
 
 

Delft University of Technology

Multi-Level and Learning-Based Model Predictive Control for Traffic Management

Sun, D.

DOI
10.4233/uuid:83e0a177-5c50-4e1e-9c49-afbf1f0d6073
Publication date
2023
Document Version
Final published version
Citation (APA)
Sun, D. (2023). Multi-Level and Learning-Based Model Predictive Control for Traffic Management.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:83e0a177-5c50-4e1e-
9c49-afbf1f0d6073

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:83e0a177-5c50-4e1e-9c49-afbf1f0d6073
https://doi.org/10.4233/uuid:83e0a177-5c50-4e1e-9c49-afbf1f0d6073
https://doi.org/10.4233/uuid:83e0a177-5c50-4e1e-9c49-afbf1f0d6073


MULTI-LEVEL AND LEARNING-BASED MODEL
PREDICTIVE CONTROL FOR TRAFFIC MANAGEMENT





MULTI-LEVEL AND LEARNING-BASED MODEL
PREDICTIVE CONTROL FOR TRAFFIC MANAGEMENT

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van den Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
dinsdag 3 oktober 2023 om 12:30 uur

door

Dingshan SUN

Master of Science in Aeronautical and Astronautical Science and Technology,
Shanghai Jiao Tong University, China,

geboren te Xiantao, Hubei, China.



Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. ir. B. De Schutter
copromotor: Dr. A. Jamshidnejad

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. B. De Schutter Technische Universiteit Delft
Dr. A. Jamshidnejad Technische Universiteit Delft

Onafhankelijke leden:
Prof. dr. A. Ferrara University of Pavia
Prof. dr. C. De Persis Rijksuniversiteit Groningen
Prof. dr. ir. H. van Lint Technische Universiteit Delft
Prof. dr. ir. M. M. de Weerdt Technische Universiteit Delft
Prof. dr. N. Geroliminis École Polytechnique Fédérale de Lausanne

The research described in this thesis was supported by China Scholarship Council under
grant No. 201806230254.

TRAIL Thesis Series T2023/16, The Netherlands TRAIL Research School
P.O. Box 5017
2600 GA Delft, The Netherlands
Tel: +31 (0) 15 278 6046
E-mail: info@rstrail.nl

Cover designed by: P. Sun
Published and distributed by: D. Sun
E-mail: dingshan_1994@163.com

Keywords: Traffic Management, Model Predictive Control, Learning-Based MPC, Multi-
Level MPC, Reinforcement Learning

ISBN 978-90-5584-335-0

Copyright © 2023 by D. Sun

All research data and code supporting the findings described in this dissertation are
available in 4TU.Centre for Research Data at:
https://doi.org/10.4121/97751b97-e421-426b-b09a-d7b975e0f2b0.v1.

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

mailto:info@rstrail.nl
mailto:dingshan_1994@163.com
https://doi.org/10.4121/97751b97-e421-426b-b09a-d7b975e0f2b0.v1
http://repository.tudelft.nl/


World peace





CONTENTS

Summary xi

Samenvatting xiii

Preface xvii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Urban traffic control . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Freeway traffic control . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 A Novel Bi-Level Temporally-Distributed MPC Approach 9
2.1 Introduction and motivations. . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Model predictive control (MPC) . . . . . . . . . . . . . . . . . . . 10
2.1.2 Current challenges of MPC for green urban mobility . . . . . . . . . 11
2.1.3 Contributions & structure of this chapter . . . . . . . . . . . . . . 12
2.1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Green urban mobility based on an annual MPC schedule . . . . . . . . . . 15
2.2.1 Cumulative Constraints . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Problem formulation. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Characteristics of the optimization problem . . . . . . . . . . . . . 18

2.3 Proposed methodology for tackling the optimization complexity resulting
from various temporal scales . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Bi-level temporal distribution of the problem . . . . . . . . . . . . 19

2.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Setup for case study 1 . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Setup for case study 2 . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 GE-Based Parameterized MPC for Urban Traffic Networks 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Traffic signal control . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Model Predictive Control for urban traffic networks . . . . . . . . . 40
3.1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 Outline of the chapter . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



viii CONTENTS

3.2 Parameterized model predictive urban traffic control . . . . . . . . . . . . 42
3.2.1 Urban traffic prediction model. . . . . . . . . . . . . . . . . . . . 42
3.2.2 Parameterized Model Predictive Control . . . . . . . . . . . . . . . 44

3.3 Grammatical Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1 Genetic programming . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 GE with context-free grammars . . . . . . . . . . . . . . . . . . . 47
3.3.3 Training of parameterized control laws . . . . . . . . . . . . . . . 48
3.3.4 Continuous grammars . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 GE-based parameterized control laws. . . . . . . . . . . . . . . . . . . . 49
3.4.1 Score-based green time allocation . . . . . . . . . . . . . . . . . . 49
3.4.2 Framework-1: MPC-mimicking . . . . . . . . . . . . . . . . . . . 51
3.4.3 Framework-2: Prediction-based learning . . . . . . . . . . . . . . 53
3.4.4 Projection-based method for constraint satisfaction . . . . . . . . . 55

3.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Combined MPC and DRL framework for Freeway Control 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 MPC for freeway traffic control. . . . . . . . . . . . . . . . . . . . 70
4.2.2 DRL for freeway traffic control . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Combined MPC and DRL methods. . . . . . . . . . . . . . . . . . 74

4.3 Combined MPC-DRL framework . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 MPC-DRL framework . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Detailed description of the framework . . . . . . . . . . . . . . . . 80
4.3.3 Algorithm for training the framework . . . . . . . . . . . . . . . . 83

4.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1 Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.3 Results for the learning process . . . . . . . . . . . . . . . . . . . 89
4.4.4 Results for the implementations . . . . . . . . . . . . . . . . . . . 89

4.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Adaptive Parameterized MPC based on RL: A Synthesis Framework 95
5.1 Introduction & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 PMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Learning-based adaptive MPC . . . . . . . . . . . . . . . . . . . . 98
5.2.3 RL-based adaptive MPC . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 The synthesis framework of RL-based adaptive
PMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.1 Extended PMPC scheme . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 The synthesis framework. . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS ix

5.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.1 Freeway network. . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.2 Parameterized freeway traffic control laws . . . . . . . . . . . . . . 111
5.4.3 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusions and recommendations 123
6.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Impacts of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Social impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.2 Scientific and technical impacts . . . . . . . . . . . . . . . . . . . 125

6.3 Recommendations for future research . . . . . . . . . . . . . . . . . . . 126
6.3.1 Recommendations in terms of applications . . . . . . . . . . . . . 126
6.3.2 Recommendations in terms of Theory . . . . . . . . . . . . . . . . 127

Bibliography 129

Curriculum Vitæ 145

TRAIL Thesis Series 147





SUMMARY

Traffic networks are a major component of modern society, contributing to more effi-
cient traveling and transportation, which significantly facilitates social productivity and
well-being. However, as more vehicles are appearing on the roads, traffic volumes ex-
ceed the maximal road capacity and traffic congestion occurs easily, especially during
rush hours. This leads to serious negative impacts, including noise, air pollution, waste
of fuel, and increased travel time. Therefore, developing efficient traffic management
approaches is of great importance and urgency.

Model predictive control (MPC) as a mature optimization-based control method has
been applied successfully in industry, as well as the field of traffic management. How-
ever, in order to guarantee control performance, MPC requires a sufficiently accurate
model, which is often not available for traffic networks. In addition, the computational
complexity of MPC makes it hard to implement in real time, especially for large-scale
traffic networks. Therefore, current MPC methods can still be further improved in terms
of control performance and computational efficiency. Reinforcement learning (RL) has
recently been widely used in control problems, including traffic management, since it
can naturally address uncertainties and changing environments with negligible online
computational resources. However, RL also suffers from its own shortcomings, such as
low sample efficiency and safety issues. The features of MPC and RL complement each
other very well. Therefore, part of this thesis considers combining MPC and RL to further
improve the control performance.

This thesis focuses on management and control of traffic networks, including urban
networks and freeway networks. More specifically, we aim to reduce traffic congestion
by minimizing the total time spent of all the vehicles in the network, and also consider
green mobility by minimizing the total emissions produced by the vehicles. In this thesis,
we utilize MPC-based and learning-based approaches to achieve this goal, which can be
further divided into four parts as presented below.

In the first part, we consider MPC for a long-term green urban mobility problem with
cumulative emission constraints, where the optimization horizon of the MPC problem
is significantly larger than the control sampling time. As a result, the number of the vari-
ables that should be optimized per control time step becomes very large. This results in
optimization problems that are computationally intractable in real time. To address this
issue, we propose a novel bi-level temporally distributed MPC structure, which includes
a short-term and a long-term MPC formulation with small and large control sampling
times that will be solved jointly, instead of the original complex optimization problem.
The resulting bi-level control approach is used to solve the MPC problem online for real-
time control of urban traffic networks with the objective of long-term green mobility.
Simulation on an urban traffic network shows that the proposed bi-level MPC approach
outperforms other conventional control methods, in terms of the total time spent, total
emissions of CO2, and computation time.

xi



xii SUMMARY

In the second part, in order to reduce the computational complexity of MPC, we
propose to use parameterized MPC (PMPC) for traffic signal control of urban networks.
PMPC is an efficient MPC approach that reduces the number of optimization variables
by using a parameterized control law instead of directly optimizing the control inputs.
But the design of the parameterized control law in general requires expert knowledge.
In this part, we propose to use grammatical evolution to construct continuous param-
eterized control laws automatically, using an effective simulation-based training frame-
work. Furthermore, a projection-based method is proposed to remove the nonlinear
constraints that are imposed on the parameters of the parameterized control laws and to
guarantee the feasibility of the solution of the MPC optimization problem. The training
framework is implemented on an urban traffic network, and a parameterized control law
is generated. SUMO-based simulation results show that the resulting PMPC controller
reduces the online computation time significantly, and achieves a performance that is
comparable with that of the conventional MPC controller.

In the third part, we consider control of freeway networks by combining MPC and
deep reinforcement learning (DRL), in order to deal with uncertainties and disturbances.
We propose a novel framework for integrating MPC and DRL methods for freeway traffic
control that is different from existing MPC-RL methods. More specifically, the proposed
framework adopts a hierarchical structure, where a high-level efficient MPC component
works at a low frequency with a large control sampling time to provide a baseline con-
trol input, while the DRL component works at a high frequency to modify online the
control input generated by MPC. The control framework, therefore, needs only limited
online computational resources and is able to handle uncertainties and external dis-
turbances after proper learning with enough training data. The proposed framework is
implemented on a benchmark freeway network in order to coordinate ramp metering
and variable speed limits. Simulation results show that the proposed framework out-
performs both standard MPC and DRL approaches, in terms of the total time spent and
constraint satisfaction, despite model uncertainties and external disturbances.

In the fourth part, the PMPC scheme is combined with RL to address the two main
issues of conventional MPC simultaneously. We propose a novel framework that uses
RL to adapt the PMPC scheme online, which integrates all the possible strategies to ad-
just different components of PMPC (e.g., objective function, state-feedback control law,
optimization settings, and system model). This results in a synthesis framework for RL-
based adaptive PMPC. Even the existing adaptive (P)MPC approaches can be embedded
in this synthesis framework. The resulting combined PMPC-DRL framework provides an
efficient MPC approach that can deal with model mismatches. The proposed framework
is applied for freeway traffic control, and simulation results that the RL-based adaptive
PMPC achieves a better performance than standalone RL-based controller and conven-
tional MPC, in terms of total time spent and computation time.

In summary, this thesis overcomes the shortcomings of conventional MPC by propos-
ing several frameworks, including the bi-level temporally-distributed MPC, grammati-
cal evolution-based PMPC, combined DRL-MPC, and RL-based adaptive PMPC frame-
works. These frameworks are applied for traffic management of urban networks and
freeway networks and achieve improved performance compared to conventional meth-
ods, under disturbances and uncertainties in the environment.



SAMENVATTING

Verkeersnetwerken zijn een belangrijk onderdeel van de moderne samenleving en dra-
gen bij tot efficiënter reizen en vervoer, wat de maatschappelijke productiviteit en het
welzijn aanzienlijk bevordert. Naarmate er echter meer voertuigen op de wegen ver-
schijnen, overschrijdt het verkeersvolume de maximale wegcapaciteit en ontstaan er
gemakkelijk files, vooral tijdens de spitsuren. Dit leidt tot ernstige negatieve gevolgen,
zoals lawaai, luchtverontreiniging, brandstofverspilling en langere reistijden. Daarom is
het van groot belang en dringend noodzakelijk om een efficiënte aanpak van het ver-
keersbeheer te ontwikkelen.

Model predictive control (MPC) als een volwassen optimalisatie-gebaseerde regel-
methode is met succes toegepast in de industrie en op het gebied van verkeersmanage-
ment. Om de regelprestaties te garanderen, vereist MPC echter een voldoende nauw-
keurig model, dat vaak niet beschikbaar is voor verkeersnetwerken. Bovendien maakt
de computationele complexiteit van MPC het moeilijk om het in real time uit te voe-
ren, vooral voor grootschalige verkeersnetwerken. Daarom kunnen de huidige MPC-
methoden nog worden verbeterd in termen van regelprestaties en computerefficiëntie.
Reinforcement learning (RL) is onlangs op grote schaal gebruikt voor regelproblemen,
waaronder verkeersmanagement, omdat het op natuurlijke wijze onzekerheden en ver-
anderende omgevingen kan aanpakken met verwaarloosbare online computermidde-
len. RL heeft echter ook zijn eigen tekortkomingen, zoals een lage steekproefefficiëntie
en veiligheidsproblemen. De kenmerken van MPC en RL vullen elkaar zeer goed aan.
Daarom wordt in een deel van dit proefschrift overwogen MPC en RL te combineren om
de regelprestaties verder te verbeteren.

Dit proefschrift richt zich op beheer en controle van verkeersnetwerken, waaron-
der stedelijke netwerken en snelwegennetwerken. Meer specifiek streven we naar ver-
mindering van verkeersopstoppingen door het minimaliseren van de totale tijd die alle
voertuigen in het netwerk doorbrengen, en overwegen we ook groene mobiliteit door
het minimaliseren van de totale emissies die door de voertuigen worden geproduceerd.
In dit proefschrift gebruiken we MPC-gebaseerde en leergebaseerde benaderingen om
dit doel te bereiken, dat verder kan worden onderverdeeld in vier delen, zoals hieronder
gepresenteerd.

In het eerste deel beschouwen wij MPC voor een groen stedelijk mobiliteitsprobleem
op lange termijn met cumulatieve emissiebeperkingen, waarbij de optimalisatiehori-
zon van het MPC-probleem aanzienlijk groter is dan de regeltijd. Daardoor wordt het
aantal variabelen dat per regeltijdstap moet worden geoptimaliseerd zeer groot. Dit
leidt tot optimalisatieproblemen die in real time computationeel onuitvoerbaar zijn.
Om dit probleem aan te pakken, stellen wij een nieuwe bi-level temporally distribu-
ted MPC-structuur voor, die een kortetermijn- en een langetermijn-MPC-formulering
omvat met kleine en grote regeltijdstappen, die gezamenlijk worden opgelost in plaats
van het oorspronkelijke complexe optimalisatieprobleem. De resulterende bi-level re-

xiii
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gelaanpak wordt gebruikt om het MPC-probleem online op te lossen voor real-time re-
geling van stedelijke verkeersnetwerken met als doel groene mobiliteit op lange termijn.
Uit simulatie op een stedelijk verkeersnetwerk blijkt dat de voorgestelde bi-level MPC-
aanpak beter presteert dan andere conventionele regelmethoden, in termen van totale
tijdsbesteding, totale uitstoot van CO2 en rekentijd.

In het tweede deel stellen wij, om de rekenkundige complexiteit van MPC te vermin-
deren, voor om geparametriseerde MPC (PMPC) te gebruiken voor de verkeerssignaal-
regeling van stedelijke netwerken. PMPC is een efficiënte MPC-aanpak die het aantal
optimalisatievariabelen vermindert door een geparametriseerde regelwet te gebruiken
in plaats van de regelingangen rechtstreeks te optimaliseren. Maar het ontwerp van
de geparametriseerde regelwet vereist in het algemeen deskundige kennis. In dit deel
stellen wij voor grammaticale evolutie te gebruiken om continue geparametriseerde re-
gelwetten automatisch te construeren, met behulp van een effectief simulatiegebaseerd
trainingskader. Bovendien wordt een projectiemethode voorgesteld om de niet-lineaire
beperkingen die worden opgelegd aan de parameters van de geparametriseerde regel-
wetten te verwijderen en de haalbaarheid van de oplossing van het MPC-optimalisatie-
probleem te garanderen. Het trainingskader wordt toegepast op een stedelijk verkeers-
netwerk en een geparametriseerde regelwet wordt gegenereerd. Simulatieresultaten op
basis van SUMO tonen aan dat de resulterende PMPC-regelaar de online rekentijd aan-
zienlijk vermindert en een prestatie bereikt die vergelijkbaar is met die van de conventi-
onele MPC-regelaar.

In het derde deel beschouwen we de regeling van snelwegennetwerken door MPC
en deep reinforcement learning (DRL) te combineren, om met onzekerheden en sto-
ringen om te gaan. Wij stellen een nieuw kader voor de integratie van MPC en DRL-
methoden voor verkeersregeling op snelwegen voor, dat verschilt van de bestaande MPC
-RL-methoden. Het voorgestelde kader heeft een hiërarchische structuur, waarbij een
hoogwaardige efficiënte MPC-component met een lage frequentie en een grote bemon-
steringstijd werkt om een basisregelinput te leveren, terwijl de DRL-component met
een hoge frequentie werkt om de door MPC gegenereerde regelinput online te wijzi-
gen. Het regelkader heeft daarom slechts beperkte online computermiddelen nodig en
kan omgaan met onzekerheden en externe storingen na een goed leerproces met vol-
doende trainingsgegevens. Het voorgestelde kader wordt toegepast op een benchmark-
snelwegnetwerk voor de coördinatie van toeritdosering en variabele snelheidsbeperkin-
gen. Simulatieresultaten tonen aan dat het voorgestelde raamwerk beter presteert dan
de standaard MPC- en DRL-benaderingen, in termen van totale tijdsbesteding en beper-
kingstevredenheid, ondanks modelonzekerheden en externe verstoringen.

In het vierde deel wordt de PMPC-regeling gecombineerd met RL om de twee be-
langrijkste problemen van conventionele MPC tegelijkertijd aan te pakken. Wij stel-
len een nieuw kader voor dat RL gebruikt om de PMPC-regeling online aan te passen,
waarbij alle mogelijke strategieën om verschillende onderdelen van PMPC aan te pas-
sen (bv. de doelfunctie, de state-feedback-regelwet, de optimalisatie-instellingen en het
systeemmodel) worden geïntegreerd. Dit resulteert in een syntheseraamwerk voor RL-
gebaseerde adaptieve PMPC. Zelfs de bestaande adaptieve (P)MPC-benaderingen kun-
nen in dit syntheseraamwerk worden opgenomen. Het resulterende gecombineerde
PMPC-DRL kader biedt een efficiënte MPC benadering die kan omgaan met model mis-
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matches. Het voorgestelde kader wordt toegepast voor verkeersregeling op snelwegen,
en uit simulaties blijkt dat de RL-gebaseerde adaptieve PMPC beter presteert dan een
standalone RL-gebaseerde regelaar en conventionele MPC, in termen van totale tijdsbe-
steding en rekentijd.

Kortom, dit proefschrift overwint de tekortkomingen van conventionele MPC door
verschillende raamwerken voor te stellen, waaronder bi-level temporally-distributed MPC,
grammatical evolution-based PMPC, combined DRL-MPC, en RL-based adaptive PMPC
frameworks. Deze raamwerken worden toegepast voor verkeersbeheer van stedelijke
netwerken en snelwegen en leveren betere prestaties dan conventionele methoden, bij
verstoringen en onzekerheden in de omgeving.
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1
INTRODUCTION

In this chapter, we first provide a brief overview of traffic management by introducing a
background for the control of urban and freeway traffic networks. We then discuss the
open challenges in this area, where this information provides context and motivation for
this PhD thesis. In particular, we highlight the main contributions of the thesis. Finally,
we present an outline of the thesis to guide the reader through the upcoming chapters.
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1.1. BACKGROUND
With the rising number of vehicles on the roads, traffic congestion has become increas-
ingly prevalent, resulting in detrimental effects on individuals and society as a whole.
Traffic congestion on the roads not only hampers the smooth flow of vehicles but also
has adverse implications for air quality and environmental noise, which pose a threat to
ecosystems and biodiversity. According to the European Court of Auditors (ECA), road
transport is already one of the primary sources of air pollution in the European Union
(EU) and the European Economic Area (EEA), particularly with regards to CO2 emissions
[44] where the ECA has reported that air pollution is the most significant environmental
health risk in Europe [38].

A reduction in travel time by 10% is projected to yield an increase in economic pro-
ductivity of 2.9%. However, in areas heavily affected by congestion, mitigating traffic
congestion can lead to even more substantial economic productivity gains, reaching up
to 30%[44]. The ECA estimates the costs associated with road congestion in EU to be ap-
proximately €110 billion annually, which is over 1% of the EU’s gross domestic product
[44]. Therefore, it is of significant benefit and urgency to reduce the congestion by im-
proving the traffic efficiency. This poses an unprecedented challenge to the current traf-
fic infrastructures and traffic management systems. In fact, improving the existing road
infrastructures can take effect immediately, for example via increasing the road capaci-
ties by widening the existing roads or by constructing new roads. However, a larger traffic
capacity has been reported to attract more traffic demands, which is known as induced
demand, and may actually result in heavier congestion [35]. Additionally, constructing
new roads is expensive and time-consuming. In some cases, it is even impossible due
to space restrictions or financial limitations. Another cheaper way to improve the traffic
efficiency is to install traffic signs to control and manage the traffic flows. For different
types of traffic networks (e.g., urban traffic network and freeway traffic network), various
traffic control measures can be implemented. Next, we briefly discuss both urban and
freeway traffic control methods.

1.1.1. URBAN TRAFFIC CONTROL
Since the development and installation of the first electric traffic light in the United
States in 1912, ensuring safe and organized passage for both vehicles and pedestrians
in urban areas, especially at crossroads, has become a necessity. Traffic signals typically
use cycles, with each cycle divided into several phases, including the green light phase
and the red light phase. Traditional traffic lights usually have fixed phases that cannot
adapt to varying traffic situations, nor can they coordinate with each other. This can lead
to traffic congestion when traffic demands are high.

Over the past four decades, many traffic signal control methods have been proposed
to improve the traffic efficiency. These methods include OPAC [56], GreenWave [164],
Maxband [116], SCATS [172], and SCOOT [84], which have improved the traffic efficiency
to some extent, by adapting the phases of the traffic lights to different traffic conditions
or by coordinating various traffic signals. A comprehensive overview of traffic signal
control approaches is presented in [41], where the control approaches are categorized
according to the network types, types of road users (e.g., cars and pedestrians), real-time
strategies, control objectives, and constraints.
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Figure 1.1: Variable speed limits signs along the A13 freeway, Delft, The Netherlands.

1.1.2. FREEWAY TRAFFIC CONTROL

Freeways, also known as highways or motorways, are a fundamental part of modern traf-
fic networks that contribute substantially to social and economic developments of soci-
eties. Freeways can reduce the travel time, and thus enable people to travel efficiently
for business, trade, or pleasure, and provide an economical trade route for goods. Ac-
cordingly, freeway congestion can have serious consequences both environmentally and
economically.

To reduce congestion and guarantee traffic efficiency in freeways, several freeway
control measures have been developed. The most common strategies are variable speed
limits (VSLs) and ramp metering (RM). Unlike conventional fixed speed limits, VSLs are
more flexible and allow the maximum speed limit to change according to the traffic con-
ditions, which is usually displayed on an electronic traffic sign (see Figure 1.1). Thus,
VSLs are more effective than fixed speed limits in reducing congestion, increasing safety,
and providing clear guidance for motorists, especially when accidents or poor weather
conditions occur. RM is basically a traffic signal controller that regulates the traffic flows
that enter a freeway. RM is usually implemented in order to control the inflows to the
ramps, and to avoid the congestion that is caused by the lane drop (see Figure 1.2). Route
guidance is another system that assists drivers in choosing their routes by displaying
traffic information on variable message signs, when there are multiple choices to reach
their destination. In general, VSLs and RM are often integrated in order to achieve a bet-
ter control performance [73]. An overview of freeway control methods is presented in
[173].
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Figure 1.2: Ramp metering at the A13 freeway, Delft, The Netherlands.

1.2. CHALLENGES

Despite the emergence of effective traffic control measures, road congestion continues
to persist due to ongoing urbanization and continually increasing traffic demands. Even
a minor traffic accident can cause local congestion that may spread throughout the en-
tire traffic network, resulting in a global traffic jam. This vulnerability is particularly pro-
nounced during the rush hours when the traffic demand can easily surpass the road
capacity. As a result, it is crucial to consider the coordination of various local traffic con-
trollers in order to achieve an optimal performance for a traffic network. Additionally,
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predicting future traffic behavior based on estimated traffic demands and road condi-
tions can enhance decision-making and improve both traffic efficiency and resilience.

Model predictive control (MPC) [158] is a model-based and optimization-based con-
trol method that meets the above requirements very well (i.e., coordinating local con-
trollers and predicting future behaviors). At every control step, MPC solves an optimiza-
tion problem to minimize a given objective function by predicting the future system be-
haviors using a prediction model. The optimized control inputs are then implemented
on the real system, and the process is repeated at the next control step. MPC has been
widely used in practice [156], since it can handle systems with multiple inputs and out-
puts and can explicitly incorporate both state and input constraints into its decision-
making. MPC can also coordinate multiple local controllers, either in a centralized or
distributed way [125], in order to optimize a global objective. These characteristics of
MPC meet the requirements of traffic management very well, and hence has led to many
successful applications of MPC in the field of traffic network control, for both urban and
freeway networks [73], [115]. A survey on the use of MPC for traffic signal control is
given in [205], and many notable studies of MPC for freeway traffic control are presented
in [48], [50], [52], [53], [74]. Although MPC has achieved considerable success in traffic
management, it still suffers from the following two main issues:

1. Computational complexity is a major challenge for MPC in traffic management.
The complexity of the optimization problem that should be solved at each con-
trol step mainly depends mainly on the nominal model and on the size of the
prediction horizon. In traffic networks, the mathematical model that represents
the dynamics is typically nonlinear in order to accurately capture various traffic
phenomena. As a consequence, the resulting optimization problem is also non-
linear and often nonconvex. Additionally, traffic networks are usually large-scale
and have many states and inputs, which further complicates the MPC optimiza-
tion problem. Finally, due to the inherent time-delayed nature of traffic networks,
the prediction horizon needs to be large enough to capture the future effects of
the current control inputs for the entire traffic network. These factors make MPC
computationally too intensive to be implemented in real time, especially for large-
scale traffic networks.

2. The performance of MPC is highly dependent on the accuracy of the prediction
model. However, obtaining an accurate model for complex real-world systems,
particularly for traffic networks, is often challenging. Additionally, traffic models
used in MPC should typically have a limited level of details, in order to prevent
that the computations become intractable. Thus, the mismatches between the
traffic network and the prediction model are inevitable, and may worsen the per-
formance of MPC. Moreover, external disturbances and unpredictable traffic con-
ditions can exacerbate the issue.

Therefore, this thesis will address the above two main issues of MPC for traffic manage-
ment, i.e., computational complexity and model mismatches. Chapter 2 and Chapter 3
focus on the implementation of MPC for urban traffic networks, and propose solutions
to tackle the computational complexity of MPC. Chapter 4 and Chapter 5 focus on the
MPC problem for freeway networks, where both computational complexity and model
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mismatches are addressed. It is worth noting that the approaches that are developed in
these chapters can be applied to both urban and freeway traffic networks.

1.3. CONTRIBUTIONS

The main contributions of this thesis are presented below:

• We propose a novel bi-level temporally-distributed MPC approach to address green
urban mobility with a long-term cumulative emission constraint. When consid-
ering constraints for a long term (e.g., the maximum allowed emissions for one
year), a very large prediction horizon is required; however, the MPC problem may
become computationally intractable with a very large prediction horizon. The
proposed methods circumvent this problem by adopting a two-level MPC frame-
work: A long-term MPC controller with a less detailed prediction model works at
the high level to govern the long-term constraints and to assign maximum allowed
emissions to the low level of control, in which a short-term MPC controller with
a detailed prediction model operates in real time to provide network-wide traffic
signal control inputs.

• We propose a parameterized MPC (PMPC) method for urban signal control based
on grammatical evolution. PMPC can reduce the computational complexity of
conventional MPC, since the number of the optimization variables is usually re-
duced by using a parameterized control law. We propose two training frameworks
to generate the parameterized control law by employing grammatical evolution,
where these methods are illustrated via a case study that involves traffic signal
control for an urban network.

• We propose a novel framework that combines MPC and deep reinforcement learn-
ing (DRL) with application to freeway networks. The combined MPC-DRL frame-
work is able to address the two main issues of conventional MPC (i.e. computa-
tional complexity and model mismatches) simultaneously. The high-level MPC
controller works at a low frequency, and, therefore, is real-time implementable;
the low-level DRL controller works at a high frequency, aiming to compensate for
model mismatches and external disturbances. In the case study, VSLs and RM are
integrated within this framework for control of a freeway network.

• We propose a reinforcement learning (RL) based adaptive PMPC scheme, in which
all components of PMPC can be parameterized and adapted by the high-level RL
agent. These components include the objective function, the prediction model,
the control law, etc. The proposed synthesis framework can adapt to model mis-
matches and to changing environments, while the embedded PMPC controller is
computationally more efficient than a conventional MPC controller. The proposed
framework is illustrated via a case study, in which the RL-based adaptive PMPC
controller is implemented for RM control of a freeway network.
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Figure 1.3: Outline and structure of this thesis.

1.4. OUTLINE
The structure of this thesis is presented in Figure 1.3. Chapter 2 to Chapter 5 are a collec-
tion of papers that have either been published, or submitted to a journal, or are under
preparation for a journal. Note that since each chapter develops different frameworks,
the mathematical notations are defined for each chapter separately.

Chapter 2 develops a bi-level temporally-distributed MPC framework to deal with
long-term cumulative emission constraints of urban traffic networks. Chapter 3 uses
grammatical evolution to learn PMPC control laws for urban traffic networks. Chapter 4
develops a novel multi-level MPC-DRL combined framework for freeway traffic control.
On the basis of Chapter 3 and Chapter 4, Chapter 5 establishes an RL-based adaptive
PMPC framework that integrates existing adaptive MPC techniques and uses RL to adjust
all the components of the PMPC scheme. Chapter 6 concludes the work of this thesis,
and proposes recommendations for future research based on the work of each chapter.





2
A NOVEL BI-LEVEL

TEMPORALLY-DISTRIBUTED MPC
APPROACH: AN APPLICATION TO

GREEN URBAN MOBILITY

Model predictive control (MPC) has been widely used for traffic management, such as for
minimizing the total time spent or the total emissions of vehicles. When long-term green
urban mobility is considered, the optimization horizon of the MPC problem is signifi-
cantly larger than the control sampling time, and thus the number of the variables that
should be optimized per control time step becomes very large. For systems with dynamics
that involve nonlinear, non-convex, and non-smooth functions, including urban traffic
networks, this results in optimization problems that are computationally intractable in
real time. In this chapter, we propose a novel bi-level temporal distribution of such com-
plex MPC optimization problems, and we develop two mathematically linked short-term
and long-term MPC formulations with small and large control sampling times that will
be solved together instead of the original complex optimization problem. The resulting bi-
level control architecture is used to solve the two MPC formulations online for real-time
control of urban traffic networks with the objective of long-term green mobility. In order to
assess the performance of the bi-level control architecture, we perform a case study where
a rough version of the model of the urban traffic flow, S-model, is used by the long-term
MPC level to estimate the states of the urban traffic networks, and a detailed version of
the model is used by the short-term MPC level. The results of the simulations prove the
effectiveness (with respect to the objective of control, as well as computational efficiency)
of the proposed bi-level MPC approach, compared to state-of-the-art control approaches.

Parts of this chapter have been published in [85], to which this PhD candidate contributes significantly.

9
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2.1. INTRODUCTION AND MOTIVATIONS
One of the main long-term objectives of the European Climate Law [43] is to achieve
climate neutrality by 2050, which means zero greenhouse gas emissions for all EU coun-
tries. The law, correspondingly, sets an intermediate target: to reduce the net amount
of greenhouse gas emissions for, at least, 55% by 2030, compared to the levels in 1990.
According to the European emissions gap report [187], transportation accounts for one
quarter of all the energy-related greenhouse gas emissions, and it is foreseen that by 2050
two-third of the world population will be urban. This can double the motorized mobility
and lead to a 60% increase in CO2 emissions [39], [144]. Although there have been at-
tempts to reduce the emissions by promoting the use of electric vehicles, public transit,
and active transportation (e.g., walking and cycling), the traditional vehicles that exhaust
emissions still make up a dominant part of the transportation. The European Environ-
ment Agency reported in 2017 that the amount of nitrogen dioxide produced annually
across Europe had significantly violated its allowed values [45]. Nitrogen dioxide is a
main component of air pollution that is very harmful to the environment and to human
health. This pollution is mostly associated with vehicle emissions, and according to [45]
86% of the nitrogen dioxide exceedances have been detected at roadside monitoring lo-
cations.

Therefore, there is an urgent need for high-performing control systems that provide
green mobility by reducing the traffic emissions, especially in urban networks, which
are also the focus of this chapter. In order to coordinate with the climate policies, while
finding a balanced trade-off between minimizing the traffic congestion and the level of
harmful pollutants from the vehicle exhausts, such control systems should maintain the
long-term emission levels to ensure that they do not exceed the annual emission limit.

Model predictive control (MPC) is an interesting approach for traffic control (see [11],
[17], [126], [173], [200]). MPC has recently been proposed to provide green urban mobil-
ity [30], [86], [87]. The MPC optimization problems for green urban mobility are multi-
objective and subject to several (nonlinear) control and state constraints. Thuse, these
problems are mathematically and computationally complex, due to the large simulation
horizon (i.e., weeks or months) and small control sampling time (i.e., seconds or min-
utes), accompanied by highly nonlinear and fluctuating dynamics of urban traffic. Next,
we briefly introduce MPC and its open challenges for green urban mobility.

2.1.1. MODEL PREDICTIVE CONTROL (MPC)
Model predictive control or MPC is a feedback-based optimal control approach [13],
[124]. An MPC-based controller (see Fig. 2.1 given for a discrete-time system with control
sampling time c) consists of two main elements, a prediction model and an optimizer,
which at every control time step run across a prediction horizon of size np. The predic-
tion model mathematically formulates the evolution of the dynamics of the controlled
system, and cooperates with the optimizer to determine a sequence of control inputs
that satisfy the constraints and minimize the given cost function. The feedback-based
nature of MPC, i.e., using the measured states per control time step, makes the controlled
system to some extent robust to unexpected/unpredictable external disturbances [136].
Moreover, MPC has proven to be an efficient approach for problems that should handle
both input and state constraints, while optimizing multiple cost functions [23], [158].
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Figure 2.1: Main structure of an MPC-based controller.

MPC has been widely used for urban traffic signal control, and a comprehensive sur-
vey can be found in [205]. [183] is one of the early studies that utilize MPC in urban
traffic management. [66] developed a macroscopic traffic modeling approach for mixed
networks of freeways and arterials and solved the corresponding the optimal traffic con-
trol problem using MPC. [197] proposed a hierarchical MPC structure considering the
different dynamics in different levels of traffic networks, in which the higher layer pro-
vides reference outflow trajectories to the lower layer. [182] used robust MPC to develop
a traffic-responsive optimal signal split algorithm taking uncertainty into account. [143]
focused on the scalability of MPC for traffic signal control for large-scale traffic networks,
and proposed a multi-agent MPC algorithm with graceful extension and localized recon-
figuration, in which theoretical results have been investigated for the formulated linear
traffic dynamic systems in terms of convergence and global optimum. However, very
few studies consider the green urban mobility issue, which can introduce a long-term
cumulative constraint that is difficult to be addressed by conventional MPC methods.

2.1.2. CURRENT CHALLENGES OF MPC FOR GREEN URBAN MOBILITY

The main challenges of implementing MPC for green urban mobility are explained be-
low:

• The computational complexity of MPC can make MPC intractable in real time
[162], particularly for green urban mobility where highly nonlinear dynamics, large
spatial and temporal scales, and long-term control objectives and cumulative con-
straints are involved.

• Despite providing a longer-term vision of the future (which is in benefit of the
long-term control objectives and cumulative constraints), using a large prediction
horizon significantly increases the computational complexity. This issue may be
tackled in two ways:
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Figure 2.2: Top plot: A decreased time scale resolution (i.e., a larger control sampling time c1) for a larger
prediction horizon n

p
1 may result in less dynamics and adaptability in the MPC input trajectory for a given

prediction horizon n
p
2 . Bottom plot: An increased time scale resolution (i.e., a smaller control sampling time

c2), which can be computationally tractable for a smaller prediction horizon n
p
2 , can result in more dynamics

and adaptability in the MPC input trajectory in the given prediction window.

– Decreasing the time scaling resolution, i.e., using a larger control sampling
time: This, however, may result in less dynamics and adaptability for the
MPC input (see Fig. 2.2).

– Simplifying the prediction model: This, however, may reduce the accuracy of
the predicted states, and result in larger cumulative errors, particularly along
a large prediction horizon.

• In general, the optimization horizon of MPC should be related to the time needed
to travel through the traffic network [1], [93]. However, such a choice of predic-
tion horizon cannot explicitly address long-term control objectives and cumula-
tive constraints. This becomes particularly problematic for traffic systems that
have a large time delay for the control inputs to take effects on the system.

The control frequency also matters in MPC for traffic control. A higher control frequency
will improve the control performance, at the price of more intensive computational com-
plexity, while a lower control frequency requires less computational efforts, resulting
however in general in a less optimal control performance. On the other hand, a larger
control sampling time results in a larger prediction window (as indicated in Fig. 2.2), but
may also lead to loss of control performance. In this chapter, we reach a trade-off be-
tween accuracy and computational complexity by adopting a multi-frequency control
framework, in which both a low-frequency MPC with large control sampling time and a
high-frequency MPC with small control sampling time are integrated.

2.1.3. CONTRIBUTIONS & STRUCTURE OF THIS CHAPTER

Therefore, in this chapter, we will address the challenges of MPC for green urban mobil-
ity, to resolve the conflict between the long-term control objective and constraints on the
one hand and the short-term optimization horizon on the other hand. In particular, we
will propose a bi-level control architecture that embeds MPC controllers with different
frequencies of operation and prediction horizons in the two control levels. The proposed
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Table 2.1: Frequently-used mathematical notations in this chapter (using a discrete-time framework).

s Simulation sampling time of the traffic model (e.g., 1 min). Without specification, s denotes the
detailed model simulation sampling time, while denotes the rough model simulation sampling
time

k Without specification, k denotes the short-term MPC control time step, while kLT denotes the
long-term MPC control time step

c Control sampling time: the number of time units during which a control input remains un-
changed. Without specification, c denotes the short-term MPC control sampling time (e.g., 5
min), while cLT denotes the long-term MPC control sampling time (e.g., 60 min)

co Operation sampling time: every a certain number of time units the control sequence is optimized
and updated. Without specification, co denotes the short-term MPC operation sampling time
(e.g., 5 min), while denotes the long-term MPC operation sampling time (e.g., 60 min)

np (k) Prediction horizon at control time step k; in particular, nST (k) denotes the short-term MPC pre-
diction horizon, while nLT(kLT) denotes the (shrinking) long-term MPC prediction horizon

ns (k) Simulation horizon at control time step k, which initially equals N s and shrinks gradually, where
N s is the considered total simulation interval length (e.g., for a simulation interval of 1 day with
the simulation sampling time of 1 min, N s = 1440)

u (k +ℓ|c) Control input at control time step k +ℓ (where ℓ= 0,1, . . . ,np (k)−1) that is computed at control
time step k, with control sampling time c (e.g., the green time length for urban traffic control).
This notation applies for both short-term and long-term MPC

x(k +ℓ|c) State variable at control time step k +ℓ (where ℓ = 1,2, . . . ,np (k)) that is estimated by the pre-
diction model at control time step k, with control sampling time c (e.g., the number of vehicles,
queue lengths, vehicle speeds on each lanes, etc.). In addition, ˇ̃x represents the states estimated
by the rough model

xmeas (k|c) State variable measured at control time step k, with control sampling time c; note that x(k|c) =
xmeas (k|c)

ũ (k,n|c) Sequence of the control inputs determined at control time step k for all control time steps across
the horizon n, with control sampling time c, i.e., ũ (k,n|c) = [u(k|c), . . . ,u (k +n −1|c)]⊤;

x̃ (k,n|c) Sequence of the state variables estimated by the prediction model at control time step k for
all control time steps across the horizon n, with control sampling time c, i.e., x̃ (k,n|c) =
[x(k +1|c), x(k +2|c), . . . , x(k +n|c)]⊤; in addition, ˇ̃x represents the corresponding variables for
the rough model

f state(·) Detailed integrated flow-emission traffic model (e.g., an integrated macroscopic traffic model
and emission model [115]); while f̌ state(·) denotes the extracted rough integrated model

Note: For u, x , xmeas, ũ, and x̃ to be complete in definition, in addition to the control sampling time, the
initial control time step should generally also be given as an argument. However, we assume that the initial
control time steps for all time frames, independent of the size of the control sampling time, are synchronized
and coincide with a fixed, known initial time step.

control system will be implemented to an urban traffic network to achieve green mobil-
ity.

The main contributions of this chapter include: 1) For the first time, a multi-level
MPC-based architecture with a larger prediction horizon at the high level and a smaller
prediction horizon at the low level will be implemented for obtaining green urban mobil-
ity. 2) The link and inter-dynamics of the two control levels are defined differently from
any existing work: The emissions allowed in the long term are determined via the high-
level MPC controller, and are adjusted for the shorter terms via the low-level MPC con-
troller. This idea can be generalized to other fields, e.g., for energy allocation in building
energy management. 3) This is the first time that MPC is adopted for long-term control
of the cumulative emissions for green urban mobility. In fact, the proposed framework
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can limit the emissions for a long enough time span (e.g., a year), with an affordable
online computation time compared to existing control methods.

Next we present a background discussion on the related theory (i.e., multi-level MPC).
The rest of this chapter has the following structure: Section 2.2 describes and formu-
lates the MPC problem of green urban mobility. In Section 2.3, our proposed novel ap-
proaches for tackling complex MPC optimization problems, including that of the green
urban mobility, are explained. Section 2.4 presents a case study, where our proposed
MPC approach is compared with various state-of-the-art control methods for a simu-
lated urban traffic network, and discusses the corresponding results. Section 2.5 con-
cludes the chapter and gives topics for future research. Table 2.1 lists and defines the
frequently-used mathematical notations in this chapter.

2.1.4. RELATED WORK
Hierarchical (multi-level) MPC schemes are often used to address complex control prob-
lem. This topic has been studied extensively, and a comprehensive review can be found
in [169], where hierarchical MPC is classified into four categories.

1. Hierarchical MPC for coordinated control: In such architectures, a higher-level
controller coordinates the control inputs generated by the lower-level local con-
trollers, where the controllers of both levels can be MPC-based.

2. Hierarchical MPC for dealing with systems with multiple time scales: In general,
the higher-level controller operates according to slow dynamics and a lower fre-
quency, whereas the lower-level controller operates with faster dynamics and a
higher frequency. Both control levels can be used for the same system that is then
described via different time scales. The high-level controller optimizes the con-
trol variables that have a long-term effect on the system, and these values are then
used as references for the low-level controller to track (see, e.g., [18], [188]). More-
over, the two control levels can be used for different sub-systems with different
functionalities and control frequencies (see, e.g., [37], [67]).

3. Hierarchical MPC for control of systems with a hierarchical structure: This cate-
gory corresponds to a classical cascade feedback control system. For examples of
controllers that belong to this category, see [37] and [33].

4. Hierarchical control for plantwide optimization: The high level of control can use
the detailed dynamics of the system to compute optimal operating conditions,
whereas the low level of control employs simpler dynamics to follow the references
generated by the high-level controller. This control architecture is usually used in
the process industry. Such a control system can also be implemented in a dual way,
i.e., the high level of control uses simplified or abstracted dynamics of the system
to predict the long-term performance, and considers the objective function across
a large prediction horizon. Meanwhile, the low level of control works with a more
accurate model and calculates the current control inputs according to a shorter
prediction horizon [149].

The following paper will be illustrated in more details, since it is more relevant to our
work. Jin et al. consider the hierarchical MPC approach of category 2 to schedule the en-
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ergy resources of smart buildings with a microgrid [91]. The high level of control follows
a day-ahead dynamic optimal scheduling, where the schedules of the smart buildings,
distributed generators, batteries, and day-ahead setpoints of electric tie-line power are
optimized for an entire day. The corresponding prediction horizon covers the duration
from the current time to the end of the day, and the optimization is performed hourly.
The low level of control follows an intra-hour rolling adjustment, where the low-level
MPC works with a detailed model and a faster control frequency, and performs with a
smaller prediction horizon. The low-level MPC tries to follow the reference (i.e., day-
ahead schedules) generated by the high-level optimization process. A similar strategy is
used by Liu et al. for energy management of microgrids [117].

Most of the literature that use hierarchical MPC consider the application in energy
management for buildings, process industry, or wastewater treatment. A few researchers
have also implemented hierarchical MPC for traffic management. The early work [189]
proposed a four-layer control architecture for freeway traffic, where the tasks of these
four layers are route choice, path planning, maneuver, and regulation. Two more recent
papers ([10], [165]) employed hierarchical MPC of category 1 for coordinated control of
freeway traffic networks. Su et al. consider a multi-level control strategy for the mainte-
nance of railway networks, in which a chance-constrained MPC is used at the high level
to perform a long-term optimization for the overall maintenance plan, and to provide
maintenance suggestions for the low-level controllers [175], [176]. Han et al. use a hi-
erarchical control structure for the ramp metering control of a freeway network [68]. A
high-level MPC-based controller determines the optimal total inflow from the on-ramps
to the freeway stretch by using an aggregated model. Then the total inflow is distributed
among the on-ramps via a low-level MPC-based controller. Nonetheless, no study has
considered any temporally-distributed multi-level MPC for traffic management yet. In
this chapter, we proposed a bi-level MPC control framework with a hierarchical structure
of category 4.

2.2. GREEN URBAN MOBILITY BASED ON AN ANNUAL MPC SCHED-
ULE

In this section, the concept of cumulative constraints for MPC is first introduced. Then
we formulate the MPC problem of green urban mobility, discuss the main characteristics
of the resulting optimization problem, and explain our novel approach for tackling the
complexities of this problem.

2.2.1. CUMULATIVE CONSTRAINTS

In general, ordinary MPC only considers instantaneous constraints on the states and in-
puts (see the second and the third top plots in Fig. 2.3), which indicate, respectively, that
the realized value of an equality constraint should be equal to the given value, and that
the realized value of an inequality constraint should not violate the upper bound. How-
ever, cumulative constraints (i.e., constraints defined on the summation of the realized
values of a variable for multiple control time steps) should be considered for green ur-
ban mobility, since there are annual emission limits required by climate policies (i.e., the
cumulative emissions over the entire year should not exceed an annual limit).
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Figure 2.3: Illustration of the variables, cost functions, and constraints for an MPC optimization problem: In
the second to fourth plots from the top, the white triangles, stars, and bars represent the stage constraints/costs
and the colored triangles, stars, and bars show their terminal values. In the top plot, the dashed bars represent
the realized cumulative (from control time step k until the current control time step) constraint for every con-
trol time step, whereas the colored (blue) part of the bars represent the realized value of the constraint for that
particular control time step.

For every control time step k+1, . . . ,k+np across the prediction horizon of MPC, the
accumulated value of a specific variable (i.e., the length of the corresponding dashed bar
in the top plot of Fig. 2.3) should not exceed a given upper bound (shown by the black
continuous curve in the top plot of Fig. 2.3). Note that the length of each colored (blue)
bar in Fig. 2.3 corresponds to the realized value of the variable at the current control time
step. Moreover, the length of every dashed bar represents the accumulated value of this
variable (i.e., the summation of the lengths of the current and all the previous colored
blue bars).

A main feature of cumulative constraints is that the maximum value of the corre-
sponding variable for a given control time step (i.e., the maximum allowed length of the
corresponding colored blue bar) depends on the value of the cumulative constraint al-
ready realized, while for instantaneous constraints the upper bound is independent of
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Figure 2.4: The significant difference between the temporal scales of the control costs (i.e., a year), cumulative
constraints (i.e., up to a year), and the control input (i.e., a minute), including a zoomed-in sketch of the finest
time resolution that corresponds to the control sampling time.

the previous values. This characteristic of cumulative constraints can provide flexibility
in the predictive decision-making of MPC, i.e., by selecting an alternative optimal so-
lution that further constrains the cumulative value at one control time step, MPC can
loosen the upper bound constraint for the upcoming control time steps, and vice versa.

2.2.2. PROBLEM FORMULATION

The problem involves real-time scheduling and planning of traffic signals at the intersec-
tions of an urban traffic network, such that the congestion and total emissions of partic-
ular pollutants across a predefined simulation horizon are reduced. For the simulation
horizon, we consider a fixed yearly time frame, where the control procedure begins at
0:00 of the first day of January and ends at 23:50 of the last day of December of the same
year (considering a control sampling time of 10 min) . The size of the simulation horizon
for the entire 1 year (i.e., 365 days × 24 h × 60 min divided by the control sampling time
10 min) is given by N s. The main constraints are on the total emissions of particular
pollutants at given monitoring time steps (e.g., at the end of the year).

At control time step k (when the measured state xmeas(k|c) is received)1, the corre-
sponding green mobility control problem can be formulated across the simulation hori-

1We suppose that the simulation time steps coincide with the control time steps.
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zon ns(k) (which initially equals N s and shrinks gradually) by:

min
ũ(k,ns(k)|c)

(
T̄k

(
x̃

(
k,ns (k) |c))+∑

ϵ∈E
λϵĒk

(
Pϵ, x̃

(
k,ns (k) |c))+

λvarV̄
(
ũ

(
k,ns (k) |c))

(2.1)

s.t. :
C1: state prediction model:

x̃(k,ns(k)|c) = f state
(
xmeas (k|c) , ũ

(
k,ns (k) |c))

,
C2: instantaneous stage and terminal constraints:

x̃(k,ns(k)|c) ∈Xns(k), ũ(k,ns(k)|c) ∈Uns(k),
C3: cumulative constraint ∀ϵ ∈ E:

Ēk
(
Pϵ, x̃(k,ns(k)|c)

)≤ Ē safe
ϵ − Ē real

ϵ (k|c).

Every control time step, the simulation horizon is reduced by 1 unit compared to the pre-
vious control time step. Thus, ns (k) = N s −k. In (2.1), T̄k (·) and Ēk (·) are functions that
give the cumulative travel time (a quantitative measure of the traffic congestion) and the
cumulative emissions of a particular pollutant for all the vehicles within the time inter-
val corresponding to the horizon ns(k), starting at control time step k. Moreover, Pϵ is a
matrix that includes parameter values that are identified experimentally for every pollu-
tant ϵ (e.g., see [208]) with E the set of all pollutants, and λϵ is a weight that indicates the
relative importance of various pollutants. The function V̄ (·) computes the norm of the
variation in between two consecutive control input vectors and λvar is the correspond-
ing weight. In C1, f state(·) is a generally nonlinear function that models the evolution of
the dynamics of the traffic network. In C2, X and U are the admissible sets for the state
variables and the control inputs, with the superscript ns(k) denoting the dimension. In
C3, Ē safe

ϵ shows the maximum allowed value of the cumulative emissions for pollutant ϵ,
which is illustrated by the continuous black curve in Fig. 2.3. Note that in the green ur-
ban mobility application this upper bound is fixed, i.e., it is equal to the allowed annual
emissions of a pollutant. Finally, Ē real

ϵ (·|c) is the value of the total emissions of ϵ already
realized by a given control time step (this value for every control time step is the length
of the dashed bar at the previous time step in Fig. 2.3).

2.2.3. CHARACTERISTICS OF THE OPTIMIZATION PROBLEM
The constrained optimization problem (2.1) has the following characteristics:

• The problem involves minimization of a cost function subject to various control
and state constraints, looking into the future across a finite simulation horizon
with a fixed final control time step. This implies that (2.1) has the structure of a
shrinking-horizon optimization problem [174].

• Due to the nonlinearities in the traffic behavior, T̄k (·), Ēk (·), and f state(·) are in gen-
eral nonlinear, non-smooth, and possibly non-convex. Therefore, (2.1) is generally
nonlinear and non-convex.

• The green urban mobility optimization problem, including the cost function and
the cumulative constraints, is defined over a relatively long time span (e.g., 12
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months), while the control inputs (i.e., the green times of the traffic signals) of the
controlled system (with dynamics that may be prone to rapid nonlinear changes),
need to be determined at relatively high frequencies (e.g., every few seconds or
minutes). These result in small control sampling times and a large value N s for the
simulation horizon, which implies a large number of optimization variables that
should be determined online and in real time via (2.1).

• For (2.1) to be computationally tractable, the details may be reduced via, e.g., sim-
plifying the prediction models and increasing the control and operation sampling
times, which respectively decrease the computational burden and the number of
the optimization variables. Taking these measures may result in negative impacts
on the accuracy and performance of the control system, as it was discussed in Sec-
tion 2.1.2.

• The above-mentioned characteristics of (2.1), including nonlinearity, non-convexity,
and long-term control objectives and constraints, next to the need for frequent
online and real-time decision making, involving a large number of optimization
variables, yield a complex optimization problem.

Fig. 2.4 illustrates the entire simulation horizon, over which the elements of the cost
function, i.e., T̄k (·) and Ēk (·), and the cumulative constraints are defined. A cut of the
plot (within the rectangular frame) has been zoomed in, which shows the significant
difference between the temporal scales of the control input and the control costs and
cumulative constraints. The characteristics of (2.1) mentioned earlier imply that this
optimization problem may not be easy/tractable to tackle online and in real time by
conventional methods. Next, we discuss how our proposed novel approaches can make
(2.1) computationally tractable.

2.3. PROPOSED METHODOLOGY FOR TACKLING THE OPTIMIZA-
TION COMPLEXITY RESULTING FROM VARIOUS TEMPORAL

SCALES
In this section, we give our proposed approaches for tackling the complexities of (2.1),
due to different temporal scales (i.e., small control sampling time and large simulation
horizon). Our proposed methods consist of a temporal distribution and reformulation
of the problem, using a shrinking-horizon approach, called jumping-horizon, and a bi-
level multiple-frequency control architecture for implementation and solving the new
formulations of the optimization problem (2.1).

2.3.1. BI-LEVEL TEMPORAL DISTRIBUTION OF THE PROBLEM
In the optimization problem (2.1), two very different temporal scales appear, due to
N s ≫ c. For a controlled system with a long-term cost function, an efficient control
system should guarantee that the short-term control inputs will gradually lead the con-
trolled system towards its desired long-term cost, while the short-term behavior of the
controlled system also fulfills the requirements of the users of the controlled system, tak-
ing into account the rapid fluctuations of the system dynamics. Such a control system



2

20 2. A NOVEL BI-LEVEL TEMPORALLY-DISTRIBUTED MPC APPROACH

needs an overall vision of the controlled system through the entire control period, as well
as more detailed information and vision about its short-term dynamics. Therefore, we
propose to develop two linked MPC optimization formulations for the original optimiza-
tion problem (2.1), where the long-term and short-term costs and constraints of (2.1) are
distributed among these two formulations. The resulting MPC problems can be solved
individually online, and their integrated solutions can result in a controlled behaviour
for the system that is sufficiently close to the behaviour of a centralized controller that
solves (2.1), while being significantly more computationally efficient. Next, we explain
the two MPC formulations in detail.

ROUGH LONG-TERM MPC FORMULATION

A rough long-term MPC optimization problem is formulated within the same shrinking
simulation window as (2.1), but with a (significantly) larger control sampling time cLT

(in this case, one-third of a month), resulting in different control time steps kLT. Fig. 2.5
illustrates an example of the rough long-term MPC input at long-term control time step
kLT, assuming that kLT coincides with April 1 at 0:00. Moreover, simplified versions of

T̄k (·) and Ēk (·) (shown by ˇ̄Tk (·) and ˇ̄Ek (·)), and a less detailed prediction model f̌ state(·)
for the state variables are considered. The prediction horizon of the rough long-term
MPC at long-term control time step kLT is given by nLT(kLT). The initial size of the long-
term prediction horizon is N sc/cLT, and thus for the long-term prediction horizon we
have nLT(kLT) = N sc/cLT−kLT. The rough long-term MPC optimization problem at long-
term control time step kLT is given by:

min
ũ(kLT,nLT(kLT)|cLT)

(
ˇ̄TkLT

(
ˇ̃x
(
kLT,nLT(kLT)|cLT))+∑

ϵ∈E
λϵ

ˇ̄EkLT

(
Pϵ, ˇ̃x

(
kLT,nLT(kLT)|cLT))+

λvarV̄
(
ũ

(
kLT,nLT(kLT)|cLT)))

(2.2)

s.t. :
state prediction model:

ˇ̃x
(
kLT,nLT(kLT)|cLT

)= f̌ state
(
xmeas

(
kLT|cLT

)
, ũ

(
kLT,nLT(kLT)|cLT

))
,

instantaneous stage and terminal constraints:
ˇ̃x
(
kLT,nLT(kLT)|cLT

) ∈XnLT(kLT), ũ
(
kLT,nLT(kLT)|cLT

) ∈UnLT(kLT),
cumulative constraint ∀ϵ ∈ E:

ˇ̄EkLT

(
Pϵ, x̃

(
kLT,nLT(kLT)|cLT

))≤ Ē safe
ϵ − Ē real

ϵ (kLT|cLT).

Note that ˇ̃x is used to show that the corresponding states are determined by the pre-
diction model f̌ state(·), instead of by f state(·). To formulate the rough long-term MPC
optimization problem (2.2), a good choice of cLT (with cLT > c) that results in a balanced
trade-off between the time and accuracy of computations is important. This variable has
been represented by a different color (red) in (2.2) to specify that it is a design variable
in the proposed temporally-distributed approach. The solutions of the rough long-term
MPC optimization problem, which are determined based on a farther vision of the future
and less details in the dynamics of the controlled system, may affect the solutions of the
short-term MPC optimization problem (explained next in Section 2.3.1), while they do
not directly steer the controlled system.
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Figure 2.5: MPC input across the shrinking simulation horizon corresponding to the rough long-term MPC
optimization formulation (cLT =1/3 month).

Figure 2.6: MPC input across the adaptive prediction horizon corresponding to the detailed short-term MPC
optimization formulation for c = 20 min.
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Figure 2.7: Jumping-horizon MPC for green urban mobility for an entire operation period of 12 months, where
the frequency of operation is 3 (i.e., the controller updates the control input sequence after every 3 control
time steps), the operation sampling time is 1 month, with the operation time steps coinciding with Jan., . . . ,
Dec., and the control sampling time is one-third of a month.

DETAILED SHORT-TERM MPC FORMULATION

A second MPC optimization problem is formulated across an adaptive prediction hori-
zon nST (k) starting at the current control time step k, with nST (k) ≤ ns (k) and control
sampling time c. Note that since the control sampling time of the short-term MPC for-
mulation and (2.1) are the same, and also based on Remark 1, the short-term control
time step is simply k. Additionally, detailed prediction models (e.g., the same as for (2.1))
are considered. The detailed short-term MPC optimization problem at control time step
k is given by:

min
ũ(k,nST(k)|c)

(
T̄k

(
x̃

(
k,nST (k)|c))+∑

ϵ∈E
λϵĒk

(
Pϵ, x̃

(
k,nST (k)|c))+

λvarV̄
(
ũ

(
k,nST (k)|c))+λterm

(1) x(1)
(
k +nST (k)|c)−

λterm
(2) x(2)

(
k +nST (k)|c))

(2.3)

s.t. :
state prediction model:

x̃
(
k,nST (k)|c)= f state

(
xmeas (k|c) , ũ

(
k,nST (k)|c))

,

instantaneous stage and terminal constraints:

x̃
(
k,nST (k)|c) ∈XnST(k), ũ

(
k,nST (k)|c) ∈UnST(k),

cumulative constraint ∀ϵ ∈ E:

Ēk

(
Pϵ, x̃

(
k,nST (k)|c))≤ Ē safe, ST

ϵ (k)− Ē real
ϵ (k|c).

At every control time step k, the short-term prediction horizon nST (k) is determined
and applied to the detailed short-term MPC optimization problem in a shrinking man-
ner until the next time step k +1. In (2.3), x(1) and x(2) are, respectively, the sub-vector of
the state variables of x (e.g., the number of vehicles moving on the lanes and the num-
ber of vehicles idling in the queues) that should be minimized at the terminal control
time step, and the sub-vector of x including the kinetic state variables (e.g., the speeds
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and accelerations of the vehicles) that should be maximized at the terminal control time
step. The last two terms in the argument of the min function in (2.1) correspond to the
terminal cost that is added to the short-term MPC problem, in order to compensate for
the effect of reducing the size of the prediction horizon with respect to the original op-
timization problem. The parameters λterm

(1) and λterm
(2) are weights for the components of

the terminal cost.

Fig. 2.6 shows an example for the detailed short-term MPC input, where the adap-
tive shrinking prediction horizon starts at 0:00, has an initial size of 72, and gradually
shrinks (e.g., the prediction horizon illustrated in Fig. 2.6 has already shrunk for 36 con-
trol time steps). Note that in this example, the detailed short-term MPC optimization
problem temporally covers a part of the rough long-term MPC optimization problem
that is shown within a highlighted yellow rectangle in Fig. 2.5 (i.e., one-tenth of the long-
term control sampling time).

In formulation (2.3) for the detailed short-term MPC optimization problem, the choice
of nST (k) and Ē safe, ST

ϵ (k) plays an important role in the effectiveness of the determined
control inputs. Therefore, we have shown these variables in In formulation (2.3) for the
detailed short-term MPC optimization problem, the choice of nST (k) and Ē safe, ST

ϵ (k)
plays an important role in the effectiveness of the determined control inputs. Therefore,
we have shown these variables in color (red) to specify that these are design parameters.
In general, the value of nST (k) can be selected according to the size of the traffic network,
such that the horizon aligns with the time needed to travel through the traffic network
[1], [93], [182]. In the proposed multi-frequency bi-level MPC framework, the high-level
MPC controller can address the long-term plan with a large control sampling time and a
low control frequency. Therefore, the low-level MPC can employ a normal size of predic-
tion horizon as suggested by the references given above. The main aim of the proposed
approach is to select Ē safe, ST

ϵ (k) in (2.3) based on the solution of (2.2), such that the re-
sulting optimal MPC solution of (2.3) provides a high level of accuracy due to, both, the
small control sampling time of (2.3) and the long-term temporal vision of (2.2), while a
proper choice of Ē safe, ST

ϵ (·), may result in more flexibility (i.e., less tight constraints) for
the cumulative constraints in the remainder of the simulation time. Such novel integra-
tion of (2.2) and (2.3) will provide a balanced trade-off between the speed and accuracy
of the optimization computations.

Remark 1. We assume that the initial control time steps for (2.1), long-term, and short-
term MPC optimizations overlap, and that the control sampling times of the correspond-
ing controllers are such that the terminal control time steps for all these frameworks fall
on the terminal time instant of the simulation window.

JUMPING-HORIZON MPC

We introduce the concept of jumping-horizon MPC, where the operation frequency of
the MPC-based controller can be different from the control frequency. Operation fre-
quency of MPC indicates how often the controller solves the optimization problem and
updates the control input sequence, while control frequency implies how often the con-
trol input changes. Therefore, jumping-horizon MPC is a combination of shrinking-
horizon MPC and multi-rate MPC.
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Figure 2.8: Linking the long-term and short-term MPC formulations at long-term control time step kLT that
corresponds to short-term control time step k, using an adapter block for distribution of the estimated cumu-
lative emissions among the short-term prediction window and the remainder of the simulation window.

In jumping-horizon MPC, the relationship between the operation sampling time co

and the control sampling time c is given by:

co = ν · c, with 1 ≤ ν≤ np, (2.4)

where ν = 1 corresponds to regular MPC explained in Section 2.1.1. For every control
time step that coincides with an operation time step and the next ν−1 control time steps,
the first ν elements of ũ(k,np|c) are implemented to the controlled system.

Fig. 2.7 illustrates jumping-horizon MPC for the green mobility control problem (see
Section 2.2) applied to the rough long-term MPC formulation. In this figure, the control
sampling time is one-third of the operation sampling time, i.e., ν= 3.

LINKING THE LONG-TERM AND SHORT-TERM MPC FORMULATIONS

In order to link the long-term and short-term MPC formulations (2.2) and (2.3), we pro-
pose a bi-level control architecture with various frequencies of operation (see Fig. 2.8).
The long-term MPC problem (2.2) is solved less frequently via a slow-rate controller,
whereas the short-term MPC problem (2.3) is solved via a fast-rate controller. In order to
simplify the formulations and thus let the operation time steps overlap with the control
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time steps, we suppose that the operation sampling time of the slow-rate MPC controller
is a multiple of the long-term control sampling time, thus a multiple of the control sam-
pling time c (see Remark 1).

The slow-rate computations are performed via the outer loop in Fig. 2.8. While the
slow-rate MPC controller uses a rough model for prediction, its solution ũ

(
kLT,nLT(kLT)|cLT

)
is used by a detailed integrated flow-emission model (e.g., f state(·)) with sampling time

c to determine x̃
(
kLT,ns(kLT)|c)

, and then ĒkLT

(
Pϵ, x̃

(
kLT,ns(kLT)|c))

for all ϵ ∈ E. Next,

the values of the cumulative emissions estimated for the remainder of the simulation
window are injected into an adapter block, which distributes these values between the
current short-term prediction window (e.g., the section of the simulation window that
is distinguished by a highlighted yellow rectangle in Fig. 2.5) and the remainder of the
simulation window. The share of the cumulative emissions that is associated with the
short-term prediction window by the adapter block will be used by the MPC formulation
(2.3) as the upper bound value Ē safe, ST

ϵ (·) for the cumulative constraints in order to de-
termine the control input sequences ũ

(
k,nST (k) |c)

. In practice, only those elements of
this control input sequence that correspond to one fast-rate operation sampling time are
used to steer the system (see for instance the control inputs illustrated in red in Fig. 2.6)
are injected into the controlled system to control the actuators (in this case the traffic
signals).

After one fast-rate operation sampling time, the values of the cumulative emissions
realized within this interval are sent via the controlled system to the adapter block, which
uses these values to update the upper bounds for the cumulative emissions, and re-
distribute these values between the current short-term window and the rest of the sim-
ulation window.

Note that the adapter block can be designed to produce in parallel various candidate
distributions for the upper bound of the cumulative emissions. In that case, (2.3) will be
solved for all these possible distributions in parallel, and from all the optimal solutions
determined, the one that corresponds to the least realized cost and/or the least value for
Ē safe, ST
ϵ (·) (or to the least value for a weighted combination of these two quantities) will

be selected.

2.4. CASE STUDY

In this section, we perform two case studies with different time scales in order to evaluate
the performance and validate the temporal-scalability of the proposed bi-level tempo-
rally distributed MPC approach for green mobility in an urban traffic network. The cost
function consists of the total time spent (TTS) and total emissions (TE) of the vehicles
traveling in the urban traffic network within a given simulation window. For the emis-
sions, we focus on CO2, which is the main cause of greenhouse effect. For comparison,
we consider state-of-the-art control methods, including fixed-time control, responsive
control, optimized fixed-time control, and conventional MPC. The performance of these
controllers is assessed according to the following criteria: realized values of the total time
spent by the vehicles in the urban traffic network, total emissions of CO2, the realized
value of the cost function (i.e., a weighted summation of the total time spent and total



2

26 2. A NOVEL BI-LEVEL TEMPORALLY-DISTRIBUTED MPC APPROACH

Figure 2.9: Urban traffic network used for the case study.

emissions, and for conventional MPC a penalty corresponding to constraint violation),
as well as the CPU time for the computations of each controller.

2.4.1. SETUP FOR CASE STUDY 1
URBAN TRAFFIC NETWORK

In this case study, we consider an urban traffic network (shown in Fig. 2.9; a similar net-
work has been considered by [99]) with 8 source/destination nodes labeled by numbers
1–8 where vehicles enter and leave the traffic network, and with 9 intersection nodes la-
beled by letters A–I. The arrows in the figure illustrate the links on which the vehicles can
move from an upstream node to a downstream node. The numbers next to these arrows
give the length of the corresponding link in m. Every two adjacent intersection nodes
are connected by at least one link and at most two links with different directions. Each
intersection node is controlled via a traffic signal, except for node B, which does not
have a controller. A centralized controller is used for all the traffic signals, which have
the same fixed cycle time equal to 60 s and are synchronous. Each directed link consists
of 1-3 lanes, where the number of lanes corresponds to the number of the downstream
links. As an example, the detailed illustration of a part of the urban traffic network that
includes the links corresponding to nodes A and B is shown in Fig. 2.10. Since link (A,B)
has two downstream links (B,C) and (B,E), it consists of two lanes. Vehicles that enter
the traffic network via a source node are not allowed to turn immediately from the cor-
responding source link into a neighboring destination link and leave the traffic network



2.4. CASE STUDY

2

27

Figure 2.10: Detailed illustration of the part of the urban traffic network that includes intersection nodes A and
B.

Figure 2.11: Illustration of the two phases corresponding to the cycle of every traffic signal.

(e.g., vehicles that enter via node 1 in Fig. 2.10 are not allowed to turn into link (A,2)). Fi-
nally, the cycle of every traffic signal includes two phases (see Fig. 2.11 for an intersection
node with four links). Note that the same condition holds for T-shaped crosses, such as
those at intersection nodes F, G, and I.

TRAFFIC FLOW AND EMISSION MODELS

In this case study, the dynamics of the urban traffic flow is modeled via the S-model [114],
which is macroscopic and updates the state variables of every link of the urban traffic
network per simulation time step (which is considered to be equal to the cycle time of
the downstream traffic signal of the link). The state variables for every link include the
total number of vehicles and the number of vehicles in the queue(s) on the link (see [114]
and [88] for more details). In order to calculate the emissions of CO2 by the vehicles in
the network, we use VT-micro [208] integrated with the S-model (see [115] for details).

For the detailed short-term and rough long-term MPC controllers, two versions of
the S-model are considered: the S-model with a detailed simulation sampling time (equal
to the cycle time of the traffic signals, i.e., 60 s), and the S-model with a rough simulation
sampling time (five times the cycle time of the traffic signals, i.e., 300 s), respectively.
The rough version of the S-model approximates the state variables of the urban traf-
fic network faster and with a reduced, but acceptable accuracy compared to the detailed
version of the S-model. The parameters used for the integrated flow and emission model
for the urban traffic network are presented in Table 2.2, where v free is the free-flow speed,
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Table 2.2: Parameters of the integrated flow and emission model used for the case study

v free[m/s] v idle[m/s] aacc[m/s2] adec[m/s2] l veh[m]
16.67 1.11 2 -2 5

v idle is the idling speed, aacc is the acceleration, adec is the deceleration, and l veh is the
average length of the vehicles in the traffic network.

DEMAND PROFILES

Six demand scenarios have been considered for a simulation window of 6 hours, begin-
ning at 6:00 and ending at 12:00. This simulation window covers the morning rush hours.
Although larger simulation windows can be considered to be controlled by the proposed
approaches, we have considered this simulation window in order to compare the pro-
posed control approach with more existing control methods with lower computational
burden, where 6 h is large enough to represent various traffic flow and emission dynam-
ics. The profiles for the traffic demands at the source nodes for the 6 scenarios are shown
in Fig. 2.12. These scenarios are chosen since they can generate traffic congestion, such
that the effectiveness of these controllers can be validated. Compared to Scenario 1, Sce-
nario 2 has a delayed peak in the morning and no peak for the demand at noon, while
for Scenario 3 the peaks correspond to larger values of demand both in the morning and
at noon. Moreover, Scenarios 4 and 5 have lower peak values both in the morning and
at noon, while Scenario 6 has a higher morning peak than Scenario 1, but no peak oc-
curs for this scenario at noon. In order to make the case study more realistic, we have
included some noise to the demand profiles for Scenarios 2–6, which will be used to
evaluate and compare the performance of various controllers. More specifically, in each
of the Scenarios 2–6, we have added the noise signals defined by N1(t ) = 10sin(10t ),
N2(t ) = 40sin(t ), N3(t ) = 40cos(2t +1), N4(t ) = 45cos(t +1), N5(t ) = 50sin(0.5t ), N6(t ) =
50sin(1.2t+1), N7(t ) = 40sin(1.5t+1), N8(t ) = 40cos(1.3t+1), to the demands at sources
1–8, respectively. The demand profiles that include the noise correspond to the pre-
dicted demands and imply that imperfect predictions of the real-life demand profiles
may be available for the controllers.

CUMULATIVE EMISSION CONSTRAINTS

The maximum allowed cumulative emissions of CO2 are set to 70000 kg for all the sce-
narios, except for Scenario 4, where the maximum is 65000 kg. The reason for consid-
ering a smaller cumulative emissions of CO2 in Scenario 4 is that there the demands are
significantly lower compared to the other scenarios.

2.4.2. CONTROLLERS
For all the controllers considered in this case study, the control input variable is the green
time length for each traffic signal, with a lower bound of 10 s and an upper bound of 50 s.
The controllers that have been considered in this case study are introduced next.

FIXED-TIME CONTROLLER

With the fixed-time controller, the green time lengths are not optimized, but are instead
given as a fixed value of 30 s for all the controlled intersections within the entire simu-
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Figure 2.12: Demand profiles for the 6 scenarios in case study 1.
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lation window of 6 h. This case is considered as a benchmark for all the other control
approaches that are implemented in this case study.

RESPONSIVE CONTROLLER

The responsive controller is an online adaptive traffic controller that updates the green
time length of a controlled intersection at every control time step according to the traffic
volume of the connecting links of that intersection. The links that include more vehicles
will receive a larger green time length (see [95] for details). The control sampling time of
the responsive controller is 1 min.

OPTIMIZATION POLICIES FOR ADAPTIVE CONTROL (OPAC)
OPAC is a computational strategy for real-time demand-responsive traffic signal control
[56]. For the next control sampling time, the controller estimates the upcoming traffic
flows, and enumerates all the possible choices of green time length (which should be
integer values within the allowed range of the control input variable) in order to find an
optimal value for the corresponding green time length that results in the least total delay
for the particular controlled intersection. Note that these estimations are performed
for individual controlled intersections simultaneously (i.e., in a decentralized way). The
dynamics of the links corresponding to the controlled intersection are updated via the
S-model and are used to predict the future values of the state variables of these links.
Note that the constraints on the emissions cannot be incorporated explicitly in an OPAC
controller. The control sampling time of the OPAC controller is set to 1 min.

OPTIMIZED FIXED-TIME CONTROLLER

This controller is optimized off-line using a rough version of the S-model and demand
Scenario 1 shown in Fig. 2.12. The optimization problem is solved considering a cost
function that is defined as a weighted summation of the TTS and the TE within the sim-
ulation window, with a control sampling time of 1 h. A rough estimation of the total
emissions within the simulation window is given as the upper bound for the cumulative
constraint of the optimization problem. Whenever the optimizer fails to find a feasible
solution with respect to the given constraint, the optimization problem is solved exclud-
ing the cumulative emission constraint, and a penalty corresponding to the emission
constraint violation is added to the cost function.

CONVENTIONAL MPC CONTROLLER

In order to implement an MPC controller in real time for green mobility in the given
urban traffic network, the prediction time interval is limited to 15 min with a control
sampling time of 5 min (i.e., the prediction horizon is 3) and an operation sampling time
of 5 min. The MPC optimization problem is solved considering the detailed S-model
and a cost function defined as a weighted sum of the TTS and the TE within the predic-
tion window. The upper bound for the cumulative emissions of CO2 within the current
prediction window is estimated based on the demand profiles, i.e., the ratio of the ex-
pected demand within the current prediction window and the future expected demand
is used to distribute the remaining allowed cumulative emissions. By comparing the per-
formance and CPU time of this MPC controller and the bi-level MPC controller, we can
realize how and to what extent adding the long-term MPC controller impact the overall
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Table 2.3: Parameters values for the case study

s sLT nST(kLT) nLT(kLT) c cLT co co,LT λCO2 λvar λterm
(1) λterm

(2)
1 min 5 min 15 min 360 min 5 min 60 min 5 min 60 min 0.005 0 0 0

performance of the controlled system, as well as the computational burden of the MPC
controller.

CONVENTIONAL MPC WITH A LARGE PREDICTION HORIZON

The same conventional MPC controller as the previous subsection, but with a larger pre-
diction horizon is considered. The prediction time interval of this controller is doubled
(i.e., it is 30 min), and therefore the prediction horizon is 6. The other settings are exactly
the same as the previous conventional MPC controller. Comparing the performance of
this MPC controller with that of the bi-level and conventional MPC controller will show
us whether or not we can gain the desired performance via a single level of control, with
still an affordable computation time.

SINGLE-LEVEL LONG-TERM MPC CONTROLLER

The rough long-term MPC-based controller in the high level of the proposed framework
will be considered as the controller that directly controls the traffic network. The rough
long-term MPC controller optimizes the multi-objective cost function (i.e., weighted
summation of the TTS and the TE) considering a rough version of the S-model, with
a simulation sampling time of 5 min, and a control and operation sampling time of 1 h.
The controller originally has a prediction horizon of 6 (equal to the simulation horizon),
which is implemented in a shrinking-horizon way.

BI-LEVEL TEMPORALLY-DISTRIBUTED MPC CONTROLLER

In the bi-level MPC controller the rough long-term MPC controller in the higher level of
control has the same setting as the one introduced in Section 2.4.2. The parameters of
the detailed short-term MPC controller in the lower level of control are similar to those
of the conventional MPC controller explained in Section 2.4.2. Note that since the pre-
diction interval of the detailed short-term MPC is 15 min, within one operation sampling
time (i.e., 1 h) of the rough long-term MPC controller the short-term prediction horizon
remains 3, except for the short-term control time step corresponding to the 50th minute,
for which the short-term prediction horizon will be 2 and for the short-term control time
step corresponding to the 55th minute, for which the short-term prediction horizon will
be 1.

For the integrated flow and emission model in the adapter block (see Fig. 2.8), the
detailed versions of the S-model and VT-micro are used. Thus, the rough control inputs
determined via (2.2) and the predicted demands for the upcoming 1 h (see Fig. 2.12) are
used to estimate the expected realized total emissions for the upcoming 1 h. This value is
initially distributed via the adapter block evenly among the detailed short-term control
time steps. After every control time step, the upper bounds for the cumulative emissions
for the remaining control time steps are updated by evenly re-distributing the value of
the previous upper bound minus the value of the cumulative emissions realized in the
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Figure 2.13: Demand profile for 10 days in case study 2

last control sampling time. The updated upper bounds for the cumulative emissions
are used by the detailed short-term MPC optimization problem to determine an optimal
control input sequence that will be injected into the controlled system for the upcoming
control sampling time (5 min).

Remark 2. The proposed bi-level MPC framework can be extended to larger simulation
windows, e.g., one month or one year, where additional intermediate adapter blocks can
be included. For instance, one rough adapter block allocates the estimated total emissions
for the entire simulation window (e.g., a month) over the individual days in the month,
and a second detailed adapter block distributes these daily upper bounds over the indi-
vidual hourly intervals. This approach will make the procedure computationally more
efficient.

2.4.3. SETUP FOR CASE STUDY 2
In this case study, a larger simulation interval (i.e., 10 days) is considered to further as-
sess the ability of the proposed framework to fulfill the long-term control task. This case
study shares the same settings as case study 1, including the urban traffic network, traf-
fic flow and emission model, and the controllers. The only difference is the traffic de-
mand, which extends over a longer period (see Figure 2.13), and the same noise is added
as in Section 2.4.1. Accordingly, the rough traffic model is modified with a simulation
sampling time of 2 hours. The high-level MPC controller has a control and operation
sampling time of 6 hours. All the controllers introduced in case study 1 are also imple-
mented for this case study, and their control performance is compared. Moreover, the
cumulative emission constraint on CO2 over the 10-day simulation interval is 2 million
kg.

2.4.4. RESULTS AND DISCUSSION
All controllers were implemented in MATLAB version R2019b running on a PC with an
Intel Xeon Quad-Core E5-1620 V3 CPU with a clock speed of 3.5 GHz. Due to the nonlin-
ear dynamics of the urban traffic network, for all the optimization-based controllers, the



2.4. CASE STUDY

2

33

function fmincon from MATLAB has been used together with the SQP algorithm [15].
Moreover, due to the non-convex nature of the optimization problems, in order to avoid
selecting local optima that may result in a performance for the controller that is (much)
worse than that of the global optimum, a number of off-line experiments have been
conducted to determine suitable numbers of optimization starting points for achiev-
ing near-global optima. Consequently, 10 and 15 starting points for, respectively, the
rough long-term and the detailed short-term MPC optimization problems are consid-
ered. Moreover, 15 starting points are considered for the optimization problem of con-
ventional MPC. Based on the off-line experiments, the parameters of fmincon were also
determined such that a balance is achieved between accuracy and computational effi-
ciency of the solver. So for the fmincon stopping criterion the values of the cost function
tolerance, step tolerance, and constraint tolerance are selected to be 10−2 for the detailed
short-term MPC and 10−1 for the rough long-term MPC. For the cost functions of (2.1),
(2.2), and (2.3) λCO2 = 0.005 was considered, where the order of this weight corresponds
to the relative orders of the total time spent of the vehicles and the total emissions of
CO2. The rest of the weights are set to 0.

Remark 3. In case the optimization solver fails to find a feasible solution for an MPC op-
timization problem, it switches to another version of the problem, where the cumulative
constraint on the emissions of CO2 is excluded. A penalty is then added to the cost function
with a weight equal to 0.48. This weight should be tuned carefully: with a very large value,
the solver determines solutions that compromise reduction of the traffic congestion in or-
der to decrease the total emissions of CO2, especially for the short-term predictions, which
impose short-sighted decision making. In such cases, the controller causes the vehicles to
idle instead of traveling freely, since idling vehicles emit the least CO2 per time step.

Table 2.4 presents the results of the simulations for scenarios 2–6, including the CPU
time and the realized values of TTS, TE, cost, and the change (in %) in the objective
function (i.e., the weighted sum of the TTS and the TE) compared to the benchmark
fixed-time controller for all the implemented controllers.

Overall, all controllers perform better than the fixed-time controller, while the MPC-
based methods outperform the other controllers in terms of the realized values of TTS
and TE, except for the single-level rough long-term MPC, which cannot guarantee the
performance outside of the bi-level control architecture. For a few certain scenarios,
the non-MPC methods can achieve a performance comparable to the MPC-based meth-
ods with negligible CPU time, but their performance cannot be guaranteed for all the
scenarios. Furthermore, since some controllers (e.g., responsive controller and OPAC)
cannot explicitly consider the constraints on the emissions, their realized TE values are
much higher than those of the MPC-based methods. In addition, the bi-level MPC con-
troller performs better than the conventional MPC, particularly in terms of the CPU time
(i.e., in all cases the computational speed corresponding to the bi-level MPC controller
is more than twice smaller than that of the conventional MPC controller). The bi-level
MPC controller achieves a performance that is comparable to the large-horizon con-
ventional MPC in terms of TTS and TE, but with significantly less CPU time. Moreover,
during the simulations it was noticed that in all cases the conventional MPC controller
failed to find a feasible solution under the given constraint, and hence it had to switch
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to the unconstrained version of the optimization problem and include a penalty term
in the cost function. As a result, the computational complexity increased significantly
and solutions that were obtained resulted in slightly poorer performance compared to
the bi-level MPC controller. Due to the use of a higher-level rough MPC controller and
the adapter block in the proposed bi-level architecture, however, the detailed short-term
MPC controller most often received an upper bound for the cumulative constraint that
prevented the corresponding constrained optimization problem to become infeasible.

As an extra remark, from Table 2.4 it is deduced that for scenario 4, the fixed-time
controller performed better than all other controllers, except for the bi-level MPC-based
controller. This is because the green time corresponding to the fixed-time control policy
(i.e., 50% of the cycle time) is very close to the optimal solution for this scenario. More-
over, it has been verified that the MPC-based controllers result in a similar performance
as the fixed-time controller. In addition, the performance of the opt. fixed-time con-
troller cannot be guaranteed due to the quality of the historical data.

Table 2.5 presents the simulation results of the different controllers in case study 2.
It is shown that the proposed bi-level control framework achieves the best control per-
formance in terms of both TTS and TE, when considering a long-term green mobility
control task (i.e., 10 days). In addition, the bi-level MPC framework is more compu-
tationally efficient than other MPC-based methods. This case study indicates that the
proposed bi-level control framework is able to address long-term control objectives and
long-term constraints that cannot be handled efficiently with conventional MPC control
methods.

2.5. CONCLUSIONS
This chapter proposed a novel bi-level temporally-distributed MPC approach in order to
tackle the challenge of high computational burden for complex constrained optimiza-
tion problems with different time scales. Consequently, we have introduced two linked
short-term and long-term MPC optimization problems. In the proposed framework, the
rough long-term MPC problem is solved by a supervisory controller that may use a dif-
ferent prediction model, control sampling time, and operation time than the detailed
short-term MPC problem. The controller corresponding to the detailed short-term MPC
problem is implemented at the lowest control level and directly controls the system. The
supervisory MPC controller determines new adaptive upper bounds for the constraints
of the detailed short-term MPC problem, based on the rough long-term solutions. We
have implemented the proposed control approaches to an urban traffic network in order
to achieve green mobility. The results of the case study show that the proposed bi-level
MPC controller outperforms other conventional control methods used for urban traffic
control in terms of the total time spent, total emissions of CO2, and CPU time. More
specifically, the bi-level MPC controller has shown to require a computation time less
than half of the computation time of a conventional MPC controller.

It is expected that for larger spatial and temporal scales of the network, the differ-
ence between the computation time of the bi-level MPC controller and the conventional
MPC controller becomes more significant. Moreover, for future work we propose to use a
more sophisticated adapter block, with several levels that distribute the upper bound of
the constraints among various temporal scales. The proposed bi-level MPC architecture
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provides the opportunity of giving different weights to various costs in different tem-
poral scales or for considering completely different cost functions in different temporal
scales, while incorporating the inter-linked dynamics. Therefore, applying the proposed
approach to various complex and non-linear dynamical systems and considering vari-
ations in the weights and costs in different temporal scales is an interesting topic for
future work.
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3
GRAMMATICAL-EVOLUTION-

BASED PARAMETERIZED MODEL

PREDICTIVE CONTROL FOR URBAN

TRAFFIC NETWORKS

While Model Predictive Control (MPC) is a promising approach for network-wide control
of urban traffic, the computational complexity of the, often nonlinear, online optimiza-
tion procedure is too high for real-time implementations. In order to make MPC computa-
tionally efficient, this chapter introduces a parameterized MPC (PMPC) approach for ur-
ban traffic networks that uses Grammatical Evolution to construct continuous parameter-
ized control laws using an effective simulation-based training framework. Furthermore,
a projection-based method is proposed to remove the nonlinear constraints that are im-
posed on the parameters of the parameterized control laws and to guarantee the feasibility
of the solution of the MPC optimization problem. The performance and computational ef-
ficiency of the constructed parameterized control laws are compared to those of a conven-
tional MPC controller in an extensive simulation-based case study. The results show that
the parameterized control laws, which are automatically constructed using Grammatical
Evolution, decrease the computational complexity of the online optimization problem by
more than 80% with a decrease in performance by less than 10%.

Parts of this chapter have been published in [90], to which this PhD candidate contributes significantly.
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3.1. INTRODUCTION
Over the past decades, a growing demand for urban mobility has led to congested urban
areas. Various control strategies have been proposed to meet this growing demand and
to increase the traffic flow in urban traffic networks. Next we briefly discuss about traffic
signal control and MPC for urban traffic networks.

3.1.1. TRAFFIC SIGNAL CONTROL
Traffic signal control has evolved over the years. Webster proposed one of the first traffic
signal control methods for minimizing the delay per vehicle [195]. From there, differ-
ent controllers were designed for single intersections, while they did not interact with
adjacent intersections. This resulted in optimized control strategies for single intersec-
tions, where it could lead to congestion in other intersections in the traffic network. To
address this issue, fixed-time strategies were proposed to control multiple intersections
at the same time [116], [163]. Fixed-time control strategies determine the control in-
puts offline based on historical traffic flow data. One of the disadvantages of fixed-time
controllers is that they do not respond to real-time traffic fluctuations, e.g., when an ac-
cident occurs. To tackle this issue, traffic-responsive controllers were introduced [84],
[172]. Such controllers take the current traffic conditions that are measured by loop de-
tectors into account and change the green times of the traffic lights accordingly.

Model-based control strategies [56], [77], [132] are traffic-responsive methods that
use a mathematical model to predict future traffic conditions and to calculate an opti-
mized control input sequence for the traffic network. Model-based control approaches
consist of a prediction model, an online optimization procedure, and a rolling hori-
zon principle. By using future predictions, non-myopic control inputs can be obtained.
Model Predictive Control (MPC) [158] is a model-based control method that is widely
used in different industrial areas [3], [156], and it has shown to be promising for urban
traffic signal control [205].

3.1.2. MODEL PREDICTIVE CONTROL FOR URBAN TRAFFIC NETWORKS
In MPC, a mathematical model is used to predict future states of the controlled traf-
fic network over a prediction horizon of size Np and to calculate an optimized control
sequence at every control time step within the prediction window. MPC can simultane-
ously optimize multiple control objectives, e.g., the total time spent by the vehicles in the
traffic network and the total emissions of the vehicles. Moreover, due to its rolling hori-
zon approach, MPC can work based on real-time feedback from the traffic network, and
thus quickly respond to changing traffic demands. Additionally, queue lengths on the
roads and green times of the traffic lights can be constrained since MPC takes input and
state constraints explicitly into account. Finally, the prediction model of MPC can eas-
ily be updated or replaced by another model in order to provide a desired trade-off be-
tween accuracy of the predictions and complexity of computing them. On the one hand,
a more precise model will in general be computationally more complex (due to con-
sidering more state variables or incorporating nonlinearities), which results in a more
complex online optimization problem that may be intractable in real time. On the other
hand, while a less accurate model is computationally more efficient, the corresponding
predictions are prone to larger errors. This can result in significant cumulative errors
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across the MPC prediction horizon, and thus in a degraded performance for the con-
trolled system.

A major drawback of MPC especially for urban traffic networks, is the need for per-
forming an online optimization procedure per control time step. Due to the nonlin-
ear behavior of traffic and thus the need for nonlinear prediction models [88], [112],
[113], [204], the resulting MPC optimization problem is nonlinear and nonconvex, with
a large number of optimization variables (which correspond to the number of traffic sig-
nals/intersection within the traffic network). Therefore, a computationally complex op-
timization problem should be solved online, which makes MPC intractable for real-time
implementation for urban traffic networks.

Different approaches have been proposed to lower the computational complexity
of the online MPC optimization problem for urban traffic. In [203], [204] for instance,
the traffic network was divided into multiple subnetworks, each corresponding to one
local optimization problem that takes the interactions with the neighbouring subnet-
works into account. In [161], MPC is combined with reinforcement learning for urban
traffic signal control. Since reinforcement learning can deal with uncertainties and pro-
vide extra optimality, MPC can operate with a less accurate model or act at a lower con-
trol frequency, in order to reduce computational complexity. Lin et al. reformulated
the nonlinear and nonconvex MPC optimization problem as a computationally efficient
mixed-integer linear optimization problem (MILP) [114]. In this chapter, we focus on
reducing the computational complexity by parameterizing the decision variables of the
MPC optimization problem.

In PMPC the decision variables are parameterized, which results in fewer decision
variables and potentially lower computation time for the online optimization problem
[60], [119], [154], [207]. PMPC has shown promising results regarding computational
efficiency in control of urban and freeway traffic networks [89], [100], [207], via substan-
tially reducing the number of optimization decision variables with limited decrease in
the performance. However, the parameterized control laws in [89], [100], and [207] are
handcrafted based on expert knowledge and experiences and are therefore difficult to
design.

3.1.3. MAIN CONTRIBUTIONS
The main contributions of this chapter include:

1. We use Grammatical Evolution (GE) to automatically construct continuous pa-
rameterized control laws based only on limited knowledge of the system. More
specifically, two training frameworks, called Framework-1 and Framework-2, are
proposed and investigated to automatically generate the parameterized control
laws. While Framework-1 is similar to the one used in [89], the newly proposed
Framework-2, which is shown to outperform Framework-1 in terms of performance
measurements and training efficiency, is able to train multiple parameterized con-
trol laws at the same time.

2. An effective projection-based method is proposed to remove nonlinear constraints
on the parameters of the PMPC problem in order to guarantee the feasibility and
to reduce the computational complexity of the optimization problem.
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3. We show the effectiveness of the GE-based PMPC controllers in a case study and
compared to a conventional MPC controller, a fixed-time controller, and the hand-
crafted parameterized control laws from [89].

3.1.4. OUTLINE OF THE CHAPTER

The remainder of this chapter is organized as follows. First, in Section 3.2 we discuss the
principles behind conventional MPC and PMPC and provide the necessary background
on the urban traffic model that is used. In Section 3.3, an overview of Grammatical Evo-
lution (GE) is presented, followed by the newly proposed training frameworks for the
parameterized control laws with GE and the projection-based method in Section 3.4. In
Section 3.5 we present, compare, and discuss the effectiveness of the proposed training
frameworks and the resulting parameterized control laws. Finally, in Section 3.6 we draw
final conclusions and provide some suggestions for future work.

3.2. PARAMETERIZED MODEL PREDICTIVE URBAN TRAFFIC CON-
TROL

In this section we describe the principles behind PMPC in urban traffic control, as well as
the mathematical constraints in model-based urban traffic control. Moreover, we shortly
discuss the baseline parameterized control law (for the PMPC controller) that will be
used in the case study. First, we introduce the mathematical urban traffic model that is
used in the MPC controllers.

3.2.1. URBAN TRAFFIC PREDICTION MODEL

We use the S-model as the prediction model for the PMPC controllers since this model
provides a suitable balance between accuracy and computational complexity [88], [112].
The S-model is a macroscopic, nonlinear, and discrete-time urban traffic model that
considers the cycle time of the downstream intersection of a link to update the traffic
states, i.e., the number of vehicles and the queue lengths of that link. We give only the
main equations of the model that are needed to understand the remainder of the chap-
ter. For more details, we refer the reader to [112] and [88].

The S-model represents an urban traffic network by a set of nodes N , a set of links
L, and a set of controlled intersections J ⊆ N (see Fig. 3.1). A link (u,d) ∈ L is defined
by its upstream node u ∈ N and downstream node d ∈ N , and corresponds to a set Iu,d

of input nodes and a set Ou,d of output nodes. The cycle times of the upstream and
downstream node are given by cu and cd , respectively. For simplicity, in this chapter, the
cycle time for all the intersections are considered equal. Furthermore, the control time
interval and simulation time interval of the network are equal, resulting in one common
time step counter k.

The state variables of the S-model are the total number of vehicles nu,d (k) and the
queue length qu,d (k) on each link (u,d) per simulation time step k. The queue lengths
can be further divided into queue lengths qu,d ,o(k) corresponding to vehicles that move
towards a specific output node o ∈ Ou,d . The number of vehicles and the queue lengths
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link (u,d)

link (d,u)
leave

leave

leave

leave

leave

leave

enter arrive

Figure 3.1: A link in the S-model connecting two traffic-signal-controlled intersections, based on [112].

are updated every simulation time step k by

nu,d (k +1) = nu,d (k)+
(
αent

u,d (k)−αleave
u,d (k)

)
· cd , (3.1)

qu,d ,o(k +1) = qu,d ,o(k)+
(
αarr

u,d ,o(k)−αleave
u,d ,o(k)

)
· cd , (3.2)

qu,d (k) = ∑
o∈Ou,d

qu,d ,o(k), (3.3)

where αent
u,d (k) and αleave

u,d (k) are the average entering and leaving flow rates of link (u,d),
αarr

u,d ,o(k) is the average arriving flow rate at the tail of the queue on link (u,d) that intends

to move towards node o, and αleave
u,d ,o(k) is the average leaving flow rate of the sub-stream

on link (u,d) that intends to move towards node o, during the time interval [kcd , (k +
1)cd ). The leaving flow rates are nonlinear functions of the states and the green time of
the traffic lights, i.e.,

αleave
u,d ,o(k) = h(x(k), gu,d ,o(k)), (3.4)

with h(·, ·) a nonlinear function taking different traffic conditions into account (see [112]
for more details), gu,d ,o(k) the green time duration for the vehicles on link (u,d) that
intend to turn towards node o during the time interval [kcd , (k+1)cd ), and x(k) a column
vector containing nu,d (k) and qu,d (k) for all (u,d) ∈ L (i.e., the number of vehicles and
queue lengths of all the links).

To prevent collisions and to regulate the traffic, the cycle time per intersection is di-
vided into phases for which certain lanes have right-of-way (i.e., a green light). For ex-
ample, during one phase, two perpendicular incoming lanes do not have right-of-way
to go straight over the intersection in the same phase. The green time duration for the
individual lanes is linked to the phase times, while grouping the green times of the indi-
vidual traffic lights into phases reduces the number of inputs that should be processed
by the model per simulation time step, it imposes a constraint, i.e., the phase times at an
intersection should add up to the cycle time of that intersection minus the yellow time
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of the traffic lights. Thus, for every simulation time step k we should have:

cd = yd + ∑
i=1

gd ,i (k), (3.5)

in which yd is the total yellow time for intersection d during a cycle, gd ,i (k) is the green
time of phase i at intersection d for simulation time step k, and is the number of phases
for intersection d .

3.2.2. PARAMETERIZED MODEL PREDICTIVE CONTROL
The MPC optimization problem that is solved at every control time step for an urban
traffic network is given by:

min
g (k)

(
wTTS JTTS(k)+wDD(g (k))+wQQ(k)

)
(3.6)

s.t. x(k + j +1) = f (x(k + j ), g (k + j )),

gd ,min ≤ gd (k) ≤ gd ,max ∀d ∈ J ,

(3.5),

holds for j = 0, . . . , Np−1 and where JTTS(k) stands for the total time spent (by the vehicles
in the traffic network) predicted within the prediction window of size Np for control time
step k. Moreover, D(g (k)) and Q(k) represent, respectively, a cost on the control input
increments computed within the entire prediction window of size Np to prevent high
fluctuations in consecutive control time steps, and a cost to take the longest queue per
intersection at every control time step into account in order to avoid long queues that
congest the downstream intersections. The formulations of these terms are specified in
more detail in Section 3.5.1. Furthermore, f (·, ·) is the prediction model (i.e., the S-model
explained in Section 3.2.1), x(k) is the state vector of the model as defined in Section
3.2.1, gd (k) contains the phase times at intersection d at time step k, g (k) is a column
vector containing gd (k), gd (k+1), . . . , gd (k+Np−1) for all d ∈ J , gd ,min and gd ,max vectors
of appropriate size with the minimum and maximum green times of the phase times at
intersection d , respectively, for which ‘≤’ is considered element-wise, wTTS, wD , and wQ

the weights that describe the importance of the different control objectives, and (3.5) is
the equality constraint on the phase times.

In order to reformulate (3.6) as a PMPC problem, the original control inputs are re-
placed by a parameterized control law that is added to the constraints of the MPC opti-
mization problem, and the parameters of this control law are then optimized. We have:

min
θ

(
wTTS JTTS(k)+wDD(g (k,θ))+wQQ(k)

)
. (3.7)

which in addition to the constraints given by (3.6) is also subjected to the parameterized
control law that calculates the phase times, i.e., for j = 0, . . . , Np −1:

gd (k + j ,θd ) =µd (x(k + j ),θd ) (3.8)

where µd (·, ·) is the parameterized control law of intersection d and θd is a vector that
includes the parameters of that control law. While multiple intersections can use the
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same parameterized control law, the parameters for every intersection are independent.

Moreover, θd =
[
θ1, . . . ,θθNd

]⊤
, where Nθ

d is the number of parameters for the control law

of intersection d and θ is a column vector containing θd for all d ∈ J .

If the number of parameters is lower than the original number of decision variables,
the optimization should in general run faster. There are two main challenges in PMPC.
The first one is finding a parameterized control law that results in faster optimization
without degrading the performance significantly. Secondly, as the parameterized con-
trol law is added to the constraints of the PMPC optimization problem, one need to
ensure that the solution to this optimization problem remains feasible with the extra
constraints.

Please note that since the control inputs become a function of the states in PMPC,
the parameters do not necessarily have to be updated every control time step, as future
control inputs can be calculated with future states and parameters from the previous
control time step. Keeping θ constant over the prediction horizon reduces the num-
ber of decision variables in the optimization problem. However, one could make use of
time-dependent parameters or use the idea of move-blocking MPC in which the decision
variables are held constant over several time steps to reduce the number of decision vari-
ables [21]. This yields a trade-off between performance and computational complexity.

RELATIVE QUEUE LENGTHS PARAMETERIZED CONTROL LAW

Later on, in the case study, we will use the best performing parameterized control law of
[89], to show the effectiveness of this approach on a larger traffic network and to use it
as a baseline for the other PMPC controllers considered in this chapter. This control law
was designed using expert knowledge of the system. Here, we will only give the formula-
tion of the parameterized control law for the clarity of this chapter. For more details, we
refer the reader to [89].

The parameterized control law uses the mean queue length qph
d , j (k) and the mean

arriving flow rateαph,arr
d , j (k) on the lanes that have right-of-way in the j -th phase at inter-

section d at control time step k. The mean of the mean queue lengths of all the phases

at intersection d is denoted by qph
d (k) and the mean of the mean arriving flow rates of all

the phases at intersection d is denoted by αph,arr
d (k). The parameterized control law that

calculates the green time gd , j (k) of phase j at intersection d is given by

gd , j = g d +
qph

d , j −qph
d

N ph
d∑

i=1
qph

d ,i +κq

·θd ,1 +
α

ph,arr
d , j −αph,arr

d

N ph
d∑

i=1
α

ph,arr
d ,i +κα

·θd ,2 (3.9)

where g d is the mean green time during one cycle at intersection d , N ph
d is the number

of phases at intersection d , κq and κα are small positive values to prevent division by
zero, and θd ,1 and θd ,2 are independent parameters for intersection d .
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Figure 3.2: Tree representation of genetic programming for a symbolic regression problem. Here, the function
set contains the mathematical operators and the terminal set contains x0 and x1.

3.3. GRAMMATICAL EVOLUTION
Grammatical Evolution is a form of genetic programming that produces functions based
on a user-defined context-free grammar [141] and an evolutionary algorithm for evolv-
ing the functions [139].

3.3.1. GENETIC PROGRAMMING
Techniques that are used for the evolvement of functions with evolutionary algorithms
are called genetic programming [104]. Genetic programming uses a (derivation) tree-
based structure to represent the functions, where these trees can be evaluated in a re-
cursive manner (see Figure 3.2). The resulting functions can consist of complex pro-
gramming languages or can be more simple curve-fitting models or symbolic regressions
[155]. For our application, the produced functions are parameterized control laws.

The basic genetic programming algorithm works with a function set and a terminal
set [155]. The function set often consists of mathematical operators, logical operators,
and user-defined functions, and the terminal set consists of the operands, e.g. the de-
pendent variables or constants. The genetic programming algorithm is initialized with
an initial population of functions. Then a selection process is performed to choose the
best a few functions according to a given criterion, such as a fitness function that evalu-
ates the performance (see Section 3.3.3). Based on the selected functions, a new popu-
lation of functions is generated using sub-tree crossover and sub-tree mutation. In sub-
tree crossover, two functions are combined to create two new functions by interchang-
ing parts of the trees. In sub-tree mutation, single nodes in the tree are replaced by other
nodes from their respective set (i.e. the function and terminal set). In particular, in each
tree a node is selected, and the successive branches of these nodes are interchanged.

Genetic programming is especially useful when the exact form of the function is not
known in advance as no constraints are set on the output of the algorithm [155]. How-
ever, in PMPC of urban traffic networks, there is some information about the solution of
the optimization problem, i.e., the sum of the green times for an intersection should add
up to the cycle time of the intersection minus the yellow time (see (3.5)). When genetic
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programming is used to find a function that generates the phase times of an intersection,
it is very unlikely that these phase times add up to the cycle time of the intersection. Thus
the algorithm may not return a valid function due to the phase time constraint. More-
over, since the search space of genetic programming is generally very large, it is helpful
to steer the algorithm in the right direction.

To reduce the search space and to guarantee the feasibility of the created programs,
we can use Grammatical Evolution (GE) with a context-free grammar to generate the
functions. The grammar describes how the functions should be constructed and im-
poses constraints on the search space.

3.3.2. GE WITH CONTEXT-FREE GRAMMARS

Context-free grammars have a recursive notation and describe how functions can be
constructed from an existing list of variables and functions [80]. Context-free grammars
are often defined in Backus-Naur form [168], considering four basic components: a fi-
nite set of terminals, a finite set of non-terminals, a start symbol, and a finite set of pro-
duction rules. The production rules represent the recursive behavior of the context-free
grammar and define how a non-terminal evaluates to another non-terminal, a termi-
nal, or a combination of the two. The non-terminals give structure to the grammar and
the terminals end up in the resulting function. A set of production rules for a context-
free grammar that could be used for symbolic regression is shown in Figure 3.3. The top
production rule contains the start symbol S, which is replaced by an expression. All the
non-terminals are defined between angle brackets and all the terminals (i.e., the arith-
metic operators, the variables x, and the numbers) are in the production rules of some
of the the non-terminals.

The grammar in Figure 3.3 can be used for symbolic regression purposes, but more
advanced grammars can be used for, e.g., solving the Sante Fe ant trail problem [140],
the control of femtocell network coverage [76], and finance and economics [16]. In these
grammars, user-defined “if" statements are used to check which action should be taken
and “then" statements are used to perform specific actions. For example, in the Sante Fe
ant trail problem (in which artificial ants try to find pallets of food), user-defined actions,
such as turn left and turn right, are used if the ants sense the food.

A grammar is called context-free if the non-terminals can be mapped using the pro-
duction rules no matter the expressions around it. For example, if we use a grammar
to create a mathematical function and we have two production rules that map a non-
terminal to a single opening or closing parentheses, we could create functions where
the parenthesis do not come in pairs (i.e. more opening than closing parenthesis or
vice versa), and therefore the grammar is not context-free. One could make this gram-
mar context-free by creating production rules that map to expressions between a pair
of parentheses (e.g. a rule that evaluates to a non-terminal between parentheses: (non-
terminal)). This is also done in the second production rule of the grammar in Figure
3.3.

One of the main advantages of GE over conventional genetic programming is that
the search space can be restricted and knowledge of the system can be incorporated into
the production rules of the context-free grammar. For example, in [89] the production
rules are used to ensure that the parameters of the parameterized control laws appear in
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Rule Rule number
S

<expr>

<op>
<func>

<terminal>

<xlist>
<digitlist>

<digit>

::=
::=

::=
::=
::=

::=
::=

::=

( <expr> <op> <expr> )
<expr>

| <func> ( <expr> )
| <terminal>
+ | - | * | /
sin | cos | exp | log
<xlist>
| <digitlist>.<digitlist>
x1 | x2 | x3
<digit>
| <digit><digitlist>
0 | 1 | 2 | ... | 9

(0)
(0)
(1)
(2)

(0-3)
(0-3)
(0)
(1)

(0-2)
(0)
(1)

(0-9)

Program Chromosome Operation
9, 8, 6, 4, 16, 10, 17, 23, 8, 14
8, 6, 4, 16, 10, 17, 23, 8, 14
6, 4, 16, 10, 17, 23, 8, 14
4, 16, 10, 17, 23, 8, 14
16, 10, 17, 23, 8, 14
10, 17, 23, 8, 14
17, 23, 8, 14
23, 8, 14
8, 14
14

<expr>
(<expr> <op> <expr>)
(<terminal> <op> <expr>)
(<xlist> <op> <expr>)
(x2 <op> <expr>)
(x2 + <expr>)
(x2 + <func>(<expr>))
(x2 + cos(<expr>))
(x2 + cos(<terminal>))
(x2 + cos(<xlist>))
(x2 + cos(x3))

9 mod 3 = 0
8 mod 3 = 2
6 mod 2 = 0
4 mod 3 = 1
16 mod 4 = 0
10 mod 3 = 1
17 mod 4 = 1
23 mod 3 = 2
8 mod 2 = 0
14 mod 3 = 2

Figure 3.3: The production rules of a context-free grammar in Backus-Naur form, based on [185], where the
words enclosed by angle brackets are the non-terminals, ::= indicates replacement of the left-hand side symbol
with the right-hand side expression, and the vertical bar is used for separation of the different options a non-
terminal can evaluate to. Furthermore, the resulting function will consist of the terminals sin, cos, exp and log,
representing the sinus, cosine, exponential and logarithmic functions, respectively, and the variables x1, x2,
x3 and the numbers 0 to 9.

the conditions of if-statements, which leads to an efficient optimization step during the
training of the parameterized control laws.

3.3.3. TRAINING OF PARAMETERIZED CONTROL LAWS
GE uses a set of input-output pairs to train the functions (i.e. the parameterized control
laws) that map the inputs to outputs. In [89], input and output data is generated by
simulating an MPC-controlled urban traffic network in a traffic simulator. The input
data are the states of the prediction model per control time step and the outputs are the
optimal phase times for every intersection and every control time step as determined by
the MPC controller.

The training step of one generation of parameterized control laws consists of two
parts. First, a new generation of parameterized control laws is generated using genetic
operators (i.e., crossover and mutation), and secondly, for every parameterized control
law, the parameters in that control law should be optimized on the training data. This
means that for every data point and every parameterized control law, we need to op-
timize the parameters of the control law to estimate the output as closely as possible
to the control inputs generated by conventional MPC. Note that this optimization pro-
cess can be performed in a computationally efficient way, by selecting a faster solver
or approximating the global optimum roughly. After the parameters are optimized for
every parameterized control law, the fitness of the parameterized control laws is calcu-
lated based on an error between the outputs (based on the data collected via the traffic
simulator) and the outputs computed via the parameterized control law. Based on this
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fitness, a percentage of the best-performing control laws are kept and new control laws
are created for the rest of the population using genetic operators.

The most used genetic operators in GE are crossover and mutation [4], [141]. Since
the parameterized control laws generated with GE have an underlying decision tree rep-
resentation, standard tree-based crossover and mutation from conventional genetic pro-
gramming are used to evolve the population [47].

3.3.4. CONTINUOUS GRAMMARS

In the grammar of [89], the parameters of the parameterized control laws appear in the
if- and else-statements of the grammar, resulting in a discontinuous parameterized con-
trol law. In the second part of the training step (i.e./ optimizing the parameters in the
control law for every data point), a simple grid search can then be used as only a limited
number of combinations of the parameters are possible, resulting in different outcomes
of the control law. The parameterized control law could thus be simply evaluated for
every combination. A downside of the discontinuous control laws is that it also results
in discontinuities in the optimization step of the parameterized MPC controller.

Therefore, in this work, we propose a grammar that determines parameterized con-
trol laws that are continuous functions of the traffic states and parameters. Defining the
grammar as a set of production rules that determine a continuous parameterized con-
trol law can have negative consequences for the training time of the algorithm as a grid
search will probably not result in the optimal performance of the constructed control
laws. For every data point, a more complex optimization problem has to be solved to
calculate the performance for that data point, which will most likely increase the train-
ing time. However, since the training process is offline and PMPC lowers the number
of optimization variables, the optimization problem that has to be solved for every data
point is expected to be computationally tractable. In addition, the optimization process
can be accelerated as mentioned in previous section. Furthermore, as all the parame-
terized control laws in a generation are independent of each other, the fitness of a whole
generation can be calculated in parallel. In the next section, we propose a grammar to
create the continuous control laws and two training frameworks to train them.

3.4. GE-BASED PARAMETERIZED CONTROL LAWS

In this section, the process of constructing a parameterized control law using GE is de-
scribed. In particular, a grammar for creating continuous parameterized control laws
and two training frameworks are proposed. Moreover, a projection-based saturation
method is proposed to guarantee the constraints on the control inputs (i.e., constraints
on the phase times of the intersection).

3.4.1. SCORE-BASED GREEN TIME ALLOCATION

As it was discussed earlier, several constraints should be enforced when applying the GE-
based controller for traffic signal control. We propose a score-based structure to allocate
the green length of each phase for control time step k, such that constraint (3.5) can be
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implicitly satisfied. We have:

gd , j (k) = yd , j∑N ph
d

j=1 yd , j

· gd ,tot(k), (3.10)

where yd , j is a score for the j -th phase of intersection d that describes the importance
of a certain phase with respect to the other phases, and gd ,tot is the total green time
length of intersection d at each cycle (i.e., the cycle time minus the total yellow time).
GE-based grammars are used to construct a, generally nonlinear, function to evaluate
the score yd , j , such that:

yd , j = fs

(
nph

d , j , qph
d , j ,αph,ent

d , j ,αph,arr
d , j ,θd ,1,θd ,2

)
+κy , (3.11)

where κy is a positive constant used to avoid a zero score, nph
d , j , qph

d , j ,αph,ent
d , j ,αph,arr

d , j are re-

spectively the total number of vehicles, queue lengths, and number of entering vehicles
and arriving vehicles on the lanes that correspond to the j -th phase of intersection d .
In addition, θd ,1 and θd ,2 are the parameters that are present in the parameterized con-
trol law for corresponding intersection d . Here a maximum number of two parameters
are used in the GE-based control law, but the number of parameters can be adjusted if
needed. Note that the state values in (3.11) are the sums of the states corresponding to
all the links for the same phase, instead of the average values used in [89]. This is because
the numbers of lanes of the different phases are not necessarily the same, and compar-
ing the mean value of states may underestimate the congestion degree of the phase with
more lanes.

The grammar shown in Figure 3.4 is designed to train the score function. In the gram-
mar, the starting tree indicates that the outcome of this grammar is a generally nonlinear
function represented by 〈expr〉, and the production rule of 〈expr〉 has recursive elements,
which enable a flexible structure of the outcome and a larger solution space. Thus the
outcome function can either be a complex expression or a simple function. The non-
terminal 〈var〉 includes all the available traffic states that are used to generate function
fs(·) in (3.11), while the non-terminal 〈theta〉 represents the parameters in the param-
eterized control law. The elements of the non-terminal 〈op〉 are the basic operators to
construct the function, where div(·) is a modified division function that is used to avoid
a zero division. We have

div(x) = 1

x +1
, (3.12)

where x is assumed to be non-negative. The entries of the non-terminal 〈func〉 are used
to introduce nonlinearity to the score function (3.11).

In contrast to the grammar in [89] that also exploits the score-based structure to de-
cide green time length, the grammar used in this chapter introduces more information,
i.e., more states of the links, and the grammar can choose the states that are useful to

construct the function. For example, any combination of the state variables nph
d , j , qph

d , j ,

α
ph,ent
d , j , αph,arr

d , j can be realized by the grammar due to the second recursive rule in Fig-

ure 3.4. Moreover, the parameters θd ,1 and θd ,2 are also present in the grammar, which
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expr

var

theta

op

func

expr

expr op expr expr op expr

func expr var theta expr

ph ph ph,ent ph,arr

div

Figure 3.4: The GE-based grammar used to obtain the score of each phase based on (3.11).

means that the number of parameters (maximum 2 here) and the position of the param-
eters in the final expression are all adjustable during the learning process. These changes
make the grammar in this chapter more flexible than the one in [89] and allow for more
diversity in the formulation of the score function, and thus a higher chance to generate a
well-performing parameterized control law. To obtain a good result, the fitness function
used to evaluate the parameterized control laws during training is also important and
should be designed properly. Based on different formulations of the fitness function,
two different training frameworks are proposed.

3.4.2. FRAMEWORK-1: MPC-MIMICKING
The scheme of Framework-1 is shown in Figure 3.5. The framework consists of two mod-
ules: the MPC module and the training module. The main idea is to train a parameter-
ized control law that generates the control inputs that are as close as possible to the MPC
controller. This is similar to the idea in [89]. To start the training process, conventional
MPC is first implemented on the target traffic network to generate an extensive data set.
Each data point of the data set consists of a traffic state vector x train

d (k) and a green time

vector g train
d (k) of a single intersection d at time step k, which are defined as:

x train
d (k) =

[
nph

d (k)
⊤

, q ph
d (k)

⊤
,αph,ent

d (k)
⊤

,αph,arr
d (k)

⊤]⊤
, (3.13)

g train
d (k) =

[
gd ,1(k), . . . , g

d ,N ph
d

(k)

]⊤
, (3.14)

where nph
d (k) =

[
nph

d ,1(k), . . . ,nph

d ,N ph
d

(k)

]⊤
, q ph

d (k) =
[

qph
d ,1(k), . . . , qph

d ,N ph
d

(k)

]⊤
, αph,ent

d (k) =[
α

ph,ent
d ,1 (k), . . . ,αph,ent

d ,N ph
d

(k)

]⊤
,αph,arr

d (k) =
[
α

ph,arr
d ,1 (k), . . . ,αph,arr

d ,N ph
d

(k)

]⊤
, and N ph

d is the num-

ber of phases of intersection d . A data point x train
d (k) is extracted from an intersection

d at control time step k, and g train
d (k) includes the corresponding green phase times

generated by the conventional MPC controller. The data points corresponding to all the
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Figure 3.5: The diagram of Framework-1

intersections in the traffic network during a simulation interval [0,ksts) form the training
data set that is expressed as:

S = {(
x train

1 (1), g train
1 (1)

)
, . . . ,

(
x train

1 (ks), g train
1 (ks)

)
, . . . ,(

x train
|J | (1), g train

|J | (1)
)

, . . . ,
(

x train
|J | (ks), g train

|J | (ks)
)}

,
(3.15)

where ts is the simulation sampling time and ks corresponds to the last control time step.
Note that the dimensions of the data point vectors x train

d (k) and g train
d (k) may vary per

intersection d if the intersections have different number of phases. This means different
types of intersections should be trained separately, i.e., different types of intersections
have different parameterized control laws.

Remark 4. Note that the data points in the training data set are assumed to be indepen-
dent from each other for the training process, i.e., traffic at other intersections is assumed
not to contribute to the phase times of the intersection considered in the data point. How-
ever, this is unrealistic in a real-world traffic network where the intersections have to coor-
dinate and communicate with their neighbours to obtain a globally optimal performance.
Training the control laws with only local data points may in general not result in a global
optimum for the entire traffic network. Therefore, it is necessary to include parameters in
the local control laws, such that the parameters can be optimized to capture global infor-
mation during the training process. This makes it possible to train the local controllers
independently while mimicking the behavior of the centralized MPC controller.

The training data set is then given to the training module (see Figure 3.5). First the
state vector x train

d (k) is fed into the GE-based controller block, where the score func-
tion is used to evaluate each phase based on the states and to determine the green time
length according to (3.10). The output of this block is the estimated green time vec-
tor g est

d (k) = [g est
d ,1(k), . . . , g est

d ,N ph
d

(k)]⊤. The fitness function is defined as the mean square

error between the true green time vector g train
d (k) and the estimated green time vector
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g est
d (k). As mentioned in Remark 4, the parameters in the control law need to be opti-

mized to minimize the fitness value for every single data point, where the fitness value is
given by:

1

Nt

∑
d∈J

ks−1∑
k=0

[
min
θd

∥∥g train
d (k)−g est

d (k)
∥∥2

2

]
, (3.16)

where θd = [θd ,1,θd ,2]⊤ that is included in g est
d (k) implicitly, and Nt is the total number

of data points. The mean of the fitness values of all the data points is the fitness value of
the parameterized control laws. Note that multi-start points are used to find the global
optimum due to the nonconvexity of the optimization problem.

The remaining training process is similar to genetic programming as described in
Section 3.3. The evaluation and selection will continue until the last generation of pa-
rameterized control laws is generated, and the best parameterized control law will be
selected. If there are multiple types of intersections (i.e., the intersections with differ-
ent number of phases), the training process is repeated for different intersections with
different training data sets.

The trained parameterized control laws will be used in the PMPC formulation (3.7),
where only parameters that appear in the obtained GE-based control laws need to be
optimized online by the PMPC controller. This training framework basically involves
a regression problem, where the parameterized control laws are trained to mimic the
behavior of a conventional MPC controller. Thus the training process is sensitive to the
data set, which should be extensive enough to cover all kinds of traffic scenarios, but also
compact enough to avoid a computationally expensive training.

Since the sum constraint (3.5) on the green time length is implicitly satisfied by the
score-based allocation function (3.10), only the lower bound and upper bound con-
straints on the phase time lengths will be considered by the online PMPC controller.
Note that during the training in Framework-1, no constraints on the control inputs are
enforced. As long as the final mean square errors between g train

d (k) and g est
d (k) ∀d ∈

J and ∀k ∈ {0,1, . . . ,ks −1} are small enough, it is considered that the bound constraints
on the estimated control inputs are satisfied. The constraints on control inputs dur-
ing implementation of the PMPC controller can be enforced when solving optimization
problem (3.7).

3.4.3. FRAMEWORK-2: PREDICTION-BASED LEARNING
Instead of mimicking the behavior of conventional MPC and training the control laws
of different intersections independently, in Framework-2 we propose to directly opti-
mize the global objective function for the entire traffic network during the training. The
scheme of Framework-2 is shown in Figure 3.6. In contrast to Framework-1, Framework-
2 requires a data set including the state information only. The data set contains data

points x̃ train(k) that is a column vector containing nph
d (k), q ph

d (k),αph,ent
d (k),αph,arr

d (k)
for all d ∈ J and the control time step k, i.e.:

x̃ train(k) =
[

nph
1 (k)

⊤
, q ph

1 (k)
⊤

,αph,ent
1 (k)

⊤
,αph,arr

1 (k)
⊤

, . . . ,

nph
|J | (k)

⊤
, q ph

|J | (k)
⊤

,αph,ent
|J | (k)

⊤
,αph,arr

|J | (k)
⊤

,k
]⊤

.
(3.17)
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Figure 3.6: The diagram of Framework-2, where up is the control input generated by the parameterized control
law, xp is the vector containing all the state information and control inputs that are used in the objective
function (3.18), and JF2 is the optimized objective value of (3.18).

The data points can be extracted from an open-loop simulation of the traffic network
model, for the simulation interval [0,ksts). Since each data point is used as the initial
state of the traffic network during the training, any controller can be used to generate the
data set. Note that the state information of all the intersections in the traffic network per
control time step is included in each data point, and the parameterized control laws for
all the intersections are trained simultaneously. The corresponding grammar should be
slightly adjusted here. For example, if there are two types of intersections in a network,
the starting tree needs to be changed to S ::= 〈expr〉;〈expr〉, which implies that the output
of the grammar includes two functions, i.e., two parameterized control laws are trained
at the same time.

Each data point x̃ train is given to the inner iteration module in Figure 3.6 as the initial
state, and an MPC procedure is conducted based on the GE-based parameterized control
law and the traffic model. The objective value is calculated over the prediction horizon
Np according to (3.7). Then this objective function is optimized for each data point, and
used as the fitness value. Fitness value for each parameterized control law is given by:

1

ks

ks−1∑
k=0

[
min
θ

(
wTTS JTTS(k)+wDD(g (k,θ))+wQQ(k)

)]
. (3.18)

In addition to the fact that the data points in Framework-2 contain more information,
the built-in state evolution process within the inner iteration module allows an initial
state to generate a sequence of successive states, which makes Framework-2 more data-
efficient and requiring a lower amount of training data points.

Remark 5. The MPC procedure in Framework-2 can be implemented in a rough way in-
stead of a detailed way, in order to accelerate the training process without influencing the
evaluation of the parameterized control laws. For example, the maximum number of it-
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erations in the optimization can be set to a smaller value, or the number of multi-start
points can be reduced for the nonconvex optimization problem.

Remark 6. Note that the number of parameters in the parameterized control law is ad-
justable for both Framework-1 and Framework-2. A larger number of parameters may
lead to a better fitness value, while resulting in a higher computational complexity. In
practice, it is recommended to choose a suitable number of parameters so that a balance
between the complexity of the grammar and the fitness value is reached.

During the MPC procedure of the training process, the parameterized control laws
for all intersections work together in a centralized way. However, optimizing all the pa-
rameters together also means a more complex optimization problem, which results in a
longer training time. So the training process can be accelerated as mentioned in Remark
5. In addition, since the GE-based parameterized control laws are implemented directly
on the traffic model, it is necessary to consider the lower bound and upper bound con-
straints on the control inputs explicitly. Therefore, in the next section, we propose a
projection-based method to guarantee the bound constraints on the phase times.

3.4.4. PROJECTION-BASED METHOD FOR CONSTRAINT SATISFACTION
Unlike conventional MPC, where bound constraints on the phase time can be addressed
directly during optimization, in PMPC the bound constraint on the phase time intro-
duces nonlinear constraint functions on the parameters θ. This increases the computa-
tional complexity of the resulting optimization problem. Therefore a projection-based
method is used together with the phase time allocation function (3.10). After the phase
times are calculated through (3.10), all the phase time values are projected into the fea-
sible region where the constraints are ensured. Thus the phase times generated by the
parameterized control law satisfy the bound constraints inherently, and the nonlinear
constraint function is eliminated in the optimization problem. Therefore, the parame-
terized control law with projection-based method can be considered as a modified pa-
rameterized control law, for which the constraints on control inputs are always satisfied
by construction.

To illustrate the projection-based method, we consider a three-phase intersection.
Assume the total green time length within one cycle is gtot, then the calculated phase
times g1, g2, g3 satisfy the sum constraint:

g1 + g2 + g3 = gtot. (3.19)

To further enforce the bound constraints on the phase time, the points (g1, g2, g3) are
projected to the feasible region as shown in Figure 3.7 where the three axes represent
g1, g2, g3 respectively, and the gray plane consists of all the points that satisfy the sum
constraint (3.19). The blue region represents the feasible region where lower and upper
bound constraints on g1, g2, g3 are satisfied. While all the calculated points (g1, g2, g3)
are in the gray plane, they are not necessarily within the blue region, such as the circle
points shown in Figure 3.7. Therefore, these points are projected to the blue region (see
the star points shown in Figure 3.7), where the points are projected to the corresponding
closest points within the feasible region. In addition, the Euclidean distance between
the original point and the projected point is also collected and used as a penalty on the
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1g 2g

3g

Figure 3.7: Illustration of the projection-based method for a three-phase intersection to guarantee the phase
time constraint: the gray plane is the area where the sum constraint is satisfied, while the blue region is where
both the bound constraints and the sum constraint are satisfied

constraint violation in the fitness function (3.18). With a given original point (g1, g2, g3),
both the projected point and the projection distance can be calculated in an analytical
way. So the computational complexity of the projection method is low. Note that this
method also applies for one intersection with more than three phases.

With the projection-based method, the explicit constraints on θ in the PMPC op-
timization problem (3.7) can therefore be removed. This accelerates the optimization
process and also the training process of the parameterized control law. In addition, the
projection-based method better than the explicit constraints in problem (3.7). This is
illustrated next.

Proposition 3.4.1. For the PMPC optimization problem (3.7), replacing the explicit con-
straints on parameters θ with the projection-based method results in equivalent or better
performance in terms of the objective function.

Proof. Let R1 be the set of parameters θ that yield a feasible solution of the PMPC prob-
lem (3.7) with explicit constraints. Considering the projection-based method for a given
form of the parameterized control law with parameters θ is in fact equivalent to con-
sidering a new modified control law with the same parameters θ for which the explicit
constraints are always satisfied by construction (due to the projection). As such, the set
R2 of parameters θ for which the modified projection-based control law will yield a fea-
sible solution of (3.7) will be a superset of R1. As a result, optimizing over R2 will result
in an optimal performance that is not worse than the optimal performance over R1. This
proves the proposition.

Note that this projection-based method can be applied for all PMPC control laws,
including the relative-queue-length parameterized control law, the control law gener-
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Figure 3.8: The layout and the link lengths of the urban traffic network

ated by Framework-1 or Framework-2, and also the training process of Framework-2. In
addition, the proposed schemes can be applied and adjusted easily for the traffic signal
control of any urban network with various layouts and phase settings. The schemes are
designed for centralized control of the whole network (i.e., coordinating the local traffic
signal controllers) to minimize the total time spent by the vehicles on the entire network.
Nonetheless, the schemes can also be used for the training of a single intersection or a
set of intersections of a sub-network, as well as for other performance criteria (e.g., min-
imization of emission or fuel/energy consumption). Furthermore, the idea behind the
proposed methods, using GE to learn a state-feedback function for parameterized MPC,
can be generalized to many other applications besides the field of traffic control.

3.5. CASE STUDY
In this section we compare the performance of the proposed GE-based PMPC controllers
to the conventional MPC and the handcrafted PMPC controllers. The controllers are
programmed using Matlab R2021a. The case study is carried out based on simulations in
the traffic simulator SUMO [121], and the interface TraCI [198] is used to communicate
between SUMO and Matlab. The measurements of the performance include the Total
Time Spent (TTS) by the vehicles in the network and the computational complexity of
the control methods. All the simulations run on a PC with an Intel Xeon Quad-Core E5-
1620 V3 CPU with a clock speed of 3.5 GHz.

3.5.1. SETUP

An urban traffic network is considered as shown in Figure 3.8 where the lengths of all
the links are given. This network consists of 6 intersections denoted as A-E, and 6 source
and sink nodes denoted by 1-6. There are two types of intersections: 2 (A and F) with
4 phases, and 4 (B,C,D,E) with 3 phases. The phases for different types of intersections
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are presented in Figures 3.9 and 3.10. The cycle times for all the intersections are the
same and set to 1 min. All 88 parameters of the traffic model, including the length and
free-flow speed of each link and the saturation flow rate of each lane for all links are
identified based on data collected from SUMO. The identified parameter values as well
as the turning ratio values can be found in Table 3.1.

1 2 3 4

Figure 3.9: The phases of 4-phase intersections

1 2 3

Figure 3.10: The phases of 3-phase intersections

The traffic flow demand profiles are generated with SUMO’s built-in route generator,
which generates routes based on flow profiles and turning rates. Three different demand
profiles (see Figure 3.11) are designed and applied in the traffic network to evaluate the
performance of the controllers under various traffic conditions. All the three demand
scenarios last for one hour. Before applying the demand profiles, the empty traffic net-
work is initialized by running the network with a constant traffic flow of 1000 [veh/h]
from all the source nodes for 30 min, in order to create a situation with heavy traffic with
long queues on the lanes. The initial queue lengths of all the lanes are present in Ta-
ble 3.2. The prediction horizon of all MPC controllers is 8 min, such that a vehicle that
enters the network can leave the network within the prediction horizon considering the
longest path and the red signal light. The control time step is 1 min. The cost func-
tions for conventional MPC (3.6) and for PMPC (3.7) are identical, and the weights are
wTTS = 1, wD = 1, wQ = 2. The cost terms are defined as:

JTTS(k) = ∑
(u,d)∈L

Np∑
j=1

cd ·nu,d (k + j ), (3.20)

D(g(k)) =
∥∥∥[

(g(k)−g(k −1))⊤, (g(k +1)−g(k))⊤, . . . ,

(g(k +np)−g(k +np −1))⊤
]⊤∥∥∥2

2
,

(3.21)
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Figure 3.11: Demand profiles of the three scenarios used in the case study
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Q(k) =
np∑
j=1

∑
d∈J

max
(u,d ,o)∈Ld

qu,d ,o(k + j ), (3.22)

where Ld is the set of lanes that arrive at intersection d . For the PMPC controllers using
projection-based method, an extra penalty term is added on the constraint violations of
the control inputs:

V (g(k)) = d(g(k))+d(g(k +1))+ . . .+d(g(k +np −1)), (3.23)

where d(g(k)) =∑
d∈J

∥∥gd (k)−gpro
d (k)

∥∥
2

with gpro
d (k) the projected phase times of gd (k).

The weight of the penalty term is wV = 1.

3.5.2. CONTROLLERS
We compare the performance of five different controllers: fixed-time controller, conven-
tional MPC controller, relative-queue-length (RQL) PMPC controller, GE-based Frame-
work-1 (GE-F1) PMPC controller, and GE-based Framework-2 (GE-F2) PMPC controller.
In addition, the RQL-PMPC controller is further divided into two methods: RQL-PMPC
with explicit constraints in the optimization and RQL-PMPC with the projection-based
method. With a cycle time of 1 min, the yellow time length after each green time phase
is selected as 2 s. Therefore, the total green time within one cycle for the 3-phase inter-
sections is 54 s, and the lower bound and upper bound on the phase times are 6 s and 42
s, respectively. For the 4-phase intersections, the total green time within one cycle is 52
s, and the lower bound and upper bound on the phase times are 6 s and 34 s.

Since the mathematical model of urban traffic networks are highly nonlinear and
non-smooth, we found that the numerical solver fmincon function from Matlab op-
timization toolbox is more suitable to solve this specific problem. By comparing SQP
and interior-point method, we found that SQP performs better in terms of convergence
performance1. On the other hand, the main aim of this study is to show the relative
improvement of the proposed methods in terms of computational efficiency, so we se-
lect single shooting to implement the nonlinear optimization for the sake of simplicity.
Therefore, fmincon with SQP is used to solve the optimization problems for all the MPC
controllers. Due to the non-convex optimization problem, multi-start optimization is
used to approximate the global optimum. For this case study, our numerical experi-
ments indicated that considering 10 starting points is enough to approximate the global
optimum. So for all the optimization-based controllers, the optimization problem is
solved 10 times with random starting points, and the best result is selected as the final
solution. For the parameters of the convergence criteria of the solver, we have chosen
to tune the tolerance of the objective function, the search step, and the constraints, re-
spectively. The value 10−3 is chosen for all three parameters based on our experimental
results such that a balance between computational efficiency and accuracy is reached.

FIXED-TIME CONTROLLER

For this controller, the total green time is distributed to each phase equally, and the phase
times remain constant during the simulation interval. Therefore the phase times for the
4-phase and 3-phase intersections are 13 s and 18 s, respectively.

1We also conducted experiments by using CasADi. Results showed that it provided comparable performance
and CPU time to that of fmincon for this specific problem.
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CONVENTIONAL MPC CONTROLLER

Since the sum of the phase times is fixed, the linear constraint (3.5) can be used to elim-
inate and substitute one of the phase times into the objective function. By using this
strategy, the number of decision variables is reduced. Then there are 3 variables for each
4-phase intersection, and 2 variables for each 3-phase intersection. Since np = 8, the
number of parameters to be optimized every step of conventional MPC is reduced from
160 to 112. In addition, the lower bound and upper bound constraint on the phase times
are included explicitly in the optimization.

RQL-PMPC CONTROLLER

Using the parameterized control law (3.9), the parameters for each intersection d ∈ J are
θd ,1 and θd ,2. Thus the total number of parameters to be optimized every step of RQL-
PMPC is 12, which is reduced significantly compared with the conventional MPC. To
evaluate the effectiveness of the projection-based method, a comparison between RQL-
PMPC with an explicit constraint (RQL-PMPC-EC) and RQL-PMPC with the projection-
based method (RQL-PMPC-PC) is considered. For the RQL-PMPC-EC controller, the
lower and upper bound constraints on the generated phase times are included in the op-
timization, while no constraints appear in the optimization problem for the RQL-PMPC-
PC controller.

GE-F1 PMPC CONTROLLER

Since there are two types of intersections in the traffic network, two parameterized con-
trol laws are trained separately using Framework-1. Conventional MPC is implemented
using the S-model to generate the training data set. Six scenarios covering various traffic
situations are considered, each lasting for 1 h. Thus there are in total 360 control time
steps for all the intersections, resulting in 720 data points for the 4-phase intersections
and 1440 data points for the 3-phase intersections.

For the training of grammar-based parameterized control law, the toolbox PonyGE2
[47], which is implemented based on Python and is user-friendly due to its scalability
and comprehensive instruction document, is used. The parameters used for the genetic
programming are: maximum number of generations = 50, and population size = 300.
Moreover subtree mutation and crossover are used as the genetic operators. Another
important parameter is the maximum depth limit for a derivation tree, which decides
how complex the generated grammar will be. In this case, the value is set 10 to avoid
a complex expression of the score function. These parameters are tuned on the basis
of the default values, and are adjusted for this case study according to the experiments
such that satisfying results are obtained while the training time is acceptable. For more
information about the parameters of GE training, the reader is referred to [47].

As mentioned before, the parameters of the parameterized control law are optimized
for each data point to find the optimal fitness value. The gradient-based algorithm L-
BFGS is utilized to solve the optimization problem for every single data point. With κy =
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1 in (3.11), the final obtained score function for 3-phase intersections is:

y3-ph
d , j = θd ,1

(
nph

d , j −α
ph,arr
d , j

)
·

nph
d , j

2αph,ent
d , j +1

·
(
α

ph,arr
d , j +θd ,2α

ph,arr
d , j

)+
θd ,2

(
α

ph,arr
d , j

)2 +αph,arr
d , j −θd ,2

α
ph,arr
d , j

α
ph,arr
d , j +1

+1.

(3.24)

The training fitness value of this control law is 1.46 · 10−8, and the fitness value for the
test data set is 4.78 ·10−2, which are low enough fitness values for the 3-phase intersec-
tions. As mentioned in Remark 6, the maximum number of parameters is adjustable. For
training of the 4-phase intersections, an extra parameter θd ,3 is added in order to further
reduce the fitness value. The obtained GE-based scored function is:

y4-ph
d , j =θd ,3nph

d , j +θd ,2α
ph,ent
d , j −θ2

d ,3

3

√
nph

d , j

α
ph,arr
d , j +nph

d , j − 3

√
α

ph,ent
d , j +1

−θd ,1

(
nph

d , j −qph
d , j

)
+1.

(3.25)
The training fitness value of this control law is 1.03 ·10−1, and the testing fitness value is
3.69 ·10−2. The control law is well-trained for the 4-phase intersections since the fitness
values are small enough. Note that in score function (3.24) not all the state information

is included in the function, e.g., queue state qph
d , j is not selected by the grammar. In score

function (3.25), all the parameters are used by the grammar. Therefore, a total number
of 16 parameters are present in the parameterized control law. The projection-based
method is used together with this control law.

GE-F2 PMPC CONTROLLER

The control laws for the two types of intersections are trained simultaneously within
Framework-2. Thus only one data set is needed. Since, as mentioned before Framework-
2 is more data-efficient than Framework-1, a limited number of initial points are enough
to train a well-performing parameterized control law. A total number of 45 data points
are included in the data set, which is extensive enough to cover most traffic situations.
The training setting is similar to that of the GE-F1 PMPC, except that the population
size is reduced to 50 to reduce the training time. Similar to the RQL-PMPC controller, at
most two parameters are allowed in this grammar for both parameterized control laws.
According to the experiments, Powell’s method is most efficient among all the available
solvers within the toolbox and thus is used to optimize the parameters in the control law
for each data point. The projection-based method is employed to remove the constraints
on the parameters during both training and implementation of the parameterized con-
trol laws.

The obtained score function for the 3-phase intersections is:

y3-ph
d , j =

3
√(

nph
d , j qph

d , j

)2 +αph,arr
d , j −θd ,1α

ph,arr
d , j α

ph,ent
d , j +θd ,2nph

d , j +1, (3.26)
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and the obtained score function for the 4-phase intersections is:

y4-ph
d , j =

3

√√√√√qph
d , j +

θd ,2α
ph,ent
d , j

α
ph,ent
d , j +1

+1. (3.27)

It is worth mentioning that the score function (3.26) is simpler than (3.24), and (3.26) is

even more compact with only two states qph
d , j and α

ph,ent
d , j and one parameter θd ,2. The

performance of these controllers is compared and the results are analyzed in the next
section.

3.5.3. RESULTS AND DISCUSSION

In Table 3.3 the system performance and computational complexity of the different con-
trollers are shown for the different demand scenarios. The performance measurements
TTSrel and CTrel are the relative change of the TTS and of the mean computation time
(CT) with respect to the conventional MPC controller, where the mean computation time
is considered for all the control time steps over the simulation interval. First, for this case
study the experiments indicate that compared to the conventional MPC controller all
the PMPC controllers reduce the computational complexity of the online optimization
with more than 80% for all scenarios, while the system performance decreases only up
to about 1% except for the GE-F1 PMPC controller. Second, all the controllers provide a
better TTS than the fixed-time case, except for GE-F1 PMPC in scenario 1, which yields a
similar performance as the fixed-time controller. The reason why GE-F1 PMPC performs
relatively worse is that the training of Framework-1 requires a high-quality training data
set. A proper training data set is necessary to avoid overfitting and to guarantee the
performance of the generated control laws for various scenarios. However, it is usually
difficult to guarantee the quality of the training data in practice. In contrast, the GE-F2
PMPC controller performs better than the GE-F1 PMPC controller for all three scenarios,
in terms of both system performance and computation time, with a much smaller train-
ing data set. Compared with conventional MPC, GE-F2 PMPC can provide a comparable
performance with significantly less CPU time for all the considered scenarios. In view
of the advantages of Framework-2 mentioned before, it is recommended to use GE-F2
PMPC for further applications, as long as enough training is allowed.

The RQL-PMPC controller using the projection-based method outperforms the one
using the explicit constraint for all the scenarios in terms of both performance measures,
which confirms the effectiveness of the proposed method. The RQL-PMPC controller
performs slightly better than GE-F2 PMPC, because the former is constructed based on
expert knowledge and has been fine tuned through experiments, whereas GE-F2 PMPC
is created automatically with limited expert knowledge of the system. Therefore, the dif-
ferences in the performance are acceptable. Note that the conventional MPC controller
performs slightly worse than the PMPC controllers for scenario 3. This is most probably
due to the mismatch between the prediction model and the simulator, where the con-
ventional MPC controller seems to be more sensitive to model uncertainties. Another
possible reason is that for conventional MPC it might be more difficult to obtain a good
approximation of a globally optimal solution within the same computation time bud-
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get as PMPC for every single optimization process, as the large number of parameters of
conventional MPC makes the corresponding optimization problem more complex.

3.6. CONCLUSIONS
In this chapter efficient parameterized MPC (PMPC) approaches have been introduced
for urban traffic signal control. In addition to the handcrafted relative-queue-length
PMPC, grammatical-evolution (GE)-based PMPC has been proposed to generate the pa-
rameterized control laws automatically with limited expert knowledge. Therefore, it is
possible to find well-performing parameterized control laws, which can easily be ad-
justed to meet specific requirements by changing the grammar structure. Two train-
ing frameworks for GE-based PMPC have been proposed and compared. Moreover, a
projection-based method for removing the nonlinear constraints on the parameters of
PMPC controllers has been introduced. The SUMO-based simulation results show that
PMPC controllers reduce the online computation time significantly, and achieve a per-
formance that is comparable with that of the conventional MPC controller. It is also
demonstrated that the projection-based method further improves the computational ef-
ficiency of PMPC controllers. In our case study, the GE-based PMPC controllers perform
as well as the handcrafted PMPC controller, which outperforms the GE-based PMPC
controller of [89]. Framework-2 proves to be better than Framework-1 by generating a
more concise control law, which improves the computational efficiency and the system
performance.

In the future, the proposed GE-based PMPC approach together with the projection-
based method will also be adapted to more complex traffic networks that contain more
intersection types and also considers more cost terms (e.g., emissions). In addition, dis-
tributed GE-based PMPC controller will be developed to deal with larger-scale networks.
Learning-based approaches such as reinforcement learning can also be incorporated to
deal with model uncertainties and external disturbances. Moreover, an in depth com-
parison study of different solution methods can be carried out.
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4
A NOVEL FRAMEWORK COMBINING

MPC AND DEEP REINFORCEMENT

LEARNING WITH APPLICATION TO

FREEWAY TRAFFIC CONTROL

Model predictive control (MPC) and deep reinforcement learning (DRL) have been devel-
oped extensively as two independent techniques for traffic management. Although the fea-
tures of MPC and DRL complement each other very well, few of the current studies consider
combining these two methods for application in the field of freeway traffic control. This
chapter proposes a novel framework for integrating MPC and DRL methods for freeway
traffic control that is different from existing MPC-(D)RL methods. Specifically, the pro-
posed framework adopts a hierarchical structure, where a high-level efficient MPC com-
ponent works at a low frequency to provide a baseline control input, while the DRL compo-
nent works at a high frequency to modify online the control input generated by MPC. The
control framework, therefore, needs only limited online computational resources and is
able to handle uncertainties and external disturbances after proper learning with enough
training data. The proposed framework is implemented on a benchmark freeway network
in order to coordinate ramp metering and variable speed limits, and the performance is
compared with standard MPC and DRL approaches. The simulation results show that
the proposed framework outperforms standalone MPC and DRL methods in terms of to-
tal time spent (TTS) and constraint satisfaction, despite model uncertainties and external
disturbances.

Parts of this chapter have been published in [161] and [178]

67
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4.1. INTRODUCTION

The ever-growing number of vehicles worldwide is challenging current traffic systems.
Especially during morning or evening rush hours, congestion easily occurs due to insuf-
ficient road capacity. Traffic jams do not only increase commute time for individuals, but
also create negative impacts for society, including environmental, economic and health
issues due to the large amount of emissions and the loss of productive time. Construct-
ing new lanes and expanding the freeway network can alleviate these issues. However,
this is not always feasible due to space, financial, or environmental restrictions. Effi-
cient management of traffic on the existing infrastructure is a promising alternative to
improve traffic efficiency and safety. Among freeway control measures, ramp meter-
ing (RM) [148] and variable speed limit (VSL) [107] are the most widely used strategies,
which have been shown to substantially decrease the travel delay in various real-world
implementations [79], [81]. These two control measures can be either used indepen-
dently or coordinated together within a control method, such as model predictive con-
trol (MPC) [24] or deep reinforcement learning (DRL) [8]. MPC and DRL are two powerful
control techniques and have been studied extensively in the literature. These two meth-
ods have been applied to freeway traffic control successfully, but they also come along
with their shortcomings.

MPC is a model-based and optimization-based control approach, and has become
mature in terms of stability and feasibility theory since 1990s [128]. It is widely applied
in industry and many other fields, due to its robustness and ability to explicitly deal
with input and state constraints, thus satisfying safety requirements, which is a crucial
concern in many real-world applications. However, an accurate mathematical model
is usually required for MPC to guarantee the closed-loop performance, while acquiring
such a model is commonly not possible in practice. Particularly, large-scale and complex
systems, such as freeway networks, lead to highly nonlinear and non-convex optimiza-
tion problems with multiple variables, which are difficult to solve in real time [73]. Even
though some efficient MPC approaches have been developed to improve the computa-
tional efficiency of MPC [90], [207], the optimality and satisfaction of state constraints
cannot always be guaranteed in case of model mismatches and external disturbances.
Robust and stochastic MPC methods [129], including tube MPC [106] and scenario-
based MPC [22], can address uncertainties to some extent. However, these methods
require assumptions or descriptions of the uncertainties that are often difficult to val-
idate.

DRL is a recent technique that has shown its success and potential in the field of con-
trol, including intelligent traffic control. Unlike conventional reinforcement learning al-
gorithms, artificial neural networks are deployed in DRL to deal with large-dimension
state and action spaces. This addresses the so-called issue of the curse of dimensionality
[134]. Nevertheless, DRL still suffers from several challenges in real-world applications
[36]. For example, safety constraints are of significant importance in operation of real-
world systems, while satisfaction of constraints cannot be guaranteed during the learn-
ing phase and in implementation of DRL. In addition, the sample efficiency issue and
delayed reward for large-scale systems (e.g., for traffic networks) remain considerable
challenges for DRL that are still active research topics [36].
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Both MPC and DRL have their advantages and disadvantages, and they complement
each other well (see Table 4.1). On the one hand, MPC suffers from degraded perfor-
mance due to model uncertainties and external disturbances. Moreover, large-scale sys-
tems introduce multiple variables and long prediction horizons, which make MPC com-
putationally intractable in real time. On the other hand, DRL can naturally cope with
uncertainties, and tackle infinite prediction horizons with negligible online computa-
tional resources. However, it is usually time-consuming to train a well-performing DRL
agent from scratch, especially for complex systems. Although there are clear potential
benefits of combining MPC and DRL, very limited work has been done to explore the
synergy between these two methods. In addition, very little work has been done to apply
combined MPC-(D)RL algorithms in the field of traffic management. One of the repre-
sentative studies is [161], which applied a model-reference framework that utilizes MPC
and deep Q-network algorithm to urban traffic signal control.

This chapter contributes to the state-of-the-art by proposing a novel framework for
combining MPC and DRL, and by applying it to traffic management of freeway networks.
To be more specific:

1. Different from the previous work [161], the newly proposed MPC-DRL framework
adopts a hierarchical structure in order to incorporate the advantages of both MPC
and DRL approaches. The combined framework can learn from the environment,
while providing basic control performance. By taking advantage of the dynamic
model knowledge and environment information, the framework can deal with un-
certainties and improve sample efficiency of the learning process. In particular, an
efficient MPC controller operates at the upper control level with a low control fre-
quency to provide initial optimality while explicitly incorporating the constraints.
Meanwhile, a DRL agent works at the lower control level with a high control fre-
quency in order to modify the MPC inputs, and to compensate for model mis-
matches that may affect MPC. Therefore, the combined MPC-DRL framework is
computationally feasible even for large freeway networks, due to the very limited
online computation burden required by the high-level MPC.

2. The resulting MPC-DRL framework is implemented on a benchmark freeway net-
work, and the results validate the effectiveness of the proposed method. In partic-
ular, the objective function of MPC and the reward function of DRL are designed
properly, such that the two components are complementary with each other. In
addition to MPC, DRL addresses the state and input constraints by introducing
penalties on the constraint violation in the reward function. Simulation results
show that the combined MPC-DRL outperforms other controllers in terms of both
control performance and constraint satisfaction.

The rest of this chapter is organized as follows: Section 4.2 summarizes related work
about MPC and DRL and their application in freeway traffic management, as well as the
latest MPC-DRL algorithms and their applications. Section 4.3 presents and provides
details on the novel MPC-DRL framework that is proposed in this chapter. Section 4.4
gives a case study that implements MPC, DRL, and the proposed MPC-DRL framework
on the same benchmark network. Finally, Section 2.5 concludes this chapter and pro-
poses topics for future work.
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Table 4.1: Comparison of MPC and DRL characteristics

MPC DRL
Need a model Yes No
Developed stability theory Yes No
Developed feasibility theory Yes No
Handling constraints explicitly Yes No
Adaptive to uncertainties No Yes
Online computational time High Low
Offline computation time Low High

4.2. RELATED WORK
A large number of studies about traffic management of freeway networks exist in the lit-
erature, and a recent comprehensive survey is given in [173]. Among all the traffic con-
trol approaches, MPC and DRL have drawn significant attention due to their appealing
features. MPC and DRL have been developed and applied for both freeway and urban
traffic networks. As the case study in Section 4.4 involves a freeway traffic network, we
will mainly focus on MPC and DRL for freeway traffic control in this section1. After that,
recent results about combined MPC-DRL methods are presented.

4.2.1. MPC FOR FREEWAY TRAFFIC CONTROL

The idea of utilizing rolling horizon optimization in traffic signal control was first intro-
duced by Gartner [56], after which the suggestion of adopting MPC in traffic signal con-
trol was formally made by De Schutter and De Moor in [31]. Since then extensive studies
about MPC have been carried out in the field of traffic control, including both urban and
freeway traffic networks. Particularly, an RM strategy and a VSL strategy was adopted in
MPC for freeway traffic control in, respectively, [11] and [74]. These two control methods
were first coordinated within MPC in the work of Hegyi et al. [73].

As an online optimization-based control method, MPC struggles with computational
complexity, especially when the scale of the freeway network is large. Therefore, a large
amount of efforts have been devoted to alleviate this issue. One major direction is to
reduce the complexity of the dynamic model of the freeway network, and many efficient
mathematical models have been developed to describe traffic flow dynamics. METANET
is a second-order macroscopic traffic flow model that has been widely used for freeway
traffic control [101], [103], since it can reproduce necessary freeway traffic phenomena
such as capacity drop and blocking, with relatively simple mathematical formulations.
Thus, using METANET, a trade-off is achieved between accuracy and complexity for the
implementation of MPC in freeway traffic control. Another popular choice is the cell
transmission model (CTM), which is a first-order model and has a more simple formu-
lation than METANET [28], [215]. CTM is preferred in some cases since it can result in
simpler optimization problems for MPC. The simplified variation of CTM, called asym-
metric cell transmission model (ACTM), can even transform the optimization problem
into a linear one, which can be solved efficiently for larger freeway networks and for

1It is, however, important to note that the novel MPC-DRL framework proposed in this chapter can be applied
to both freeway and urban traffic networks.
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longer prediction horizons [58]. However, this efficient model cannot reproduce some
necessary freeway phenomena, such as weaving and capacity drop, which limits its ap-
plication in cases where these phenomena are observed [147].

The other direction to improve the computational efficiency of MPC is to simplify the
problem by linearizing it, or by adopting efficient optimization techniques. For example,
Zegeye et al. [207] employed the parameterized MPC technique to reduce the number
of the decision variables of the optimization problem. By introducing state-feedback
control laws, the control inputs can be described as a function of the states and sev-
eral function parameters. Thus, only the parameters need to be optimized to obtain the
control inputs. A similar strategy was adopted by Van de Weg et al. [196], in which the
parameterized control laws were extended to the coordinated VSL and ALINEA ramp
metering approaches [146], resulting in a substantially reduced number of optimization
variables that is independent of the number of actuators and the size of the prediction
horizon. Jeschke et al. further extended this approach by using a grammatical evolution
method to generate the state-feedback laws automatically, and applied it to urban traf-
fic control [90]. In [142], Oleari et al. used classification and regression trees to train a
state-feedback control law, in order to reproduce the behavior of the centralized MPC.
Muralidharan and Horowitz [137] analyzed the nonlinearities of the nonlinear and non-
convex optimization problem, and made corresponding heuristic restrictions and as-
sumptions to transform the original problem into a set of equivalent linear optimization
problems. Similarly, Han et al. [69] extended the original Lighthill-Whitham-Richards
(LWR) model [110] for MPC-based VSL control, in which the average speeds of the traf-
fic flows were taken as the decision variables. This allows to formulate the original state
constraints as control input constraints, and to formulate the optimization problem as
a linear programming problem. Ferrara et al. [50] incorporated an event-trigger mech-
anism in the MPC framework to reduce the frequency of solving the optimization prob-
lems. Besides, the finite-horizon optimization problem within the MPC scheme was for-
mulated as a mixed-integer linear programming problem that can be solved efficiently,
thanks to the revised linear model obtained from CTM.

In order to deal with the control problem of large-scale freeway networks, sophis-
ticated control schemes such as distributed MPC (DMPC) are considered. In a DMPC
framework, a centralized MPC problem is decomposed into several small sub-problems
that can be solved efficiently by corresponding local MPC controllers. Meanwhile, the
local MPC controllers communicate and coordinate with their neighbors to achieve a
global optimal performance. There are a lot of ways to implement DMPC in freeway
traffic control that are demonstrated to be effective (see, e.g., [25], [27], [49], [53], [57],
[96], [160]).

Despite the success that efficient MPC algorithms have achieved, MPC still suffers
from issues that are caused by uncertainties, since it relies heavily on the prediction
model. Mismatches between the (macroscopic) models and the real-world traffic sys-
tems, as well as presence of external disturbances are inevitable, which deteriorate the
closed-loop performance of MPC. To address these issues, a few studies have considered
robust MPC for freeway traffic control. Liu et al. [118] utilized a scenario-based approach
[22] to describe the uncertainties as a set of scenarios with their corresponding proba-
bilities, including global uncertainties (e.g., global weather conditions) and local uncer-
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tainties (e.g., local weather conditions, local traffic compositions, and local demands
at the origins). Coordinated with DMPC, the resulting scenario-based DMPC improves
the control performance for a large-scale freeway network considering some uncertain-
ties. In [48], Ferrara et al. proposed a hierarchical control scheme for freeway networks
with demand disturbances. Nevertheless, current robust MPC algorithms for freeway
traffic control require assumptions and simplifications about the uncertainties and dis-
turbances that are usually hard to satisfy in practice. Moreover, the extra computational
burden introduced by robust control methods is another issue. Therefore, developing
efficient and robust MPC algorithms for traffic management remains a challenging and
urgent task.

4.2.2. DRL FOR FREEWAY TRAFFIC CONTROL

Reinforcement learning (RL) [180] is a machine learning technique that usually follows a
two-stage procedure. In the first stage, the RL agent learns how to take actions by inter-
acting with the environment/system (or a model of it), in order to maximize the notion
of cumulative reward. After that, the trained RL agent is then implemented for control.
RL is attracting more and more interest from the system and control community, since it
can naturally deal with uncertainties and automatically learn a long-term optimal pol-
icy through interacting with the environment. In particular, the emergence of DRL al-
gorithms significantly broadens the applications of RL and unlocks great potentials for
various fields. DRL introduces neural networks to RL and thus can handle more com-
plex state and action spaces [109]. DRL has also been studied for intelligent traffic signal
control, and a recent survey is offered in [72]. However, current work mainly focuses on
urban traffic signal control, while relevant research about DRL for freeway traffic control
is still inadequate. Before the introduction of DRL, standard RL algorithms have already
been studied and implemented for freeway traffic control. We believe that standard RL
methods for freeway traffic control are also important, and associated studies are there-
fore briefly presented.

Table 4.2 summarizes several current representative studies of RL-based freeway traf-
fic control. First of all, the common ground of these studies is that the freeway network
can be described as a Markov Decision Process (MDP), on the basis of which RL algo-
rithms can be implemented immediately with a properly defined environment. There-
fore in Table 4.2, the definitions of the main RL components are given, including the state
and action space, and the design of the reward function. By analyzing these studies, we
can get some conclusions that are helpful to understand how RL algorithms have been
implemented for freeway traffic control and how they can be further improved.

From Table 4.2, the common choices of state space are basically the typical states
of freeway network models (i.e., density, speed, queue length, and demands), while the
choice for the action space corresponds to the adopted control strategy. Meanwhile,
the definition of the reward function depends on the control purpose, which is mainly
about minimizing the total time spent (TTS) by the vehicles or regulating the densities
to maximize the outflow. As for the simulation environment, both macroscopic models
and microscopic simulators have been considered to test the proposed algorithms. Note
that the best improvement of TTS with regard to the no-control case is presented as sim-
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ulation result in the table for those papers that considered the reduction of TTS as their
control objective.

Table 4.2 shows that Q-learning [194] as a notable standard RL algorithm has been
chosen by most researchers due to its success in many applications. However, Q-learning
relies on a lookup table to store Q-values of the state-action pairs, where these Q-values
refer to the rewards expected for an action taken in a given state. Therefore, Q-learning
can only deal with finite-dimensional state and action spaces (i.e., discrete state and ac-
tion spaces), and the computational complexity explodes as the dimensions of the state
and action spaces increase. That is also the reason why most studies consider a small
freeway network, because one single RL agent can only operate a very limited number of
VSL or RM controllers, which also makes the coordination of VSL and RM challenging.
In order to deal with continuous state spaces, function approximation methods are used
to estimate the Q-values, such as kNN-TD learning algorithm [120] that is based on the
k-nearest neighbor clustering technique [152]. In addition, multi-agent RL (MARL) tech-
niques [20] are needed when dealing with large-scale freeway networks, which makes the
algorithms more complicated and difficult to implement. This drawback is particularly
highlighted when encountering large action spaces or the coordination of VSL and RM.

The emergence of DRL techniques fully releases the potentials of RL algorithms,
since the embedded deep neural networks can deal with both large state space and large
action space, and they allow to use VSL and RM simultaneously in a centralized way for
large-scale networks. Furthermore, the associated target network and experience replay
techniques substantially improve the learning process in terms of stability and conver-
gence [135]. However, the limitations of DRL mentioned in the previous section still ap-
ply. Most DRL algorithms can be divided into two categories: value-based methods and
policy-based methods. Value-based methods inherit the idea of Q-learning to approxi-
mate the value functions for state-action pairs. One of the most well-known value-based
methods is Deep Q-Network (DQN) [134], where the main limitation of DQN is that it can
only deal with discrete action spaces. Policy-based methods directly search for an op-
timal policy that maximizes the expected accumulative long-term reward. Actor-critic
algorithms [133] exploit the strengths of both value-based and policy-based methods,
where an actor determines how the agent behaves and a critic evaluates the chosen ac-
tion.

Despite the great progress in DRL techniques, only a very limited number of studies
have applied DRL for freeway traffic control. In [62], DQN was implemented on a small
freeway network with one single VSL controller that generates discrete actions. Deng et
al. considered an actor-critic method, called Proximal Policy Optimization [171], and
used it for controlling a simple freeway network with multiple RM controllers, where
the actions are continuous [32]. A multi-agent DRL framework was adopted in [12] for
the ramp metering control of a larger freeway network with 29 on-ramps and a contin-
uous action space. Their simulation results showed that the control strategy can reduce
the travel time with 20%. Wu et al. [201] considered distinct speed limits for different
lanes, and they used an actor-critic algorithm called Deep Deterministic Policy Gradient
(DDPG) [111]. The robustness of the DRL-based control agent was tested on environ-
ments with different driving behavior attributes. Furthermore, Greguric et al. proposed
a novel VSL strategy based on a spatially adjustable speed limit zone, in which the posi-
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tion and length of the speed limit zone were adjustable [61]. This strategy was also based
on DDPG, and realized by considering the involvement of Connected-Autonomous Ve-
hicles. The same DRL method was also implemented with standard VSL and the perfor-
mance of the two control methods were compared. The simulation results showed that
the proposed strategy outperforms other controllers in terms of overall freeway through-
put. Han et al. [70] adopted an off-line and on-line hybrid training framework for an
actor-critic algorithm called Batch-constrained deep Q-learning [55], which is similar to
DDPG. The off-line training process enables more freedom for action exploration, with-
out damaging the real-world system. Meanwhile, Han et al. [70] considered a two-level
DRL structure to coordinate multiple RM controllers.

To the best of our knowledge, [191] is the only paper that coordinates VSL and RM
with a DRL algorithm, where both DDPG and TD3 [54] algorithms were implemented
and their performance was compared. It was also shown that a centralized DRL agent
can handle a large freeway network with multiple VSL-RM hybrid controllers.

However, none of the above studies considers the state constraints. For example, the
queue length of the on-ramps should be constrained, otherwise it interferes with the
connected urban road network and safety issues may occur. Moreover, although a lot
of research has studied how to improve the practicability of learning-based methods,
such as by training with real-world data or by pre-training (i.e., before implementation),
there is still a huge gap between real-world deployment and simulator-based applica-
tions. DRL methods have the potential to deal with uncertain environments, but they
also suffer from the requirement of a prolonged training process (i.e., low sample effi-
ciency), as well as the lack of performance and safety guarantees. How to maintain the
positive feature of DRL, while circumventing the negative sides remains an interesting
and meaningful research topic.

4.2.3. COMBINED MPC AND DRL METHODS

Considering the features of both MPC and DRL, the idea of merging these two meth-
ods to exploit their complementary advantages sounds promising. Although there are a
few studies that have investigated this topic, no one has implemented relevant methods
in the field of traffic management, especially for freeway traffic control. Therefore, the
latest work relevant to combined MPC-(D)RL methods and their applications in other
fields are presented and analyzed in this subsection.

Learning-based MPC is a relevant and broad research topic. Hewing et al. [78] gave a
comprehensive review of learning-based MPC methods, in which the authors divide the
methods into three categories: learning the system dynamics, learning the controller
design, and MPC for safe learning. Moreover, a survey that places more emphasis on RL-
based optimal control can be found in [159]. Several studies that analyze the similarities
and differences of MPC and RL include [7], [42], [59].
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The paper [138] is the earliest one that utilizes a value function to approximate the
infinite-horizon objective function of MPC, where an MDP is used as the prediction
model. Moreover, the prediction horizon is reduced to look only one step ahead, while
accounting for the long-term value of the performance criteria. The value function can
be learned gradually on-line using RL techniques, and meanwhile MPC operates with
a simplified optimization problem to provide data samples. This work opened up a
research direction to combine MPC and RL algorithms, and inspired consequent re-
search. The method was extended to more general dynamics in [212], where two differ-
ent value function approximations are used and implemented for various control exam-
ples, including the inverted pendulum, the double pendulum, and the acrobot. A similar
idea was adopted in [209], where the Q-value function is used to replace the whole ob-
jective function of a Lyapunov-based MPC. Thus the original optimization problem is
transformed into a policy iteration problem, and is solved using an actor-critic scheme.
The main contribution of [209] is embedding a set of constraints based on an existing
Lyapunov-based controller into the learning process of the DRL agent, thus ensuring
stability. However, the learning process still struggles with a low sample efficiency and
unsafe exploration issues. Arroyo et al. [7] further extended the method given in [138]
to a realistic scenario for building energy management, by encoding domain knowledge.
Then the initial complex MPC optimization problem is reformulated as an optimization
problem with a prediction horizon of one step. In [7] a simulation model is extracted
from the simulator via system identification, and is used as the prediction model for
MPC, as well as for pre-training of the DRL agent. The simulation results show that the
proposed RL-MPC approach can meet the state constraints and provide satisfying per-
formance. However, it is not demonstrated in [7] whether or not the RL-MPC approach
outperforms MPC in uncertain environments.

The above MPC-DRL combined algorithms can be categorized as objective function
truncating methods. This can reduce the on-line computational complexity of MPC,
while RL is used to handle the uncertain environment. Nevertheless, these algorithms
still suffer from several issues. First, one-step ahead MPC optimizes the control input
only for the next time step, which therefore can only guarantee the short-term safety
constraints. Second, although the value function can address the constraints by intro-
ducing a penalty on constraint violations in the reward function, in this way the con-
straints become soft constraints that do not necessarily provide guarantees. Third, an
inaccurate system model is still used for the one-step ahead optimization of MPC, which
influences the optimality of the performance. Forth, optimizing the joint objective func-
tion that contains a value function can be quite challenging.

Another direction to connect MPC with RL is developed by Gros and Zanon. In [64]
they proposed to use a parameterized MPC scheme instead of deep neural networks to
approximate the value function and policy for the RL agent. It is shown that the MPC
scheme can guarantee the optimality of the learned policy by adjusting the objective
function of MPC, even with an inaccurate system model. Furthermore, they extended
the algorithm by utilizing robust MPC techniques to address the safety issue of RL [206].
The method is implemented with a Q-learning algorithm and the results show that the
constraints are well handled. In fact, Gros and Zanon [64], [206] are basically using RL
tools to solve the MPC problem by using the connection between the parameterized



4.3. COMBINED MPC-DRL FRAMEWORK

4

77

MPC and RL. However, how to parameterize the cost function of MPC is not considered
in a structured way.

A different trend is to directly combine the control inputs of MPC and RL. The paper
[202] proposed a framework that contains independent MPC and DDPG agents, in which
the overall output is a weighted sum of the control inputs generated by MPC and DRL.
The idea is to use MPC to play a guiding role by applying its control action directly to the
system to obtain more effective data samples for the training of the DDPG agent, thus
improving the sample efficiency. However, the weight parameter needs to be tuned by
trails for various tasks, and it is not clear how the MPC and DDPG agents collaborate
with each other. Zhang et al. [211] integrated DRL within a model reference control
framework, in which the DRL module is used to compensate for the error between the
real state and the desired state that is generated by the nominal system with a baseline
controller.

Many variations of combined MPC-RL methods have been developed for specific
applications, especially for robot control. Johannink et al. [92] proposed a residual RL
approach that is tailored for a robot motion control task. This approach combines a
hand-engineered controller and a residual RL controller. In order to deal with real-world
contacts and friction that cannot be captured by modeling, the control task is decom-
posed into a main part and a residual part, which are solved by a conventional feedback
controller and an RL controller, respectively. A temporal difference MPC approach was
developed in [71], where a terminal value function is used to estimate the long-term
return and a task-oriented model is learned. Both components are jointly learned by
temporal difference learning. The proposed method is evaluated on a total of 92 control
tasks, and shows to outperform both model-free and model-based approaches for these
tasks.

There is not yet an extensive comparison study about the MPC-RL algorithms dis-
cussed above, so it is still an open question that which approach surpasses the other,
and in which cases. However, it is clear that each algorithm is designed to address a spe-
cific issue or a particular task. This chapter intends to develop a novel framework that
combines MPC and DRL in a flexible way, i.e., it allows the designers to freely choose the
detailed MPC and DRL schemes. The framework is also designed in a hierarchical struc-
ture with multiple operation rates, such that MPC and DRL can coordinate well with each
other, making the framework applicable for various complex applications. The proposed
framework is tested for a freeway traffic control problem from [73], and the performance
is compared with standard MPC and DRL methods.

4.3. COMBINED MPC-DRL FRAMEWORK

This section presents the proposed MPC-DRL control framework. Section 4.3.1 gives
an intuitive description of the framework from a high-level point-of-view. Section 4.3.2
defines the MPC and the DRL modules. Section 4.3.3 details the learning algorithm of the
framework. The mathematical notations used in this chapter are presented and defined
in Table 4.3.
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Table 4.3: Mathematical notations used for the combined MPC-DRL framework

Notation Definition

ks Simulation step counter of the system
kd Control step counter of the DRL module, which also corresponds to the control step of the

controlled system
kc Control step counter of the MPC module
Ts Simulation sampling time of the system
Td Control sampling time of the DRL module
Tc Control sampling time of the MPC module
Tini Time to initialize the freeway network before control for the simulation
T The whole simulation time interval
ub(kc) Control input of MPC at control step kc
us(ks) Control input of MPC at simulation time step ks
url(kd) Action of DRL generated by the actor network at control step kd
u′

rl(kd) Action of DRL generated by the target actor network at control step kd
uc(kd) Final control input given to the system at control step kd
x(ks) Real traffic state at simulation time step ks
x̂(ks) Predicted traffic state at simulation time step ks

d̂ (ks) Predicted traffic demands at simulation time step ks
d (ks) Real traffic demands at simulation time step ks
Np,c Prediction horizon length counted in terms of the MPC control time step
Np,s Prediction horizon length counted in terms of the simulation time step
s(kd) State vector for the DRL agent at control step kd
r (s(kd),url(kd)) Reward of the DRL agent for taking action url(kd) when at state s(kd)
yi Learning target of the DRL agent for data sample i
R Experience replay buffer of the DRL agent
N Size of mini-batch sampled from the replay buffer
n Number of steps to look ahead for the reward in the DRL algorithm
wn (kd) Random noise added to the DRL actions at control step kd for exploration
wu Scaling parameter of the DRL actions
wp Penalty weight in the DRL reward function

4.3.1. MPC-DRL FRAMEWORK

As illustrated in Figure 4.1, the proposed MPC-DRL framework has a hierarchical struc-
ture. The MPC module operates at the high level to provide a basic control input that is
optimized over the prediction window based on the objective function of MPC with the
associated nominal model and the predicted traffic demands. The objective function is
given according to the control purpose (e.g., minimizing TTS), and the state and input
constraints are considered explicitly during the optimization. In practice, the MPC con-
trol input ub is not optimal, mainly due to the mismatch between the prediction model
and the real system, as well as due to the error in the predicted demands. Accordingly,
the state constraints cannot be guaranteed. Note that MPC performs with a larger con-
trol sampling time Tc than the simulation sampling time Ts, such that the number of
the optimization variables is substantially reduced, even with a long prediction horizon.
Therefore the online optimization problem of MPC is computationally tractable.

In order to improve the optimality of the MPC input and to avoid severe constraint vi-
olations, the DRL module works at the lower level to modify the MPC input ub during the
learning process by interacting with the real system. The state space of the DRL agent in-
cludes the freeway states x and the MPC input ub (see (4.10)), while the reward function
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Figure 4.1: Block diagram of the hierarchical MPC-DRL control framework.

is designed to complement the objective function of MPC, such that these two modules
can collaborate to optimize the overall objective. In addition, the traffic demands are
also fed into the DRL agent, and a penalty on the constraint violation is added to the
reward function. The action url of DRL has the same dimension as ub, but its elements
have smaller magnitudes. The components of the DRL module are defined in detail in
Section 4.3.2. The update algorithms of the network parameters in the figure are pre-
sented in Section 4.3.3.

Assume that the model of the freeway dynamic is discrete-time with a simulation
sampling time Ts, and the DRL module works with a control sampling time Td. Then the
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Figure 4.2: Illustration of different time scales and how DRL modifies the MPC control input.

relationship between Ts, Td, and Tc are described as:

Tc = m1 ·Td = m1 ·m2 ·Ts, m1,m2 ∈N+,m1 > 1. (4.1)

Note that for the sake of simplicity and brevity in the notations, we assume that the simu-
lation step, DRL control step, and MPC control step coincide (see Figure 4.2). Therefore,
the overall control input of the combined framework is a combination of ub and url,
which is updated every Td time units. For control step kd that corresponds to the MPC
control step kc (i.e., kdTd ∈ [kcTc, (kc +1)Tc)), the overall control input is given by:

uc(kd) = sat(url(kd)+ub(kc)), (4.2)

where a saturation function sat(·) is used to guarantee that the additive control input
uc(kd) satisfies the bound constraints, and is defined in element-wise by:

sat(u) =


umax, if u > umax

umin, if u < umin

u, otherwise,

(4.3)

with umin and umax the minimal and maximal allowed values for the corresponding ele-
ments in the control inputs for the freeway network, and ub(kc) the corresponding MPC
input. Figure 4.2 illustrates the different time scales of MPC and DRL control sampling
time, and how url modifies ub.

4.3.2. DETAILED DESCRIPTION OF THE FRAMEWORK
The details of the MPC and DRL modules are provided in this section.
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MPC MODULE

A standard MPC procedure is performed within the MPC module, where a nominal model
F is used to describe the freeway dynamic. The system states x are updated every simu-
lation step ks. The simulation time steps that correspond to the MPC control step kc are
given by:

ks,c(kc) ∈ {kcm,kcm +1, . . . ,kcm +m −1} , (4.4)

where m = m1m2. Thus at simulation time steps ks = kcm, the real states of the freeway
network are measured and are fed into the MPC module. The following optimization
problem is solved at every control time step kc:

min
ũb(kc),x̃(kc)

Np,s∑
ℓ=1

J (kcm +ℓ) (4.5)

s.t. x̂(kcm +ℓ+1) = F (x̂(kcm +ℓ),us(kcm +ℓ), d̂ (kcm +ℓ)), for ℓ= 0, . . . , Np,s −1,

x̂(kcm +ℓ) ∈X , for ℓ= 1, . . . , Np,s, (4.6)

ub(kc +k) ∈U , for k = 0,1, . . . , Np,c −1, (4.7)

us((kc +k)m +ℓ)) = ub(kc +k), for ℓ= 0,1, . . . ,m −1,k = 0,1, . . . , Np,c −1, (4.8)

where J (ks) represents the predicted objective function value (e.g., TTS) during the
simulation interval [ksTs, (ks + 1)Ts), and ũb(kc) = [u⊤

b (kc), . . . ,u⊤
b (kc + Np,c − 1)]⊤ de-

notes the variables to be optimized over the prediction window of length Np,c, with
ub(kc) the control inputs (e.g. ramp metering rates or variable speed limits) at con-
trol time step kc. Moreover, us(ks) is the MPC control input at simulation time step ks,
and x̃(kc) = [x̂⊤(kcm +1), . . . , x̂⊤(kcm +Np,s)]⊤ with x̂(ks) denoting the predicted future

state at simulation time step ks. Besides, d̂ (ks) contains the estimated traffic demands
at simulation time step ks. In addition, Np,s and Np,c are the prediction horizon length
counted in terms of the simulation time steps and MPC time steps, respectively, in which
Np,s = Np,cm. Equations (4.6) and (4.7) represent the constraints on the states and the
inputs, respectively, where X and U represent the feasible sets for the states and the
inputs. Due to the nonlinearity and non-smoothness of the traffic model, the resulting
optimization problem is, in general, nonlinear and non-convex. Therefore, a nonlinear
optimization solver, such as multi-start sequential quadratic programming (SQP), sim-
ulated annealing, or genetic algorithms [51] is required. After the above optimization
problem is solved, the first element of the optimized control input ũb(kc) is given to the
DRL module.

DRL MODULE

Consider the freeway network as a Markov Decision Process (MDP), which is a discrete-
time stochastic control process. It can be represented by a five-tuple 〈S, A,P,R,γ〉. The
state space S, action space A, and reward distribution R are defined in this section. Fur-
thermore, P denotes the transition probability among the states, and is implicitly de-
fined by the freeway network model. Moreover, γ ∈ [0,1) is the user-defined discount
factor on the future rewards. The DRL module operates at the low level with a higher fre-
quency than the MPC module. The control sampling time Td of the DRL module is larger
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than the simulation sampling time Ts, in order to avoid a too frequent change in the con-
trol inputs to the freeway network. Therefore, the simulation time steps that correspond
to the DRL control time step kd includes:

ks,rl(kd) ∈ {kdm2,kdm2 +1, . . . ,kdm2 +m2 −1} , (4.9)

where m2 is defined in (4.1). The state, action, and reward of DRL are updated every
control step kd, and are defined as it follows.

State s(kd) ∈ S: The state space of DRL should consist of all necessary information
of the framework. Since deep neural networks are employed in DRL, the states fed into
the input layer are normalized to the same order of magnitude in order to facilitate the
learning. Thus, we have:

s(kd) = [x̄⊤(kdm2), ū⊤
s (kdm2), d̄⊤(kdm2), ū⊤

c (kd −1)]⊤, (4.10)

where x̄(kdm2), ūs(kdm2), d̄ (kdm2), and ūc(kd − 1) are, respectively, the normalized
states of the freeway network, the MPC inputs, the real demands at simulation time step
kdm2, and the overall control input of the framework at previous control time step kd−1.
The state space S of DRL is the Cartesian product of the MPC state set X , MPC input set
U , the traffic demand set that can be defined by D, and X , i.e., S =X ×U ×D×X .

Action url(kd) ∈ A: The action url is used to modify the MPC input ub. Therefore,
they have the same dimension, i.e., dimurl = dimub. For simplicity, it is assumed that
the action space is also continuous.

Note that action url is generated from the output layer of the DNNs, and the original
values of its elements are between [−1,1]. Thus these values are scaled back to the real
control inputs before they are added. Moreover, the elements of url have a smaller mag-
nitude than those of ub, such that ub dominates the control input in this framework and
provides basic performance, while url is an ancillary control input that acts at a higher
frequency and aims at improving the performance. Furthermore, url meets the following
inequalities that defines the action space A:

−wu∆U ≤ url ≤ wu∆U , (4.11)

where ∆U = umax −umin, with umax the upper bound and umin the lower bound of U ,
and wu ∈ [0,1) is the scaling parameter that determines to what extent url influences ub.

Reward r (s(kd),url(kd)) ∈ R: In order to coordinate MPC and DRL to achieve the
optimal performance, the reward function should include the objective function J of the
MPC module:

r (s(kd),url(kd)) =
m2∑
k=1

(− J (kdm2 +k)−wp Ps (kdm2 +k)
)
, (4.12)

where Ps denotes the state constraint violation, and wp > 0 is the penalty weight param-
eter. Let rt(kd) be an equivalent representation of r (s(kd),url(kd)), which denotes the
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observed reward based on the traffic condition during DRL control step kd. In order to
evaluate J , the relevant state x(ks) can be measured at every simulation time step, and
the MPC input us(ks) can be obtained from (4.8). Moreover, Ps (ks) can be calculated
directly based on state x(ks), for ks = kdm2 +1, . . . ,kdm2 +m2. The reward is a negative
value, and thus R is the set of negative numbers.

The deep actor-critic algorithms are considered to train the framework, among which
Deep Deterministic Policy Gradient (DDPG) [111] is chosen for the DRL agent, which is
an off-policy and model-free algorithm that can deal with continuous state and action
spaces, and has been implemented successfully in many freeway traffic studies (see, e.g.,
[61], [191], [201]).

Remark 7. The standard MPC procedure within the high-level MPC module can be re-
placed with any efficient MPC variations, such as parameterized MPC or DMPC for large-
scale freeway networks. The DDPG agent can easily be extended to arbitrary off-policy
DRL algorithms that can deal with continuous state and action spaces.

4.3.3. ALGORITHM FOR TRAINING THE FRAMEWORK
The goal of learning is to train a policy π, such that the expected return at state s(kd)
after taking action π(s(kd)) is maximized. The expected return for action π(s(kd)) taken
at state s(kd) is given by:

Qπ (s(kd),π(s(kd))) =Er,s∼E

[ ∞∑
k=0

γk r (s(kd +k),url(kd +k))

]
=Er,s∼E

[
r (s(kd),url(kd))+γQπ (s(kd +1),π(s(kd +1)))

]
,

(4.13)

where the subscript r, s ∼ E implies that the transitions among the states in the envi-
ronment are stochastic. Note that the return depends on the chosen actions, and there-
after on the policy π. In DDPG, both the return and the policy π are approximated by
deep neural networks, which are notated as Qπ

φ (s(kd),url(kd)) and πθ , respectively. They
are also known as the critic and the actor, and φ and θ represent the parameters of the
corresponding neural networks, as shown in Figure 4.1. In addition, the target network
technique is used, which introduces two target critic and actor deep neural networks,
corresponding to φ′ and θ′, that are updated in a slower pace in order to improve the
stability of the training process. Experience replay is also utilized to remove correlations
in the observation sequence, and to provide better learning convergence, and a replay
buffer R is used to store the agent’s experience. For more details, the readers are referred
to [111].

Instead of the traditional one-step temporal-difference (TD) target in DDPG, we use
the n-step TD method [180], i.e.:

ykd = rn(kd)+γnQπ
φ′ (s(kd +n),u′

rl(kd +n)), (4.14)

in which u′
rl(kd +n) =πθ′ (s(kd +n)), and the n-step reward is given by:

rn(kd) =
n−1∑
k=0

γk r (s(kd +k),url(kd +k)), (4.15)
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where url(kd) =πθ(s(kd)). Then the loss function for the critic is given by:

L
(
φ

)= 1

N

∑
i

(
yi −Qπ

φ(s(i ),url(i ))
)

, (4.16)

where i is the index of the data points of a mini-batch of size N that is sampled randomly
from the experience replay buffer. The critic parametersφ are therefore updated by min-
imizing the loss function with the Adaptive Moment Estimation (Adam) optimizer [97].

The benefits of using n-step TD here are fourfold:

1. A freeway network is a large-scale system with time delays, which means the con-
trol measures only take effect after a period of time. Thus, looking n steps to the
future can better evaluate the quality of the actions taken.

2. The optimization of the DDPG agent considers the reward for n future steps, which
coincides with the predicted objective function in MPC. In practice, taking n =
Np,s/m2 makes the look-ahead time of DDPG and MPC the same, and thus these
two modules cooperate better.

3. Looking n steps ahead makes the learning process more efficient than the one-
step TD method of the conventional DDPG algorithm, where the update is only
based on bootstrapping from the value of the state one step later [180].

4. By introducing future rewards in (4.14), there is no need to predict future demand
information as the MPC module does. Therefore, the state space definition (4.10)
is simpler and has a smaller dimension.

After the optimization of the critic network, the actor is subsequently updated by maxi-
mizing the return Qπ

φ based on the policy gradient. More details can be found in [111].

One advantage of DDPG as an off-policy algorithm is that its exploration policy is
independent from the learning process, which means that a stochastic exploration is al-
lowed. In this context, the Ornstein-Uhlenbeck model [186] is used to produce the noise
wn(kd) for exploration (i.e., added on the DRL actions), where the magnitude decays
with time step kd . The overall learning algorithm of the MPC-DRL framework is sum-
marized in Algorithm 1. Note that the entire simulation time is supposed to be T .
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Algorithm 1 Hierarchical MPC-DRL Framework Algorithm for Freeway Traffic Control

1: Initialize critic and actor networks Qπ
φ and πθ with parameters φ and θ

2: Initialize target network Qφ′ and πθ′ with parameters φ′ and θ′
3: Initialize experience replay buffer R
4: for episode from 1 to M do
5: Initialize the empty traffic network with initial traffic demands for Tini time units
6: for kc = 0 to T

Tc
−1 (MPC outer loop) do

7: Observe current traffic state x(kcm) from the environment, and estimate the
traffic demands d̂ (kcm +k),k = 0,1, . . . , Np,s

8: Perform high-level MPC with freeway model F and prediction horizon Np,s, by
solving optimization problem (4.5)-(4.7)

9: Pass the optimized control input ub(kc) to the low-level DRL module
10: for kd = kcm1 to (kc +1)m1 −1 (DRL inner loop) do
11: Receive state s(kd) according to (4.10)
12: Select action url(kd) =πθ(s(kd))+wn(kd))
13: Combine the control input of MPC and RL with a saturation function using

(4.2)
14: for ks = kdm2, . . . ,kdm2 +m2 −1 do
15: Execute action uc(kd) in the freeway network, with the real traffic demand

d (ks)
16: end for
17: Observe reward rt(kd) and new state s(kd +1)
18: Store transition (s(kd),url(kd),rt(kd), s(kd +1)) in R (the transitions are stored

in order)
19: Sample a mini-batch of N transitions from R randomly, each of which contains

n steps: s(i ),url(i ),rt(i ), s(i +1), . . . , s(i +n−1),url(i +n−1),rt(i +n−1), s(i +n)

20: Update the critic network Qπ
φ by minimizing the loss function L(φ) with (4.14)-

(4.16)
21: Update the actor network πθ by the sampled policy gradient [111]
22: Update the target networks:

θ′ ← τθ+ (1−τ)θ′, φ′ ← τφ+ (1−τ)φ′
23: end for
24: end for
25: end for

4.4. CASE STUDY

The proposed MPC-DRL framework is now implemented and evaluated via a benchmark
freeway network from [73]. METANET is adopted to model this network, for which the
readers are referred to [73], [103]. Model uncertainties and external disturbances are
introduced into the model to represent the real-world system, as illustrated in Section
4.4.1. Furthermore, the proposed MPC-DRL framework is compared with standalone
MPC and DRL methods. In this case study, the performance criteria consist of TTS of all
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Figure 4.3: The benchmark freeway network with one metered on-ramp and two segments with speed limits
(marked in red) used for the case study.

Table 4.4: Real and estimated values for freeway network parameters in the case study

T [s] ρmax[veh/km/lane] κ[veh/km/lane] η[km2/h] am σ

Real 10 180 40 60 1.867 0.0122
Estimates 10 150 48 50 2.160 0.01

vfree[km/h] ρcrit[veh/km/lane] α τ[s] Lm [m]
Real 102 33.5 0.1 18 1000

Estimates 102 37.5 0.08 14.5 800

the vehicles for the entire traffic network and constraint violations of the queues on the
lanes. All the simulations were conducted in Matlab version 2022a running on a PC with
an Intel Xeon Quad-Core E5-1620 V3 CPU with a clock speed of 3.5 GHz.

4.4.1. SETUP

FREEWAY TRAFFIC NETWORK

A benchmark network is taken from [73]. Note that this benchmark network has also
been used in other freeway traffic studies [25], [46], [52], [170]. As shown in Figure 4.3,
the network consists of two origins (i.e., one main-stream and one on-ramp) and one
destination. The length of the main stretch is 6 km, which is divided into 2 links. The
first link includes the 4 segments before the on-ramp, and the second link consists of the
2 segments after the on-ramp. The mainstream has two lanes with a capacity of 2000
veh/h each, and its maximal allowed queue length is 200 veh. The on-ramp has one
lane with the capacity of 2000 veh/h, and the maximum on-ramp queue length is 100
veh. The network parameters are taken from [73] and the same mathematical notations
are used here. The real parameters are assumed unknown in this case study, and the
estimated values for these parameters are used in the prediction model. Both the real
and the estimated parameter values are given in Table 4.4.

DEMAND SCENARIO

A typical demand scenario as shown in Figure 4.4 similar to [73] is considered in order
to evaluate the controllers,. This demand scenario can cause severe traffic congestion
without control, and is suitable to examine the control effectiveness of both ramp me-
tering and variable speed limits in this freeway network. To reproduce the stochastic
phenomena of the traffic network, random noises with Gaussian distribution are added
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Figure 4.4: Predicted traffic demands used in the case study.

to the demands of both main-stream and on-ramp, for which the mean values are 0 and
the standard deviations are 5% of the corresponding maximal demand values. The free-
way network is initially empty, and is next simulated with a constant demand at 3000
veh/h for the main-stream and 500 veh/h for the on-ramp for a period of 10 min, before
the control simulations start.

4.4.2. CONTROLLERS
In this case study, the following controllers are implemented and compared: standalone
MPC, standalone DRL (with n-step TD), and combined MPC-DRL framework (with n-
step TD). The simulation parameters are Ts = 10 s, Td = 60 s, Tc = 300 s, Tini = 600 s, T =
9000 s. These parameters apply for all the controllers. The ramp metering rate ranges
from 0 to 1, and the variable speed limits range from 20 km/h to vfree, which is 102 km/h.
Both control actions are continuous.

STANDALONE MPC CONTROLLER

The objective function (4.5) used in the MPC controller is written as

J (ks) =wTTS JTTS(ks)+wD ∥us(ks)−us(ks −1)∥2
2 ,

where JTTS(ks) denotes the TTS value predicted for simulation time interval [ksTs, (ks +
1)Ts), the second term imposes a penalty on the fluctuations between consecutive con-
trol inputs, and the weights are selected as wTTS = 1, wD = 0.4. The prediction window
is 10 min, which means Np,c = 2, Np,s = 60. The prediction model used by the MPC con-
troller is the METANET model with the estimated parameter values in Table 4.4, and the
predicted demands used by MPC are shown in Figure 4.4. The control inputs include one
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Table 4.5: Parameters used for DRL agent training

Parameter Value
Maximal episodes M 4000

Mini-batch size N 512
Experience replay buffer R size 2 ·105

Discounter factor γ 0.99
Learning rate (both actor and critic networks) 0.001

Target network update rate τ 0.01
Noise wn standard deviation 0.3

Noise wn decay rate 5 ·10−6

ramp metering rate and two variable speed limits, which are constrained by the lower
and upper bounds given before.

For simplicity, the control problem is transcribed into an optimization problem by
single-shooting [34]. The resulting optimization problem is nonlinear and non-convex,
so the Matlab fmincon function with the SQP algorithm are used to solve the optimiza-
tion problem . In order to avoid getting stuck in local optima, multiple starting points are
used to solve the optimization problem (i.e., 30 for this case study2). In order to achieve a
trade-off between the computational accuracy and efficiency, the fmincon stopping cri-
teria for the cost function tolerance, step tolerance, and constraint tolerance are selected
to be 10−2.

STANDALONE DRL ( WITH n-STEP TD)
The standalone DRL agent in this case study shares the same definition as the DRL mod-
ule in Section 4.3.2. Therefore, the dimensions of the state space and action space are
30 and 3, respectively. The actor network contains one input layer of size 30, one output
layer of size 3, and two inner layers with 256 neurons for both layers. Accordingly, the
critic network has two input layers, in which one layer that corresponds to the states is
of size of 30 and is followed by a layer with 256 neurons, and the other input layer that
corresponds to the actions is of size 3 and is followed by a layer with 128 neurons. Both
input layers are connected to two consecutive inner layers with 256 and 128 neurons, re-
spectively. The size of the output layer, which generates the Q-values of the state-action
pairs, is 1. ReLU activation functions are used in all the neural networks. Moreover, the
reward function consists of the objective function defined for the MPC controller and a
penalty for constraint violation with weight wp = 10. The actions of the standalone DRL
are the same as the MPC controller. The other DRL parameters that are tuned during the
learning process are given in Table 4.5. These parameters apply for both conventional
standalone DRL and n-step TD DRL.

COMBINED MPC-DRL FRAMEWORK ( WITH n-STEP TD)
The combined MPC-DRL framework (with n-step TD) consists of an MPC module that
is the same as the standalone MPC controller, and a DRL module that is similar to the
standalone DRL (with n-step TD). The action space of the MPC-DRL framework is differ-
ent from the standalone DRL, due to the scaling parameter wu = 0.4, which means that

2This number is obtained via several experiments, such that it achieves a good trade-off between the compu-
tational efficiency and optimality.
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according to (4.11) the action bounds of the DRL module within the MPC-DRL frame-
work are ± 0.32 for variable speed limits and ± 0.4 for ramp metering rate. The training
parameters in Table 4.5 also apply for the combined MPC-DRL framework, except for
the noise wn , which has a smaller standard deviation of 0.2 and a decay rate of 2×10−5.
Furthermore, n = 10 is chosen for the DRL module, which makes the look-ahead time of
the DRL module the same as the prediction horizon of the MPC controller.

4.4.3. RESULTS FOR THE LEARNING PROCESS

The standalone DRL (with 10-step TD) and the combined MPC-DRL framework (with
10-step TD) are both trained 10 times independently over the stochastic environment
(i.e., the benchmark freeway network with stochastic demands), with 4000 episodes for
each run. Each episode contains a simulation interval of 9000 s with the mentioned
stochastic demands. In the plots, the episode rewards have first been smoothed by a
moving average filter of size 21 to better present the learning progress. The learning per-
formance is presented in Figure 4.5, in which the solid lines represent the mean episode
reward values of the 10 runs, and the shaded areas show the 95% confidence intervals
for each method.

Figure 4.5 shows that the learning curves of the combined MPC-DRL framework
methods start with higher rewards than the standalone DRL methods. In addition, the
combined MPC-DRL framework methods converge faster, which indicates that the pro-
posed framework has a better sample efficiency than the conventional DRL methods.
The reason is that the MPC module within the MPC-DRL framework generates basic
control inputs that provide baseline control performance, and the DRL module within
the framework only requires a limited exploration space with smaller action bounds and
thus requires less sample data. Furthermore, the methods with 10-step TD have better
learning performance than the ones without 10-step TD, which validates the advantages
of the n-step TD method for large-scale freeway networks. In particular, the framework
with 10-step TD has a more stable learning curve than the one without 10-step TD. This
implies that a DRL module with a similar prediction window to the MPC module can
cooperate better within the combined MPC-DRL framework.

4.4.4. RESULTS FOR THE IMPLEMENTATIONS

According to the learning performance, only the trained standalone DRL with 10-step
TD controller and combined MPC-DRL framework with 10-step TD controller are im-
plemented on the benchmark freeway network, and their control performance are eval-
uated in terms of TTS and constraint violations. The standalone MPC controller and the
no-control case (i.e., no ramp metering or speed limit) are also included for comparison.
Due to the stochastic feature of the network, the experiments for each controller are re-
peated 20 times independently with random demands in order to evaluate the control
performance. Figure 4.6 shows the total number of vehicles in the traffic network during
the simulation interval, which indicates the congestion degree of the traffic. In the figure,
the solid lines denote the mean values of the 20 runs, and the shade areas indicate the
95% confidence intervals. It is shown that the combined MPC-DRL framework achieves
the best control performance in terms of reducing the traffic congestion among all the
controllers. In contrast to standalone MPC, the framework has learned from interacting
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Figure 4.5: Learning performance of standalone DRL and combined MPC-DRL with and without 10-step TD.

with the environment, and the DRL module within the framework can compensate for
the model uncertainties and external disturbances and therefore, provides extra opti-
mality. Accordingly, the distribution of the TTS values for different controllers over those
20 runs are depicted in Figure 4.7 using a box plot. This plot confirms that the combined
framework outperforms the other controllers in terms of TTS. The variance of the TTS
values for standalone DRL is the largest, and its TTS value is not necessarily better than
the no control case, which implies that the performance of standalone DRL is not always
reliable.

Furthermore, the queue constraint violations during the simulation interval for dif-
ferent controllers are shown in Figure 4.8. This figure shows that all the controllers can
reduce the constraint violation compared to the no control case. However, standalone
MPC still violates the constraint due to the model uncertainties. Standalone DRL also
violates the constraints. This is because standalone DRL has a larger action space, and
thus it takes more training data for exploration (i.e., low sample efficiency). The DRL
agent is not sufficiently trained at 4000 episode in this case study, and the fluctuation of
its learning curve is still significant (see Figure 4.5). Therefore, the DRL agent is still ex-
ploring and would take actions that are worse than the no-control case, which explains
the TTS performance of DRL. In contrast, the combined MPC-DRL framework with 10-
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Figure 4.6: The comparison of the total number of vehicles in the traffic network during the simulation interval
with different controllers.

Figure 4.7: Box plot of TTS for different controllers.

step TD can avoid the constraint violation for every independent run. In addition to the
smaller action space and high sample efficiency of the combine MPC-DRL framework,
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Figure 4.8: Mainstream queue constraint violations for different controllers.

the penalty on the constraint violations within the reward function of the DRL module,
which coincides with the state constraints within the optimization problem of the MPC
module, also contributes to avoiding the constraint violations. So in the proposed MPC-
DRL framework, the MPC and the DRL modules complement each other during both
the learning process and the implementation stage, which results in a better sample ef-
ficiency and control performance in terms of both TTS and constraint violation.

In order to present the traffic states during the simulation, we fix the demand noise
and run the simulation for each compared controller. The traffic situation includes traf-
fic flow speed, density, velocity on all the segments, and the control inputs for the on-
ramp metering and variable speed limits over the entire simulation length. Simulation
results are presented in Figure 4.9. For the no control case, the increased traffic demand
from the on-ramp causes traffic congestion on segment 5 first, and the congestion area
propagates to segment 4, 3, and 2 gradually. Eventually, the queue length at the main-
stream grows significantly, and approximates 300. The TTS for this case is 1419.6 veh·h.
For the standalone MPC case, the traffic congestion still exists but is postponed, in order
to reduce the queue length at the mainstream. This is achieved by decreasing the ramp
metering rate, and the queue length at the on-ramp increases accordingly. In addition,
the overall outflow of the segments is larger than the no control case. However, con-
straint violation still exists. The TTS for this case is 1366.9 veh·h. Simulation results of
the standalone DRL with 10-step TD controller show that the queue length at the main-
stream is further reduced compared with the standalone MPC controller. However, the
TTS for this case is 1403.7 veh·h, which is not improved compared with the no control
case. For the combined MPC-DRL with 10-step TD controller, it can be observed that
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the queue length at the mainstream is limited under 200, and the traffic efficiency is also
improved as the TTS for this case is 1315.3 veh·h. The main issue of the controller is that
the fluctuation of the control inputs (i.e., ramp metering rate and variable speed limits)
still exists, which might be undesired in practice. However, the fluctuation is already
significantly reduced compared with the standalone DRL controller.

4.5. CONCLUSIONS
This chapter has developed a novel framework combining MPC and DRL for freeway
traffic control. Since MPC and DRL each suffer from their own shortcomings and their
characteristics complement each other well, it is beneficial to merge these two meth-
ods. The proposed MPC-DRL framework inherits the ability of DRL in learning from the
environment to deal with uncertainties, and the ability of MPC in using the model infor-
mation to provide basic performance. Specifically, the novel framework has a hierarchi-
cal structure, in which an MPC controller works at a high level with a lower frequency,
while the DRL agent operates at a low level with a high frequency. An additional advan-
tage of the proposed framework is that it requires less computational efforts compared
to conventional MPC, due to the lower control frequency of the MPC module.

A simulation study has been conducted on a benchmark freeway network with model
uncertainties and stochastic traffic demands. The proposed MPC-DRL framework (with
n-step TD), standalone MPC, and DRL (with n-step TD) were trained and implemented
to this traffic network. The results of the case study showed that the proposed MPC-
DRL framework outperforms MPC and DRL in terms of both the learning process and
the control performance, and the n-step TD method can improve the learning-based
controllers for large-scale traffic networks. Moreover, the combined framework is easy
to implement and can also potentially be applied to other systems that struggle with
model uncertainties and high computational complexity, such as for the control of urban
traffic networks or for the energy management of smart buildings. Future research will
be conducted on extending the current framework to control very large traffic networks
by combining distributed MPC and multi-agent DRL.
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5
ADAPTIVE PARAMETERIZED

MODEL PREDICTIVE CONTROL

BASED ON REINFORCEMENT

LEARNING: A SYNTHESIS

FRAMEWORK

Parameterized model predictive control (PMPC) is one of the many approaches that have
been developed to alleviate the high computational requirement of MPC, and it has been
shown to significantly reduce the computational complexity while providing compara-
ble control performance with conventional MPC. However, PMPC methods still require
a sufficiently accurate model to guarantee the control performance. To deal with model
mismatches caused by the changing environment and by the disturbances, this chapter
first proposes a novel framework that uses reinforcement learning (RL) to adapt all com-
ponents of the PMPC scheme in an online style. More specifically, the novel framework
integrates various strategies to adjust different components of PMPC (e.g., objective func-
tion, state-feedback control function, optimization settings, and system model), which
results in a synthesis framework for RL-based adaptive PMPC. Even the existing adaptive
(P)MPC approaches can be embedded in this synthesis framework. The resulting com-
bined RL-PMPC framework provides a solution for an efficient MPC approach that can
deal with model mismatches. A case study is performed in which the framework is ap-
plied to control freeway traffic. Simulation results show that the RL-based adaptive PMPC
approach outperforms other control methods in terms of both computational complexity
and control performance, in presence of model mismatches and disturbances.

Parts of this chapter have been published in [177] and [179]
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5.1. INTRODUCTION & MOTIVATION
Model predictive control (MPC) has been studied extensively within the last century,
and mature theoretical results have been established for it [24], [136]. MPC operates
in a receding-horizon style, where an optimization problem is solved at every control
step to determine a sequence of control inputs based on a prediction of the future states
using a prediction model. Only the first element of this control input sequence is im-
plemented in practice, and after shifting the prediction horizon to the next control step,
the entire procedure is repeated. In addition, since MPC can explicitly deal with state
and input constraints and provide robust control performance [145], it has been widely
used in engineering practice, such as in industrial processes, power systems, robotics,
and management of transportation networks [73], [156]. However, for a large number of
real-life systems where the dynamics are in general nonlinear and nonconvex, the op-
timization problem of MPC may become too complex that is not feasible for real-time
implementations. Besides, a sufficiently accurate model is needed to ensure the control
performance, which is not always available in practice. Therefore, the applications of
MPC are often impacted by two main issues: high online computational complexity and
model mismatches.

To address the first issue, a large number of studies have investigated computation-
ally efficient MPC approaches, and have achieved satisfying results (see e.g., [6], [94]).
One of the successful methods is parameterized MPC (PMPC) [60], [119], which sim-
plifies the optimization problem of conventional MPC by reducing the number of the
optimization variables. More specifically, PMPC introduces a parametric state-feedback
function as the control law. This means that the PMPC input function does not vary
across the prediction horizon, and only the parameters in the control law need to be
optimized per control step. More details of PMPC and its applications will be given in
Section 5.2.1. Nonetheless, although PMPC can reduce the online computational com-
plexity, it still suffers from model mismatches that are caused by the changing environ-
ment and by unknown disturbances.

To address this issue, extensive research efforts have been made. Two representative
directions are robust MPC and stochastic MPC [14], [129]. Robust MPC solves a robust
optimal control problem at each control step within the MPC scheme by considering
the worst-case scenarios for the external disturbances, which results in conservatism
in the control performance. Stochastic MPC considers the probability distribution of
the uncertainties to guarantee the chance-constraint satisfaction on the basis of con-
ventional MPC. However, these approaches design the controllers by assuming certain
knowledge of the uncertainties. In addition, these methods require even more computa-
tional power than conventional MPC. Another representative direction is learning-based
or data-driven MPC methods [78], [108] where most of these methods focus on the iden-
tification of a system model, and are, thus, also known as adaptive MPC. More details
about learning-based MPC will be given in Section 5.2.2. Another research direction
that has recently drawn great interest is to combine MPC and reinforcement learning
(RL) [180]. RL is a technique from the field of machine learning that learns how to take
action in an uncertain environment so that to maximize an accumulative return. Deep
reinforcement learning (DRL) incorporates deep learning techniques within the conven-
tional RL schemes, allowing agents to deal with the problems large state space [134]. For
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simplicity, we use the term RL to refer to all the RL-related algorithms, including DRL. RL
has recently shown great potential in many fields, including optimal control [8], [135].
Since RL is able to improve its control policy via interacting with the system and with
its environment, it can naturally deal with unknown environments and disturbances.
Despite these appealing features, RL still struggles with its own shortcomings, includ-
ing constraint violations (i.e., safety issues) and low sample efficiency (i.e., a prolonged
training process) [36]. Due to the very complementary characteristics of RL and MPC
[59], many studies have developed various methods to exploit the advantages of both
techniques. More details about relevant research that combine MPC with RL will also be
presented in Section 5.2.

Although a large number of research exist on solutions for each of the two main is-
sues of MPC, i.e., high online computational complexity and model mismatches, very
few papers consider addressing these two issues simultaneously. Therefore, this pa-
per contributes to the state-of-the-art by developing a novel integrated RL-based adap-
tive PMPC (called RL-PMPC) synthesis framework that employs RL to adjust the PMPC
scheme, in order to deal with the changing environment and disturbances, and also with
the online computational complexity. This also leads to a unified framework for exten-
sion of existing adaptive MPC methods, and further improves PMPC in terms of control
performance. The resulting RL-PMPC controller can overcome the two main challenges
of conventional MPC by exploiting the advantages of RL and PMPC, and thus allows to
broaden the application range of MPC-based methods.

The remainder of this chapter is organized as follows. Section 5.2 introduces more
details on related work. Section 5.3 presents the novel PMPC-RL synthesis framework
and all the available strategies to adjust PMPC via RL techniques. Section 5.4 performs a
case study to illustrate the proposed approach by the application to traffic management
of a freeway network. Section 5.5 concludes the paper and proposes topics for future
work.

5.2. RELATED WORK

This section first introduces PMPC, and then presents related work about learning-based
MPC and adaptive MPC. In addition, recent studies that utilize RL in the MPC framework
are presented.

5.2.1. PMPC

Lofberg [119] introduced a feedback loop in the control sequences for a robust MPC
problem, by parameterizing the future control inputs in terms of the future states and
several new parameters. This parameterization process reduces the number of the deci-
sion variables from the number of control inputs over the prediction horizon to the num-
ber of the introduced parameters. Note that conventional MPC can be regarded as a spe-
cial case of PMPC, with an identity function as the parameterized control law. Goulart
et al. [60] further extended this approach by parameterizing the control sequence as an
affine function of the sequence of past disturbances. In this way, the disturbances can be
accounted for by solving a convex optimization problem resulting from the parameteri-
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zation. These studies all focus on the robust MPC problem for linear systems. However,
most systems in practice are nonlinear.

Zegeye et al. [207] applied PMPC in freeway traffic management for the first time
by parameterizing the ramp metering rates and variable speed limits, such that com-
pared to solving the original nonlinear MPC problem the computation time was signif-
icantly reduced without much loss of performance. Van Kooten et al. [100] also em-
ployed the idea of parameterization to design a state-based adaptive controller for an
urban traffic network. Pippia et al. [154] applied the PMPC method to the operation of
microgrids. Jeschke and De Schutter [89] applied PMPC in signal control for urban traf-
fic management, and achieved comparable control performance with substantially de-
creased computation time, compared to conventional MPC. However, the design of the
parametric function that maps the states to control inputs is difficult and often requires
expert knowledge. Jeschke et al. [90] addressed this issue by introducing grammatical
evolution method to generate the parametric function automatically. They applied this
method for traffic signal control of an urban network. The results show that the gener-
ated parametric state-feedback function even outperformed the handcrafted function.

5.2.2. LEARNING-BASED ADAPTIVE MPC
This section presents a brief overview of the literature on learning-based MPC, whose
major purpose is to handle model uncertainties during the implementation of MPC.
Hewing et al. [78] gave a very comprehensive review of learning-based MPC approaches,
from which the reader can find more details. Conventional adaptive MPC refers to the
studies that focus on system identification to compensate for the model uncertainties.
In this paper, we broaden the scope of adaptive MPC to any MPC approach that can
adapt to model uncertainties and disturbances.

ADAPTIVE MPC BY SYSTEM IDENTIFICATION

Lorenzen et al. [122] considered a constrained linear system with unknown but constant
system parameters. A set-membership system identification method is used to estimate
the set that contains the real parameter values, which results in a robust MPC problem.
Then tube MPC techniques [157] are used to solve the problem, and to construct the ter-
minal constraint and terminal set to guarantee stability and recursive feasibility. Heirung
et al. [75] proposed an adaptive dual MPC approach for a single-input single-output lin-
ear time-invariant system for which the dynamic matrices are known and determined by
orthogonal basis functions. A recursive least squares method is used to estimate the un-
known parameters using observed data. The resulting optimization problem is subject
to probabilistic output constraints, and is then reformulated as a quadratic program-
ming problem that can be solved efficiently. Tanaskovic et al. [181] also employed a two-
stage method for adaptive MPC of a linear time-varying multiple-input multiple-output
system subject to model uncertainties and measurement noise. First a set-membership
algorithm is used to estimate the parameter matrix. Then the obtained set is exploited in
the MPC optimization problem to enforce constraints, which results in a robust finite-
horizon optimal control problem. A similar method was used by [210] for adaptive linear
MPC, where the main contribution is in adding extra variables to the optimization prob-
lem in order to adjust the shape and size of cross section of the tube. The obtained results
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are less conservative w.r.t. conventional adaptive MPC, while guaranteeing closed-loop
stability and recursive feasibility.

The above studies are all about linear systems. There are also a few studies that focus
on nonlinear adaptive MPC. Adetola et al. [2] proposed adaptive MPC for constrained
nonlinear systems, where the model uncertainties are assumed to be static and can be
expressed by unknown constant parameters. An uncertainty set is updated recursively
to estimate the bounds of these parameters, which results in a robust MPC problem that
is solved via both a Min-Max approach and a Lipschitz-based approach. Köhler et al.
[98] presented a tube-based robust adaptive MPC for an uncertain nonlinear system
subject to unknown constant model parameters and additive disturbances. Compared
to ordinary robust MPC problems, the work improves the computational efficiency by
modifying the tube formulations, while providing robust recursive feasibility and robust
constraint satisfaction. Akpan and Hassapis [5] proposed to utilize neural networks to
approximate the system model for MPC, since neural networks can approximate any
nonlinear function with an arbitrary high accuracy [105]. The neural network is trained
online based on a recursive least squares algorithm, and the resulting optimization prob-
lem with neural network-based model is solved using gradient-based methods.

All the studies presented so far enforce assumptions on the structure of the system
dynamics and model uncertainties. The uncertainty parameters (whether constant or
varying) are assumed to be parametric (i.e., the system dynamics are linear in the pa-
rameters), which limits the application of adaptive MPC. In addition, robust MPC tech-
niques used to solve the optimization problem will introduce conservatism in control
performance.

ADAPTIVE MPC BY ADJUSTING THE CONTROLLER

Another direction of learning-based adaptive MPC is to adjust the controller design,
such as by learning the cost function, constraint set, or terminal components. Marco
et al. [127] considered the design of a linear quadratic regulator (LQR) for a linearized
model. Instead of identifying the model, they directly tuned the introduced parametric
cost function by iteratively evaluating the controller on the real system. This approach
can also be integrated into an MPC scheme as in [9]. Piga et al. [153] adjusted the model
parameters oriented towards the overall performance of the MPC controller, instead of
minimizing the error between the model and the real system. In addition, the size of the
prediction horizon is also added to the parameters to be adapted. Brunner et al. [19]
worked on enlarging the terminal set of an MPC controller for linear systems by using
the collected historical data. Rosolia and Borrelli [166] focused on iterative tasks with
nonlinear MPC, in which the terminal cost and the terminal set are adjusted at every
iteration in order to guarantee constraint satisfaction and system stability. Experiences
from previous iterations are employed, and it is ensured that the cost does not increase
from iteration to iteration. They further extended the result to a robust control context
in [167].

5.2.3. RL-BASED ADAPTIVE MPC
RL-based adaptive MPC is another direction that utilizes RL techniques to obtain adap-
tive MPC. Due to the complementary features of MPC and RL, as mentioned in the pre-
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vious section, combining MPC and RL is a promising research direction that has been
drawing more and more attention recently. The very early study that employed RL in
an MPC scheme is [138], in which the value function of RL was used to represent the
infinite-horizon objective function value of MPC for Markov decision processes. The
value function can be learned on-line during the implementation, and the MPC pre-
diction horizon reduced to one step due to the approximation of the objective function.
This idea opened up a research direction to combine MPC and RL, and has been adopted
in many studies, such as [7], [209], [212]. Although this approach can alleviate the com-
putational issue of conventional MPC by reducing the prediction horizon, it still suffers
from model mismatches since the control inputs are optimized based on the prediction
model. In addition, solving the optimization problem with a value function in the ob-
jective function is even more difficult due to the introduced extra nonlinearity. By con-
necting the objective function of MPC and the value function of RL, Gros and Zanon [64]
parameterized the objective function of MPC and adapted it using RL. It is shown that
the optimal policy can be obtained even based on an inaccurate model by modifying
the objective function. However, it is not explained how to parameterize the objective
function in a structured way, which is the core procedure for implementing this method.

The other main direction to combine MPC and RL is to merge their control inputs
directly. Zhang et al. [211] integrated an RL agent in a model-reference scheme together
with a conventional nonlinear controller. The RL agent is trained by performing repet-
itive tasks to compensate for the mismatches between the nominal model and the real
system, and to eliminate the errors between the real states and the desired states. This
idea is adopted by [161], which combines RL and MPC in a model reference framework
and applies the resulting MPC-RL framework to traffic signal control for urban networks.
[178] further extended the work by constructing a hierarchical framework in which the
MPC and RL controllers work with different control frequencies and their control inputs
are summed up. The resulting framework is applied to traffic management of freeway
networks, and the results show that the combined MPC-RL controller can excellently
deal with model mismatches. Another related study is [82]. They proposed a hierarchi-
cal structure for power distribution system restoration, in which the RL agents work at
the lower level to make fast decisions on the active power dispatches, and a quadratic
programming agent operates at the higher level using the local RL decisions to check the
major grid constraints and to ensure system resilience. Based on the commands from
the high-level controller, the RL agents revised their actions accordingly.

Although many studies have explored the combination of MPC and RL in various
fields, so far there is not a comprehensive survey on this topic. The authors believe that
the potentials of combining MPC and RL have not yet been fully developed. In addition,
despite the fruitful results of adaptive MPC, relevant research on PMPC is quite limited.
Therefore, a synthesis framework that utilizes RL to adjust PMPC is presented in this
paper. It will be shown that not only the RL-MPC methods in Section 5.2.3, but also the
learning-based adaptive MPC techniques introduced in Section 5.2.2 can be extended to
PMPC and be embedded in this framework.
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Table 5.1: Definitions of the mathematical notations used in this chapter

Notation Definition

F (·) Prediction model for the controlled system
ks Simulation step counter of the prediction model
kc Control step counter of the controlled system
kp Operation step counter of the PMPC scheme
krl Operation step counter of the RL agent
Ts Simulation sampling time of the prediction model
Tc Control sampling time of the controlled system
Tp Operation sampling time of the PMPC scheme
Trl Operation sampling time of the RL agent
x(ks) Measured state at time step ks
x̂(ks) Predicted state at time step ks
x̃(kp) Sequence of the predicted states over the prediction horizon at the PMPC operation step kp
x̄(krl) Measured system states at the RL operation step krl
uθ(kp) Optimization variables of PMPC at the PMPC operation step kp
uc(kc) Control input generated by the parameterized control law at control step kc
ũ(kp) Sequence of control inputs over the prediction horizon at the PMPC operation step kp
ū(krl) Implemented control inputs at the RL operation step krl
Np,o Prediction horizon size counted in terms of the PMPC operation steps
Np,c Prediction horizon size counted in terms of the control time steps
Np,s Prediction horizon size counted in terms of the simulation time steps
Nb Number of PMPC operation steps where uθ(kp) remains constant within the prediction window

Note: Without loss of generality, F (·) is the discretized model of the controlled system with a sampling time
Ts. For simplicity, the measurement sampling time is taken to be equal to the simulation sampling time. Each
time step ks corresponds to the time interval [ksTs,ksTs +Ts) for the real system. Similar statements hold for
step kc,kp, and krl.

5.3. THE SYNTHESIS FRAMEWORK OF RL-BASED ADAPTIVE

PMPC
In this section we first extend the conventional definition of PMPC such that all the com-
ponents of PMPC can be modified. Based on this definition, we present a novel synthesis
framework for RL-PMPC, and further consider five cases, each corresponding to a spec-
ification of the novel framework by parameterizing a different component of PMPC. The
frequently used mathematical notations are defined in Table 5.1.

5.3.1. EXTENDED PMPC SCHEME

In a general PMPC scheme, there are three time scales: the simulation sampling time
Ts of the prediction model, the control sampling time Tc, and the PMPC operation sam-
pling time Tp, and the corresponding counting steps are ks, kc, and kp. The relationships
between them are:

Tp = m2 ·Tc = m2m1 ·Ts, m1,m2 ∈N+, (5.1)

with m1 and m2 positive integers, N+ the set of positive integer values. The output pa-
rameters generated by PMPC at operation step kp are assumed to remain constant dur-
ing time interval [kpTp, (kp +1)Tp), while the control inputs given to the system are up-
dated every Tc time units based on the parameterized control laws, and the states which
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Figure 5.1: Illustration of different time scales of the PMPC scheme during a prediction window, in which kp is
the PMPC operation step, kc is the control step, and ks is the simulation step of the prediction model.

are measured every Ts time units1. Within the prediction window, each PMPC operation
step kp corresponds to the control steps {m2kp, . . . ,m2kp+m2−1}, and each control step
kc corresponds to the simulation steps {m1kc, . . . ,m1kc+m1−1} of the prediction model.
The relationships among different time scales over a prediction window are illustrated in
Figure 5.1, in which

Np,s = m1 ·Np,c = m1m2 ·Np,o, m1,m2 ∈N+. (5.2)

Considering a PMPC problem for a general nonlinear system with state and input
constraints, the following optimization problem needs to be solved at every PMPC oper-
ation step kp:

min
uθ(kp)

J (x̃(kp), ũ(kp),θJ ) (5.3)

s.t. x̂(m1(m2kp +k)+ℓ+1) = F
(
x̂(m1(m2kp +k)+ℓ),uc(m2kp +k),θF

)
,

for ℓ= 0, . . . ,m1 −1, k = 0, . . . , Np,c −1, (5.4)

G
(
x̃(kp), ũ(kp),θG

)≤ 0, (5.5)

x̃(kp) = [x̂⊤(m1m2kp +1), . . . , x̂⊤(m1m2kp +m1Np,c)]⊤, (5.6)

ũ(kp) = [u⊤
c (m2kp), . . . ,u⊤

c (m2kp +Np,c −1)]⊤, (5.7)

uc(m2kp +k) = f
(
x̂(m1(m2kp +k)),uθ(kp),θ f

)
, for k = 0, . . . , Np,c −1, (5.8)

x̂(m1m2kp) = x(m1m2kp), (5.9)

1In general, the measurement sampling time can be different to allow for measurement of states, constraints,
and performance criteria.
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in which uθ(kp) denotes the parameter variables to be optimized every operation step,
F (·) is the prediction model that is parameterized by θF , and x(m2m1kp) is the measured
state vector at the time instant m1m2kp; J (·) is the objective function parameterized by
θJ , and G represents the constraint for the control inputs and states parameterized by
θG ; f is the state-feedback function, which maps uθ to uc and which is parameterized
by θ f . Typically, only the first element of the optimized parameter vector, i.e., uθ(kp), is
implemented, and the optimization problem is solved again at the next operation step
kp +1.

Remark 8. For the sake of simplicity, it is assumed in the PMPC formulation (5.3)-(5.9)
that uθ(kp) remains constant during the entire PMPC prediction window. However, it is
straightforward to allow uθ(kp) to vary with the PMPC operation step within the PMPC
prediction window. One choice is to keep the parameters constant for an interval (e.g.,
several time steps) and then change for the next interval over the prediction horizon, which
is a hybrid option called move blocking [21].

In conventional PMPC [60], [119], only the control inputs are parameterized and the
resulting parameters uθ are optimized. If we simplify the state-feedback function (5.8)
to an identity function such that uc = uθ , then the PMPC problem reduces to a conven-
tional MPC problem. In the PMPC problem (5.3)-(5.9), in addition to the state-feedback
function, the other components of the PMPC scheme are all parameterized, including
the constraint sets, the objective function, and the system model. This yields an ex-
tended PMPC scheme that can cover the existing MPC methods introduced in Section
??. However, if we take all the parameters as decision variables in (5.3)-(5.9), the resulting
optimization problem will be difficult to solve, due to the large number of optimization
variables and the nonlinearity and nonconvexity introduced by the parameters. This
issue can be addressed by the proposed RL-based adaptive PMPC synthesis framework.

5.3.2. THE SYNTHESIS FRAMEWORK
Instead of designing a specific scheme and tailor a solution for each possible parameter-
ization case separately, we propose to integrate all the possible solutions in an RL-PMPC
synthesis framework. As shown in Figure 5.2, all parameterization cases are embedded
in this framework, and a high-level RL agent is employed to adapt the parameterized
components, such that the complex optimization problem with multiple parameters is
avoided. Note that the RL agent in general works with a lower frequency than PMPC to
adjust the parameters θ = [θ⊤

F ,θ⊤
f ,θ⊤

J ,θ⊤
G

,θ⊤
s ]⊤ of all the parametric components.

The high-level RL agent directly adjusts the parameters such that they can be re-
garded as constants during the PMPC computation procedure. This simplifies the op-
timization problem of PMPC and makes the framework computationally efficient. In
addition, by parameterizing the control inputs via θ f , the number of the optimization
variables of the proposed framework can be further reduced. One additional advantage
of the proposed framework is that each parameterization case can be implemented ei-
ther alone or jointly with other parameterization cases. This significantly improves the
ability and flexibility of the framework to deal with varying or unknown environments
and disturbances. Next, we first define the RL agent and then illustrate the proposed
framework by detailing each case separately.
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Figure 5.2: The synthesis framework of RL-PMPC

DEFINITION OF THE RL AGENT

The definition of the RL agent within the framework is related to the learning goal and
the learning process, whereas the extended PMPC framework together with the con-
trolled system can be regarded as the environment of the RL agent. The high-level RL
agent introduces an extra time scale, i.e., RL adapts the PMPC controller with an opera-
tion sampling time Trl:

Trl = m3 ·Tp, m3 ∈N+, (5.10)

and with the corresponding adaption step krl. The reinforcement learning process is
modeled as a discrete-time stochastic control process (i.e., a Markov decision process
(MDP)), which can be represented by a five-tuple 〈S, A,P,R,γ〉. According to the RL
agent within the framework (see Figure 5.2), these elements are defined as follows:

• S: State space, which is the set of all possible states skrl of the environment per step
krl. In this framework, the state space may include the measured system states
x(ks) where ks = m3m2m1krl, the measurable external disturbances, and the con-
trol inputs generated by the low-level PMPC controller. To facilitate the learning
process, the state values are normalized to the same scale.
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• A: Action space, which is the set of all possible actions akrl that can be taken by the
DRL agent based on state skrl at operation step krl. In this framework, the action
can include the values of the parameters, which is defined in the most general case
by:

akrl = θ = [θ⊤
F ,θ⊤

f ,θ⊤
J ,θ⊤

G ,θ⊤
s ]⊤. (5.11)

The action can contain the parameters of a single or multiple components of the
PMPC scheme during implementations. In order to avoid safety issues or signifi-
cant performance fluctuations during the learning process of the framework, the
action space (i.e., the range of the parameters) of the RL agent can be restricted to
a relatively safe set based on previous experiences or expert knowledge. When the
modified values θ of the parameters violate their given upper and lower bounds
(i.e., θ and θ), the values will be saturated within the bounds.

• P : A function of the state and the action that determines the transition probability
among the states when taking the corresponding action. In this framework, this
function is implicitly defined jointly by the PMPC scheme and the system.

• R: Reward function, which generates the immediate reward rkrl (skrl , akrl ) when
taking action akrl

at state skrl . The reward function is the core component of an
RL agent, as it determines the learning goal. Since the proposed framework is
performance-driven, the reward function should contain the performance crite-
ria of the system, which can include the objective function J (·) used in the PMPC
scheme and other extra performance indices (e.g., computation time or penalty
on constraint violations).

• γ ∈ [0,1): A user-defined discount factor on future rewards.

The goal of learning is to find a policy π : A×S → [0,1], π(a, s) = Pr(akrl = a|skrl = s), that
maximizes the accumulative long-term reward, which is the expected return defined by:

Qπ
(
skrl

, aπkrl

)
=Er,s∼E

[ ∞∑
krl=0

γkrl rkrl (skrl , aπkrl
)

]
=Er,s∼E

[
rkrl (skrl , aπkrl

)+γQπ
(
skrl+1, aπkrl+1

)]
,

(5.12)

where the subscript r, s ∼ E denotes the stochastic transitions among the states in the
environment, and aπkrl

is the action taken at step krl based on the policy π(·). Depending
on the specific problem, various RL algorithms can be chosen. In particular, when deal-
ing with large-scale problems with multiple parameters, the deep RL algorithms that can
address continuous state space are preferred, such as Deep Q-Network (DQN) or actor-
critic algorithms [65], [111], [133], [134].

Remark 9. The learning process can be conducted offline (i.e., using a detailed simulation
model to generate data), which is known as pre-training, or online (i.e., interacting with
the real system), or via a combination of online and offline processes. Both variants have
a similar training process (see Algorithm 2).
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Algorithm 2 Offline learning process of the RL-PMPC synthesis framework

1: Initialize the DDPG agent: the critic and actor networks, the corresponding target
networks and the experience replay buffer

2: Initialize the PMPC scheme by determining the parameterization, and define the
state space, action space, and reward function of the DDPG agent

3: for episode from 1 to M do
4: Initialize the system states
5: for every RL adaption step krl do
6: Observe state skrl

7: Take action akrl according to state skrl and policy π(·), and update parameters θ
of the PMPC scheme

8: for every PMPC operation step kp do
9: Measure state x(m2m1kp)

10: Solve the PMPC problem (5.3), and get the optimized parameter uθ(kp)
11: for every control step kc do
12: Measure state x(m1kc) and calculate the control inputs uc(kc) according to

(5.8)
13: for every step ks do
14: Implement control input uc(kc) on the simulation model; measure and

record states x(ks +1)
15: end for
16: end for
17: end for
18: Observe the reward rkrl and next state skrl+1

19: Store transition (skrl , akrl , skrl+1,rkrl ) in the replay buffer
20: Sample a mini-batch of N data points from replay buffer randomly
21: Update the critic and actor (target) networks based on the sampled data accord-

ing to [111]
22: end for
23: end for

Algorithm 2 summarizes the overall learning process of the proposed framework, and
a deep RL algorithm, i.e., deep deterministic policy gradient (DDPG) [111], is used for ex-
ample2. The RL agent is trained for M episodes, and each episode starts from the initial
state and ends in the terminal state or at the terminal time step. Note that Algorithm 2
can be easily extended to other RL algorithms. In addition, the online variant of Algo-
rithm 2 can be obtained by changing line 14, in which the simulation model is replaced
by the real system. Next, the RL-based modification of each component of the PMPC
scheme is discussed separately in detail.

2The explanation of the DDPG techniques, i.e., critic and actor structure, experience replay, and target net-
works, is omitted here for compactness. For more details, the reader can refer to [111], [134].
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CASE A: RL MODIFYING THE SYSTEM MODEL

Adjusting the model parameters can reduce the mismatch between the prediction model
and the real system, thus resulting in more accurate predictions and better control per-
formance. Therefore, the states skrl of the RL agent at adaptation step krl can include
the measured states of the real system at the corresponding time step, i.e., x(ks) with
ks = m3m2m1krl, and other necessary information of the environment, such as the dis-
turbances and PMPC inputs. In this section, the objective of RL (i.e., the reward func-
tion) can be either minimizing the modeling errors, as in [193] and [83], or optimizing
the control performance directly. For the former case, the reward function can be de-
fined to minimize the error between the predicted states and the measured states. For
the latter case, the reward function can be defined to minimize the objective function in
PMPC:

rkrl (skrl , akrl ) =−R(x̄(krl), ū(krl)), (5.13)

where R(·) can be similar to the PMPC objective function J (·), and x̄ and ū include the
measured states and implemented PMPC inputs during time interval [krlTrl, (krl +1)Trl).
For linear systems with parametric uncertainties (e.g., see [122], [210]), one way is to
parameterize the system as:

F (x ,u,θF ) = A(θF )x +B(θF )u. (5.14)

The parameters θF can be adjusted by the RL agent directly at every adaption step krl,
and the action can be the corresponding parameter values. In this way, RL can adjust
the varying parameters caused by the changing environment, via interacting with the
environment or a simulation model. This strategy can also be extended to more general
linear systems with other parametric models than (5.14).

For nonlinear systems, consider a widely-used parametric nonlinear model [2]:

F (x̂ ,u,θF ) = F f (x̂ ,u)+Fg (x̂ ,u)θF , (5.15)

where θF can be the adjusted by the RL agent. Moreover, according to [184], basis func-
tions can be used to construct linear parameter-varying models. Then the RL agent can
be used to tune the weights of the chosen basis functions. This can also be applied to
the cases where artificial neural networks (ANNs) are used to approximate the nonlin-
ear system. For example, the RL agent can be used to tune the weights of the neurons
of ANNs [5], or to compensate for the modeling errors between the real system and the
ANNs [151]. Furthermore, some systems have different modes or dynamics under dif-
ferent working conditions, which can be described by switching among several system
models. Then the RL agent can be used to select the suitable system model to adapt to
varying conditions.

CASE B: RL MODIFYING THE PARAMETERIZED CONTROL LAWS

Parameterizing the control laws with state-feedback functions (i.e., control law f (·)) is
the main way to reduce the computation time in this framework. Several studies (see, e.g.
[100], [154], [207]) consider a fixed control law that is pre-designed based on the expe-
rience or expert knowledge. This handcrafted design may work well for some scenarios,
but the control performance may deteriorate when the system conditions change over
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time. Therefore, in this section, the RL agent within this framework allows to tune the
control law f (·), which is parameterized by θ f . Consider the following example, where
the control law f (·) is a combination of several basis functions:

f (x̂ ,uθ,θ f ) =
n f∑
i=1

θ f ,iφ f ,i (x̂ ,uθ), (5.16)

in which θ f = [θ f ,1, . . . ,θ f ,n f
]⊤ with n f the number of the basis functions. Accordingly,

the action of the RL agent can be defined by (5.11). The basis functions φ f ,i (x̂ ,uθ), i =
1, . . . ,n f should be designed a priori to handle various system conditions. They can be
constructed empirically or by resorting to a learning-based method. For example, the
grammatical evolution algorithm can be used to generate the control laws automatically
in an offline style [90]. Furthermore, the state space and reward function for this case
can be defined the same way as in Case A.

CASE C: RL MODIFYING THE OBJECTIVE FUNCTION AND CONSTRAINT SETS

It has been shown that the objective function and constraints within the PMPC scheme
can be adjusted to further improve the control performance [64], while it has not been
illustrated how to systematically parameterize the objective function. Arroyo et al. [7]
also approximated the infinite cost of the objective function by using a stage cost and a
value function. However, this leads to increased complexity in solving the optimization
problem, since the value function introduces extra nonlinearity and nonconvexity to the
optimization problem. Arroyo et al. [7] used an exhaustive search method to find an
optimal action per time step. In this section, we propose to rewrite the objective function
(5.3) as in [64], which is given by:

J (x̃(kp), ũ(kp),θJ )

=
Np,c−1∑

k=0

m1−1∑
ℓ=0

L(x̂(m1(m2kp +k)+ℓ),uc(m2kp +k),θJ )

+T (x̂(m1m2kp +m1Np,c),θJ ), (5.17)

where L(·) and T (·) are the stage cost function and terminal cost function parameter-
ized by θJ . One possible realization of the parameterized stage cost L(·) and terminal
cost T (·) can be similar to (5.16), i.e., a combination of basis functions weighted by the
parameters. In addition to the methods presented in Section 5.3.2 for constructing the
basis functions, radial basis functions (RBFs) can also be considered since they have the
universal approximation property [131], [150]. The selection of the centers and weights
of the RBFs can be done by the RL agent within this framework, where these parameters
can be integrated into θJ , and the action of the RL agent can be the same as (5.11).

The terminal constraint set is important in MPC theory to guarantee the recursive
feasibility and it can be adapted online [166]. However, Rosolia et al. [166] did not con-
sider the changing environment or disturbances. In this case, all the constraint sets are
integrated in the function G (x̂ ,u,θG ), which is parameterized by θG . Therefore, θG can
be tuned by the RL agent to respond to the varying environmental conditions. Further-
more, the state space and reward function for this case can be defined as in Case A.
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CASE D: RL MODIFYING THE OPTIMIZATION SETTINGS

In this section, we propose to use the RL agent to modify the optimization settings, such
as the length of the prediction horizon as in [153] and the optimization options of a
solver. Proper tuning of the prediction horizon can result in a balance between com-
putational complexity and performance, so as the solver options. Different optimization
algorithms may lead to various results, and for each algorithm, the optimization settings
such as the constraint tolerance, step size tolerance, function value tolerance, and other
parameters, which significantly influence the optimization speed and accuracy, should
be pre-selected. Within our proposed framework, these parameter values are allowed
to be adapted according to the varying environment and control objective. The reward
function of the RL agent for this case should be revised, for instance to be defined as
a combination of the control performance and the computational efficiency, which is
given by:

rkrl (skrl , akrl ) =−R(x̄(krl), ū(krl))− JC (akrl ), (5.18)

where JC (·) is an index that denotes the computational efficiency of the solver (e.g., the
computation time for solving the optimization problem). Accordingly, the state space of
the RL agent can be defined as in Case A, and the action can be given by (5.11).

As mentioned in Remark 8, the optimization variables uθ can be changed in a move
blocking way. Let Nb denote the number of the PMPC operation steps where the param-
eters remain constant within the prediction window. If Nb = Np,o, then uθ is constant
over the prediction window. In this case, the computation time is reduced, but will in
general result in less optimal performance. Therefore, Nb can also be a parameter that is
tuned by the RL agent to reach a trade-off between the performance and the computa-
tion time.

CASE E: RL MODIFYING PARAMETERIZED CONTROL INPUTS

This is a degenerate case with the PMPC module, in which the RL agent is used to tune
uθ generated by the optimization process of the PMPC module. This is different from
conventional studies [161], [178], [211], in which the RL agent directly adjusts the con-
trol inputs that are fed into the system. Considering a simple case for (5.8), where the
parameterized control law is a linear function:

uc(kc) = uθ x̂(m1kc), (5.19)

the corresponding RL action is

akrl =∆uθ, (5.20)

where ∆uθ is the adjustment value to uθ . Compared to adjusting uc or determining uθ

directly, tuning the parameters∆uθ is expected to be more robust in terms of the control
performance during the learning process. In particular, without the MPC scheme (i.e.,
the receding horizon optimization process), the framework will be reduced to an RL-
based adaptive state feedback controller, as in [177]. The state space and reward function
can be defined as in Case A.
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Figure 5.3: The layout of the freeway network in this case study

5.4. CASE STUDY
In this section, Case B from Section 5.3.2 is implemented on a freeway network, in order
to illustrate the proposed framework. First, the freeway network is presented, followed
by the traffic demand profiles, external disturbances, and weather conditions that in-
troduce parameters uncertainties. Then the parameterized control law based on ramp
metering (RM) is introduced. A DQN agent is utilized in the proposed framework to tune
the parameters of the parameterized RM control law. The performance of the proposed
framework is compared with conventional MPC, PMPC, and a standalone RL controller.

5.4.1. FREEWAY NETWORK

The benchmark freeway network from [118] is used in this case study, which is presented
in Figure 5.3. This freeway network is divided into 18 segments of 1000 m long. There are
1 mainstream origin (O0), 3 on-ramps (O1,O2,O3), 1 unrestricted destination (D0), and 3
unrestricted off-ramps (D1,D2,D3). All the three on-ramps are regulated by a traffic light,
which can control the ramp metering rate (i.e., ramp metering (RM) control). Therefore,
there are 3 control signals in total for this network. In this case study, METANET is used
to represent the freeway network, and the perturbed version of the same model is used
as the prediction model for PMPC. Therefore, both the controlled system and the pre-
diction model have the same simulation sampling time. METANET is a second-order
macroscopic traffic flow model that has been widely used in freeway traffic control [73],
[118], due to its ability to reproduce freeway traffic phenomena with relatively less com-
putational complexity. More details about METANET can be found in [102], [130].

In this case study, a scenario of recurrent traffic demand for 2 hours during the rush
hour is considered. Traffic demands from all origins (O0,O1,O2,O3) are presented in
Figure 5.4. In addition, a shock wave from the downstream boundary is generated to
produce extra traffic jams. Such a shock wave is an abrupt increase in traffic density that
will propagate from downstream to upstream. The downstream density profile is pre-
sented in Figure 5.5. The parameters of the freeway model are taken from [118]. In this
case study, environment changes are considered that can influence the parameters of
the traffic network. More specifically, the weather condition is taken into consideration,
which is classified into three levels: good weather, bad weather, and extreme weather.
The real parameters of the freeway model and the estimated parameters of the predic-
tion model are presented in Table 5.3, for different weather conditions. The mathemati-
cal notations of the parameters are the same as [118]. For definitions of the parameters,
the reader can refer to [73], [118].
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Figure 5.4: Traffic demand profiles for the origins of the freeway network

Six weather scenarios are considered, each of which corresponds to a 2-hour simu-
lation interval where the weather condition remains unchanged for the first hour and
switches to another condition for the next hour. The weather scenarios are defined as:

• Scenario 1: from good weather to bad weather;

• Scenario 2: from good weather to extreme weather;

• Scenario 3: from bad weather to extreme weather;

• Scenario 4: from bad weather to good weather;

• Scenario 5: from extreme weather to good weather.

• Scenario 6: from extreme weather to bad weather.

In this case study, all the controllers are implemented on these six scenarios and the
performances of the resulting controlled systems are compared per scenario. Note that
each simulation starts with a fixed initial state, which is obtained by starting with an
empty freeway network and considering a constant demand of 3000 veh/h from the
mainstream origin and 500 veh/h from the on-ramps for a period of 15 min; the state
of the freeway network at the end of this period is used as the initial state for each of the
simulations.

5.4.2. PARAMETERIZED FREEWAY TRAFFIC CONTROL LAWS
Ramp metering (RM) rates have been widely used in freeway traffic management [73].
This control measure was further parameterized by [207] in an MPC framework. The
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Figure 5.5: The downstream density used to generate shock wave for the freeway network

parameterized control law of RM used in this case study is based on [207], and is given
by:

urm,i (kc +1) = urm,i (kc)+uθ(kp)
(
θ f (krl)−ρi (kc)

)
, (5.21)

where kc is the control step, kp is the PMPC operation time step, krl is the RL operation
time step, urm,i (kc) is the RM control input for the on-ramp that is linked to segment
i , ρi (kc) is the measured traffic density of the downstream segment i of the on-ramp,
and uθ(kp) is the parameter optimized by PMPC at operation step kp. Note that the
control law (5.21) is derived from ALINEA [146], in which the original parameter θ f is
the setpoint density obtained through experiments and history data. In this case study,
the same parameterized control law (5.21) is applied to all the three on-ramps, in which
θ f (krl) is the parameter that is tuned by the RL agent at operation step krl.

5.4.3. CONTROLLERS
All the MPC-based controllers in this case study use the prediction model with estimated
parameters given in Table 5.3. In addition, the learning-based controllers (i.e., stan-
dalone RL controller and RL-PMPC controller) are trained off-line with the prediction
model, and are validated via the system with real parameters. The simulations are per-
formed on a PC with an Intel Xeon Quad-Core E5-1620 V3 CPU with a clock speed of 3.5
GHz.

In this case study, the total time spent (TTS) by all the vehicles in the entire freeway
network for all the 5 weather scenarios is taken as the performance criterion for the con-
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trollers. For the METANET model, simulation sampling time is Ts = 10s. The control
sampling time for the parameterized control laws is Tc = 60s; the PMPC scheme opera-
tion sampling time is Tp = 300s. The control input constraints are given as:

0 ≤ urm ≤ 1.

Therefore, the RM control inputs generated by (5.21) should be saturated within the
bounds. The projection method in [90] is utilized to enforce the constraints on the con-
trol inputs, and it has been illustrated that the projection-based PMPC can achieve better
or equal performance than conventional PMPC with constraints. During the entire 2-
hour simulation, it is assumed that the prediction model used by the (P)MPC controllers
is fixed with the estimated parameters corresponding to the initial weather condition.
Meanwhile, the parameter θ f in the parameterized control law remains constant with
the value of critical density ρcrit of the initial weather condition for the standalone PMPC
controller.

STANDALONE PMPC CONTROLLER

The objective function of the PMPC scheme only contains the TTS within the prediction
window. The PMPC operation sampling time is 300 s, i.e., that the parameterized opti-
mization problem is solved every 300 s, while the parameterized control law (5.21) works
on the basis of 60 s (i.e., provides control inputs according to the states every 60 s). The
length of both the prediction horizon and the control horizon is 900 s. Thus, Np,s = 90,
Np,c = 15, Np,o = 3. Furthermore, Nb = 1, which means that the optimized parameters
are allowed to change per PMPC operation step (i.e., every 300 s) within the prediction
window. Therefore, the number of the optimization variables is 1×Np,o/Nb = 3.

The sequential quadratic programming (SQP) algorithm [15] is implemented via the
fmincon function from Maltab to solve the nonlinear constrained optimization prob-
lem. To avoid getting stuck in local optima, multiple starting points are selected ran-
domly to solve the optimization problem, and the best solution is taken as the final re-
sult. In this case study, the number of initial points is selected to be 40, which is de-
termined according to the experiments, as in this way a balance is achieved between
optimality and computational efficiency. In addition, the stopping criteria of the SQP
algorithm are also tuned, in which the cost function tolerance, step tolerance, and con-
straint tolerance are all selected to be 10−2.

STANDALONE MPC CONTROLLER

A conventional standalone MPC controller is also implemented on the freeway network.
It has the same settings as the PMPC controller, and has an operation sampling time of
60 s. Since the conventional MPC controller directly optimizes the ramp metering rates
of the entire freeway network for every control step within the prediction window, it has a
larger number of optimization variables than the PMPC controller, which is 3×Np,c = 45.

STANDALONE RL CONTROLLER

The definition of the RL agent is similar to what has been explained in Section 5.3.2.
More specifically, the state space of the RL agent consists of the measured traffic state x
at RL operation step krl, the traffic demands, downstream boundary density, previously
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Table 5.2: Training parameters of the DQN agent

Parameter Value
Maximal episodes M 2000

Mini-batch size N 512
Experience replay buffer size 1 ·105

Discounter factor γ 0.99
Learning rate 0.001

Target network update rate β 0.01
Initial ϵ value 1.0
ϵ decay rate 0.005

Minimum ϵ value 0.01

implemented ramp metering rates, and the real-time weather condition. The action of
the RL agent consists of the ramp metering rates, which are given to the freeway network
directly and have the same bound constraints as the PMPC controller. For simplicity, the
three on-ramps share the same ramp metering rates, which is discretized into 11 values
distributed equidistantly between 0 and 1. Therefore, the dimension of state space is 46
and the dimension of action space is 1. The operation sampling time for the standalone
RL controller is set the same as the network control sampling time, that is, Trl = 60s.
Thus the reward is defined as the negative value of the TTS during the simulation interval
[krlTrl, (krl +1)Trl) between two RL operation steps.

Accordingly, a deep Q-Network (DQN) [134] agent is used, which can address the
continuous state space and the discrete action space. The neural network consists of one
input layer, one output layer, and three hidden layers. The size of the input and output
layers correspond to the dimensions of state and action spaces, respectively. The three
hidden inner layers have 64, 256, and 64 neurons, and each of them uses a ReLU activa-
tion function. The training parameters of the DQN agent are given in Table 5.2, in which
ϵ is the exploration parameter decaying from the initial value to the minimum value with
the decay rate. A higher value ϵ encourages more exploration. Thus, the agent has a high
probability to choose actions randomly in the early learning stage, and the probabil-
ity decreases gradually as the training procedure evolves. Similarly to [178], n−step TD
(temporal difference) is also used in this DQN agent to improve the learning and control
performance, with n = 15.

RL-PMPC CONTROL FRAMEWORK

The RL-PMPC control framework consists of a PMPC controller and an RL agent. The
PMPC controller is the same as the standalone PMPC controller defined in Section 5.4.3.
The DQN agent defined in Section 5.4.3 is also used in this control framework. In addi-
tion to the state space of the standalone RL controller, the agent in this framework has
extra state variables, i.e., the PMPC output uθ(kp). Furthermore, the action space is also
different. The RL agent within the framework tunes the parameters θ f (krl) of the control
law (5.16) at every RL operation step krl. Based on numerical tuning experiments, the
range of the parameter θ f is set from 15 veh/km/lane to 40 veh/km/lane, and the ac-
tion space is discretized into 11 actions distributed equidistantly within this range. The
parameter selected by the RL agent is applied to all the on-ramps.
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Since the aim of the RL agent within this framework is to deal with the changing en-
vironment (i.e., the changing weather conditions), this RL agent has an operation sam-
pling time that is in line with the weather-changing frequency. In this case study, we have
Trl = 1800s. Consequently, the reward at each RL step krl is the negative value of the TTS
during the simulation interval [krlTrl, (krl +1)Trl).

5.4.4. RESULTS AND DISCUSSION

The TTS and CPU time results for each controller per scenario are collected as the aver-
age values of 10 independent runs, and the results are presented in Table 5.4, in which
the mean computation time is the average time required for the optimization process
per control step, and the max computation time corresponds to the maximum over all
the control steps of the computation time per step.

Table 5.4 shows that all the controllers improve the performance in terms of TTS with
regard to the no-control case. More specifically, the standalone MPC controller provides
the best TTS performance among all the controllers for scenarios 1-4. This is because the
standalone MPC controller optimizes the control inputs directly for each on-ramp, and
can thus provide the optimal control inputs. However, the standalone MPC controller
results in the largest computation time for all the scenarios, in terms of both mean and
max computation time. In comparison, the standalone PMPC controller significantly
reduces the computation time with regard to the standalone MPC controller, and it pro-
vides a better TTS control performance than the standalone RL controller for Scenarios
2, 4 and 6. The computation time of the standalone RL controller is negligible since only
an online neural network evaluation is required to obtain the control inputs. Neverthe-
less, the standalone RL controller is sensitive to the model mismatches between the pre-
diction model (i.e., the training model) and the real system (i.e., the validation model).
Therefore, even when the RL agent is trained with sufficient number of data samples, the
validation performance still cannot be guaranteed (see Scenarios 2, 4 and 6 in Table 5.4).

In contrast, the RL-PMPC controller achieves a better performance than both the
standalone PMPC and the standalone RL controllers. With the PMPC module, the RL-
PMPC framework can guarantee a basic performance. With the RL module, the RL-
PMPC framework can further improve the control performance of the PMPC module by
online tuning the parameters of the parameterized control laws. The RL-PMPC frame-
work can also adapt better to the model mismatches and the changing environment
(i.e., changing weather conditions). Furthermore, the RL-PMPC controller inherits the
advantage of computational efficiency of PMPC and RL. Therefore, the RL-PMPC con-
troller has a significantly reduced online computation time compared to the standalone
MPC controller, and meanwhile provides a TTS performance that is comparable to the
standalone MPC controller for all the considered scenarios. One additional advantage
of RL-PMPC is that the action space of the RL module is reduced with regard to the stan-
dalone RL agent, since only the parameters within the parameterized control laws are
tuned. The number of the parameters is usually smaller than the number of the control
inputs, which therefore makes it easier for the RL agent to explore the environment and
learn the optimal policy. Note that in this case study, the number of the parameters is 1
and the number of the control inputs is 3.
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Furthermore, the traffic states during the simulation interval of different controllers
are depicted in Figure 5.6 to Figure 5.9, and Scenario 1 is selected to compare the per-
formance of the controllers. As shown in Figure 5.6, the traffic demands from the on-
ramps O2 and O3 at the time 0.25 h cause traffic congestion at segment 11 and 17, which
propagates to the upstream gradually. After the time 0.5 h, the shock wave from the
downstream of segment 18 causes another jam wave moving backwards. At the time 1
h, the traffic situation gets worse due to the weather change. As shown in Figure 5.7, the
standalone PMPC controller can alleviate the traffic congestion caused by the on-ramp
traffic demands during the first hour by regulating the on-ramp metering rate. However,
the jam wave can not be eliminated through on-ramp metering, and the congestion is
still severe during the second hour due to the bad weather. The standalone RL controller
can improve the traffic situation during the second hour, due to its adaptation to the
changing environment. Moreover, the proposed RL-PMPC controller can further im-
prove the traffic efficiency compared with both the standalone PMPC controller and the
standalone RL controller. It is not only because the RL-PMPC controller is adaptive to
the changing environment, but also because it has a better sample efficiency and learns
better than the standalone RL controller with limited training data.

Remark 10. In this case study, we only consider one freeway control measure (i.e., ramp
metering) to illustrate the concept of the RL-PMPC framework. If we introduce extra free-
way control measures (e.g., variable speed limits), the RL-PMPC controller has more free-
dom to tune the corresponding parameters, which is hypothesized to further improve the
control performance with regard to the standalone PMPC controller.

5.5. CONCLUSIONS

This paper has proposed a novel synthesis framework for PMPC that integrates an ex-
tended PMPC scheme and an RL agent, in order to deal with changing environments
and disturbances. The resulting RL-based adaptive PMPC (RL-PMPC) framework is not
only computationally efficient, but it can also adapt to model mismatches and environ-
mental uncertainties. The novel framework allows to adjust multiple components of the
PMPC scheme by the RL agent, thus providing more flexibility to deal with uncertain-
ties. Five cases of the synthesis framework are presented corresponding to adjusting
different components of the PMPC scheme. The framework embeds existing adaptive
MPC methods, and further broadens adaptive MPC by proposing several new adaption
strategies. We have illustrated the operation of the RL-PMPC scheme via a simulation-
based case study for a freeway network that suffers from model mismatches and chang-
ing weather conditions. The simulation results show that the proposed RL-based adap-
tive PMPC framework outperforms the standalone PMPC and the standalone RL con-
trollers in terms of total time spent, and can provide comparable control performance
to the conventional MPC controller with significantly reduced computation time, under
a changing environment and disturbances.

In the future, stability and recursive feasibility of the novel control framework will
be investigated. Moreover, the performance can be compared with existing robust MPC
methods. In addition, the proposed framework can be extended to a multi-agent variant
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Figure 5.6: Traffic states of the freeway network during the simulation interval without control for Scenario 1.
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Figure 5.7: Traffic states of the freeway network during the simulation interval with the standalone PMPC
controller for Scenario 1.
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Figure 5.8: Traffic states of the freeway network during the simulation interval with the standalone RL con-
troller for Scenario 1.
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Figure 5.9: Traffic states of the freeway network during the simulation interval with the proposed RL-PMPC
controller for Scenario 1.



5.5. CONCLUSIONS

5

121

by integrating distributed PMPC and multi-agent RL, such that it can also be applied to
larger networks.
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6
CONCLUSIONS AND

RECOMMENDATIONS

This chapter concludes and emphasizes the impact of this thesis, and provides recommen-
dations for future research on the basis of this thesis.
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6.1. CONCLUSIONS

In this thesis, we have addressed the challenges of MPC for traffic management in terms
of computational complexity and model mismatches by developing several novel MPC-
based control frameworks for urban and freeway traffic networks. More specifically, the
main contributions of this thesis are summarized as follows:

• We have proposed a novel bi-level temporally-distributed MPC framework to deal
with the green urban mobility issue that usually involves long-term (e.g., one year)
emission constraints, and is thus computationally intractable due to the large win-
dow of the problem. The proposed framework contains a high-level MPC con-
troller based on a rough prediction model that incorporates the long-term emis-
sion constraint into its decisions, and a low-level MPC controller based on a de-
tailed prediction model that provides traffic signal control inputs for the urban
traffic network. In this way, the computational challenge of MPC is addressed
and the long-term emissions can be reduced due to the integrated long-term and
short-term optimization.

• We have employed a grammatical evolution method to generate parameterized
control laws for PMPC with application to urban traffic signal control. Two training
frameworks have been developed to ensure that the generated control laws steer
the system to the desired direction. With a properly learned parameterized control
law, the resulting PMPC controller can significantly reduce computational bur-
dens with comparable control performance, compared to the conventional MPC
controller.

• We have developed a novel combined MPC-DRL framework, in which the MPC
module provides a basic control performance at a lower frequency based on a pre-
diction model, and the DRL module works at a higher frequency to compensate
for the model mismatches and external disturbances through learning. Therefore,
the real-time computational complexity can be reduced. Furthermore, for the case
study that was considered, the combined MPC-DRL framework showed to outper-
form both standalone MPC and DRL methods.

• We have proposed a synthesis framework of RL-based adaptive PMPC. In this frame-
work, all components of the PMPC scheme, such as the cost function, the predic-
tion model, the control law, the constraint set, and the terminal set, can be pa-
rameterized and adjusted by a high-level RL agent. In addition to the advantage
of computational efficiency that is provided by PMPC, the proposed framework
can also deal with external disturbances and changing environments through on-
line learning and adaptation. Furthermore, this framework broadens the field of
adaptive MPC by proposing several novel adaption strategies. This framework has
been applied to a freeway network to adapt the PMPC controller under model mis-
matches and changing weather conditions, and the results show that the perfor-
mance of PMPC can be further improved by the RL agent.
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6.2. IMPACTS OF THIS THESIS

6.2.1. SOCIAL IMPACTS
The work of this thesis has several potential social impacts, which can be summarized
as follows.

GREEN URBAN MOBILITY

The bi-level temporally-distributed MPC framework proposed in Chapter 2 provides a
solution to address long-term emission constraints (e.g., annual limits on the overall
emissions). This approach can deal with the emissions that are generated by road trans-
portation, including urban traffic and freeway traffic. In coordination with the climate
policies, it provides an approach to contribute to fulfilling the climate objectives, such
as carbon neutrality.

IMPROVED TRAFFIC EFFICIENCY AND RESILIENCE

By employing learning-based MPC as discussed in Chapter 4 and Chapter 5 to regulate
traffic, significant reductions in congestion can be achieved. The approaches enable op-
timal decision-making during rush hours and under varying weather conditions, lever-
aging prediction, optimization, and learning techniques. As a result, travel delays can be
minimized, and the resilience of traffic systems can be enhanced, effectively addressing
unexpected conditions and external disturbances.

EXTENSION TO OTHER APPLICATIONS

The methodologies developed in this thesis possess applicability beyond the field of
traffic management. For instance, the bi-level temporally-distributed MPC framework
can find utility in energy management for buildings, facilitating the scheduling of en-
ergy usage over extended periods. Similarly, the learning-based MPC frameworks in-
troduced in this research have the potential to address challenges in other large-scale
networks characterized by model mismatches and computational complexity, including
smart grids and smart buildings. By leveraging these methods, significant contributions
can be made towards realizing a more energy-efficient and environmentally sustainable
society.

6.2.2. SCIENTIFIC AND TECHNICAL IMPACTS
This thesis also contributes to the state-of-the-art MPC approaches that have been veri-
fied to be effective for traffic management.

MULTI-LEVEL MPC SCHEMES

According to the literature [169], multi-level MPC schemes can be classified into four
categories, as introduced in Chapter 2. The bi-level MPC structure proposed in Chap-
ter 2 belongs to one of the categories. However, the multi-level learning-based MPC
frameworks proposed in Chapter 4 and 5 are novel and extend the existing categories of
multi-level MPC frameworks, by combining learning algorithms and MPC schemes in
a hierarchical structure. Therefore, this thesis presents a range of innovative multi-level
MPC control frameworks that effectively tackle the computational complexity associated
with the conventional MPC. The proposed multi-level structures also offers the flexibility
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to incorporate additional control methods or techniques, such as RL-based controllers,
to enhance the performance of the conventional MPC. By leveraging this multi-level ap-
proach, significant advancements can be achieved in terms of control performance and
computational efficiency, thereby paving the way for further improvements in the field
of MPC.

LEARNING-BASED MPC SCHEMES

This PhD thesis presents several innovative learning-based MPC schemes, namely GE-
based PMPC, the combined MPC-DRL framework, and RL-based adaptive PMPC, which
are different from existing literature where the learning methods are usually used to learn
the model errors or prediction residuals [40], [63], [64]. The proposed learning-based
MPC methods in this thesis represent significant advancements in the field of learning-
based control and offer alternative approaches to enhance the performance of conven-
tional control methods. By integrating techniques from evolutionary computation, deep
reinforcement learning, and adaptive control, these schemes leverage the power of ma-
chine learning to improve the effectiveness, efficiency, and adaptability of MPC in vari-
ous applications. The development and evaluation of these novel learning-based MPC
schemes contribute to the expanding landscape of control methodologies and provide
valuable insights for future research and applications in the field.

6.3. RECOMMENDATIONS FOR FUTURE RESEARCH
Based on the work of this thesis, several recommendations are provided for future work,
which can be further divided into application recommendations and theory recommen-
dations.

6.3.1. RECOMMENDATIONS IN TERMS OF APPLICATIONS

VARIOUS TRAFFIC CONDITIONS

In this thesis, weather conditions and shock waves are explicitly considered. However,
when considering a complex traffic environments, such as a lane drop due to accidents
or road closure, or by considering multiple user types (e.g., cars, public traffic, pedestri-
ans, etc.), the traffic management problem becomes more complicated. In order to ad-
dress these issues, more advanced traffic models need to be developed, such that these
conditions are explicitly considered by the control system. This also poses a requirement
for having more detailed traffic simulators.

CONNECTED AUTONOMOUS VEHICLES

As more and more connected autonomous vehicles (CAVs) appear on the roads, they
play an important role in traffic management. CAVs can communicate with each other
and with the traffic infrastructures, which therefore can help regulate traffic flows. For
example, CAVs can limit the speed of traffic flow by complying with the commands given
by the controller. Controlling heterogeneous traffic flows with both CAVs and vehicles
with human drivers is an emerging topic. Therefore, developing an advanced traffic
model that incorporate the role of CAVs is an urgent task.
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ENHANCED CONTROL MEASURES AND APPROACHES

To deal with the increasingly complex traffic environments, more advanced control mea-
sures are needed. Except for conventional traffic signal controllers, infrastructure-to-
vehicle (I2V) communications or vehicle-to-vehicle (V2V) communications provide more
traffic management tools. Taking advantage of emerging control measures and increas-
ing traffic data is a challenge. In addition, enhanced control approaches are also required
to deal with the increasing real-time computational complexity due to the complex traf-
fic models.

CONTROL OF CYBER-PHYSICAL NETWORKS

A traffic network is a typical realization of a cyber-physical network system, and the
methods proposed in this PhD thesis can be applied to other types of cyber-physical
networks, such as to smart energy grids, smart buildings, and water networks. The pro-
posed methods provide several approaches to deal with cyber security, human interac-
tions, and complex interdependencies of cyber-physical networks.

6.3.2. RECOMMENDATIONS IN TERMS OF THEORY
In terms of the theoretical developments based on the work of this thesis, there are a few
recommendations that can further extend the proposed control methods.

EXTENSIONS OF THE RL-BASED ADAPTIVE PMPC
The RL-based adaptive PMPC approach provides the possibility to parameterize all the
components of the PMPC scheme. Each case can be further studied. For example, RL-
based adaptive PMPC to adjust the system model is related to conventional adaptive
MPC techniques, and therefore adaptive MPC theories can be used to develop theoreti-
cal results to analyze stability and optimality for the proposed framework.

DISTRIBUTED MPC-RL FRAMEWORK

This is a natural extension of the work done in Chapter 4 of this PhD thesis, where the
proposed MPC-RL combined control framework only considered a centralized model
predictive control (MPC) module and a single reinforcement learning (RL) agent. Thus,
the proposed framework is limited to application to relatively small networks (e.g., an ur-
ban traffic network that consists of several intersections, or a freeway traffic network that
is several kilometers long with a few on-ramps). In order to increase the scalability of the
combined MPC-RL framework such that it can handle city-wide networks, we can in-
tegrate distributed MPC and multi-agent RL. Both distributed MPC and multi-agent RL
have already been applied to large networks [26], [37], [199], [204]. However, the com-
bination of these two methods has not been investigated yet for large-scale networks.
The main challenge may lie in the coordination and interaction between different local
MPC modules and RL agents, such that the framework can work efficiently and deal with
system uncertainties. In addition, the proof of stability and recursive feasibility can be a
challenging task.

MULTI-TASK LEARNING-BASED CONTROL

Although RL has been widely used in various applications, current studies only consider
a single scenario for an RL agent, which implies that each RL agent is trained to deal
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with one specific object or task. For example, an RL agent can be trained for a specific
traffic network with predefined traffic demands, and it may perform well for this control
task. However, its performance may deteriorate significantly when dealing with different
traffic networks or different control tasks. This restricts the applications of RL methods,
as well as the learning-based control methods, especially when various possible system
failures and attacks should be considered. Therefore, developing a multi-task learning-
based control method is of great practical significance. The main challenges lie in the
hugely increased number of data samples that are required for learning and the forget-
ting issue when switching among different tasks. To address these issues, we may take
advantage of some advanced machine learning algorithms (e.g., transfer learning), such
that the knowledge acquired from one task can be leveraged and transferred across the
other tasks, and we may use advanced update methods of neural networks to store the
useful memory of specific tasks.

GUARANTEE FOR SAFE LEARNING AND CONTROL PERFORMANCE

In this PhD thesis, it has been shown that the proposed learning-based MPC frameworks
achieved better control performance than the conventional MPC and resulted in a bet-
ter learning process than the conventional RL in terms of sample efficiency and learning
safety. For example, the combined MPC-RL framework provides basic performance even
during the learning process, which is safer than the standalone RL, and has no state con-
straint violation during the implementation. However, these results are validated empir-
ically without theoretical guarantees. The main challenges for investigating the theoret-
ical proof of stability, safety, and optimality of the proposed method are related to the
difficulty of achieving theoretical results for nonlinear MPC, especially when uncertain-
ties and potential failures may exist. Moreover, RL introduces extra complexity into the
proof. To address these issues, we may first pose assumptions, such as by simplifying
the problem, or by starting with linear cases. Furthermore, we can leverage the theory
from robust and stochastic MPC, fault detection, fault-tolerant control, and theoretical
results of the latest MPC-RL studies [63], [64].



BIBLIOGRAPHY

[1] K. Aboudolas, M. Papageorgiou, A. Kouvelas, and E. Kosmatopoulos, “A rolling-
horizon quadratic-programming approach to the signal control problem in large-
scale congested urban road networks”, Transportation Research Part C: Emerging
Technologies, vol. 18, no. 5, pp. 680–694, 2010.

[2] V. Adetola, D. DeHaan, and M. Guay, “Adaptive model predictive control for con-
strained nonlinear systems”, Systems & Control Letters, vol. 58, no. 5, pp. 320–326,
2009.

[3] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC control systems–
a review of model predictive control (MPC)”, Building and Environment, vol. 72,
pp. 343–355, 2014.

[4] F. Ahmadizar, K. Soltanian, F. Akhlaghian Tab, and I. Tsoulos, “Artificial neural
network development by means of a novel combination of grammatical evolu-
tion and genetic algorithm”, Engineering Applications of Artificial Intelligence,
vol. 39, pp. 1–13, 2015.

[5] V. A. Akpan and G. D. Hassapis, “Nonlinear model identification and adaptive
model predictive control using neural networks”, ISA transactions, vol. 50, no. 2,
pp. 177–194, 2011.

[6] A. Alessio and A. Bemporad, “A survey on explicit model predictive control”, in
Nonlinear Model Predictive Control: Towards New Challenging Applications, L.
Magni, Ed., Berlin Heidelberg: Springer-Verlag, 2009, pp. 345–369.

[7] J. Arroyo, C. Manna, F. Spiessens, and L. Helsen, “Reinforced model predictive
control (rl-mpc) for building energy management”, Applied Energy, vol. 309, p. 118 346,
2022.

[8] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep re-
inforcement learning: A brief survey”, IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 26–38, 2017.

[9] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J. Tomlin, “Goal-driven dynam-
ics learning via Bayesian optimization”, in 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), IEEE, 2017, pp. 5168–5173.

[10] L. D. Baskar, B. De Schutter, and H. Hellendoorn, “Traffic management for au-
tomated highway systems using model-based predictive control”, IEEE Transac-
tions on Intelligent Transportation Systems, vol. 13, no. 2, pp. 838–847, 2012.

[11] T. Bellemans, B. De Schutter, and B. De Moor, “Model predictive control for ramp
metering of motorway traffic: A case study”, Control Engineering Practice, vol. 14,
no. 7, pp. 757–767, 2006.

129



130 BIBLIOGRAPHY

[12] F. Belletti, D. Haziza, G. Gomes, and A. M. Bayen, “Expert level control of ramp
metering based on multi-task deep reinforcement learning”, IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 4, pp. 1198–1207, 2017.

[13] A. Bemporad, “Model predictive control design: New trends and tools”, in 45th
IEEE Conference on Decision and Control, 2006, pp. 6678–6683.

[14] A. Bemporad and M. Morari, “Robust model predictive control: A survey”, in Ro-
bustness in Identification and Control, Springer, 2007, pp. 207–226.

[15] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming”, Acta numerica,
vol. 4, pp. 1–51, 1995.

[16] A. Brabazon, “Grammatical-Evolution in Finance and Economics: A Survey”, in
Handbook of Grammatical Evolution, Springer, 2018, pp. 263–288.

[17] A. Brandi, A. Ferrara, S. Sacone, S. Siri, C. Vivas, and F. Rubio, “Model predictive
control with state estimation for freeway systems”, in American Control Confer-
ence (ACC), May 2017, pp. 3536–3541.

[18] M. Brdys, M. Grochowski, T. Gminski, K. Konarczak, and M. Drewa, “Hierarchi-
cal predictive control of integrated wastewater treatment systems”, Control En-
gineering Practice, vol. 16, no. 6, pp. 751–767, 2008.

[19] F. D. Brunner, M. Lazar, and F. Allgöwer, “Stabilizing model predictive control: On
the enlargement of the terminal set”, International Journal of Robust and Non-
linear Control, vol. 25, no. 15, pp. 2646–2670, 2015.
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