second ap-
proach, we investigate a local plane fit to consider more anchors
and allow extrapolation too. This also only uses the translation
and not the complete pose. Given the target translation tnew,
the O NN anchor points from Msparse in terms of Euclidean
translation distance are selected. For each descriptor dimension,
a linear plane is least-squares fitted on the anchor values, and the
plane is evaluated at the translations of the target tnew to regress
fnew. This linear regression is abstractly depicted in Fig. 3 for a
single feature dimension (f ) in a 2-D pose space (x and y). Note
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Fig. 4. Nonlinear-deep-learning-based model H that we train to regress the
descriptor fnew at a target location. The input is an anchor reference descriptor
fa and the relative pose Δp between the anchor location pa and the target
location pnew.

that a more complex polynomial or spline regression could be
used too, but we limit our approach to linear regression here as
the most canonical implementation of this general approach.

3) Nonlinear Regression Network: In this strategy, we di-
rectly regress fnew = H(fa,Δp) from a single anchor descrip-
tor fa, and the relative pose Δp specifying the translation
difference and the quaternion rotation between the anchor pose
pa and the target pose pnew. As nonlinear descriptor regressor
H , we use a fully-connected deep neural network consisting of
seven hidden layers with a GeLU [52] activation. The input to
the network is the N -dimensional anchor feature descriptor fa
and the relative pose Δp stacked together while the output is the
N -dimensional target feature descriptor fnew at the pose pnew.
The dimensionality of the input layer and hidden layers is the
same, i.e., N + 7, as the relative pose vector Δp has a length of
7 while the output layer has only N dimensions. This network
is shown in Fig. 4. In preliminary experiments on Microsoft
7-scenes (see Section IV-A), we explored other activations and
using fewer or more layers. We found GeLU works best and that
the network can overfit with more than seven layers.

Given a pretrained and fixed encoder G for computing fea-
ture descriptors, the nonlinear regression network is trained on
available descriptor pairs (e.g., an anchor descriptor fa and a
GT target descriptor fgt) with known relative pose Δp between
them, and a mean-squared error loss

LMSE = ||H(fa,Δp)− fgt||2. (4)

D. Losses for the Feature Encoder

Next, we discuss the choice for the training loss of the feature
encoder G, since the feature space is key for the general local-
ization quality and also defines the complexity of the regression
task that map densification should solve. The feature encoder
G takes as input an image I and computes its N -dimensional
feature descriptor fI . We will compare three different training
strategies, namely training with a triplet loss [3], an RPE loss [5],
and a distance-based loss [16], which are shortly summarized
here.

For training with a triplet loss, the network computes N -
dimensional feature descriptors {fq, fp, fn} for three images
{Iq, Ip, In}: a query Iq , a positive match Ip with varied
viewpoint, and a negative match In that represent a different
scene/place. Each of these three N -dimensional feature de-
scriptors is then normalized and penalized with a triplet loss.
The triplet loss is the same as that of in [3], which penalizes
the network given a Euclidean distance function df (f1, f2) =
||f1 − f2||2 and a margin m with a triplet loss

Ltriplet = max{df (fq, fp)− df (fq, fn) +m, 0}. (5)

For the RPE loss [5], fq and fp are stacked together and passed
through a relative-pose regressor consisting of fully-connected
layers to output the estimated 6-DoF relative pose Δpest be-
tween the two input images. The network is trained with a
mean-squared error loss, i.e.

Lrelative = ||Δpest −Δpgt||2 (6)

given the GT relative poseΔpgt. This is the same network as that
of Laskar et al. [5]. To regress the relative pose Δpest correctly,
the network has to encode viewpoint information in the feature
descriptors {fq, fp}. Nevertheless, this relative pose-based loss
does not explicitly force the network to encode representations
that encourage the closest descriptor in 3-D physical space to be
the closest in feature space.

Therefore, the third loss is the distance-based loss Ldistance as
introduced in the work of Thoma et al. [16]

Ldistance = ||Δf −Δt||2. (7)

This loss explicitly penalizes the network based on the Euclidean
distance Δf between feature descriptors {fq, fp} and the Eu-
clidean distance between their corresponding GT translation
poses Δt.

E. Relating CoPR to RPE

Our main focus is the task of VPR for VL. Nevertheless,
map densification can also improve the accuracy of CtF, i.e.,
VPR plus RPE [5]. This section expands on the methodological
relation between CoPR and RPE.

Formally, given two feature descriptors f1 and f2 and the
relative pose between their corresponding locations Δp, a CoPR
strategy as in Section III-C3 models a function f2 = H(f1,Δp).
In contrast, RPE aims to learn a functionΔp = L(f1, f2). While
these two functions H and L appear similar, these approaches
have different benefits. A useful property of CoPR is that it can be
done offline; thus, localization reduces to a single-stage image-
retrieval problem at runtime while RPE is performed online and
thus leads to a multistage CtF formulation.

A more crucial difference is that RPE assumes its two input
images represent the same scene and, thus, must rely on the
accuracy of the preceding image-retrieval step. Consider a query
Iq taken in a sceneA, e.g., a room in an office, and a sparse refer-
ence map containing various visually similar scenes, e.g., other
rooms in the same office (see Fig. 5). The image-retrieval system
might fail and retrieve a reference fB from an arbitrarily distant
scene (“room”) B instead of any nearby reference fA from the
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Fig. 5. Perceptual aliasing of rooms A and B: Query Iq in room A appears
more similar to reference IB in room B than to reference IA in correct room
A. If VPR retrieves the wrong reference fB for fq , RPE between fB and fq
cannot correct this: The “apparent” difference between the query pose pq and
reference pose pB is nearly zero. CoPR, therefore, aims to improve VPR instead
by adding references for more diverse poses to the map, e.g., fA′ for pA′ .

actual scene A, i.e., when ||fB − fq||2 < ||fA − fq||2. We refer
to the inability to distinguish such similar scenes as perceptual
aliasing [53]. These scenes should ideally all be represented as
nearby references in the feature space, but in a sparse reference
map, some scenes could be underrepresented, and retrieving the
best (or even top-k) matches for a query might never include the
correct scene. RPE cannot correct such retrieval failures. For
instance, a pose difference between correct reference IA and
query Iq (both at roomA) could limit the visual overlap between
their images, making their descriptors fA and fq dissimilar. If
the visual content of Ib and Iq appear more similar, their pose
difference would appear relatively small, even though these are
at completely different scenes. Since ΔpqB = L(fq, fB) will
just estimate the small apparent pose offset, RPE results in an
incorrect final pose estimate for the query, pB +ΔpqB .

By densifying the reference map, we can instead extend
the references in room A to represent more diverse poses. A
regressed descriptor fA′ at a new pose pA′ closer to the query
than the original reference pA can improve the best match,
||fA′ − fq||2 < ||fB − fq||2, resulting in a good VPR localiza-
tion estimate pq ≈ pA′ . We demonstrate the existence of this
effect using constructed failure cases in our experiments of
Section IV-G. In CtF localization, RPE afterward still reduces
this gap further by estimating ΔpqA′ = L(fq, fA′), such that
pq = pA′ +ΔpqA′ . CoPR and RPE are, therefore, complemen-
tary techniques.

IV. EXPERIMENTS

In this section, we present our experimental setup in detail,
including the datasets, baselines, and evaluation metrics. First,
we validate using the encoder Gdistance as our primary encoder.
We then present our results of using descriptor regression for
interpolation and extrapolation experiments. We show how dif-
ferent feature encoders can benefit from CoPR and the effect

of map density on localization performance. We also show the
relation between CoPR and CtF localization and, finally, provide
the computational details of our work.

A. Experimental Setup

Here, we explain the datasets, evaluation metrics, and the
various parametric choices used in our experiments.

1) Datasets: We use three datasets for evaluation, Microsoft
7-scenes, the Synthetic Shop Facade, and the Station Esca-
lator dataset. Our choice of these datasets is based on their
wide adoption for evaluating VL in the existing literature as
reviewed previously and their complementary nature: indoor
versus outdoor, different levels of spatial coverage, and different
types (parallel versus intersecting) of traversals. We discuss each
dataset in turn.

Microsoft 7-scenes dataset [51] has been a long-standing
public benchmark for 6-DoF indoor localization [5], [9], [54].
This dataset consists of seven different indoor scenes collected
using a Kinect RGB-D camera and provides accurate 6-DoF
GT poses computed using a Kinect Fusion [55] baseline. Each
scene spans an area of a few square meters and contains multiple
sequences/traverses (viewpoint-varied) within a scene. Each se-
quence itself then contains between 500 and 1000 images, where
each image has a 640× 480 pixels resolution. There are separate
query and reference sequences, which contain novel viewpoints
of the same scene. The images and poses in the query trajectory
act as our training set for training both the feature encoderG and
the nonlinear descriptor regressor H . The reference trajectory is
further divided into two splits: 1) validation and 2) test sets, with
40% images in the validation set and 60% images in the test set.
The validation set is used for validating the encoder G and the
nonlinear regression network H at training time. This reference
trajectory is then used for the interpolation and extrapolation
experiments.

The Synthetic Shop Facade dataset proposed in [9] rep-
resents images and poses regressed from a 3-D model of a
real-world outdoor shopping street [4] and consists of mul-
tiple sequences/traverses of a single scene. It contains about
9500 images at novel viewpoints with an image resolution of
455× 256 pixels. There are separate splits for query and refer-
ence sequences that contain different viewpoints. The training,
validation, and test sets follow the same strategy as that of the
7-scenes dataset.

The Station Escalator dataset proposed in [9] contains two
parallel trajectories through a station and is, hence, useful for
studying extrapolation benefits across parallel lanes. The dataset
contains 330 query images and 330 reference images with an
image resolution of 1557× 642 pixels and 6-DoF accurate
poses. For this dataset, we intend to regress descriptors from
one trajectory (say A) to its parallel trajectory (say B), thus the
nonlinear regression network H needs to be trained with such
relative pose change between A and B. Therefore, given the two
original parallel trajectories, we divide both into three parts:
1) training, 2) validation, and 3) test sets. The training images
are selected as every 50th image in both trajectories while the
remaining images are equally divided between the validation
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and test sets. The training images from both traverses are used
to train the descriptor regression models. For experiments, the
validation and test images from trajectory A combined together
act as our query images. The validation and test images from
trajectory B in addition to the training images from trajectory A
act as the reference images.

2) Evaluation Metrics: The evaluation metric is the median
translation error (MTE) in meters and the median rotation error
(MRE) in degrees over all the estimated query images’ poses, as
commonly used in existing literature [5], [9], [54]. The median
is normally preferred over the mean since outliers can skew
the latter by any amount. The translation error is the Euclidean
distance between the query image’s translation and the best-
matched reference image’s translation. The rotation error is the
angular difference between the quaternion vectors of a query
image and its best-matched reference image, as used in the
reviewed literature.

3) Training Details and Parametric Choices: We use the out-
put of the final global average pooling layer of a ResNet34 [56]
backbone feature encoder, and thus a feature descriptor size of
N = 512 is used throughout this work. The feature encoder G
and the nonlinear descriptor regressor H are trained separately.
For training all the three feature encoders Gtriplet, Grelative, and
Gdistance and for nonlinear regression network H , we use the
Adam optimizer for model optimization with learning rates of
1e−5, 1e−4, 5e−5, and 5e−4 for Gtriplet, Grelative, Gdistance, and
H , respectively. The weights of the ResNet34 backbone are
initialized via pretraining on ImageNet-1 K and fine-tuned on
the datasets used in this work while the nonlinear regression
network H is trained from scratch for each dataset.

For training the encoder Gtriplet, images from the training sets
of different scenes of the 7-scenes dataset are chosen randomly
to act as negatives while images from the same scene with varied
viewpoints are chosen as positives. We use a margin of m = 0.3
for the triplet loss, same as [3]. The feature encoder G is trained
jointly on the training pairs of all the seven scenes in the 7-
scenes dataset. The encoders trained using triplet loss (Gtriplet)
and RPE loss (Grelative) are only trained on the 7-scenes dataset
and used for experiments on all the datasets while the model
trained using distance-based loss (Gdistance) is trained separately
for each dataset. We later show the reasons behind this separate
training for distance-based loss in Section IV-B.

A dedicated nonlinear regression model H is trained for
each of the three datasets. The nonlinear regression model H
trained for one dataset is used for both the interpolation and
extrapolation experiments of that dataset. For the least-squares
plane fit to linearly regress each feature dimension, O=4 is
chosen as the number of NN anchors, which is the minimum
number needed to fit a plane in 4-D (i.e., 3-D world plus 1-D
feature).

B. Encoder Loss Function and Localization Accuracy

Here, we intend to understand the first part of the two potential
requirements for accurate VPR-based localization: viewpoint
variance. The encoder training objectives favoring viewpoint
variance can have a considerable effect on the VPR-based

Fig. 6. MTE of the three encoders when used for performing VPR-based
localization on all the scenes of the 7-scenes dataset. Training with distance-
based loss leads to lower MTE than other losses.

Fig. 7. MTE of the three encoders used for testing VPR-based localization
on the Synthetic Shop Facade dataset, when trained on the same and different
dataset. Notably, Gtriplet and Grelative trained on the 7-scenes can outperform
Gdistance trained on the 7-scenes dataset. However, Gdistance when trained and
tested on the Synthetic Shop Facade dataset performs the best. Since the Shop
Facade dataset contains images of only one scene, unlike the 7-scenes dataset,
we could not select proper negative images in this dataset and do not trainGtriplet
on this dataset.

localization error. The change in localization error for Gtriplet,
Grelative, and Gdistance is shown in Fig. 6 for the 7-scenes dataset,
where a distance-based loss leads to the lowest localization error.
This localization error is without map densification and is purely
the effect of different training objectives for the encoder G.

Moreover in Fig. 7, we observe the (de)generalization of
these feature encoders from one dataset to the other. This is
done by evaluating the VPR-based localization performance
of a given encoder on datasets other than the training dataset
for a given model. We note that the network Gdistance trained
on the 7-scenes dataset does not perform well on the Shop
Facade dataset and is outperformed byGtriplet andGrelative trained
on the 7-scenes dataset, which suggests that Gdistance is less
generalizable. We, therefore, train Gdistance on the Shop Facade
dataset, after which it outperforms the other networks. This
degeneralization of distance-based loss has also been reported
in [16] and an intuitive explanation could be that distance-based
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losses are more sensitive to structural changes between different
domains and the change in scene appearance with changing
scene depth.

Since distance-based loss leads to the lowest localization
error, we only use Gdistance as our backbone encoder for the
experiments in Sections IV-C and IV-D. However, we later
show in Section IV-E that all the encoders (Gtriplet, Grelative,
and Gdistance) can benefit from CoPR, albeit at varying levels
of accuracy.

C. Extrapolation Experiments

We first explain the setup used for extrapolation experiments,
followed by the extrapolation methods and baselines, and then
the corresponding results and discussion.

1) Extrapolation Setup: We use all three datasets to examine
the effects of extrapolation. All of these three datasets have
properties useful for our CoPR analysis. Thus, we first explain
the setup for extrapolation on these three datasets, as follows.

The extrapolation experiments are performed on all scenes
of the 7-scenes dataset. For each scene in the 7-scenes dataset,
there are multiple reference sequences; thus, we take one of the
reference traverses/sequences as our anchor reference trajectory.
We then discard the remaining reference sequences3 to get the
original sparse map Msparse. Then, on the selected reference
sequence, we select every Kth sample (where K = 50) as our
anchor point. Then, for each anchor point, we sample target
points uniformly in the x and y directions keeping the viewing
direction and z fixed to get the dense extrapolated map Mdense.
The sampling of target points is done with a fixed step size estep

and a maximum spatial span espan for extrapolation. We use a step
size of estep = 0.05 meters for all seven scenes and the spatial
span espan is set to cover the complete area of the scene. Examples
of this extrapolation are shown in Fig. 2 for the 7-scenes dataset.

The Synthetic Shop Facade dataset provides a query se-
quence, a single anchor reference sequence, and multiple target
reference points sampled uniformly over a fixed grid across this
anchor reference sequence. We use this already provided dis-
tinction to get Msparse and Mdense. The query, anchor, and target
extrapolated points contain novel viewpoints of the same scene
and we refer the reader to the figure [9] here4 for visualization
of the scene and target point distribution.

In the case of the Station Escalator dataset, the anchor ref-
erence images act as the sparse reference map Msparse. Extrap-
olation on the Station Escalator dataset is straightforward: All
images on the reference trajectory act as our anchor points and
we regress a target descriptor using each anchor at an offset of
1.8 m on the x-axis from the anchor reference pose. Then, the
target descriptors combined with Msparse descriptors act as our
extrapolated map Mdense.

2) Extrapolation Methods: Two descriptor regression meth-
ods are compared for extrapolation. Linear Regression (Lin.
Reg.) is the local plane fit method introduced in Section III-C2.
For the 7-scenes and the Shop Facade dataset, the O NN anchor

3If we do not discard other reference sequences during the extrapolation
experiment, they overlap with target extrapolated/regressed descriptors and
make the experimental setup less challenging.

4[Online]. Available: https://github.com/tsattler/understanding_apr

points are selected from the reference trajectory, and for the
Station Escalator dataset, we select two NN anchor points from
each of the two parallel trajectories A and B.

Nonlinear Regression Network (Non-lin. Reg.) is the neural
network regression approach from Section III-C3.

Extrapolation Baselines. Sparse Map: The primary baseline
for extrapolation is the sparse map Msparse, where feature de-
scriptors are only available at sparse poses P .

3-D model: As mentioned in Section IV-A, the Shop Facade
dataset already provides distinct anchor reference points and
target extrapolation points. Since the images for these target
extrapolation points are already available, their corresponding
feature descriptors at all poses in the extrapolated map can also
be computed. We refer to this method as 3-D Model in our
results, where the feature descriptors at all locations (anchor
and nonanchor) in Mdense are computed using Gdistance and no
descriptor is regressed. This baseline [9] helps us to understand
how well our extrapolation performs in comparison to having the
GT images at all locations in the extrapolated map. Oracle re-
trieval: We also show the minimum possible translation error and
the corresponding rotation error obtained by an oracle retrieval
method, which always retrieves the GT 3-D Euclidean closest
match in the extrapolated map Mdense. These errors indicate
the VPR base errors for the used queries, and would only be
zero if the query poses coincide with the reference poses in the
map.

4) Extrapolation Results: We report the extrapolation results
in Table I for the originally sparse, linearly extrapolated, and
nonlinearly extrapolated maps for all the seven scenes in the
7-scenes dataset. The matches between the query and the refer-
ence trajectories for the extrapolation experiment are shown in
Fig. 8 for the Stairs scene of the 7-scenes dataset as an example.
It can be seen that extrapolation leads to significant performance
improvement over no extrapolation in terms of a translation
error. By using extrapolation we match descriptors closer to
the query trajectory. We also note that the nonlinear regression
model H performs better than the linear regression model,
indicating that extrapolating across the trajectory requires a
nonlinear approach to handle the complexity of the feature space.
We do not see performance improvement in translation error due
to extrapolation on the Heads scene, where the query and the
reference trajectories are already relatively close to each other
compared to the other scenes. Moreover, we observe that with
the current map densification setup, we cannot improve angular
estimation. However, it is important to notice that even retrieving
the Euclidean closest match in physical space leads to an increase
in rotation error, as shown by Oracle retrieval in Tables I and II.
We further discuss this increase in rotation error and the reasons
behind it in Section V.

The same findings are extended to the Synthetic Shop Facade
dataset as reported in Table II. We see performance improvement
thanks to extrapolation and the nonlinear regression model H
outperforms linear regression. We also observe that the VPR
performance of the nonlinearly extrapolated map (Non-lin. Reg.)
is similar to the map densified using 3-D modeling, which
suggests that the trained nonlinear regression model H closely
regresses the original descriptors, without access to the images
at the target poses.
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TABLE I
EXTRAPOLATION EXPERIMENTS ON THE 7-SCENES DATASET

Fig. 8. Extrapolation experiments on the Office scene of the 7-scenes dataset. (a) Matches between the query and the reference points for the sparse map Msparse.
(b) Poses in the densified map Mdense. (c) Matches in map densified using Lin. Reg. (d) Matches in map densified using Non-lin. Reg. All matches are color-coded
as green, orange, and red with the increasing 3-D Euclidean distance in the physical space. The reference poses in (c) and (d) are the same as in (b) and, thus, are
not shown to avoid cluttering. The nonlinearly densified map (d) clearly leads to better performance than other maps, albeit with some failure cases toward the
bottom-left of the plot.

TABLE II
EXTRAPOLATION EXPERIMENTS ON THE SYNTHETIC SHOP FACADE AND THE STATION ESCALATOR DATASETS

The results on the Station Escalator dataset also support
the motivation of this work, since we are able to significantly
improve the localization accuracy, as reported in Table II. We
also show the qualitative results on the Station Escalator dataset
in Fig. 9. These results highlight the utility of descriptor re-
gression in cases where parallel traverses are common, such as
highway lanes, train tracks, escalators, and many such laterally
viewpoint-varied paths.

We observe more benefits of nonlinear descriptor regression
on the Station Escalator dataset than on other datasets. Linear

regression does not work well on this dataset; the selected anchor
poses are too distant from the query trajectory. Recall that for
this dataset the training pairs include sparse samples (every Kth
image) from both the query and reference traverses to increase
the variance in the training data, as there are only two traverses
in total in this dataset. Still, our extrapolation experiments do
not extrapolate to the exact query locations but to close-by
locations. We observe that training with similar relative pose
differences as those observed at test time leads to performance
benefits. In a real-world application, if only sparsely sampled
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Fig. 9. Extrapolation experiments on the Station Escalator dataset. (a) Exemplar query and reference images. Then, the matches between the query and the
reference points for the (b) original sparse map Msparse, (c) linearly regressed (Lin. Reg.) map Mdense, and (d) nonlinearly regressed (Non-lin. Reg.) map Mdense.
These matches are color-coded as green, orange, and red with increasing 3-D Euclidean distance in the physical space. Extrapolation with nonlinear regression
network H is done using only the points on the anchor reference trajectory in yellow on the right, whereas the sparse anchor points in yellow on the query trajectory
are only used at training time.

images are collected for parallel trajectories, the pose differences
are representative to train a regression model and densify the
trajectories for improved localization accuracy.

D. Interpolation Experiments

We now explain the setup used for interpolation experiments,
followed by the methods and baselines and, then, the correspond-
ing results and discussion.

1) Interpolation Setup: We perform the interpolation exper-
iments on all the scenes in the 7-scenes dataset. Similar to the
extrapolation setup, interpolation uses the same concept of a
sparse map Msparse and a dense map Mdense; although for the
interpolation experiments, these maps are defined differently
than for the extrapolation experiments. For interpolation, the
full reference trajectory of a scene is used as the GT dense
map Mdense. We then subsample the reference trajectories by
a factor of K = 50, such that the consecutive images in a
trajectory still contain visual content overlap. This reduced set
of references is used as the sparse map Msparse. The GT dense
map serves as a baseline that can assess the performance of VPR
if densely sampled reference images would be available while
the subsampled version shows the performance when only a
sparse set of reference images are available. Examples of this
subsampling are shown in Fig. 2. For CoPR, the poses in P from
the sparse map act as our anchor poses while the additional poses
P ′ found in the GT dense map act as the target poses. All feature
descriptors in Msparse and the query descriptors are computed
using the feature encoder Gdistance explained in Section III-D.

2) Interpolation Methods: The compared descriptor regres-
sion methods are the simple Linear Interpolation (Lin. Interp.)
from Section III-C1; the Linear Regression (Lin. Reg.,) from
Section III-C2; and the Nonlinear Regression Network (Non-lin.
Reg.) from Section III-C3.

3) Interpolation Baselines. Sparse map: The primary base-
line for interpolation is the sparse map Msparse, where feature
descriptors are only available at sparse poses P .

GT dense map: Unlike the extrapolation experiments where
we do not have true images (and hence descriptors) available
at target poses, in the case of interpolation experiments, we do
have these true images. Thus, this GT dense map Mdense is a
baseline that serves the true descriptors for the target poses.

Oracle retrieval: We also show again the minimum possible
translation error and the corresponding rotation error from the
oracle retrieval method, as defined in Section IV-C3.

4) Interpolation Results: The results for all the methods
and baselines for the interpolation experiment on the 7-scenes
dataset are reported in Table III for all the seven scenes. The
VPR matches between the query and reference trajectories for
the Heads scene are shown in Fig. 10. We can see a general
decrease in localization error when moving from the sparse map
Msparse to the GT dense map Mdense. Interestingly, we also see
that even simple linear regression (Lin. Reg. and Lin. Interp.)
can solve this problem well and is often the best-performing
technique. Note though that linear regression is done using mul-
tiple anchor points which constraints the problem setting while
the nonlinear regression network H only uses one anchor point.
Nevertheless, this experiment shows that map densification even
via interpolating along the trajectory is helpful, although has
lesser benefits than extrapolation across the trajectory.

We will discuss the observed differences between the interpo-
lation and extrapolation experiments in more detail in Section V.

E. Map Densification With Different Feature Encoders

Next, we test that using the nonlinear regression model H for
extrapolating across anchor points is beneficial for all discussed
feature encoders. This is reported in Table IV. However, the
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TABLE III
INTERPOLATION EXPERIMENTS FOR THE 7-SCENES DATASET AT K = 50

Fig. 10. Interpolation experiments on the Heads scene of the 7-scenes dataset. The matches between the query and the reference trajectories in (a) the GT dense
map Mdense, (b) the sparse map Msparse, (c) the linearly regressed (Lin. Reg.) map Mdense, (d) the linearly interpolated (Lin. Interp.) map Mdense, and (e) the
nonlinearly regressed (Non-lin. Reg.) map Mdense given K = 50. The matches are color-coded as green, orange, and red with the increasing 3-D Euclidean distance
in the physical space.

TABLE IV
EFFECT OF COPR ON DIFFERENT FEATURE ENCODERS ON ALL SCENES FROM THE 7-SCENES DATASET, AND ON THE SYNTHETIC SHOP FACADE DATASET

corresponding localization accuracy is limited by the localiza-
tion performance of the respective feature encoder. The MTE is
reported for all three types of feature encoders on the sparse map
Msparse and the nonlinearly regressed (Non-lin. Reg.) mapMdense

for the 7-scenes dataset and the Synthetic Shop Facade dataset.
Such a generic boost of performance using map densification
supports that CoPR can utilize inherent benefits of different types
of feature encoders, for example, the domain generalization of
Gtriplet and Grelative, and the viewpoint variance of Gdistance.

F. Map-Density Versus Localization Accuracy

The motivation presented in this work suggests that the denser
the reference map, the lesser will be the localization error of a

VPR-based localization system. In our work, this map density
is modeled with the step size estep. Therefore, in this section, we
show the effect of increasing map density on the localization
error by using extrapolation with nonlinear regression model H
and feature encoder Gdistance for the 7-scenes dataset. This direct
relation between the step size estep and the MTE is presented
in Fig. 11. Decreasing the step size leads to denser extrapolated
maps, which then leads to a decrease in MTE for the nonlinearly
extrapolated (Non. Lin. Reg.) map Mdense. The performance
benefits for the scenes depend on the underlying scene geometry
and the quality of descriptor regression. For example, in the case
of Heads scene, the query poses and the sparse reference poses
in Msparse are already close to each other; thus, we do not see
any performance benefits due to densification. While in other
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Fig. 11. Increase in MTE by increasing the step size estep for all scenes of the
7-scenes dataset. A larger step size leads to sparser maps, which increases the
translation error, whereas a smaller step size leads to denser maps, which are
useful for accurate localization.

scenes, we see that map densification is helpful and is related to
the level of map densification modeled with the step size estep.

G. Benefits of CoPR for RPE

In this section, we look into the relation of CoPR with RPE
and, hence, CtF localization, as discussed in Section III-E. In this
experiment, we make this argument concrete by illustrating that
situations exist where a sparse map leads to incorrect coarse
retrieval of a visually similar image descriptor taken at an
arbitrarily far location, which can in turn lead to the failure of
CtF approaches. We argue that this error source is fundamentally
due to the retrieval step, not due to the subsequent RPE step,
and demonstrates that map densification could tackle this error
source in some cases.

We create exemplar cases in the 7-scenes dataset where such
an effect can be easily observed. A reference database of four
sparsely sampled reference images around a query image is
created for a given scene and a fifth stray reference image is
added to this reference database. This stray image is taken from a
completely different scene that has no real physical overlap with
the query image. We use the feature encoder Grelative for image
retrieval and the nonlinear descriptor regression network H to
regress the expected descriptor at the query location given the
nearest anchor reference descriptor. This regressed descriptor
acts as the descriptor for a hypothetical 6th image in the reference
database at the query location.

The objective of this experiment is to show that in the absence
of the regressed descriptor, the stray image is selected as the
best match for the query image, whereas in the presence of
the regressed descriptor, the stray image is pushed downward in
the list of retrieved images ranked by their matching scores. Note
that in the case where the stray image is chosen as the best match,
the localization error can be arbitrarily large, as a different scene
can be quite far. We show four such example cases in Fig. 12 from
the 7-scenes dataset, where we can observe that in the absence
of the regressed descriptor, the stray image is chosen as the best

TABLE V
COMPUTATIONAL FOOTPRINT OF COPR, SEE ACCOMPANYING TEXT

FOR DETAILS

match by the image-retrieval system. Since such stray cases are
shown to exist in multiple scenes of the 7-scenes dataset, which
is a small-scale dataset, this effect would amplify even further in
spatially larger scenes due to the increased chances of perceptual
aliasing.

Thus, without CoPR, sparse reference maps could lead to
incorrect coarse retrieval, where the coarse pose estimate can
be arbitrarily far-away and hence cannot be corrected by CtF
approaches. By using CoPR, reference descriptors of the correct
scene now appear close to the query descriptor. Finding all
references near the query in the feature space thus identifies
similar scenes, allowing to at least represent localization am-
biguity and ideally obtain a correct best match. Without CoPR
only the incorrect scene would have matched the query. Better
retrieval also benefits CtF approaches, since the RPE step is
only valid if the retrieved reference pose represents the correct
scene. These constructed cases illustrate that CoPR and CtF are
complementary approaches to improve VPR-based localization
accuracy. Note that this analysis does not demonstrate that CoPR
prevents false positives as a general rule, but that it is possible
to construct cases where the complementarity of CoPR and CtF
can be observed. Future works may investigate this further.

H. Computational Details

Finally, we report the sizes of the sparse and dense maps, the
time spent tdense on creating the dense maps Mdense using H , and
the training times ttrain of modelH for all the datasets in Table V.
For the 7-scenes dataset, the results are reported for the Office
scene. The retrieval time tretr in VPR is the sum of the time tenc

required to encode a query image into a feature descriptor and
the time tmatch spent to find the NN match of this descriptor in
the map. Since the encoding time is several times higher than the
efficient NN search, the retrieval time is not too affected by map
densification. Note that the timings are not comparable between
the datasets due to differences in map content (i.e., descriptors).

V. DISCUSSION

In this section, we identify the major limitations of our work
and areas that need further investigation.

Angular error: In both the interpolation and extrapolation
experiments, it is clear that our approach does not improve
angular localization accuracy, as reported in Tables I, II, and
III. However, it is also important to note that retrieving the
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Fig. 12. Exemplar cases where image retrieval fails to retrieve useful coarse estimates for RPE in a sparse reference map. By regressing the expected descriptor
at the query pose, we show that map densification could lead to robustness against such failure cases. The grayscale image in the reference set is only added for
the reader’s reference and represents only a hypothetical image for the regressed descriptor at the query pose since we do not synthesize images but only regress
image descriptors. The green bounding box represents a correct match and the red bounding box represents an incorrect match.

GT Euclidean closest match in the physical space also leads
to an increase in angular error (MRE). This is because the
nearest match in terms of the translation may not have the
same 3-D orientation. Thus, we attribute the increase in rotation
error using CoPR to two reasons: First, during interpolation and

extrapolation experiments, we do not change the angular pose
but only the translation pose, given the anchor points, for the
target points, and second, the encoderGdistance does not optimize
for angular localization error in its training objective. Thus,
reducing both the translation and angular error requires that the
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Fig. 13. VPR matches (top) and GT 3-D Euclidean closest matches in the
physical space (bottom) between the query and the reference trajectories in the
Fire scene of the 7-scenes dataset for the nonlinearly extrapolated (Non-lin. Reg.)
map Mdense. The matches are color-coded as orange and green with increasing
3-D Euclidean distance. Although nonlinearly regressed target poses (in blue)
are matched to by VPR, these are not always the Euclidean closest matches in
the physical space. Hence, there is still room for improvement.

Euclidean closest match in the physical space has the closest
angular orientation to the query image. Future works could look
into the benefits of using distance+orientation-based encoder
loss along with map densification in a 6-DoF setting.

GT closest matches: Our results on extrapolation show that
map densification can lead to a significant decrease in local-
ization error. Moreover, the extrapolation experiments on the
Shop Facade dataset also show that the localization performance
on the nonlinearly extrapolated (Non-lin. Reg.) map Mdense is
close to the localization performance on a GT (obtained using
3-D modeling) dense map Mdense. However, the localization
error given in the encoder Gdistance and the nonlinear regression
networkH is still higher than the minimum possible localization
error. We have reported the minimum possible translation error
(Oracle Retrieval) in Mdense in Tables I, II, and III. We further
show qualitatively in Fig. 13, the performance that could be
achieved by an oracle VPR system that always retrieves the
Euclidean closest match in the physical space as the best match
in a dense map. This gap in performance presents room for
future research in this area. Furthermore, our results only show

the generalization of nonlinear data-driven regression model H
across viewpoints within the same scene; however, generaliza-
tion across scenes could be the new frontier for CoPR.

Interpolation versus extrapolation: From our results of the
two experiments, it can be noted that the absolute decrease in
localization error from interpolation is less than the decrease
in localization error from extrapolation. We hypothesize the
following two reasons for this:

1) the query trajectory has a larger relative pose distance
to the extrapolated poses than to the interpolated poses,

2) the viewpoint variance versus invariance of VPR encoders
(as explained in Section III-D) acts as a bottleneck, since
the VPR system does not necessarily match to the GT
Euclidean closest match in the physical space but to one
of the closest matches. We expect that major performance
benefits, given these experiments, require models that have
even better viewpoint variance than the feature encoder
Gdistance. This motivates viewpoint-variant VPR for high
accuracy, in addition to the existing trends for viewpoint-
invariant VPR [57].

Generally, we find that extrapolation is more useful than
interpolation when a repeated traversal could occur at a laterally
offset-ed path. Such trajectories are common to observe in
real-world, for example, parallel traverses in outdoor scenes
(Shop Facade dataset) and parallel traverses in indoor scenes
(Station Escalator dataset). Other examples include lanes on a
highway and parallel paths in corridors. However, our results
do show that both interpolating and extrapolating descriptors
generally give better localization accuracy than using sparser
reference maps, which suggests that map densification (CoPR)
along the trajectory and/or across the anchor points can be useful
for VPR.

VI. CONCLUSION

In this article, we investigated the discrete treatment of places
in a VPR map. We have shown that map densification whether
using interpolation or extrapolation is helpful to reduce trans-
lation error. Our results for the 7-scenes dataset suggest that
interpolating along the trajectory is an easier problem and can be
solved with simple linear regression in the local neighborhood,
however, extrapolation benefits from a nonlinear treatment.
Moreover, our proposed nonlinear regression network only uses
a single anchor point for regression while our linear regression
method uses multiple anchor points. We validated that map
densification is helpful for feature encoders trained with the
three different types of losses and that the highest accuracy is
achieved when using a distance-based loss. Moreover, the benefit
of map densification is shown for three datasets: 1) 7-scenes, 2)
Synthetic Shop Facade, and 3) Station Escalator, where each of
them represents a different type of problem setting. We also dis-
cussed that RPE and CoPR address related but complementary
problems. We demonstrated through several constructed cases
that in a sparse map localization might fail due to perceptual
aliasing. RPE cannot recover the true location from a retrieved
wrong place. CoPR helps retrieve the correct place, thus solving
errors that RPE cannot.
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While the distance-based loss function helps to retain view-
point information among descriptors, we observed that there is
still room for improvement in comparison to retrieving the GT
Euclidean closest reference descriptors in the physical space.
Future works could investigate architectures and loss functions
that further enforce the network to learn feature representations
useful for retrieving the 3-D Euclidean closest match. As shown
in this work, anchor selection and descriptor extrapolation are
two separate steps for map densification. In the future, a separate
treatment of both, i.e., learning good anchors and extrapolating
well using multiple anchors, could lead to better map densifi-
cation. We hope that this work helps to identify the important
problem of map densification through CoPR for VPR and its
relation to viewpoint variance, and motivates further research
on improving VPR-based localization accuracy through CoPR.
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