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Summary

Both societal and engineering systems are growing in complexity and interconnectivity,
making it increasingly challenging, and sometimes impossible, to model their dynamics
and behaviors. Moreover, individuals or entities within these systems, often referred to as
agents, have their own objectives that may conflict with one another. Examples include
various economic systems where agents compete for profit, wind farms where upwind
turbines reduce the energy extraction of downwind turbines, unwanted perturbation
minimization in extremum seeking control, and cooperative source-seeking robotic vehicles.
Despite having access to only limited observable information, it is crucial to ensure that all
participants are content with the outcomes of these interactions. In this thesis, we choose
to examine these problems within the framework of games, where each agent has their
own cost function and constraints, and all costs and constraints are interconnected. Since
the notion of optimum in multi-agent problems is difficult to define, we often seek to find
a Nash equilibrium, i.e., a set of decisions from which no agent has an incentive to deviate.

This thesis primarily explores the development of Nash equilibrium seeking algo-
rithms for scenarios where agents’ cost functions are unknown and can only be assessed
through measurements of a dynamical system’s output, referred to as the zeroth-order
(derivative-free) information case. We specifically concentrate on scenarios where partial
derivatives can be estimated from these measurements and subsequently integrated into a
full-information algorithm. Existing approaches exhibit significant drawbacks, such as the
inability to handle shared constraints, stringent assumptions on the cost functions, and
applicability limited to agents with continuous dynamics.

The thesis is divided into three parts: equilibrium seeking via output derivative esti-
mators, equilibrium seeking without projections, and hybrid output feedback for equilib-
rium seeking. In Part 1, we explore the development of zeroth-order (generalized) Nash
equilibrium-seeking methods for dynamical systems using output derivative-based estima-
tors. We identify an issue with an existing extremum seeking method and leverage the
gained insights to design several algorithms. The first is a single-timescale NE seeking
algorithm for a restricted class of linear systems, while the second is a multi-time scale algo-
rithm for a broader range of nonlinear systems, which can solve GNEPs in the zeroth-order
information case for the first time.

Part 2 aims to relax the strongmonotonicity assumption on the pseudogradient mapping
required in the zeroth-order GNE seeking. The main challenge arises from the fact that full-
information continuous-time GNE seeking algorithms, which require only themonotonicity
of the pseudogradient, also necessitate multiple pseudogradient evaluations that cannot be
provided by estimation schemes. We propose a new projectionless algorithm to address
these challenges and demonstrate its effectiveness in various practical scenarios, such as
distortion reduction in photovoltaic current.

Part 3 focuses on extending existing averaging theory for discrete systems and singular
perturbation theory for hybrid systems. By demonstrating practical stability of a multi-
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timescale discrete-time system with a practically stable averaged system, we can establish
new results in discrete-time NE seeking. Moreover, by incorporating jumps from the
boundary layer system of the restricted system into the singular perturbation theory, we
can demonstrate stability for various systems where this was previously not the case. This
allows us to show that discrete-time NE seeking algorithms can be applied in cases where
agents have hybrid dynamics, significantly improving the real-life applicability of such
algorithms.

To conclude, this thesis has established the stability of several zeroth-order game-
theoretic control algorithms. In our final chapter, we evaluate how effectively we addressed
our initial research questions. We also lay out potential directions for future research
and acknowledge areas of interest or potential weaknesses that our research did not
fully explore. This self-reflection allows us to set a clear path for further inquiries and
improvements.
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Samenvatting

Zowel maatschappelijke als technische systemen groeien in complexiteit en onderlinge
verbondenheid, waardoor het steeds uitdagender, en soms onmogelijk, wordt om hun
dynamiek en gedrag te modelleren. Bovendien hebben individuen of entiteiten binnen
deze systemen, vaak aangeduid als agents, hun eigen doelstellingen die met elkaar kunnen
botsen. Voorbeelden zijn economische systemen waar deelnemers concurreren om winst,
windparken waar windturbines bovenwinds de energie-extractie van windturbines bene-
denwinds verminderen, ongewenste verstoring minimalisatie in extremum seeking control,
en robotvoertuigen die samenwerken om een doelwit te zoeken. Ondanks dat ze slechts
toegang hebben tot beperkte waarneembare informatie, is het cruciaal dat alle deelnemers
tevreden zijn met de uitkomsten van deze interacties. In dit proefschrift onderzoeken we
deze problemen binnen het kader van spellen, waarbij elke agent zijn eigen kostenfunctie
en beperkingen heeft, en alle kostenfuncties en beperkingen onderling verbonden zijn.
Aangezien het optimum in multi-agent problemen moeilijk te definiëren is, zoeken we
vaak naar een Nash-evenwicht (NE), dat wil zeggen, een set beslissingen waarvan geen
enkele agent de neiging heeft om ervan af te wijken.

In dit proefschrift focussen we voornamelijk op het ontwikkelen van Nash-evenwicht
zoekende algoritmes voor scenario’s waarin de kostenfuncties van de deelnemers onbekend
zijn en alleen geschat kunnen worden aan de hand van de gemeten output van een dyna-
misch systeem, aangeduid als het nulde-order (afgeleide-vrije) informatie scenario. We
concentreren ons specifiek op scenario’s waarin partiële afgeleiden kunnen worden geschat
op basis van deze metingen en vervolgens kunnen worden geïntegreerd in algoritmen voor
scenario’s met volledige informatie. Bestaande methodes vertonen aanzienlijke nadelen,
zo zijn ze slechts toepasbaar voor deelnemers met continue dynamiek, accepteren ze geen
gedeelde beperkingen, en maken ze sterke aannames over de kostenfuncties.

Het proefschrift is verdeeld in drie delen: het zoeken van evenwicht via output-afgeleide
schatters, het zoeken van evenwicht zonder projecties, en hybride output feedback voor
het zoeken van evenwicht. In Deel 1 verkennen we de ontwikkeling van nulde-orde
(gegeneraliseerde) Nash-evenwicht zoekende methoden voor dynamische systemen met
behulp van output-afgeleide gebaseerde schatters. We identificeren een probleem met
een bestaande extremum zoekende methode en gebruiken de opgedane inzichten om
verschillende algoritmen te ontwerpen. De eerste is een enkel-tijdschaal NE zoekend
algoritme voor een beperkte klasse van lineaire systemen, terwijl de tweede een multi-
tijdsschaal algoritme is voor een breder scala aan niet-lineaire systemen, dat voor het eerst
GNEP’s kan oplossen in het scenario van nulde-orde informatie.

Deel 2 is gericht op het versoepelen van de sterkemonotonie-aanname op de pseudogradient-
mapping die vereist is voor het zoeken van nulde-orde GNE. De belangrijkste uitdaging
ontstaat uit het feit dat volledige-informatie continue-tijd GNE zoekende algoritmen, die
alleen de monotonie van de pseudogradient vereisen, ook meerdere pseudogradient evalu-
aties vereisen die niet kunnen worden geleverd door schattingsmethode. Wij stellen een
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nieuw algoritme zonder projecties voor om deze uitdagingen aan te pakken en tonen de
effectiviteit ervan aan in verschillende praktische scenario’s, zoals vervormingsreductie in
fotovoltaïsche stroom.

Deel 3 richt zich op het uitbreiden van de bestaande ‘’theorie van middelen” voor
discrete systemen en singuliere verstoringstheorie voor hybride systemen. Door de prakti-
sche stabiliteit van een multi-tijdsschaal discreet-tijd systeem met een praktisch stabiel
gemiddeld systeem aan te tonen, kunnen we nieuwe resultaten vaststellen in discreet-tijd
NE zoeken. Bovendien kunnen we, door sprongen vanuit de grenslaag van het beperkte
systeem op te nemen in de theorie van singuliere verstoringen, de stabiliteit aantonen van
verschillende systemen waarbij dit voorheen niet mogelijk was. Dit stelt ons in staat om
aan te tonen dat discreet-tijd NE zoekende algoritmen kunnen worden toegepast in geval-
len waar de deelnemers hybride dynamiek hebben, wat de toepasbaarheid van dergelijke
algoritmen in de praktijk aanzienlijk verbetert.

Samengevat heeft dit proefschrift de stabiliteit van verschillende nulde-orde spelthe-
oretische controle-algoritmen vastgesteld. In ons laatste hoofdstuk evalueren we hoe
effectief we onze oorspronkelijke onderzoeksvragen hebben aangepakt. We bespreken
tevens mogelijke richtingen voor toekomstig onderzoek en erkennen aspecten, potentieel
zwakke punten, die we niet volledig hebben onderzocht. Door middel van deze zelfreflectie
stippelen we duidelijk pad uit voor verdere onderzoeksvragen en verbeteringen.
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Symbols

Basic relations

B equal to by definition
∣ such that
∈ belongs to
∃ there exists
∀ for all
⇒ implies
⇔ if and only if
→ maps to an element
⇒ maps to a set

Sets, spaces and set operators

ℕ set of whole numbers
ℤ set of integers
ℝ set of real numbers
ℝ+ set of nonnegative real numbers
ℝ𝑛 set of real 𝑛-dimensional vectors
ℝ𝑛×𝑚 set of real 𝑛 by 𝑚 matrices
𝔹 B {𝑥 ∈ ℝ𝑁 | ‖𝑥‖ ≤ 1}, i.e. the unit ball set
𝕊 B {𝑧 ∈ ℝ2 ∶ 𝑧21 + 𝑧22 = 1}, i.e. the unit circle set
𝐴∪𝐵 union of sets 𝐴 and 𝐵
𝐴∩𝐵 intersection of sets 𝐴 and 𝐵
𝐴 ⊂ 𝐵 𝐴 is a subset of 𝐵
𝐴 ⊃ 𝐵 𝐴 is a superset of 𝐵
𝐴⧵𝐵 set of elements that are in 𝐴, but not in𝐵
𝐴+𝐵 Minkowski sum of sets 𝐴 and 𝐵
𝐴×𝐵 Cartesian product of the sets A and B
∏𝑁

𝑖=1𝐴𝑖 B 𝐴1 ×𝐴2 ×⋯×𝐴𝑁
∪𝑁𝑖=1𝐴𝑖 B 𝐴1 ∪𝐴2 ∪⋯∪𝐴𝑁
𝐴𝑛 B∏𝑁

𝑖=1𝐴
[𝑎,𝑏] closed set of real numbers
(𝑎,𝑏) open set of real numbers



2 Symbols

Operations on vectors and matrices, norms
𝐼𝑛 identity matrix of dimensions 𝑛
𝟎 zero vector of appropriate dimension
(⋅)⊤ transpose operator used on either a vector or a matrix
col (𝑣1,…𝑣𝑁 ) B [𝑣⊤1 ,… , 𝑣⊤𝑁 ]

⊤

diag(𝑣) a diagonal matrix with elements of the vector 𝑣 on its diagonal
blkdiag(𝐴1,… ,𝐴𝑁 ) a block diagonal matrix with 𝐴𝑖 matrices on its diagonal
(𝑣𝑘)𝑘∈ sequence of vectors indexed via elements of set 
𝑀−1 inverse of matrix 𝑀
𝑀 ≻ 0 symmetric matrix 𝑀 is positive definite
𝑀 ≽ 0 symmetric matrix 𝑀 is positive semidefinite
⟨𝑣 | 𝑢⟩ Euclidian vector product, i.e. 𝑣⊤𝑢
‖𝑣‖ Euclidian norm, i.e.

√
𝑣⊤𝑣

‖𝑣‖𝑀 Euclidian weighted norm, i.e.
√
𝑣⊤𝑀𝑣

‖𝑣‖ Euclidian distance to set

Operator theory
◦ composition of operators, i.e. 𝐹 ◦𝐺(𝑥) = 𝐹(𝐺(𝑥))
Id identitiy operator, i.e. Id(𝑥) = 𝑥
dom(𝑓 ) domain of the function 𝑓
zer(𝐹) zero set of an operator 𝐹
𝐹−1 inverse operator of 𝐹 , i.e. 𝐹−1 ◦ 𝐹 = 𝐹 ◦ 𝐹−1 = Id
∇𝑓 (𝑥) B col(

𝜕𝑓 (𝑥)
𝜕𝑥1 ,… , 𝜕𝑓 (𝑥)𝜕𝑥𝑁 ), i.e. the gradient of 𝑓

∇𝑥𝑓 (𝑥,𝑦) B col(
𝜕𝑓 (𝑥,𝑦)
𝜕𝑥1 ,… , 𝜕𝑓 (𝑥,𝑦)𝜕𝑥𝑁 ), i.e. the partial gradient of 𝑓

𝐽𝐹 (𝑥) B (Id+𝐹)−1(𝑥), i.e. the resolvent operator of 𝐹
N𝑆(𝑥) equal to ∅ if 𝑥 ∉ 𝑆,

{
𝑣 ∈ ℝ𝑛|sup𝑧∈𝑆 𝑣⊤(𝑧−𝑥) ≤ 0

}
otherwise

proj𝑆(𝑥) B argmin𝑦∈𝑆 ‖𝑦 −𝑥‖, i.e. projection of 𝑥 onto a closed convex set 𝑆

Game theory and systems theory
𝑁 number of agents
 B {1,2,… ,𝑁 } is the set of indices of agents
𝑢𝑖 decision variable of agent 𝑖
𝒖 B col (𝑢1,… , 𝑢𝑁 ), i.e. collective vector of 𝑁 agents
𝒖−𝑖 B col (𝑢1,… , 𝑢𝑖−1, 𝑢𝑖+1,… , 𝑢𝑁 )
𝐽𝑖(𝑢𝑖,𝒖−𝑖) cost function of agent 𝑖
Ω𝑖 feasible set of agent 𝑖
𝐹(𝑢) B col(∇𝑢1𝐽1(𝑢),… ,∇𝑢𝑁 𝐽𝑁 (𝑢))
𝐷+𝑓 (𝑡) B limsupℎ→0+

𝑓 (𝑡+ℎ)−𝑓 (𝑡)
ℎ , i.e. upper Dini derivative of 𝑓 at 𝑡

class  function ℝ+ → ℝ+ function that is zero at zero and strictly increasing

class  function ℝ+ → ℝ+ function that is non-increasing and converges to zero
as its arguments grows unbounded

class  function ℝ+ ×ℝ+ → ℝ+ function that is of class  in the first argument,
and of class  in the second argument
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Introduction

It is impossible for a man to learn what he thinks he already knows.

Epictetus

It is important to draw wisdom from different places. If you take it from only one place, it
becomes rigid and stale.

Uncle Iroh, Avatar the Last Airbender

In the following chapter, we will explore the fundamental concepts utilized in this thesis by
highlighting the key distinctions between optimization problems and games using an economic
example. Moreover, we will demonstrate the necessity of zeroth-order equilibrium-seeking
algorithms and illustrate their application and effectiveness. Lastly, we will address the research
questions that guided the development of this thesis and offer an overview of its organizational
structure.
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1.1 Game theory versus optimization
Consider that you are a manager of a factory producing a unique product and selling it
in the market as the sole producer. Your goal is to maximize profit, which is the number
of sold units multiplied by the difference between the selling price and production cost.
You strive for efficiency to lower production costs by minimizing waste, reducing resource
use, improving resource allocation, and decreasing labor costs. Additionally, you carefully
select the number of units produced to prevent market oversaturation and maintain a
favorable selling price, as the product’s price is determined by its demand and your supply.

Now imagine a competing factory starts producing and selling the same product in the
same market. This new competition fundamentally changes your approach to the problem,
as the competitors’ decisions influence your profits. You may allocate additional resources
to make your product more appealing to customers, which could come from your earnings,
reallocating resources from quality maintenance, or even cutting labor expenses. Moreover,
pricing becomes more complex since the price difference between your product and your
competitor’s impacts customer preference. If the competitor lowers their prices, you might
also need to do so to maintain your market share. On the other hand, if the competitor
decides to produce more units of the product, you might choose to do the same to maintain
your comparative profits, but in doing so, you risk oversaturating the market. Therefore,
you must carefully select your pricing and production strategy.

The previous example highlights the distinction between optimization problems and
games. In optimization problems, there is a single decision-maker (or multiple in the case of
distributed problems) whose single goal is to minimize its cost while adhering to constraints,
ultimately achieving an optimal equilibrium. On the other hand, games involve multiple
decision-makers, each with their own cost, which they wish to minimize subject to their
constraints, as well as shared constraints, such as a fixed product demand in our example.
In these situations, an optimal equilibrium is often elusive, as one agent’s optimum may
impose a significant price on another agent. Consequently, the usual solution concept
in games is the Nash equilibrium, a set of strategies from which no agent has a reason
to unilaterally deviate. In simpler terms, if an individual agent were to deviate from the
equilibrium strategy, its cost would actually increase.

It is important to note that a problem can be formulated as a game, even though it has
only one decision-maker. For various reasons, a game-theoretic representation and solution
can exhibit better behavior than an optimization one, which is why the decision maker
chooses to do so by emulating multiple decision makers. In an engineering example, it has
been noted that treating the problem of power allocation in telecommunication networks
as a game can result in a desirable allocation, even though, in reality, there is only one
decision-maker in charge of the allocation [1]. Understandably, this approach does not
always yield favorable outcomes. In an economic example, the American retailer Sears
experienced a collapse due, in large part, to management’s decision to separate various
departments into individual entities competing for the company’s resources. Consequently,
these departments often made decisions that benefited them but were detrimental to the
company as a whole [2], [3].

Various problems can be postulated as both optimization problems and game prob-
lems, with different pros and cons for each. Arguably, the most famous example is the
organization of an entire economy. Communist countries experimented with planned
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economies, in which the production inputs and outputs for every sector were centrally
planned and attempted to be optimized. In some cases, this approach resulted in the absence
of periodic recessions or depressions, a more egalitarian distribution of income, and more
effective climate change policies [4], [5]. On the other hand, market-based economies leave
production decisions to individual producers based on market demand and price signals.
This approach often leads to more efficient resource distribution, innovative products, and
better adaptability to changing conditions [6].

Considering our previous discussion, how might we, as the factory manager, devise a
strategy to maximize our factory’s profit? The task is further complicated by the difficulty
in accurately modeling product desirability and the number of products sold based on
their prices. Nevertheless, the solution is surprisingly simple. Although we may not know
the precise analytical relationship governing the number of products sold, we do know
our profit. By slightly perturbing the product price, we can observe whether our profits
increase or decrease. If these perturbations are done strategically, we should gradually
enhance our profit and eventually reach an equilibrium with our competitor [7].

Not only markets but numerous engineering systems also exhibit game-like behav-
iors. These systems aim to optimize various processes, such as enhancing productivity,
extending lifespan, or decreasing energy use, among others. They are influenced by other
systems, which are treated as opponents either because of limited control or because it is
advantageous to do so. Furthermore, as in the factory example, accurately modeling these
optimization processes, systems, and their interactions can be challenging or impossible,
while observations of the end results are easily accessible, such as production quantities,
signal strength, generated waste, oscillation amplitudes, etc. This motivates us to develop
algorithms and strategies that utilize these quantities to achieve the objectives without
exact knowledge of the underlying objective functions. Some prominent examples include:

• Robot swarm connectivity control
A group of robots is assigned to locate a specific number of signal sources. In addition,
each robot aims to maintain relative proximity to the other swarm members to
ensure effective communication and rapid response in case assistance is required.
The straightforward solution would be to allow for inter-agent communication and
global coordinate tracking. However, this might require expensive equipment and
comprehensive computing power. On the other hand, the robots have access to the
measurements of the source signal strength and the signals emitted by their fellow
robots, which could facilitate a different cost-effective algorithm design [8].

• Wind farm wake minimization
To maximize energy production for a given area, wind farms usually have rows of
turbines located behind each other. This, unfortunately, hurts energy production as
the wake of the turbines in front reduces the energy production of the wind turbines
in the back. A common approach is to have each turbine greedily maximize its power
output, which does not guarantee maximal energy production. The wake effect
can be somewhat alleviated by controlling the axial induction of the turbines, but
these processes are notoriously hard to model and predict, thus making model-free
payoff-based optimizing strategies a practical choice [9], [10].
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• Perturbation minimization in extremum seeking control
Some zeroth-order optimization methods incorporate perturbation signals into their
control strategies. When transmitted to the system output, these perturbations can
produce undesired behavior. To mitigate these issues, it can be advantageous to
intelligently select the amplitudes and frequencies of these signals based on the
measured output signal [11].

Taking into account the previous discussions and recognizing that optimization prob-
lems can be considered as a special case of game problems with a single agent, exploring
game theory has the potential to offer innovative solutions for a wide range of engineering
challenges.

1.2 Zeroth-order algorithms
In equilibrium-seeking algorithms, the knowledge of the cost function’s various partial
derivatives, known as first-order (derivative) information, is a common assumption. How-
ever, finding an equilibrium or its neighborhood is also possible using only cost function
evaluations, referred to as zeroth-order (derivative) information. These algorithms either
estimate the derivatives and apply them in a first-order-information-like algorithm [12],
[13], [14], or utilize this information in a different manner that does not involve derivative
estimation [15], [16]. Consequently, the first class of algorithms requires derivative estima-
tors. The forward Euler method is arguably the most well-known derivative estimator in
discrete time. For a real function 𝑓 , the estimation is given by

𝜕𝑓 (𝑥)
𝜕𝑥

≈
𝑓 (𝑥 +𝛿𝑥)− 𝑓 (𝑥)

𝛿𝑥
,

for very small 𝛿𝑥 . In continuous time, a sinusoidal perturbation scheme has received a
lot of attention [12], [7], [17], [18]. Consider the Taylor expansion at 𝑥 for small 𝑎 of the
following time-varying function:

𝑓 (𝑥 +𝑎sin(𝜔𝑡))
2sin(𝜔𝑡)

𝑎
= 𝑓 (𝑥)

2sin(𝜔𝑡)
𝑎

+
𝜕𝑓 (𝑥)
𝜕𝑥

2sin2(𝜔𝑡)+(𝑎)

=
𝜕𝑓 (𝑥)
𝜕𝑥

+(
2𝑓 (𝑥)
𝑎

sin(𝜔𝑡)+
𝜕𝑓 (𝑥)
𝜕𝑥

cos(2𝜔𝑡))+(𝑎).

This perturbation scheme gives an estimate that oscillates and is biased. Arguably the
most famous continuous-time zeroth-order optimization algorithm that uses this sort of
estimators is extremum seeking control (ESC) proposed in [12]. The block diagram of
ESC is depicted in Figure 1.1. In essence, the scheme is a simple gradient descent dynamic
�̇� = −𝑘𝜉 , which uses the filtered state 𝜉 of the previously mentioned continuous-time
estimator. Figure 1.2 illustrates the efficiency of the estimator and how the scheme steers
the state toward the minimizer.

In this thesis, our focus is on zeroth-order Nash equilibrium-seeking algorithms. Unlike
the previous example, which involves minimizing a single cost function, Nash equilibrium
problems involve multiple interdependent cost functions, each associated with one agent in
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Figure 1.1: ESC scheme proposed in [12]. The highpass and lowpass filters are not necessary,
but they drastically improve the algorithm’s performance by reducing the variance and
bias in the estimate.

(a) Comparison of the real value of the gradient
and its scaled-up estimate.

(b) Convergence of the state to the minimizer.

Figure 1.2: Results of using the extremum seeking scheme in Figure 1.1 to minimize the
quadratic cost function 𝑓 (𝑥) = 1

2𝑥
2.
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the game. Moreover, we aim to estimate the pseudogradient, a game-theoretic equivalent
the gradient. This scenario has been studied numerous times in the literature for both
continuous [7], [17] and discrete-time games [8], [19]. However, the current state-of-the-art
algorithms do exhibit certain limitations.

• In generalized problems, the agents have shared constraints besides their local ones.
Continuous-time zeroth-order algorithms have been used to solve only regular,
non-generalized Nash equilibrium problems (GNEPs).

• Slow convergence times with dynamical agents are necessary in order to assure
a time-layer separation between the agent’s dynamics and their Nash equilibrium
seeking algorithm.

• Strong monotonicity assumption on the pseudogradient can be restrictive in practical
applications, e.g. whenever multiple equilibria might exist.

• Most results are given for dynamical agents with continuous-time dynamics only.

To the best of our ability, in this thesis, we try to tackle these problems, and our approach
is summarized in the next section.

1.3 Researchqestions
The research objectives of this thesis follow from the following questions:

(𝑄1) How to design derivative-free equilibrium seeking for GNEPs?

(𝑄2) Is time-scale separation necessary for equilibrium seeking in systems with dynamical
agents?

(𝑄3) Is monotonicity of the pseudo-gradient sufficient to ensure convergence of derivative-
free continuous-time equilibrium seeking?

(𝑄4) Is discrete-time equilibrium seeking applicable to systems with hybrid dynamical
agents?

The following chapters of the thesis are devoted to answering these questions.

1.4 Thesis organization
Figure 1.3 shows the structure of the thesis. We provide a summary of each chapter.

Part 1: Eqilibrium seeking via output derivative estimators
To develop a zeroth-order GNE seeking method for dynamical systems, we focus on output
derivative-based estimators, as, in principle, they do not require a time-scale separation
between the equilibrium seeking algorithm and the system dynamics. We discover certain
issues with the theory and propose two algorithms. The first is a single-timescale algorithm
that converges for a restricted class of systems, while the second is a and multi-time scale
algorithm that is applicable to a broader range of systems. In which real-life scenarios is it
necessary to "blindly" optimize your cost?



1.4 Thesis organization

1

9

Chapter 1
Introduction

Chapter 5
Monotone games

Chapter 7
Averaging for 
discrete-time 

equilibirum seeking

Chapter 2
Issues with certain 
output derivative 

estimators 

Chapter 6
Application to distortion 

reduction in 
photovoltaic current

Chapter 8
Singular perturbations 

for boundary layer
flows and jumps 

Chapter 3
A single-timescale 

algorithm

Chapter 4
Multi-timescale 

algorithms 

Part 1
Equilibrium seeking via 

output derivative estimators

Part 2
Equilibrium seeking 
without projections 

Part 3
Hybrid output feedback 
for equilibrium seeking 

Chapter 9
Concluding remarks

Figure 1.3: Structure of the thesis. Arrows indicate read-before relations.
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• Chapter 2: Issues with certain output derivative estimators
In this chapter, we present an error in one of the equations included in the proof of
[20]. Furthermore, we derive a necessary Lyapunov stability condition for a certain
class of problems and show how the condition predicts instability in numerical
simulation. Lastly, we show inconsistencies in one of the underlying assumptions.
This chapter is partially based on the following publication:

[21] S. Krilašević and S. Grammatico. “Comments on “A proportional-integral
extremum-seeking controller design technique”[Automatica 77 (2017) 61–67]”.
In: Automatica 135 (Jan. 2022), p. 109932. issn: 0005-1098. doi: 10.1016/j.
automatica.2021.109932.

• Chapter 3: A single-timescale algorithm
Building on the findings of the previous chapter, we develop a zeroth-order algorithm
for seeking Nash equilibrium for a specific class of linear systems that satisfy a con-
dition similar to Equation 6 in [20]. Our simulations demonstrate that the proposed
algorithm requires lower perturbation amplitudes and frequencies compared to other
relevant algorithms.
This chapter is partially based on the following publication:

[22] S. Krilašević and S. Grammatico. “An integral Nash equilibrium control scheme
for a class of multi-agent linear systems”. In: IFAC WC 53 (2020), pp. 5375–5380.
issn: 2405-8963. doi: 10.1016/j.ifacol.2020.12.1521.

• Chapter 4: Multi-timescale algorithms
Our application of output derivative estimators on equilibrium seeking concludes
with the development of an algorithm that can find generalized Nash equilibrium
using only zeroth-order information. Wemake dual dynamics commutable by precon-
ditioning the forward-backward algorithm and use singular perturbation theory to
handle a wider range of dynamical systems. While our main problem setup assumes
the presence of a central coordinator responsible for dual variable computation, we
also present a decentralized algorithm for computing the dual variables.
This chapter is partially based on the following publication:

[23] S. Krilašević and S. Grammatico. “Learning generalized Nash equilibria in multi-
agent dynamical systems via extremum seeking control”. In: Automatica 133
(Nov. 2021), p. 109846. issn: 0005-1098. doi: 10.1016/j.automatica.
2021.109846.

Part 2: Eqilibrium seeking without projections
Some important obstacles must be tackled to relax the strong monotonicity assumption
on the pseudogradient mapping in zeroth-order equilibrium seeking. One challenge is to
devise an equilibrium seeking algorithm that requires only one pseudogradient "computa-
tion" during flows, as the pseudogradient estimation method solely provides an instant
estimate. Furthermore, the present algorithms that meet these requirements do not involve
projections, making them unsuitable for problems with local or shared constraints. In this

https://doi.org/10.1016/j.automatica.2021.109932
https://doi.org/10.1016/j.automatica.2021.109932
https://doi.org/10.1016/j.ifacol.2020.12.1521
https://doi.org/10.1016/j.automatica.2021.109846
https://doi.org/10.1016/j.automatica.2021.109846
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part of the thesis, we propose a new algorithm that meets the challenges and demonstrate
its effectiveness in several practical scenarios.

• Chapter 5: Monotone games
The continuous-time variant of the golden-ratio algorithm is able to find Nash
equilibria in monotone games without constraints. Our approach involves using a
projectionless dualization scheme with the golden-ratio algorithm to incorporate
constraints in the problem and solve generalized Nash equilibrium problems (GNEPs)
with only monotone pseudogradient mapping. Additionally, we improve the algo-
rithm’s numerical performance by implementing a hybrid gain adaptation scheme
and showcase its effectiveness in two numerical simulations.
This chapter is partially based on the following publication:

[24] S. Krilašević and S. Grammatico. “Learning generalized Nash equilibria in
monotone games: A hybrid adaptive extremum seeking control approach”. en.
In: Automatica 151 (May 2023), p. 110931. issn: 0005-1098. doi: 10.1016/j.
automatica.2023.110931.

• Chapter 6: Application to distortion reduction in photovoltaic current
The use of extremum seeking methods in photovoltaic systems necessarily introduces
perturbations into the output current of the system. To optimize the power output
and minimize the distortions we formulate the so-called bilevel optimization problem
by using a similar approach as in the numerical example of Chapter 5. Through a
numerical simulation, we demonstrate that our approach diminishes total harmonic
distortion, thus elevating the quality of the output current.
This chapter is partially based on the following manuscript:

[25] S. Krilašević and S. Grammatico. “Distortion reduction in photovoltaic output
current via optimized extremum seeking control”. In: 2023 21st European Control
Conference (ECC) (June 2023).

Part 3 - Hybrid output feedback for eqilibrium seeking
Continuous time equilibrium seeking algorithms have the potential to solve a wide range of
problems. However, one of their drawbacks is that they must be discretized for real-world
implementation, which can reduce convergence speed and even result in instability. Con-
versely, although discrete-time algorithms can be implemented on a controller, zeroth-order
GNE seeking algorithms generally do not produce results as strong as their continuous
counterparts. To address these challenges and develop discrete-time algorithms for NE
seeking with local constraints and asynchronous sampling, as well as to enable the appli-
cation of hybrid equilibrium seeking algorithms on hybrid plants, we expand on existing
averaging theory for discrete systems and singular perturbation theory for hybrid systems.

• Chapter 7: Averaging for discrete-time equilibrium seeking
The estimation of the (pseudo)gradient in zeroth-order algorithms with sinusoidal
perturbations relies on averaging, but incorporating local constraints is challenging
due to the problems caused by projections. To address this, a three-layer algorithm
is necessary, with the first layer performing (pseudo)gradient estimation without

https://doi.org/10.1016/j.automatica.2023.110931
https://doi.org/10.1016/j.automatica.2023.110931
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projections, the second layer performs the filtering of the estimate, and the third
layer with projections contains the equilibrium seeking algorithm with the filtered
values of the estimate that steers the system towards the equilibrium. To design
a multi-layer algorithm, we improve the existing discrete-time averaging theory
by relaxing stability requirements for the averaged system and enabling its use on
multi-timescale layer systems. Our theory also allows us to develop an asynchronous
NE seeking algorithm with weak sampling period requirements for the agents. This
chapter is partially based on the following manuscript:

[26] S. Krilašević and S. Grammatico. “A discrete-time averaging theorem and its
application to zeroth-order Nash equilibrium seeking”. In: arXiv:2302.04854
(Feb. 2023). arXiv:2302.04854 [cs, eess, math]. doi: 10.48550/arXiv.
2302.04854.

• Chapter 8: Singular perturbations for hybrid reduced and boundary layer
systems
The existing theory assumes that the reduced system can jump from anywhere in the
jump set. Our theory restricts the jumps of the reduced system only to the boundary
layer manifold. This new approach allows the convergence of the reduced system to
be "jump-driven" rather than "flow-driven" as was previously the case. Additionally,
we demonstrate that the fast states converge to the boundary layer manifold under
a certain jump mapping condition rather than being only bounded as previously
shown. We apply our theory to a connectivity control problem where the agents are
hybrid unicycle systems, and the control algorithm used is the asynchronous NE
seeking algorithm from the previous chapter.
This chapter is partially based on the following publication:

[27] S. Krilašević and S. Grammatico. “Stability of singularly perturbed hybrid
systems with restricted systems evolving on boundary layer manifolds”. In:
arXiv:2303.18238 (Mar. 2023). arXiv:2303.18238 [cs, eess, math]. doi: 10.
48550/arXiv.2303.18238.

https://doi.org/10.48550/arXiv.2302.04854
https://doi.org/10.48550/arXiv.2302.04854
https://doi.org/10.48550/arXiv.2303.18238
https://doi.org/10.48550/arXiv.2303.18238
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2
Issues with certain output

derivative estimators

To err is human, to forgive is divine.

Alexander Pope

We don’t make mistakes, we have happy accidents.

Bob Ross

In the proof of [20, Th.1], Equation 6 is incorrect. Additionally, Assumption 2 is infeasible.

This chapter is partly based on  S. Krilašević and S. Grammatico. “Comments on “A proportional-integral
extremum-seeking controller design technique”[Automatica 77 (2017) 61–67]”. In: Automatica 135 (Jan. 2022),
p. 109932. issn: 0005-1098. doi: 10.1016/j.automatica.2021.109932.
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2.1 Introduction
The extremum seeking control algorithm proposed in [20] claims convergence of the state
trajectories to a neighborhood of the minimizer of the measured cost function. Unlike
most of the previous extremum seeking algorithms, this is done by estimating the time
derivative along the closed-loop trajectory, instead of the gradient, of the cost function.
In this chapter, we show by counterexample that Equation 6 in [20],

∇ℎ(𝜋(�̂�))⊤𝑔(𝜋(�̂�)) = ∇ℎ(𝜋(�̂�))⊤∇𝜋(�̂�) (2.1)

which is used in the proof of Theorem 1 (page 65, left column, line 16) to obtain a negative
Lyapunov derivative, is incorrect, as confirmed by the Authors [28].

2.2 Problem statement and Eqation 6 in [20]
Let us use the same problem statement and notation as in [20], hence consider control
affine systems:

�̇� = 𝑓 (𝑥)+𝑔(𝑥)𝑢, (2.2)
𝑦 = ℎ(𝑥), (2.3)

where 𝑥 ∈ ℝ𝑛 is the state vector, 𝑢 ∈ ⊆ ℝ𝑚 is the control input and 𝑦 ∈ ℝ is the output
which evaluates the cost function ℎ ∶ ℝ𝑛 → ℝ. The following state-feedback control is
studied in [20], before Equation 3:

𝑢(𝑥) = �̂�− 𝑘∗𝑔(𝑥)⊤∇ℎ(𝑥), (2.4)

where �̂� is a constant vector and 𝑘∗ is a nonnegative constant [20, p. 62, right coumn,
line 16]. The extremum seeking literature often assumes convergence of the state vector
towards an input-defined equilibrium vector, e.g., [12, Ass. 2.1], [17, Ass. 2]. The mapping
that characterizes this convergence is the steady-state mapping, 𝜋 ∶ ℝ𝑝 → ℝ𝑛, which solves
the equation

𝑓 (𝜋(�̂�))+𝑔 (𝜋(�̂�))[�̂�− 𝑘∗𝑔(𝜋(�̂�))⊤∇ℎ(𝜋(�̂�))] = 𝟎.

Let us also consider the steady-state cost function [20, Equ. 3]:

𝑙(�̂�) = ℎ(𝜋(�̂�)). (2.5)

Equation 6 in [20] claims that

∇ℎ(𝜋(�̂�))⊤𝑔(𝜋(�̂�)) = ∇ℎ(𝜋(�̂�))⊤∇𝜋(�̂�) = ∇𝑙(�̂�). (2.6)

2.3 Counterexample
We consider linear systems with strongly convex quadratic cost, i.e.,

𝑓 (𝑥) = 𝐴𝑥, 𝑔(𝑥) = 𝐵,
ℎ(𝑥) = 1

2𝑥
⊤𝑄𝑥 +𝑥⊤𝑝, (2.7)
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where 𝐴 ∈ ℝ𝑛×𝑛 is Hurwitz, 𝐵 ∈ ℝ𝑛×𝑚, 𝑄 ∈ ℝ𝑛×𝑛 is positive definite, 𝑝 ∈ ℝ𝑛. Therefore, the
steady-state mapping is given by

𝜋(�̂�) = −�̃�−1𝐵�̂�+𝑉 , (2.8)

where �̃�B 𝐴− 𝑘∗𝐵𝐵⊤𝑄 and 𝑉 B 𝑘∗ (𝐴− 𝑘∗𝐵𝐵⊤𝑄)
−1𝐵𝐵⊤𝑝. Since the gradient of the cost

function is given by ∇ℎ(𝑥) = 𝑄𝑥+𝑝, it follows that ∇ℎ(𝜋(�̂�)) = −𝑄�̃�−1𝐵�̂�+𝑄𝑉 +𝑝. In turn,
the left-hand side of Equation (2.6) is calculated as:

∇ℎ(𝜋(�̂�))⊤𝑔(𝜋(�̂�)) = (𝑝⊤+𝑉 ⊤𝑄− �̂�⊤𝐵⊤�̃�−⊤𝑄)𝐵. (2.9)

Seeing that ∇𝜋(�̂�) = −�̃�−1𝐵, the right-hand side of Equation (2.6) is given by

∇ℎ(𝜋(�̂�))⊤∇𝜋(�̂�) = −(𝑝⊤+𝑉 ⊤𝑄− �̂�⊤𝐵⊤�̃�−⊤𝑄) �̃�⊤𝐵. (2.10)

Considering that the vectors in (2.9) and (2.10) are not equal in general (unless𝐴=−𝐼 , 𝑘∗ = 0
as in [22]), [20, Equ. 6] is incorrect.

2.4 A key Lyapunov stability condition
We note that Equation 6 in [20] is used in the proof of Theorem 1 on page 65, while applying
Assumption 4, to prove that

∇ℎ(𝜋(�̂�))⊤𝑔(𝜋(�̂�))�̃� = ∇𝑙(�̂�)�̃� ≤ −𝛼𝑢‖�̃�‖2, (2.11)

for all �̂�. We now investigate how the incorrectness of [20, Equ. 6] affects the Lyapunov-
based proof of [20, Thm. 1] for our counterexample in (2.7). Let 𝑢∗ be the minimizer of 𝑙(�̂�)
and �̃�B 𝑢∗− �̂�. From (2.9), it holds that

∇ℎ(𝜋(�̂�))⊤𝑔(𝜋(�̂�))�̃� = (𝑝⊤+𝑉 ⊤𝑄− �̂�⊤𝐵⊤�̃�−⊤𝑄)𝐵�̃�

+(𝑝⊤+𝑉 ⊤𝑄−𝑢∗⊤𝐵⊤�̃�−⊤𝑄)𝐵�̃�−(𝑝⊤+𝑉 ⊤𝑄−𝑢∗⊤𝐵⊤�̃�−⊤𝑄)𝐵�̃�

= −�̃�⊤𝐵⊤�̃�−⊤𝑄𝐵�̃�+(𝑝⊤+𝑉 ⊤𝑄−𝑢∗⊤𝐵⊤�̃�−⊤𝑄)𝐵�̃�

= − 1
2 �̃�

⊤𝐵⊤(�̃�−⊤𝑄+𝑄�̃�−1)𝐵�̃�+(𝑝⊤+𝑉 ⊤𝑄−𝑢∗⊤𝐵⊤�̃�−⊤𝑄)𝐵�̃� (2.12)

We note that the Lyapunov analysis in [20] relies on the strict negative-definiteness of the
quadratic term in �̃�, as it is used to majorize other positive terms (see for example, the last
inequality of the left column on page 65). Therefore, for our case in (2.7), the matrix

𝑀 B 𝐵⊤(�̃�−⊤𝑄+𝑄�̃�−1)𝐵 (2.13)

in (2.12) should be positive definite. It is possible for the matrix 𝑀 to be negative definite,
while the steady-state cost function, given by

𝑙(�̃�) =
1
2
�̂�⊤𝑆�̂�− �̂�⊤𝐵⊤�̃�⊤(𝑄𝑉 +𝑝)+

1
2
𝑉 ⊤𝑄𝑉 +𝑉 ⊤𝑝 (2.14)

𝑆 B 𝐵⊤�̃�⊤𝑄�̃�𝐵, (2.15)

to be strongly convex, i.e., 𝑆 ≻ 0.
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Figure 2.1: State evolution for all cases.

2.5 Numerical simulations
In view of (2.13), we simulate three different cases, 𝑀 ≺ 0, 𝑀 = 0, and 𝑀 ≻ 0. To simplify
the analysis, we use the perfect information variant of the algorithm in [20], i.e., �̂�1 = 𝜃1.
The control law derived from [20, Equ. 20, 21], reads as

𝑢 = −𝑘𝑔𝑔(𝑥)⊤∇ℎ(𝑥)+ �̂�
̇̂𝑢 = − 1

𝜏 𝑔(𝑥)
⊤∇ℎ(𝑥). (2.16)

Specifically, for the system in (2.7) with the control law in (2.16), we have

𝑢 = −𝑘𝑔𝐵⊤(𝑄𝑥 +𝑝)+ �̂�
̇̂𝑢 = − 1

𝜏𝐵
⊤(𝑄𝑥 +𝑝). (2.17)

Thus, the closed-loop dynamics read as

[
�̇�
�̇�] = [

𝐴 𝐵
𝐵⊤𝑄 (− 1

𝜏 − 𝑘𝑔𝐴) −𝑘𝑔𝐵⊤𝑄𝐵][
𝑥
𝑢]+ [

0
− 1

𝜏𝐵
⊤𝑝] . (2.18)

We use the same parameters for all three simulations except for the 𝑄 matrices:

𝐴=[
− 1

2 1
− 1

4 0 ] , 𝐵=[
0
−1 ] , 𝑝=[

0
−2 ] , 𝑘∗ =

1
2
, 𝑘𝑔 = 10, 𝜏𝐼 = 20;
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Case 1: 𝑄 = 𝑄1=[
1 − 1

2 + 𝜖
− 1

2 + 𝜖 1 ] ⟹ 𝑀 = −0.04, 𝑆 = 𝑆1 = 12.2

Case 2: 𝑄 = 𝑄2=[
1 − 1

2
− 1

2 1 ] ⟹ 𝑀 = 0, 𝑆 = 𝑆2 = 12

Case 3: 𝑄 = 𝑄3=[
1 − 1

2 − 𝜖
− 1

2 − 𝜖 1 ] ⟹ 𝑀 = 0.04, 𝑆 = 𝑆3 = 11.8,

with 𝜖 = 0.01. As expected, the control scheme proposed in [20] stabilizes the system only
in Case 3, as seen in Figure 2.1.

2.6 Further issues
Under Assumption 2 in [20], there exists a diffeomorphism col(𝜉 ,𝑦) = Θ(𝑥) that transforms
the dynamics (2.2) and (2.3) into the Byrnes-Isidori normal form given by

�̇� =𝜙(𝜉 ,𝑦), (2.19)
�̇� =∇ℎ(Θ−1(𝜉 ,𝑦))⊤𝑓 (Θ−1(𝜉 ,𝑦))+∇ℎ(Θ−1(𝜉 ,𝑦))⊤𝑔(Θ−1(𝜉 ,𝑦))𝑢. (2.20)

Now, the first bullet point of Assumption 3 in [20] states that the zero dynamics in (2.19)
are input to state stable (ISS) from 𝑦 to 𝜉 with some Lyapunov function 𝑊 , i.e. by Theorem
4.19 in [29]:

𝛼1(‖𝜉 − 𝜉0‖) ≤𝑊 (𝜉) ≤ 𝛼2(‖𝜉 − 𝜉0‖), (2.21)

for some class functions 𝛼1 and 𝛼2, and for 𝜉0 that is the equilibrium of the zero dynamics.
The second bullet-point of Assumption 3 in [20] states that the function𝑊 (𝜉)+ℎ(𝑥) satisfies

𝛽1‖𝑥 −𝜋(�̂�)‖2 ≤𝑊 (𝜉)+ℎ(𝑥) ≤ 𝛽2‖𝑥 −𝜋(�̂�)‖2. (2.22)

Now, by plugging in 𝑥 = 𝜋(�̂�) it follows that

𝑊 (𝜉)+ℎ(𝜋(�̂�)) = 0, (2.23)

which still, according to Assumption 3 in [20] must hold for all �̂� ∈  , not just for the
optimizer 𝑢∗. Since the cost function ℎ is assumed strictly convex by Assumption 1 in [20]
and 𝑊 (𝜉) is greater or equal than zero from Equation (2.21), it follows that Equation (2.23)
cannot hold for all �̂� ∈ .

Remark 2.1. To overcome the issue due to Assumption 3, one may consider the Lyapunov func-
tion candidate 𝑊 (𝜉)+ℎ(𝑥)−ℎ(𝜋(�̂�)). However, since �̂� is not constant in the ESC algorithm
[1, Equ. 21], the proofs of Theorems 1 and 2 in [20] would need substantial modification.

2.7 Conclusion
Equation 6 in [20] is incorrect. Consequently, the PI-ESC in [20] may not work in general,
not even for linear systems with convex quadratic cost functions, except for certain special
cases like for 𝐴 = −𝐼 , 𝑘∗ = 0 [22].
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A single-timescale

algorithm

Why do we fall Bruce?

Thomas Wayne, Batman Begins

Those who do not move, do not notice their chains.

Rosa Luxemburg

We propose an integral Nash equilibrium seeking control (I-NESC) law which steers the multi-
agent system composed of a special class of linear agents to the neighborhood of the Nash
equilibrium in noncooperative strongly monotone games. First, we prove that there exist
parameters of the integral controller such that the system converges to the Nash equilibrium
in the full-information case, in other words, without the parameter estimation scheme used
in extremum seeking algorithms. Then we prove that there exist parameters of the I-NESC
such that the system converges to the neighborhood of the Nash equilibrium in the limited
information case where parameter estimation is used. We provide a simulation example that
demonstrates that smaller perturbation frequencies and amplitudes are needed to attain a
similar convergence speed as the existing state-of-the-art algorithm.

This chapter is partly based on  S. Krilašević and S. Grammatico. “An integral Nash equilibrium control
scheme for a class of multi-agent linear systems”. In: IFAC WC 53 (2020), pp. 5375–5380. issn: 2405-8963. doi:
10.1016/j.ifacol.2020.12.1521.
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3.1 Introduction
Extremum seeking control (ESC) is a class of data-driven, adaptive control techniques used
in optimization problems where the cost is a function of the states of a dynamical system.
The method is a zero-order method which means it only uses the value of the cost function
for optimization, and no a priori knowledge of the cost function is needed, except for some
basic assumptions. There was no analytical proof of stability of ESC for general nonlinear
systems until the paper [12]. This sparked renewed interest in further development of this
type of control. Most of the research was based on the original paper by Krstić and Wang,
e.g. [30], [31] etc. There were also methods based on different ideas, such as [32], where
the authors proposed an extremum seeking scheme based on Lie algebra, which turned
out to be equivalent to the Krstić-Wang scheme. Based on a parameter estimation scheme,
Guay and Dochain propose an extremum seeking scheme [20] which does not use singular
perturbation and averaging theory. As a result, a faster convergence rate is obtained. This
fact motivates further research on such a type of ESC.

Nash equilibrium problems (NEP) are different from (distributed) optimization problems,
as they are characterized by a number of selfish agents whose goal is to optimize their indi-
vidual cost functions, possibly dependent on the decision variables of other agents. In NEPs,
the constraints of each agent are independent of other agents, while in generalized Nash
equilibrium problems (GNEPs), they are coupled. Recent interest in GNEPs is motivated by
many engineering problems, such as demand-side management in the smart grids [33],
charging/discharging of electric vehicles [34] and formation control [35]. The literature on
(G)NEPs mostly ignores the dynamics of individual agents, which may be a problem in
multi-agent systems with non-negligible dynamics. The small portion of the literature on
(G)NEPs with dynamical agents can be divided into two groups: passivity-based first-order
algorithms and extremum seeking zero-order algorithms.

By using a passivity property, the authors in [36] design a control law that guarantees
convergence to the Nash equilibrium (NE) of a multi-agent system with single-integrator
dynamics over a network. In [37], the authors extend the result to the multi-integrator
case. The network topology is time invariant in both cases. In [38], the authors extend the
results of [36] by designing a network weight adaptation scheme. In [39], a controller is
proposed that guarantees convergence to a GNE of a multi-agent system with integrator
dynamics over a network. Most prominently, extremum seeking was used for NE seeking
in [7] where it is proven that the extremum seeking control, under certain conditions on
the individual cost functions, converges to a neighborhood of the NE for general nonlinear
agents. In [40], it is proven that the use of stochastic perturbation signals also induces
convergence to a neighborhood of the NE. The authors in [17] propose a framework for
the synthesis of a hybrid controller which may be used for NEPs with nonlinear agents.
All mentioned extremum seeking controllers are based on [12].

Contribution
Motivated by the recent research interest in NEPs, we adapt the ESC proposed in [41], [20].
Specifically, our contributions are the following:

• We extend a known proportional-integral extremum seeking control scheme to
strongly monotone NEPs for multi-agent linear systems, and we prove a practical
convergence to a Nash equilibrium;
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• We numerically observe an improved performance with respect to [7], as smaller
amplitudes and frequencies of the sinusoidal perturbations signals are needed for a
comparable convergence rate.

3.2 Problem setup
We consider a multi-agent system with 𝑁 agents indexed by  = {1,2,… ,𝑁 }, each with the
following dynamics:

�̇�𝑖 = −𝑥𝑖+𝐵𝑖𝑢𝑖,
𝑦𝑖 = ℎ𝑖(𝑥𝑖,𝐱−𝐢), (3.1)

where 𝑥𝑖 ∈ ℝ𝑛𝑖 is the state vector, 𝑢𝑖 ∈ ℝ𝑚𝑖 is the control input, 𝑦𝑖 ∈ ℝ is the output variable
which evaluates the cost function ℎ𝑖 ∶ ℝ𝑛𝑖 ×ℝ𝑛−𝑖 → ℝ. Let us also define 𝑛B∑𝑛𝑖, 𝑛−𝑖 B
∑𝑗≠𝑖 𝑛𝑗 and 𝑚B∑𝑚𝑖.

Standing Assumption 3.1 (Regularity). For each 𝑖 ∈ , the function ℎ𝑖 in (3.1) is continuous,
differentiable in 𝑥𝑖 and its partial gradient ∇𝑥𝑖ℎ𝑖 is Lipschitz continuous in 𝑥𝑖 and 𝐱−𝐢. □

A common assumption amongst the extremum seeking literature (for example [20], [12],
[17]) is the existence of the steady-state mapping, which tells us to which state(s) the
system converges when a constant input is applied. For our subsystems (3.1), there exists a
mapping

𝜋(𝐮)B col ((𝜋𝐢(𝐮𝐢))𝐢∈) = col ((𝐁𝐢𝐮𝐢)𝐢∈) (3.2)

such that for every 𝑖 ∈ , 𝜋𝑖(𝑢𝑖) = 𝐵𝑖𝑢𝑖. Let us also define

𝜋−𝑖(𝐮−𝐢)B col((𝜋𝐣(𝐮𝐣))𝐣≠𝐢) . (3.3)

In this chapter, we assume that the goal of each agent is to minimize its steady-state cost
function, i.e.,

min
𝑢𝑖∈ℝ𝑚𝑖

ℎ𝑖 (𝜋𝑖(𝑢𝑖),𝜋−𝑖(𝐮−𝐢)) , (3.4)

which depends on the inputs of some other agents as well. From a game-theoretic perspec-
tive, we consider the problem to compute a Nash equilibrium (NE).

Definition 3.2 (Nash equilibrium). A collective input 𝐮∗ is a NE of the game (3.4) if for all
𝑖 ∈ 

ℎ𝑖 (𝜋𝑖(𝑢∗𝑖 ),𝜋−𝑖(𝐮
∗
−𝐢)) ≤ inf

𝑢𝑖∈ℝ𝑛𝑖
ℎ𝑖 (𝜋𝑖(𝑢𝑖),𝜋−𝑖(𝐮∗−𝐢)) . ■

In plain words, a set of inputs is a NE if no agent can improve its steady-state cost function
by unilaterally changing its input. Since the steady-state cost functions are differentiable
in 𝑢𝑖, it follows from Thm. 16.3 in [42] that a collective vector 𝐮∗ is a NE if and only if

∇𝑢𝑖ℎ𝑖 (𝜋𝑖(𝑢
∗
𝑖 ),𝜋−𝑖(𝐮

∗
−𝐢)) = 0. (3.5)
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In view of (3.5), we can stack all of the partial gradients into a single vector and form the
so-called pseudo-gradient mapping of the steady-state cost functions:

𝐹(𝐮)B col((∇𝐮𝐢𝐡𝐢 (𝜋𝐢(𝐮𝐢),𝜋−𝐢(𝐮−𝐢)))𝐢∈) . (3.6)

Therefore, by (3.5) and (3.6), we note that the problem of finding a Nash equilibrium of
the game in (3.4) is equivalent to finding 𝐮∗ such that 𝐹(𝐮∗) = 𝟎, which is the problem of
finding a zero of 𝐹 in (3.6), 𝐮∗ ∈ zer(𝐅). A relatively standard assumption in modern game
theory literature [43], [44] is strong monotonicity of the pseudo-gradient mapping:

Standing Assumption 3.3 (Strong monotonicity). The mapping 𝐹 in (3.6) is strongly
monotone, i.e.,

⟨𝐹(𝐮)−𝐅(𝐯) | 𝐮−𝐯⟩ ≥ 𝜇‖𝐮−𝐯‖𝟐, (3.7)

for all (𝐮,𝐯) ∈ ℝ𝟐𝐦, for some 𝜇 > 0. □

Let us also define the pseudo-gradient of the cost functions

𝐹x(𝐱)B col((∇𝐱𝐢𝐡𝐢 (𝐱𝐢,𝐱−𝐢))𝐢∈) . (3.8)

We note that, in general, monotonicity of 𝐹x(𝐱) does not imply monotonicity of 𝐹(𝐮).

3.3 Integral Nash eqilibrium seeking control
3.3.1 Full-information case
We consider the case where every agent knows the analytic expression of its partial gradient
and has access to the inputs of the other agents. Our proposed control law is inspired by
the extremum seeking control in [20], [41]:

∀𝑖 ∈  ∶ �̇�𝑖 = −𝜏−1𝑖 𝐵⊤
𝑖 ∇𝑥𝑖ℎ𝑖(𝑥𝑖,𝐱−𝐢) (3.9)

or in collective vector form

�̇� = −𝜏−𝟏𝐁⊤𝐅x(𝐱), (3.10)

where 𝐁B blkdiag(𝐁𝟏,… ,𝐁𝐍) and 𝜏 B blkdiag(𝜏𝟏,… , 𝜏𝐍). Unlike [20], we do not use the
proportional part, as it does not help with the convergence to the Nash equilibrium.

Theorem 3.4. Let the Standing Assumptions hold and let (𝐱(𝐭),𝐮(𝐭)), 𝑡 ≥ 0, be the closed-loop
solution to the dynamics in (3.1) with control law in (3.9)–(3.10). Then, there exists 𝜏∗, such that
if every agent chooses 𝜏𝑖 ∈ (𝜏∗,∞), the trajectories (𝐱(𝐭),𝐮(𝐭)) converge to (𝐱∗,𝐮∗) = (𝜋(𝐮∗),𝐮∗),
where 𝐮∗ is a Nash equilibrium of the game in (3.4). □

Proof. See Appendix 3.A. ■
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3.3.2 Limited information case
Next, we examine the scenario where agents can only access their individual cost output.
We emphasize that they neither know the actions of other agents nor they know the
analytic expressions of their partial gradients. This setup is a typical setting in extremum
seeking methods such as those presented in [20], [12], and [17]. Our approach involves the
use of pseudogradient estimates by agents in the control law of Equation (3.9) designed for
perfect-information scenarios.

The extremum seeking control proposed by [20] assumes that the cost function of the
system has a strong relative degree of value one. This means that the first derivative of
the cost function directly influences the input to the system. In the case of multi-agent
systems, where the cost functions do not depend only on the states of their agent but also
of the others, we make an analogous assumption:

Assumption 3.5 (Degree of the output). For every 𝑖 ∈, ∇𝑥𝑖ℎ𝑖(𝑥𝑖,𝐱−𝐢)⊤𝐁𝐢 ≠ 𝟎 for all (𝑥𝑖,𝐱−𝐢) ∈
ℝ𝐧 ⧵ {𝐱∗}. □

Let us first evaluate the derivative of the cost functions:

�̇�𝑖 = −∑𝑁
𝑗=1∇𝑥𝑗 ℎ𝑖(𝐱)⊤𝐱𝐢+∑𝐍

𝐣≠𝐢∇𝐱𝐣𝐡𝐢(𝐱)⊤𝐁𝐣𝐮𝐣
+∇𝑥𝑖ℎ𝑖(𝐱)

⊤𝐁𝐢𝐮𝐢, (3.11)

and introduce the following variables:

𝜃0𝑖 B −∑𝑁
𝑗=1∇𝑥𝑗 ℎ𝑖(𝐱)⊤𝐱𝐢+∑𝐍

𝐣≠𝐢∇𝐱𝐣𝐡𝐢(𝐱)⊤𝐁𝐣𝐮𝐣,

𝜃1𝑖 B ∇𝑥𝑖ℎ𝑖(𝐱)
⊤𝐁𝐢. (3.12)

The variable 𝜃0𝑖 measures the effect of the autonomous dynamics of agent 𝑖 on its cost
function and the effects of inputs of the other agents. The variable 𝜃1𝑖 measures the effect of
the input of agent 𝑖 on the cost output 𝑦𝑖. By substituting 𝜃0𝑖 and 𝜃1𝑖 in (3.11), the derivative
reads as

�̇�𝑖 = 𝜃0𝑖 +𝜃1𝑖 𝑢𝑖 = [1, 𝑢⊤𝑖 ]𝜃𝑖, (3.13)

Note that 𝜃1𝑖 is proportional to the right-hand side in (3.9). To estimate the local 𝜃0𝑖 and 𝜃1𝑖 ,
we use a time-varying parameter estimation approach such as the one proposed in [20]. Let
us provide a basic intuition. Let �̂�𝑖 and �̂�𝑖 be estimations of the output 𝑦𝑖 and the variable 𝜃𝑖
respectively and let 𝑒𝑖 = 𝑦𝑖− �̂�𝑖 be the estimation error. Then, the estimator model of (3.13)
for agent 𝑖 is given by

̇̂𝑦𝑖 = [1, 𝑢⊤𝑖 ]�̂�𝑖+𝐾𝑖𝑒𝑖+ 𝑐⊤𝑖
̇̂𝜃𝑖, (3.14)

where 𝐾𝑖 is a free design parameter. Note that the first two terms on the right-hand side
resemble high-gain observer schemes. As the structure of the problem does not allow
the use of high-gain observers, it is necessary to introduce some other dynamics into the
estimation. This is the primary role of the third term in (3.14). Therefore, the dynamics of
𝑐𝑖(𝑡) are chosen as

�̇�⊤𝑖 = −𝐾𝑖𝑐⊤𝑖 +[1, 𝑢⊤𝑖 ]. (3.15)
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Let us introduce an auxiliary variable 𝜂𝑖, with dynamics �̇�𝑖 = −𝐾𝑖𝜂𝑖− 𝑐⊤𝑖 �̇�, and its estimate
�̂�𝑖, with dynamics

̇̂𝜂𝑖 = −𝐾𝑖𝜂𝑖. (3.16)

It is also necessary to define a symmetric, positive definite scaling matrix variable Σ𝑖 ∈
ℝ𝑚𝑖+1×𝑚𝑖+1 with dynamics

Σ̇𝑖 = 𝑐𝑖𝑐⊤𝑖 − 𝑘T𝑖 Σ𝑖+𝜎𝑖 (3.17)
Σ𝑖(0) = 𝛼1𝑖 , (3.18)

where 𝑘⊤𝑖 , 𝜎𝑖 and 𝛼𝑖1 are free design parameters. The third term is added so that the matrix
is always invertible. Equations (3.14)-(3.18) form the parameter update law presented in
[45]:

̇̂𝜃𝑖 = ΠΘ𝑖 (�̂�𝑖,Σ
−1
𝑖 (𝑐𝑖(𝑒𝑖− 𝜂𝑖)−𝜎𝑖�̂�𝑖)) , (3.19)

where ΠΘ𝑖(�̂�, 𝑣) denotes the projection of the vector 𝑣 onto the tangent cone of the set Θ𝑖

at �̂�, as defined by Equation 2.14 in [46]. This implies that if the starting value �̂�𝑖(0) is in
Θ𝑖, so will �̂�𝑖(𝑡) for all 𝑡. We are finally ready to propose an integral decentralized Nash
equilibrium seeking control law of the form

∀𝑖 ∈  ∶
{

𝑢𝑖 = �̂�𝑖+ 𝑑𝑖(𝑡)
̇̂𝑢𝑖 = −𝜏−1𝑖 �̂�1𝑖

(3.20)

together with Equations (3.14)–(3.19). In the collective vector form, Equation (3.20) read as
{

𝐮 = �̂�+𝐝(𝐭)
̇̂𝐮 = −𝜏−𝟏�̂�𝟏

(3.21)

As in [20], a persistency of excitation (PE) assumption for every agent is introduced for the
parameter estimation scheme to converge.

Assumption 3.6 (Persistence of excitation). For every 𝑖 ∈ , there exist constants 𝛼2𝑖 and 𝑇𝑖
such that

∫
𝑡+𝑇𝑖

𝑡
𝑐𝑖(𝜏)𝑐𝑖(𝜏)⊤𝑑𝜏 ≥ 𝛼2𝑖 𝐼 , ∀𝑡 > 0, (3.22)

where 𝑐𝑖(𝜏) is the solution to (3.15). □

We conclude the section with the main theoretical result of the chapter, namely, the
convergence of the closed-loop dynamics to a Nash equilibrium of the game.

Theorem 3.7. Let the Standing Assumptions and Assumptions 3.5, 3.6 hold and let (𝐱(𝐭),𝐮(𝐭))
be the closed-loop solution to the dynamics (3.1) with control law in (3.14) – (3.19), (3.20). Let
𝜋 be the steady-state mapping in (3.2) and let 𝐷 be the largest amplitude of the perturbation
signals {𝑑𝑖(𝑡)}𝑖∈ . Then, it is possible to tune gains (𝜏𝑖,𝜎𝑖,𝐾𝑖, 𝑘T𝑖 , )𝑖∈ in that order, so that
the trajectories (𝐱(𝐭),𝐮(𝐭)) converge towards the (𝐷2) neighborhood of some (𝐱∗,𝐮∗) =
(𝜋(𝐮∗),𝐮∗), where 𝐮∗ is a Nash equilibrium of the game in (3.4). □

Proof. See Appendix 3.B for both the proof and the details of the parameter tuning. ■
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3.4 Simulation example
Consider a three agent system with dynamics:

�̇�𝑖 = −𝑥𝑖+𝑢𝑖, for 𝑖 ∈ {1,2,3}. (3.23)

The cost functions of agents are given by

𝑦1 = 1.5(𝑥1−1)2+1.5𝑥1𝑥2+𝑥1𝑥3
𝑦2 = −2𝑥2𝑥1+1.5(𝑥2−2)2+𝑥2𝑥3
𝑦3 = −2.5𝑥3𝑥1−𝑥3𝑥2+1.5(𝑥3−3)2. (3.24)

Two types of controllers were simulated to have a comparison; the limited information
controller proposed in this chapter and the controller from [7] with additional low-pass
and high-pass filters as in [12] to improve the performance. The latter can be described by
the following equations

�̇�𝑖 = −𝜔𝑖
ℎ𝜂𝑖+𝜔𝑖

ℎ𝑦𝑖,

�̇�𝑖 = −𝜔𝑖
𝑙𝜉𝑖+𝜔𝑖

𝑙(𝑦𝑖− 𝜂𝑖)𝐴𝑖 sin(𝜔𝑖𝑡),
̇̂𝑢𝑖 = −𝑘𝑖𝐴𝑖𝜉𝑖, 𝑢𝑖 = �̂�𝑖+𝐴𝑖 sin(𝜔𝑖𝑡). (3.25)

For our controller, the following parameters were chosen: 𝜎1 = 𝜎2 = 𝜎3 = 10−6, 𝐾1 = 𝐾2 =
𝐾3 = 50, 𝑘1𝑇 = 𝑘2𝑇 = 𝑘3𝑇 = 50, 𝛼1𝐼 = 𝛼2𝐼 = 𝛼3𝐼 = 0.1, 𝜏1 = 5, 𝜏2𝐼 = 10, 𝜏3𝐼 = 15, 𝑑1(𝑡) = 1

2 sin(40𝑡),
𝑑2(𝑡) = 1

2 sin(50𝑡) and 𝑑3(𝑡) =
1
2 sin(60𝑡). Initial states of 𝐱, �̂�, 𝐜, 𝜃 and 𝜂were set to zero. The

parameters 𝐾 , 𝑘T, and 𝜏𝐼 were initially chosen large enough to ensure stability. Then 𝜏𝐼 was
decreased to speed up the convergence. Further decreases in 𝜏𝐼 made the states oscillate;
further decreases of 𝐾 and 𝑘T did not improve the algorithm’s performance. For the Frihauf
et al., the following parameters were chosen: 𝜔1

ℎ = 180, 𝜔2
ℎ = 200, 𝜔3

ℎ = 220, 𝜔1
𝑙 = 45, 𝜔2

𝑙 = 50,
𝜔3
𝑙 = 55, 𝜔1 = 90, 𝜔2 = 100, 𝜔3 = 110, 𝑘1 = 𝑘2 = 𝑘3 = 0.5 and 𝐴1 = 𝐴2 = 𝐴3 = 5. Firstly, we

chose 𝜔1, 𝜔2, and 𝜔3 such that the highest convergence rate for a fixed 𝐴𝑖 was observed.
Higher perturbation frequencies facilitate faster learning of the gradient, but also higher
frequencies get damped out. At the chosen frequencies, the best trade-off was observed.
Next, the amplitude was increased to speed up the convergence. After 𝐴𝑖 = 5, a non-
significant increase in performance was observed. The results of the numerical simulations
can be seen in Figures 3.1 and 3.2. While the convergence speed of both algorithms is
similar, the frequency and amplitude of the sinusoidal perturbation signals are much lower
with our I-NESC law.
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Figure 3.1: State trajectories of the three agents under I-NESC (solod blue) and [7] (doted
red)

Figure 3.2: Input of the first agent under I-NESC (solid blue) and [7] (doted red)
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3.5 Conclusion
Nash equilibrium problems can be solved efficiently via extremum seeking if the agents be-
long to a certain class of linear dynamics with strongly monotone and Lipschitz continuous
game mapping.

Appendix
3.A Proof of Theorem 1
Stability of equilibrium points 𝜋𝑖(𝑢𝑖) for every agent 𝑖 ∈  can be characterised by the
following Lyapunov function:

𝑉𝑖(𝑥𝑖, 𝑢𝑖) =
𝛽
2
‖𝑥𝑖−𝐵𝑖𝑢𝑖‖2 , (3.26)

where 𝛽 > 0. The derivative of (3.26) is equal to

�̇�𝑖(𝑥𝑖, 𝑢𝑖) = −𝛽‖𝑥𝑖−𝜋𝑖(𝑢𝑖)‖2−𝛽 ⟨𝑥𝑖−𝜋𝑖(𝑢𝑖) | 𝐵�̇�𝑖⟩ . (3.27)

For very slow changes of the input 𝑢𝑖, we expect the subsystems will converge to a small
neighborhood of equilibrium points 𝜋𝑖(𝑢𝑖). We consider the controller in (3.10). Its goal is
to estimate the Nash equilibrium input 𝐮∗ and to preserve the stability of the subsystems.
Therefore, we construct the following Lyapunov function candidate:

𝑊 (𝐱,𝐮)B 𝐓(𝐮)+𝐕(𝐱,𝐮) =
𝟏
𝟐
‖�̃�‖𝟐𝜏−𝟏min

+
𝐍
∑
𝐢=𝟏

𝐕𝐢(𝐱𝐢,𝐮𝐢), (3.28)

where �̃� = 𝐮−𝐮∗ and 𝜏min = min{𝜏1,… , 𝜏𝑁 }. Now, we bound the derivative of 𝑇 . By adding
and subtracting 𝐹(𝐮) to (3.10), �̇� reads as

�̇� = −𝜏−𝟏𝐅(𝐮)− 𝜏−𝟏(𝐁⊤𝐅x(𝐱)−𝐅(𝐮)). (3.29)

From (3.28) and (3.29), we have

�̇� (𝐱,𝐮) = −𝜏−𝟏min ⟨�̃� | 𝐅(𝐮)⟩− 𝜏−𝟏min ⟨̃𝐮 || 𝐁
⊤𝐅x(𝐱)−𝐅(𝐮)⟩ . (3.30)

Considering 𝐹(𝐮) is strongly monotone and we have 𝐹(𝐮∗) = 𝟎, since 𝐮∗ ∈ zer(𝐅), (3.7) reads
as

⟨𝐹(𝐮) | 𝐮−𝐮∗⟩ = ⟨𝐹(𝐮) | �̃�⟩ ≥ 𝜇‖𝐮−𝐮∗‖𝟐. (3.31)

To bound the second term in (3.30), we use the identity:

∇𝑢𝑖ℎ𝑖(𝜋𝑖(𝑢𝑖),𝜋−𝑖(𝐮−𝐢))
⊤ = ∇𝐱𝐢𝐡𝐢(𝜋𝐢(𝐮𝐢),𝜋−𝐢(𝐮−𝐢))

⊤𝐁𝐢. (3.32)

By using the relations (3.6), (3.8) and (3.32), it follows that:

𝐁⊤𝐅x(𝜋(𝐮)) = 𝐅(𝐮). (3.33)
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By exploiting (3.31) and (3.33), from (3.30) we have

�̇� ≤ −
𝜇

𝜏min
‖𝐮−𝐮∗‖𝟐− 𝜏−𝟏min⟨�̃� || 𝐁

⊤𝐅x(𝐱)−𝐁⊤𝐅x(𝜋(𝐮))⟩ . (3.34)

Since all of the functions are Lipschitz continuous, the right-hand side in (3.34) can be
upper bounded as follows:

�̇� ≤ −
𝜇

𝜏min
‖�̃�‖2+

𝐿
𝜏min

‖�̃�‖‖𝐱−𝜋(𝐮)‖, (3.35)

where 𝐿 > 0 is the Lipschitz constant of the mapping 𝐁⊤ ◦𝐅x. Now, we turn our attention
to the full Lyapunov function candidate 𝑊 . The derivative is bounded as

�̇� (𝐱,𝐮) ≤ −𝛽‖𝐱−𝜋(𝐮)‖𝟐−
𝜇

𝜏min
‖�̃�‖𝟐+

𝐋
𝜏min

‖�̃�‖‖𝐱−𝜋(𝐮)‖−𝛽 ⟨𝐱−𝜋(𝐮) | 𝐁�̇�⟩ . (3.36)

To complete the proof, we bound the derivative of 𝑉 caused by the change of inputs:

−𝛽 ⟨𝐱−𝜋(𝐮) | 𝐁�̇�⟩ ≤ 𝛽‖𝐁‖‖�̇�‖‖𝐱−𝜋(𝐮)‖. (3.37)

By using (3.29), the norm of the derivative is bounded:

‖�̇�‖ ≤ 𝜏−1min‖𝐹(𝐮)‖+ 𝜏−𝟏min‖(𝐁
⊤𝐅x(𝐱)−𝐅(𝐮))‖. (3.38)

Again, since all of the functions are Lipschitz continuous, the right-hand side of the previous
equation can be bounded as follows

‖�̇�‖ ≤
𝐿F
𝜏min

‖�̃�‖+
𝐿

𝜏min
‖𝐱−𝜋(𝐮)‖, (3.39)

where 𝐿F > 0 is the Lipschitz constant of 𝐹 . By using the bounds (3.37) and(3.39), �̇� can be
bounded as follows:

�̇� (𝐱,𝐮) ≤ −[
‖�̃�‖

‖𝐱−𝜋(𝐮)‖ ]

⊤
𝐌[

‖�̃�‖
‖𝐱−𝜋(𝐮)‖ ] (3.40)

where

𝑀 =
⎡
⎢
⎢
⎢
⎣

𝛽−𝐿𝛽‖𝐁‖𝜏−𝟏min −
1
2
(𝐿+𝛽‖𝐁‖𝐋F)𝜏−𝟏min

−
1
2
(𝐿+𝛽‖𝐁‖𝐋F)𝜏−𝟏min

𝜇
𝜏min

⎤
⎥
⎥
⎥
⎦

. (3.41)

Thus, if 𝜏min > (𝐿+𝛽‖𝐁‖𝐋F)𝟐+𝟒𝐋𝛽‖𝐁‖
4𝛽𝜇 , then the matrix 𝑀 in (3.41) is positive definite, which in

turn implies that �̇� is negative definite, which concludes the proof. ■
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3.B Proof of Theorem 2
The proof is similar to the full-information case proof, but unlike the full-information case,
our inputs use the estimation of the 𝜃𝑖 variables. Let us consider a Lyapunov function
candidate of the form 𝐿 =𝑊 +𝑉 + 𝑇 , where

𝑊 (�̃�, �̃�) =∑𝑁
𝑖=1(

1
2 ‖�̃�𝑖‖

2+ 1
2
‖‖‖𝜃𝑖

‖‖‖
2

Σ𝑖)
, (3.42)

𝑉 (𝐱, �̂�) =
𝐍
∑
𝐢=𝟏

𝐕𝐢(𝐱𝐢, �̂�𝐢), (3.43)

𝑇 (�̂�) =
1

2𝜏min
⟨�̂�−𝐮∗ | 𝜏(̂𝐮−𝐮∗)⟩ =

1
2𝜏min

‖�̃�‖𝜏 . (3.44)

Therefore, our candidate consists of a parameter estimation term (𝑊 ), a local state-input
Lyapnuov term (𝑉 ), and the Nash equilibrium estimation error term (𝑇 ).

Parameter estimation term
We bound the time derivative of the𝑊 function similarly to [20] and [41] with the only dif-
ference that we let each agent choose their parameters (𝜎𝑖,𝐾𝑖, 𝑘T𝑖 ). The Lyapunov derivative
reads as follows:

�̇� (�̃�, �̃�) ≤ −𝑘a‖�̃�‖2− 𝑘b‖�̃�‖2+ 𝑘c‖�̇�‖2+
𝜎
2
‖𝜃‖𝟐, (3.45)

where 𝑘a Bmin𝑖(𝐾𝑖− 1
2 −

𝑘1𝜁𝑖
2 ), 𝑘b Bmin𝑖(

𝑘𝑇 ′𝑖 𝛾1𝑖
2 ), 𝑘c Bmax𝑖 ( 1

2𝑘1 +
𝛾2𝑖
2𝑘2 ) and 𝜎Bmax𝑖𝜎𝑖.

Local state-input Lyapunov term:
The derivative of the Lyapunov term 𝑉𝑖(𝑥𝑖, 𝑢𝑖) in (3.43) is

�̇�𝑖(𝑥𝑖, 𝑢𝑖) =−𝛽‖𝑥𝑖−𝜋𝑖(𝑢𝑖)‖2−𝛽 ⟨𝑥𝑖−𝜋𝑖(𝑢𝑖) | 𝐵�̇�𝑖⟩+𝛽 ⟨𝑥𝑖−𝜋𝑖(�̂�𝑖)) | 𝐵𝑖𝑑𝑖(𝑡)⟩ . (3.46)

The first addend is equal to the complete derivative of the Lyapunov function in the case of
constant inputs, the amplitude of the second component is proportional to the amplitude
of the perturbations, and the amplitude of the third component is equal to the amplitude of
the derivative of the input 𝑢𝑖. To bound the third component, we need to bound ̇̂𝑢𝑖, hence ̇̂𝐮,
which reads as ̇̂𝐮 = −𝜏−𝟏(𝐁⊤𝐅x(𝐱)+ �̃�𝟏). By using the same argument as in (3.39), it follows

̇̂𝐮 ≤
𝐿F
𝜏min

‖�̃�‖+
𝐿

𝜏min
‖𝐱−𝜋(�̂�)‖+ 𝜏−𝟏min‖�̃�

𝟏‖. (3.47)

By using the previous equation, it is possible to bound the second addend in (3.46):

𝛽⟨𝐱−𝜋(𝐮) ||| 𝐁
̇̂𝐮⟩ ≤

𝐿F𝛽
𝜏min

‖𝐁‖‖�̃�‖‖𝐱−𝜋(�̂�)‖+
𝐋𝛽
𝜏min

‖𝐁‖‖𝐱−𝜋(�̂�)‖𝟐+
𝛽

𝜏min
‖𝐁‖‖�̃�𝟏‖‖𝐱−𝜋(�̂�)‖.

Therefore, the derivative of 𝑉 can be bounded as

�̇� (𝐱,𝐮) ≤ −𝛽‖𝐱−𝜋(�̂�)‖𝟐+
𝐋F𝛽
𝜏min

‖𝐁‖‖�̃�‖‖𝐱−𝜋(�̂�)‖+
𝐋𝛽
𝜏min

‖𝐁‖‖𝐱−𝜋(�̂�)‖𝟐

+
𝛽

𝜏min
‖𝐁‖‖�̃�𝟏‖‖𝐱−𝜋(�̂�)‖−𝛽(𝐱−𝜋(�̂�))⊤𝐁𝐝(𝐭). (3.48)
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The last term can be bounded by using the Cauchy—Bunyakovsky—Schwarz inequality
and the inequality ‖𝑥‖‖𝑦‖ ≤ 1

2𝑘 ‖𝑥‖
2+ 𝑘

2 ‖𝑦‖
2 to conclude the desired bound:

�̇� ≤−(𝛽−
𝐿𝛽‖𝐁‖
𝜏min

−
𝛽‖𝐁‖

2𝜏min𝑘3
−
𝛽‖𝐁‖
2𝑘4 )‖𝐱−𝜋(�̂�)‖𝟐+

𝐋F𝛽
𝜏min

‖𝐁‖‖�̃�‖‖𝐱−𝜋(�̂�)‖

+
𝛽𝑘3
2𝜏min

‖𝐁‖‖�̃�𝟏‖𝟐+
𝟏
𝟐
𝛽𝐤𝟒‖𝐁‖‖𝐝(𝐭)‖𝟐. (3.49)

Nash eqilibrium estimation error term
The parameter estimation also has an influence on the Nash equilibrium estimation error.
The derivative of (3.44) is equal to

�̇� (𝐱, �̂�) = −𝜏−𝟏�̃�(𝐁⊤𝐅x(𝐱)+ �̃�𝟏𝐢 ). (3.50)

By the same method as in (3.35), (3.49), it follows that

�̇� (�̂�) ≤−
𝜇

𝜏min
‖�̃�‖2+

𝐿
𝜏min

‖�̃�‖‖𝐱−𝜋(�̂�)‖+
𝟏

𝟐𝜏min𝐤𝟓
‖�̃�‖𝟐+

𝐤𝟓
𝟐𝜏min

‖�̃�𝟏‖𝟐. (3.51)

The full Lyapunov candidate
With the bounds (3.45), (3.49) and (3.51), the derivative of the full Lyapunov candidate
function is bounded as follows:

�̇� ≤− 𝑘a‖�̃�‖2− 𝑘b‖�̃�0‖2−(
𝜇

𝜏min
−

1
2𝜏min𝑘5)

‖�̃�‖2

−(𝛽−
𝐿𝛽‖𝐁‖
𝜏min

−
𝛽‖𝐁‖

2𝜏min𝑘3
−
𝛽‖𝐁‖
2𝑘4 )‖𝐱−𝜋(�̂�)‖𝟐−(𝐤b−

𝐤𝟓
𝟐𝜏min

−
𝛽‖𝐁‖𝐤𝟑
𝟐𝜏min )‖�̃�𝟏‖𝟐

+ 𝑘c‖�̇�‖2+
𝜎
2
‖𝜃‖𝟐+

𝐋F𝛽‖𝐁‖+𝐋
𝜏min

‖�̃�‖‖𝐱−𝜋(�̂�)‖+
𝛽‖𝐁‖𝐤𝟒

𝟐
‖𝐝(𝐭)‖𝟐. (3.52)

We are left with determining bounds on ‖𝜃‖ and ‖�̇�‖. Since all of the considered functions
(and their composition) in (3.1), (3.12) and (3.21) are Lipschitz continuous, it follows

‖𝜃‖𝟐 ≤ 𝐿1‖𝐱−𝜋(�̂�)‖𝟐+𝐋𝟐‖�̃�‖𝟐 (3.53)
‖�̇�‖2 ≤ 𝐿3‖𝐱−𝜋(�̂�)‖𝟐+𝐋𝟒‖�̃�‖𝟐, (3.54)

for some 𝐿1,𝐿2,𝐿3,𝐿4 > 0. Substituting (3.53) and (3.54) into (3.52), we obtain

�̇� ≤−(
𝜇

𝜏min
−

1
2𝜏min𝑘5

−
𝐿2𝜎
2

− 𝑘c𝐿4)‖�̃�‖2−(𝑘b−
𝑘5

2𝜏min
−
𝛽‖𝐁‖𝐤𝟑
2𝜏min )‖�̃�1‖2− 𝑘a‖�̃�‖2− 𝑘b‖�̃�0‖2

−(𝛽−
𝐿1𝜎
2

−
𝐿𝛽‖𝐁‖
𝜏min

−
𝛽‖𝐁‖

2𝜏min𝑘3
−
𝛽‖𝐁‖
2𝑘4

− 𝑘c𝐿3)‖𝐱−𝜋(�̂�)‖𝟐

+
𝐿F𝛽‖𝐁‖+𝐋

𝜏min
‖�̃�‖‖𝐱−𝜋(�̂�)‖+

𝛽‖𝐁‖𝐤𝟒
𝟐

‖𝐝(𝐭)‖𝟐. (3.55)
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Now we prove that there exist parameters 𝐾 , 𝑘T and 𝜏min such that the RHS in (3.55), apart
from the term with ‖𝐝(𝐭)‖𝟐, is negative definite. The proof goes by the same lines as in [20].
Consider the following reformulation of (3.55):

�̇� ≤− 𝑘a‖�̃�‖2− 𝑘b‖�̃�0‖2−(−
𝐿2𝜎
2

− 𝑘c𝐿4)‖�̃�‖2−(−
𝛽‖𝐁‖
2𝑘4

−
𝐿1𝜎
2

− 𝑘c𝐿3)‖𝐱−𝜋(�̂�)‖𝟐

−(𝑘b−
𝑘5

2𝜏min
−
𝛽‖𝐁‖𝐤𝟑
2𝜏min )‖�̃�1‖2− [

‖�̃�‖
‖𝐱−𝜋(𝐮)‖ ]

⊤
𝐌[

‖�̃�‖
‖𝐱−𝜋(𝐮)‖ ]+

𝛽‖𝐁‖𝐤𝟒
𝟐

‖𝐝(𝐭)‖𝟐,

(3.56)

where

𝐌 =
[
𝛽− 𝐿𝛽‖𝐁‖

𝜏min
− 𝛽‖𝐁‖

2𝜏min𝑘3
− 𝐿+𝛽‖𝐁‖𝐋F

2𝜏min
− 𝐿+𝛽‖𝐁‖𝐋F

2𝜏min
2𝜇−1/𝑘5
2𝜏min

]
. (3.57)

Let 𝜆 = 𝜎min(𝐌). The inequality (3.56) can be reformulated as

�̇� ≤− 𝑘a‖�̃�‖2− 𝑘b‖�̃�0‖2−(𝜆−
𝐿2𝜎
2

− 𝑘c𝐿4)‖�̃�‖2−(𝜆−
𝛽‖𝐁‖
2𝑘4

−
𝐿1𝜎
2

− 𝑘c𝐿3)‖𝐱−𝜋(�̂�)‖𝟐

−(𝑘b−
𝑘5

2𝜏min
−
𝛽‖𝐁‖𝐤𝟑
2𝜏min )‖�̃�1‖2+

𝛽‖𝐁‖𝐤𝟒
2

‖𝐝(𝐭)‖𝟐.

Note, parameters 𝑘3, 𝑘4 and 𝑘5 are artifacts of the proof and are not "real” tuning parameters
we can control. The parameter 𝑘3 can be chosen arbitrarily, while 𝑘5 has to be chosen such
that lower diagonal element in𝐌 is positive, i.e. 2𝜇−1/𝑘5 > 0. Also, for𝐌 to be positive
definite and so that the coefficient next to ‖�̃�1‖2 is negative, 𝜏𝑖 have to be chosen so that

𝜏min >
(𝐿+𝛽‖𝐁‖𝐋F)𝟐+𝟐𝐋𝛽‖𝐁‖+𝛽‖𝐁‖/𝐤𝟑

2𝛽(2𝜇−1/𝑘5)

𝜏min >
𝐿𝑘3+ 𝑘5

𝑘b
.

The parameters 𝜎, 𝑘c must be chosen small enough, while 𝑘4 must be large enough such
that the following equations hold true:

𝜆−
𝐿2𝜎
2

− 𝑘c𝐿4 > 0

𝜆−
𝛽‖𝐁‖
2𝑘4

−
𝐿1𝜎
2

− 𝑘c𝐿3 > 0.

The parameter 𝜎 is a free design parameter; the parameter 𝑘c can be made arbitrarily small
by increasing the gains 𝐾 and 𝑘T (or to be more precise 𝐾𝑖 and 𝑘T𝑖 , see [20] for more details).
Therefore, it is possible to choose the controller parameters 𝜏𝑖,𝜎, 𝑘T𝑖 and 𝐾𝑖 such that all of
the constants that multiply the squares of the norms in (3.56) (except for 𝐝(𝐭)) are positive.
Next, we consider the Lyapunov functions of the subsystems in (3.43), the bounds on
matrices Σ𝑖, and the quadratic elements of the Lyapunov function candidate 𝐿. Let 𝐷 be
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the largest amplitude of all the perturbation signals 𝑑𝑖(𝑡). Then it can be concluded that
there exists a positive constant 𝛼𝐿 such that �̇� ≤ −𝛼𝐿𝐿+ 𝛽‖𝐁‖𝐤𝟒𝐃𝟐

2 . With 𝑧 = (�̃�, �̃�,𝐱, �̃�) ∈
ℝ𝑁 ×ℝ𝑚+𝑁 ×ℝ𝑛 ×ℝ𝑚, let us define the set Ω𝛾 = {𝑧 | 𝐿(𝑧) ≤ 𝛾}. We choose 𝛾 such that
𝑧 ∈ Ω𝛾 ⇒ �̂� ∈ Θ1 ×Θ2 ×⋯×Θ𝑁 . It follows that the trajectories �̃�, �̃�,𝐱, �̃� enter the set Ω𝛾0 ={
𝑧 | 𝐿(𝑧) ≤ 𝛽‖𝐁‖𝐤𝟒𝐃𝟐

2𝛼𝐿

}
. Thus, for𝐷 chosen such thatΩ𝛾0 ⊂Ω𝛾 , the setΩ𝛾0 , which is contained

in a ball containing the point (0,0,𝐱∗,𝟎)with radius of order(𝐷2), is exponentially stable
for the closed-loop system. ■
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A man is like a fraction whose numerator is what he is and whose denominator is what he
thinks of himself. The larger the denominator, the smaller the fraction.

Leo Tolstoy

The darker the night, the brighter the stars.

Fyodor Dostoevsky

In this chapter, we consider the problem of learning a generalized Nash equilibrium (GNE) in
strongly monotone games. First, we propose semi-decentralized and distributed continuous-
time solution algorithms that use regular projections and first-order information to compute a
GNE with and without a central coordinator. As the second main contribution, we design a
data-driven variant of the former semi-decentralized algorithm where each agent estimates
their individual pseudogradient via zeroth-order information, namely, measurements of their
individual cost function values, as typical of extremum seeking control. Third, we generalize
our setup and results for multi-agent systems with nonlinear dynamics. Finally, we apply
our methods to connectivity control in robotic sensor networks and almost-decentralized wind
farm optimization.

This chapter is partly based on  S. Krilašević and S. Grammatico. “Learning generalized Nash equilibria in
multi-agent dynamical systems via extremum seeking control”. In: Automatica 133 (Nov. 2021), p. 109846. issn:
0005-1098. doi: 10.1016/j.automatica.2021.109846.
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4.1 Introduction
Multi-agent optimization problems and games with self-interested decision-makers or
agents appear in many engineering applications, such as demand-side management in
smart grids [47], [33], charging/discharging coordination for plug-in electric vehicles [48],
thermostatically controlled loads [49], [50] and robotic formation control [35]. Typically, in
these games, the cost functions and the constraints of the agents are coupled together, e.g.,
due to common congestion penalties and shared resource capacity, respectively. Since the
agents are self-interested, their interaction might be unstable. Thus, one main research area
is that of finding (seeking) agent decisions that are self-enforceable, e.g., decisions such
that no agent has an incentive to deviate from - the so-called Generalized Nash equilibrium
(GNE) [1]. From a control-theoretic perspective, in the presence of dynamical agents, the
main challenge is to design distributed, possibly almost decentralized, control laws that
ensure both the convergence of the agent decisions to a GNE and the asymptotic stability
of the equilibrium for the agent dynamics.

Literature review: The literature on generalized Nash equilibrium problems (GNEPs)
is vast, see [1] for a survey. What differentiates GNEPs from Nash equilibrium problems
(NEPs) is the presence of shared constraints. Although the difference seems minor, it
introduces several technical challenges. The main one is that the primal-dual Lagrangian
reformulation of the GNEP, which is necessary to decouple the coupling constraints, does
not preserve the strong monotonicity of the (extended) pseudogradient [51, p. 13], the usual
background assumption in the NEP literature, as this is a sufficient condition for the
projected pseudogradient descent to converge [44, Lemma 5], [42, Thm. 26.14]. This issue
can be avoided for a particular class of GNEPs in so-called aggregative games. In these
games, each cost function depends on the local decision and on the aggregate (e.g. average)
of the decisions of all (other) agents. Various semi-distributed [34] and decentralized
[52], [53] algorithms have been developed for NE seeking in aggregative games. The
aforementioned technical challenge has only been addressed recently in [44] by applying
a preconditioning matrix on the operators. In turn, in [44] the authors propose a GNE-
seeking algorithm in games with linear coupling constraints. In [54], the authors overcome
the lack of strong monotonicity by adopting an algorithm (the forward-backward-forward)
with weaker assumptions on the projected pseudogradient, at the expense of one additional
computation of the pseudogradient at each iteration.

In most of the literature and all of the previously mentioned work, GNE-seeking
algorithms are designed in discrete-time and for static agents, i.e., where the agent costs
instantaneously reflect the chosen decisions. However, this is not the case when the cost
functions depend on some internal states of the agents and not on their decisions (control
inputs). Let us refer to this class of agents as dynamical agents. The two main approaches
to reach a (G)NE for dynamical agents are passivity-based first-order algorithms and payoff-
based zeroth-order algorithms. By using a passivity property, in [36], [37], Pavel and
co-authors design a control law that guarantees convergence to a Nash equilibrium (NE)
in a multi-agent system with single and multi-integrator dynamics over a time-invariant
network. With the same goal, in [38], De Persis and Grammatico relax the network
connectivity assumption in [36] by designing a network weight adaptation scheme. In [55],
the authors extend the convergence results to GNEPs for the first time via a preconditioning
approach as in [44] and the use of non-Lipschitz continuous projections onto tangents
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cones.
In payoff-based algorithms, each agent can only measure the value of their cost function

but does not know its analytic form. Many such algorithms are designed for NEPswith static
agents with finite action spaces, e.g., [56], [10], [57]. In the case of continuous action spaces,
the measurements of the cost functions are often used to estimate the pseudogradients.
Perhaps the most popular class of control algorithms that exploits this principle is that of
extremum seeking control (ESC). The main idea is to use perturbation signals to “excite”
the cost function and estimate its gradient which is then used in a gradient-descent-like
algorithm [12], [32], [58]. As ESC estimates only one value of the (pseudo)gradient in a time
instant, it is not possible to adopt it in algorithms that require multiple (pseudo)gradient
computations. ESC was used for non-generalized NE seeking in [7], where the proposed
algorithm is proven to converge to a neighborhood of a NE for nonlinear dynamical agents.
The results are extended in [40] to include stochastic perturbation signals. In [17], Poveda
and Teel propose a framework for the synthesis of a hybrid controller, which could also be
used for NEPs with nonlinear dynamical agents. For a class of NEPs called N-cluster games,
the authors in [59] propose an ESC-based algorithm. The extension of these algorithms to
GNEPs is nontrivial. Only for a special class of so-called population games, the authors
in [60] propose an approach based on Shahshahani gradients. In fact, there is still no
methodology on data-driven (zeroth-order) GNE learning in strongly monotone games
for nonlinear dynamical agents. The reasons for that are technical: (i) the lack of strong
monotonicity of the extended pseudogradient in the primal-dual framework; (ii) additional
pseudogradient computations necessary in other dynamics; (iii) the incompatibility of
projections with available extremum seeking techniques. In fact, in [7], Frihauf, Krstić, and
Başar specifically mention: “Several challenges remain in the development of convergence
proofs for Nash seeking players with projection”.

Contribution: Motivated by the above literature and open research problem, to the
best of our knowledge, we consider and solve for the first time the problem of learning a
GNE in strongly monotone games with nonlinear dynamical agents. Specifically, our main
technical contributions are summarized next:

• We design novel continuous-time GNE seeking algorithms (§4.3.1, §4.3.2), which
use projections onto fixed convex sets instead of projections onto state-dependent
tangent cones as in [55]. In this way, the state flow is Lipschitz continuous and admits
solutions in the classical sense. We overcome the lack of strong monotonicity of
the primal-dual pseudogradient thanks to suitable preconditioning of the operators
defining the optimality conditions.

• We design an extremum seeking scheme that learns a GNE in strongly monotone
games with static agents who perform local computations and receive broadcast
information from a central coordinator (§4.3.3) Differently from [58], where an
optimization problem is considered, we study a noncooperative game. Furthermore,
we prove that, with a time-scale separation, our algorithm learns a GNE in (strongly)
monotone games with nonlinear dynamical agents (§4.4).

We also apply for the first time semi-decentralized GNE learning to the robot connectivity
problem and to wind farm optimization (§4.5).



4

38 4 Multi-timescale algorithms

4.2 Multi-agent dynamical systems
We consider an 𝑁 agents multi-agent system indexed by 𝑖 ∈  = {1,2,… ,𝑁 }, each with the
following dynamics:

�̇�𝑖 = 𝑓𝑖(𝑥𝑖, 𝑢𝑖) (4.1a)
𝑦𝑖 = ℎ𝑖(𝑥𝑖,𝒙−𝑖) (4.1b)

where 𝑥𝑖 ∈𝑖 ⊂ ℝ𝑛𝑖 is the state variable, 𝑢𝑖 ∈ Ω𝑖 ⊂ ℝ𝑚𝑖 is the control input (decision variable),
𝑦𝑖 ∈ ℝ is the output variable which evaluates the cost function ℎ𝑖 ∶ ℝ𝑛𝑖 ×ℝ𝑛−𝑖 → ℝ, and
𝑓𝑖 ∶ 𝑖 ×Ω𝑖 → ℝ𝑛𝑖 is the state flow mapping. Let us also define 𝑛B∑𝑛𝑖, 𝑚B∑𝑚𝑖 and
𝑛−𝑖 B∑𝑗≠𝑖 𝑛𝑗 .

To ensure the existence and uniqueness of the solutions to (4.1a), we make a common
assumption in the nonlinear system literature [29, Thm. 3.3]:

Assumption 4.1 (Local Lipschitz continuity). For each 𝑖 ∈, 𝑓𝑖 is locally Lipschitz continuous.□

Furthermore, we assume that the decision variables of the agents are subject to local
constraints 𝑢𝑖 ∈ Ω𝑖 and coupling constraints 𝐴𝒖 ≤ 𝑏, where 𝐴 ∈ ℝ𝑞×𝑚, 𝑏 ∈ ℝ𝑞 , and 𝒖 B
col ((𝑢𝑖)𝑖∈) collects all the control inputs. Let us denote the collection of local constraints
as

𝛀B Ω1 ×⋯×Ω𝑁 . (4.2)

As the decision variables are also coupled together, the overall feasible decision set  is
contained in 𝛀, i.e.

 B 𝛀∩ {𝒖 ∈ ℝ𝑚 | 𝐴𝒖 ≤ 𝑏} , (4.3)

Let us also denote the feasible set of each agent 𝑖 as

𝑖(𝒖−𝑖)B Ω𝑖 ∩ {𝑢𝑖 ∈ ℝ𝑚𝑖 | 𝐴𝒖 ≤ 𝑏} . (4.4)

In equilibrium seeking problems, we can consider only equilibrium points of the nonlinear
systems as possible solutions. Here we consider the setting where agents have a continuum
of possible equilibria. To characterize them, we assume they are input-dependent points,
similar to reference tracking problems. In fact, this motivates a common assumption
amongst the extremum seeking literature (e.g. [12, Ass. 2.1], [20, Equ. 3], [17, Ass. 2]),
namely the existence of the steady-state mappings which characterizes the behavior of the
systems for a constant input.

Standing Assumption 4.2 (Steady-state mapping). For each 𝑖 ∈ , there is a differentiable
mapping 𝜋𝑖 ∶ ℝ𝑚𝑖 → ℝ𝑛𝑖 (called the steady-state mapping) such that for every 𝑢𝑖 ∈ Ω𝑖, it holds
that 𝑓𝑖(𝜋𝑖(𝑢𝑖), 𝑢𝑖) = 0. □
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By using the previous definition, let us also define the collective steady-state mappings

𝜋(𝒖)B col ((𝜋𝑖(𝑢𝑖))𝑖∈) ,

𝜋−𝑖(𝒖−𝑖)B col((𝜋𝑗 (𝑢𝑗 ))𝑗∈⧵{𝑖}) . (4.5)

Another common assumption in ESC is the (local) exponential stability of the equilibrium
points 𝜋𝑖(𝑢𝑖), under constant input (�̇�𝑖 = 0) [12, Ass. 2.2], [7, Ass. 4.2]. Thus, with the
change of coordinates 𝑧𝑖 B 𝑥𝑖−𝜋𝑖(𝑢𝑖), we adopt the following assumption throughout the
paper:

Standing Assumption 4.3 (Lyapunov stability). For each 𝑖 ∈ , there is a smooth Lyapunov
function, 𝑧𝑖 ↦ 𝑉𝑖(𝑧𝑖, 𝑢𝑖), with Lipschitz continuous partial derivatives, i.e. for every constant
𝑢𝑖 ∈𝑖, it holds that

𝛼𝑖‖𝑧𝑖‖
2 ≤ 𝑉𝑖(𝑧𝑖, 𝑢𝑖) ≤ 𝛼𝑖‖𝑧𝑖‖2

𝜕𝑉𝑖
𝜕𝑧𝑖

(𝑧𝑖, 𝑢𝑖)⊤𝑓𝑖(𝑧𝑖+𝜋𝑖(𝑢𝑖), 𝑢𝑖) ≤ −𝜅𝑖‖𝑧𝑖‖2

𝜕𝑉𝑖
𝜕𝑧𝑖

(0, 𝑢𝑖) = 0,

for some positive constants 𝛼𝑖, 𝛼𝑖 and 𝜅𝑖. Moreover, for every constant 𝑢𝑖 ∈𝑖, it holds that

𝜕𝑉𝑖
𝜕𝑢𝑖

(0, 𝑢𝑖) = 0. □

Formally, let the goal of each agent be to minimize their steady-state cost function, i.e.,

∀𝑖 ∈  ∶ min
𝑢𝑖∈𝑖(𝒖−𝑖)

𝐽𝑖(𝑢𝑖,𝒖−𝑖), (4.7)

B min
𝑢𝑖∈𝑖(𝒖−𝑖)

ℎ𝑖(𝜋(𝑢𝑖),𝜋−𝑖(𝒖−𝑖)), (4.8)

which depends on the decision variables of other agents as well. From a game-theoretic
perspective, we actually consider the problem to compute a generalized Nash equilibrium
(GNE) as formalized next.

Definition 4.4 (Generalized Nash equilibrium). A set of control actions 𝒖∗ B col(𝑢∗𝑖 )𝑖∈
is a generalized Nash equilibrium if, for all 𝑖 ∈ ,

𝑢∗𝑖 ∈ argmin
𝑣𝑖

𝐽𝑖 (𝑣𝑖,𝒖∗−𝑖)s.t.(𝑣𝑖,𝒖
∗
−𝑖) ∈ , (4.9)

with  as in (4.3) and 𝐽𝑖 as in (4.8). □

In plain words, a set of inputs is a GNE if no agent can improve its steady-state cost function
by unilaterally changing its input. To ensure the existence of the GNE, we postulate the
following assumption [1, Thm. 3.3]:

Standing Assumption 4.5 (Regularity). For each 𝑖 ∈ , the function 𝐽𝑖 in (4.8) is continuous;
the function 𝐽𝑖 (⋅,𝒖−𝑖) is convex for every 𝒖−𝑖. For each 𝑖 ∈ , the set Ω𝑖 is non-empty, closed,
and convex;  is non-empty and satisfies Slater’s constraint qualification. □
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More precisely, we focus on a subclass of GNE called variational GNE (v-GNE) [1, Def.
3.10]. A collective decision 𝒖∗ is a v-GNE in (4.9) if and only if there exists a dual variable
𝜆∗ ∈ ℝ𝑞 such that the following KKT conditions are satisfied [1, Th. 4.8]:

𝟎𝑚+𝑞 ∈ [
𝐹 (𝒖∗)+𝐴⊤𝜆∗
−(𝐴𝒖∗− 𝑏) ]+ [

N𝛀 (𝒖∗)
Nℝ𝑞

+
(𝜆∗)] , (4.10)

where by stacking the partial gradients ∇𝑢𝑖𝐽𝑖(𝑢𝑖,𝒖−𝑖) into a vector, we have the pseudogra-
dient mapping:

𝐹(𝒖) ∶= col((∇𝑢𝑖𝐽𝑖 (𝑢𝑖,𝒖−𝑖))𝑖∈) . (4.11)

Let us postulate additional common assumptions ([61, Std. Ass. 2], [38, Ass. 1]) in order to
assure the convergence of the algorithm we propose later on.

Standing Assumption 4.6 (Well-behavedness). For each 𝑖 ∈ , 𝐽𝑖 in (4.8) is twice differen-
tiable, and its gradient ∇𝐽𝑖 is 𝓁-Lipschitz continuous, with 𝓁 > 0. The pseudogradient mapping
𝐹 in (4.11) is 𝜇-strongly monotone, i.e., for any pair 𝒖,𝒗 ∈ℝ𝑛, (𝒖−𝒗)⊤(𝐹(𝒖)−𝐹(𝒗))≥ 𝜇‖𝒖−𝒗‖2,
with 𝜇 > 0. □

4.3 GeneralizedNashEqilibrium seeking for static
agents

Let us start with the case of static agents to highlight the proposed algorithm and its
integration with the zeroth-order gradient scheme.

Assumption 4.7 (Static agents). For each 𝑖 ∈ , 𝑥𝑖 = 𝑢𝑖 (in place of (4.1a)). □

We propose three control schemes for GNE seeking with static agents. In the first two, the
agents have perfect information about the decisions of other agents and know the analytic
expression of their partial gradient. The third scheme is data-driven, i.e. the agents have
access to the output of their cost function only. Additionally, the first scheme assumes the
existence of the central coordinator for dual variable calculation, while in the second one,
the computation of the dual variable is distributed.

4.3.1 Gradient-based case with central coordinator
Our GNE seeking algorithm is based on the forward-backward splitting [42, Thm. 26.14],
[62, Thm. 12] applied to a variant of the KKT operator in (4.10). In fact, we emphasize
that there is a fundamental issue in applying the forward-backward splitting directly to
(4.10): the forward part of the monotone operator must be cocoercive [42, Def. 4.2]. Thus,
the standard approach must move all the non-cocoercive elements in the backward step,
but this would make the backward step impossible to compute (non-causal equations).
Other splitting methods that only require monotonicity of the operator require multiple
evaluations of the pseudogradient [42, Th. 26.17], which makes them incompatible with
ESC as the latter can only estimate one pseudogradient. To overcome these issues, we apply
a continuous-time variant of the approach introduced in [44], where a preconditioning
matrix is used. However, differently from [55], we do not use projections onto tangent
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cones to enable the use of extremum seeking techniques later on. We refer to Appendix A
for technical details.

In our proposed algorithm, each agent updates their decision, 𝑢𝑖, based on: (i) decisions of
all other agents; (ii) the dual variable, which is computed by a central coordinator, indexed
by 0, who is in a bidirectional computation with all of the agents:

∀𝑖 ∈  ∶ �̇�𝑖 = −𝑢𝑖+projΩ𝑖 (𝑢𝑖− 𝛾𝑖(∇𝑢𝑖𝐽𝑖(𝒖)+𝐴⊤
𝑖 𝜆))

�̇� = −𝜆+projℝ𝑞
+
(𝜆+ 𝛾0(𝐴𝒖− 𝑏+2𝐴�̇�)),

or in collective form

[
�̇�
�̇�] = [

−𝒖+proj𝛀 (𝒖−Γ(𝐹(𝒖)+𝐴⊤𝜆))
−𝜆+projℝ𝑞

+
(𝜆+ 𝛾0(𝐴𝒖− 𝑏+2𝐴�̇�))] , (4.12)

where 𝐴𝑖 are the 𝑚𝑖 columns of 𝐴 which correspond to coupling constraints on 𝑢𝑖, 𝜆 ∈ ℝ𝑞
+,

(𝛾𝑖) 𝑖∈0 are the step sizes chosen by the agents and the central coordinator; 0 B  ∪ {0};
Γ = blkdiag((𝛾𝑖𝐼𝑚𝑖)𝑖∈). We note that the decision dynamics are primal-dual pseudogradient
dynamics, while those of the dual variable resemble the dual ascent, here with the additional
pricing term 2𝐴�̇�. We are now ready to state our first convergence result:

Theorem 4.8 (v-GNE seeking).
Let the Standing Assumptions and Assumption 4.7 hold and let (𝒖(𝑡), 𝜆(𝑡))𝑡≥0 be the solution
to (4.12). Then, there exist small enough (𝛾𝑖)𝑖∈0 such that the pair (𝒖(𝑡), 𝜆(𝑡))𝑡≥0 converges to
some (𝒖∗, 𝜆∗) ∈ ×ℝ𝑞

+, where 𝒖∗ is the v-GNE of the game in (4.7). □

Proof. See Appendix 4.A. ■

4.3.2 Gradient-based case without a central coordinator
Let us study the case where the agents communicate with each other in order to calculate
the dual variable. The communication structure is described via a graph B (,), where
the first member of the ordered pair is the set of nodes (agents) and the second member
is the set of edges (communication links)  ∈  ×. The weight of the communication
link 𝑤𝑖𝑗 ≥ 0 equals zero if there is no edge between nodes 𝑖 and 𝑗 . We make a common
assumption for consensus algorithms [44], [55]:

Assumption 4.9. The communication graph  is strongly connected, undirected, and its
Laplacian satisfies 𝐿 = 𝐿⊤. □

Each agent updates his decision variable 𝑢𝑖, dual variable estimate 𝜆𝑖 and auxiliary variable
𝑧𝑖 as follows:

�̇�𝑖 = −𝑢𝑖+projΩ𝑖 (𝑢𝑖− 𝛾𝑖 (∇𝑢𝑖𝐽𝑖(𝒖)+𝐴⊤
𝑖 𝜆𝑖))

�̇�𝑖 = 𝛾𝑖∑𝑗∈𝑖𝑤𝑖𝑗 (𝑧𝑖− 𝑧𝑗 )

�̇�𝑖 = −𝜆𝑖+projℝ𝑞
+(𝜆𝑖+ 𝛾𝑖(𝐴𝑖(𝑢𝑖+2�̇�𝑖)− 𝑏

𝑁 + ∑
𝑗∈𝑖

𝑤𝑖𝑗 (2�̇�𝑖−2�̇�𝑗 − 𝑧𝑖+ 𝑧𝑗 −𝜆𝑖+𝜆𝑗 ))), (4.13)
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or, as in collective from:

⎡
⎢
⎢
⎣

�̇�
�̇�
�̇�

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎢
⎢
⎣

−𝒖+proj𝛀 (𝒖−Γ𝑚(𝐹(𝒖)+Λ⊤𝝀))
Γ�̄�𝝀

𝝀+projℝ𝑁𝑞
+
(−𝝀+Γ(Λ(𝒖+2�̇�)− 𝒃

𝑁
+�̄�(2�̇�−𝒛−𝝀)))

⎤
⎥
⎥
⎥
⎥
⎦

, (4.14)

where 𝑧𝑖 ∈ ℝ𝑞 is an auxiliary variable; �̄�B 𝐿⊗ 𝐼𝑞 ; 𝑖 is a set of agents with whom agent
𝑖 has a communication link; ΓB blkdiag((𝛾𝑖𝐼𝑞)𝑖∈); ΛB blkdiag((𝐴𝑖)𝑖∈); 𝒃 = col(𝑏,… , 𝑏),
where 𝑏 repeats N times. We conclude the subsection with our convergence result:

Theorem 4.10 (Distributed v-GNE seeking). Let the Standing Assumptions, Assumptions 4.7
and 4.9 hold and let (𝒖(𝑡),𝒛(𝑡),𝝀(𝑡))𝑡≥0 be the solution to (4.14). Then, there exist small enough
(𝛾𝑖)𝑖∈ such that (𝒖(𝑡),𝒛(𝑡),𝝀(𝑡))𝑡≥0 converges to some (𝒖∗,𝟏𝑁 ⊗𝑧∗,𝟏𝑁 ⊗𝜆∗) ∈ ×ℝ𝑁𝑞

+ ×ℝ𝑁𝑞
+ ,

where 𝒖∗ is the v-GNE of the game in (4.7). □

Proof. See Appendix 4.B. ■

4.3.3 Data-driven case
In this section, we consider that the agents only have access to the cost output. We em-
phasize that in this case, they neither know the other agents’ actions nor the analytic
expressions of their partial gradients. In fact, this is a standard setup used in extremum
seeking ([12], [20], [17] among others). However, we assume that the agents can com-
municate with a central coordinator to whom they send their decision variable and its
derivative. Let us first evaluate the time derivative of the cost output 𝑙𝑖 = 𝐽𝑖(𝑢𝑖,𝒖−𝑖) along
the trajectories of 𝒖:

�̇�𝑖 = 𝜃0𝑖 (𝒖)+𝜃1𝑖 (𝒖)�̇�𝑖 = [1, �̇�⊤𝑖 ]𝜃𝑖(𝒖), (4.15)

where we define

𝜃0𝑖 = 𝜃0𝑖 (𝒖)B ∇𝒖−𝑖𝐽𝑖(𝑢𝑖,𝒖−𝑖)
⊤�̇�−𝑖 (4.16)

𝜃1𝑖 = 𝜃1𝑖 (𝒖)B ∇𝑢𝑖𝐽𝑖(𝑢𝑖,𝒖−𝑖)
⊤ (4.17)

𝜃𝑖 = 𝜃𝑖(𝒖)B [𝜃0𝑖 , 𝜃
1⊤
𝑖 ] (4.18)

In (4.16), the variable 𝜃0𝑖 measures the influence of the decision variables of the other agents
on the cost output of agent 𝑖. Instead, in (4.17), the variable 𝜃1𝑖 measures the effect of the
decision variable of agent 𝑖 on the cost output 𝑙𝑖, which is needed for (4.12). To estimate
the local 𝜃0𝑖 and 𝜃1𝑖 , we use a time-varying parameter estimation approach, as proposed
in [20] for centralized optimization. Let us provide a basic intuition first. Let 𝑙𝑖 and �̂�𝑖
be estimations of the output 𝑙𝑖 and the variable 𝜃𝑖 respectively and let 𝑒𝑖 = 𝑙𝑖 − 𝑙𝑖 be the
estimation error and �̃�𝑖 = 𝜃𝑖− �̂�𝑖 the parameter estimation error. Then, the estimator model
in (4.15) for agent 𝑖 is given by

̇̂𝑙𝑖 = [1, �̇�⊤𝑖 ]�̂�𝑖+𝐾𝑖𝑒𝑖+ 𝑐⊤𝑖
̇̂𝜃𝑖, (4.19)
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where 𝐾𝑖 is a free design parameter. Note that the first two terms on the right-hand side
resemble high gain observer schemes [63]. As the structure of the problem does not directly
allow the use of high-gain observers, it is necessary to introduce some other dynamics into
the estimation. This is the primary role of the third term in (4.19). Therefore, the dynamics
of 𝑐𝑖(𝑡) are chosen as

�̇�⊤𝑖 = −𝐾𝑖𝑐⊤𝑖 +[1, �̇�⊤𝑖 ]. (4.20)

Let us also introduce an auxiliary variables �̃�𝑖 = 𝜂𝑖− �̂�𝑖, 𝜂𝑖 = 𝑒𝑖− 𝑐⊤𝑖 �̃�𝑖, with dynamics 𝐷+𝜂𝑖 =
−𝐾𝑖𝜂𝑖− 𝑐⊤𝑖 𝐷+𝜃, and its estimate �̂�𝑖, with dynamics

̇̂𝜂𝑖 = −𝐾𝑖�̂�𝑖. (4.21)

It is also necessary to define a positive definite matrix variable Σ𝑖 ∈ ℝ(𝑚𝑖+1)×(𝑚𝑖+1) with
dynamics given by

Σ̇𝑖 = 𝑐𝑖𝑐⊤𝑖 −𝜌𝑖Σ𝑖+𝜎𝑖𝐼 (4.22)
Σ𝑖(0) = Σ0𝑖 , (4.23)

where 𝜌𝑖, 𝜎𝑖 and Σ0𝑖 are free design parameters. We note that in [45], Σ̇𝑖 = 𝑐𝑖𝑐⊤𝑖 , but this proved
to be inconvenient in practical implementations, as the elements of Σ𝑖 grow unbounded.
Instead, as in (4.23), dynamics of Σ𝑖 behave as a first-order system. The third term is added
so that the matrix is always invertible. Equations (4.19)-(4.23) form the parameter update
law in [45]:

̇̂𝜃𝑖 = Σ−1𝑖 (𝑐𝑖(𝑒𝑖− 𝜂𝑖)−𝜎𝑖�̂�𝑖). (4.24)

We are finally ready to propose our semi-decentralized v-GNE learning algorithm:

∀𝑖 ∈  ∶ �̇�𝑖 = −𝑢𝑖+projΩ𝑖 (𝑢𝑖− 𝛾𝑖(�̂�1𝑖 +𝐴⊤
𝑖 𝜆)+ 𝑑𝑖) ,

�̇� = −𝜆+projℝ𝑞
+
(𝜆+ 𝛾0(𝐴𝒖− 𝑏+2𝐴�̇�)),

where 𝑑𝑖 represents the perturbation signal of agent 𝑖. In collective form, it can be written
as

[
�̇�
�̇�] = [

−𝒖+proj𝛀(𝒖−Γ(�̂�
1
+𝐴⊤𝜆)+ 𝑑)

−𝜆+projℝ𝑞
+
(𝜆+ 𝛾0(𝐴𝒖− 𝑏+2𝐴�̇�))]

, (4.25)

where �̂�
1
col((�̂�

1
𝑖 )𝑖∈)

. For �̂�
1
to successfully estimate 𝐹(𝒖), it is necessary to assume that

the input signals are “exciting" enough. As in [20, Ass. 5], we postulate a persistency of
excitation (PE) assumption.

Assumption 4.11 (Persistence of excitation).
For each 𝑖 ∈ , there exist 𝛼𝑖, 𝑇𝑖 > 0, such that

∫
𝑡+𝑇𝑖

𝑡
𝑐𝑖(𝜏)𝑐𝑖(𝜏)⊤𝑑𝜏 ≥ 𝛼𝑖𝐼 , for all 𝑡 > 0, (4.26)

where 𝑐𝑖 is the solution to (4.20). □
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We conclude the section with the convergence result. For any initial condition of the
decision variables, there exist gains such that the control variables converge to an arbitrarily
small neighborhood of a v-GNE.

Theorem 4.12 (v-GNE static learning).
Let the Standing Assumptions andAssumptions 4.7 and 4.11 hold and let (𝑠(𝑡)B (�̂�(𝑡), �̂�(𝑡),𝒖(𝑡),
𝜆(𝑡)))𝑡≥0 be the closed-loop solution to (4.19)–(4.25). Then, for any compact set  and any
𝜀 > 0, there exist small enough parameters 𝛾0 and (𝛾𝑖,𝜎𝑖, 1

𝐾𝑖 ,
1
𝜌𝑖 )𝑖∈ , tuned in that order, such

that for every solution with 𝑠(0) ∈, 𝒖(𝑡) converges to the set {𝒖∗}+ 𝜀𝔹, where 𝒖∗ is a v-GNE
of the game in (4.7). □

Proof. See Appendix 4.C. ■

4.4 Generalized Nash eqilibrium learning for dy-
namical agents

In this section, we propose a control scheme for generalized Nash equilibrium learning for
dynamical agents. We consider a data-driven scenario only, i.e., the agents have access to
the cost output measurements and the information that is given to them by a central coor-
dinator. They are not aware of the analytic expression of their steady-state cost function,
nor of their pseudogradient, nor can they observe the states and decisions of the other
agents.

For the multi-agent dynamical system

𝜖�̇� = col((𝑓𝑖(𝑥𝑖, 𝑢𝑖))𝑖∈) = 𝑓 (𝒙,𝒖), (4.27)

where 𝜖 > 0 is a time scale separation constant with the objective of reaching a neighbor-
hood of a v-GNE, we propose the same control law as in (4.25), with the distinction that
�̂�
1
is estimated by a parameter estimation scheme (4.19) – (4.24), where we collect the

measurements of the output 𝑦𝑖 in (4.1b) instead of 𝐽𝑖(𝑢𝑖,𝒖−𝑖) directly. Thus, the estimation
error is hereby redefined as

𝑒𝑖 = 𝑦𝑖− 𝑙𝑖. (4.28)

We conclude the section with the most general theoretical result of the paper, namely, the
convergence of the closed-loop dynamics to a neighborhood of a v-GNE.

Theorem 4.13. [v-GNE dynamic learning]
Let the Standing Assumptions andAssumptions 4.1 and 4.11 hold and let (𝑠(𝑡)B (�̂�(𝑡), �̂�(𝑡),𝒙(𝑡),
𝒖(𝑡), 𝜆(𝑡)))𝑡≥0 be the closed-loop solution to (4.19)–(4.25), (4.27), (4.28). Then, for any compact
set  and any 𝜀 > 0, there exist small enough parameters 𝛾0, (𝛾𝑖,𝜎𝑖)𝑖∈ , 𝜖 and ( 1

𝐾𝑖 ,
1
𝜌𝑖 )𝑖∈ ,

tuned in that order, such that every solution with 𝑠(0) ∈ , (𝒙(𝑡),𝒖(𝑡)) converges to an 𝜀
neighborhood of some (𝜋(𝒖(𝑡)),𝒖∗), where 𝒖∗ is a v-GNE of the game in (4.7). □

Proof. See Appendix 4.D. ■
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4.5 Illustrative applications
4.5.1 Connectivity control in robotic swarms
The problem of connectivity control has been considered in [8] as a Nash equilibrium
problem. In many practical scenarios, multi-agent systems, besides their primary objective,
are designed to uphold certain connectivity as their secondary objective. In what follows,
we consider a similar problem in which each agent is tasked with finding a source of an
unknown signal while maintaining certain connectivity. Unlike [8], we require the exis-
tence of a central coordinator and allow for coupled restrictions on the decision variables.
Moreover, we model the agents as unicycles with setpoint regulators, which do not require
a constant angular velocity as in [8].

Consider a multi-agent system consisting of unicycle vehicles, indexed by 𝑖 ∈ {1,…𝑁 },
where each one implements the feedback controller studied in [64] for target tracking, to
have the following dynamics:

⎡
⎢
⎢
⎣

�̇�𝑖
�̇�𝑖
�̇�𝑖

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎢
⎣

−𝐾 1
𝑖 ‖𝑟𝑖−𝑢𝑖‖cos(𝜙𝑖)cos(𝜙𝑖−arctan 𝑦𝑖

𝑥𝑖)
−𝐾 1

𝑖 ‖𝑟𝑖−𝑢𝑖‖cos(𝜙𝑖)sin(𝜙𝑖−arctan 𝑦𝑖
𝑥𝑖)

−𝐾 2
𝑖 𝜙𝑖

⎤
⎥
⎥
⎥
⎦

, (4.29)

where 𝑥𝑖, 𝑦𝑖 are position variables, 𝜙𝑖 is the relative angle with respect to the setpoint,
𝐾 1
𝑖 ,𝐾 2

𝑖 > 0 controller parameters, 𝑟𝑖 = col(𝑥𝑖, 𝑦𝑖) and 𝑢𝑖 = col(𝑢𝑥𝑖 , 𝑢
𝑦
𝑖 ) is the input of the

transformed system, which represents the coordinates of the setpoint input. Note that, in
the new dynamics (4.29), we do not follow the global angle coordinate, but rather 𝜙𝑖 (local
coordinate), as illustrated in Figure [64, Fig. 1]. For each 𝑖, the steady-state mapping is then
given by 𝜋𝑖(𝑢𝑖) = col (𝑢𝑖,0).

Each agent is tasked with locating a source of a unique unknown signal. The strength of all
signals abides by the inverse-square law, i.e., proportional to 1/𝑟2. Therefore, the inverse of
the signal strength can be used in the cost function. Additionally, the agents must not drift
apart from each other too much, as they should provide quick assistance to each other in
case of critical failure. This is enforced in two ways: by incorporating the signal strength
of fellow agents in the cost functions and by communicating with the central coordinator.
Thus, we design the cost output and position constraints as

∀𝑖 ∈  ∶

{
ℎ𝑖(𝑟𝑖) = ‖𝑟𝑖− 𝑟 𝑠𝑖 ‖2+ 𝑐∑𝑗∈−𝑖 ‖𝑟𝑖− 𝑟𝑗 ‖2,
‖‖‖col((𝑢𝑖−𝑢𝑗 )𝑗∈−𝑖)

‖‖‖∞ ≤ 𝑏 (4.30)

where −𝑖 B  ⧵ {𝑖}, 𝑐, 𝑏 > 0 and 𝑟 𝑠𝑖 represents the position of the source assigned to agent 𝑖.
The safe traversing area is described by a rectangle: [𝑥min, 𝑥max] × [𝑦min, 𝑦max].

For our numerical simulations, we choose the parameters: 𝑁 = 4, (𝑥min, 𝑥max) = (−16,16),
(𝑦min, 𝑦max) = (−6,6), 𝑟 𝑠1 = (−4,−8), 𝑟 𝑠2 = (−12,−3), 𝑟 𝑠3 = (1,7), 𝑟 𝑠4 = (16,8), (𝑐, 𝑏) = (0.04,14),
𝐾𝑖 = 100, 𝑘𝜎𝑖 = 100, 𝜎𝑖 = 10−6, Σ𝑖(0) = 0.1𝐼 , 𝛾𝑖 = 0.002, 𝛾0 = 0.002, 𝜖 = 0.1, 𝐾 𝑖

1 = 3, 𝐾 𝑖
2 = 6,

(𝜔1
1,𝜔2

1) = (5.11,6.38), (𝜔1
2,𝜔2

2) = (4.42,5.16), (𝜔1
3,𝜔2

3) = (10.59,11.91), (𝜔1
4,𝜔2

4) = (14.65,16.12).
We run simulations for different values of perturbation amplitudes in range [0.1,0.5] and
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Figure 4.1: Distance of the final average steady-state trajectory from the v-GNE for agent 4.

Figure 4.2: Hours required to enter a ball of size 𝜀 = 1.5 centered around the v-GNE for
agent 4.

different values of the frequency factor 𝑘𝜔 in range [0.17,1]. The numerical results are
illustrated in Figures 4.1, 4.2 and 4.3. In Figure 4.1, we see that smaller perturbations and
frequency factors bring the system closer to the v-GNE; however, in Figure 4.2, we see
that the convergence rate slows down significantly. Thus, there is a trade-off between
convergence speed and closeness to the solution. Moreover, we numerically test robustness
to output noise on a representative example of agent trajectories. We simulate noise with
zero mean and variance equal to 1 and 3. In Figure 4.3, the shaded regions represent
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Figure 4.3: State trajectories in the 𝑥 −𝑦 plane for the case of 𝑑𝑖 = 0.49 and various noise
levels. Circle symbols represent locations of the sources, while the × symbols represent
locations of the v-GNE.

envelopes of the trajectories (ten simulations per variance). The darkest shade represents
the case without noise, while the lightest represents the case with the largest variance. We
observe that the algorithm still converges to a neighborhood of the v-GNE.

4.5.2 Wind farm optimization
As one of the main sources of renewable energy, wind farms, and their optimization has
been addressed extensively from different perspectives, such as power tracking of single
turbines [65], [66], power tracking via extremum seeking [67], power tracking with load
reduction [68], [69], distributed optimization of wind farms [70], [9] and distributed opti-
mization via extremum seeking [71]. While in the power tracking case, often the torque or
some other related variable is taken as the control input, in the distributed optimization
case, the axial induction factor (AIL) is usually taken as the control input.

In what follows, we consider a similar problem in which a wind farm tries to maximize
its power output with AIL as the control input. The control variables are subject to local
constraints (feasible values of AIL). Also, we require that the turbines experience a similar
amount of mechanical stress. To do that, we impose that the AILs of a row of wind tur-
bines cannot differ too much from AILs of the succeeding row, which introduces coupling
constraints to the optimization problem. Unlike the previously mentioned literature on
distributed wind farm optimization, here we also allow for AIL dynamics to reflect the
turbine time constant and its effect on the power output. One possible way of solving the
problem would be via global optimization, where a central coordinator would minimize
a global cost function and send AIL commands to the turbines. To avoid having a single
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critical node for computation and communication, an alternative approach is to pose the
problem as a potential game, where the cost function of the turbines are “aligned" to a
global utility function. In our case, the potential function would be the sum of all power
outputs. We choose that the individual cost functions are equal to the potential function,
and each agent minimizes their cost function on their own, with limited information from
the central coordinator. In this setup, a v-GNE corresponds to an optimal solution to the
global power maximization problem.

Technically speaking, we consider 𝑁 wind turbines, indexed by 𝑖 ∈ {1,… ,𝑁 }, each with the
following AIL dynamics and power output:

�̇�𝑖 = − 1
𝜏 (𝑎𝑖−𝑢𝑖) (4.31)

𝑦𝑖 = −∑
𝑖∈

𝑃𝑖(𝒂) = − 1
2𝜌𝐴∑

𝑖∈
𝐶𝑃 (𝑎𝑖)𝑉𝑖(𝒂)3, (4.32)

where 𝑎𝑖 represent the state variable, 𝑢𝑖 represent the control input, namely the AIL
reference, 𝑦𝑖 is the measured power output of the wind farm, which is broadcasted by the
central coordinator, 𝜌 is the air density, 𝐴 is the surface area encompassed by the blades of
a single turbine, 𝐶𝑃 (𝑎𝑖)B 𝑎𝑖(1−𝑎𝑖)2 is the power efficiency coefficient and 𝑉𝑖 is the average
wind speed experienced by wind turbine 𝑖, as in [70, Equ. 5]:

𝑉𝑖(𝑎) = 𝑈∞(1−2
√
∑(𝑎𝑗 𝑐𝑗𝑖)

2

) . (4.33)

The wind turbines are placed in 𝑅 rows and 𝐶 columns with coordinates 𝑥𝑖 and their indices
can be written as 𝑖 = 𝑖𝑐 + 𝑖𝑟𝐶, where 𝑖𝑐 ∈ {1,… ,𝐶} and 𝑖𝑟 ∈ {0,… ,𝑅−1}. They are tasked to
maximize the wind farm power output under local constraints 𝑎𝑖 ∈ [𝑎min, 𝑎max] and coupling
constraints |𝑎𝑖−𝑎𝑗 | ≤ 𝑏 for all 𝑖, 𝑗 , where it holds that 𝑗𝑟 = 𝑖𝑟 +1.

For our numerical simulation, we choose a similar setup as in [70]. The wind farm
setup geometric setup is shown in Figure 4.4 and the following parameters are chosen:
𝜌 = 1.225, 𝑈∞ = 8, 𝜏 = 10, 𝛾𝑖 = 𝛾0 = 0.05, 𝜖 = 0.005, 𝑏 = 0.03, 𝑎min = 0.1, 𝑎max = 1

3 . We take
the same parameter estimation scheme as in previous numerical simulation, apart from the
perturbation frequencies that we randomly choose in the interval [3,11] and perturbation
amplitudes that we take as ‖𝑑𝑖‖ = 0.01. All initial conditions, apart from 𝑎𝑖, were set to
zero. The initial condition for 𝑎𝑖 was set to 1

3 , which corresponds to the greedy strategy
in [70]. In our simulations, we use three different wind directions. In the time interval
[0,50000), the wind was blowing with speed direction vector 𝑣1 = (2,−1); in the time
interval [50000,100000), the wind was blowing with the speed direction vector 𝑣2 = (0,−1);
and finally, in the time interval [100000,150000], the wind was blowing with speed direction
vector 𝑣3 = (−1,−1). We assume that the wind turbines instantly adjust their orientation
towards the wind direction as this process is relatively fast compared with the GNE learning
process. The simulation results are shown in Figure 4.5. We can see that the wind turbines
reach a neighborhood of the v-GNE, even with the delay introduced by AIL dynamics.
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560m

560 m 80 m

𝑣1 𝑣2 𝑣3

Figure 4.4: Layout of the wind turbines and the wind directions.

Figure 4.5: Power generation with the proposed algorithm (solid line) compared to the
greedy power output setpoint (dashed red) and the global optimal power setpoint (dot-
dashed black).
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4.6 Conclusion
Generalized Nash equilibrium problems with nonlinear dynamical agents can be solved via
a preconditioned forward-backward algorithm that uses estimates of the pseudogradient
mapping if it is strongly monotone and Lipschitz continuous, and if the dynamical agents
have a certain exponential stability property. Regular projections enable the use of a
parameter estimation scheme. Numerical simulations show that there is a trade-off between
closeness to the equilibrium solution and the speed of convergence.

Appendix
4.A Proof of Theorem 4.8
To prove the convergence of the algorithm, we show that equation in (4.12) is equivalent
to a continuous-time preconditioned forward-backward algorithm, whose convergence is
proven using well-known properties of monotone operators. First, we show the equivalence.
Let us denote 𝜔 = col(𝒖, 𝜆). We write Equation (4.12) as:

�̇� = −𝜔+proj𝛀×ℝ𝑞
+ (𝜔+𝚪[−𝐹(𝒖)−𝐴

⊤𝜆
𝐴𝒖−𝑏+2𝐴�̇� ]) , (4.34)

where 𝚪 = blkdiag(Γ, 𝛾0𝐼𝑞). Next, by the property of projection operator in [42, Prep. 6.47],
Equ. (4.34) reads as

�̇�+𝜔+𝚪N𝛀×ℝ𝑞
+
(�̇�+𝜔) ∋ 𝜔+𝚪[−𝐹(𝒖)−𝐴

⊤𝜆
𝐴𝒖−𝑏+2𝐴�̇� ]. (4.35)

When the elements of the last matrix product in (4.35) are rearranged and the equation is
premultiplied by 𝚪−1, the equations read as follows:

(𝚪
−1+N𝛀×ℝ𝑞

+) (�̇�+𝜔) ∋ Φ̂𝜔+ [−𝐹(𝒖)−𝑏 ]+ [ 0
2𝐴�̇�]

(𝚪
−1+N𝛀×ℝ𝑞

+) (�̇�+𝜔) ∋ Φ𝜔− [ 𝐹(𝒖)𝑏 ]+ �̂�(𝜔+ �̇�). (4.36)

where we have used the notation

Φ̂ = [
Γ−1 −𝐴⊤

𝐴 𝛾−10 𝐼𝑞 ], Φ = [
Γ−1 −𝐴⊤

−𝐴 𝛾−10 𝐼𝑞 ], �̂� = [ 0 0
2𝐴 0].

Next, the following expression is valid for the matrices:

𝚪−1− �̂� = Φ+ [ 0 𝐴⊤
−𝐴 0 ] = Φ+Ψ. (4.37)

From Equations (4.36) and (4.37), it follows

(Id+Φ
−1

(N𝛀×ℝ𝑞
+
+Ψ)) (�̇�+𝜔) ∋ 𝜔−Φ−1[ 𝐹(𝒖)𝑏 ].

By inverting the operator on the left side of the previous expression, we finally arrive at
the desired equation:

�̇� = −𝜔+(Id+Φ−1)
−1 ◦(𝜔−Φ−1(𝜔))⇔

�̇� = −𝜔+ 𝐽Φ−1 (𝜔−Φ−1(𝜔)) , (4.38)



4.A Proof of Theorem 4.8

4

51

where =N𝛀×ℝ𝑞
+
+Ψ and  = col(𝐹(𝒖), 𝑏). Equation (4.38) represents a forward-backward

algorithm preconditioned by matrix Φ−1. Fixed points of the operator on the right-hand
side of (4.38) ([42, Prep. 26.1, (iv)(a)], [44, Lemma 1], (4.10)) represent GNE that are the
solutions to the game in (4.7) and equilibrium points of dynamics in (4.25). Before proving
convergence, we have to prove an additional result.

Lemma 4.14. Let 𝑇 = (Id+)−1 ◦ (Id−), where  is maximally monotone. Then it holds:

⟨𝑇 𝑥 −𝑥∗ | 𝑥 − 𝑇 𝑥⟩ ≥ ⟨𝑇 𝑥 −𝑥∗ | 𝑥 −𝑥∗⟩ .

for all (𝑥,𝑥∗) ∈ dom(𝑇 ) × fix(𝑇 ). □

Proof. Let us denote 𝑥∗ = 𝑇 𝑥∗ = 𝐽𝑦∗ as the fixed point of operator 𝑇 . Then it holds:

⟨𝑇 𝑥 −𝑥∗ | 𝑥 − 𝑇 𝑥 −(𝑥 −𝑥∗)⟩
= ⟨𝑇 𝑥 −𝑥∗ | 𝑥 −𝑥 − 𝑇 𝑥 +𝑥∗−(𝑥∗−𝑥∗)⟩
= ⟨𝑇 𝑥 −𝑥∗ | 𝑦 − 𝑇 𝑥 +𝑥∗−𝑦∗⟩
= ⟨𝐽𝑦 − 𝐽𝑦∗ | (Id−𝐽)𝑦 −(Id−𝐽)𝑦∗⟩
≥ 0, (4.39)

where the last equation holds due to properties of firmly nonexpansive operators. ■

Now we denote ̃ = Φ−1, ̃ = Φ−1 and 𝑇 = (Id+̃)−1 ◦ (Id−̃). Then, the dynamics in
(4.38) read as �̇� = −𝜔+ 𝑇𝜔. We propose the Lyapunov function candidate

𝑉 (𝜔) = 1
2 ‖𝜔−𝜔∗‖2, (4.40)

where 𝜔∗ is a fixed point of operator 𝑇 . Its derivative along the trajectory in (4.38) is then

�̇� (𝜔) = − ⟨𝜔−𝜔∗ | 𝜔− 𝑇𝜔⟩

= −‖�̇�‖2− ⟨𝑇𝜔−𝜔∗ | 𝜔− 𝑇𝜔⟩ (4.41)

From Lemma 4.14, it follows that

�̇� (𝜔) ≤ −‖�̇�‖2−⟨𝑇𝜔−𝜔∗ ||| ̃𝜔− ̃𝜔∗⟩

≦ −‖�̇�‖2−⟨𝑇𝜔−𝜔 ||| ̃𝜔− ̃𝜔∗⟩−⟨𝜔−𝜔∗ ||| ̃𝜔− ̃𝜔∗⟩

≦ −‖�̇�‖2−⟨𝑇𝜔−𝜔 || Φ
−1(𝜔−𝜔∗⟩−⟨𝜔−𝜔∗ || Φ

−1(𝜔−𝜔∗⟩ . (4.42)

Bounds on the eigenvalues of Φ can be estimated with Gershgorin’s theorem. For small
enough step sizes, we denote the lower and upper bound on the eigenvalues as 𝜎min =

1
max𝑖∈0 (𝛾

−1
𝑖 )+‖𝐴‖ and 𝜎max = 1

min𝑖∈0 (𝛾
−1
𝑖 )−‖𝐴‖ , respectively. We bound (4.42) as

�̇� (𝜔) ≤− ‖�̇�‖2+𝜎max‖�̇�‖‖𝜔−𝜔∗‖−𝜎min ⟨𝜔−𝜔∗ | 𝜔−𝜔∗⟩ . (4.43)
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Since 𝐹(𝒖) is strongly monotone and Lipschitz continuous, it is also cocoercive [44, Lemma
5]. Therefore, the operator  is 𝜇

𝐿2 cocoercive. Equ. (4.43) then becomes:

�̇� (𝜔) ≤ −‖�̇�‖2+𝜎max‖�̇�‖‖𝜔−𝜔∗‖− 𝜎min
2 𝛽‖𝜔−𝜔∗‖2− 𝜎min

2 ⟨𝜔−𝜔∗ | 𝜔−𝜔∗⟩

≤ − 1
2 ‖�̇�‖

2− 𝜎min
2 ⟨𝜔−𝜔∗ | 𝜔−𝜔∗⟩− 1

2 [ ‖�̇�‖ ‖𝜔−𝜔∗‖ ][
1 𝜎max

𝜎max 𝛽𝜎min ][
‖�̇�‖

‖𝜔−𝜔∗‖] (4.44)

Since, it is always possible to choose parameters 𝛾𝑖 and 𝛾0 small enough such that 𝛽𝜎min ≥
𝜎2
max and the matrix in (4.44) is negative definite, the last equation reads as

�̇� (𝜔) ≤ − 1
2 ‖�̇�‖

2− 𝜎min
2 (𝜔−𝜔∗)⊤(𝜔−𝜔∗)

≤ − 1
2 ‖�̇�‖

2− 𝜇𝜎min
2 ‖�̃�‖2, (4.45)

where �̃� = 𝒖−𝒖∗ and the last line follows from strong monotonicity of 𝐹(𝒖∗). The rest
of the proof represents a La Salle argument. As the right-hand side is a sum of negative
squares, it follows that �̇� (𝜔) ≤ 0 for all 𝜔. Let us denote the following sets

𝜁𝑐 B {𝜔 ∈ 𝛀×ℝ𝑞
+ ∣ 𝑉 (𝜔) ≤ 𝑐}

𝜁𝑜 B {𝜔 ∈ 𝜁𝑐 ∣ ‖�̇�‖ = 0 and ‖�̃�‖ = 0}
B {𝜔 ∈ 𝜁𝑐 ∣ �̇� (𝜔) = 0}
B {𝜔 ∈ 𝜁𝑐 ∣ 𝜔(0) ∈ ⟹ 𝜔(𝑡) ∈ ∀𝑡 ∈ ℝ},
B {𝜔 ∈ 𝜁𝑐 ∣ �̇� = 𝟎}, (4.46)

where 𝜁𝑐 is a compact level set chosen such that it is nonempty, is the zero set of (4.41), 𝜁𝑜 is
the superset ofwhich follows from (4.45), is the maximum invariant set as explained in
[29, Chp. 4.2] and is the equilibrium set. It holds that 𝜁𝑐 ⊇ 𝜁𝑜 ⊇⊇⊇.As 𝜁𝑐 is invariant
and the right-hand side equations of (4.12) are (locally) Lipschitz, by [29, Thm. 3.3] we
conclude that solutions to (4.12) exist and are unique. Next we note that �̇� = 0⇔ 𝜔 ∈ fix(𝑇 ).
Therefore, the set is the set of fixed points, and it holds 𝜁𝑜 ≡ ≡  ≡. Hence, by La
Salle’s invariance principle [29, Thm. 4.4], trajectories converge to the set . Additionally,
as �̃� = 𝟎 in, it follows that 𝑢∗ is a singleton, which is not necessarily true for 𝜆∗.

4.B Proof of Theorem 4.10
Similarly to Theorem 1, it can be shown that the dynamics in (4.14) can be written as

̇̄𝜔 = −�̄�+ 𝐽Φ̄−1̄ (�̄�−Φ−1̄(𝜔)) , (4.47)

where �̄�B col (𝒖,𝒛,𝝀), ̄B NΩ×ℝ𝑁𝑞×ℝ𝑁𝑞
+

+Ψ̄, ̄B col(𝐹(𝒖),𝟎𝑁𝑞 , 𝒃𝑁 + �̄�𝜆),

Ψ̄B [
0 0 Λ⊤

0 0 −�̄�
−Λ⊤ �̄� 0 ] , Φ̄B [

Γ−1 0 −Λ⊤

0 Γ̄−1 �̄�
−Λ �̄� Γ̄−1 ]

.

Proof that an equilibrium point �̄�∗ of (4.47) exist and that 𝒖∗ is the solution to the game in
(4.7) is analogous to the proof of Theorem 2 in [44] and is omitted for brevity. Furthermore,
as all of the operators and matrices hold the same properties as the ones in Theorem 1 of
this paper, convergence is proven in the same manner.
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4.C Proof of Theorem 4.12
Let us consider a Lyapunov function candidate 𝑉 = 𝑉𝜃+𝑉𝜔, where 𝑉𝜃 represents a parameter
estimation error and 𝑉𝜔 represents a primal-dual convergence error:

𝑉𝜃(�̃�, �̃�) =∑
𝑖∈

(
1
2 ‖�̃�𝑖‖

2+ 1
2
‖‖‖𝜃𝑖

‖‖‖Σ𝑖)
, (4.48)

𝑉𝜔(𝜔) = 1
2 ‖𝜔−𝜔∗‖2. (4.49)

Since we anticipate that the derivative of the projection function does not exist on some
corner points, we use the Lyapunov theory for differential inclusions as in [72, Chp.
2], namely we use upper Dini derivatives (𝐷+) instead of regular time derivatives. For
ease of notation, we use the regular derivatives whenever they are equal to Dini derivatives.

Outline of the proof: We first bound all of the positive terms in 𝐷+𝑉𝜃 with functions
of variables (𝜼, �̂�,𝜔), then we similarly bound all of the terms in 𝐷+𝑉𝜔 introduced by the
parameter estimates. Finally, we use the quadratic terms of 𝐷+𝑉 to show that the negative
terms majorize the positive terms.

Parameter estimation term
We bound the Dini derivative of 𝑉𝜃 similarly to [20, Thm. 1] and [41, Eq. 31] with the
only difference that we let each agent choose their parameters (𝜎𝑖,𝐾𝑖,𝜌𝑖). The Lyapunov
derivative, similar to [20, p. 4, col. 1], reads as follows:

𝐷+𝑉𝜃(�̃�, �̃�) ≤∑
𝑖∈

(− �̃�⊤𝑖 (𝐾𝑖− 1
2 −

𝑘1𝜁𝑖
2 ) �̃�𝑖−

1
2 ‖𝑒𝑖− 𝜂𝑖‖2−

𝜌′𝑖 𝛾
1
𝑖

2
‖‖‖𝜃𝑖

‖‖‖
2
+ 𝜎𝑖

2 ‖𝜃𝑖‖2

+ 1
2𝑘1

‖‖𝐷
+𝜃𝑖‖‖

2+ 𝛾2𝑖
2𝑘2

‖‖𝐷
+𝜃𝑖‖‖

2
)

≤− 𝑘a‖�̃�‖2− 𝑘b‖�̃�‖2− 1
2 ‖𝒆−𝜼‖2+ 𝑘c‖𝐷+𝜽‖2+ 𝜎

2 ‖𝜽‖
2, (4.50)

where 𝑘1, 𝑘2 > 0, 𝜁𝑖 = 𝑐𝑖𝑐⊤𝑖 , 0 < 𝛾1𝑖 ≤ 𝛾2𝑖 are bounds for matrices Σ𝑖, 𝜌′𝑖 = 𝜌𝑖 − 𝑘2 for all 𝑖 ∈
, 𝑘a B min𝑖(𝐾𝑖− 1

2 −
𝑘1𝜁𝑖
2 ), 𝑘b B min𝑖(

𝑘Σ′𝑖 𝛾1𝑖
2 ), 𝑘c B max𝑖(

1
2𝑘1 +

𝛾2𝑖
2𝑘2) and 𝜎 B max𝑖𝜎𝑖1.

Assumption 4.11 is used to derive these expressions. We define the compact set 𝜁𝑐 B
{(𝜔, �̂�, �̂�) ∈ ×ℝ𝑞 ×ℝ𝑁 ×ℝ𝑚 | 𝑉 (𝜔, �̃�, �̃�) ≤ 𝑐}. Next, we bound the positive terms in (4.50).
The analysis starts with 𝜽 = col(𝜽0,𝜽1), where

𝜽0 B col((∇𝒖−𝑖𝐽𝑖 (𝑢𝑖,𝒖−𝑖)
⊤ �̇�−𝑖)𝑖∈) = 𝐽 0(𝒖)�̇�, (4.51)

𝜽1 B 𝐹(𝒖). (4.52)

We have that

‖𝜽0‖ ≤ ‖𝐽 0(𝒖)‖‖�̇�‖ = 𝐿0‖�̇�‖,
‖𝜽1‖ = ‖𝐹(𝒖)‖ ≤ ‖𝐹(𝒖)− 𝐹(𝒖∗)‖+ ‖𝐹(𝒖∗)‖ ≤ 𝓁‖�̃�‖+ ‖𝐹(𝒖∗)‖,

1The term 1
2 ‖𝒆− 𝜼‖2 was omitted in [20] (page 4, first column, second to last equation) and [41], as it is not

required.
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where 𝐿0 Bmax𝒖∈ ‖‖𝐽
0(𝒖)‖‖ <∞, since  is bounded. Then, we bound ‖𝜃‖ as follows

‖𝜃‖2 ≤ 𝐿02‖�̇�‖2+(𝓁‖�̃�‖+ ‖𝐹(𝒖∗)‖)2

≦ 𝐿1‖�̇�‖2+𝐿2‖�̃�‖2+𝐿3‖𝐹(𝒖∗)‖2,

for 𝐿1 B 𝐿02, 𝐿2 B 2𝓁2 and 𝐿3 = 2. In order to bound ‖𝐷+𝜽‖, we observe the dini derivatives
of 𝜽0 and 𝜽1:

‖𝐷+𝜽0‖ ≤‖�̇�⊤𝐻𝐽 0 �̇�‖+ ‖𝐽 0(𝒖)𝐷+�̇�‖, (4.53)
‖𝐷+𝜽1‖ =‖∇𝐹(𝒖)�̇�‖ ≤ 𝐿‖�̇�‖, (4.54)

‖𝐷+�̇�‖ = ‖‖‖�̇�+𝐷+ proj𝛀 (𝒖−Γ(𝜽1+𝐴⊤𝜆)+ 𝑑(𝑡))
‖‖‖

≤2‖�̇�‖+𝜎max(Γ)‖
̇̂𝜽1‖+𝜎max(Γ)‖𝐴‖‖�̇�‖+ ‖�̇�(𝑡)‖

Next, we bound ‖ ̇̂𝜽1‖ using the dynamics in (4.24):

‖ ̇̂𝜽‖ ≤∑
𝑖∈

(‖Σ−1𝑖 𝑐𝑖(𝑒𝑖− 𝜂𝑖)‖+𝜎𝑖‖Σ−1𝑖 ‖‖𝜃𝑖−𝜃𝑖‖

On a compact set 𝜁𝑐 , 𝑐𝑖 and Σ𝑖 are bounded. Therefore, the last equation reads as:

‖ ̇̂𝜽‖ ≤ 𝐿∗3‖(𝒆−𝜼)‖+𝐿∗4‖𝜽‖+𝐿∗5‖�̃�‖, 𝐿
∗
3 ,𝐿

∗
4 ,𝐿

∗
5 > 0

Now, bound on ‖𝐷+�̇�‖ equals to:

‖𝐷+�̇�‖ ≤2‖�̇�‖+𝜎max(Γ)𝐿∗3‖(𝒆−𝜼)‖+𝜎max(Γ)𝐿∗4‖‖𝜽‖

+𝜎max(Γ)𝐿∗5‖�̃�‖+𝜎max(Γ)‖𝐴‖‖�̇�‖+ ‖�̇�(𝑡)‖ (4.55)

On a compact set 𝜁𝑐 , �̇�⊤𝐻𝐽 0 is bounded, therefore by combining (4.53), (4.54), (4.55) and the
arithmetic mean - quadratic mean inequality, it follows:

‖𝐷+𝜽‖2 ≤𝐿4‖�̇�‖2+𝐿5‖�̇�‖2+𝐿6‖𝜽‖2+𝐿7‖�̃�‖2

+𝐿8‖𝒆−𝜼‖2+𝐿9‖�̇�(𝑡)‖2,

for some positive 𝐿4 to 𝐿9. By using the previously calculated bounds, 𝐷+𝑉𝜃 reads as:

𝐷+𝑉𝜃 ≤− 𝑘a‖�̃�‖2−(𝑘b− 𝑘c𝐿7)‖�̃�‖2−( 1
2 − 𝑘c𝐿8)‖𝒆−𝜼‖2+(𝑘c𝐿4+(𝜎+ 𝑘c𝐿6)𝐿1)‖�̇�‖2

+(𝜎+ 𝑘c𝐿6)𝐿2‖�̃�‖2+ 𝑘c𝐿5‖�̇�‖2+ 𝑘c𝐿9‖�̇�(𝑡)‖2+(𝜎+ 𝑘c𝐿6)𝐿3‖𝐹(𝒖∗)‖. (4.56)

Primal-dual term

Unlike the full-information case, our agents use the estimate �̂�
1
instead of 𝐹(𝒖). Therefore,

by adding and subtracting the derivative of the full-information case in the Dini derivative
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of (4.48), we have:

𝐷+𝑉𝜔(𝜔) =⟨𝜔−𝜔∗|||−𝜔+ 𝐽Φ−1 (𝜔−Φ−1(𝜔))−proj𝛀×ℝ𝑞
+ (𝜔+𝚪[−𝐹(𝒖)−𝐴

⊤𝜆
𝐴𝒖−𝑏+2𝐴�̇� ])

+proj𝛀×ℝ𝑞
+ (𝜔+𝚪[ −𝜽1−𝐴⊤𝜆

𝐴𝒖−𝑏+2𝐴�̇�]+ [ 𝑑(𝑡)0 ])⟩
≤− 1

2 ‖�̇�‖
2− 𝜇𝜎min

2 ‖�̃�‖2+𝜎max(Γ)‖�̃�‖‖�̃�‖+ ‖�̃�‖‖𝑑(𝑡)‖

≤− 1
2 ‖�̇�‖

2−(
𝜇𝜎min
2 − 𝜎max(Γ)

2𝑘3 − 1
2𝑘4)‖�̃�‖2+ 𝜎max(Γ)𝑘3

2 ‖�̃�‖2+ 𝑘4
2 ‖𝑑(𝑡)‖

2,

where the last line follows from the inequality

𝑎𝑏 ≤ 1
2𝑘 𝑎

2+ 𝑘
2𝑏

2, ∀(𝑎,𝑏,𝑘) ∈ (ℝ2 ×ℝ>0). (4.57)

Complete Lyapunov candidate
Finally, the Dini derivative of 𝑉 is bounded as follows:

𝐷+𝑉𝜔+𝐷+𝑉𝜃 ≤−( 1
2 − 𝑘c𝐿4−(𝜎+ 𝑘c𝐿6)𝐿1)‖�̇�‖2−(

𝜇𝜎min
2 − 𝜎max(Γ)

2𝑘3 − 1
2𝑘4 −(𝜎− 𝑘c𝐿6)𝐿2)‖�̃�‖2

−( 1
2 − 𝑘c𝐿5)‖�̇�‖2− 𝑘a‖�̃�‖2−( 1

2 − 𝑘c𝐿8)‖𝒆−𝜼‖2(𝑘b− 𝑘c𝐿7− 𝜎max(Γ)𝑘3
2 )‖�̃�‖2

+ 𝑘c𝐿9‖�̇�(𝑡)‖2+(𝜎+ 𝑘c𝐿6)𝐿3‖𝐹(𝒖∗)‖2+ 𝑘4
2 ‖𝑑(𝑡)‖

2

≦− 𝑏1‖�̇�‖2− 𝑏2‖�̇�‖2− 𝑘a‖�̃�‖2𝑏3− 𝑏3‖𝒆−𝜼‖2− 𝑏4‖�̃�‖2− 𝑏5‖�̃�‖2

+ 𝑘c𝐿9‖�̇�(𝑡)‖2+(𝜎+ 𝑘c𝐿6)𝐿3‖𝐹(𝒖∗)‖2+ 𝑘4
2 ‖𝑑(𝑡)‖

2. (4.58)

Now, we can make the last three norms arbitrarily small and 𝑏1, 𝑏2, 𝑏3 positive by choosing
𝑘c, 𝜎 and 𝑘4 small enough, we can make 𝑏4 positive by choosing (𝜎𝑖) 𝑖∈ small enough, we
can make 𝑏5 positive by making 𝑘b large enough. Of the mentioned parameters, only 𝑘b and
𝑘c cannot be chosen arbitrarily. To make 𝑘c small enough we have to chose parameters 𝑘1
and 𝑘2 small enough, to make 𝑘b large enough, we chose (𝐾𝑖) 𝑖∈ and (𝜌𝑖) 𝑖∈ large enough.
Since the positive terms can be made arbitrarily small, we conclude that the Lyapunov
derivative can be made negative on the boundary of the set 𝜁𝑐 , which implies that the set
is invariant. As the right-hand side of equations (4.19)–(4.23), (4.25) is (locally) Lipschitz
on their domain, by [29, Thm. 3.3], we conclude that their solutions exist and are unique.
Furthermore, as 𝜁𝑐 was chosen for arbitrary 𝑐, it follows that for any compact set 𝐾 of
initial conditions, it is possible to find such control parameters that for (𝜼(0), �̂�(0),𝒖(0)) ∈ 𝐾 ,
(�̃�, �̃�,𝒖) converge to an arbitrarily small neighborhood of (0,0,𝒖∗), which concludes the
proof. For 𝜆, we can only claim that this is bounded.

4.D Proof of Theorem 4.13
We have to prove that there exists a timescale separation between the GNE learning
scheme described in section 3 and the dynamics of the multi-agent system in (4.27) such
that the interconnection is also stable. Let us consider a Lyapunov function candidate
𝑉 = 𝑉𝜃 + 𝑉𝜔 + 𝑉𝑧 , where 𝑉𝜃 and 𝑉𝜔 are the same as (4.48), (4.49) and 𝑉𝑧 is formed using
Standing Assumption 4.3 in the following way:

𝑉𝑧(𝒛,𝒖) =∑𝑖∈ 𝑉𝑖(𝑧𝑖, 𝑢𝑖). (4.59)
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Outline of the proof: We first bound all of the terms in 𝐷+𝑉𝑧 introduced by nonconstant
inputs with functions of the variables (𝜼, �̂�,𝜔,𝒛), then we bound all of the terms in 𝐷+𝑉𝜃
introduced by the redefinition of error 𝑒𝑖 in (4.28) in the same manner. Ultimately, we use
the quadratic terms of the complete 𝐷+𝑉 to show that the negative terms majorize the
additional terms.

Multi-agent term
Let us do a change of variables 𝒛 = 𝒙−𝜋(𝒖) in (4.27). New dynamics read as

𝜖�̇� = 𝑓 (𝒛+𝜋(𝒖),𝒖)− 𝜖∇𝜋(𝑢)�̇�. (4.60)
Dini derivative of (4.59), by plugging in (4.60), reads as

𝐷+𝑉𝑧(𝒛,𝒖) = ∇𝒛𝑉 ⊤
𝑧 �̇�+∇𝒖𝑉 ⊤

𝑧 �̇�
= 1

𝜖∇𝒛𝑉𝑧(𝒛,𝒖)
⊤𝑓 (𝒛+𝜋(𝒖),𝒖)−∇𝒛𝑉𝑧(𝒛,𝒖)⊤∇𝜋(𝒖)�̇�+∇𝒖𝑉𝑧(𝒛,𝒖)⊤�̇�

By using Standing Assumption 4.3 and inequality (4.57), we can further improve the bound:
𝐷+𝑉𝑧(𝒛,𝒖) ≤ − 𝜅

𝜖 ‖𝒛‖
2+𝐿10‖𝒛‖‖�̇�‖

≤ −( 𝜅
𝜖 −

𝐿10𝑘5
2 )‖𝒛‖2+ 𝐿10

2𝑘5 ‖�̇�‖
2,

where 𝐿10 > 0 is the Lipschitz constant of the functionmax𝒖∈ ∇𝒖𝑉𝑧(𝑧,𝒖)−∇𝒛𝑉𝑧(𝑧,𝒖)⊤∇𝜋(𝒖)
and 𝑘5 > 0.

Parameter estimation term
GNE learning is identical as in the static case, apart from the measurements of the cost
function. Let us denote

𝒍B col ((𝑙𝑖)𝑖∈) ,

𝒚 B col((𝑦𝑖)𝑖∈) ,

ℎ(𝒙)B col ((ℎ𝑖 (𝑢𝑖,𝒖−𝑖))𝑖∈) .

The difference in the measurement introduces an additional component in the bound for
the derivative of the Lyapunov function of the parameter estimation term:

‖�̃�‖ ‖‖‖�̇�− �̇�‖‖‖ =
‖‖‖�̃�‖‖

𝑑
𝑑𝑡 (ℎ(𝒙)−ℎ(𝜋(𝒖)))‖‖‖

= ‖�̃�‖ ‖‖
1
𝜖∇ℎ(𝒙)𝑓 (𝒙,𝒖)−∇ℎ(𝜋(𝒖))∇𝜋(𝒖)�̇�‖‖

≤ 1
𝜖 ‖�̃�‖ ‖∇ℎ(𝒙)𝑓 (𝒙,𝒖)−∇ℎ(𝒙)𝑓 (𝜋(𝒖),𝒖)‖+ ‖�̃�‖ ‖∇ℎ(𝜋(𝒖))∇𝜋(𝒖)�̇�‖

≤ 𝐿11
𝜖 ‖�̃�‖‖𝒛‖+𝐿12‖�̃�‖‖�̇�‖

≤ (
𝐿11𝑘6
2𝜖 + 𝐿12𝑘7

2 )‖�̃�‖2+ 𝐿11
2𝜖𝑘6 ‖𝒛‖

2+ 𝐿12
2𝑘7 ‖�̇�‖

2,

where 𝐿11,𝐿12, 𝑘7, 𝑘6 > 0 and the second to last equation follows from the (local) Lipschitz
continuity of the functions and the fact that the variables are bounded on a compact set
𝜁𝑐 B {(𝒙,𝜔, �̂�, �̂�) ∈  × ×ℝ𝑞 ×ℝ𝑁 ×ℝ𝑚 | 𝑉 (𝒛,𝜔, �̃�, �̃�) ≤ 𝑐}.
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Complete Lyapunov candidate
Finally, the Dini derivative of the complete Lyapunov function candidate is:

𝐷+𝑉𝜃(𝜔)+𝐷+𝑉𝜃(�̂�, �̂�)+𝐷+𝑉𝑧(𝒛,𝒖)

≤ −(
1
2 − 𝑘c𝐿4−(𝜎+ 𝑘c𝐿6)𝐿1− 𝐿10

2𝑘5 −
𝐿12
2𝑘7)‖�̇�‖2−( 1

2 − 𝑘c𝐿5)‖�̇�‖2−(𝑘a−
𝐿11𝑘6
2𝜖 − 𝐿12𝑘7

2 )‖�̃�‖2

−(𝑘b− 𝑘c𝐿7− 𝜎max(Γ)𝑘3
2 )‖�̃�‖2−(

𝜇𝜎min
2 − 𝜎max(Γ)

2𝑘3 − 1
2𝑘4 −(𝜎− 𝑘c𝐿6)𝐿2)‖�̃�‖2

−( 𝜅
𝜖 −

𝐿10𝑘5
2 − 𝐿11

2𝜖𝑘6 )‖𝒛‖
2−( 1

2 − 𝑘c𝐿8)‖𝒆−𝜼‖2+ 𝑘c𝐿9‖�̇�(𝑡)‖2+(𝜎+ 𝑘c𝐿6)𝐿3‖𝐹(𝒖∗)‖+ 𝑘4
2 ‖𝑑(𝑡)‖

2

≦ −𝑏1‖�̇�‖2− 𝑏2‖�̇�‖2− 𝑏3‖�̃�‖2− 𝑏4‖�̃�‖2− 𝑏5‖�̃�‖2− 𝑏6‖𝒛‖2− 𝑏7‖𝒆−𝜼‖2+ 𝑏8‖𝐹(𝒖∗)‖2+ 𝑏9‖�̇�(𝑡)‖2

+ 𝑏10‖𝑑(𝑡)‖2. (4.61)

The rest follows analogously to the proof of Theorem 3 with the addition of the parameter 𝜖.
We conclude that it is possible to find such control parameters that for (�̃�(0), �̃�(0),𝒖(0),𝒛(0)) ∈
𝐾 , (�̃�, �̃�,𝒖,𝒛) converge to an arbitrarily small neighborhood of (0,0,𝒖∗,0), which concludes
the proof. For 𝜆, the dual variable, we can only claim boundedness.
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5
Monotone games

The heart is the strongest muscle.

Braum, League of Legends

The best revenge is not to be like your enemy.

Marcus Aurelius

This chapter addresses the problem of learning a generalized Nash equilibrium (GNE) in
merely monotone games. First, we propose a novel continuous semi-decentralized solution
algorithm without projections that uses first-order information to compute a GNE with a
central coordinator. As the second main contribution, we design a gain adaptation scheme for
the previous algorithm in order to alleviate the problem of improper scaling of the cost functions
versus the constraints. Third, we propose a data-driven variant of the former algorithm, where
each agent estimates their individual pseudogradient via zeroth-order information, namely,
measurements of their individual cost function values. Finally, we apply our method to a
perturbation amplitude optimization problem in oil extraction engineering.

This chapter is partly based on  S. Krilašević and S. Grammatico. “Learning generalized Nash equilibria in
monotone games: A hybrid adaptive extremum seeking control approach”. en. In: Automatica 151 (May 2023),
p. 110931. issn: 0005-1098. doi: 10.1016/j.automatica.2023.110931.
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5.1 Introduction
Decision problems where self-interested intelligent systems or agents wish to optimize
their individual cost objective function arise in many engineering applications, such as
charging/discharging coordination for plug-in electric vehicles [48], [73], demand-side
management in smart grids [47], [33], robotic formation control [35], and thermostatically
controlled loads [49]. The key feature that distinguishes these problems from multi-
agent distributed optimization is the fact the cost functions and constraints are coupled
together. Currently, one active research area is that of finding (seeking) actions that are self-
enforceable, e.g., actions such that no agent has an incentive to unilaterally deviate from -
the so-called generalized Nash equilibrium (GNE) [1, Eq. 1]. Due to the aforementioned
coupling, information on other agents must be communicated, observed, or measured to
compute a GNE algorithmically. The nature of this information can vary from knowing
everything (full knowledge of the agent actions) [44], estimates based on distributed
consensus between the agents [52], to payoff-based estimates [10], [7]. The latter is of
special interest as it requires no dedicated inter-agent communication infrastructure.

Literature review: In payoff-based algorithms, each agent can only measure the value of
their cost function but does not necessarily know its analytic form. Many of such algorithms
are designed for Nash equilibrium problems (NEPs) with finite action spaces where each
agent has a fixed policy that specifies what a player should do under any condition, e.g., [56],
[10], [57]. On the other hand, the main component of continuous action space algorithms
is the payoff-based (pseudo)gradient estimation scheme. A notable class of payoff-based
algorithms called Extremum Seeking Control (ESC) is based on the seminal work by Krstić
and Wang [12]. The main idea is to use perturbation signals to “excite” the cost function
and estimate its gradient, which is then used in a gradient-descent-like algorithm. Since
then, various different variants have been proposed [40], [32], [74], [75], [76], [77]. A
full-information algorithm where the (pseudo)gradient is known can be “transformed" into
an extremum seeking one if it satisfies some properties, like the continuity of the dynamics,
use of only one (pseudo)gradient in the dynamics, appropriate stability of the optimizer/NE,
etc. At first, (local) exponential stability of the optimizer/NE was assumed or implied
with other assumptions [12, Assum. 2.2], [7, Assum. 3.1]. Thanks to results in averaging
and singular perturbation theory [78],[79] in the hybrid dynamical systems framework
[80], the assumption was relaxed to just (practical) asymptotic stability [17]. Subsequently,
extremum seeking algorithms were developed for many different applications, such as
event-triggered optimization [81], Nesterov-like accelerated optimization with resetting
[82], optimization of hybrid plants [83], population games [60], N-cluster Nash games [59],
fixed-time Nash equilibrium seeking for strongly monotone games [18], Nash equilibrium
seeking for merely monotone games [84] and generalized Nash equilibrium seeking in
strongly monotone games [23].

GNEPs can be solved efficiently by casting them into a variational inequality (VI) [85,
Equ. 1.4.7], and in turn into the problem of finding a zero of an operator [85, Equ. 1.1.3],
for which there exists a vast literature [42]. For GNEPs, this operator is the KKT operator,
composed of the pseudogradient (whose monotonicity determines the type of the game),
dual variables, constraints, and their gradients. In the case of merely monotone operators,
the most widely used solution algorithms are the forward-backward-forward [42, Rem.
26.18], the extragradient [86] and the subgradient extragradient [87]. The main drawback of
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all of these algorithms, with respect to an extremum seeking adaptation, is that they require
two pseudogradient computations per iteration. Recently, the golden ratio algorithm has
been proven to converge in the monotone case with only one pseudogradient computation
[88]. There also exist continuous-time versions of the aforementioned algorithms, like
the forward-backward-forward algorithm [89], and the golden ratio algorithm [90], albeit
without projections in the latter case, rendering it unusable for GNEPs, as projections are
essential for the dual dynamics. To the best of our knowledge, in the merely monotone case,
no continuous-time GNEP algorithm currently exists that can be paired with extremum
seeking.

Contribution: Motivated by the above literature and open research problem, to the best
of our knowledge, we consider and solve the problem of learning (i.e., seeking via zeroth-
order information) a GNE in merely monotone games. Specifically, our main technical
contributions are summarized next:

• We propose a novel, projection-less continuous-time algorithm for solving GNEPs.
Unlike [90], we consider the presence of shared constraints that are satisfied asymp-
totically.

• We propose a novel dual variable gain adaptation scheme using the framework of
hybrid dynamical systems to alleviate the problem of improper scaling of the cost
and constraint functions.

• We propose an extremum seeking scheme that exploits the aforementioned properties
of the previous algorithms and, in turn, solves for the first time monotone GNEPs
with zeroth-order information feedback.

Comparison with [84] and [23]: Since here we assume non-strong monotonicity of the
pseudogradient mapping, the methodology in [23] based on the forward-backward splitting
is not applicable - see [90, Equ. 4] for an example of non-convergence. Furthermore, by
incorporating projection-less dual dynamics, here we allow for the presence of constraints,
in contrast with the methodology in [84], which cannot be extended to the constrained
case. Thus, in this chapter, we develop a novel splitting methodology that solves the issues
of non-convergence and coupled feasible set and consequently addresses a much wider
class of equilibrium problems. The hybrid gain adaptation is also novel and not considered
in [84], [23].

The framework of hybrid dynamical systems (HDS) theory [80] like [78], [79], [17,
Lemma 4] is especially attractive for extremum seeking, as it allows one to quickly and
elegantly prove various stability theorems [17], [81], [18], [82]. Thus, we also use the
framework of HDSs to model our algorithms. An HDS is defined as

�̇� ∈ 𝐹(𝑥) if 𝑥 ∈ 𝐶 (5.1a)
𝑥+ ∈ 𝐺(𝑥) if 𝑥 ∈ 𝐷, (5.1b)

where 𝑥 ∈ ℝ𝑛 is the state, 𝐹 ∶ ℝ𝑛 → ℝ𝑛 is the flow map, and 𝐺 ∶ ℝ𝑛 → ℝ𝑛 is the jump map,
the sets 𝐶 and 𝐷, are the flow set and the jump set, respectively, that characterize the points
in space where the system evolves according to (5.1a), or (5.1b), respectively. The data of
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the HDS is defined as  ∶= {𝐶,𝐷,𝐹 ,𝐺}. Solutions 𝑥 ∶ dom(𝑥)→ ℝ𝑛 to (5.1) are defined on
hybrid time domains, and they are parameterized by a continuous-time index 𝑡 ∈ ℝ+ and a
discrete-time index 𝑗 ∈ℤ+. Solutions with unbounded time or index domains are said to be
complete [80, Chp. 2]. We now define the sufficient hybrid basic conditions that enable the
use of various results from HDS theory. Unlike [80, Assum. 6.5], we require continuity of
our mappings.

Definition 5.1 (Hybrid basic conditions). An HDS in (5.1) is said to satisfy the Hybrid basic
conditions if 𝐶 and 𝐷 are closed, 𝐶 ⊂ dom(𝐹), 𝐷 ⊂ dom(𝐺), 𝐹 and 𝐺 are continuous on 𝐶 and
𝐷 respectively. □

5.2 Generalized Nash eqilibrium problem
We consider a multi-agent system with 𝑁 agents indexed by 𝑖 ∈  B {1,2,…𝑁 }, each with
cost function

𝐽𝑖(𝑢𝑖,𝒖−𝑖), (5.2)

where 𝑢𝑖 ∈ ℝ𝑚𝑖 is the decision variable, 𝐽𝑖 ∶ ℝ𝑚𝑖 ×ℝ𝑚−𝑖 → ℝ. Let us also define 𝑚B∑𝑗∈𝑚𝑗
and 𝑚−𝑖 B∑𝑗≠𝑖𝑚𝑗 . Formally, we do not consider local constraints as in [84], [18], [59],
but they could be approximated softly via penalty-barrier functions into the cost function.
All agents are subject to convex coupling constraints 𝑔𝑗 (𝒖) indexed by 𝑗 ∈B {1,2,…𝑞}.
Therefore, let us denote the overall feasible decision set as

 B {𝒖 ∈ ℝ𝑚 | 𝑔(𝒖) ≤ 𝟎} , (5.3)

and the feasible set of agent 𝑖 as

𝑖(𝒖−𝑖)B {𝑢𝑖 ∈ ℝ𝑚𝑖 | 𝑔(𝒖) ≤ 𝟎} , (5.4)

where 𝑔(𝒖) = col((𝑔𝑗 (𝒖))𝑗∈).
The goal of each agent is to minimize its cost function, i.e.,

∀𝑖 ∈  ∶ min
𝑢𝑖∈𝑖(𝒖−𝑖)

𝐽𝑖(𝑢𝑖,𝒖−𝑖), (5.5)

which depends on the decision variables of other agents as well. Thus, a game  is defined
by the set of cost functions and the feasible set, i.e., B {(𝐽𝑖(𝒖))𝑖∈ , (𝑔𝑗 (𝒖))𝑗∈}. From a
game-theoretic perspective, this is the problem to compute a generalized Nash equilibrium
(GNE), as formalized next.

Definition 5.2 (Generalized Nash equilibrium). A set of control actions 𝒖∗ B col(𝑢∗𝑖 )𝑖∈ is
a generalized Nash equilibrium if, for all 𝑖 ∈ ,

𝑢∗𝑖 ∈ argmin
𝑣𝑖

𝐽𝑖 (𝑣𝑖,𝒖∗−𝑖) s.t.(𝑣𝑖,𝒖
∗
−𝑖) ∈ . (5.6)

with 𝐽𝑖 as in (5.2) and  as in (5.3). □
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In plain words, a set of inputs is a GNE if no agent can improve its cost function by unilat-
erally changing its input.

A common approach for solving a GNEP is to translate it into a quasi-variational in-
equality (QVI) [1, Thm. 3.3] that can be simplified to a variational inequality (VI) [1, Thm.
3.9] for a certain subset of solutions called variational-GNE (v-GNE), which in turn can
be translated into a problem of finding zeros of a monotone operator [85, Equ. 1.1.3]. To
ensure the equivalence of the GNEP and QVI, we postulate the following assumption [1,
Thm. 3.3]:

StandingAssumption 5.3 (Regularity). For each 𝑖 ∈ , the function 𝐽𝑖 in (5.2) is differentiable
and its gradient is locally Lipschitz continuous; the function 𝐽𝑖 (⋅,𝒖−𝑖) is convex for every 𝒖−𝑖;
For each 𝑗 ∈ , convex constraint 𝑔𝑗 (𝒖) is continuously differentiable,  is non-empty and
satisfies Slater’s constraint qualification. □

We focus on a subclass of GNE called variational GNE [1, Def. 3.10]. A collective decision 𝒖∗
is a v-GNE in (5.6) if and only if there exists a dual variable 𝜆∗ ∈ ℝ𝑞 such that the following
KKT conditions are satisfied [1, Th. 4.8]:

𝟎𝑚+𝑞 ∈ 𝐹ex(𝒖∗, 𝜆∗)B [
𝐹 (𝒖∗)+∇𝑔(𝒖∗)⊤𝜆∗
−𝑔(𝒖∗)+Nℝ𝑞

+
(𝜆∗) ] , (5.7)

where by stacking the partial gradients ∇𝑢𝑖𝐽𝑖(𝑢𝑖,𝒖−𝑖) into a single vector, we have the
so-called pseudogradient mapping:

𝐹(𝒖) ∶= col((∇𝑢𝑖𝐽𝑖 (𝑢𝑖,𝒖−𝑖))𝑖∈) . (5.8)

Let us also postulate the weakest working assumption in GNEPs with continuous actions,
i.e. the monotonicity of the pseudogradient mapping [85, Def. 2.3.1, Thm. 2.3.4]:

Standing Assumption 5.4 (Monotonicity). The pseudogradient mapping 𝐹 in (5.8) is
monotone, i.e., it holds that

inf
𝒖,𝒗∈dom𝐹

⟨𝒖−𝒗 | 𝐹(𝒖)− 𝐹(𝒗)⟩ ≥ 0. □

The regularity and monotonicity assumptions are not enough to ensure the existence of a
v-GNE [85, Thm. 2.3.3, Corr. 2.2.5], [1, Thm. 6], hence let us postulate its existence:

Standing Assumption 5.5 (Existence). There exists 𝜔∗ B col (𝒖∗, 𝜆∗) ∈ ℝ𝑚 ×ℝ𝑞
+ such that

Equation (5.7) is satisfied. □

In this chapter, we consider the problem of finding a v-GNE of the game in (5.5) via
zeroth-order information, i.e., local measurements of the cost functions in (5.2).

5.3 Full-information generalized Nash eqilibrium
seeking

We present two novel full-information GNE seeking algorithms. In the first algorithm, the
dual variables are calculated without the use of projections by a central coordinator. The
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lack of projections onto tangent cones, alongwith the fact that the flowmap of the algorithm
contains only one pseudogradient computation and that the algorithm itself converges
merely under the monotonicity assumption, enables us to use hybrid dynamical system
theory for the zeroth-order extension of the algorithm later on. In the second algorithm,
we propose a hybrid gain adaptation scheme to improve the algorithm’s performance when
we do not know a priori how to best tune the gains.

5.3.1 Projection-less GNE seeking algorithm
The algorithm in [90] proves convergence to a NE for a monotone pseudogradient by
combining additional filtering dynamics and state 𝑧 with the standard NE seeking one.
Similarly, we propose a Lagrangian first-order primal dynamics with filtering for each
agent:

[
�̇�𝑖
�̇�𝑖]

= [
−𝑢𝑖+ 𝑧𝑖− 𝛾𝑖 (∇𝑢𝑖𝐽𝑖(𝑢𝑖,𝒖−𝑖)+∇𝑢𝑖𝑔(𝒖)⊤𝜆)

−𝑧𝑖+𝑢𝑖 ] .

The authors in [90] propose a passivity framework for the convergence of their golden-
ratio inspired algorithm. Instead, we offer a different intuition for convergence. Via the
invariance theorem, it follows that the stable equilibrium points must be in the Lyapunov
invariant set. Without the additional dynamics and under the monotonicity assumption,
the invariant set would cover the whole flow set. With the filtering dynamics, the invariant
set is restricted to the points where the flow map equals zero. In the case of the dual
dynamics, in order to avoid projections, we propose the following dynamics:

∀𝑗 ∈ ∶ �̇�𝑗 = 𝜆𝑗 (𝑔𝑗 (𝒖)−𝜆𝑗 +𝑤𝑗)
�̇� = −𝑤+𝜆. (5.9)

While the classic dual Lagrangian dynamics preserve the positivity of the dual variables by
projecting onto the positive orthant, the same is accomplished in (5.9) by multiplying the
“standard" dual dynamics of each individual variable with the dual variable. Consequen-
tially, a positive dual variable cannot become negative over time as it cannot cross zero.
Unlike [91], [92], where strict convexity of the cost and constraint functions is assumed to
avoid having the invariant set be equivalent to the entire flow set, thanks to our newfound
understanding of the filtering dynamics, we can incorporate them to relax the strict con-
vexity assumption.

Thus, in collective form, we have

�̇� =
⎡
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−𝒖+𝒛−Γ(𝐹(𝒖)+∇𝑔(𝒖)⊤𝜆)
−𝒛+𝒖

diag(𝜆) (𝑔(𝒖)−𝜆+𝑤)
−𝑤+𝜆

⎤
⎥
⎥
⎥
⎦

. (5.10)

To properly understand the behavior of this system, we first need to define the key sets.
Let us define the set of equilibrium points of the dynamics in (5.10) as

B
{
𝜔 ∈ ℝ2𝑚 ×ℝ2𝑞

+ ∣ 𝒖 = 𝒛,𝑤 = 𝜆,𝟎𝑚 = 𝐹 (𝒖)+∇𝑔(𝒖)⊤𝜆,diag(𝜆)diag(𝑔(𝒖)) = 0
}
, (5.11)
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(a)  (blue dot)
contains a single
point.

(b)  (blue line)
contains multiple
points.

(c)  (blue line)
and  ⧵ 
(red line) are
connected.

(d)  contains
no points, set
 (red dot) is a
single point.

(e)  (blue dot)
and  ⧵ (red
dot) discon-
nected.

Figure 5.1: The figures represent projections of the sets  and  onto the subspace of
𝒖 coordinates with 𝐹(𝒖)B col (𝑢2,−𝑢1):  is shown in blue, while the other equilibrium
points of (5.10)⧵, are shown in red. Areas that satisfy the constraints are shown in
gray. The set is not necessarily connected, as shown in Figure 5.1e. Without constraints,
 is equivalent to , and it contains only the zeros of the pseudogradient as shown in
Figure 5.1a. By adding constraints, we can either create new equilibrium solutions (Figures
5.1b, 5.1e) or “remove" previous ones (Figure 5.1d). Either way, “all" the solutions are still
included in the set, which is the union of all solutions to games {(𝐽𝑖(𝒖))𝑖∈ , (𝑔𝑗 (𝒖))𝑗∈̃},
where ̃ is a subset of .

its subset which relates to the solutions of the game in (5.5) as

B
{
𝜔 ∈ ℝ2𝑚 ×ℝ2𝑞

+ ∣ 𝒖 = 𝒛,𝑤 = 𝜆,𝟎𝑚 ∈ 𝐹ex (𝒖, 𝜆)
}
⊆, (5.12)

and  as the set where at least one dual variable is equal to zero:

B {𝜔 ∈ ℝ2𝑚 ×ℝ2𝑞
+ ∣ 𝜆1 ⋅𝜆2 ⋅… ⋅𝜆𝑞 = 0}.

Let us make a few key observations. Firstly, not all equilibrium points in  are related
to the solutions of the GNEP like the points in (see Figures 5.1c, 5.1d, 5.1d). Secondly,
if the dynamics are initiated in the set , then the dual variables initiated with zero will
stay zero for the whole trajectory. Thus, such trajectories do not converge to the solution
unless the dual variables are initialized correctly. To avoid this problem, it is sufficient to
initialize the trajectories outside of . To further understand the properties of these sets,
we show some examples in Figure 5.1.

We later show that  is attractive. Additionally, the following Lemma characterizes
the stability of points in⧵.

Lemma 5.6. Let the Standing Assumptions hold. Then, the equilibrium points in ⧵ are
unstable for dynamics in (5.10). □

Proof. See Appendix 5.B. ■

Therefore, in order to prove the stability of, we need the sets and⧵ to be disjoint,
as the latter is the set of undesired equilibria. In Figures 5.1b and 5.1c, we illustrate this
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situation happens when the solution set contains multiple points, and some of them are
“removed" by the introduction of the new constraints. Thus, we have to assume this is not
the case:

Standing Assumption 5.7 (Isolation of solutions). By removing constraints that are not
active in the solution set (for which 𝜆∗𝑗 = 0) from the overall feasible decision set  in (5.3),
additional solutions that are connected to  are not created. □

We note that this assumption fails only in very specific conditions. For example, let
𝐹(𝒖) = col (𝑢2,−𝑢1), 𝑔1(𝒖) = 𝑎1𝑢1+𝑏1𝑢2+ 𝑐1 and 𝑔2(𝒖) = 𝑎2𝑢1+𝑏2𝑢2+ 𝑐2. Standard Assump-
tion 5.7 fails only if 𝑐1 = 0 or 𝑐2 = 0. Even if Standard Assumption 5.7 is not satisfied, by
Lemma 5.6, the equilibrium points in⧵ are unstable, hence there would be no problem
in practice.

Since we cannot claim attractivity from all points in the domain, we should use the notion
of local stability as formalized next.

Definition 5.8 (UL(p)AS and UG(p)AS). [83]
A compact set  ⊂ ℝ𝑛 is said to be Uniformly Locally pre-Asymptotically Stable (ULpAS)
with basin of attraction  if for every proper indicator 𝜔(⋅) of on  there exists 𝛽 ∈
such that any solution 𝑥 of  with 𝑥(0,0) ∈  satisfies 𝜔(𝑥(𝑡, 𝑗)) ≤ 𝛽(𝜔(𝑥(0,0)), 𝑡 + 𝑗), for
all (𝑡, 𝑗) ∈ dom(𝑥). If this bound holds with 𝜔(⋅) replaced by ‖⋅‖, and for all 𝑥(0,0) ∈ 𝐶 ∪𝐷,
the set  is said to be Uniformly Globally pre-Asymptotically Stable (UGpAS). If all solutions
are complete, we use the acronyms ULAS and UGAS, respectively. □

Finally, we show that the dynamics in (5.10) converge to the solutions of the game in (5.5)
if the initial value of the dual variables is different from zero, as formalized next:

Theorem 5.9. Let the Standing Assumptions hold and consider the system dynamics in (5.10).
The set  in (5.12) is ULAS with basin of attraction (ℝ2𝑚 ×ℝ2𝑞

+ ⧵) ∪. □

Proof. See Appendix 5.A. ■

Remark 5.10. It is mathematically also possible to derive a distributed (center-free) imple-
mentation of our semi-decentralized algorithm, similarly to [23, Equ. 14], where each agent
estimates the dual variables using the information exchanged with the neighbors. While
technically possible, this approach is less in line with the almost-decentralized philosophy of
extremum seeking since it would require a dedicated communication network.

5.3.2 Hybrid adaptive gain
It is known that primal-dual dynamics satisfy the constraints only asymptotically, thus, they
allow for constraint violation in the transient [44], [55]. Such behavior might happen for
longer periods if the norm of the pseudogradient 𝐹(𝒖) is “dominant" over that of the gradient
of the constraint vector, ∇𝑔(𝒖). Furthermore, as the zeroth-order variant from §4 introduces
perturbations to the primal dynamics, it can happen that the perturbations “overpower"
either the pseudogradient or the constraint part of the dynamics, thus hindering the
convergence to the solution for a wide set of perturbation amplitude parameters. Therefore,
to reduce the violation behavior during the transients and to enable a more applicable
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zeroth-order adaptation, it is fundamental to scale the functions properly. When we do
not know the cost functions a priori, it is difficult to scale the constraints. To address this
potential numerical issue, we propose a gain adaptation scheme based on hybrid dynamical
systems. In simple words, we design an outer-semicontinuous mapping which turns on
the increase of the gain 𝑘𝑗 when there is some level of constraint violation 𝑔𝑗 (𝒖) ≥ 2𝜖, and
turns it off when the constraint violation is minimal 𝑔𝑗 (𝒖) ≤ 𝜖, or when the gain reaches
the maximum value 𝑘. The collective flow set and flow map for 𝜉 B col (𝒖,𝒛, 𝜆,𝑤,𝑘, 𝑠) read
as:

𝜉 ∈ 𝐶 B ℝ2𝑚 ×ℝ2𝑞
+ ×𝑞 ×𝑞 (5.13a)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐹(𝜉)B

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝒖+𝒛−Γ(𝐹(𝒖)+∇𝑔(𝒖)⊤𝜆)
−𝒛+𝒖

diag(𝑘)diag(𝜆) (𝑔(𝒖)−𝜆+𝑤)
−𝑤+𝜆

1
2 𝑐 𝑆

2(𝟏+ 𝑠)
𝟎

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.13b)

and the collective jump set and jump map

𝜉 ∈ 𝐷B
𝑞

⋃
𝑗=1

𝐷𝑗 , 𝐷𝑗 B (𝐷+
𝑗 ∪𝐷

−
𝑗 ∪𝐷

0
𝑗 ) (5.14a)

𝜉+ ∈ 𝐺(𝜉)B

{

(

𝑗∈
⋃𝐺𝑗 (𝜉), 𝜉 ∈

𝑗∈
⋂𝐷𝑗)∈()

, (5.14b)

where 𝑘 is a vector of gains for the dual dynamics; B [𝑘,𝑘] is the set of possible values
for these gains; 𝑠 is a vector of discrete states which indicate if the gains in 𝑘 are increasing
or not;  B {−1,0,1} is the set of possible discrete states; 𝑐 > 0 is positive constant which
regulates the increase of 𝑘; 𝑆 B diag(𝑠), 𝜖 > 0 is a positive number, 𝐷+

𝑗 B {𝒖 ∣ 𝑔𝑗 (𝒖) ≥
2𝜖} ×ℝ𝑚 ×ℝ2𝑞

+ ×𝑞 × 𝑗−1 × {−1}×𝑞−𝑗 is the set which triggers the increasing 𝑘𝑗 dynamics;
𝐷−
𝑗 B {𝒖 ∣ 𝑔𝑗 (𝒖) ≤ 𝜖} ×ℝ𝑚 ×ℝ2𝑞

+ ×𝑞 × 𝑗−1 × {1}×𝑞−𝑗 is the set which triggers the stopping
of the 𝑘𝑗 dynamics; 𝐷0

𝑗 B ℝ2𝑚 ×ℝ2𝑞
+ ×𝑗−1 ×{𝑘}×𝑞−𝑗 × 𝑗−1 ×{−1,1}×𝑞−𝑗 is the set which

triggers the permanent stop of 𝑘𝑗 dynamics; () is the set of all subsets of  ; the jump
maps 𝐺𝑗 (𝜉) are defined as

𝐺𝑗 (𝜉)B
⎧⎪⎪
⎨⎪⎪⎩

Δ−𝑗𝜉 −Δ𝑗𝜉 , 𝜉 ∈ 𝐷+
𝑗 ∪𝐷−

𝑗
Δ−𝑗𝜉 , 𝜉 ∈ 𝐷0

𝑗
{Δ−𝑗𝜉 −Δ𝑗 ,Δ−𝑗𝜉}, 𝜉 ∈ (𝐷+

𝑗 ∪𝐷−
𝑗 ) ∩𝐷0

𝑗

where Δ𝑗 is a diagonal matrix with all zeros on the diagonal, except for the row correspond-
ing to the 𝑠𝑗 state, which is equal to one and Δ−𝑗 B 𝐼 −Δ𝑗 .
The set-valued definitions are necessary for outer-semicontinuity, which in turn via hybrid
systems theory, provides us with some robustness properties. An example trajectory can
be seen in Figure 5.2. We note that due to the design of the jump sets, no jumps can occur
in a sufficiently small neighborhood of a GNE, and no solution can have an infinite number
of jumps, as formalized next:
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Figure 5.2: The trajectory is denoted with a gray line, events with yellow dots, first
constraint with red and second with blue lines. The trajectory starts in the set where
constraints are satisfied (𝑔(𝒖) ≤ 0). The first event is triggered when the trajectory leaves
the set where 𝑔1(𝒖) < 2𝜖, causing the state 𝑠1 to change to 1 which then starts the increase
of 𝑘1 gain. The second event happens when the trajectory returns to the set where 𝑔1(𝒖)≤ 𝜖
and the state 𝑠1 is reset to 0, halting the increase in gains. Events 3 and 4 happen when the
trajectory leaves the sets 𝑔1(𝒖)< 2𝜖 and 𝑔2(𝒖)< 2𝜖 simultaneously. In that case, states 𝑠1 and
𝑠2 are set to 1 in random order. The last jumps happen when the trajectory simultaneously
enters the sets 𝑔1(𝒖) ≤ 𝜖 and 𝑔2(𝒖) ≤ 𝜖. Again, the states 𝑠1 and 𝑠2 are reset to 0 in random
order.
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Lemma 5.11. Let the Standing Assumptions hold and let 𝜉(𝑡, 𝑗) be a complete solution to
the hybrid system (𝐶,𝐷,𝐹 ,𝐺) in (5.13a), (5.13b), (5.14a) and (5.14b). Then, 𝜉(𝑡, 𝑗) has a finite
number of jumps. □

Proof. See Appendix 5.C. ■

Apart from the gain adaptation scheme, the main difference between the dynamics in
(5.13) and those in (5.10) is the fact that the flow mapping of the dual variables contains
the new gain vector. Thus, one would expect similar behavior compared to that in (5.10).
Furthermore, thanks to the hybrid basic assumptions, our system in (5.13) does not become
unstable for arbitrarily small noise, as formalized in the following definition and robust
convergence result for our hybrid adaptive algorithm.

Definition 5.12 (Structural robustness). [82] Let a compact set  be UGpAS (resp. SGPpAS
as 𝜀 → 0+ ) for the hybrid system with 𝛽 ∈. We say that is Structurally Robust if for
all measurable functions 𝑒 ∶ ℝ≥0 → ℝ𝑛 satisfying sup𝑡≥0 ‖𝑒(𝑡)‖ ≤ 𝑒, with 𝑒 > 0, the perturbed
system

𝑥 + 𝑒 ∈ 𝐶, �̇� = 𝐹(𝑥 + 𝑒)+ 𝑒 (5.15a)
𝑥 + 𝑒 ∈ 𝐷, 𝑥+ = 𝐺(𝑥 + 𝑒)+ 𝑒 (5.15b)

renders the set SGPpAS as 𝑒 → 0+ (resp. SGPpAS as (𝜀, 𝑒)→ 0+) with 𝛽 ∈. □

Theorem 5.13. Let the Standing Assumptions hold and consider the hybrid system (C,
D, F, G) in (5.13a), (5.13b), (5.14a) and (5.14b). Then, for any initial condition such that
𝜉(0,0) ∉ ×𝑞 ×𝑞 there exists a compact set B ⊃×𝑞 ×𝑞 , such that the set×𝑞 ×𝑞

is UGAS for the restricted hybrid system (𝐶∩B,𝐷∩B, 𝐹 ,𝐺). Additionally, the restricted system
is structurally robust. □

Proof. See Appendix 5.D. ■

5.4 Zeroth-ordergeneralizedNasheqilibrium seek-
ing

The main assumptions of Algorithms in §5.3.1 and §5.3.2 are that each agent knows their
partial-gradient mapping and the actions of other agents. Such knowledge can be difficult
to acquire in practical applications [93]. Our proposed zeroth-order GNE seeking algo-
rithm requires a much weaker assumption; we assume that each agent can only measure
their cost function. To estimate the pseudogradient via the measurements, we introduce
additional oscillator states 𝝁. By injecting oscillations into the inputs of the cost functions,
it is possible to estimate the pseudogradient. For example of a real function of a single
variable, it holds that 𝑓 (𝑥 +𝑎 sin(𝑡)) sin(𝑡) ≈ 𝑓 (𝑥) sin(𝑡)+𝑎∇𝑓 (𝑥)sin2(𝑡) for small 𝑎. If the
right-hand expression is averaged in time, only 𝑎

2∇𝑓 (𝑥) remains as the desired estimate.
The principle is the same for mappings. To reduce oscillations, the estimate is then passed
through a first-order filter with state 𝜻 and forwarded into the algorithm in §5.3.2 instead
of the real pseudogradient.
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Our new algorithm for the collective state 𝜙B col(𝒖,𝒛, 𝜆,𝑤,𝑘, 𝑠,𝜻 ,𝝁) is given by

𝜙 ∈ 𝐶0 B 𝐶 ×ℝ𝑚 ×𝕊𝑚 (5.16a)
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝐹0(𝜙)B

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝝂𝜺(−𝒖+𝒛−Γ(𝜻 +∇𝑔(𝒖)⊤𝜆))
𝝂𝜺 (−𝒛+𝒖)

𝜈0𝜀0 diag(𝑘)diag(𝜆) (𝑔(𝒖)−𝜆+𝑤)
𝜈0𝜀0 (−𝑤+𝜆)
1
2𝜈0𝜀0𝑐 𝑆

2(𝟏+ 𝑠)
𝟎

𝝂(−𝜻 + 𝐹(𝒖,𝝁))
2𝜋𝜅𝝁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.16b)

where 𝜁𝑖 ∈ ℝ𝑚𝑖 , 𝜇𝑖 ∈ 𝕊𝑚𝑖 are the oscillator states, 𝜀𝑖, 𝜈𝑖 ≥ 0 for all 𝑖 ∈ 0 B  ∪ {0}, 𝜺 B
blkdiag((𝜀𝑖𝐼𝑚𝑖)𝑖∈), 𝜸 B blkdiag((𝛾𝑖𝐼𝑚𝑖)𝑖∈), 𝜅 B blkdiag((𝑖)𝑖∈),

𝑖 B blkdiag(([
0 −𝜅𝑗
𝜅𝑗 0 ])𝑗∈𝑖)

, 𝜅𝑖 > 0 for all 𝑖 and 𝜅𝑖 ≠ 𝜅𝑗 for 𝑖 ≠ 𝑗 , 𝑖 B {∑𝑖−1
𝑗=1𝑚𝑗 +

1,… ,∑𝑖−1
𝑗=1𝑚𝑗 +𝑚𝑖} is the set of indices corresponding to the state 𝑢𝑖 , 𝔻𝑛 ∈ ℝ𝑛×2𝑛 is a

matrix that selects every odd row from the vector of size 2𝑛, 𝑎𝑖 > 0 are small perturba-
tion amplitude parameters, 𝐴B blkdiag((𝑎𝑖𝐼𝑚𝑖)𝑗∈), 𝐽 (𝒖) = blkdiag((𝐽𝑖(𝑢𝑖,𝒖−𝑖)𝐼𝑚𝑖)𝑖∈), and
𝐹(𝒖,𝝁) = 2𝐴−1𝐽 (𝒖+𝐴𝔻𝑚𝝁)𝔻𝑚𝝁. The flow set and map are defined as

𝐷0 B 𝐷×ℝ𝑚 ×𝕊𝑚 (5.17a)

𝜙+ ∈ 𝐺0(𝜙)B
⎡
⎢
⎢
⎣

𝐺(𝜉)
𝜉
𝜇

⎤
⎥
⎥
⎦
. (5.17b)

The existence of solutions follows directly from [94, Prop. 6.10] as the continuity of the
right-hand side in (5.16), (5.17) and the definitions of flow and jump sets imply [94, Assum.
6.5]. As for most extremum seeking schemes with constant perturbation, convergence to a
neighborhood of the solutions can be guaranteed. Thus, let us introduce the corresponding
stability concept, the so-called semi-global practical asymptotic stability.

Definition 5.14 (SG(p)AS). [83] For a parameterized HDS𝜀 , 𝜀 ∈ ℝ𝑘
+, a compact set ⊂ ℝ𝑛

is said to be Semi-Globally Practically pre-Asymptotically Stable (SGPpAS) as (𝜀1,… , 𝜀𝑘)→ 0+
with 𝛽 ∈ if for all compact sets 𝐾 ⊂ ℝ𝑛 and all 𝑣 > 0, there exists 𝜀∗0 > 0 such that for each
𝜀0 ∈ (0, 𝜀∗0) there exists 𝜀∗1 (𝜀0) > 0 such that for each 𝜀1 ∈(0, 𝜀∗1 (𝜀0))… there exists 𝜀∗𝑗 (𝜀𝑗−1) > 0
such that for each 𝜀𝑗 ∈(0, 𝜀∗𝑗 (𝜀𝑗−1))… , 𝑗 = {2,… , 𝑘}, every solution 𝑥𝜀 of 𝜀with 𝑥𝜀(0,0) ∈ 𝐾
satisfies

‖𝑥𝜀(𝑡, 𝑗)‖ ≤ 𝛽 (‖𝑥𝜀(0,0)‖ , 𝑡 + 𝑗)+ 𝑣

for all (𝑡, 𝑗) ∈ dom(𝑥𝜀). If all solutions are complete, we have Semi-Globally Practically
Asymptotically Stable (SGPAS). □

Our main technical result of this section is summarized in the following theorem.
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Theorem5.15. Let the Standing Assumptions hold and consider the hybrid system (𝐶0,𝐷0, 𝐹0,𝐺0)
in (5.16) and (5.17). Then, for any initial condition such that 𝜙(0,0) ∉ ×𝑞 ×𝑞 ×ℝ𝑚 ×𝕊𝑚
there exists a compact set B ⊃×𝑞 ×𝑞 ×ℝ𝑚 ×𝕊𝑞 , such that the set×𝑞 ×𝑞 ×ℝ𝑚 ×𝕊𝑞
is SGPAS as (�̄�, 𝜀, �̄�) = (max𝑖∈ 𝑎𝑖,max𝑖∈0 𝜀𝑖, max𝑖∈0 𝜈𝑖)→ 0 for the restricted hybrid system
((𝐶∩B)×ℝ𝑚×𝕊𝑚), (𝐷∩B)×ℝ𝑚×𝕊𝑚, 𝐹0,𝐺0). Additionally, the restricted system is structurally
robust. □
Proof. See Appendix 5.E. ■

Remark 5.16. For the sake of brevity, we made some assumptions on the structure of our
proposed algorithms. Namely, we assume that the amplitudes of the perturbation signal 𝑎𝑖
are constant, that the frequencies of the perturbation signals are different for every state,
and that every state of the pseudogradient is estimated. Analogous results hold for slowly
varying amplitudes 𝑎𝑖(𝑡) ∈ [𝑎,𝑎] where the upper and lower bounds are design parameters,
for perturbation signals with the same frequency but sufficiently different phases, so that
“learning" can occur, and for the pseudogradient with some, but not all, estimated coordinates.

□

5.5 Numerical simulations
5.5.1 Two-player monotone game
For illustration purposes, let us consider a two-player monotone game with the following
cost functions

𝐽1(𝒖) = (𝑢1−2)(𝑢2−3)
𝐽2(𝒖) = −(𝑢1−2)(𝑢2−3), (5.18)

and constraints
𝑢1 ≥ 𝑢2+1 and 𝑢1 ≥ 4. (5.19)

Game in (5.18) and (5.19) has a unique GNE (𝑢∗1 , 𝑢∗2) = (4,3) and is known to be divergent
for algorithms that require strong monotonicity of the pseudogradient. As simulation
parameters we choose 𝑐 = 10, 𝑘𝑗 (0,0) = 1, 𝜆𝑗 = 0.1 for all 𝑖 ∈ , 𝑗 ∈ , 𝑘min = 1, 𝑘max = 105,
(𝑢1(0,0), 𝑢2(0,0)) = (10,0), and all other initial parameters were set to zero. We compare the
algorithm in (5.13), (5.14) with algorithm in (5.10) for different values of the gain and show
the numerical simulations in Figures 5.3, 5.4, 5.5. In Figures 5.3 and 5.4, it seems that the
trajectory with the highest gain does not converge to the equilibrium. However, this is not
the case since the Lagrangian multipliers converge very close to zero during the initial part
of the trajectory when both constraints are satisfied. Thus, as the multipliers themselves
act as a “gain" in the dynamics, it takes longer for the dynamics to evolve toward the
desired equilibrium. Eventually, the Lagrangian multipliers will grow large enough to let
the trajectory move toward a solution. Furthermore, we note that the trajectory for the
gain 𝑘 = 1 is the second slowest with respect to convergence speed. Thus, in this scenario,
choosing the gain either too small or too large is detrimental to the convergence speed. On
the other hand, our adaptive gain behaves similarly to the case of gain 𝑘 = 100, which is
the “optimally tuned" gain. In Figures 5.4 and 5.5, we denote the area where the constraints
are satisfied with green and red rectangles. Figure 5.6 shows how the adaptive gain turns
on and off based on the constraint violation.
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(a) Time evolution of states 𝑢1for the cases with and without (𝑘min = 𝑘max) adaptive gain in (5.13).

(b) Time evolution of states 𝑢2 for the cases with and without (𝑘min = 𝑘max) adaptive gain in (5.13).

Figure 5.3: The trajectory with the adaptive gain is almost identical to the trajectory with
gain 𝑘 = 100.

Figure 5.4: Trajectories with (red) and without (blue, magenta, yellow) adaptive gain in a
phase plane. The yellow dot represents the GNE, while the other colored lines are denoted
as in Figure 5.3

.
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Figure 5.5: Trajectories in the neighborhood of the GNE (yellow dot). The jumps are
activated when entering and leaving the half-spaces corresponding to the constraints (red
and transparent green). The color code is as in Figure 5.3: blue for constant gain 𝑘 = 105,
yellow for constant gain 𝑘 = 102, purple for constant gain 𝑘 = 1, and red for adaptive gain.

Figure 5.6: Time evolution of the gains 𝑘1 and 𝑘2.
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5.5.2 Perturbation signal optimization in oil extraction
Oil extraction becomes financially unviable when the reservoir pressure drops under a
certain threshold. To solve this problem, one can employ gas-lifting [11]. Compressed
gas is injected down the well to decrease the density of the fluid and the hydrostatic
pressure, causing an increase in production. The oil rate is typically a concave hard-to-
model function of the gas injection rate [11] with a maximum that slowly changes over
time due to changing conditions, making it an excellent candidate for extremum seeking.
Extraction sites usually have multiple wells that the same processing facility operates. The
goal is to maximize the oil extraction rate

𝐽1(𝒙) =
𝑁
∑
𝑖=1

𝑓𝑖(𝑥𝑖), (5.20)

while not exceeding a linear coupling constraint which may relate to total injection rate,
power load, etc.

𝑁
∑
𝑖
𝑏𝑖𝑥𝑖 ≤ 𝑥max, (5.21)

where 𝑓𝑖 ∶ ℝ→ ℝ and 𝑥𝑖 ∈ ℝ are the oil-rate function and the injection rate, respectively, of
the well 𝑖 and 𝑏𝑖, 𝑥max ∈ ℝ. We denote the solution to this problem as 𝑥∗. Furthermore, the
processing facility wants to reduce the oscillations in the total optimal extraction rate that
result from the extremum seeking perturbation signals:

�̂�𝑖(𝑡) = 𝑥𝑖(𝑡)+ 𝑑𝑖(𝑡) = 𝑥𝑖(𝑡)+𝑎𝑖 sin(𝜔𝑡 +𝜙𝑖) . (5.22)

The oscillations of a single well’s optimal extraction rate can be approximated as

𝑓𝑖(�̂�𝑖)− 𝑓𝑖(𝑥𝑖) ≈ ∇𝑓𝑖(𝑥𝑖)𝑎𝑖 sin(𝜔𝑡 +𝜙𝑖) .

The secondary goal cannot be accomplished by techniques that diminish the oscillation
amplitude over time [95], [96] as the cost functions are slowly varying and the learning
procedure would stop prematurely. Furthermore, we cannot use too high frequencies [97]
as that would also destroy our equipment. Thus, to accomplish our goal, wells are grouped
into pairs (𝑖, 𝑗), and each pair selects perturbation signals which are in antiphase:

𝑑𝑖(𝑡) = 𝑎𝑖 sin(𝜔𝑡 +𝜙𝑖)
𝑑𝑗 (𝑡) = −𝑎𝑗 sin(𝜔𝑡 +𝜙𝑖) . (5.23)

Without the coupling constraint and with an even number of wells, the perturbation
signals in (5.23) reduce the oscillations in the neighborhood of the optimum as ∇𝑓1(𝑥∗1 ) ≈
∇𝑓2(𝑥∗2 ) ≈⋯ ≈ ∇𝑓𝑁 (𝑥∗𝑁 ) ≈ 0. However, if a constraint is present, the perturbation signals
might not cancel out properly because for some pair (𝑖, 𝑗), it can hold that ∇𝑓𝑖(𝑥∗𝑖 ) ≉ ∇𝑓𝑗 (𝑥∗𝑗 ).
Therefore, it is also necessary to adapt the amplitudes 𝑎𝑖, 𝑎𝑗 to improve the cancellation
effect. Without loss of generality, we assume that neighboring indices are paired up as in
(5.23). The secondary cost function is formulated as follows:

𝐽2(𝑎) = 𝑙
2

𝑁
2

∑
𝑖=1

(∇𝑓2𝑖(𝑥∗2𝑖)𝑎2𝑖−∇𝑓2𝑖−1(𝑥∗2𝑖−1)𝑎2𝑖−1)
2−

𝑁
∑
𝑖=1

log𝑝 ((𝑎𝑖−𝑎)(𝑎−𝑎𝑖))
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where 𝑙 > 0, 𝑎 and 𝑎 are the minimum and maximum perturbation amplitude, respectively,
and it holds 0 < 𝑎 < 𝑎. We denote 𝑎∗ B argmin 𝐽2(𝑎). Since 𝑥∗ is not known in advance,
direct computation of 𝑎∗ is not possible. One can modify the previous cost function to use
any value of 𝑥

𝐽2(𝑥,𝑎) = 𝑙
2

𝑁
2

∑
𝑖=1

(∇𝑓2𝑖(𝑥2𝑖)𝑎2𝑖−∇𝑓2𝑖−1(𝑥2𝑖−1)𝑎2𝑖−1)2−
𝑁
∑
𝑖=1

log𝑝 ((𝑎𝑖−𝑎)(𝑎−𝑎𝑖)) , (5.24)

and minimize the cost function:

𝐽𝑝(𝑥,𝑎) = −𝛼𝐽1(𝑥)+𝛽𝐽2(𝑥,𝑎), 𝛼, 𝛽 > 0, (5.25)

with constraint (5.21). However, this approach only approximates the solution (𝑥∗, 𝑎∗) for
𝛼 ≫ 𝛽. With our game-theoretic formulation instead, we look for a solution (𝑥∗, 𝑎∗) such
that 𝑥∗ is an optimal solution to the oil extraction problem in (5.20) and the overall pair
(𝑥∗, 𝑎∗) is variational GNE, meaning that the amplitudes are fairly and optimally chosen.
To show that the game is monotone and can be solved by our algorithm, it is sufficient
to show that the Jacobian matrix of the pseudogradient is positive semidefinite [98, Prop.
12.3]:

𝐹 (𝑥,𝑎)B [
11 12
21 22]

≽ 0. (5.26)

The submatrix 11 B blkdiag((−∇2𝑓𝑖(𝑥𝑖))𝑖∈) is positive semidefinite as all of the cost
functions in (5.20) are concave. Furthermore, the submatrix 12 is a zero matrix as the
concave cost functions do not depend on the perturbation amplitudes. Then it holds that
22 B blkdiag(1,2,3,4,… ,𝑁−1,𝑁 ), where

𝑖,𝑗 = 𝑙
[

(∇𝑓𝑖(𝑥𝑖))2 −∇𝑓𝑖(𝑥𝑖)∇𝑓𝑗 (𝑥𝑗 )
−∇𝑓𝑖(𝑥𝑖)∇𝑓𝑗 (𝑥𝑗 ) (∇𝑓𝑗 (𝑥𝑗 ))

2
]
+
[

(𝑎𝑖−𝑎)−2+(𝑎𝑖−𝑎)−2
log(𝑝) 0

0 (𝑎𝑗−𝑎)−2+(𝑎𝑗−𝑎)−2
log(𝑝) ]

. (5.27)

As both matrices in (5.27) are positive semidefinite, and 22 is block diagonal, it follows
that the matrix 22 is positive semidefinite. Finally, due to the block triangular structure of
𝐹 and positive semidefinitness of 11 and 22, we conclude that 𝐹 is positive semidefinite
and in turn that the pseudogradient is monotone.

In our example, the amplitudes of the perturbation signals are part of the decision variable
and are therefore time-varying; all perturbation signals have the same frequency but differ-
ent phases (5.23); and coordinates of the pseudogradient related to cost functions in (5.24)
need not be estimated, but can be computed directly. Thus, by Remark 5.16, we suitably
adjust the algorithm in (5.16), (5.17) and use it for our numerical simulations. Furthermore,
we use the well oil extraction rates as in [11]

𝑓1 (𝑥1) =−3.9×10−7𝑥41 +2.1×10−4𝑥31 −0.043𝑥21 +3.7𝑥1+12,
𝑓2 (𝑥2) =−1.3×10−7𝑥42 +10−4𝑥32 −2.8×10−2𝑥22 +3.1𝑥2−17,
𝑓3 (𝑥3) =−1.2×10−7𝑥43 +10−4𝑥33 −0.028𝑥23 +2.5𝑥3−16,
𝑓4 (𝑥4) =−4×10−7𝑥44 +1.8×10−4𝑥34 −0.036𝑥24 +3.5𝑥4+10,
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Figure 5.7: Time evolution of the total oil extraction rate for the case with and without
perturbation amplitude optimization. Amplitude optimization results in a 51% steady state
oscillation reduction.

and the following parameters: 𝑙 = 10, 𝜈𝑖 = 0.1, 𝜀𝑖 = 0.01 for all 𝑖, 𝑎 = 10, 𝑎 = 5, 𝑝 = 100, 𝜖 = 10,
𝜔𝑖 = 1, 𝑥max = 200, 𝑏1 = 1, 𝑏2 = 2, 𝑏3 = 3, 𝑏4 = 4, 𝑘min = 0.01, 𝑘max = 10000, 𝑐 = 1000, Γ = 10.
For initial conditions: 𝒖(0) = 𝒛(0) = col (10,10,10,10,7.5,7.5,7.5,7.5), 𝑤(0) = 0, 𝜆(0) = 0.1,
𝜁 (0) = 𝟎, 𝑘(0) = 0.01, 𝑠(0) = 0. Additionally, we run numerical simulations where only the
total oil rate is optimized with constant perturbation amplitudes 𝑎𝑖 = 5, using again the
algorithm in (5.16). In Figure 5.7, we see that the amplitude optimization indeed reduces
the amplitude of the oscillations in the oil rate by 51% in the steady state, even though
larger amplitudes were used in the perturbation signals. In Figure 5.8, we can see how the
constraints are violated over time. After half an hour, the constraints are always marginally
satisfied. In Figure 5.9, we note that in each pair, one of the amplitudes converges to a
neighborhood of the minimal value.
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Figure 5.8: Constraint violation over time.

Figure 5.9: Time evolution of amplitudes 𝑎𝑖.
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5.6 Conclusion
Monotone generalized Nash equilibrium problems with dualized constraints can be solved
via the continuous-time golden ratio algorithm augmented by projection-less dual dynamics.
Furthermore, the algorithm can be adapted via hybrid systems theory for use with zeroth-
order information feedback.

Appendix
5.A Proof of Theorem 5.9
We choose the following Lyapunov function candidate

𝑉 (𝜔,𝜔∗) = 1
2 ‖𝒖−𝒖∗‖2Γ−1 +

1
2 ‖𝒛−𝒛∗‖2Γ−1 +

1
2 ‖𝑤−𝑤∗‖2+∑

𝑗∈
(𝜆𝑗 −𝜆∗𝑗 −𝜆∗𝑗 log(

𝜆𝑗
𝜆∗𝑗 )) , (5.28)

where 𝜔∗ ∈ is any equilibrium point of (5.10) whose 𝒖∗, 𝜆∗ states correspond to a GNE
and we define 0 log0B 0. The first three terms represent a weighted Euclidean distance
from the solution (𝒖∗,𝒛∗,𝑤∗). As in [91], [92], the fourth addend is chosen such that its
Lyapunov derivative is the same as in the case of the standard norm ‖𝜆−𝜆∗‖ and standard
dynamics �̇� = −𝜆+projℝ+ (𝑔(𝒖)−𝜆). By Standard assumption 5.7, equilibrium points in
 ⧵ are disconnected from . Furthermore, going back to the Lyapunov function,
points in⧵ are not in its domain, and by proving the negative semi-definiteness of
the Lyapunov derivative, their potential region of attraction is reduced to set  ⊃. Thus,
we do not consider points in  for initial conditions. The Lyapunov derivative is given by

�̇� = ⟨𝒖−𝒖∗ ||| Γ
−1 (−𝒖+𝒛−Γ(𝐹(𝒖)+∇𝑔(𝒖)⊤𝜆))⟩+⟨𝒛−𝒖∗ || Γ

−1 (−𝒛+𝒖)⟩

+ ⟨𝑤−𝜆∗ | −𝑤+𝜆⟩+∑
𝑗∈

(�̇�𝑗 −
𝜆∗𝑗
𝜆𝑗 �̇�𝑗)

≤ − ‖𝒖−𝒛‖2Γ−1 −⟨𝒖−𝒖∗ || 𝐹(𝒖)+∇𝑔(𝒖)⊤𝜆⟩+ ⟨𝑤−𝜆∗ | −𝑤+𝜆⟩

+∑
𝑗∈

(𝜆𝑗 −𝜆∗𝑗 ) (𝑔𝑗 (𝒖)−𝜆𝑗 +𝜔𝑗 )

≤ − ‖𝒖−𝒛‖2Γ−1 −⟨𝒖−𝒖∗ || 𝐹(𝒖)+∇𝑔(𝒖)⊤𝜆⟩+ ⟨𝑤−𝜆∗ | −𝑤+𝜆⟩+ ⟨𝜆−𝜆∗ | 𝑔(𝒖)−𝜆+𝑤⟩

≤ − ‖𝒖−𝒛‖2Γ−1 − ‖𝜆−𝑤‖2+ ⟨𝜆−𝜆∗ | 𝑔(𝒖)⟩+⟨𝒖−𝒖∗ || 𝐹(𝒖)+∇𝑔(𝒖)⊤𝜆⟩ . (5.29)

From the properties of v-GNE set, we conclude that

𝟎𝑚 = 𝐹 (𝒖∗)+∇𝑔(𝒖∗)⊤𝜆∗

0= ⟨𝒖−𝒖∗ || 𝐹 (𝒖
∗)+∇𝑔(𝒖∗)⊤𝜆∗⟩

0 ≤ ⟨𝑔(𝒖∗) | 𝜆∗− 𝜉⟩ for all 𝜉 ∈ ℝ𝑞
+ (5.30)
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Thus, by using (5.30) within (5.29), we further derive

�̇� ≤ − ‖𝒖−𝒛‖2Γ−1 − ‖𝜆−𝑤‖2− ⟨𝒖−𝒖∗ | 𝐹(𝒖)− 𝐹(𝒖∗)⟩−⟨𝒖−𝒖∗ || ∇𝑔(𝒖)
⊤𝜆−∇𝑔(𝒖∗)⊤𝜆∗⟩

+ ⟨𝜆−𝜆∗ | 𝑔(𝒖)−𝑔(𝒖∗)⟩

≤ − ‖𝒖−𝒛‖2Γ−1 − ‖𝜆−𝑤‖2− ⟨𝒖−𝒖∗ | 𝐹(𝒖)− 𝐹(𝒖∗)⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0

+∑
𝑗∈

𝜆𝑗⏟⏟⏟
≥0

(𝑔𝑗 (𝒖)−𝑔𝑗 (𝒖∗)+⟨𝒖∗−𝒖 || ∇𝑔𝑗 (𝒖)⟩)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤0

−∑
𝑗∈

𝜆∗𝑗⏟⏟⏟
≥0

(𝑔𝑗 (𝒖)−𝑔𝑗 (𝒖∗)−⟨𝒖−𝒖∗ || ∇𝑔𝑗 (𝒖
∗)⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

≤ − ‖𝒖−𝒛‖2Γ−1 − ‖𝜆−𝑤‖2 , (5.31)

where the last inequality follows from the monotonicity of the pseudogradient and the
convexity of the coupled constraints. Now, we prove via La Salle’s theorem that the
trajectories of (5.10) converge to the set. Let us define the following sets:

Ω𝑐 B {𝜔 ∈ ℝ2𝑚 ×ℝ2𝑞
+ ∣ 𝑉 (𝜔) ≤ 𝑐}

Ω0 B {𝜔 ∈ Ω𝑐 ∣ 𝒖 = 𝒛 and 𝜆 = 𝑤}
B {𝜔 ∈ Ω𝑐 ∣ �̇� (𝜔) = 0}
B {𝜔 ∈ Ω𝑐 ∣ 𝜔(0) ∈⇒ 𝜔(𝑡) ∈ ∀𝑡 ∈ ℝ}, (5.32)

where Ω𝑐 is a non-empty compact sublevel set of the Lyapunov function candidate,  is
the set of zeros of its derivative, Ω0 is the superset of  which follows from (5.31) and 
is the maximum invariant set as explained in [29, Chp. 4.2]. Then, for some 𝑐 > 0 large
enough, it holds that

Ω𝑐 ⊇ Ω0 ⊇ ⊇  ⊇. (5.33)

Firstly, for any compact set Ω𝑐 , since the right-hand side of (5.10) is (locally) Lipschitz
continuous and therefore by [29, Thm. 3.3] we conclude that solutions to (5.10) exist and
are unique. Next, we show that the only 𝜔-limit trajectories in  are the equilibrium points
of the dynamics in (5.10), i.e.  ≡. It is sufficient to prove that there cannot exist any
positively invariant trajectories in Ω0, apart from stationary points in. For trajectories
in Ω0, it holds that

𝟎 = 𝒖−𝒛 (5.34)
𝟎 = �̇�− �̇� (5.35)
𝟎 = 𝜆−𝑤 (5.36)
𝟎 = �̇�− �̇�, (5.37)

and therefore

𝟎 = 𝐹 (𝒖)+∇𝑔(𝒖)⊤𝜆 (5.38)
𝟎 = diag(𝜆)𝑔(𝒖), (5.39)
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where (5.38) follows from (5.10) and (5.35), and (5.39) follows from (5.10), (5.36) and (5.37).
Equations (5.35), (5.36), (5.38) and (5.39) form the definition of set  in (5.11) and the fact
that ⧵ is not in the domain, we conclude Ω0 ≡. Since the set  is a subset of the
set Ω0, we conclude that  ≡. Therefore, by La Salle’s theorem [29, Thm. 4], set  is
attractive for the dynamics in (5.10).
Next, we prove the stability of . We restrict the domain of the dynamics by choosing an
arbitrary 𝜔∗ and a set Λ that contains arbitrarily many initial conditions of interest not
contained in the set , and it holds  ⊂ Λ. Then, we compute 𝑐 = max𝜔∈Λ 𝑉 (𝜔,𝜔∗) and
define the new restricted domain to the forward invariant set R, where RB {𝜔 ∈ ℝ2𝑚 ×ℝ2𝑞

+ ∣
𝑉 (𝜔,𝜔∗) ≤ 𝑐}.
Consequently, we define the following set-valued mapping of compact sets

Ω(𝜔∗, 𝑐)B {𝜔 ∈ R ∣ 𝑉 (𝜔,𝜔∗) ≤ 𝑐}.

Now, we prove global stability with respect to the set by showing that any Lyapunov
invariant set can be upper and lower bounded by balls surrounding the solution set. Let us
choose an arbitrary 𝜀 > 0. For a particular 𝑐 and 𝜔∗, since 𝑉 does not increase, it follows that
all trajectories that start in Ω(𝜔∗, 𝑐) are contained in the set. Let us choose 𝑐(𝜔∗) such that
Ω(𝜔∗, 𝑐(𝜔∗)) ⊆ (+ 𝜀𝔹) ∩R. By continuity of 𝑉 , for every set Ω(𝜔∗, 𝑐(𝜔∗)), it is possible to
find 𝛿(𝜔∗) > 0 such that (𝜔∗ + 𝛿(𝜔∗)𝔹) ∩R ⊆ Ω(𝜔∗, 𝑐(𝜔∗)). If we take 𝛿 = min𝜔∗∈ 𝛿(𝜔∗),
it holds that ∪𝜔∗∈(𝜔∗+𝛿𝔹) ∩R = (+𝛿𝔹) ∩R. Thus, (+𝛿𝔹) ∩R ⊆ ∪𝜔∗∈Ω(𝜔∗, 𝑐(𝜔∗))
which implies that all solutions with 𝜔(0) ∈ (+ 𝛿𝔹), remain in (+ 𝜀𝔹) for all 𝑡 ≥ 0.
Therefore, set is globally stable and attractive on R, hence it is UGAS.

5.B Proof of Lemma 1
We study the stability of singular equilibrium points in the set⧵. The main difference
between the set⧵ and the set of solutions, is that the set⧵ contains points
where �̄�𝑗 = 0 and 𝑔𝑖(�̄�) > 0 for some index 𝑗 . Let �̂� ∈⧵. Without loss of generality, we
assume that for 𝑗 = 𝑞 it holds that �̂�𝑞 = 0 and 𝑔𝑞(�̂�) > 0. In order to check the stability of
the point �̂�, we study the dynamics in (5.10) linearized around �̂�:

⎡
⎢
⎢
⎢
⎢
⎣

̇̃𝒛
̇̃𝒖
̇̃𝑤
̇̃𝜆

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−𝐼𝑚 𝐼𝑚 𝟎 𝟎
𝐼𝑚 −𝐼𝑚−𝑀 𝟎 −∇𝑔(�̂�)⊤
𝟎 𝟎 −𝐼𝑞 𝐼𝑞
0 0 0 𝑔1(�̂�)
⋮ ⋮ ⋮ ⋮
0 0 0 𝑔𝑞(�̂�)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

�̃�
�̃�
�̃�
�̃�

⎤
⎥
⎥
⎥
⎥
⎦

, (5.40)

where 𝑀(�̂�, �̂�) B 𝜕
𝜕𝒖 (Γ(𝐹(𝒖)+∇𝑔(𝒖)⊤𝜆))

|||𝒖=�̂�,𝜆=�̂�, �̃� B 𝒛 − �̂�, �̃� B 𝒖− �̂�, �̃� B 𝑤 − �̂�, and

�̃�B 𝜆− �̂�. The system matrix will have at least one positive eigenvalue due to the upper
triangular structure and the element 𝑔𝑞(�̂�)> 0 in the last row. It follows that the equilibrium
point �̂� is unstable for dynamics in (5.10). As �̂� was chosen arbitrarily, we conclude that
any equilibrium point in ⧵ is unstable.



5.C Proof of Lemma 5.11

5

83

5.C Proof of Lemma 5.11
Let us assume otherwise that we have an infinite amount of jumps. By the structure of
the jump set and map, we must jump between 𝑠𝑖 = −1 and 𝑠𝑖 = 1 an infinite amount of
times for at least one of the states 𝑖. Without the loss of generality, we assume this is true
for 𝑖 = 𝑗 . As we can spend only a finite amount of time in the state 𝑠𝑗 = 1 (𝜏 = 𝑘−𝑘

𝑐𝑗 ), time
between jumps from 𝑠𝑗 = 1 to 𝑠𝑗 = −1, 𝑡𝑘 , has to decrease to zero, otherwise ∑∞ 𝑡𝑘 = ∞ > 𝜏.
Minimum time between jumps 𝑡min is equal to 𝑑min

max ‖�̇�‖ , where 𝑑min is the minimal distance
between the jump sets corresponding to 𝑠𝑗 = −1 and 𝑠𝑗 = 1, and max ‖�̇�‖ is finite based on
the continuity of the flow map and the forward invariance of any compact set Ω𝑐 .To show
that 𝑑min ≠ 0, let 𝐺𝑗 (𝜖)B {𝒚 ∣ 𝑔𝑗 (𝒚) = 𝜖} and choose 𝜖 such that 𝐺𝑗 (2𝜖) ≠ ∅. By convexity
property of the constraint function, for 𝒖 ∈ 𝐺𝑗 (𝜖) and 𝒗 ∈ 𝐺𝑗 (2𝜖), we have:

𝑔𝑗 (𝒖) ≥ 𝑔𝑗 (𝒗)+∇𝑔𝑗 (𝒗)(𝒖−𝒗)
𝜖 ≤ ∇𝑔𝑗 (𝒗)(𝒗−𝒖) ≤ ‖‖∇𝑔𝑗 (𝒗)‖‖ ‖𝒗−𝒖‖ .

𝜖
‖‖∇𝑔𝑗 (𝒗)‖‖

≤ ‖𝒗−𝒖‖

As the set 𝐺𝑗 (2𝜖) is compact, and ∇𝑔𝑗 (𝒗) is continuous in its coordinates, by the extreme
value theorem, ‖‖∇𝑔𝑗 (𝒗)‖‖ reaches a maximum 𝛿 on that set. Therefore, the minimum distance
is bounded bellow as 𝑑min ≥ 𝜖

𝛿 .
As both 𝑑min and ‖�̇�‖ are finite positive numbers, we conclude that 𝑡min > 0, which leads us
to a contradiction. Therefore, we can only have a finite number of jumps. ■

5.D Proof of Theorem 5.13
Proof of convergence is similar to that of Theorem 5.9. First, we note that the additional
states are invariant to the set 𝑞 ×𝑞 regardless of the rest of the dynamics. Next, we
choose the Lyapunov function candidate

𝑉 (𝜔,𝜔∗, 𝑘) = 1
2 ‖𝒖−𝒖∗‖2Γ−1 +

1
2 ‖𝒛−𝒖∗‖2Γ−1

+ 1
2 ‖𝑤−𝜆∗‖2+∑

𝑗∈

1
𝑘𝑗 (𝜆𝑗 −𝜆∗𝑗 −𝜆∗𝑗 log(

𝜆𝑗
𝜆∗𝑗 )) , (5.41)

which depends on the chosen equilibrium point 𝜔∗. In a similar manner as in the proof of
Theorem 5.9, it follows that

𝑢𝑐(𝜉) = ⟨∇𝑉 (𝜉) | 𝐹(𝜉)⟩ ≤ − ‖𝒖−𝒛‖2Γ−1 − ‖𝜆−𝑤‖2 , (5.42)
𝑢𝑑(𝜉) = 𝑉 (𝜔+,𝜔∗, 𝑘)−𝑉 (𝜔,𝜔∗, 𝑘) = 0. (5.43)

We restrict the flow and jump sets by choosing an arbitrary 𝜔∗ and set Λ that contains
arbitrarily many initial conditions of interest not contained in the set , and it holds ⊂ Λ.
Then, we compute 𝑐 = max𝜔∈Λ 𝑉 (𝜔,𝜔∗, 𝑘max) and define the new restricted flow set as
BB R×𝑞 ×𝑞 , where RB {𝜔 ∈ ℝ2𝑚 ×ℝ2𝑞

+ ∣ 𝑉 (𝜔,𝜔∗, 𝑘min) ≤ 𝑐}. Consequently, we define
the following set-valued mapping of compact sets

Ω(𝜔∗, 𝑘, 𝑐)B {𝜔 ∈ R ∣ 𝑉 (𝜔,𝜔∗, 𝑘) ≤ 𝑐}.
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Compared to the invariant sets of Theorem 5.9, the compact sets also depend on the
adaptive gains. In fact, it holds that 𝟎 < 𝑘′ ≤ 𝑘′′ implies that Ω(𝜔∗, 𝑘′, 𝑐) ⊆ Ω(𝜔∗, 𝑘′′, 𝑐). As
𝑘 is dynamic, the “invariant set”, in which the trajectories of 𝜔 dynamics are contained,
expands in the 𝜆 dimensions. Due to the fact that the minimal and maximal values of the
gain are algorithm parameters, the ”expansion" of the set is bounded.
Now, we show global stability with respect to the set  ×𝑞 ×𝑞 by showing that any
invariant set can be upper and lower bounded by a ball surrounding the solution set when
accounting for the ”inflation” of the set due to changes of the gain. Let us choose an
arbitrary 𝜀 > 0. For a particular 𝑐 and 𝜔∗, the trajectories are constrained to the largest Ω
set for 𝑘 = 𝑘max, and to the smallest for 𝑘 = 𝑘min. Therefore, by the fact that 𝑉 does not
increase during flows or jumps and that the gains 𝑘 are constrained to the set𝑞 , it follows
that all trajectories that start in Ω(𝜔∗, 𝑘min, 𝑐) are contained in the set Ω(𝜔∗, 𝑘max, 𝑐).
Let us choose 𝑐(𝜔∗) such that Ω(𝜔∗, 𝑘max, 𝑐(𝜔∗)) ⊆ (+ 𝜀𝔹) ∩R. By continuity of 𝑉 , for
every set Ω(𝜔∗, 𝑘min, 𝑐(𝜔∗)), it is possible to find 𝛿(𝜔∗) > 0 such that (𝜔∗ + 𝛿(𝜔∗)𝔹) ∩R ⊆
Ω(𝜔∗, 𝑘min, 𝑐(𝜔∗)). If we take 𝛿 = min𝜔∗∈ 𝛿(𝜔∗), it holds that ∪𝜔∗∈(𝜔∗ + 𝛿𝔹) ∩R = (+
𝛿𝔹) ∩R. Thus, (+ 𝛿𝔹) ∩R ⊆ ∪𝜔∗∈Ω(𝜔∗, 𝑘min, 𝑐(𝜔∗)) which implies that all maximal
solutions with 𝜉(0,0) ∈ (+𝛿𝔹)×𝑞 ×𝑞 , remain in (+𝜀𝔹)×𝑞 ×𝑞 for all (𝑡, 𝑗) ∈ dom𝜉 .
Next, we prove global attractivity for the constrained flow and jump sets. Let 𝜉 be a complete
solution in B. For a fixed 𝜔∗, we define �̂� (𝜉)B 𝑉 (𝜔,𝜔∗, 𝑘). Via [80, Cor. 8.7] and Lemma
5.11, we conclude that for some 𝑟 ≥ 0, 𝜉 approaches the largest weakly invariant subset
in �̂� −1(𝑟) ∩B∩ 𝑢−1𝑐 (0), where the notation 𝑓 −1(𝑟) stands for the 𝑟-level set of 𝑓 on dom𝑓 ,
the domain of definition of 𝑓 , i.e., 𝑓 −1(𝑟) ∶= {𝑧 ∈ dom𝑓 ∣ 𝑓 (𝑧) = 𝑟}. By same reasoning as
in Theorem 5.9, we conclude that 𝑢−1𝑐 (0) =×𝑞 ×𝑞 .
Thus, the largest weakly invariant subset for 𝜉 reads as �̂� −1(𝑟) ∩ (×𝑞 ×𝑞). Every
trajectory 𝜉 converges to a different subset. The union of invariant subsets for every
trajectory is ×𝑞 ×𝑞 , as we can choose an initial condition for which it holds 𝜔(0,0) =
𝜔∗ = 𝑐𝑜𝑛𝑠𝑡. for all (𝑡, 𝑗) ∈ dom𝜉 , for any 𝜔∗ ∈.
Therefore,×𝑞 ×𝑞 is globally attractive, as all solutions are complete, which implies
that the set ×𝑞 ×𝑞 is UGAS ([80, Thm. 7.12]) on the restricted flow and jump sets.
Furthermore, by [82, Prop. A.1.], the HDS (𝐶 ∩B,𝐷∩B, 𝐹 ,𝐺) is structurally robust.

5.E Proof of Theorem 5.15
We rewrite the system in (5.16b) as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̄�𝜀�̃��̃�(−𝒖+𝒛−Γ(𝜻 +∇𝑔(𝒖)⊤𝜆))
�̄�𝜀�̃��̃� (−𝒛+𝒖)

�̄�𝜀�̃�0𝜀0 diag(𝑘)diag(𝜆) (𝑔(𝒖)−𝜆+𝑤)
�̄�𝜀�̃�0𝜀0 (−𝑤+𝜆)
1
2 �̄�𝜀�̃�0𝜀0𝑐(𝐼 + 𝑆)𝑆2

𝟎
�̄��̃�(−𝜻 + 𝐹(𝒖,𝝁))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.44)

�̇� = 2𝜋𝜅𝝁, (5.45)

where �̄�Bmax𝑖∈0 𝜈𝑖, 𝜀Bmax𝑖∈0 𝜀𝑖, �̃�B 𝝂/�̄�, �̃�B 𝜺/𝜀, 𝜈0B 𝜈0/�̄� and 𝜀0B 𝜀0/𝜀. The system
in (5.44), (5.45) is in singular perturbation fromwhere �̄� is the time scale separation constant.
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The goal is to average the dynamics of 𝜉 ,𝜻 along the solutions of 𝝁. For sufficiently small
�̄�Bmax𝑖∈ 𝑎𝑖, we can use the Taylor expansion to write down the cost functions as

𝐽𝑖(𝒖+𝐴𝔻𝝁) = 𝐽𝑖(𝑢𝑖,𝒖−𝑖)+𝑎𝑖(𝔻𝑚𝑖𝜇𝑖)⊤∇𝑢𝑖𝐽𝑖(𝑢𝑖,𝒖−𝑖)
+𝐴−𝑖(𝔻𝑚−𝑖𝝁−𝑖)

⊤∇𝑢−𝑖𝐽 (𝑢𝑖,𝒖−𝑖)+𝑂(�̄�2), (5.46)

where 𝐴−𝑖 B blkdiag((𝑎𝑖𝐼𝑚𝑖)𝑗∈⧵{𝑖}). By the fact that the right-hand side of (5.44), (5.45) is
continuous, by using [18, Lemma 2] and by substituting (5.46) into (5.44), we derive the
well-defined average of the complete dynamics:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀�̃��̃�(−𝒖+𝒛−Γ(𝜻 +∇𝑔(𝒖)⊤𝜆))
𝜀�̃��̃� (−𝒛+𝒖)

𝜀�̃�0𝜀0 diag(𝜆) (𝑔(𝒖)−𝜆+𝑤)
𝜀�̃�0𝜀0 (−𝑤+𝜆)
1
2 𝜀�̃�0𝜀0𝑐(𝐼 + 𝑆)𝑆2

𝟎
�̃� (−𝜻 + 𝐹(𝒖)+(�̄�))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.47)

The system in (5.47) is an (�̄�) perturbed version of:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀�̃��̃� (−𝒛+𝒖)
𝜀�̃��̃�(−𝒖+𝒛−Γ(𝜻 +∇𝑔(𝒖)⊤𝜆))

𝜀�̃�0𝜀0 (−𝑤+𝜆)
𝜀�̃�0𝜀0 diag(𝜆) (𝑔(𝒖)−𝜆+𝑤)

1
2 𝜀�̃�0𝜀0𝑐(𝐼 + 𝑆)𝑆2

𝟎
�̃� (−𝜻 + 𝐹(𝒖))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.48)

For sufficiently small 𝜀, the system in (5.48) is in singular perturbation form with dynamics
𝜻 acting as fast dynamics. The boundary layer dynamics are given by

�̇� bl = �̃�(−𝜻 bl+ 𝐹(𝒖bl)) (5.49)
For each fixed 𝒖bl, {𝐹(𝒖bl)} is a uniformly globally exponentially stable equilibrium point
of the boundary layer dynamics. By [79, Exm. 1], it holds that the system in (5.48) has a
well-defined average system given by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̃��̃� (−𝒛+𝒖)
�̃��̃�(−𝒖+𝒛−Γ(𝐹(𝒖)+∇𝑔(𝒖)⊤𝜆))

�̃�0𝜀0 (−𝑤+𝜆)
�̃�0𝜀0 diag(𝜆) (𝑔(𝒖)−𝜆+𝑤)

1
2 �̃�0𝜀0𝑐(𝐼 + 𝑆)𝑆2

𝟎

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.50)

To prove that the system in (5.50) renders the set×𝑞 ×𝑞 UGAS for restricted dynamics,
we consider the following Lyapunov function candidate:

𝑉 (𝜉 ,𝜔∗) = 1
2 ‖𝒖−𝒖∗‖2(�̃��̃�Γ)−1 +

1
2 ‖𝒛−𝒖∗‖2(�̃��̃�Γ)−1

+ 1
2�̃�0𝜀0 ‖𝑤−𝜆∗‖2+∑

𝑗∈

1
�̃�0𝜀0𝑘𝑗 (𝜆𝑗 −𝜆∗𝑗 −𝜆∗𝑗 log(

𝜆𝑗
𝜆∗𝑗 )) . (5.51)
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The convergence proof is equivalent to the proof of Theorem 5.13 and is omitted. We
restrict the flow and jump sets as 𝐶 ∩B and 𝐷∩B, respectively.

Next, by [79, Thm. 2, Exm. 1], the dynamics in (5.48) render the set  ×𝑞 ×𝑞 ×ℝ𝑚

SGPAS as (𝜀 → 0). As the right-hand side of the equations in (5.48) is continuous, the
system is a well-posed hybrid dynamical system [94, Thm. 6.30] and therefore the 𝑂(�̄�)
perturbed system in (5.47) renders the set×𝑞 ×𝑞 ×ℝ𝑚 SGPAS as (𝜀, �̄�)→ 0 [82, Prop.
A.1]. By noticing that the set 𝕊𝑚 is UGAS under oscillator dynamics in (5.45) that gen-
erate a well-defined average system in (5.47), and by averaging results in [18, Lemma
2], we obtain that the dynamics in (5.16b) make the set ×𝑞 ×𝑞 ×ℝ𝑚 × 𝕊𝑚 SGPAS as
(𝜀, �̄�, �̄�)→ 0 for the restricted flow and jump sets. Furthermore, by [82, Prop. A.1.], HDS
((𝐶 ∩B) ×ℝ𝑚 ×𝕊𝑚), (𝐷∩B) ×ℝ𝑚 ×𝕊𝑚, 𝐹0,𝐺0) is structurally robust.
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6
Application to distortion
reduction in photovoltaic

current

The battle is at its height – wear my armor and beat my war drums. Do not announce my
death.

Admiral Yi Sun-Shin

Everything is at stake. I hope they will succeed, and me with them, and then the people too.
Victory is close, God willing, B&H will be ours. I feel like I can accomplish what we envisioned.

May I have strength and luck. I’ve invested everything. The power went out. Good luck!

Brigadier General Izet Nanić

In this chapter, we propose a novel approach to minimize the effects of small duty cycle
perturbations, due to extremum seeking control (ESC), on the output current of a photovoltaic
(PV) cell array connected to the electrical grid. Specifically, we formulate a bilevel optimization
problem that incorporates power maximization and current quality objectives. Next, using
monotone operator theory, we show how to solve the problem via optimized ESC. Finally, we
test the effectiveness of the proposed approach on a numerical simulation example.

This chapter is partly based on  S. Krilašević and S. Grammatico. “Distortion reduction in photovoltaic output
current via optimized extremum seeking control”. In: 2023 21st European Control Conference (ECC) (June 2023).
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6.1 Introduction
Photo-voltaic (PV) cells are perhaps the most popular green energy source due to their
ease of installation and low cost. In fact, future houses will all likely have solar panels on
their roof so that each house will be capable of producing energy and selling it to the grid.
Thus, maximal exploitation of this technology is of the outermost importance.

The typical setup is with several PV cells connected in series or in parallel; see [99],
[100], [101], [102] for alternative configurations. In the simplest one-stage typology, a
series of PV cells is connected via a DC to AC inverter to the grid. The inverter is controlled
via a PWM signal to either regulate the output current [103], [104], the DC-link voltage
[105], [106], or used for maximum power point tracking (MPPT) [107]. The low complexity
of this typology makes it easy and cheap to implement. Still, on the other hand, it has a
significant drawback whenever some of the cells are not irradiated as the others, since in
that case, the power characteristic contains local maxima that MPPT algorithms cannot
deal with [100]. This is a consequence of the fact that in the simplest setups, the cells
share either the same voltage or the same current. Thus, different typologies have been
proposed that solve such an issue, the most popular being the two-stage typology shown in
Figure 6.1, where each module has its own DC to DC converter that decouples the module’s
voltage and current from the other modules.

Unsurprisingly, MPPT for PV cells has been studied extensively, and many algorithms
have been proposed, such as the perturb and observe (P&O) [108], [109], incremental
conductance [110], hill climbing [111] and other non-PV specific techniques like ripple
correlation control [112], [113], model predictive control and extremum seeking control,
[114]. In practice, it has been observed that ESC algorithms exhibit better performance
than more traditional methods [115]. Since the previously mentioned algorithms are mostly
zeroth-order algorithms, they necessarily introduce some noise or oscillations into the
system to estimate the gradient direction and, in turn, maximize the power output. In
general, the effect of these perturbations on the quality of the generated electrical power
remains an open research topic. Although the source of the distortions did not originate
from an ESC algorithm, authors in [116] propose an ESC algorithm to reduce harmonic
distortions in naval vessels. Distortion reduction has been addressed in a limited number
of cases for non-electronic systems. One example is in the field of oil extraction, where a
dither signal cost function is minimized during the sampling period to obtain minimizing
amplitudes for the next sampling period, as proposed in [11]. Building on this approach,
the authors of [24] utilize the extremum seeking algorithm to minimize distortions and,
unlike [11], demonstrate semi-global practical stability.

Based on our work in [84] and the previous Chapter, we propose a new approach to
solve the maximum power point tracking problem, which not only maximizes power output
but also reduces distortions in the output current caused by the control algorithm itself (§
6.2). This is achieved through a bilevel optimization process. Firstly, we determine the input
that maximizes power output. Then, we identify perturbation amplitudes that minimize
current distortions with respect to the optimal inputs. We then describe the models we
used for the PV cells and power electronics in our simulations (§ 6.3). Subsequently, we
use a modified version of the algorithm in [84] on a simulation example without requiring
any additional sensors or measurements and compare it to the standard implementation
without distortion reduction (§ 6.4). For this particular example, our results demonstrate
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the reduction in total harmonic distortion (THD), which can cause various undesired effects
such as heating in the PV system and load, mal-operation of electronic equipment, incorrect
readings on meters, and communication interference [117].

6.2 Maximum power point tracking and distortion
reduction in photovoltaic systems

6.2.1 Optimization setup
We consider 𝑁 PV cells, indexed by 𝑖 ∈  B {1,2,… ,𝑁 }, each with their I-V characteristic
represented by a function 𝑓𝑖, connected to the grid via power electronics as in Figure 6.1.
Each PV cell has a duty cycle signal 𝑑𝑖 ∈ [0,1] as input. Let there exist a vector of equilibrium
voltages on the outputs of the PV cells denoted as 𝒗 B col ((𝑣𝑖)𝑖∈) that corresponds to a
vector of fixed input duty cycles 𝒅 B col ((𝑑𝑖)𝑖∈), for any given 𝒅 ∈B [0,1]𝑁 . Thus, let
us define the steady-state mapping 𝜋 ∶ ℝ𝑁 → ℝ𝑁 such that 𝒗 = 𝜋(𝒅). In this paper, we
consider two main objectives:

1. Maximize the extracted power

𝑃(𝒅) =
𝑉grid𝐼ac

2
= 𝜋(𝒅)⊤𝑓 (𝜋(𝒅)), (6.1)

where 𝑓 = col((𝑓𝑖)𝑖∈);

2. Reduce the undesired harmonics in the output current, 𝐼ac introduced by the maxi-
mum power point tracking procedure.

For the first objective, we propose to maximize a utility function 𝐽d(𝒅). For the second
objective, we consider a function 𝐽a(𝒂,𝒅) to be minimized, given a solution for the first
objective, where 𝒂B col ((𝑎𝑖)𝑖∈) ∈B [𝑎,𝑎]𝑁 is the vector perturbation amplitudes. More
formally, we propose to solve:

⎧⎪⎪
⎨⎪⎪⎩

min
𝒂∈,𝒅∗

𝐽a(𝒂,𝒅∗)

s.t. 𝒅∗ ∈ argmax
𝑑∈

𝐽d(𝒅)
(6.2)

Figure 6.1: Two stage topology for PV arrays.
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Let us refer to (6.2) as the bilevel optimization problem of interest here and postulate the
convexity assumptions:

Standing Assumption 6.1. The functions −𝐽d(⋅) and 𝐽a(⋅,𝒅) in (6.2) are convex for every 𝒅
and differentiable in their arguments. □

Due to Standing Assumption 6.1, a vector (𝒂∗,𝒅∗) is a solution of (6.2) if and only if it
satisfies the KKT optimality conditions, i.e.

𝟎 ∈
⎡
⎢
⎢
⎣

−∇𝐽d(𝒅∗)+N(𝒅∗)
∇𝑑𝐽a(𝒂∗,𝒅∗)+N∗(𝒅∗)
∇𝑎𝐽a(𝒂∗,𝒅∗)+N(𝒂∗)

⎤
⎥
⎥
⎦
, (6.3)

where ∗ B argmax
𝑔∈

𝐽d(𝒈).

The problem of finding zeros in (6.3) is monotone inclusion problem, and many solution
algorithms exist. Now we move on to identifying utility and cost functions for our case
study.

6.2.2 Power maximization
To maximize the power output in (6.1), it is common to use a zeroth-order algorithm, e.g. an
MPPT algorithm, since the gradient of the total power is hard, if not impossible, to compute
due to the complex relations and the large number of, possibly unknown, parameters. We
formulate our power utility function as

𝐽d(𝒅) = 𝑃(𝒅)+
𝑁
∑
𝑖=1

log𝑝1 (𝑑𝑖(1− 𝑑𝑖)) . (6.4)

The cost function in (6.4) consists of the power output in (6.1) and a barrier function term
to satisfy the constraints on the duty cycles, 𝑑𝑖 ∈ [0,1], at all times.

6.2.3 Reduction of the undesired harmonics
While it is known how to achieve the first objective via an MPPT algorithm [118], it is
not obvious how the second one can be attained or what exactly is the effect of these
algorithms on the output current. To better understand this phenomenon, we analyze the
power flow of the system. If the energy losses on the electronics circuits are small, for the
average power, we have as in (6.4) 𝑃(𝒅) = 𝑃ac =

𝑉grid𝐼ac
2 . The vector of duty cycle inputs 𝒅

consists of a constant or slowly varying component 𝒅 and fast and small perturbations
used in the MPPT learning, 𝝁, i.e., 𝒅 = 𝒅+𝝁. It follows that

𝑃(𝒅) =
𝑉grid𝐼ac

2
≃ 𝑃(𝒅)+∇𝑃(𝒅)⊤𝝁. (6.5)

As 𝑉grid can be assumed to be constant, perturbations in the duty cycle cause perturbations
in the amplitude of the output current. Thus, we conclude from (6.5) that by minimizing



6.2 Maximum power point tracking and distortion reduction in photovoltaic systems

6

91

the amplitude of the first order term

∇𝑃(𝒅)⊤𝝁 =
𝑁
∑
𝑖=0

𝜕𝑃
𝜕𝑑𝑖

(𝒅)𝜇𝑖, (6.6)

we contribute to the reduction of the additional harmonics caused by the MPPT algorithm.
If we design the perturbations as sinusoidal, then there are many degrees of freedom and
approaches we can use to minimize the amplitude of (6.6). Similarly to [23, §5.2], we group
PV cells into pairs (𝑖, 𝑗), and for each pair, select perturbation signals that are in antiphase,
i.e.,

𝜇𝑖(𝑡) = 𝑎𝑖 sin(𝜔𝑡)
𝜇𝑗 (𝑡) = −𝑎𝑗 sin(𝜔𝑡) . (6.7)

Thus, we fix frequencies and phase shifts while we leave the amplitudes as decision variables
that are dynamically adapted to minimize the term in (6.6). We adopt the cost function

𝐽a(𝒂,𝒅) = 𝑙
2

𝑁
2

∑
𝑖=1

(
𝜕𝑃
𝜕𝑑2𝑖 (𝒅)𝑎2𝑖−

𝜕𝑃
𝜕𝑑2𝑖−1 (𝒅)𝑎2𝑖−1)

2
,

−
𝑁
∑
𝑖=1

log𝑝2 ((𝑎𝑖−𝑎)(𝑎−𝑎𝑖)) , (6.8)

where 𝑙 > 0, 𝑎 and 𝑎 are the minimum and maximum perturbation amplitude, respectively,
such that 0 < 𝑎 < 𝑎.

6.2.4 Bilevel optimization formulation
For solving (6.2), we use a bilevel formulation. Considering that (6.4) and (6.8) satisfy certain
properties, it is possible to simplify the expression in (6.3). Specifically, since (6.4) is strictly
concave, ∗ is a singleton, and we can leave out the middle row from (6.3) due to the fact
that the normal cone of a single point can have any direction, thus always satisfying the
inclusion. Furthermore, by noticing that (6.4) and (6.8) are not defined beyond our sets of
interest,  and , we can also leave out the normal cone operators. Therefore, we obtain:

𝟎 ∈ 𝐹(𝒅∗,𝒂∗)B [
−∇𝐽d(𝒅∗)

∇𝑎𝐽a(𝒂∗,𝒅∗)] . (6.9)

We note that the last expression is equivalent to the optimality conditions associated with
a two player Nash equilibrium game, where 𝐹(𝒅∗,𝒂∗) is equivalent to the pseudogradient
mapping of a game where player one has cost function −𝐽d and player two has a cost
function 𝐽a.
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Remark 6.2. A naïve approach for finding the solutions of (6.2) would be to define a weighted
sum

𝐽naïve(𝒅,𝒂) = −𝛼𝐽d(𝒅)+𝛽𝐽a(𝒅,𝒂), for some 𝛼, 𝛽 > 0, (6.10)

and compute a solution via a zeroth-order algorithm. However, (𝒅∗,𝒂∗) is not necessarily
contained in argmin 𝐽naïve(𝒅,𝒂).

6.2.5 Proposed solution algorithm
Since the zero-finding problem in (6.9) has the same structure of a Nash game, we propose
to use a modified version of the algorithm in [84] to find the maximum power point and
simultaneously reduce the oscillations. Similarly, as in the “Fixed demand problem" ex-
ample given in [84], we use the real values of the partial gradients in places where they
can be computed exactly and do not filter them through a first-order filter. We choose this
algorithm because ESC algorithms perform better than traditional MPPT methods [115],
and only this ESC algorithm can handle merely monotone operators without technical
restrictions.

To adopt the algorithm in [84], Standing Assumption 2 in [84] must hold as stated next.
Lemma 6.3. The pseudogradient 𝐹(𝒅,𝒂) in (6.9) is monotone. □

Proof. By definition of monotonicity it has to hold

[
−∇𝐽d(𝒅)+∇𝐽d(𝒈)

∇𝒂𝐽a(𝒂,𝒅)−∇𝒂𝐽a(𝒗,𝒈)]

⊤

[
𝒅−𝒈
𝒂−𝒗] ≥ 𝟎. (6.11)

For twice differentiable cost functions, instead of (6.11), we equivalently have that

[
−∇2𝐽d(𝒅) 𝟎
∇2𝒂𝒅𝐽a(𝒂,𝒅) ∇2𝒂𝒂𝐽a(𝒂,𝒅)]

≽ 0.

Due to the triangular structure of the matrix, it is sufficient to show only

∇2𝐽d(𝒅) ≼ 0 and (6.12)
∇2𝒂𝒂𝐽a(𝒂,𝒅) ≽ 0. (6.13)

Since 𝐽d(𝒅) is a concave function by Standing Assumption 6.1, Equation (6.12) holds.
Furthermore, we have that ∇2𝒂𝒂𝐽a(𝒅,𝒂)B diag(1,2,3,4,… ,𝑁−1,𝑁 ), where

𝑖,𝑗 =
⎡
⎢
⎢
⎢
⎣

(
𝜕𝑃
𝜕𝑑𝑖 (𝒅))

2
− 𝜕𝑃

𝜕𝑑𝑖 (𝒅)
𝜕𝑃
𝜕𝑑𝑗 (𝒅)

− 𝜕𝑃
𝜕𝑑𝑖 (𝒅)

𝜕𝑃
𝜕𝑑𝑗 (𝒅) (

𝜕𝑃
𝜕𝑑𝑗 (𝒅))

2

⎤
⎥
⎥
⎥
⎦

+
[

(𝑎𝑖−𝑎)−2+(𝑎𝑖−𝑎)−2
log(𝑝2) 0

0 (𝑎𝑗−𝑎)−2+(𝑎𝑗−𝑎)−2
log(𝑝2)

]
. (6.14)

First addend matrix in (6.14) is positive semidefinite while the second one is positive definite.
As ∇2𝒂𝒂𝐽a(𝒅,𝒂) is a block diagonal matrix composed of positive semidefinite matrices (6.14),
it follows that it also is positive semidefinite. ■
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Thus, our problem satisfies the necessary assumptions. In the next section, we present the
details of the considered PV cell model and the power electronics.

6.3 Photo-voltaic power extraction model
6.3.1 Photo-voltaic cell
Let us use the standard PV cell model proposed in [119], which consists of an ideal current
source connected in series with a resistor 𝑅𝑠 and in parallel with a diode and a resistor
𝑅𝑝 , as seen in Figure 6.2. The current of the source 𝑖𝑠 is a function of irradiance 𝑆 and
temperature 𝑇

𝑖𝑠 = (𝐼𝑠 + 𝑘𝑖 (𝑇 − 𝑇𝑟 ))(
𝑆

1000)
, (6.15)

where 𝐼𝑆 is the reference short-circuit current, 𝑇𝑟 is the reference temperature and 𝑘𝑖 is the
short-circuit temperature coefficient. The diode’s 𝐼 -𝑉 characteristic is given by

𝑖𝑑 = 𝑖0(exp(
𝑣𝑑
NV𝑡 )

−1) , (6.16)

𝑖0 = 𝐼0(
𝑇
𝑇𝑟 )

3
exp[

𝐸𝑔
NV𝑡 (

𝑇
𝑇𝑟

−1)] , 𝑉𝑡 =(
𝑘𝑇
𝑞 ) , (6.17)

where 𝐼0 is the diode reference reverse saturation current, 𝐸𝑔 is the semiconductor bandgap
voltage, 𝑁 is the emission coefficient, 𝑉𝑡 is the thermal cell voltage, 𝑘 = 1.38 × 10−23 𝐽

𝐾 is
the Boltzman constant, 𝑞 = 1.602×10−19𝐶 is the electron charge. When 𝑛𝑠 of PV cells are
connected in series, the terminal current is given by

𝑖 = 𝑖𝑠 − 𝑖0 [exp(

𝑣
𝑛𝑠 + 𝑖𝑅𝑠

NV𝑡 )−1]−
⎡
⎢
⎢
⎣

(
𝑣
𝑛𝑠 + 𝑖𝑅𝑠)
𝑅𝑝

⎤
⎥
⎥
⎦
. (6.18)

Equation (6.18) relates the current 𝑖 to the voltage 𝑣 and is seen in Figure 6.3 for different
temperature values 𝑇 and constant irradiance 𝑆. For constant 𝑇 ,𝑆 we write the relation as

𝑖 = 𝑓 (𝑣). (6.19)

It follows that the power to voltage curve is a concave function parametrized by 𝑆 and 𝑇 .
Due to the fact that the temperature and irradiance conditions are changing over time, and

Figure 6.2: PV cell model.
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Figure 6.3: Different PV cell I-V and P-V characteristics for different temperatures and fixed
irradiance.

Figure 6.4: A single-phase H-bridge inverter scheme.

the panel themselves deteriorate over time, it is not possible to determine a priori a voltage
for which the maximum power is achieved. This justifies using zeroth-order optimization
methods to find the voltage that maximizes the power. In the simplest case where we
directly connect a PV cell array to a load, we will not utilize the maximum available power
as the voltage will settle in an equilibrium dictated by the circuit structure, regardless of
the power maximum. Instead, connecting the array to the AC grid, the case we explore in
this chapter, introduces additional complexity as we have to condition the output current
to be sinusoidal and in phase with the grid voltage. Therefore, some additional electronics
are required to utilize the maximum available power.

6.3.2 Power electronics
To transfer the energy from a DC source to the AC grid, it is necessary to employ an AC
inverter circuit, like the one in Figure 6.4. By proper switching of the transistors, it is
possible to achieve an approximation of various output signals, like the desired sinusoid. If
connected to the grid, the DC voltage on the right of the circuit needs to be higher than
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Figure 6.5: Simplified electric circuit of a boost converter.

Figure 6.6: Schematic of the simulation example. For the DC/DC converter, we use a boost
converter as in Figure 6.5 without the capacitor. The DC/AC converter is an H-bridge as in
Figure 6.4.

the maximum amplitude of the AC voltage, or there needs to be an AC to AC transformer
to raise the voltage.

Various typologies exist for connecting PV modules to the grid, each with their pros
and cons. Here, we choose the two-stage typology, as in Figure 6.1, because it solves the
issue of local maxima by adding DC to DC converters between the PV cells and the DC to
AC inverter [100], [99]. The DC-link voltage and individual cell voltages are decoupled,
hence it is possible to use MPPT techniques on each of them. It is important to mention
that achieving the overall maximum power is not always possible even with this two-layer
typology [120]. Similarly, as with the inverter, the DC to DC converters are controlled
via PWM signals. The standard DC to DC boost converter used in PV applications can be
seen in Figure 6.5. For sufficiently high switching frequencies, the output voltage and the
current of the converter are given by

𝑣out =
𝑣in
1− 𝑑

𝑖out = 𝑖in(1− 𝑑).
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For PV cells in series and a fixed DC-link voltage 𝑉𝐷𝐶 , we have that [121]:

𝑁
∑
𝑗=1

𝑣𝑗
1− 𝑑𝑗

= 𝑉dc, (6.20)

(1− 𝑑𝑗 )𝑓𝑗 (𝑣𝑗 ) = (1− 𝑑𝑘)𝑓𝑘(𝑣𝑘), for all 𝑗 , 𝑘 ∈ . (6.21)

The mapping 𝜋 gives a vector 𝒗 such that equations (6.20), (6.21) are satisfied for a given 𝒅.

6.4 Numeric simulations
When applied to our problem, the algorithm in [84] reads as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛾𝜀 (−𝒛+𝒅)
𝛾𝜀 (−𝒅+𝒛+ 𝑘𝝃 +𝝀)

𝛾𝜀 (−𝒃+𝒂)
𝛾𝜀 (−𝒂+𝒃− 𝜁 (𝒂,𝝃))

𝛾 (−𝝃 +2𝐴inv𝑃(𝒅+𝐴𝔻𝝁)𝔻𝑚𝝁))
2𝜋𝝁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.22)

where 𝒛,𝒃 ∈ ℝ𝑁 are auxiliary states, 𝜇𝑖 ∈ 𝕊𝑚𝑖 are the oscillator states, 𝝃 ∈ ℝ𝑁 are the
filtering states, 𝜀, 𝛾,𝑘 ≥ 0,  B diag(([ 0 −𝜅𝑖

𝜅𝑖 0 ])𝑖∈), 𝝀 B col((
1−2𝑑𝑖

𝑑𝑖(1−𝑑𝑖) log𝑝𝑖 )𝑖∈), 𝜁 (𝒂,𝝃) B

col(𝑙(𝜉𝑖𝑎𝑖− 𝜉𝑗𝑎𝑗 )𝜉𝑖−( 1−2𝑎𝑖
𝑎𝑖(1−𝑎𝑖) log𝑝𝑖 )𝑖∈,𝑗=−1+2mod2(𝑖)), 𝜅𝑖 > 0 for all 𝑖 and 𝜅𝑖 ≠ 𝜅𝑗 for all 𝑖 apart

for the paired up ones, 𝔻 ∈ ℝ𝑁×2𝑁 is a matrix that selects every odd row from vector of
size 2𝑁 , 𝐴B diag(((−1)𝑖𝑎𝑖)𝑗∈) and 𝐴inv B diag((

1
𝑎𝑖 )𝑗∈).

Differently from [84], parts of ∇𝐽d that are known are not estimated, and the partial
gradient ∇𝐽a is not estimated and filtered. We see that it holds that 𝜁 (𝒂,∇𝑃(𝒅)) = ∇𝑎𝐽a(𝒂,𝒅).
Thus, after two time scale separations, it is possible to show that the reduced system will
have the form as in [84, Equ. 18]. The rest of the proof would be the same. Since this is not
the focus of this chapter, it is omitted.

In our simulation setup, we have two PV modules connected in series, each with a DC
to DC converter. The first PV module consists of three PV cells, while the second module
consists of two PV cells connected in a series. The PV array is connected to a DC to AC
inverter, which has its controller that keeps the DC-link voltage constant and controls the
output current such that it is sinusoidal and in phase with the AC grid voltage. A schematic
representation is given in Figure 6.6.

We conduct two sets of simulations in Simulink. In the first set, we only have one
cost function (6.4), and for the MPPT algorithm, we use the algorithm in (6.22) with
constant amplitudes 𝒂, i.e., without the amplitude adaptation. In the second set, we use
our proposed algorithm with two cost functions. The following parameters were used:
𝛾 = 0.1, 𝜖= 10, 𝜅1 = 𝜅2 = 1000, 𝑎= 0.01, 𝑎= 0.1, 𝑝1 = 1.0101, 𝑝2 = 2.2×104, 𝑘 = 10, 𝑉dc∗ = 400,
𝑓𝑐 = 20𝑘𝐻𝑧 is the frequency of the DC/DC converter duty cycle signals, 𝑓𝑖 = 3780𝐻𝑧 is
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Figure 6.7: Comparison of the current outputs at a specific time interval.

the frequency of the DC/AC inverter duty cycle signal, 𝑑1(0) = 𝑑2(0) = 𝑧1(0) = 𝑧2(0) = 0.5,
𝑎1(0) = 𝑎2(0) = 𝑏1(0) = 𝑏2(0) = 𝑐, where 𝑐 = 0.01 for the first type of simulations and 𝑐 = 0.015
for the other.

In Figure 6.7, we can see the output current 𝐼ac for both cases at a specific time interval.
We note that the current in the standard optimization case appears to have a lower frequency
harmonic component. The output current from our proposed approach also has lower total
harmonic distortion (THD), defined as

𝑇𝐻𝐷 =
√
𝐼 22 + 𝐼 23 + 𝐼 24 +⋯

𝐼1
, (6.23)

where 𝐼𝑗 is the 𝑗-th harmonic of the output current 𝐼ac, as shown in Figure 6.8. Furthermore,
our proposed approach has better active power utilization, highlighted in Figure 6.9. It
can be reasoned that due to the reduction of distortions in the output current, AC power
output has been increased.
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Figure 6.8: Total harmonic distortion averaged over two oscillation periods.

Figure 6.9: Active power transferred to the electric grid averaged over two oscillation
periods.
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6.5 Conclusion
The quality of the output current of a PV array can be improved via bilevel optimization
and optimized extremum seeking. For future research, the robustness of the approach
should be tested for different operating conditions, typologies, electrical component values,
and frequencies of the duty cycle signals.

6.6 Acknowledgments
We want to thank Prof. Aleksandra Lekić for fruitful discussions on power electronics for
PV systems.





101

III
Hybrid output feedback for

eqilibrium seeking





7

103

7
Averaging for discrete-time

eqilibrium seeking

In Bosnia, the church bell never disturbed the voice of the muezzin.

Husein kapetan Gradaščević

The greatest misfortune is that we grew fond of this dead end and do not want to abandon it.
But everything has a price, and so does our love.

Meša Selimović

In this chapter, we present an averaging technique applicable to the design of zeroth-order Nash
equilibrium seeking algorithms. First, we propose a multi-timescale discrete-time averaging
theorem that requires only that the equilibrium is semi-globally practically stabilized by the
averaged system while also allowing the averaged system to depend on “fast" states. Further-
more, sequential application of the theorem is possible, which enables its use for multi-layer
algorithm design. Second, we apply the aforementioned averaging theorem to prove semi-global
practical convergence of the zeroth-order information variant of the discrete-time projected
pseudogradient descent algorithm in the context of strongly monotone, constrained Nash
equilibrium problems. Third, we use the averaging theory to prove the semi-global practical
convergence of the asynchronous pseudogradient descent algorithm to solve strongly mono-
tone unconstrained Nash equilibrium problems. Lastly, we apply the proposed asynchronous
algorithm to the connectivity control problem in multi-agent systems.

This chapter is partly based on S. Krilašević and S. Grammatico. “A discrete-time averaging theorem and its
application to zeroth-order Nash equilibrium seeking”. In: arXiv:2302.04854 (Feb. 2023). arXiv:2302.04854 [cs,
eess, math]. doi: 10.48550/arXiv.2302.04854.
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7.1 Introduction
Given a complex dynamical system, averaging techniques are used to construct a simpler
system, called the averaged system, that is easier to analyze than the given one. Ideally, the
averaged system should satisfy certain properties so that it is possible to infer stability
properties of the original system based on the averaged one. These techniques are used
extensively in extremum seeking results, in continuous-time systems [12], [7], [122],
discrete-time systems [13], [8], and hybrid systems [17], [82].

Literature review: Discrete-time averaging techniques have received intense attention
over the years. In [123], the authors show that the original dynamics render the equilibrium
exponentially stable under the assumption of exponential stability of the equilibrium for
the averaged dynamics. Furthermore, they prove a similar result with similar assumptions
for a mixed time-scale system where the fast dynamics converge to zero. The requirement
for exponential stability is relaxed in [124] to just semi-global practical asymptotic stability,
for single time-scale systems. Furthermore, the authors include noise in their analysis and
provide input-to-state stability results. In [125], the authors provide upper bounds for the
time-scale separation parameter in the case of linear switched averaged systems by using
a time-delay approach and similar assumptions as in [123]. The previously mentioned
single time-scale results assume that the jump mapping is time-varying and that this
dependence gets “smoothed out" using the averaging technique. Thus, the main source
of “perturbations" in the original system is this time dependence. Likewise, it is possible
to assume that jump mapping is a function of some stochastic perturbations and that the
goal of the averaging is to “smooth out" the dependence on these perturbations. In [126],
the authors prove that under certain technical assumptions, the discrete-time stochastic
algorithm can be approximated by its continuous counterpart and that equilibrium of
the original dynamics is weakly exponentially stable if the equilibrium of the continuous
counterpart is exponentially stable.

The usual approach to the design of extremum seeking algorithms consists of choosing
a well-behaved full-information gradient-based algorithm in the case of optimization or
pseudogradient-based in the case of games, integrated with a (pseudo)gradient zeroth-
order information estimation scheme [12], [7], [82], [18]. The produced estimate then
replaces the real value of the (pseudo)gradient in the algorithm. A typical estimation
technique is that of injecting sinusoidal perturbations into the inputs of a cost function,
whose output is then correlated with the same perturbations. Via averaging techniques,
it can be proven that this estimation behaves as the (pseudo)gradient, on average. The
theory of averaging and singular perturbations for continuous and hybrid systems [78],
[79] enables the adaptation of a wide spectrum of algorithms. In [12], the authors adapt
the gradient descent algorithm for the zeroth-order information case, together with the
additional high-pass and low-pass filters to improve performance. An extremum seeking
variant of the pseudogradient descent algorithm used for solving unconstrained games is
presented in [7]. Recently, the authors in [18] propose a fixed-time zeroth-order algorithm
for solving games based on a similar full-information fixed-time algorithm. An accelerated
first-order algorithm has been adapted for optimization problems in [82]. Unfortunately,
the same variety of extremum seeking algorithms is not available in discrete time due to
the limitations of the discrete-time averaging theory. In [13], the authors prove exponential
convergence to the optimum of a quadratic function under the zeroth-order variant of the
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gradient descent algorithm with filtering. The authors in [127] prove ultimate boundness
in a similar setup where the plant is assumed to be general dynamic nonlinear and the
trajectories of the averaged system ultimately bounded. A similar approach is used in [8]
to prove convergence to the Nash equilibrium in a game without constraints. In [126], the
authors prove stability of its stochastic variant.

On the other hand, zeroth-order methods that use different approaches for gradient
estimation appear to be more successful, and a recent overview of optimization methods
can be found here [128]. The authors in [129] solve an N-coalition game without local
constraints for strongly monotone games by using Gaussian smoothing to estimate the
pseudogradient. In contrast, the authors in [130] propose an algorithm for solving coopera-
tive multi-agent cost minimization problems with local constraints, also with Gaussian
smoothing. Both papers assume synchronous sampling of the agents, albeit with possible
information delay. A similar approach to Gaussian smoothing is the residual feedback
estimator that uses a previous evaluation of the cost function for the second point of the
pseudogradient approximation, thus reducing the number of cost function samples that
need to be taken in one iteration. Using this approach, the authors in [131] adapt two extra-
gradient algorithms and prove convergence to the Nash equilibrium in pseudo-monotone
plus games for diminishing step sizes and query radiuses. Authors in [19] and [132] esti-
mate the pseudogradient using the idea of continuous action-set learning automaton and
prove convergence for strictly monotone games and merely monotone games, respectively,
via diminishing step sizes, and Tikhonov regularization.

Asynchronous zeroth-order optimization algorithms have been well studied, and an
overview can be found here [133]. For example, the authors in [134] use the residual
feedback estimator in an asynchronous gradient decent scheme to prove convergence. In
the current state of the art, zeroth-order discrete-time Nash equilibrium seeking algorithms
based on averaging use pseudogradient descent without projections, while algorithms
based on other methods are more general yet still assume synchronous sampling.

Contribution: Motivated by the above literature and open research problems, to the best
of our knowledge, we consider an averaging technique for mixed time-scale discrete-time
systems and merely semi-globally practically convergent averaged systems, with the appli-
cation to the problem of learning Nash equilibria via zeroth-order discrete-time algorithms,
in the cases of locally constrained agents, and asynchronous sampling. Specifically, our
main technical contributions are summarized next:

• We extend the current results on averaging theory by using a mixed time-scale
formulation of the original system and requiring that the averaged systems render the
equilibrium set SGPAS, unlike [124, Thm. 2], where a single time-scale, time-variant
system is used, and differently from [123, Thm. 2.2.4], [135, Thm. 8.2.28] where
exponential stability is needed and the fast subsystem state is assumed to converge to
the origin. Furthermore, we allow certain types of additive perturbation dynamics to
interfere with the nominal averaging dynamics, and that the averaged jump mapping
is a function of the fast states, thus enabling easier consecutive application of the
averaging theorem and the design of more complex algorithms.

• Enabled by our extended averaging theory, we propose two novel zeroth-order
algorithms for game equilibrium seeking in discrete time. The first algorithm solves
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the equilibrium in games with local constraints, differently from [8], [129] where
agents have no constraints. In contrast, the second one solves the problem in the
case where the agents are asynchronous, i.e., the agents do not sample at the same
time, nor do they coordinate in any way, differently from [8], [129] where the agents
sample synchronously.

7.2 Discrete-time averaging
We consider the following discrete-time system written in hybrid system notation [80, Eq.
1.1, 1.2]

{
𝑢+ = 𝑢+ 𝜀𝐺(𝑢,𝜇)
𝜇+ =𝑀(𝑢,𝜇) , (𝑢,𝜇) ∈ ×Ω. (7.1)

where 𝑢 and 𝜇 are the state variables, ⊂ ℝ𝑚, Ω ⊂ ℝ𝑙 , 𝐺 ∶ ×Ω→ ℝ𝑚 and𝑀 ∶ ×Ω→Ω
are the state jump functions for the states 𝑢 and 𝜇 respectively, and 𝜀 > 0 is a small parame-
ter. Furthermore, the mapping 𝐺 is parametrized by a small parameter 𝛾 > 0, i.e., 𝐺 = 𝐺𝛾 ,
but for notational convenience, this dependence is not written explicitly in the equations.

Next, we consider now the trajectories of the state 𝜇 oscillate indefinitely and, in turn,
create oscillations in the trajectory of the state 𝑢. An equivalent system that produces
trajectories �̄� without oscillations should be easier to analyze. We refer to such systems as
averaged systems [123, Eq. 2.2.12], [135, Eq. 8.33], and we focus on those of the following
form:

{
�̃�+ = �̃�+ 𝜀𝐺avg(�̃�, �̃�)
�̃�+ =𝑀(�̃�, �̃�) , (�̃�, �̃�) ∈ ×Ω, (7.2)

where 𝐺avg ∶ ×Ω→ ℝ𝑚 and is also parametrized by 𝛾 > 0. Unlike [123, Thm. 2.2.4], [135,
Thm. 8.2.28], we take into consideration the case where the function 𝐺avg depends on the
fast state �̃�, not only on �̃�.

To postulate the required relation between the function 𝐺 and the mapping 𝐺avg, we
should introduce an auxiliary system that describes the behavior of system (7.1) when the
state 𝑢 is kept constant, i.e., 𝜀 = 0, the so-called boundary layer system [79, Eq. 6]:

{
𝑢+bl = 𝑢bl
𝜇+bl =𝑀(𝑢bl, 𝜇bl)

, (𝑢bl, 𝜇bl) ∈ ×Ω. (7.3)

Thus, a function 𝐺avg is called an average of the mapping 𝐺 with the boundary layer
dynamics in (7.2) if the following condition holds true:

Assumption 7.1. For any compact set 𝐾 ⊂ 𝑈 and any solution (𝑢bl, 𝜇bl) of (7.2) where 𝑢bl is
contained in the compact set 𝐾 , it holds that:

‖‖‖‖‖

1
𝑁

𝑁−1
∑
𝑖=0

[𝐺 (𝑢bl(𝑖), 𝜇bl(𝑖))−𝐺avg (𝑢bl(𝑖), 𝜇bl(𝑖))]
‖‖‖‖‖
≤ 𝜎 (𝑁 ) , (7.4)

for some function 𝜎 ∶ ℝ+ → ℝ+ of class . □
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In plain words, in Assumption 7.1, we postulate that by using more samples over time,
our approximation of the mapping 𝐺 becomes better. Furthermore, let us assume local
Lipschitz continuity of the mappings as in [135, Assum. 8.2.13], [124, Eq. 1, Def. 1] and
compactness :
Assumption 7.2. The functions𝐺,𝑀 and𝐺avg in (7.1), (7.2) are continuous in their arguments
and locally bounded; the mapping 𝐺avg is locally Lipschitz continuous in its first argument.
The set Ω is compact. □

The averagingmethod can be used in unisonwith other algorithms via time-scale separation.
In such cases, often the averaged system does not exponentially or asymptotically stabilize
the equilibrium as in [123, Thm. 2.22], [135, Thm. 8.2.28], due to the introduction of
perturbations from other dynamics. Here, we assume the weaker property of semi-global
practical stability of the set  ×Ω under 𝑣-perturbed dynamics of the averaged system,
where the perturbations are given by the dynamical system

𝑣+ = 𝑈 (�̃�, �̃�, 𝑣) (7.5)

with 𝑣 ∈ ℝ𝑚, 𝑈 ∶ ×Ω×ℝ𝑚 → ℝ𝑚 being a function parametrized by a some 𝜀 > 0.
Assumption 7.3. Consider the system in (7.2) and perturbation dynamics in (7.5), respectively.
For any set 𝐾 ⊂ , and all trajectories (�̃�, �̃�) contained in 𝐾 ×Ω, there exists a function of
class , 𝑣, such that max𝑘∈dom(𝑣) ‖𝑣(𝑘)‖ ≤ 𝑣(𝜀). □

Assumption 7.4. The set ×Ω is SGPAS as 𝛾 → 0 for the dynamics in (7.2), perturbations
in (7.5), and the corresponding Lyapunov function 𝑉a satisfies:

𝛼a (‖𝑧‖) ≤ 𝑉a(𝑧,𝜇) ≤ 𝛼a (‖𝑧‖) (7.6a)
𝑉a(𝑧+, 𝜇+)−𝑉a(𝑧,𝜇) ≤ −�̃�𝜀 (𝜀)𝛼a (‖𝑧‖)
for ‖𝑧‖ ≥ 𝛼𝛾 (𝛾), (7.6b)

where 𝑧 = �̃�+ 𝑣, 𝛼a,𝛼a, �̃�𝜀 ,𝛼a,𝛼𝛾 are functions of class, and the function 𝜀
�̃�𝜀(𝜀) is bounded for

𝜀 ∈ (0, 𝜀). □

Under these assumptions, we claim that the original system is semi-global practically
asymptotically stable, as formalized next:
Theorem 7.5. Let Assumptions 7.1, 7.2, 7.3 and 7.4 hold. The set×Ω is SGPAS as (𝜀, 𝛾)→ 0
for the discrete dynamics in (7.1) with perturbations in (7.5). The corresponding Lyapunov
function 𝑉a satisfies:

𝛼a (‖𝜉 ‖) ≤ 𝑉a(𝜉 ,𝜇) ≤ 𝛼a (‖𝜉 ‖)
𝑉a(𝜉+, 𝜇+)−𝑉a(𝜉 ,𝜇) ≤ −�̂�𝜀 (𝜀)𝛼a (‖𝜉 ‖)
for ‖𝜉 ‖ ≥max{𝛼𝛾 (𝛾),𝛼𝜀(𝜀)},

where 𝜉 B 𝑢+ 𝑣+ 𝜂, 𝜂 is the perturbation state with dynamics

𝜂+ = (1− 𝜀)𝜂+ 𝜀[𝐺avg(𝑢,𝜇)−𝐺(𝑢,𝜇)],
max
𝑘∈ℕ

‖𝜂(𝑘)‖ ≤ 𝜂(𝜀), (7.7)

the 𝑣 dynamics are given by (7.5), and �̂�𝜀 , 𝛼𝜀 , 𝜂 are functions of class . □
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Proof. See Appendix 7.A. ■

7.3 Applications of the averaging theorem
In this section, we apply our averaging theorem, Theorem 7.5, to derive two novel con-
vergence results for NEPs. First, we propose a zeroth-order algorithm for solving strongly
monotone NEPs with local constraints in discrete time. Secondly, we propose an algorithm
for solving strongly monotone unconstrained NEPs where the agents sample their states
asynchronously.

7.3.1 Zeroth-order discrete time forward-backward algo-
rithm

Let us consider a multi-agent system with 𝑀 agents indexed by 𝑖 ∈  B {1,2,…𝑀}, each
with cost function

𝐽𝑖(𝑥𝑖,𝒙−𝑖), (7.8)

where 𝑥𝑖 ∈Ω𝑖 ⊂ℝ𝑚𝑖 is the decision variable, 𝐽𝑖 ∶ℝ𝑚𝑖 ×ℝ𝑚−𝑖 →ℝ,𝑚B∑𝑗∈𝑚𝑗 ,𝑚−𝑖B∑𝑗≠𝑖𝑚𝑗 ,
ΩBΩ𝑖×⋯×Ω𝑁 . Formally, let the goal of each agent be to reach a steady state thatminimizes
their cost function, i.e.,

∀𝑖 ∈  ∶ min
𝑥𝑖∈Ω𝑖

𝐽𝑖(𝑥𝑖,𝒙−𝑖). (7.9)

A popular solution to this problem is the so-called Nash equilibrium:

Definition 7.6 (Nash equilibrium). A set of decision variables 𝒙∗ B col((𝑥∗𝑖 )𝑖∈) is a Nash
equilibrium if, for all 𝑖 ∈ ,

𝑥∗𝑖 ∈ argmin
𝑣𝑖∈Ω𝑖

𝐽𝑖 (𝑣𝑖,𝒙∗
−𝑖) . ■

A fundamental mapping in NEPs is the pseudogradient mapping 𝐹 ∶ ℝ𝑚 → ℝ𝑚, which is
defined as:

𝐹(𝒙) ∶= col((∇𝑥𝑖𝐽𝑖 (𝑥𝑖,𝒙−𝑖))𝑖∈) . (7.10)

Let us also define 𝐶F B co{𝐹(Ω)}, the convex hull of the image of the pseudogradient. To
ensure the existence and uniqueness of the Nash equilibrium, we assume certain regularity
properties [136, Thm. 4.3]:

Assumption 7.7. For each 𝑖 ∈ , the function 𝐽𝑖 in (7.8) is continuously differentiable in 𝑥𝑖
and continuous in 𝒙−𝑖; the function 𝐽𝑖 (⋅,𝒙−𝑖) is strictly convex for every fixed 𝒙−𝑖. □

Furthermore, let us assume that no agent can compute their part of the the pseudogradient
𝐹 directly, but they can only measure their instantaneous cost ℎ𝑖 = 𝐽𝑖(𝑥𝑖,𝒙−𝑖), a common
assumption in extremum-seeking problems [23], [122], [17], [8]. The full-information
problem where 𝐹 is known can be solved in many ways, depending on the technical
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assumptions of the problem data. Here we choose to study a simple forward-backward
algorithm [42, Equ. 26.14]:

𝒙+ = (1−𝜆)𝒙+𝜆proj𝐶 (𝒙− 𝛾𝐹(𝒙)) , (7.11)

for which the Lyapunov function 𝑉 (𝒙) = ‖𝒙−𝒙∗‖2 satisfies the inequality

𝑉 (𝒙+)−𝑉 (𝒙) ≤ −𝜆(1− 𝑐)(2−𝜆𝑐)𝑉 (𝒙), (7.12)

where 𝑐B
√

1+𝛾2𝐿2
1+𝛾𝜇𝐹 and 𝒙∗ is the Nash equilibrium of the game in (7.8). We note that this

Lyapunov function satisfies Assumption 7.4.
A naïve approach to adapting the algorithm in (7.11) for zeroth-order implementation
would be to use a gradient estimation scheme as in [13], [8] and plug in the estimate
directly into (7.11). However, because of the projection, Assumption 7.1 would not be
satisfied. Thus, an additional time-scale separation is hereby proposed:

⎧⎪⎪
⎨⎪⎪⎩

𝒙+ = (1−𝛼𝛽)𝒙+𝛼𝛽proj𝐶 (𝒙− 𝛾𝝃)
𝝃+ = (1−𝛼)𝝃 +𝛼2𝐴−1𝐽 (𝒙+𝐴𝔻𝝁)𝔻𝝁
𝝁+ =𝝁

, (7.13)

where 𝝃 ∈ ℝ𝑚 are filter states, 𝝁 ∈ 𝕊𝑚 are the oscillator states, 𝛼,𝛽 > 0 are small time-

scale separation parameters, B blkdiag((𝑖)𝑖∈), 𝑖 B blkdiag
([

cos(𝜔𝑗
𝑖 ) −sin(𝜔𝑗

𝑖 )
sin(𝜔𝑗

𝑖 ) cos(𝜔𝑗
𝑖 ) ]𝑗≤𝑚𝑖)

,

𝜔𝑗
𝑖 > 0 for all 𝑖 and 𝑗 , 𝔻 ∈ ℝ𝑚×2𝑚 is a matrix that selects every odd row from the vector

of size 2𝑚, 𝑎𝑖 > 0 are small perturbation amplitude parameters, 𝐴 B diag((𝑎𝑖)𝑖≤𝑚) and
𝐽 (𝒙) = blkdiag((𝐽𝑖(𝑥𝑖,𝒙−𝑖)𝐼𝑚𝑖)𝑖∈). We claim that the dynamics in (7.13) render the set
{𝒙∗} ×𝐶F × 𝕊𝑚 practically stable. To the best of our knowledge, it is impossible to prove
convergence of the algorithm in (7.13), using the current averaging theory for discrete-time
systems, since [135, Thm. 8.2.28], [123, Thm. 2.22] require exponential stability of the
origin via the averaged system, and [124, Thm. 2] does not incorporate boundary-layer
dynamics. We claim that under the strong monotonicity assumption of the pseudogradient,
and a proper choice of the perturbation frequencies, the algorithm in (7.13) converges to a
Nash equilibrium.

Assumption 7.8. The pseudogradient mapping 𝐹 is 𝜇f-strongly monotone and 𝐿-Lipschitz
continuous, i.e. ⟨𝒙−𝒚 | 𝐹(𝒙)− 𝐹(𝒚)⟩ ≥ 𝜇f ‖𝒙−𝒚‖, ‖𝐹(𝒙)− 𝐹(𝒚)‖ ≤ 𝐿 ‖𝒙−𝒚‖, for all (𝒙,𝒚) ∈
ℝ2𝑚. □

Assumption 7.9. The sets (Ω𝑖)𝑖∈ are convex, closed and bounded. □

Assumption 7.10. The rotational frequencies of each agent 𝑖, 𝝎𝑖 = col((𝜔
𝑗
𝑖 )𝑗≤𝑚𝑖), are chosen

so that 𝜔𝑗
𝑖 ±𝜔𝑣

𝑢 ≠ 2𝜋𝑧′, 𝑧′ ∈ℤ, for every 𝑢 ∈ , for every 𝑗 ∈ {1,… ,𝑚𝑖}, for every 𝑣 ∈ {1,… ,𝑚𝑢},
apart for the case when 𝑖 = 𝑢 and 𝑗 = 𝑣. □

Theorem 7.11. Let Assumptions 7.7, 7.8, 7.9 and 7.10 hold. The set {𝒙∗} ×𝐶F ×𝕊𝑚 is SGPAS
as (𝛼,𝑎,𝛽)→ 0 for the dynamics in (7.13). □

Proof. See Appendix 7.B. ■
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7.3.2 Asynchronous zeroth-order discrete time forward al-
gorithm

First-order information feedback
We now consider the same NEP as in Section 7.3.1 with Ω𝑖 B ℝ𝑚𝑖 , but where the agent are
asynchronous, i.e., each agent samples their states independently of others without a global
clock for synchronization. For ease of exposition, we assume that the initial conditions are
chosen so that simultaneous sampling never occurs. In the full-information case, such an
algorithm can be represented in the following form:

col(�̇�𝑖, �̇�𝑖, �̇�𝑖, �̇�) = col(𝟎,
1
𝑇𝑖 ,0,1)

if col (𝑥𝑖, 𝜏𝑖, 𝜅𝑖, 𝑡) ∈ ℝ𝑚𝑖 × [0,1] ×ℕ×ℝ (7.14a)
⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥+𝑖 = 𝑥𝑖− 𝛼∇𝑥𝑖𝐽𝑖(𝑥𝑖,𝒙−𝑖)
𝜏+𝑖 = 0
𝜅+𝑖 = 𝜅𝑖+1
𝑡+ = 𝑡

if col (𝑥𝑖, 𝜏𝑖, 𝜅𝑖, 𝑡) ∈ ℝ𝑚𝑖 × {1} ×ℕ×ℝ, (7.14b)

which in collective form reads as

col(�̇�, �̇�, �̇�, �̇�, �̇�) = col(𝟎,𝑻 −1,𝟎,0,1)
if col (𝒙,𝝉,𝜿, 𝑘, 𝑡) ∈ ℝ𝑚 × ×ℕ𝑁+1 ×ℝ (7.15a)
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝒙+ = 𝒙−𝛼𝑆𝑥(𝝉)𝐹(𝒙)
𝝉+ = (𝐼 − 𝑆𝜏(𝝉))𝝉
𝜿+ = 𝜿+ 𝑆𝜏(𝝉)
𝑘+ = 𝑘+1
𝑡+ = 𝑡

if col (𝒙,𝝉,𝜿, 𝑘, 𝑡) ∈ ℝ𝑚 ×R ×ℕ𝑁+1 ×ℝ, (7.15b)

where 𝜏𝑖 are timer states, 𝑡 is the “experienced" global time, 𝑻 −1B col((
1
𝑇𝑖 )𝑖∈) is the vector

of inverse sampling times,  ⊂ [0,1]𝑁 is a closed invariant set in which all of the timers
evolve and it excludes the initial conditions and their neighborhood for which we have
concurrent sampling as seen in Figure 7.1, R B (∪𝑖∈[0,1]𝑖−1 × {1} × [0,1]𝑁−𝑖)∩ is the set
of timer intervals where at least one agent has triggered its sampling, 𝜅𝑖 are private event
counters, 𝑘 is the global event counter, 𝑆𝑥 ∶  → ℝ𝑚×𝑚 and 𝑆𝜏 ∶  → ℝ𝑁×𝑁 are continuous
functions that output diagonal matrices with ones on the positions that correspond to
states and timers of agents with 𝜏𝑖 = 1, respectively, while other elements are equal to zero,
when evaluating at 𝝉 ∈ R.

Remark 7.12. Consider a two-player system. To determine the set  , let us introduce timer
states 𝑡1 and 𝑡2, each corresponding to an agent. These states neither reset during jumps nor
differ in initialization from the timers. Moreover, they maintain the same derivative as their
respective timers. Now, for a jump to occur concurrently at time 𝑡, the following condition
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(a) 𝑇1 = 1, 𝑇2 = 2 (b) 𝑇1 = 3, 𝑇2 = 4

Figure 7.1: The figure represents the set  for a two-player game in two different cases. The
points in red are initial conditions of the timers 𝜏𝑖(0,0) = 𝜏0𝑖 for which we have concurrent
sampling, while the light red is the small neighborhood around that set.

must be met:

𝑡1 = 𝜏01 +
𝑡
𝑇1

= 𝑁 , 𝑡2 = 𝜏02 +
𝑡
𝑇2

= 𝑁 , 𝑁 ,𝑀 ∈ℕ. (7.16)

Thus, initial conditions of timers that have concurrent jumps are given by

𝜏02 = 𝜏01
𝑇1
𝑇2 +

𝑀𝑇2−𝑁𝑇1
𝑇2

. (7.17)

Considering that the second addend in the previous formula must be between zero and one for
𝑇1 > 𝑇2, there is only a finite number of fractions that can appear in the expressions. □

We note that the functions 𝑆𝑥 , 𝑆𝜏 are introduced only to write down the algorithm in the
collective form, while the agents themselves do not require them for their dynamics and just
follow (7.14). Furthermore, the counter states 𝜅𝑖, 𝑘 and global time 𝑡 are not necessary for the
algorithm convergence, yet they help with understanding the setup of the algorithm. We
choose to represent the algorithm in the hybrid dynamical system framework to replicate
the behavior of sampled systems with different sampling periods and to see its effects
on the functions 𝑆𝑥 , 𝑆𝜏 . Later, we represent and model the system as a fully discrete-time
system in order to study convergence.
First, we show that the solution 𝝉(𝑡, 𝑗) is periodic and that implies that 𝑆𝑥(𝝉(𝑡, 𝑗)) and
𝑆𝜏(𝝉(𝑡, 𝑗)) are also periodic. We make the following assumption:

Assumption 7.13. There exist natural numbers (𝑝𝑖)𝑖∈ , such that the proportion 𝑇1 ∶ 𝑇2 ∶
⋯ ∶ 𝑇𝑁 = 𝑝1 ∶ 𝑝2⋯ ∶ 𝑝𝑁 holds, where (𝑇𝑖)𝑖∈ are the sampling times. □

Lemma 7.14. Let Assumption 7.13 hold. Denote 𝑟𝑖 = 𝑝
𝑝𝑖 and 𝑟 =∑𝑖∈ 𝑟𝑖, where 𝑝 is the least

common multiple of (𝑝𝑖)𝑖∈ . For any trajectory 𝑆𝑥(𝝉(𝑡, 𝑗)) and 𝑆𝜏(𝝉(𝑡, 𝑗)), where 𝝉(𝑡, 𝑗) is a
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solution of the system in (7.15), there exists 𝑇 > 0 such that 𝑆𝑥(𝝉(𝑡, 𝑗)) = 𝑆𝑥(𝝉(𝑡+ 𝑇 , 𝑗 + 𝑟)) and
𝑆𝜏(𝝉(𝑡, 𝑗)) = 𝑆𝜏(𝝉(𝑡 + 𝑇 , 𝑗 + 𝑟)) for all (𝑡, 𝑗) ∈ dom(𝝉) such that a jump occurred at time 𝑡. □

Proof. See Appendix 7.F. ■

Because the values of 𝑆𝑥 and 𝑆𝜏 are used only during jumps, we define

𝑆𝑥(𝑘;𝝉(0,0)) = 𝑆𝑥( max
(𝑡∈dom(𝝉(⋅,𝑘))

𝑡, 𝑘) (7.18)

𝑆𝜏(𝑘;𝝉(0,0)) = 𝑆𝜏( max
(𝑡∈dom(𝝉(⋅,𝑘))

𝑡, 𝑘), (7.19)

where functions 𝑆𝑥 ∶ℕ→ ℝ𝑚×𝑚 and 𝑆𝜏 ∶ℕ→ ℝ𝑁×𝑁 are parametrized by the vector of
initial conditions of the timers since different initial conditions can change the order in
which the agents are sampling their actions (see Figure 7.2). Due to Lemma, 7.14, for every
initial condition 𝝉(0,0) = 𝝉0, it follows that 𝑆𝑥(𝑘,𝝉0) = 𝑆𝑥(𝑘+ 𝑟 ,𝝉0) for all 𝑘 ∈ℕ.
Now we consider the following discrete-time systems:

𝑥𝑖(𝑘+1) = 𝑥𝑖(𝑘)− 𝛼𝑆𝑖𝑥(𝑘;𝝉0)∇𝑥𝑖𝐽𝑖(𝑥𝑖(𝑘),𝒙−𝑖(𝑘)) (7.20)

which in collective form read as

𝒙(𝑘+1) = 𝒙(𝑘)−𝛼𝑆𝑥 (𝑘;𝝉0)𝐹(𝒙(𝑘)), (7.21)

where the function 𝑆𝑖 ∶ℕ→ ℝ𝑚𝑖×𝑚𝑖 returns the rows of 𝑆𝑖𝑥(𝑘;𝝉0) corresponding to agent 𝑖.
We can show that for every solution of (7.21) there exists a corresponding solution of (7.15)
and vice versa. We claim that under the strong monotonicity assumption, an additional
regularity assumption due to the unboundedness of the decision set, and proper choice
of the parameter 𝛼, the dynamics in (7.21) converge to the solution of the game, with the
same minimal convergence rate, regardless of the initial conditions of the timers.

Assumption 7.15. For each 𝑖 ∈ , the function 𝐽𝑖(⋅,𝒙−𝑖) in (7.8) is radially unbounded for
every fixed 𝒙−𝑖. □

Theorem 7.16. Let Assumptions 7.7, 7.8, 7.13 and 7.15 hold. Then, for all vectors of initial
conditions 𝝉0, there exists 𝛼∗, such that for any 𝛼 ∈ (0,𝛼∗), the NE solution 𝒙∗ is UGES for the
dynamics in (7.21). Furthermore, the corresponding Lyapunov function satisfies Assumption
7.4. □

Proof. See Appendix 7.E. ■

Moreover, for the hybrid system representation in (7.15), since the trajectories of (𝝉,𝜿, 𝑘, 𝑡)
are invariant to the set  ×ℕ𝑁+1 ×ℝ, and by the structure of the flow and jump sets in
(7.15) that assures complete solutions with unbounded time and jump domains, it follows
that the dynamics in (7.15) render the set {𝒙∗} × ×ℕ𝑁+1 ×ℝ UGES, as formalized next.

Corollary 7.17. Let the Assumptions 7.7, 7.8, 7.13 and 7.15 hold. Then, the set {𝒙∗} × ×
ℕ𝑁+1 ×ℝ is UGES for the dynamics in (7.15). Furthermore, the corresponding Lyapunov
function satisfies Assumption 7.4. □
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(a) Time evolution of timer states.

(b) Diagonal elements of 𝑆𝜏 (𝑘;𝝉0) as a function of sample 𝑘.

Figure 7.2: Timer behaviour for the case of a 3-player game with sampling times (𝑇1, 𝑇2, 𝑇3) =
(2,3,4) and two random initializations. The sampling order is determined by the timer
initialization and repeats after a certain number of samples.
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Zeroth-order information feedback
Now, consider that each agent only has access to the measurements of the cost function.
They can modify the algorithm in (7.14) by implementing a pseudogradient estimation
scheme, similar to the one in Equation (7.13):

col(�̇�𝑖, �̇�𝑖, �̇�𝑖, �̇�𝑖, �̇�𝑖, �̇�) = col(𝟎,𝟎,𝟎,
1
𝑇𝑖 ,0,1) (7.22a)

if col (𝑥𝑖, 𝜉𝑖, 𝜇𝑖, 𝜏𝑖, 𝜅𝑖, 𝑡) ∈ ℝ2𝑚𝑖 ×𝕊𝑚 × [0,1] ×ℕ×ℝ,
⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

𝑥+𝑖 = 𝑥𝑖− 𝛼𝛽𝜉𝑖
𝜉+𝑖 = (1−𝛼)𝜉 +𝛼 2

𝑎𝑖 𝐽𝑖(𝑥 +𝐴𝔻𝜇)𝔻𝑖𝜇𝑖
𝜇+𝑖 =𝑖𝜇𝑖
𝜏+𝑖 = 0
𝜅+𝑖 = 𝜅𝑖+1
𝑡+ = 𝑡

(7.22b)

if col (𝑥𝑖, 𝜉𝑖, 𝜇𝑖, 𝜏𝑖, 𝜅𝑖, 𝑡) ∈ ℝ2𝑚𝑖 ×𝕊𝑚 × {1} ×ℕ×ℝ,

which in the collective form reads as:

col(�̇�, �̇� , �̇�, �̇�, �̇�, �̇�, �̇�) = col(𝟎,𝟎,𝟎,𝑻 −1,𝟎,0,1) (7.23a)
if col(𝒙,𝝃 ,𝝁,𝝉,𝜿, 𝑘, 𝑡) ∈ ℝ2𝑚 ×𝕊𝑚 × ×ℕ𝑁+1 ×ℝ,
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝒙+ = 𝒙−𝛼𝛽𝑆𝑥(𝝉)𝝃
𝝃+ = 𝝃 +𝛼𝑆𝑥(𝝉)(2𝐴−1𝐽 (𝒙+𝐴𝔻𝝁)𝔻𝝁− 𝝃)
𝝁+ = (𝐼 − 𝑆𝜇(𝝉))𝝁+ 𝑆𝜇(𝝉))𝝁
𝝉+ = (𝐼 − 𝑆𝜏(𝝉))𝝉
𝜿+ = 𝜿+ 𝑆𝜏(𝝉)
𝑘+ = 𝑘+1
𝑡+ = 𝑡

(7.23b)

if col(𝒙,𝝃 ,𝝁,𝝉,𝜿, 𝑘, 𝑡) ∈ ℝ2𝑚 ×𝕊𝑚 ×R ×ℕ𝑁+1 ×ℝ,

where 𝑆𝜇 ∶  → ℝ2𝑚×2𝑚 is a continuous function that outputs a diagonal matrix with ones
on the positions that correspond to oscillator states of agents with 𝜏𝑖 = 1, while other
elements are equal to zero when evaluating at 𝝉 ∈ R, and other notation is defined as in
(7.13) and (7.15).
Under the assumption of properly chosen perturbation frequencies, we claim semi-global
practical stability of the set of solutions.

Assumption 7.18. The rotational frequencies of every agent 𝑖,𝝎𝑖 = col((𝜔
𝑗
𝑖 )𝑗≤𝑚𝑖), are chosen

so that 𝜔𝑗
𝑖 𝑟𝑖±𝜔𝑣

𝑢𝑟𝑗 ≠ 2𝜋𝑧′, 𝑧′ ∈ ℤ, 𝑟𝑖 = 𝑝
𝑝𝑖 , 𝑟𝑗 =

𝑝
𝑝𝑗 , for every 𝑢 ∈ , for every 𝑗 ∈ {1,… ,𝑚𝑖}, for

every 𝑣 ∈ {1,… ,𝑚𝑢}, apart for the case when 𝑖 = 𝑢 and 𝑗 = 𝑣. □

Theorem 7.19. Let the Assumptions 7.7, 7.8, 7.13, 7.18 hold. The set {𝑥∗} ×ℝ𝑚 × 𝕊𝑚 ×  ×
ℕ𝑁+1 ×ℝ is SGPAS as (𝛼,𝑎,𝛽)→ 0 for the dynamics in (7.23). □

Proof. The result is proven by following the same steps as the proof of Theorem 7.11 and
by using the system in (7.15) with additional filtering state 𝝃 like in (7.60) as the second
averaged system. ■
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7.4 Illustrative example
The connectivity control problem has been considered in [8] as a Nash equilibrium problem.
In many practical scenarios, multi-agent systems, besides their primary objective, are
designed to uphold certain connectivity as their secondary objective. In what follows,
we consider a similar problem in which each agent is tasked with finding a source of an
unknown signal while maintaining certain connectivity. Unlike [8], we only consider the
case without vehicle dynamics.Consider a system consisting of multiple agents indexed
by 𝑖 ∈  B {1,…𝑁 }. Each agent is tasked with locating a source of a unique unknown
signal. The strength of all signals abides by the inverse-square law, i.e., proportional to 1/𝑟2.
Therefore, the inverse of the signal strength can be used as a cost function. Additionally,
the agents must not drift apart from each other too much, as they should provide quick
assistance to each other in case of critical failure. This is enforced by incorporating the
signal strength of fellow agents in the cost functions. Thus, we design the cost

∀𝑖 ∈  ∶ 𝐽𝑖(𝒙) = ‖𝑥𝑖−𝑥𝑠𝑖 ‖
2+ 𝑐 ∑

𝑗∈−𝑖
‖𝑥𝑖−𝑥𝑗 ‖2, (7.24)

where −𝑖 B  ⧵ {𝑖}, 𝑐, 𝑏 > 0 and 𝑥𝑠𝑖 represents the position of the source assigned to agent 𝑖.
The goal of each agent is to minimize its cost function, and the solution to this problem is a
Nash equilibrium. Furthermore, agents are mutually independent, so their sampling times
are not synchronized. To solve this problem, we use the asynchronous pseudogradient
descent algorithm in (7.23).
For our numerical simulations, we choose the parameters: 𝑥𝑠1 = (−4,−8), 𝑥𝑠2 = (−12,−3), 𝑥𝑠3 =
(1,7), 𝑥𝑠4 = (16,8), 𝑐 = 0.04, 𝛾 = 0.1, 𝛼 = 0.1, 𝛽 = 0.003, 𝑎𝑖 = 0 for all 𝑖, 𝑇 = (0.01,0.015,0.02,0.01),
𝝉(0,0) = (0,0.002,0.004,0.006), the perturbation frequencies 𝜔𝑗

𝑖 were chosen as different
natural numbers with added random numbers of maximal amplitude of 0.5.
The numerical results are illustrated on Figures 7.3 and 7.4. We note that the trajectories con-
verge to a small neighborhood of the Nash equilibrium. This can be partially attributed to
the robustness properties of the pseudogradient descent with strongly monotone operators.



7

116 7 Averaging for discrete-time eqilibrium seeking

Figure 7.3: State trajectories in the 𝑥1−𝑥2 plane. Circle symbols represent locations of the
sources, while the × symbols represent locations of the NE. Perturbation signals are added
to the states.

Figure 7.4: Time response of the states. The dashed lines correspond to the states of the
Nash equilibrium.
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7.5 Conclusion
Averaging theory can be adapted for use in discrete systems with multiple timescales.
Furthermore, a strongly monotone Nash equilibrium problem with constrained action sets
or asynchronous action sampling can be solved via zeroth-order discrete-time algorithms
that leverage novel averaging theory results.

Appendix
7.A Proof of Theorem 7.5
Sketch of the proof: First, we show that under a change of coordinates, the system in
(7.1) can be represented as an inflated version of the averaged system in (7.2). Then we
show that the inflation can be arbitrarily small for small enough 𝜀. Finally, we use the sta-
bility properties of the averaged system and the bounded inflation property to prove SGPAS.

By introducing an additional state, we construct the augmented system:

⎧⎪⎪
⎨⎪⎪⎩

𝑢+ = 𝑢+ 𝜀𝐺(𝑢,𝜇)
𝜇+ =𝑀(𝑢,𝜇)
𝜂+ = (1− 𝜀)𝜂+ 𝜀 [𝐺avg(𝑢,𝜇)−𝐺(𝑢,𝜇)]

(7.25)

(𝑢,𝜇,𝜂) ∈ ×Ω×ℝ𝑚.

With a change of coordinates 𝑢 = �̃�− 𝜂, 𝜇 = �̃� the system is transformed to:

⎧⎪⎪
⎨⎪⎪⎩

�̃�+ = �̃�+ 𝜀𝐺avg(�̃�− 𝜂, �̃�)− 𝜀𝜂
�̃�+ =𝑀(�̃�− 𝜂, �̃�)
𝜂+ = (1− 𝜀)𝜂+ 𝜀 [𝐺avg(�̃�− 𝜂, �̃�)−𝐺(�̃�− 𝜂, �̃�)]

(7.26)

(�̃�− 𝜂, �̃�, 𝜂) ∈ ×Ω×ℝ𝑚

We note that the �̃� dynamics in (7.26) are perturbed dynamics of the averaged system
in (7.2) and ‖𝜂‖ is the upper bound on the perturbation amplitude. To prove our desired
stability, we characterize the bound of this amplitude:

Lemma 7.20. For every 𝑎 > 0 and compact set 𝐾 ∈ , there exists 𝜀∗ such that ‖𝜂(𝑡, 𝑗)‖ < 𝑎
holds for any 𝜀 ∈ (0, 𝜀∗] and any trajectory of system in (7.26) where �̃� is contained in the set
𝐾 . □

Proof. For the purposes of the proof, we construct the concatenated trajectory (𝑢𝐿, 𝜇𝐿),
which is created by taking solutions of length 𝐿 of the system in (7.2) and concatenating
them together.
We derive a similar bound to (7.4) for the concatenated trajectory type using Assumption
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7.1:

‖‖‖‖‖

𝑁
∑
𝑖=1

[𝐺(𝑢𝐿𝑖 , 𝜇
𝐿
𝑖 )−𝐺avg (𝑢𝐿𝑖 , 𝜇

𝐿
𝑖 )]

‖‖‖‖‖
≤

𝑛
∑
𝑗=1

‖‖‖‖‖‖

1+𝑗𝐿

∑
𝑖=1+𝐿(𝑗−1)

[𝐺(𝑢𝐿𝑖 , 𝜇
𝐿
𝑖 )−𝐺avg (𝑢𝐿𝑖 , 𝜇

𝐿
𝑖 )]

‖‖‖‖‖‖

+
‖‖‖‖‖

𝑁
∑

𝑖=𝑛𝐿+1
[𝐺(𝑢𝐿𝑖 , 𝜇

𝐿
𝑖 )−𝐺avg (𝑢𝐿𝑖 , 𝜇

𝐿
𝑖 )]

‖‖‖‖‖
≤𝑛𝐿𝜎(𝐿)+ (𝑁 −𝑛𝐿)𝜎(𝑁 −𝑛𝐿)
≤𝑁𝜎(𝐿)+𝐿𝜎(0) (7.27)

Note that the bounds in (7.4) and (7.27) use (concatenated) boundary layer trajectories
instead of the 𝑢 trajectory in (7.1). In order to use the bound in (7.27), we rewrite the 𝜂
dynamics in (7.25) as

𝜂+ = (1− 𝜀)𝜂+ 𝑣1+ 𝑣2, (7.28)

where

𝑣1 = 𝜀 [𝐺(𝑢𝐿, 𝜇𝐿)−𝐺avg (𝑢𝐿)] , (7.29)
𝑣2 = 𝜀 [𝐺 (𝑢,𝜇)−𝐺avg (𝑢)−𝐺(𝑢𝐿, 𝜇𝐿)+𝐺avg (𝑢𝐿)] . (7.30)

We use the superposition principle to determine the maximum value of 𝜂 by analyzing the
inputs 𝑣1 and 𝑣2 separately. Let us start with 𝑣1. We append the subscripts to the notation
of states to denote the time index. The discrete dynamics are given by:

𝜂𝑘+1 = (1− 𝜀)𝜂𝑘 + 𝜀 [𝐺(𝑢𝐿𝑘 , 𝜇
𝐿
𝑘)−𝐺avg (𝑢𝐿𝑘)] . (7.31)

We define two additional variables:

𝜙𝑘+1 = 𝜀
𝑘
∑
𝑖=1

[𝐺(𝑢𝐿𝑘 , 𝜇
𝐿
𝑘)−𝐺avg (𝑢𝐿𝑘 , 𝜇

𝐿
𝑘)] (7.32)

𝜃𝑘 = 𝜂𝑘 −𝜙𝑘 (7.33)
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From (7.25) and (7.33) it holds

𝜃𝑘+1 = 𝜂𝑘+1−𝜙𝑘+1 = (1− 𝜀)𝜂𝑘 −𝜙𝑘
= (1− 𝜀)(𝜂𝑘 −𝜙𝑘)− (𝜀−1)𝜙𝑘 −𝜙𝑘
= (1− 𝜀)𝜃𝑘 − 𝜀𝜙𝑘
= (1− 𝜀) [(1− 𝜀)𝜃𝑘−1− 𝜀𝜙𝑘−1]− 𝜀𝜙𝑘
= (1− 𝜀)2𝜃𝑘−1− 𝜀 [(1− 𝜀)𝜙𝑘−1+𝜙𝑘]
= …

= −𝜀
[

𝑘
∑
𝑖=0

(1− 𝜀)𝑖𝜙𝑘−𝑖]

= 𝜀
[

𝑘
∑
𝑖=0

(1− 𝜀)𝑖 (𝜙𝑘 −𝜙𝑘−𝑖)]
− 𝜀

[

𝑘
∑
𝑖=0

(1− 𝜀)𝑖𝜙𝑘]

= 𝜀
[

𝑘
∑
𝑖=0

(1− 𝜀)𝑖 (𝜙𝑘 −𝜙𝑘−𝑖)]
−𝜙𝑘 [1− (1− 𝜀)𝑘+1] (7.34)

From (7.31), (7.32) and (7.34) we have

𝜂𝑘+1 = 𝜃𝑘+1+𝜙𝑘+1

= 𝜀
[

𝑘
∑
𝑖=0

(1− 𝜀)𝑖 (𝜙𝑘 −𝜙𝑘−𝑖)]
+(𝜙𝑘+1−𝜙𝑘)+ (1− 𝜀)𝑘+1𝜙𝑘 . (7.35)

We use (7.27) in (7.35) to derive:

‖𝜂𝑘+1‖ ≤ 𝜀2
[

𝑘
∑
𝑖=0

(1− 𝜀)𝑖 (𝑖𝜎(𝐿)+𝐿𝜎(0))
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑆1

+𝜀𝜎(𝐿)+ 𝜀𝐿𝜎(0)+ 𝜀(1− 𝜀)𝑘+1 (𝑘𝜎(𝐿)+𝐿𝜎(0))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑆2

(7.36)

To compute 𝑆1, we start by finding the sum
∞
∑
𝑖=1

𝑖(1− 𝜀)𝑖 =
∞
∑
𝑘=1

∞
∑
𝑖=𝑘

(1− 𝜀)𝑖 =
∞
∑
𝑘=1

(1− 𝜀)𝑘

𝜀
=
1− 𝜀
𝜀2

. (7.37)

Thus, we bound 𝑆1 as follows:

𝑆1 ≤ (1− 𝜀)𝜎(𝐿)+ 𝜀𝐿𝜎(0) ≤ 𝜎(𝐿)+ 𝜀𝐿𝜎(0). (7.38)

For 𝑆2, we define the function 𝑧(𝑥) = 𝑥 (1 − 𝜀)𝑥 . It is an easy exercise to check that the
maximum of the function is given by 𝑧(

−1
log(1−𝜀)) = −𝑒

log(1−𝜀) . Therefore, for the bound of 𝑆2
we have

𝑆2 ≤ 𝜀(1− 𝜀)[
−𝑒

log(1− 𝜀)
𝜎(𝐿)+𝐿𝜎(0)] . (7.39)
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As lim𝜀→0+
𝜀

log(1−𝜀) = 1, for small enough 𝜀, it follows:

≤ 𝑒(1− 𝜀)𝜎(𝐿)+ 𝜀(1− 𝜀)𝐿𝜎(0)
≤ 𝑒𝜎(𝐿)+ 𝜀 𝐿𝜎(0). (7.40)

Finally, we have

‖𝜂𝑘+1‖ ≤ (1+ 𝜀+ 𝑒)𝜎(𝐿)+3𝜀 𝐿𝜎(0), (7.41)

which holds for all 𝑘. The norm can be arbitrarily small by the right choice of parameters
𝐿 and 𝜀.

Now, we move on to the input 𝑣2. We define the inflated boundary layer system:

𝑢𝛿+bl ∈ 𝑢𝛿bl+𝛿𝔹
𝜇𝛿+bl =𝑀(𝑢𝛿bl, 𝜇

𝛿
bl)

}
, (𝑢𝛿bl, 𝜇

𝛿
bl) ∈ ×Ω. (7.42)

We claim the following:

Lemma 7.21. For any period 𝐿, positive real number 𝑎 and compact set 𝐾 ∈ , there exist a
𝛿∗ such that for every 𝛿 ∈ (0, 𝛿∗] and for any trajectory (𝑢𝛿bl, 𝜇

𝛿
bl) of the system in (7.42) that is

contained in 𝐾 ×Ω, there exist a concatenated trajectory (𝑢𝐿, 𝜇𝐿) such that

‖𝐺(𝑢𝛿bl(𝑘), 𝜇
𝛿
bl(𝑘))−𝐺avg (𝑢𝛿bl(𝑘))−𝐺(𝑢𝐿(𝑘), 𝜇𝐿(𝑘))+𝐺avg (𝑢𝐿(𝑘))‖ ≤ 𝑎. ■ (7.43)

Proof. 𝐿,𝑎,𝐾 are given. Let 𝜉 B col (𝑢,𝜇). Based on the continuity property of functions
𝐺,𝐺avg, there exists 𝜌 > 0 such that

‖𝜉1− 𝜉2‖ ≤ 𝜌 ⇒ ‖𝐺(𝜉1)−𝐺(𝜉2)‖ ≤ 𝑎
2 ,

‖‖𝐺avg(𝜉1)−𝐺avg(𝜉2)‖‖ ≤
𝑎
2 . (7.44)

Next, we use [79, Lemma 2] for closeness of solutions of the inflated systems with pa-
rameters (0,𝐿+1,𝜌) and set 𝐾 ×Ω to determine 𝛿∗. That means that for every trajectory
of the system in (7.42) where 𝜉𝛿bl(𝑘) ∈ 𝐾 ×Ω for all 𝑘 ∈ dom(𝜉𝛿bl), there exists a trajectory
𝜉bl of the boundary layer system in (7.2), such that for each 𝑘 ∈ dom(𝜉𝛿bl) with 𝑘 ≤ 𝐿+1,
we have ‖‖𝜉

𝛿
bl(𝑘)− 𝜉bl(𝑘)‖‖ ≤ 𝜌. As the inflated boundary layer system is time-invariant, any

sample-shifted trajectory is also a trajectory of the original system. Thus, for trajectories
starting in 𝜉𝛿bl(0), 𝜉

𝛿
bl(𝐿),… , 𝜉𝛿bl(𝑛𝐿) with 𝑛 ∈ ℕ, 𝑛𝐿 ∈ dom(𝜉𝛿bl) there exist trajectories (not

necessary the same one) 𝜉bl such that the previous inequality holds for each segment of
length 𝐿. We concatenate these boundary layer trajectories into 𝜉𝐿 and write

‖‖‖𝜉
𝛿
bl(𝑘)− 𝜉𝐿(𝑘)‖‖‖ ≤ 𝜌, for 𝑘 ∈ dom(𝜉𝛿bl). (7.45)

From (7.44) and (7.45) we conclude (7.43). ■
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The trajectories �̃�(𝑘), 𝜇(𝑘) of the transformed system in (7.26), where �̃�(𝑘) ∈ 𝐾 for all
𝑘 ∈ dom(�̃�) and ‖𝜂(0)‖ ≤ 𝑎, are also trajectories of the inflated boundary layer system in
(7.42) with

𝛿 = 𝜀 max
𝑢∈𝐾,𝜇∈Ω,𝜂∈𝐾𝜂

{𝐺avg (𝑢− 𝜂,𝜇)− 𝜂}, (7.46)

where 𝐾𝜂 is the set in which 𝜂 is contained during the trajectory of the system. Let us
prove that 𝐾𝜂 ⊂ 𝑎𝔹 by first showing that i.e. ‖𝜂(1)‖ ≤ 𝑎. First we find 𝜀1 and 𝐿 such that
(1+ 𝜀1+ 𝑒)𝜎(𝐿)+3𝜀1 𝐿𝜎(0) ≤ 𝑎

2 . Then we use the same 𝐿, positive number 𝑎
2 and set 𝐾 with

Lemma 7.21 to find 𝛿∗. For 𝜀2 = 𝛿∗
max𝑢∈𝐾,𝜂∈𝑎𝔹{𝐺avg(𝑢−𝜂)−𝜂} , we guarantee that for one step, the

solution of (7.26) is also a solution of the inflated boundary layer system in (7.42). Thus,
for 𝜀∗ = min{𝜀1, 𝜀2}, we have that variables in (7.29) and (7.30) are bounded as ‖𝑣1‖ ≤ 𝑎

2 and
‖𝑣2‖ ≤ 𝑎

2 , and it follows from (7.28) that

‖𝜂(1)‖ ≤ ‖(1− 𝜀)𝜂(0)‖+ 𝜀𝑎 ≤ 𝑎.

The next sample will also be a solution of the 𝛿-inflated boundary layer system and all of
the previous bounds hold. Hence, the procedure can be repeated with the same 𝛿∗ for all
𝑘 ∈ dom(𝑢), and it holds ‖𝜀𝜂(𝑘)‖ ≤ 𝑎. ■

Now, we return to the proof of Theorem 7.5. Let the set of initial conditions 𝐾 be given.
From the stability of the set ×Ω in Assumption 7.4 and the dynamics in (7.26), we have:

𝑉a(𝑢++ 𝜂++ 𝑣+, 𝜇+)−𝑉a(𝑢+ 𝜂+ 𝑣,𝜇) =𝑉a(�̃�++ 𝑣+, �̃�)−𝑉a(�̃�+ 𝑣, �̃�)
≤𝑉a(�̃�+ 𝜀𝐺avg(�̃�, �̃�)+ 𝑣+, �̃�+)−𝑉a(�̃�+ 𝑣,𝜇)
−𝑉a(�̃�+ 𝜀𝐺avg(�̃�, �̃�)+ 𝑣+, �̃�+)
+𝑉a(�̃�+ 𝜀𝐺avg(�̃�− 𝜂, �̃�)− 𝜀𝜂+ 𝑣+)

≤− �̃�𝜀 (𝜀)𝛼a (‖�̃�+ 𝑣‖)+ 𝜀𝐿𝑉a(1+𝐿G) ‖𝜂‖ ,

for ‖�̃�+ 𝑣‖ ≥ 𝛼𝛾 (𝛾)

≤− �̂�𝜀 (𝜀)𝛼a (‖�̃�+ 𝑣‖)
for ‖�̃�+ 𝑣‖ ≥max{𝛼𝛾 (𝛾) ,𝛼𝜀 (𝜀)}, (7.47)

where 𝐿G and 𝐿𝑉a are Lipschitz constants of the mapping 𝐺avg and function 𝑉a respectively,
𝛼𝜀 (𝜀) ≥ 𝛼−1a [

𝜀
𝑘�̃�𝜀(𝜀)𝐿𝑉a(1+𝐿G) ‖𝜂‖], �̂�𝜀 (𝜀)B (1− 𝑘)�̃�𝜀 (𝜀) and 𝑘 ∈ (0,1). The function 𝛼𝜀 is a

function of class  on interval (0, 𝜀), as due to Assumption 7.4, 𝜀
�̃�𝜀(𝜀) is bounded on that

interval and 𝜂 can become arbitrarily small for proper choice of 𝜀, per Lemma 7.20. Finally,
we plug in the states of the original system to get

𝑉a(𝑢++ 𝜂++ 𝑣+)−𝑉a(𝑢+ 𝜂+ 𝑣) ≤ −�̂�𝜀 (𝜀)𝛼a (‖𝑢+ 𝜂+ 𝑣‖)
for ‖𝑢+ 𝜂+ 𝑣‖ ≥max{𝛼𝛾 (𝛾) ,𝛼𝜀 (𝜀)}. (7.48)

Let 𝜉 = 𝑢+ 𝜂+ 𝑣. From the previous Equation, it follows

𝑉a(𝜉(𝑘)) ≤ 𝑉a(𝜉(0))−
𝑘−1
∑
𝑖=0

�̂�𝜀 (𝜀)𝛼a (‖𝜉(𝑖)‖)

for ‖𝜉(𝑘)‖ ≥max{𝛼𝛾 (𝛾) ,𝛼𝜀 (𝜀)}. (7.49)
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Now, we move on to proving semi-global practical stability. Let Δ > 𝛿 be any strictly
positive real numbers. We choose parameters 𝜀 and 𝛾 such that 𝜂(𝜀) + 𝑣(𝛾) ≤ 𝛿

4 and
max{𝛼𝛾 (𝛾) ,𝛼𝜀 (𝜀)} ≤ 𝛿

4 . The conditional inequality in (7.49) is satisfied when ‖𝑢(𝑘)‖ ≥ 𝛿
2 .

Semi-global stability
For ease of notation, we drop the explicit dependence on 𝜀 and 𝛾 in 𝜂(𝜀) and 𝑣(𝛾). We have
to show that for any 𝑅 > 𝛿, there exists 𝑟 > 0, so that ‖𝑢(0)‖ ≤ 𝑟 implies that ‖𝑢(𝑘)‖ ≤ 𝑅
for all 𝑘 ∈ dom(𝑢). From (7.6a) and (7.49), it follows that

𝛼(‖𝜉(𝑘)‖) ≤ 𝑉a(𝜉(𝑘)) ≤ 𝑉a(𝜉(0)) ≤ 𝛼(‖𝜉(0)‖)

‖𝜉(𝑘)‖ ≤ 𝛼−1 (𝛼(‖𝜉(0)‖))
‖𝑢(𝑘)‖− 𝜂− 𝑣 ≤ 𝛼−1 (𝛼(‖𝑢(0)‖+ 𝜂+ 𝑣))
‖𝑢(𝑘)‖ ≤ 𝛼−1 (𝛼(‖𝑢(0)‖+ 𝜂+ 𝑣))+ 𝜂+ 𝑣

for ‖𝑢‖ ≥max{𝛼𝛾 (𝛾) ,𝛼𝜀 (𝜀)}+ 𝜂+ 𝑣

From last equation it follows that 𝑅 = 𝛼−1(𝛼(𝑟 +𝜂+ 𝑣))+𝜂+ 𝑣. Thus, it holds 𝑟 = 𝛼−1(𝛼(𝑅−
𝜂− 𝑣))− 𝜂− 𝑣. Considering that the infimum value of 𝑅 is 𝛿 and that 𝜂+ 𝑣 ≤ 𝛿

4 , to ensure 𝑟
is positive, we assume 𝜀 and 𝛾 are chosen so that 𝜂+ 𝑣 ≤ 1

2𝛼
−1 (𝛼 ( 3

4𝛿)) which implies that
𝑟 ≤ 1

2𝛼
−1 (𝛼 ( 3

4𝛿)). Furthermore, do assure that the Lyapunov difference is defined for those
radiuses, we impose an additional inequality on the tuning parameters: max{𝛼𝛾 (𝛾) ,𝛼𝜀 (𝜀)}+
𝜂+ 𝑣 < 1

2𝛼
−1 (𝛼 ( 3

4𝛿)).

Practical attractivity
We have to show that for any 𝑅, 𝑟 that satisfy Δ > 𝑅 > 𝑟 > 𝛿 > 0, there exists 𝑇 , such that
‖𝑢(0)‖ ≤ 𝑅 implies that ‖𝑢(𝑘)‖ ≤ 𝑟 for all 𝑘 ∈ dom(𝑢) and 𝑘 ≥ 𝑇 . First, we use the bound
we derived in the proof of stability to define 𝑟 ′ B 𝛼−1 (𝛼(𝑟 − 𝜂− 𝑣))− 𝜂− 𝑣, from which we
can conclude that ‖𝑢(0)‖ ≤ 𝑟 ′ implies that ‖𝑢(𝑘)‖ ≤ 𝑟 for all 𝑘 ∈ dom(𝑢). Let us define

𝑇 B
⌈
𝛼 (𝑅+ 𝜂+ 𝑣)−𝛼 (𝑟 ′− 𝜂− 𝑣)

�̂�𝜀 (𝜀)𝛼 (𝑟 − 𝜂− 𝑣) ⌉
+1. (7.50)

To prove via contradiction, we assume that ‖𝑢(𝑘)‖ > 𝑟 ′ for all 𝑘 ≤ 𝑇 . Now, by using the
upper and lower bound of the Lyapunov function on Equation in (7.49), it follows

𝛼 (‖𝑢(𝑘)‖− 𝜂− 𝑣) ≤ 𝛼 (𝑅+ 𝜂+ 𝑣)− 𝑘�̂�𝜀 (𝜀)𝛼(𝑟 ′− 𝜂− 𝑣)

‖𝑢(𝑘)‖ ≤ 𝛼−1 (𝛼 (𝑅+ 𝜂+ 𝑣)− 𝑘�̂�𝜀 (𝜀)𝛼(𝑟 ′− 𝜂− 𝑣))+ 𝜂+ 𝑣 (7.51)

Let us choose 𝑘 = 𝑇 −1. When we plug in the chosen value of 𝑘 into inequality (7.51), it
follows that:

‖𝑢(𝑘)‖ ≤ 𝑟 ′, (7.52)

which leads us to a contradiction. Thus, in the first 𝑇 steps, 𝑢(𝑘) trajectory will enter at least
once the set 𝐴+ 𝑟 ′𝔹. From the stability properties, we know that once the trajectory enters
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the aforementioned set, it will never leave the set+𝑟𝔹, which proves practical attractivity.

Hence, to have semi-global practical asymptotic stability we have to choose our parameters
𝜀, 𝛾 so that they satisfy inequalities

𝜂(𝜀)+ 𝑣(𝛾) ≤ 𝛿
4 (7.53)

max{𝛼𝛾 (𝛾) ,𝛼𝜀 (𝜀)} ≤ 𝛿
4 (7.54)

max{𝛼𝛾 (𝛾) ,𝛼𝜀 (𝜀)}+ 𝜂+ 𝑣 < 1
2𝛼

−1 (𝛼 ( 3
4𝛿)) (7.55)

That concludes the proof of semi-global practical asymptotic stability. ■

7.B Proof of Theorem 7.11
First, we show how to derive the boundary layer and averaged systems. Then we show
that we can apply Theorem 7.5 to prove stability.
The parameter 𝛼 can be used as a time-scale separation parameter of the first layer in
algorithm (7.13). We derive the first boundary layer system (𝛼 = 0):

⎧⎪⎪
⎨⎪⎪⎩

𝒙1
bl
+ = 𝒙1

bl
𝝃 1bl

+ = 𝝃 1bl
𝝁1bl

+ =𝝁1bl
, (7.56)

and the first averaged system

⎧⎪⎪
⎨⎪⎪⎩

�̂�+ = (1−𝛼𝛽)�̂�+𝛼𝛽proj𝐶 (�̂�− 𝛾𝝃)
�̂�
+

= (1−𝛼)�̂� +𝛼(𝐹(�̂�)+(𝑎))
�̂�+ =�̂�

, (7.57)

which is an (𝑎) inflation of the nominal averaged system

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

�̂�+ = (1−𝛼𝛽)�̂�+𝛼𝛽proj𝐶 (�̂�− 𝛾 �̂�)
�̂�
+

= (1−𝛼)�̂� +𝛼𝐹(�̂�)
�̂�+ =�̂�

. (7.58)

Furthermore, we use 𝛼𝛽 for the parameter of the second-time layer separation to determine
the second boundary layer system

⎧⎪⎪
⎨⎪⎪⎩

𝒙2
bl
+ = 𝒙2

bl
𝝃 2bl

+ = (1−𝛼)𝝃 2bl+𝛼𝐹(𝒙2
bl)

𝝁2bl
+ =𝝁2bl

, (7.59)

and the second averaged system

⎧⎪⎪
⎨⎪⎪⎩

�̃�+ = (1−𝛼𝛽)�̃�+𝛼𝛽proj𝐶 (�̃�− 𝛾𝐹(�̃�))
�̃�+ = (1−𝛼)�̃� +𝛼𝐹(�̃�)
�̃�+ =�̃�

, (7.60)
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which is the algorithm in (7.11) with additional bounded dynamics that renders the set
{𝒙∗} ×𝐶F ×𝕊𝑚 UGAS.
In order to satisfy Assumption 7.1 for both averaged systems, we establish the following
result:

Lemma 7.22. For any solution of the first boundary layer system (𝒙1
bl,𝝃

1
bl,𝝁

1
bl) and compact

set 𝐶 such that 𝒙1
bl ∈ 𝐶 for all 𝑘 ∈ dom(𝒙1

bl), it holds that:

‖‖‖‖‖

1
𝑁

𝑁
∑
𝑖=1

[2𝐴
−1𝐽 (𝒙1

bl(𝑖)+𝐴𝔻𝝁1bl(𝑖))𝔻𝝁
1
bl(𝑖)− 𝐹(𝒙1

bl(𝑖))−(�̄�)]
‖‖‖‖‖
≤ 𝜎1 (𝑁 ) , (7.61)

where 𝜎1 ∶ ℝ+ → ℝ+ is a function of class . □

Proof. See Appendix 7.C. ■

Lemma 7.23. For any solution of the second boundary layer system (𝒙2
bl,𝝃

2
bl) and compact

set 𝐶 such that col(𝒙1
bl,𝝃

1
bl) ∈ 𝐶 for all 𝑘 ∈ dom(𝒙1

bl), it holds that:

‖‖‖‖‖

𝛾
𝑁

𝑁
∑
𝑖=1

[𝝃 2bl(𝑖)− 𝐹(𝒙2
bl(𝑖))]

‖‖‖‖‖
≤ 𝜎2 (𝑁 ) , (7.62)

where 𝜎2 ∶ ℝ+ → ℝ+ is a function of class . □

Proof. See Appendix 7.D. ■

To prove stability, we start from the second layer and “move" upwards. As the second
averaged system satisfies Assumptions 7.1 due to Lemma 7.22, Assumption 7.2 due to the
nonexpansivnes of the projection mapping [42, Prop. 12.28, 29.1], Assumption 7.3 due
to Lemma 7.20 and Assumption 7.4 due to (7.12), we have that due to Theorem 7.5, the
nominal averaged system in (7.58) renders the set {𝑥∗} ×𝐶F ×𝕊𝑚 SGPAS as 𝛼𝛽 → 0, with the
Lyapunov difference given by

𝑉 (�̃�++ 𝜂+1 )−𝑉 (�̃�+ 𝜂1) ≤ − 1
2𝛼𝛽(1− 𝑐)(2−𝛼𝛽𝑐) ‖�̃�+ 𝜂1−𝒙∗‖

for ‖�̃�+ 𝜂1‖ ≥ 𝛼𝜀(𝛼𝛽) ≥
√

𝛼𝛽𝐿‖𝜂1‖
2𝛼𝛽(1−𝑐)(2−𝛼𝛽𝑐) (7.63)

and the perturbation dynamics

𝜂+1 = (1−𝛼𝛽)𝜂1+𝛼𝛽(proj𝐶 (�̃�− 𝛾𝐹(�̃�))− �̃�). (7.64)

We note that we had to take 𝛼𝛽 as the time-scale separation parameter. If we had chosen
only 𝛽, as might be the intuition, the function 𝛼𝜀 of class  that appears in the inequality
in (7.63), would have an implicit dependence on the parameter 𝛼. In fact, decreasing 𝛼
would increase the value of the function 𝛼𝜀 , as it would hold

𝛼𝜀(𝛽) ≥
√

𝛽𝐿‖𝜂1‖
2𝛼𝛽(1−𝑐)(2−𝛼𝛽𝑐) , (7.65)
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which would invalidate all of the following stability analysis. Thus, it is important to
capture all parameters affecting convergence speed. Nevertheless, if we assume that the
parameter 𝛼 is contained in the set (0,𝛼), it is possible to construct a function of class ,
such that it holds ‖�̃� + 𝜂1‖ ≥ 𝛼𝛽(𝛽) ≥ 𝛼𝜀(𝛼𝛽). Hence, the averaged system in (7.58) renders
the set {𝑥∗} ×𝐶F ×𝕊𝑚 SGPAS as 𝛽 → 0.
The first averaged system is an (𝑎) inflation of the nominal averaged system, and it can
be shown that the inflation introduces a small perturbation in the Lyapunov difference
inequality, which can be made arbitrarily small by choosing 𝑎 small enough. For the sake
of the proof, we set 𝑎 = 𝛼𝑎(𝛽), where 𝛼𝑎 is a function of class . Thus, it also satisfies
Assumption 7.4, Assumption 7.1 due to (7.64), Assumption 7.2 because of [42, Prop. 12.28,
29.1], and Assumption 7.3 as a result of (7.64). Hence, the system in (7.13) renders the set
{𝑥∗} ×𝐶F ×𝕊𝑚 SGPAS as (𝛼,𝑎,𝛽)→ 0. ■

7.C Proof of Lemma 7.22
Without the loss of generality, let a solution of the first boundary layer system is given
by 𝜇1,𝑖bl (𝑘) = col((sin(𝜔

𝑗
𝑖 𝑘),cos(𝜔

𝑗
𝑖 𝑘))𝑗≤𝑚𝑖), 𝜇1bl(𝑘) = col((𝜇1,𝑖bl (𝑘)))𝑖∈), 𝒙1

bl(𝑘) = 𝒙1
bl = 𝑐𝑜𝑛𝑠𝑡.,

𝝃 1bl = 𝑐𝑜𝑛𝑠𝑡. First, with the following Lemma, we characterize the properties of average
discrete-time sinusoidal signals:

Lemma 7.24. For any 𝜙,𝜙𝑖,𝜙𝑙 ∈ ℝ such that 𝜙 ≠ 2𝜋𝑡, 𝜙𝑖±𝜙𝑙 ≠ 2𝜋𝑝, 𝑡,𝑝 ∈ ℤ, it holds that:

1
𝑁

‖‖‖‖‖

𝑁−1
∑
𝑘=0

sin(𝜙𝑘)
‖‖‖‖‖
≤

𝑐1
𝑁
, (7.66)

1
𝑁

‖‖‖‖‖

𝑁−1
∑
𝑘=0

cos(𝜙𝑘)
‖‖‖‖‖
≤

𝑐2
𝑁
, (7.67)

1
𝑁

‖‖‖‖‖

𝑁−1
∑
𝑘=0

sin(𝜙𝑖𝑘)sin(𝜙𝑙𝑘)
‖‖‖‖‖
≤

𝑐3
𝑁
, (7.68)

1
𝑁

‖‖‖‖‖

𝑁−1
∑
𝑘=0

(sin2(𝜙𝑘)− 1
2 )
‖‖‖‖‖
≤

𝑐4
𝑁
, (7.69)

for some 𝑐1, 𝑐2, 𝑐3, 𝑐4 > 0. □

Proof. We note that for 𝜙 ≠ 2𝜋𝑝,𝑝 ∈ ℤ, it follows:

‖‖‖‖‖

𝑁−1
∑
𝑘=0

𝑒𝑗𝜙𝑘
‖‖‖‖‖

2

=
‖‖‖‖‖

𝑁−1
∑
𝑘=0

cos(𝜙𝑘)
‖‖‖‖‖

2

+
‖‖‖‖‖

𝑁−1
∑
𝑘=0

sin(𝜙𝑘)
‖‖‖‖‖

2

=
‖‖‖‖‖

𝑒𝑗𝜙𝑁 −1
𝑒𝑗𝜙−1

‖‖‖‖‖

2

≤
4

‖‖𝑒𝑗𝜙−1‖‖
2 . (7.70)

Therefore, we have
‖‖‖‖‖

𝑁−1
∑
𝑘=0

cos(𝜙𝑘)
‖‖‖‖‖
≤

2
‖‖𝑒𝑗𝜙−1‖‖

B 𝑐1, (7.71)

‖‖‖‖‖

𝑁−1
∑
𝑘=0

sin(𝜙𝑘)
‖‖‖‖‖
≤

2
‖‖𝑒𝑗𝜙−1‖‖

B 𝑐2. (7.72)
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Equations (7.66), (7.67) follow from the previous equations.
Let 𝜙 = 𝜙𝑖±𝜙𝑙 . From (7.71), we have

‖‖‖‖‖

𝑁−1
∑
𝑘=0

(sin(𝜙𝑖𝑘)sin(𝜙𝑙𝑘)∓cos(𝜙𝑖𝑘)cos(𝜙𝑙𝑘))
‖‖‖‖‖
≤

2
min𝜙∈𝜙𝑖±𝜙𝑙 ‖‖𝑒𝑗𝜙−1‖‖

B 𝑐3 (7.73)

For any scalars 𝑎,𝑏 ∈ ℝ, 𝑐 ∈ ℝ+, that satisfy equation ‖𝑎± 𝑏‖ ≤ 𝑐, it holds

−𝑐 ≤ 𝑎+ 𝑏 ≤ 𝑐, and − 𝑐 ≤ 𝑎− 𝑏 ≤ 𝑐. (7.74)

By summing the last two inequalities, we have

‖𝑎‖ ≤ 𝑐. (7.75)

Thus from (7.73), (7.74) and (7.75), we conclude

‖‖‖‖‖

𝑁−1
∑
𝑘=0

sin(𝜙𝑖𝑘)sin(𝜙𝑙𝑘)
‖‖‖‖‖
≤ 𝑐3. (7.76)

Again, (7.68) follows trivially. Finally, using the identity sin2(𝑥) = 1−cos(2𝑥)
2 , we rewrite

Equation (7.69) as

1
2𝑁

‖‖‖‖‖

𝑁−1
∑
𝑘=0

cos(2𝜙𝑘)
‖‖‖‖‖
≤

𝑐4
𝑁
. (7.77)

By switching 2𝜙 instead of 𝜙 in (7.71), analogously, it is possible to prove (7.69). ■

Via the Taylor expansion of the an addend in (7.61), we have

2𝐴−1𝐽 (𝒙1
bl+𝐴𝔻𝜇1bl(𝑖))𝔻𝜇

1
bl(𝑖)− 𝐹(𝒙1

bl)−(�̄�) =2𝐴−1𝐽 (𝒙1
bl)𝔻𝜇

1
bl(𝑖)

+ 𝐹(𝒙1
bl)

⊤𝔻𝜇1bl(𝑖)𝔻𝜇
1
bl(𝑖)− 𝐹(𝒙1

bl) (7.78)

Due to the inequality
√
∑𝑚

𝑖=0 𝑥2𝑖 ≤∑𝑚
𝑖=0 |𝑥𝑖|, we can bound the expression in (7.61) via the

bounds for each row:

‖‖‖‖‖

1
𝑁

𝑁
∑
𝑖=1

[2𝐴
−1𝐽 (𝒙1

bl+𝐴𝔻𝜇1bl(𝑖))𝔻𝜇
1
bl(𝑖)− 𝐹(𝒙1

bl)−(�̄�)]
‖‖‖‖‖
≤

𝑚
∑
𝑗=1

‖‖‖‖‖

𝑁−1
∑
𝑘=0

[
2
𝑎𝑗 𝐽𝑗 (𝒙

1
bl)sin(𝜙𝑗𝑘) +∇𝑥𝑗 𝐽𝑗 (𝒙

1
bl)(2sin

2(𝜙𝑗𝑘)−1)+2
𝑛
∑
𝑙≠𝑗

∇𝑥𝑙 𝐽𝑗 (𝒙
1
bl)sin(𝜙𝑙𝑘)sin(𝜙𝑗𝑘)]

‖‖‖‖‖

≤
2𝑚
𝑎

‖‖𝐽 (𝒙
1
bl)‖‖

𝑐1
𝑁

+ ‖‖∇𝐽 (𝒙
1
bl)‖‖∞

2𝑐𝑚2

𝑁
, (7.79)

where 𝑎 B min𝑖 𝑎𝑖 and 𝑐 B max{𝑐3, 𝑐4}. Thus for the compact set 𝐶, we define 𝜎1(𝑁 ) B
2𝑚
𝑎 max𝑥∈𝐶 ‖𝐽 (𝑥)‖ 𝑐1𝑁 +max𝑥∈𝐶 ‖∇𝐽 (𝑥)‖∞ 2𝑐𝑚2

𝑁 which belongs to the class of  functions. ■
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7.D Proof of Lemma 7.23
Solutions of the second boundary layer system are given by 𝒙2

bl(𝑘) = 𝒙2
bl = 𝑐𝑜𝑛𝑠𝑡., and

𝝃 2bl(𝑘) = (1−𝛼)𝑘 (𝝃 2bl(0)− 𝐹(𝒙2
bl))+ 𝐹(𝒙2

bl). Thus, the norm in (7.62) can be rewritten as

‖‖‖‖‖

𝛾
𝑁

𝑁−1
∑
𝑖=0

[𝝃 2bl(𝑖)− 𝐹(𝒙2
bl(𝑖))]

‖‖‖‖‖
≤
𝛾
𝑁

‖‖‖‖‖

𝑁−1
∑
𝑖=0

[(1−𝛼)𝑖 (𝝃 2bl(0)− 𝐹(𝒙2
bl))]

‖‖‖‖‖
≤

𝛾
𝑁𝛼

‖‖𝝃
2
bl(0)− 𝐹(𝒙2

bl)‖‖ . (7.80)

Thus, for the compact set 𝐶, we define 𝜎2(𝑁 )B 𝛾
𝑁𝛼 maxcol(𝝃 ,𝒙)∈𝐶 ‖𝝃 − 𝐹(𝒙)‖, which belongs

to the class of  functions. ■

7.E Proof of Theorem 7.16
For notational simplicity, we denote 𝑆(𝑘)B 𝑆𝑥 (𝑘;𝝉0). Thus, the algorithm reads as

{
𝒙+ = 𝒙−𝛼𝑆 (𝑘)𝐹(𝒙)
𝑘+ = 𝑘+1. (7.81)

One epoch is defined as 𝑟 iterations of the algorithm in (7.81), where 𝑟 is the period of the
function 𝑆 from Lemma 7.14. From the proof of the Lemma, it follows that every agent
individually jumps 𝑟𝑖 times in one epoch. Let 𝐹𝑗 ∶ ℝ𝑚 → ℝ𝑚 be the mapping that returns the
rows of the pseudogradient that correspond to the agents that sample at 𝑘 = 𝑗 + 𝑟𝑛, 𝑛 ∈ℕ,
0 ≤ 𝑗 ≤ 𝑟 −1, i.e. 𝐹𝑗 (𝒙)B 𝑆(𝑗)𝐹(𝒙). We define the full update operator, the asynchronous
update operator, and the error operator respectively, as

𝑇 B 𝐼 −𝛼Γ𝐹 , (7.82)
𝐸B (𝐼 −𝛼𝐹1)…(𝐼 −𝛼𝐹𝑟 ), (7.83)
𝑅B 1

𝛼 (𝑇 −𝐸). (7.84)

where Γ B diag((𝑟𝑖𝐼𝑚𝑖)𝑖∈). We note that the 𝐸 operator represents one epoch of the
algorithm in (7.81), i.e. 𝒙(𝑘+ 𝑟) = 𝐸(𝑥(𝑘)). The proof of convergence is analogous to the
proof in [137], and here we just provide the outlines. The error operator can be bounded as

‖𝑅(𝑥)‖2 ≤
𝛼2𝐿2𝑟2𝑟2

2
(1+𝛼𝐿)2𝑚 ‖𝑆(𝑥)‖2 , (7.85)

where 𝑟 = max𝑖∈ 𝑟𝑖. For the Lyapunov function candidate, we propose

𝑉 (𝒙) = ‖𝒙−𝒙∗‖2Γ−1 . (7.86)

It can be proven that

‖𝐸(𝒙)−𝒙∗‖2Γ−1 ≤(1−
𝛼𝜇2F𝑟2

2 )‖𝒙−𝒙∗‖2Γ−1 , (7.87)
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where 𝑟 = min𝑖∈ 𝑟𝑖, if 𝛼 is chosen such that

1
2 +

𝑟𝜂
𝜇2F
−(1−𝛼𝜂)(1−𝛼− (𝛼𝐿𝑟𝑟(1+𝛼𝐿)𝑟 )2

2𝜂 ) ≤ 0.

The inequality is satisfied for 𝜂 and 𝛼 small enough, and 𝛼 ≪ 𝜂. We note that the inequality
does not depend on the initial conditions of the timers 𝝉0. Equation (7.87) holds for
epochs, not necessarily the individual samples. Due to the Lipschitz continuity of the
pseudogradient, it follows that

‖‖𝒙
+−𝒙∗‖‖Γ−1 ≤ (1+𝛼𝐿 𝑟

𝑟 ) ‖𝒙−𝒙∗‖Γ−1 .

Thus, for some 𝑘 = 𝑖𝑟 + 𝑗 , where 𝑖, 𝑗 ∈ℕ we have

‖𝒙(𝑘)−𝒙∗‖2Γ−1 ≤ (1+𝛼𝐿 𝑟
𝑟)

2𝑟

(1−
𝛼𝜇2F𝑟2

2 )

𝑖
‖𝒙(0)−𝒙∗‖2Γ−1 . (7.88)

It holds 𝑖 = ⌊ 𝑘𝑟 ⌋ ≥
𝑘
𝑟 −1. Hence, the previous inequality becomes

‖𝒙(𝑘)−𝒙∗‖2Γ−1 ≤ (1+𝛼𝐿 𝑟
𝑟)

2𝑟

(1−
𝛼𝜇2F𝑟2

2 )

𝑘
𝑟 −1

‖𝒙(0)−𝒙∗‖2Γ−1 .

The last inequality is the exponential stability bound for all initial timer state conditions
𝝉0. Thus, the dynamics in (7.81) render 𝒙∗ UGES.

Additionally, we need to establish the Lyapunov difference convergence speed. To do
this, we construct a Lyapunov function using a similar procedure as in the proof of [29,
Thm. 4.14]. Let

𝑎B (1+𝛼𝐿 𝑟
𝑟)

2𝑟

1− 𝛼𝜇2F𝑟2
2

, 𝑏B(1−
𝛼𝜇2F𝑟2

2 )

1
𝑟
. (7.89)

Then, the Lyapunov function satisfies the following properties

1−(1−𝛼𝐿 𝑟
𝑟)

2𝛿 𝑟

2𝛼𝐿 𝑟
𝑟 (1−𝛼𝐿 𝑟

𝑟 )
‖𝒙−𝒙∗‖2Γ−1 ≤ 𝑉 (𝒙) ≤

𝑎(𝑏𝛿 𝑟 −1)
𝑏−1

‖𝒙−𝒙∗‖2Γ−1

𝑉 (𝒙+)−𝑉 (𝒙) ≤ −(1−𝑎𝑏𝛿 𝑟 ) ‖𝒙−𝒙∗‖2Γ−1 ,

where 𝛿 is large integer. Using the Taylor expansion, for small values of 𝛼, it holds

(1−𝑎𝑏𝛿 𝑟 ) ≈ 𝛼(
𝜇2𝑟2(𝛿−1)

2
−2𝑟𝐿 𝑟

𝑟) . (7.90)

Thus, for 𝛿 large enough, we can guarantee that the Lyapunov difference is negative.
Furthermore, we have that 𝛼

(1−𝑎𝑏𝛿 𝑟 ) is bounded on some interval (0,𝛼∗) and the Lyapunov
function satisfies the conditions from Assumption (7.4). ■
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7.F Proof of Lemma 7.14
First, let us denote the least common sampling time as 𝑇 = 𝑇𝑖 𝑝𝑝𝑖 .

Claim 1. The number of jumps in any time interval [𝑡, 𝑡 + 𝑇 ) is constant. □

Let us denote as the number of jumps in this interval as 𝑞. We “slide" the interval by
some Δ𝑇 , i.e. [𝑡 +Δ𝑇 , 𝑡 + 𝑇 +Δ𝑇 ), so that we exclude one event in [𝑡, 𝑡 +Δ𝑇 ). As 𝑇 = 𝑇𝑖𝑟𝑖 for
all 𝑖 ∈ , it follows that there must be an event in the interval [𝑡 + 𝑇 , 𝑡 + 𝑇 +Δ𝑇 ), thus the
total number of jumps in the interval [𝑡 +Δ𝑇 , 𝑡 + 𝑇 +Δ𝑇 ) remains the same. We can repeat
this procedure for any Δ�̂� by sliding the interval for every jump by Δ𝑇𝑗 until Δ�̂� =∑𝑗 Δ𝑇𝑗 .
The number of jumps in the interval is equal to 𝑞.

Claim 2. For every (𝑡, 𝑗) ∈ dom(𝝉) where a jump occurred, it holds 𝝉(𝑡, 𝑗) = 𝝉(𝑡 + 𝑇 , 𝑗 + 𝑟). □

We observe that if an agent initiates a jump at 𝑡 = 𝑡, these same agents will also initi-
ate a jump at 𝑡 = 𝑡 + 𝑇 . Furthermore, if an agent did not jump at 𝑡, it will also not jump at
𝑡+𝑇 . Thus, in the moment 𝑡 = 𝑡+𝑇 , the same agent will jump, i.e. 𝜏𝑖 = 𝑇𝑖 and it follows that
𝝉(𝑡, 𝑗) = 𝝉(𝑡 + 𝑇 , 𝑗 + 𝑟).
As the functions 𝑆𝑥 and 𝑆𝜏 are single-valued, the claim of the Lemma holds. ■

7.G Proof of Theorem 7.19
As the proof is analogous to the proof of Theorem 7.11, we provide just the required system
definitions and averaging Lemmas. The equivalent discrete-time system of (7.23) is given
by

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝒙+ = 𝒙−𝛼𝛽𝑆(𝑘)𝝃
𝝃+ = 𝝃 +𝛼𝑆(𝑘)(2𝐴−1𝐽 (𝒙+𝐴𝔻𝝁)𝔻𝝁− 𝝃)
𝝁+ = (𝐼 − 𝑆𝜇(𝑘))𝝁+ 𝑆𝜇(𝑘))𝝁
𝜿+ = 𝜿+ 𝑆𝜏(𝝉)
𝑘+ = 𝑘+1.

(7.91)

The first boundary-layer system is defined as
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝒙1
bl
+ = 𝒙1

bl
𝝃 1bl

+ = 𝝃 1bl
𝝁1bl

+ = (𝐼 − 𝑆𝜇(𝑘))𝝁1bl+ 𝑆𝜇(𝑘))𝝁1bl
𝜿+ = 𝜿+ 𝑆𝜏(𝑘)
𝑘+ = 𝑘+1,

(7.92)

while the first averaged system is given as
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

�̃�+ = �̃�−𝛼𝛽𝑆(𝑘)�̃�
�̃�+ = �̃� +𝛼𝑆(𝑘)(𝐹(�̃�)− �̃�)
�̃�+ = (𝐼 − 𝑆𝜇(𝑘))�̃�+ 𝑆𝜇(𝑘))�̃�
𝜿+ = 𝜿+ 𝑆𝜏(𝑘)
𝑘+ = 𝑘+1.

(7.93)
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The second boundary-layer system follows the dynamics

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝒙2
bl
+ = 𝒙2

bl
𝝃 2bl

+ = 𝝃 2bl−𝛼𝑆(𝑘)(𝐹(𝒙2
bl)− 𝝃 2bl)

𝝁2bl
+ = (𝐼 − 𝑆𝜇(𝑘))𝝁2bl+ 𝑆𝜇(𝑘))𝝁2bl

𝜿+ = 𝜿+ 𝑆𝜏(𝑘)
𝑘+ = 𝑘+1,

(7.94)

whereas the second averaged system is defined as

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

�̃�+ = �̃�−𝛼𝛽𝑆(𝑘)𝐹(�̃�)
�̃�+ = �̃� +𝛼𝑆(𝑘)(𝐹(�̃�)− �̃�)
�̃�+ = (𝐼 − 𝑆𝜇(𝑘))�̃�+ 𝑆𝜇(𝑘))�̃�
𝜿+ = 𝜿+ 𝑆𝜏(𝑘)
𝑘+ = 𝑘+1.

(7.95)

To prove Assumption 7.1, the following two Lemmas are needed:

Lemma 7.25. For any solution of the first boundary layer system (𝒙1
bl,𝝃

1
bl,𝝁

1
bl) and compact

set 𝐶, such that 𝒙1
bl ∈ 𝐶 for all 𝑘 ∈ dom(𝒙1

bl), it holds that:

‖‖‖‖‖

1
𝑁

𝑁
∑
𝑖=1

[2𝐴
−1𝐽 (𝒙1

bl(𝑖)+𝐴𝔻𝝁1bl(𝑖))𝔻𝝁
1
bl(𝑖)− 𝐹(𝒙1

bl(𝑖))−(�̄�)]𝑆(𝑖)
‖‖‖‖‖
≤ 𝜎1 (𝑁 ) , (7.96)

where 𝜎1 ∶ ℝ+ → ℝ+ is a function of class . □

Proof. First, we note that the difference in the previous inequality for rows corresponding
to agent 𝑖 equals zero whenever the agent is not jumping. This motivates us to study the
“isolated" system of agent 𝑖 instead of the group dynamics in (7.92). Consider the dynamics

𝜇𝑖(𝜅𝑖+1) =𝑖𝜇𝑖(𝜅𝑖). (7.97)

Without the loss of generality, let a solution of the previous system be given by 𝜇𝑖(𝜅𝑖) =
col((cos(𝜔𝑗

𝑖 𝜅𝑖), sin(𝜔
𝑗
𝑖 𝜅𝑖))𝑗≤𝑚𝑖). The solution of 𝜇1,𝑖bl is similar to the solution of 𝜇𝑖, as it also

has the same samples, but they “persist" for more iterations, i.e., until the agent 𝑖 jumps
again. If we define the set-valued mapping 𝑘(𝑣, 𝑖)B {𝑢 ∣ 𝜅𝑖(𝑢) = 𝑣} that relates the global
jump counter to the internal counter of agent 𝑖, it holds that 𝜇1,𝑖bl (𝑘(𝑣, 𝑖)) = 𝜇𝑖(𝑣). Furthermore,
at the sample 𝑣 given by the internal counter for agent 𝑖, or given by 𝑘(𝑣, 𝑖) = max𝑘(𝑣, 𝑖) by
the global counter, the internal counter of some other agent 𝑗 is given by

𝜅𝑗 (𝑣, 𝑖)B ⌊Δ
𝑖
𝑗 +

𝑇𝑖
𝑇𝑗 𝑣⌋ . (7.98)

whereΔ𝑖
𝑗 B 𝜅0𝑗 +

𝜏𝑖−𝜅0𝑖 𝑇𝑖
𝑇𝑗 . Hence it holds 𝜇1,𝑗bl (𝑘(𝑣, 𝑖)) = 𝜇𝑗 (𝜅𝑗 (𝑣, 𝑖)). Lastly, we see that diagonal

elements of 𝑆(𝑘) corresponding to agent 𝑖 are different from zero for 𝑘 ∈ {𝑢 ∣ 𝑢= �̄�(𝑣, 𝑖), 𝑣 ∈ℕ}.
Let us denote the norm in (7.96) as Φ and write 𝑁 = 𝑟 𝑙+ 𝑜, 𝑙 ∈ℕ,0 ≤ 𝑜 < 𝑟 . The previous
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iterator relations and properties of 𝑆(𝑘) allow us to bound the inequality as

𝑁Φ ≤
𝑀
∑
𝑖=1

‖‖‖‖‖

𝜅𝑖(0)+𝑟𝑖 𝑙−1
∑

𝑣=𝜅𝑖(0)
[−𝐹(𝒙bl)−(�̄�)+ 2

𝑎𝑖 𝐽𝑖 (𝒙
1
bl+𝐴𝔻𝝁1bl(𝑘(𝑣, 𝑖))𝔻𝑖𝜇1,𝑖bl (𝑘(𝑣, 𝑖))]

‖‖‖‖‖
+Φr

≤
𝑀
∑
𝑖=1

‖‖‖‖‖

𝜅𝑖(0)+𝑟𝑖 𝑙−1
∑

𝑣=𝜅𝑖(0)
[
2
𝑎𝑖 𝐽𝑖 (𝒙

1
bl)𝔻𝑖𝜇𝑖(𝑣)+2∇𝑥𝑖𝐽𝑖(𝒙

1
bl)

⊤𝔻𝑖𝜇𝑖(𝑣)𝔻𝑖𝜇𝑖(𝑣)−∇𝑥𝑖𝐽𝑖(𝒙
1
bl)

+2
𝑀
∑
𝑗≠𝑖

∇𝑥𝑗 𝐽𝑖(𝒙
1
bl)

⊤𝔻𝑗𝜇𝑖(𝜅𝑗 (𝑣, 𝑖))𝔻𝑖𝜇𝑖(𝑣)]
‖‖‖‖‖
+Φr

≤
𝑀
∑
𝑖=1

𝑚𝑖

∑
𝑢=1

‖‖‖‖‖

𝜅𝑖(0)+𝑟𝑖 𝑙−1
∑

𝑣=𝜅𝑖(0)
[
2
𝑎𝑖 𝐽𝑖 (𝒙

1
bl)sin(𝜔

𝑢
𝑖 𝑣)+∇𝑥𝑢𝑖 𝐽𝑖(𝒙

1
bl)[

2sin(𝜔𝑢
𝑖 𝑣)

𝑚𝑖

∑
𝑗=1

sin(𝜔𝑗
𝑖 𝑣)−1

]

+2
𝑀
∑
𝑗≠𝑖

𝑚𝑗

∑
𝑠=1

∇𝑥𝑠𝑗 𝐽𝑖(𝒙
1
bl)sin(𝜔

𝑠
𝑗𝜅𝑗 (𝑣, 𝑖))

𝑚𝑖

∑
𝑗=1

sin(𝜔𝑗
𝑖 𝑣)]

‖‖‖‖‖
+Φr, (7.99)

where

Φr B
𝑀
∑
𝑖=1

𝑟𝑖𝑚𝑀 max
𝒙∈𝐶

‖‖‖
1
𝑎𝑖 𝐽 (𝒙+𝐴𝔹)‖‖‖+ ‖𝐹(𝒙)+(𝑎)‖ . (7.100)

Using Lemma (7.23) and Assumption 7.18, we can derive the upper bounds of all of the sums
in the norm, apart from the last one, which contains addends of form sin(𝜔𝑗

𝑖 𝑣)sin(𝜔𝑠
𝑗𝜅𝑗 (𝑣, 𝑖)).

Using the same procedure as in the proof of Lemma 7.22 and Equation (7.98), we find the
equivalent exponential representation. For some 𝜔1,𝜔2, consider the sum

𝜅𝑖(0)+𝑟𝑖 𝑙−1
∑

𝑣=𝜅𝑖(0)
𝑒
𝑗(𝜔1𝑣+𝜔2⌊Δ

𝑖
𝑗+

𝑝𝑖
𝑝𝑗 𝑣⌋) =

𝜅𝑖(0)+𝑟𝑖−1
∑

𝑣=𝜅𝑖(0)
𝑒
𝑗(𝜔1𝑣+𝜔2⌊Δ

𝑖
𝑗+

𝑝𝑖
𝑝𝑗 𝑣⌋) ×

𝑙−1
∑
𝑢=0

𝑒𝑗(𝜔1𝑟𝑖+𝜔2𝑟𝑗)𝑢

=
1− 𝑒𝑗(𝜔1𝑟𝑖+𝜔2𝑟𝑗)𝑙

1− 𝑒𝑗(𝜔1𝑟𝑖+𝜔2𝑟𝑗)

𝜅𝑖(0)+𝑟𝑖−1
∑

𝑣=𝜅𝑖(0)
𝑒
𝑗(𝜔1𝑣+𝜔2⌊Δ

𝑖
𝑗+

𝑝𝑖
𝑝𝑗 𝑣⌋),

where the second equality follows fromAssumption 7.13, the properties of the least common
multiple 𝑝 = 𝑝𝑖 𝑟𝑖 = 𝑝𝑗 𝑟𝑗 , and last equality holds for 𝜔1𝑟𝑖+𝜔2𝑟𝑗 ≠ 2𝜋𝑧,𝑧 ∈ℤ. Thus, we have

‖‖‖‖‖‖

𝜅𝑖(0)+𝑟𝑖 𝑙−1
∑

𝑣=𝜅𝑖(0)
𝑒
𝑗(𝜔1𝑣+𝜔2⌊Δ

𝑖
𝑗+

𝑝𝑖
𝑝𝑗 𝑣⌋)

‖‖‖‖‖‖

2

≤
‖‖‖‖

𝑟𝑖
1− 𝑒𝑗(𝜔1𝑟𝑖+𝜔2𝑟𝑗)

‖‖‖‖

2
≤ 𝐶𝑒 ,

where 𝐶𝑒 is the supremum with respect to all possible combinations of 𝑟𝑖 and 𝜔𝑗
𝑖 . The rest

of the procedure follows the same steps as after Equation (7.73) in the proof of Lemma
7.23. The bound that holds regardless of the initial conditions of the timers 𝝉(0). Thus, the
Lemma holds. ■
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Lemma 7.26. For any solution of the second boundary layer system (𝒙2
bl,𝝃

2
bl), it holds that:

‖‖‖‖‖

𝛾
𝑁

𝑁
∑
𝑖=1

𝑆(𝑖)[𝝃 2bl(𝑖)− 𝐹(𝒙2
bl(𝑖))]

‖‖‖‖‖
≤ 𝜎2 (𝑁 ) , (7.101)

where 𝜎2 ∶ ℝ+ → ℝ+ is a function of class . □

Proof. The proof is analogous to the proof of Lemmas 7.23 and 7.25. ■
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8
Singular perturbations for
boundary layer flows and

jumps

There are two ways to do great mathematics. The first is to be smarter than everybody else.
The second way is to be stupider than everybody else - but persistent.

Raoul Bott

I have discovered a truly remarkable proof of this theorem which this margin is too small to
contain.

Pierre de Fermat

We present a singular perturbation theory applicable to systems with hybrid boundary layer
systems and hybrid reduced systems with jumps from the boundary layer manifold. First, we
prove practical attractivity of an adequate attractor set for small enough tuning parameters
and a sufficiently long time between almost all jumps. Second, under mild conditions on the
jump mapping, we prove semi-global practical asymptotic stability of a restricted attractor set.
Finally, for certain classes of dynamics, we prove semi-global practical asymptotic stability of
the restricted attractor set for small enough tuning parameters and sufficiently long periods
between almost all jumps of the slow states only.

This chapter is partly based on  S. Krilašević and S. Grammatico. “Stability of singularly perturbed hybrid
systems with restricted systems evolving on boundary layer manifolds”. In: arXiv:2303.18238 (Mar. 2023).
arXiv:2303.18238 [cs, eess, math]. doi: 10.48550/arXiv.2303.18238.
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8.1 Introduction
Realistic modeling of many control systems requires high-order nonlinear differential
equations that might be difficult to analyze fully. To alleviate this problem, we often
design control systems with various parameters that, with proper tuning, can effectively
reduce the order of the model and thus simplify the stability analysis. The main theoretical
framework for such analysis is singular perturbation theory [138], [29]. The associated
model reduction is accomplished by splitting the states into fast and slow states; for each
constant value of the slow states, the fast states should converge to an equilibrium point
defined by the slow states, and the union of these equilibrium points for all possible slow
states defines the so-called boundary layer manifold. Then, the reduced system contains
just the slow states and their dynamics, assuming they are evolving along that manifold.

Singular perturbation theory has been successfully applied to equilibrium seeking in
optimization and game theory. One common method of applying zeroth-order algorithms
to dynamical systems with cost measurements as output is through a time-time scale
separation of the controller and the plant, as demonstrated in [12] and [17]. Timescale
separation can be useful for algorithms where consensus on specific states must be reached
before initiating the equilibrium seeking process [139], [140], [141], [142]. Furthermore,
in some works [17], [143], [122], via singular perturbation analysis, the (pseudo)gradient
estimate is filtered before being incorporated into the algorithm. Singular perturbation
theory is also used to demonstrate algorithm convergence in problems with slowly varying
parameters [144].

Several extensions of singular perturbation theory are known for hybrid systems. In
[78], the authors examine a singularly perturbed system in which the boundary layer
system is continuous and the reduced system is hybrid, and both render the corresponding
sets globally asymptotically stable. While the work in [79] proposes averaging theory
results, it can also be used to prove stability in singularly perturbed systems. Similarly
to [78], the authors assume that the boundary layer system is continuous and that the
averaged system, which plays the role of the reduced system, is hybrid. In [145], the same
authors extend the results for the case when the boundary layer system itself is hybrid. In
the aforementioned works, the reduced system is derived by assuming that the slow states
“flow" along the boundary layer manifold, while the slow states do not jump from that
manifold. Therefore, the reduced system jumps cannot use the properties of the boundary
layer manifold to support stabilization; essentially, only the continuous dynamics are used
to prove stability, “despite" the jumps.
For the discrete-time dynamics to support the stabilization of singularly perturbed systems,
we can design the dynamics so that we jump when we are in the proximity of the manifold.
This scenario, in principle, is similar to that in [146], [147] where the authors prove that
there exists a sampling period such that a discrete-time optimization-based controller (the
reduced system) can find a neighborhood of the optimum of a steady-state output map of a
continuous system with an input (boundary layer system). In [81], the authors take a step
further and design an event-triggered framework to accomplish the same task by measuring
the changes in the output and, in turn, determine when the system has approached the
boundary layer manifold. Although these methods better incorporate discrete-time reduced
system dynamics, the boundary layer system is still only continuous. In this paper, we
instead deal with a hybrid boundary layer system and thus extend the current state of the
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art.
Contribution: In view of the above literature, our theoretical contributions are summa-

rized next:

• We propose a singular perturbation theory for hybrid systems, where the reduced
system takes into account the jumps from the boundary layer manifold, differently
from [78], [79] where jumps are assumed not to interfere with stability. Furthermore,
we allow for the set of fast variables not to be bounded a priori, thus enabling the
use of reference trajectories and counter variables in the boundary layer system.

• We prove semi-global practical asymptotic stability of the restricted attractor set
under certain mild assumptions on the jump mapping. This attractor set includes
only the steady-state values of the fast states that correspond to the slow attractor
states rather than the complete range of possible fast variables.

• We show that in a system resembling the one described in [145], where a distinction
is made between jumps in the slow and fast states, the aforementioned results remain
valid if there are sufficiently long intervals between nearly all jumps in the slow
states.

Our theory enables the analysis of multiple timescale control systems where both the
controller and the plant are hybrid. Furthermore, as the jumps occur at the boundary layer,
it would also be possible to incorporate state/output feedback into the controller jump
mappings.
We define semi-global practical asymptotic stability (SGPAS) similarly as in [148].

Definition 8.1 (SGPAS). The set  is SGPAS as (𝜀1,… , 𝜀𝑘)→ 0 for the parametrized hybrid
system𝜀 , if for each givenΔ> 𝛿 > 0, there exists a parameter 𝜀∗1 such that for each 𝜀1 ∈ (0, 𝜀∗1)
there exists 𝜀∗2 (𝜀1) > 0 such that for each 𝜀2 ∈ (0, 𝜀∗2 (𝜀1)) … there exists 𝜀∗𝑘 (𝜀𝑘−1) > 0 such that
for each 𝜀𝑘 ∈(0, 𝜀∗𝑘 (𝜀𝑘−1)) it holds:

1. (Semi-global stability) for each 𝑅 ≥ 𝛿, there exists 𝑟 > 0, such that ‖𝜙(𝑙, 𝑖)‖ ≤ 𝑟 ⟹
‖𝜙(𝑡, 𝑗)‖ ≤ 𝑅 for 𝑙+ 𝑖 ≤ 𝑡 + 𝑗 and each solution 𝜙.

2. (Practical attractivity) for each 𝑅, 𝑟 that satisfy Δ ≥ 𝑅 ≥ 𝑟 ≥ 𝛿, there exists a period
𝑇 (𝑟 ,𝑅) ≥ 0, such that ‖𝜙(𝑙, 𝑖)‖ ≤ 𝑅 ⟹ ‖𝜙(𝑡, 𝑗)‖ ≤ 𝑟 for all 𝑡 + 𝑗 ≥ 𝑇 (𝑟 ,𝑅)+ 𝑙+ 𝑖 and
each solution 𝜙. □

8.2 Singular perturbation theory for hybrid sys-
tems

We consider two different system setups, with the first case featuring a hybrid reduced
system and a continuous boundary layer system. In the second, both the reduced and
boundary layer system are hybrid. Despite the different scenarios, we require similar
assumptions in all configurations. Notably, we provide the most comprehensive coverage
of the first case.
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8.2.1 Continuous boundary layer dynamics
We consider the following hybrid dynamical system, denoted by 1:

�̇� ∈ [
𝐼𝑛1 0
0 1

𝜀 𝐼𝑛2]
𝐹(𝑥), if 𝑥 ∈ 1 ×2, (8.1a)

𝑥+ ∈ 𝐺(𝑥), if 𝑥 ∈ 𝐷1 ×𝐷2, (8.1b)

where 𝑥 B col (𝑥1, 𝑥2) ∈ 1 ×2 ⊂ ℝ𝑛1 ×ℝ𝑛2 are the system states, 𝜀 > 0 is small parameter
used to speed up the 𝑥2 dynamics, 1,𝐷1 ⊂ 1, 2,𝐷2 ⊂ 2 are flow and jump sets for the
slow states 𝑥1 and the fast states 𝑥2, respectively. Other than 𝜀, the system is implicitly
parametrized by parameters 𝛽,𝛾 and 𝜏 i.e. 𝐹 = 𝐹𝛽,𝛾,𝜏 and 𝐺 = 𝐺𝛽,𝛾,𝜏 . As it is common for
hybrid dynamical systems, we postulate certain regularity assumptions that provide useful
properties.

Assumption 8.2. The hybrid dynamical system in (8.1) satisfies the basic regularity assump-
tions for hybrid systems [80, Assum. 6.5] for all parameters 𝛽 ∈ (0,𝛽], 𝛾 ∈ (0, 𝛾], 𝜏 ∈ (0, 𝜏]. The
mapping 𝐺 satisfies item [80, Assum. 6.5, A3] also for 𝛽 = 0, 𝛾 = 0, 𝜏 = 0. Furthermore, all of
the systems’ solutions are complete. □

Furthermore, we define two auxiliary systems in view of that in (8.1), the boundary layer
system and the reduced system. The former,𝜌

1 , for any given constant 𝜌 > 0, is defined as

�̇� ∈ [
0 0
0 𝐼𝑛2]

𝐹(𝑥) 𝑥 ∈ ((+𝜌𝔹) ∩1) ×2, (8.2)

where ⊂ℝ𝑛 is the equilibrium set of a reduced system to be introduced later. Furthermore,
the system dynamics are parametrized by a small parameter 𝛽, which is used for tuning
the desired convergence radius. In (8.2), the dynamics of 𝑥1 are frozen, i.e., �̇�1 = 0. Thus
they approximate the behavior of those in (8.1) when 𝜀 > 0 is chosen very small. Since the
first state is constant, it is natural to assume that the equilibrium set, if it exists, contains
all possible 𝑥1, i.e., the ones contained in the set (+𝜌𝔹) ∩1, and that for every 𝑥1, there
exists a specific set of equilibrium points 𝑥2. We characterize this dependence with the
“steady-state" mapping 𝐻 and assume that it satisfies certain regularity properties [78,
Assum. 2], [17, Assum. 2].

Assumption 8.3. The set-valued mapping 𝐻 ∶ 1⇒ 2,

𝐻 (𝑥1)B {𝑥2 ∣ 𝐹(𝑥1, 𝑥2) = 0} (8.3)

is outer semicontinuous and locally bounded; for each 𝑥1 ∈ 1,𝐻 (𝑥1) is a non-empty subset of
2. □

Now, we can define the complete equilibrium set of the system in (8.2), the boundary layer
manifold, as

𝜌 B {(𝑥1, 𝑥2) ∣ 𝑥1 ∈ (+𝜌𝔹) ∩1, 𝑥2 ∈ 𝐻 (𝑥1)}. (8.4)

The set 𝜌 may contain some unbounded states corresponding to the logic states or
reference trajectories of the boundary layer system. We denote the bounded states with
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𝑥2′ ∈  ′
2 and the unbounded states with 𝑥′′2 ∈  ′′

2 ,  ′
2 × ′′

2 = 2. Furthermore, we assume
that these unbounded states only affect each other during jumps and that the bounded
states are a priori contained in a compact set.

Assumption 8.4. The jump mapping 𝐺 in (8.1b), and the steady-state mapping 𝐻 in 8.3 are
decomposed as follows:

𝐺(𝑥) = [
𝐺1(𝑥1, 𝑥′2)
𝐺′
2(𝑥) ] , (8.5)

𝐻 (𝑥1) = 𝐻1(𝑥1) × ′′
2 , (8.6)

where 𝐺1 ∶ 1 × ′
2⇒ 1 × ′

2, 𝐺′
2 ∶  ⇒  ′′

2 , and 𝐻1 ∶ 1⇒  ′
2. □

Assumption 8.5. The set  ′
2 in Assumption 8.4 is compact. □

Furthermore, we assume that the set𝜌 is SGPAS for boundary layer dynamics in Equation
(8.2).

Assumption 8.6. The set 𝜌 in (8.4) is SGPAS as 𝛽 → 0 for the dynamics in (8.2). Let
Δ > 𝛿 > 0 be given by the definition of SGPAS. For every Δ > 0, the corresponding Lyapunov
function is given by

𝛼2,𝜌(‖𝑥‖𝜌) ≤ 𝑉2,𝜌(𝑥) ≤ 𝛼2,𝜌(‖𝑥‖𝜌) (8.7a)

sup

[
𝑓1
𝑓2 ] ∈ 𝐹(𝑥)

⟨∇𝑉2,𝜌(𝑥)
||| [

0
𝑓2 ]⟩ ≤ −𝛼2,𝜌(‖𝑥‖𝜌 )

for all 𝑥 such that ‖𝑥‖𝜌 ≥ 𝛼𝛽(𝛽), (8.7b)

sup

[
𝑓1
𝑓2 ] ∈ 𝐹(𝑥)

⟨∇𝑉2,𝜌(𝑥)
||| [

0
𝑓2 ]⟩ ≤ �̂�𝛽(𝛽)

for all 𝑥 such that ‖𝑥‖𝜌 ≤ 𝛼𝛽(𝛽) (8.7c)

∇𝑉2,𝜌(𝑥) = 0 for all 𝑥 ∈𝜌 , (8.7d)

where 𝛼2,𝜌 ,𝛼2,𝜌 ,𝛼2,𝜌 ,𝛼𝛽 , �̂�𝛽 are functions of class , where 𝛼2,𝜌 ,𝛼𝛽 are possibly parametrized
by Δ. Furthermore, for each compact set 𝐾 ∈ 1, there exists 𝑀 > 0, such that

sup
𝑥∈𝐾×2

‖‖𝑉2,𝜌(𝑥)‖‖+ ‖‖∇𝑥1𝑉2,𝜌(𝑥)‖‖ ≤𝑀. (8.8)

Remark 8.7. In Assumption 8.6, we allow the set 2 to be unbounded. Nevertheless, the
Lyapunov function is assumed to take bounded values, as in (8.8). For example, this can be
achieved if the Lyapunov function does not depend on the states from the unbounded set. □

On the other hand, since the 𝑥2 dynamics are much faster than those of 𝑥1 in (8.1), from the
time scale of the latter, it seems that the 𝑥2 dynamics are evolving on the manifold defined
by the mapping 𝐻 . To characterize this behavior, we can define the reduced system r

1 as:

�̇�1 ∈ 𝐹r(𝑥1) if 𝑥1 ∈ 1 (8.9a)
𝑥+1 ∈ 𝐺r(𝑥1) if 𝑥1 ∈ 𝐷1, (8.9b)
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where 𝐹r(𝑥1)B co{𝑣1 ∣ (𝑣1, 𝑣2) ∈ 𝐹(𝑥1, 𝑥2), 𝑥2 ∈ 𝐻 (𝑥1)}, 𝐺r(𝑥1)B {𝑣1 ∣ (𝑣1, 𝑣2) ∈ 𝐺(𝑥1, 𝑥2), 𝑥2 ∈
𝐻 (𝑥1)}. Furthermore, the system dynamics are parametrized by the parameter 𝛾 , which
is used for the tuning of the convergence radius to the attractor set, and the parameter 𝜏
adjusts the minimum time interval between consecutive jumps, for almost all jumps of the
systems in (8.1) (consequently also the reduced system in (8.9)), as formalized next:

Definition 8.8 (𝜏-regular jump). A jump 𝑗 in a solution trajectory 𝜙 is a 𝜏-regular jump
if it occurs after an interval of flowing greater or equal than 𝜏, i.e., 𝜏𝑗 B sup{||𝑡 − 𝑡′|| ∶ (𝑡, 𝑗 −
1),(𝑡′, 𝑗 −1) ∈ dom𝜙} ≥ 𝜏. Otherwise, the jump 𝑗 is called 𝜏-irregular. □

Assumption 8.9. Let 𝜙 be any solution of the system in (8.1) with ‖𝜙(0,0)‖×2 ≤ Δ. Then,
there exists a finite number of jumps 𝑁 ∗ and finite time interval 𝑇 ∗, such that 𝜙 has at most
𝑁 ∗ 𝜎(𝜏)-irregular jumps, and they all occur before 𝑡 ≤ 𝑇 ∗, where 𝜎 is a function of class ,
and 𝜏 is the parameter of the system. □

Differently from [78], where the reduced mapping is defined as 𝐺r(𝑥1) B {𝑣1 ∣ (𝑣1, 𝑣2) ∈
𝐺(𝑥1, 𝑥2), 𝑥2 ∈ 2}, the mapping in (8.9b) only includes the jumps from the stead-state
“pairs" (𝑥1,𝐻 (𝑥1)) that belong to the manifold. Thus, our next assumption is weaker than
[78, Assum. 4], as it requires that the jumps stabilize the set  via a much more restricted
set of dynamics. This is due to the fact that the reduced mapping 𝐺r does not contain all
possible jumps from the set 𝐷1, but only those from the boundary layer manifold 𝜌 .

Assumption 8.10. The set is SGPAS as 𝛾 → 0 for the reduced system in (8.9). Let Δ > 𝛿 > 0
be given by the definition of SGPAS. For all Δ > 0, there exists a Lyapunov function 𝑉 . Its
properties are given by

𝛼1 (‖𝑥1‖) ≤ 𝑉1(𝑥1) ≤ 𝛼1 (‖𝑥1‖) (8.10a)
sup

𝑓1𝑟∈𝐹r(𝑥1)
⟨∇𝑉1(𝑥1) | 𝑓1𝑟 ⟩ ≤ −�̂�𝜏(𝜏)�̂�𝛾 (𝛾)𝛼1 (‖𝑥1‖) (8.10b)

sup
𝑔1𝑟∈𝐺r(𝑥1)

𝑉1(𝑔𝑟1)−𝑉1(𝑥1) ≤ −�̂�𝛾 (𝛾)𝛼1 (‖𝑥1‖) (8.10c)

for ‖𝑥1‖ ≥ 𝛼𝛾 (𝛾), (8.10d)

where 𝛼1,𝛼1,𝛼1,𝛼𝛾 , �̂�𝛾 are functions of class , where 𝛼1,𝛼𝛾 are possibly parametrized by Δ,
and �̂�𝜏 is a function of class . □

We claim that our original system in (8.1) renders the set×2 practically attractive if, for
almost all intervals of flow, we allow the state of the system to converge to the neighborhood
of the 𝜌 manifold. The intuition is that in the neighborhood of the manifold, “the jumps
of the reduced system" also contribute to the stabilization.

Theorem 8.11. Let Assumptions 8.2—8.10 hold. Then the set ×2 is practically attractive
as (𝛾, 1𝜏 , 𝜀,𝛽)→ 0 for the hybrid system in (8.1). □

Proof. See Appendix 8.A. ■
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Example 1. Consider the hybrid dynamical system

⎧⎪⎪
⎨⎪⎪⎩

�̇� = 𝛾max{0,1− ‖𝑢‖
𝑅 }

�̇� = 1
𝜏

�̇� = − 1
𝜀 (𝑥 −𝑢)

if (𝑢,𝑣,𝑥) ∈ [0,𝑅] × [0,1] × [0,𝑅]; (8.11a)
⎧⎪⎪
⎨⎪⎪⎩

𝑢+ = 𝑥
2

𝑣+ = 0
𝑥+ = 𝑅

if (𝑢,𝑣,𝑥) ∈ [0,𝑅] × {1} × [0,𝑅], (8.11b)

where 𝛾, 𝜏, 𝜀 are tuning parameters, and 𝑅 > 0 is the maximal trajectory radius. We show that
the set {0} × [0,1] × [0,𝑅] is practically attractive. First, we see that the boundary layer system
reads as

⎧⎪⎪
⎨⎪⎪⎩

�̇� = 0
�̇� = 0
�̇� = −(𝑥 −𝑢)

if (𝑢,𝑣,𝑥) ∈ [0,𝑅] × [0,1] × [0,𝑅], (8.12)

while the reduced system is given by
{

�̇� = 𝛾max{0,1− ‖𝑢‖
𝑅 }

�̇� = 1
𝜏

if (𝑢,𝑣) ∈ [0,𝑅] × [0,1]; (8.13a)
{

𝑢+ = 𝑢
2

𝑣+ = 0

if (𝑢,𝑣) ∈ [0,𝑅] × {1}. (8.13b)

Assumptions 8.2—8.9 are satisfied. Regarding Assumption 8.10, let the Lyapunov function of
the reduced system be 𝑉1(𝑢,𝑣) = (2− 𝑣)𝑢2. It follows that

�̇�1(𝑢,𝑣) ≤ − 1
𝜏𝑢

2+4𝛾𝑎𝑅,
𝑉1(𝑢+, 𝑣+)−𝑉1(𝑢,𝑣) ≤ − 1

2𝑢
2. (8.14)

Since the reduced system satisfies Assumption 8.10, in view of Theorem 8.11, practical at-
tractivity is ensured. Unlike previous works [145], [78], and [79], our reduced jump mapping
includes jumps only from the boundary layer, which allows us to establish attractivity results
using jumps, as seen in Figure 8.1. In the aforementioned works, the reduced system jump
mapping includes all possible jumps [78, Equ. 13], [79, Equ. 17], [145, Equ. 13], and and for
our example, it is given by 𝑢+ ∈ [−𝑅

2 ,
𝑅
2 ]. Thus, the assumption on the stability for reduced

system dynamics [78, Assum. 4], [79, Thm. 2], [145, Thm. 2] does not hold. □

We note that Theorem 8.11 gives us no guarantee on the attractivity of the state 𝑥2 due to
the fact that jumps can move the state arbitrarily far away from any set in 2 (also seen in
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Figure 8.1: Consider the system in Example 1 with parameters 𝛾 = 0.01, 𝑅 = 1, 𝜏 = 1, 𝜀 = 0.1.
The state trajectories are represented in the Figure. Even though the flows tend to steer
the state away, the convergence of 𝑢 is still achieved within the neighborhood of 0.

Figure 8.1 for jumps of state 𝑥). Under an additional assumption, it is possible to bound
both the states 𝑥1 and 𝑥2 to a neighborhood of the set  B {(𝑥1, 𝑥2) ∣ 𝑥1 ∈, 𝑥2 ∈ 𝐻 (𝑥1)},
and prove stability.

Assumption 8.12. The jump mapping 𝐺 in (8.1b) is such that 𝐺() ⊂. □

Assumption 8.12 is sufficient to guarantee that for any neighborhood of the equilibrium
set + 𝑟𝔹, there exists a neighborhood + 𝑟𝔹, such that jumps from the latter do
not exit the former, i.e. 𝐺( + 𝑟𝔹) ⊂ + 𝑟𝔹. Lastly, we do not need to assume the
compactness of the set  ′

2, as the distance from the set  also bounds the values of the
𝑥′2 state.

Theorem 8.13. Let Assumptions 8.2—8.4, 8.6—8.12 hold. Then the set  is SGPAS as
(𝛾, 1𝜏 , 𝜀,𝛽)→ 0 for the hybrid system in (8.1). □

Proof. See Appendix 8.B. ■

Example 2. We consider a hybrid dynamical system similar to one in (8.11):

⎧⎪⎪
⎨⎪⎪⎩

�̇� = 𝛾
�̇� = 1

𝜏
�̇� = − 1

𝜀 (𝑥 −𝑢)
if (𝑢,𝑣,𝑥) ∈ ℝ× [0,1] ×ℝ; (8.15a)
⎧⎪⎪
⎨⎪⎪⎩

𝑢+ = 𝑥
2

𝑣+ = 0
𝑥+ = 2𝑥

if (𝑢,𝑣,𝑥) ∈ ℝ× {1} ×ℝ, (8.15b)
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Figure 8.2: Consider the system in Example 2 with parameters 𝛾 = 0.01, 𝑅 = 1, 𝜏 = 1, 𝜀 = 0.1.
The state trajectories are represented in the Figure. Due to the new jump mapping of 𝑥 ,
the convergence of 𝑥 is also achieved within the neighborhood of 0.

where 𝛾, 𝜏, 𝜀 are tuning parameters. Differently from (8.11), the jump mapping is such that
Assumption 8.12 is satisfied. Furthermore, as Theorem 8.13 does not require compactness of
the set  ′

2 in Assumption 8.5, the flow and jump sets are both unbounded. The boundary layer
system has the same dynamics as the system in (8.12), apart from the flow set, which now
reads as ℝ× [0,1] ×ℝ. The reduced system is given by

{
�̇� = 𝛾
�̇� = 1

𝜏
if (𝑢,𝑣) ∈ ℝ× [0,1];

(8.16a)

{
𝑢+ = 𝑢

2
𝑣+ = 0

if (𝑢,𝑣) ∈ ℝ× {1}.
(8.16b)

Similarly to the previous example, all the Assumptions hold, thus due to Theorem 8.13, the
set {0} × [0,1] × {0} is SGPAS as (𝛾, 1𝜏 , 𝜀,𝛽)→ 0 for the dynamics in (8.16a). Differently from
[145, Thm. 2], [78, Thm. 1], and [79, Thm. 2, Cor. 2 ] where the fast states are only a priori
bounded to a compact set, here we can prove their convergence to the equilibrium set, as seen
in Figure 8.2. □

8.2.2 Hybrid boundary layer dynamics
Theorems 8.11 and 8.13 assume a lower limit on the time between all consecutive jumps
that occur in the system in (8.1). However, under certain conditions, it is possible to make
a distinction between consecutive jumps of 𝑥1 and the consecutive jumps of 𝑥2. This is
useful when the convergence of the boundary layer system is, in fact, driven by jumps in
𝑥2, and imposing a high lower limit on the period between consecutive jumps slows down
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convergence. Consider the following hybrid dynamical system, denoted with 2:

�̇� ∈ [
𝐼𝑛1 0
0 1

𝜀 𝐼𝑛2]
𝐹(𝑥), if 𝑥 ∈ 1 ×2 (8.17a)

𝑥+ ∈

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

[
𝑥1
𝐺2(𝑥) ] , if 𝑥 ∈ 1 ×𝐷2

[
𝐺1 (𝑥)
𝑥2 ] , if 𝑥 ∈ 𝐷1 ×2

[
𝑥1
𝐺2(𝑥) ]∪ [

𝐺1 (𝑥)
𝑥2 ] , if 𝑥 ∈ 𝐷1 ×𝐷2.

(8.17b)

In this formulation, the distinction between the jumps of states 𝑥1 and 𝑥2 is highlighted
because during the jumps of 𝑥1, 𝑥2 stays constant, and vice versa. Furthermore, we define
the boundary layer system, 𝜌

2 , as

�̇� ∈ [
0 0
0 𝐼𝑛2]

𝐹(𝑥) if 𝑥 ∈ 1 ×2, (8.18a)

𝑥+ ∈ [
𝑥1

𝐺2(𝑥)]
if 𝑥 ∈ 1 ×𝐷2, (8.18b)

and the reduced system, 𝑟
2, as

�̇�1 ∈ 𝐹r(𝑥1) if 𝑥1 ∈ 1, (8.19a)
𝑥+1 ∈ 𝐺r(𝑥1) if 𝑥1 ∈ 𝐷1, (8.19b)

where 𝐹r(𝑥1) B co{𝑣1 ∣ (𝑣1, 𝑣2) ∈ 𝐹(𝑥1, 𝑥2), 𝑥2 ∈ 𝐻 (𝑥1)}, 𝐺r(𝑥1) B {𝑣1 ∣ 𝑣1 ∈ 𝐺1(𝑥1, 𝑥2), 𝑥2 ∈
𝐻 (𝑥1)}. Differently from the boundary layer system in (8.2), jumps are also included
in this formulation, while the formulation of the reduced system is the same. Next, we pose
analogous technical assumptions as for the system in (8.1) and, in turn, provide results
analogous to Theorem 8.13.

Assumption 8.14. The hybrid dynamical system in (8.17) satisfies the same conditions as in
Assumption 8.2. □

Assumption 8.15. The jump mapping 𝐺 in (8.17b), and the steady-state mapping 𝐻 in 8.3
are decomposed as in Equations (8.5) and (8.6). □

Assumption 8.16. The set 𝜌 is SGPAS as 𝛽 → 0 for the dynamics in (8.18). Let Δ > 𝛿 > 0
be given by the definition of SGPAS. The corresponding Lyapunov function is given by (8.7),
with the additional equation

sup
𝑔1=𝑥1 ,𝑔2∈𝐺2(𝑥)

𝑉2,𝜌(𝑔)−𝑉2,𝜌(𝑥) ≤ 0,

and for each compact set 𝐾 ∈ 1 × ′
2, there exists 𝑀 > 0, such that

sup
𝑥∈𝐾× ′′

2

‖‖𝑉2,𝜌(𝑥)‖‖+ ‖‖∇𝑥1𝑉2,𝜌(𝑥)‖‖ ≤𝑀. (8.20)
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Assumption 8.17. The set is SGPAS as 𝛾 → 0 for the reduced system in (8.19). Let Δ> 𝛿 > 0
be given by the definition of SGPAS. For every Δ > 0, the corresponding Lyapunov function is
given by Equation (8.10) with the redefined mappings in (8.19). □

Definition 8.18 (𝜏-regular jump in 𝑥1). A jump 𝑗 in a solution trajectory 𝜙 of the system in
(8.17) is a 𝜏-regular in 𝑥1 jump if it occurs after an interval of flowing in the 𝑥1 state greater or
equal than 𝜏, i.e. 𝜏1𝑗 Bmin{||𝑡 − 𝑡′|| ∶ 𝜙1(𝑡, 𝑗 +1) ∈ 𝐺1(𝜙(𝑡, 𝑗));𝜙2(𝑡, 𝑗 +1) = 𝜙2(𝑡, 𝑗); (𝑡, 𝑗), (𝑡, 𝑗 +
1) ∈ dom𝜙;𝜙1(𝑡′, 𝑗 ′+1) ∈𝐺1(𝜙(𝑡′, 𝑗 ′));𝜙2(𝑡′, 𝑗 ′+1) = 𝜙2(𝑡′, 𝑗 ′); (𝑡′, 𝑗 ′), (𝑡′, 𝑗 ′+1) ∈ dom𝜙; 𝑗 ′ >
𝑗} ≥ 𝜏. Otherwise, if 𝜏1𝑗 exists and 𝜏1𝑗 < 𝜏, jump 𝑗 is called 𝜏-irregular in 𝑥1. □

Assumption 8.19. Let 𝜙 be any solution of the system in (8.17) with ‖𝜙(0,0)‖×2 ≤ Δ. Then,
there exists a finite number of jumps 𝑁 ∗ and finite time interval 𝑇 ∗, such that 𝜙 has at most
𝑁 ∗ 𝜎(𝜏)-irregular jumps in 𝑥1, and they all occur before 𝑡 ≤ 𝑇 ∗, where 𝜎 is a function of class
. □

Corollary 8.20. Let Assumptions 8.3, 8.12—8.19 hold. Then the set  is SGPAS as
(𝛾, 1𝜏 , 𝜀,𝛽)→ 0 for the hybrid system in (8.17). □

Proof. The proof is analogous to the proofs of Theorems 8.11 and 8.13. An equivalent
for Lemma 8.23 can be constructed with jumps of the 𝑥2 state. The rest of the proof is
essentially the same. ■

8.3 Illustrative example
In [8], the issue of connectivity control was approached as a Nash equilibrium problem.
In numerous practical situations, multi-agent systems are constructed with the goal of
maintaining specific connectivity as a secondary objective in addition to their primary
objective. In the subsequent discussion, we consider a comparable problem in which each
agent is responsible for detecting an unknown signal source while preserving a certain
level of connectivity. Unlike [8], both the robots and the controllers have hybrid dynamics
in our example.

Consider a multi-agent system consisting of unicycle vehicles, indexed by 𝑖 ∈  B {1,…𝑁 }.
Each agent is tasked with locating a source of a unique unknown signal. The strength of all
signals abides by the inverse-square law, i.e., proportional to 1/𝑟2. Therefore, the inverse
of the signal strength can be used as a cost function. Additionally, the agents must not
drift apart from each other too much, as they should provide quick assistance to each other
in case of critical failure. This is enforced by incorporating the signal strength of fellow
agents in the cost functions. Thus, we design the cost functions as follows:

∀𝑖 ∈  ∶ ℎ𝑖(𝑢) = ‖𝑢𝑖−𝑢s𝑖 ‖
2+ 𝑐 ∑

𝑗∈−𝑖
‖𝑢𝑖−𝑢𝑗 ‖2. (8.21)

where −𝑖 B  ⧵ {𝑖}, 𝑐, 𝑏 > 0 and 𝑢s𝑖 represents the position of the source assigned to agent 𝑖.
The goal of each agent is to minimize its cost function, and the solution to this problem is
a Nash equilibrium.
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8.3.1 Unicycle dynamics
As the unicycles are dynamical systems, a reference tracking controller is necessary in
order to move them to the desired positions. In our example, let each agent implement a
hybrid feedback controller similar to one in [149] for trajectory tracking:

𝜒 u
𝑖 = col(𝑥𝑖, 𝑦𝑖, 𝜃𝑒𝑖 , 𝜏𝑖, 𝜃𝑖, �̂�𝑖, �̂�𝑖) ,

�̇� u
𝑖 = 𝐹u𝑖 (𝜒

u
𝑖 )B col(�̂�𝑖 cos(𝜃𝑖) , �̂�𝑖 sin(𝜃𝑖) ,𝜔r− �̂�𝑖, 1

𝜎𝑖 , �̂�𝑖,0,0)
if 𝜒 u

𝑖 ∈ 𝐶u
𝑖 B ℝ3 × [0,1] ×ℝ3, (8.22a)

𝜒 u
𝑖
+ = 𝐺u

𝑖 (𝜒
u
𝑖 )B col(𝑥𝑖, 𝑦𝑖, 𝜃𝑒𝑖 ,0, 𝜃𝑖, 𝑣𝑖,𝜔𝑖)

if 𝜒 u
𝑖 ∈ 𝐷u

𝑖 B ℝ3 × {1} ×ℝ3, (8.22b)

where 𝑣𝑖 = 𝑐1(𝑥𝑒𝑖 − 𝑐3𝜔𝑖𝑦𝑒𝑖 ) − 𝑐3𝑐2,𝑖(𝜔r −𝜔𝑖)𝑦𝑒𝑖 + 𝑐3𝜔2
𝑖 𝑥𝑒𝑖 , 𝑥𝑒𝑖 B cos(𝜃𝑖)(𝑢1𝑖 − 𝑥𝑖) + sin(𝜃𝑖)(𝑢2𝑖 −

𝑦𝑖), 𝑦𝑒𝑖 B −sin(𝜃𝑖)(𝑢1𝑖 − 𝑥𝑖) + cos(𝜃𝑖)(𝑢2𝑖 − 𝑦𝑖), 𝜃𝑒𝑖 = 𝜃r − 𝜃𝑖, 𝜔𝑖 B 𝜔r + 𝑐2,𝑖𝜃𝑒𝑖 , �̇�r = 𝜔r = 𝑐𝑜𝑛𝑠𝑡.,
𝑐1, 𝑐2,𝑖, 𝑐3 > 0 are tuning parameters, 𝜎𝑖 is the sampling period parameter, 𝑢1𝑖 and 𝑢2𝑖 are
the reference positions. Differently from [149], the jumps are triggered by a timer, and
the reference trajectory is that of a unicycle with a fixed position (𝑢1𝑖 , 𝑢2𝑖 ) and constant
rotational velocity 𝜔r. Similarly to [149, Lemma 4., Thm. 5], it is possible to prove that the
dynamics in (8.22) render the set {col(𝑢1𝑖 , 𝑢2𝑖 ,0)} × ̃𝑖 ×ℝ3 SGPAS as 𝜎𝑖 → 0.

Theorem 8.21. For 𝑐2,𝑖 = 𝜎𝑖, 𝑐3 = 1
3𝜔r

, 𝑐1 = 1
2𝑐3 , the dynamics in (8.22) render the set

{col(𝑢1𝑖 , 𝑢2𝑖 ,0)} × ̃𝑖 ×ℝ3 SGPAS as 𝜎𝑖 → 0. □

Proof. See Appendix 8.C. ■

From the proof of Theorem 8.21, it follows that system in (8.22), for all 𝑖 ∈ , satisfies
Assumptions 8.16.

8.3.2 Nash eqilibrium seeking reference controller
To steer the reference positions toward the Nash equilibrium, we implement the following
asynchronous zeroth-order controller:

𝜒 c = col(𝒖,𝝃 ,𝝁, 𝒕) ,

�̇� c = 𝐹 c(𝜒 c)B col(𝟎,𝟎,𝟎,𝝉−1)
if 𝜒 c ∈ 𝐶c B ℝ𝑚 × ×𝕊𝑚 × [0,1]𝑁 , (8.23a)
𝜒 c+ = 𝐺c(𝜒 c), i.e.
⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝒖+ = 𝒖−𝛼𝛽𝑆𝑥(𝝉)𝝃
𝝃+ = 𝝃 +𝛼𝑆𝑥(𝒕)(2𝐴−1𝐽 (𝒙+𝐴𝔻𝝁)𝔻𝝁− 𝝃)
𝝁+ = (𝐼 − 𝑆𝜇(𝒕))𝝁+ 𝑆𝜇(𝒕))𝝁
𝒕+ = (𝐼 − 𝑆𝜏(𝒕))𝒕

if 𝜒 c ∈ 𝐷c B ℝ𝑚 × ×𝕊𝑚 ×R, (8.23b)
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where 𝒖 = col((𝑢1𝑖 , 𝑢2𝑖 )𝑖∈) is used as the reference position for the systems in (8.22),𝝃
is the collective filter state bound in a compact set  ⊂ ℝ𝑁 chosen large enough to en-
compass all possible values of the state for all practical applications, 𝝁 ∈ 𝕊2𝑁 are oscillator
states, 𝒕 are the timer states that control the sampling of each individual robot, 𝝉−1 =
𝜏0 col((𝜏−1𝑖 )𝑖∈) are the sampling periods that satisfy [26, Assum. 9], 𝒙 are the positions of
the unicycles, 𝛼,𝛽 > 0 are small time-scale separation parameters,B blkdiag((𝑖)𝑖∈),

𝑖 B blkdiag
([

cos(𝜔𝑗
𝑖 ) −sin(𝜔𝑗

𝑖 )
sin(𝜔𝑗

𝑖 ) cos(𝜔𝑗
𝑖 ) ]𝑗≤𝑚𝑖)

, 𝜔𝑗
𝑖 > 0 for all 𝑖 and 𝑗 are rotational frequencies and

they satisfy [26, Assum. 8], 𝔻 ∈ ℝ2𝑁×4𝑁 is a matrix that selects every odd row from the
vector of size 2𝑁 , 𝑎𝑖 > 0 are small perturbation amplitude parameters, 𝐴B diag((𝑎𝑖)𝑖≤𝑚),
𝐽 (𝒙) = blkdiag((𝐽𝑖(𝑥𝑖,𝒙−𝑖)𝐼𝑚𝑖)𝑖∈),  ⊂ [0,1]𝑁 is a closed invariant set in which all of the
timers evolve and it excludes the initial conditions and their neighborhood for which
we have concurrent sampling, R B (∪𝑖∈[0,1]𝑖−1 × {1} × [0,1]𝑁−𝑖)∩  is the set of timer
intervals where one agent has triggered its sampling, 𝑆𝑥 ∶  → ℝ𝑚×𝑚 and 𝑆𝜏 ∶  → ℝ𝑁×𝑁

are continuous functions that output diagonal matrices with ones on the positions that
correspond to states and timers of agents with 𝑡𝑖 = 1, respectively, while other elements are
equal to zero, when evaluating at 𝒕 ∈ R.

8.3.3 The full system

We define the collective state 𝜒 B col(𝜒 c, (𝜒 u
𝑖 )𝑖∈), collective flow map 𝐹(𝜒 )B col(𝐹 c(𝜒 c),

1
𝜀 (𝐹

u
𝑖 (𝜒 u

𝑖 ))𝑖∈), collective flow set 𝐶B 𝐶c × (𝐶u
𝑖 )𝑖∈ , collective jump map 𝐺(𝜒 )B col(𝐺c(𝜒 c),

(𝐺u
𝑖 (𝜒 u

𝑖 ))𝑖∈), collective flow set 𝐷B (𝐷c × (𝐶u
𝑖 )𝑖∈)∪ (𝐶c × (𝐷u

𝑖 )𝑖∈), and the equilibrium set
𝜒 B {𝒖∗} × ×𝕊𝑁 × × {col (𝒖∗,𝟎)} × [0,1]𝑁 ×ℝ3𝑁 .
We see that the steady state mapping is given by 𝐻 (𝜒 c) = col (𝒖,𝟎) × [0,1]𝑁 ×ℝ3𝑁 . Hence,
the restricted system is equivalent to the one in [26, Equ. 22]. To show that Assumption 8.17
is satisfied, we note that [26, Thm. 1] and [26, Equ. E.10] assure that the fully discrete-time
zeroth-order variant of the algorithm in [26, Equ. 22], has a Lyapunov function of the form

𝛼a (‖𝒛−𝒖∗‖) ≤ 𝑉a(𝒛) ≤ 𝛼a (‖𝒛−𝒖∗‖)
𝑉a(𝒛+)−𝑉a(𝒛) ≤ −�̂�𝛼 (𝛼)𝛼a (‖𝒛−𝒖∗‖)
for ‖𝒛−𝒖∗‖ ≥max{𝛼𝛽(𝛽),𝛼𝛼(𝛼)},

where 𝒛B 𝒖+𝜼, and 𝜼 is a state of a bounded discrete system [26, Equ. 7]. For the sampled
variant we have as our restricted system, we propose the following Lyapunov function

𝑉1(𝒛)B 1
2 ⟨𝟏− 𝒕 | 𝟏⟩ �̂�𝛼 (𝛼)𝛼a (𝛼−1a (𝛼a (‖𝒛−𝒖∗‖)))+𝑉a(𝒛). (8.24)
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Figure 8.3: State trajectories in the 𝑥 −𝑦 plane. Circle symbols represent locations of the
sources, while the × symbols represent locations of the NE.

Hence, it holds

𝛼a (‖𝒛−𝒖∗‖) ≤ 𝑉1(𝒛) ≤ (𝛼a+𝛼a ◦𝛼−1a ◦𝛼a) (‖𝒛−𝒖∗‖)

�̇�1(𝑧) ≤ − 1
2𝜏0

∑
𝑖∈

𝜏−1𝑖 �̂�𝛼 (𝛼)𝛼a (𝛼−1a (𝛼a (‖𝒛−𝒖∗‖)))

𝑉1(𝒛+)−𝑉1(𝒛) ≤ − 1
2 �̂�𝛼 (𝛼)𝛼a (‖𝒛−𝒖∗‖)

for ‖𝒛−𝒖∗‖ ≥max{𝛼𝛽(𝛽),𝛼𝛼(𝛼)},

which satisfies Assumption 8.17. Furthermore, it is easy to show that Assumptions 8.3, 8.12,
8.14, 8.15 hold as well. Since 𝜏0 can be considered a tuning parameter for jump periods in
the timers states 𝒕 in (8.23), we can guarantee satisfaction of Assumption 8.19. Hence, we
satisfy all the Assumptions of the Corollary 8.20, and for small enough parameters, the
combined dynamics render the set 𝜒 SGPAS as (𝛼,𝛽,max𝜏−1𝑖 , 𝜀,max𝜎𝑖)→ 0.
For our numerical simulations, we choose the parameters: 𝑢𝑠1 = (−4,−8), 𝑢𝑠2 = (−12,−3), 𝑢𝑠3 =
(1,7), 𝑢𝑠4 = (16,8), (𝜎1,𝜎2,𝜎3,𝜎4) = col (2,3,4,2) × 10−3, 𝑐1 = 1

3 , 𝑐3 = 1.5, 𝛼 = 0.05, 𝛽 = 0.003,
𝑐2,𝑖 = 𝜎𝑖, 𝑎𝑖 = 0.1 for all 𝑖, 𝒕(0,0) = (0,0.002,0.004,0.006), the perturbation frequencies𝜔𝑗

𝑖 were
chosen as different natural numbers with added random numbers of maximal amplitude
of 0.5, and the sampling of the Nash equilibrium seeking controller in (8.23) is five time
slower than the sampling of the unicycle controller in (8.22a), i.e. 𝝉 = col(1,1.5,2,1) × 10−2.
The numerical results are illustrated in Figures 8.3 and 8.4. We note that the trajectories
converge to the neighborhood of the Nash equilibrium.
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Figure 8.4: Time response of the unicycle position coordinates. The dashed lines correspond
to the corresponding state of the Nash equilibrium.

8.4 Conclusion
The application of singular perturbation theory can be extended to systems where the
restricted system evolves on the boundary layer manifold through both flows and jumps.
Moreover, by introducing some mild technical assumptions, one can show convergence of
the fast state components towards a restricted attractor set that does not encompass the
complete space of fast variables. With this theoretical extension, we can examine control
systems that employ hybrid plants, along with controllers that are “jump-driven", such as
sampled controllers.

Appendix
8.A Proof of Theorem 8.11
Let Δ > 𝛿 > 0 be given. We denote with 𝜌 the maximum distance to the equilibrium set
×2 for trajectories starting in (+Δ𝔹) ×2, which we characterize later on. Next, due
to the fact that both×2 and𝜌 are unbounded in the dimensions corresponding to
the same states, it follows that for any 𝜌 > 0, there exists a 𝑃 > 0 such that ‖𝑥‖×2 ≤ 𝜌
implies that ‖𝑥‖𝜌 ≤ 𝑃 . We consider the system in (8.1) with restricted flow and jump sets:

𝐶 B ((+𝜌𝔹) ∩1) ×2 (8.25a)
𝐷B ((+𝜌𝔹) ∩𝐷1) ×𝐷2. (8.25b)

By plugging in Δ = 𝑃 in Assumption 8.6, and Δ = 𝜌 in Assumptions 8.10, we construct the
following Lyapunov function candidate:

𝑉 (𝑥) = 𝑉1(𝑥1)+
√
𝜀𝑉2,𝜌(𝑥). (8.26)
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8.A.1 Analysis of the jumps
The Lyapunov function after jumps equals to

𝑉 (𝑔) = 𝑉1(𝑔1)+
√
𝜀𝑉2,𝜌(𝑔), (8.27)

where [
𝑔1
𝑔2 ] = 𝑔 ∈ 𝐺(𝑥). We prove the following Lemma:

Lemma 8.22. Consider the hybrid system in (8.1) with restricted flow and jump sets in (8.25),
and let Assumptions 8.2—8.10 hold. For every 𝑒 > 0 and Δ > 0, there exists 𝑣 > 0, such that
‖𝑥‖𝜌 ≤ 𝑣 implies that

sup
[
𝑔1
𝑔2 ]∈𝐺(𝑥)

𝑉1(𝑔1)−𝑉1(𝑥1) ≤ sup
𝑔r1∈𝐺r(𝑥1)

𝑉1(𝑔r1)−𝑉1(𝑥1)+ 𝑒
2 .

Proof. For the sake of contradiction, we assume that there exists 𝑒 > 0 such it holds

sup
[
𝑔1
𝑔2 ]∈𝐺(𝑥)

𝑉1(𝑔1)−𝑉1(𝑥1) > sup
𝑔r1∈𝐺r(𝑥1)

𝑉1(𝑔r1)−𝑉1(𝑥1)+ 𝑒
2 ,

∀𝑥 ∈ ((+𝜌𝔹) ∩1) ×2. (8.28)

We define a sequence (𝑥 𝑖)𝑖∈ℕ ∈ 1 ×2 such that ‖‖𝑥 𝑖‖‖𝜌
≤ 1

𝑖 and that it satisfies the
inequality in Equation (8.28). Let 𝑥′ B col(𝑥1, 𝑥′2), and 𝜌

′ be a projection of 𝜌 onto
the subspace of bounded states, 1 × ′

2. It holds that ‖‖𝑥 𝑖‖‖𝜌
≤ 1

𝑖 implies ‖‖‖𝑥
′𝑖‖‖‖𝜌 ′

≤ 1
𝑖 .

Furthermore, it follows that the sequence 𝑥′𝑖 is bounded. Due to Assumption 8.2, we
conclude that the sequence (𝑔′𝑖)𝑖∈ℕ, where 𝑔

′𝑖 ∈ 𝐺1(𝑥′𝑖), is also bounded. Thus, due to the
Weierstrass theorem, there exists a convergent subsequence that converges to the point
(𝑥′∗, 𝑔′∗), where 𝑥′∗ ∈𝜌

′. Next, due to the outer semi-continuity of the mappings 𝐺 and
𝐻 , it holds that 𝑥′2

∗ ∈ 𝐻1(𝑥∗1 ), 𝑔′
∗ ∈ 𝐺1(𝑥′∗) and 𝑔∗1 ∈ 𝐺r(𝑥∗1 ). Therefore, it follows that

sup

[
𝑔∗1
𝑔′2

∗ ]∈𝐺1(𝑥∗1 ,𝑥
′
2
∗)

𝑉1(𝑔∗1 )−𝑉1(𝑥∗1 ) > sup
𝑔r1∈𝐺r(𝑥∗1 )

𝑉1(𝑔r1)−𝑉1(𝑥∗1 )+ 𝑒
2 ⟹ 0 > 𝑒

2

which leads us to a contradiction and, in turn, proves the Lemma. ■

If 𝜀 is chosen such that √
𝜀 ≤ 𝑒

2𝑉 , where 𝑉 B sup𝑥∈1∩(+𝜌𝔹)×2 ,𝑔∈𝐺(𝑥)
‖‖𝑉2,𝜌(𝑔)‖‖, then due to

Lemma 8.22, it holds that for any 𝑒 > 0 and Δ > 0, there exist 𝑣 > 0 and 𝜀∗ such that for
every 𝜀 ∈ (0, 𝜀∗), inequality ‖𝑥‖𝜌 ≤ 𝑣 implies that

sup
𝑔∈𝐺(𝑥)

𝑉 (𝑔)−𝑉 (𝑥) ≤ −�̂�𝛾 (𝛾)𝛼1(‖𝑥1‖)+ 𝑒

for ‖𝑥1‖ ≥ 𝛼𝛾 (𝛾) (8.29)

The previous condition is always satisfied during jumps if ‖𝑥‖𝜌 ≤ 𝑣 holds true before
jumps. Thus, we have the following result:
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Lemma 8.23. Consider the hybrid system in (8.1) with restricted flow and jump sets in (8.25),
and let Assumptions 8.2, 8.3, 8.6 hold. Then, for every 𝑣 > 0, and 𝜌 > 0 there exists 𝜏∗ > 0,
𝜀∗ and 𝛽∗, such that for every 𝜀 ∈ (0, 𝜀∗), 𝛽 ∈ (0,𝛽∗), it holds that if trajectory 𝑥 satisfies
‖𝑥(𝑡, 𝑗)‖×2 ≤ 𝜌 for all 𝑡 ∈ dom(𝑥(⋅, 𝑗)), then ‖𝑥(𝑡, 𝑗)‖𝜌 ≤ 𝑣 for all 𝑡 ∈ dom(𝑥(⋅, 𝑗)) such that
𝑡 ≥ 𝜏∗. □

Proof. From Assumption 8.6, the derivative of the Lyapunov function candidate, for Δ = 𝑃 ,
reads as

⟨∇𝑉2,𝜌(𝑥)
|||| [

𝑓1
1
𝜀 𝑓2 ]⟩

≤ − 1
𝜀 𝛼2,𝜌(‖𝑥‖𝜌)+⟨∇𝑉2,𝜌(𝑥)

||| [
𝑓1
0 ]⟩

for ‖𝑥‖𝜌 ≥ 𝛼𝛽(𝛽).

We define the constant

𝜇B sup
𝑥∈1∩(+𝜌𝔹)×2

⟨∇𝑉2,𝜌(𝑥)
||| [

𝑓1
0 ]⟩ .

Then, the Lyapunov derivative is given by

⟨∇𝑉2,𝜌(𝑥)
|||| [

𝑓1
1
𝜀 𝑓2 ]⟩

≤ − 1
𝜀 𝛼2,𝜌(‖𝑥‖𝜌)+𝜇

for ‖𝑥‖𝜌 ≥ 𝛼𝛽(𝛽).

Let 𝛽∗ = 𝛼−1𝛽 (𝛼2,𝜌
−1

(𝛼2,𝜌 (𝑣))), 𝑚 = 1
2𝛼2,𝜌(𝛼2,𝜌

−1
(𝛼2,𝜌 (𝑣))) and 𝜀∗ = 𝑚

𝜇 . It follows that
for any time interval (𝑡, 𝑡 + 𝜏) where only flowing occurred, for any 𝜀 ∈ (0, 𝜀∗), 𝛽 ∈ (0,𝛽∗) it
holds

�̇� 𝑃
2,𝜌(𝑥(𝑡, 𝑗)) ≤ −𝜇

for ‖𝑥‖𝜌 ≥ 𝛼2,𝜌−1(𝛼2,𝜌 (𝑣))

∫
𝑡+𝜏

𝑡
𝑑𝑉2,𝜌(𝑥(𝑡, 𝑗)) ≤ −𝜇∫

𝑡+𝜏

𝑡
𝑑𝑡

𝑉2,𝜌(𝑥(𝑡 + 𝜏, 𝑗)) ≤ 𝑉2,𝜌(𝑥(𝑡, 𝑗))−𝜇𝜏

for ‖𝑥‖𝜌 ≥ 𝛼2,𝜌−1(𝛼2,𝜌 (𝑣)). (8.30)

As we assume ‖𝑥(𝑡, 𝑗)‖𝜌 ≤ 𝑃 , from the bounds of the Lyapunov function in 8.6, we have

‖𝑥(𝑡 +𝛿𝑡, 𝑗)‖𝜌 ≤ 𝛼2,𝜌−1 (𝛼2,𝜌 (‖𝑥(𝑡, 𝑗)‖)−𝜇𝛿𝑡)

≤ 𝛼2,𝜌−1 (𝛼2,𝜌 (𝑃)−𝜇𝛿𝑡) ≤ 𝑣. (8.31)

From the last inequality, it follows that 𝜏 ≥ 𝜏∗ B 𝜎−1
(
𝛼2,𝜌(𝑃)−𝛼2,𝜌(𝑣)

𝜇 ), which proves the
Lemma. ■
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It follows from (8.29) and Lemmas 8.22 and 8.23 that for any 𝑒 > 0, Δ > 0, there exist
parameters 𝜀∗1 , 𝛽∗1 , and 𝜏∗ such that for any 𝜀 ∈ (0, 𝜀∗1 ), 𝛽 ∈ (0,𝛽∗1 ), if the time between
consecutive jumps is larger than 𝜏∗, it holds that

sup
𝑔∈𝐺(𝑥)

𝑉 (𝑔)−𝑉 (𝑥) ≤ −�̂�𝛾 (𝛾)𝛼1 (‖𝑥1‖)+ 𝑒 (8.32)

for ‖𝑥1‖ ≥ 𝛼𝛾 (𝛾).

8.A.2 Analysis of the flows
The Lyapunov derivative is given by

sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥)
⟨∇𝑉 (𝑥)

|||| [
𝑓1
1
𝜀 𝑓2 ]⟩

= sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥)
(⟨∇𝑉1(𝑥) | 𝑓1⟩+

√
𝜀⟨∇𝑉2,𝜌(𝑥)

|||| [
𝑓1
1
𝜀 𝑓2 ]⟩)

≤ sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥)
(⟨∇𝑉1(𝑥) | 𝑓1⟩+

|||⟨∇𝑉2,𝜌(𝑥)
||| [

𝑓1
0 ]⟩

||| +
1√
𝜀 ⟨∇𝑉2,𝜌(𝑥)

||| [
0
𝑓2 ]⟩)

≤ −�̂�𝜏(𝜏)�̂�𝛾 (𝛾)𝛼1 (‖𝑥1‖)+𝜇(𝑥)+ sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥)

1√
𝜀 ⟨∇𝑉2,𝜌(𝑥)

||| [
0
𝑓2 ]⟩ ,

for ‖𝑥1‖ ≥ 𝛼𝛾 (𝛾), ‖𝑥‖𝜌 ≥ 𝛼𝛽(𝛽), (8.33)

where 𝜇(𝑥) = − sup
𝑓 r1 ∈𝐹r(𝑥1)

(− ⟨∇𝑉1(𝑥) | 𝑓 r
1 ⟩)+ sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥),
(⟨∇𝑉1(𝑥) | 𝑓1⟩+

|||⟨∇𝑉2,𝜌(𝑥)
||| [

𝑓1
0 ]⟩

|||) .

Let 𝑣 > 𝛼𝛽(𝛽) be chosen arbitrarily and let

𝜀∗ =
𝛼2𝜌2(𝑣)

sup𝑥∈1∩(+𝜌𝔹)×2 ‖𝜇(𝑥)‖
2 . (8.34)

Then it holds that

sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥)
⟨∇𝑉 (𝑥)

|||| [
𝑓1
1
𝜀 𝑓2 ]⟩

≤ −�̂�𝜏(𝜏)�̂�𝛾 (𝛾)𝛼1 (‖𝑥1‖) ,

for ‖𝑥‖𝜌 ≥ 𝑣, ‖𝑥1‖ ≥ 𝛼𝛾 (𝛾), (8.35)

sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥)
⟨∇𝑉 (𝑥)

|||| [
𝑓1
1
𝜀 𝑓2 ]⟩

≤ −�̂�𝜏(𝜏)�̂�𝛾 (𝛾)𝛼1 (‖𝑥1‖)+𝜇(𝑥)+ 1√
𝜀 �̂�𝛽(𝛽),

for ‖𝑥‖𝜌 < 𝑣, ‖𝑥1‖ ≥ 𝛼𝛾 (𝛾), (8.36)
which is combined into

sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥)
⟨∇𝑉 (𝑥)

|||| [
𝑓1
1
𝜀 𝑓2 ]⟩

≤ −�̂�𝜏(𝜏)�̂�𝛾 (𝛾)𝛼1 (‖𝑥1‖)+ sup
‖𝑥‖𝜌≤𝑣

𝜇(𝑥)+ 1√
𝜀 �̂�𝛽(𝛽),

for ‖𝑥1‖ ≥ 𝛼𝛾 (𝛾). (8.37)
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The next Lemma shows that the positive terms in the Lyapunov derivative, with the proper
choice of tuning parameters 𝜀 and 𝛽, can be made arbitrarily small.

Lemma 8.24. Consider the hybrid system in (8.1) with restricted flow and jump sets in (8.25),
and let Assumptions 8.2—8.10 hold. For every 𝑒 > 0, Δ > 0, there exists 𝜀∗ > 0, 𝛽∗(𝜀) > 0, such
that for any 𝜀 ∈ (0, 𝜀∗), 𝛽 ∈ (0,𝛽∗(𝜀)), it holds that sup‖𝑥‖𝜌≤𝑣

𝜇(𝑥)+ 1√
𝜀 �̂�𝛽(𝛽) ≤ 𝑒. □

Proof. We consider the following inequalities:

sup
‖𝑥‖𝜌≤𝑣

𝜇(𝑥) ≤ 𝑒
2 (8.38)

1√
𝜀 �̂�𝛽(𝛽) ≤

𝑒
2 . (8.39)

If they hold, so does the inequality in the Lemma. The proof that inequality in (8.38) can be
made arbitrarily small by choice of small 𝑣, and hence smaller 𝜀∗ due to (8.34), is analogous
to the proof of Lemma 8.22, and thus it is omitted. Then, to satisfy inequality (8.39), it is
sufficient to have 𝛽∗ Bmin(�̂�

−1
𝛽 (𝑒

√
𝜀) ,𝛼−1𝛽 (𝑣)) and 𝛽 ∈ (0,𝛽∗). ■

From Equations (8.37) and Lemma 8.24, it follows that for any 𝑒 > 0, Δ > 0, there exists 𝜀∗2 ,
𝛽∗2 (𝜀2) such that for any 𝜀 ∈ (0, 𝜀∗2 ) and 𝛽2 ∈ (0,𝛽∗2 (𝜀2)), we have

sup

[
𝑓1
𝑓2 ]

∈𝐹(𝑥)
⟨∇𝑉 (𝑥)

|||| [
𝑓1
1
𝜀 𝑓2 ]⟩

≤ −�̂�𝜏(𝜏)�̂�𝛾 (𝛾)𝛼1 (‖𝑥1‖)+ 𝑒,

for ‖𝑥1‖ ≥ 𝛼𝛾 (𝛾). (8.40)

8.A.3 Complete Lyapunov analysis
We denote by 𝜙(𝑡, 𝑗) a solution of the system that contains only 𝜎(𝜏) regular jumps. Let
𝛾 be chosen so that 𝛾 ∈ (0, 𝛾∗), where 𝛾∗ B min(𝛼−1𝛾 (𝛼1−1( 12𝛼1 (𝛿))), 𝛾). Next, 𝜂 is defined
as 𝜂 B 1

2 min{𝛼1 (𝛿) ,𝛼1(𝛼𝛾 (𝛾∗)),2}. Via Equation (8.29) and Lemmas 8.22 and 8.23, for
𝑒 = �̂�𝛾 (𝛾)𝜂, we have 𝜏∗, 𝜀∗1 , 𝛽∗1 . Next, we choose 𝜏 ∈ (0,min(𝜏∗, 𝜏)). From Equation (8.37) and
Lemma 8.24 for 𝑒 = �̂�(𝜏)�̂�𝛾 (𝛾)𝜂, we have 𝜀∗2 , 𝛽∗2 (𝜀). Finally, let

𝜀∗3 =
𝜂2

sup𝑥∈1∩(+𝜌𝔹)×2𝛼2,𝜌(‖𝑥‖𝜌)
2 . (8.41)

We define 𝜀∗Bmin{𝜀∗1 , 𝜀∗2 𝜀∗3 , 𝜀}, 𝛽∗(𝜀)Bmin{𝛽∗1 ,𝛽∗2 (𝜀), 𝛽}, and set the parameters as follows:
𝜀 ∈ (0, 𝜀∗), 𝛽 ∈ (0,𝛽∗(𝜀)). From Equations (8.32) and (8.40), it follows that

𝑉 (𝜙(𝑡, 𝑗))−𝑉 (𝜙(0,0))

≤ −
𝑗

∑
𝑖=0

∫
𝑡𝑖+1

𝑡𝑖
�̂�𝜏(𝜏)�̂�𝛾 (𝛾)𝛼1 (‖𝜙1(𝑠, 𝑖)‖)𝑑𝑠−

𝑗

∑
𝑖=1

�̂�𝛾 (𝛾)𝛼1 (‖𝜙1 (𝑡𝑖, 𝑖−1)‖)

≤ −(�̂�𝜏(𝜏)𝑡 + 𝑗)�̂�𝛾 (𝛾)(𝛼1 (‖𝑥1‖)− 𝜂) ,

for ‖𝜙1(𝑡, 𝑗)‖ ≥ 𝛼𝛾 (𝛾). (8.42)
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As 𝜂 ≤ 1
2𝛼1(𝛼𝛾 (𝛾)) and 𝛼𝛾 (𝛾∗) < 𝛼𝛾 (𝛾∗), we rewrite the last inequality as

𝑉 (𝜙(𝑡, 𝑗)) ≤ 𝑉 (𝜙(0,0))− 1
2 (�̂�𝜏(𝜏)𝑡 + 𝑗)𝛼1 (𝛼𝛾 (𝛾∗)) ,

for ‖𝜙1(𝑡, 𝑗)‖ ≥ 𝛼𝛾 (𝛾∗), (8.43)

We can guarantee the decrease of the Lyapunov function up to the smallest Lyapunov level
set that contains the set (+𝛼𝛾 (𝛾∗))𝔹) ×2. Via equation 8.43, we move on to proving
semi-global boudness and practical attractivity of the equilibrium set.

Semi-global boundness
By definition, 𝜀 ≤ 𝜀∗3 . Thus, the upper and lower bound of the Lyapunov function candidate
are given by

𝛼1 (‖𝑥1‖) ≤ 𝑉 (𝑥) ≤ 𝛼1 (‖𝑥1‖)+
√
𝜀𝛼2,𝜌(‖𝑥‖𝜌)

≦ 𝛼1 (‖𝑥1‖)+ 𝜂 (8.44)

From (8.43) and (8.44), for 𝜎(𝜏)-reggular trajectories 𝜙, it holds that

𝛼1 (‖𝜙1(𝑡, 𝑗)‖) ≤ 𝛼1 (‖𝜙1(0,0)‖)+ 𝜂,

for ‖𝜙1(𝑡, 𝑗)‖ ≥ 𝛼𝛾 (𝛾∗). (8.45)

Themaximal distance to the equilibrium of a 𝜎(𝜏)-regular trajectory 𝜙(𝑡, 𝑗) starting at (𝑡, 𝑗) =
(0,0) is given in (8.45) by ‖𝜙1(𝑡, 𝑗)‖ ≤ 𝜌C (𝛼1 (‖𝜙1(0,0)‖)), where 𝜌C ∶ ℝ+ → ℝ+,𝜌C (𝑎)B
𝛼1−1 (𝛼1 (𝑎)+1). By the outer semi-continuity and local boundness of the mapping 𝐺 in
(8.5) for all allowed sets of parameters, for each 𝑟 > 0, there exists a 𝑟 , 𝑟 > 0, such that
𝐺1 ((+ 𝑟𝔹) × ′

2) ⊂ 𝐺1( × ′
2) + 𝑟𝔹 ⊂ (+ 𝑟𝔹) × ′

2. Via this property, we define the
mapping 𝜌D ∶ ℝ+ → ℝ+,𝜌C (𝑟)B 𝑟 . Thus, for any initial condition such that ‖𝜙(0,0)‖×2 ≤
Δ, the maximal distance from the equilibrium set after 𝑁 irregular jumps, not necessarily
consecutive jumps, is given by 𝜌 = 𝜌C ◦𝜌D ◦⋯ ◦𝜌C(Δ), where 𝜌D repeats 𝑁 times, and 𝜌C
repeats 𝑁 +1 times.

Semi-global stability for 𝜎(𝜏) trajectories
Let us consider trajectories after the 𝑁 irregular jumps. We show that for any 𝑅 ≥ 𝛿, there
exists 𝑟 > 0, such that ‖𝜙(𝑙, 𝑖)‖×2 ≤ 𝑟 ⟹ ‖𝜙(𝑡, 𝑗)‖×2 ≤ 𝑅 for 𝑙+ 𝑖 ≤ 𝑡+ 𝑗 . From (8.45) and
𝜂 ≤ 1

2𝛼1 (𝛿), it follows that

‖𝜙1(𝑙, 𝑖)‖ ≤ 𝛼1−1 (𝛼1 (𝑅)− 1
2𝛼1 (𝛿)) ,

for ‖𝜙1(𝑡, 𝑗)‖ ≥ 𝛼𝛾 (𝛾∗). (8.46)

We note that the previous inequality holds up to the smallest radius of interest 𝑟 =
𝛼1−1 ( 1

2𝛼1 (𝛿)), because 𝛾
∗ ≤ 𝛼−1𝛾 (𝛼1−1 ( 1

2𝛼1 (𝛿))). Then, for any 𝑅 ≥ 𝛿, and all 𝛾 ∈ (0, 𝛾∗),
we have 𝑟(𝑅)Bmin

{
𝛼1−1 (𝛼1 (𝑅)− 𝜂) ,Δ

}
.
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Practical attractivity
Without of loss of generality, we assume 𝑅, 𝑟 are given so that Δ ≥ 𝑅 ≥ 𝑟 ≥ 𝛿. We have to
show that there exists a period 𝑇 ≥ 0, such that ‖𝜙(0,0)‖×2 ≤ 𝑅 ⟹ ‖𝜙(𝑡, 𝑗)‖×2 ≤ 𝑟 for
all (𝑡, 𝑗) such that 𝑡 + 𝑗 ≥ 𝑇 .
Let (𝑙, 𝑖) be the hybrid time instant after the 𝑁 irregular jumps. By Assumption 8.9, it holds
𝑙+ 𝑖 ≤ 𝑇 ∗. Then, from (8.43), for 𝜙(0,0) replaced with 𝜙(𝑙, 𝑖), it follows

𝛼1 (𝑟) ≤ 𝛼1 (𝜌)− 1
2𝛼1 (𝛼𝛾 (𝛾

∗)) [(�̂�𝜏(𝜏)(𝑡 − 𝑙)+ 𝑗 − 𝑖)], (8.47)

Then, when we have

𝑡 + 𝑗 ≤ 2(𝛼1(𝜌)−𝛼1(𝑟))
min{�̂�𝜏 ,1}𝛼1(𝛼𝛾 (𝛾∗)) + 𝑇 ∗ = 𝑇 (𝑅, 𝑟). (8.48)

Conclusion
Our restricted system renders the set ×2 practically attractive. Finally, to show the
equivalence between the solutions of the original and restricted system, it is possible to
use the same procedure as in [78] after Equation (29). ■

8.B Proof of Theorem 8.13
Let Δ > 𝛿 > 0 be the parameters of semi-global practical stability. We denote with 𝜌 the
maximum distance ‖𝜙(𝑡, 𝑗)‖× for trajectories starting in+Δ𝔹. On the other hand,
as it is possible to a priori bound the distance ‖𝜙(𝑡, 𝑗)‖

with 𝑃 > 0, see Remark 8.29,
we “redefine" the set  ′

2 as a compact set ({𝑥′2 ∣ 𝑥1 ∈, 𝑥′2 ∈ 𝐻1(𝑥1)}+𝑃𝔹)∩ ′
2. The same

procedure as in the proof of Theorem 8.11 can be repeated. From Equations (8.31) and
(8.48), we have

‖𝜙(𝑡, 𝑗)‖𝜌 ≤ 𝑣 for all 𝑡 ∈ dom(𝜙(⋅, 𝑗))

s.t. 𝑡 ≥ 𝜎(𝜏∗(𝑃,𝑣)), (8.49)
‖𝜙(𝑡, 𝑗)‖×2 ≤ 𝑟 for all (𝑡, 𝑗) ∈ dom(𝜙)

s.t. 𝑡 + 𝑗 ≥ 𝑇 (Δ, 𝑟), (8.50)

A key observation is that the intersection of sets ×2 and 𝜌 gives us the set , for
which we want to prove stability. Distance to the set  ×2 is given by (8.50), and the
distance to the set𝜌 is given by (8.49). Thus, it is possible to quantify the distance to the
equilibrium set using the distances of the latter two sets using the following results:
Lemma 8.25. Let , be nonempty sets defined on a metric space, where at least one is
bounded. Let their intersection  be nonempty. Then, for every 𝑑 > 0, there exists 𝑑 > 0, such
that ‖𝑥‖ ≤ 𝑑 and ‖𝑥‖ ≤ 𝑑 implies that ‖𝑥‖ ≤ 𝑑. □

Proof. Let us assume otherwise, i.e., there exists some 𝑑 > 0 such that for any 𝑑 > 0, there
exists 𝑥 such that it holds ‖𝑥‖ > 𝑑. Let us create a sequence of these points, (𝑥𝑖)𝑖∈ℕ, such that
‖𝑥𝑖‖ ≤ 1

𝑖 and ‖𝑥𝑖‖ ≤ 1
𝑖 . Because the sequence is bounded, there must exist a convergent

subsequence. Let one such subsequence converge to 𝑥∗. Because of the continuity of
the metric, it holds that ‖𝑥∗‖ = 0 and ‖𝑥∗‖ = 0. Thus, 𝑥∗ ∈ cl () and 𝑥∗ ∈ cl (), or in
other words 𝑥∗ ∈ cl () ∩ cl () ≡ cl (). Then it holds ‖𝑥∗‖ = 0, which is opposite of our
assumption. ■
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Lemma 8.26. Let , be nonempty sets defined on a metric space. Let their intersection 
be nonempty and bounded. Then, for every 𝑑 > 0, there exists 𝑑 > 0, such that ‖𝑥‖ ≤ 𝑑 implies
‖𝑥‖ ≤ 𝑑 and ‖𝑥‖ ≤ 𝑑. □

Proof. Let us assume otherwise, i.e there exists some 𝑑 > 0 such that for any 𝑑 > 0, there
exists 𝑥 such that ‖𝑥‖ > 𝑑 and ‖𝑥‖ > 𝑑. Let us create a sequence of these points, (𝑥𝑖)𝑖∈ℕ,
such that ‖𝑥‖ ≤ 1

𝑖 . Because the sequence is bounded, there must exist a convergent
subsequence. Let one such subsequence converge to 𝑥∗. Because of the continuity of the
metric, it holds that ‖𝑥∗‖ = 0. Thus, 𝑥∗ ∈ cl () or in other words 𝑥∗ ∈ cl ()≡ cl ()∩cl ().
Then it holds ‖𝑥∗‖ = 0 and ‖𝑥∗‖ = 0, which is opposite of our assumption. ■

Remark 8.27. Although we assume boundedness of some of the sets in Lemmas 8.25 and
8.26, it is possible to prove the same results for the cases when  and  are unbounded in the
same dimensions, which is the case in our setup.

Semi-global stability
To prove practical stability, we show that for any 𝑅 ≥ 𝛿, there exists a neighborhood of
the equilibrium, + 𝑟𝔹, such that any trajectory initiated in the neighborhood will stay
inside the set  +𝑅𝔹, for properly chosen parameters. But first, we prove a similar
result for regular trajectories of the restricted system.

Lemma 8.28 (Semi-global stability-like property). Consider the hybrid system in (8.1) with
restricted flow and jump sets in (8.25), and let Assumptions 8.2, 8.3, 8.4, 8.6, 8.10 hold. Then, for
every 𝑣 ≥ 𝛿, there exists a 𝑣 > 0, and a set of tuning parameters 𝜀∗, 𝜏∗,𝛽∗(𝜀), 𝛾∗, such that for
all regular trajectories 𝜙 with ‖𝜙(0,0)‖

≤ 𝑣 and 𝜀 ∈ (0, 𝜀∗), 𝜏 ≥ 𝜏∗,𝛽 ∈ (0,𝛽∗(𝜀)), 𝛾 ∈ (0, 𝛾∗),
it holds that ‖𝜙(𝑡, 𝑗)‖

≤ 𝑣 for all (𝑡, 𝑗) ∈ dom(𝜙). □

Proof. Sketch of the proof
First, we find �̂� > 0 such that any trajectory initiated in+ �̂�𝔹, stays in+ 𝑣𝔹 during
flows. Then we find �̃� > 0 such that jumps from+ �̃�𝔹 will end in + �̂�𝔹. Next, we
find 𝑣 such that any trajectory initiated in+𝑣𝔹, stays in+ �̃�𝔹 during flows. Finally,
we choose 𝜀, 1𝜏 , 𝛽, 𝛾 small enough such that all trajectories end up in+𝑣𝔹 before jumps.

Consider the following system of implications:

‖𝜙(0,0)‖
≤𝑣

(1)
⇒

‖𝜙(0,0)‖×2 ≤ 𝑢
‖𝜙(0,0)‖𝜌 ≤ 𝑢

(2)
⇒

‖𝜙(𝑡,0)‖×2 ≤ �̃�
‖𝜙(𝑡,0)‖𝜌 ≤ �̃�

(3)
⇒ ‖𝜙(𝑡,0)‖

≤ �̃�

(4)
⇒ ‖𝜙(𝑡,1)‖

≤ �̂�
(5)
⇒

‖𝜙(𝑡,1)‖×2 ≤ �̂�
‖𝜙(𝑡,1)‖𝜌 ≤ �̂�

(6)
⇒

‖𝜙(𝑙,1)‖×2 ≤ 𝑢
‖𝜙(𝑙,1)‖𝜌 ≤ 𝑢

(7)
⇒ ‖𝜙(𝑙,1)‖

≤ 𝑣.

Implication (7) follows from Lemma 8.25, while implication (6) follows from Equations (8.46)
with �̂�1 ≤ 𝛼1−1 (𝛼1 ( 1

2𝑢)), Equation (8.30) and �̂�1 = 𝛼2,𝜌−1(𝛼2,𝜌 (𝑢)), and �̂� = min{�̂�1, �̂�2};
Implication (5) follows from Lemma 8.26; Implication (4) proceeds from [80, Lemma
5.15], outer semicontinuity, local boundedness of the mapping 𝐺, Assumption 8.12, thus
for every �̂� > 0, there exists a �̃� ≤ �̂� such that 𝐺( + �̃�𝔹) ⊂  + �̂�𝔹; Implication
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(3) follows from Lemma 8.25, while implication (2) follows from Equations (8.46) with
𝑢1 = 𝛼1−1 (𝛼1 ( 1

2 �̃�)), Equation (8.30) and 𝑢2 = 𝛼2,𝜌−1(𝛼2,𝜌 (�̃�)) and 𝑢 = min{𝑢1, 𝑢2}; Im-
plication (1) follows from Lemma 8.26. To satisfy the inequalities in Equations (8.46),
(8.30), let 𝜂 = 1

2 min{𝛼1 (𝑢) ,𝛼1 (𝛼1−1 ( 1
2𝛼1 (𝑢))) ,2}, 𝛾

∗B 𝛼−1𝛾 (𝛼1−1 ( 1
2𝛼1 (𝑢))), 𝛾 ∈ (0, 𝛾

∗); Via
Equation (8.29) and Lemmas 8.22 and 8.23, for 𝑒 = �̂�𝛾 (𝛾)𝜂, we have 𝜏∗, 𝜀∗1 , 𝛽∗1 . Next, we
choose 𝜏 ∈ (0,min(𝜏∗, 𝜏)). From Equation (8.37) and Lemma 8.24 for 𝑒 = �̂�(𝜏)�̂�𝛾 (𝛾)𝜂, we
have 𝜀∗2 , 𝛽∗2 (𝜀). Finally, let 𝜀∗3 be defined as in (8.41). We define 𝜀∗ B min{𝜀∗1 , 𝜀∗2 𝜀∗3 , 𝜀},
𝛽∗(𝜀)Bmin{𝛽∗1 ,𝛽∗2 (𝜀), 𝛽}, and set the parameters as follows: 𝜀 ∈ (0, 𝜀∗), 𝛽 ∈ (0,𝛽∗(𝜀)).
Furthermore, as Equation (8.46) holds for jumps and flows, it follows that ‖𝜙(𝑙,1)‖×2 ≤ �̃�,
and due to Lemma 8.23, it holds that ‖𝜙(𝑙,1)‖𝜌 ≤ �̃� for 𝑙 ≥min𝑡 dom(𝜙(⋅,1))+𝜎(𝜏∗). Thus,
it is possible to follow the same reasoning with implications (3) to (7) for the next and all
the following regular jumps, which proves our Lemma. ■

Remark 8.29. We can “reverse" Lemma 8.28 so that we claim that for every 𝑣 > 0, there
exists a 𝑣 > 0 that satisfies the same inequality. Then, by doing an inverse procedure of the
proof of stability, we can derive 𝑃 > 0 such that ‖𝜙(0,0)‖

≤ Δ implies that ‖𝜙(𝑡, 𝑗)‖
≤ 𝑃 .

These bounds depend on the proprieties of mapping 𝐺 and the lower and upper bounds of the
Lyapunov functions, thus, can be computed a priori. □

Let 𝑁 be the number of irregular jumps for the given Δ. Via Lemma 8.28, for 𝑣 = 𝑅,
we find 𝑟𝑁 = 𝑣 and parameters 𝜀∗𝑁 , 𝜏∗𝑁 ,𝛽∗𝑁 (𝜀), 𝛾∗𝑁 . Then, from [80, Lemma 5.15], outer
semicontinuity, local boundedness of the mapping 𝐺, Assumption 8.12, we can find 𝑟𝑁 such
that 𝐺(+ 𝑟𝑁𝔹) ⊂+ 𝑟𝑁𝔹. Then again we use Lemma 8.28, with 𝑣 = 𝑟𝑁 , to find 𝑣 =
𝑟𝑁−1 and parameters 𝜀∗𝑁−1, 𝜏∗𝑁−1,𝛽∗𝑁−1(𝜀), 𝛾∗𝑁−1. These steps are repeated until we reach the
first jump. Then, we use Lemma 8.28, for 𝑣 = 𝑟1 to find 𝑟 = 𝑣 and parameters 𝜀∗0 , 𝜏∗0 ,𝛽∗0 (𝜀), 𝛾∗0 .
We note that for 𝜀∗ B min{𝜀∗0 ,… , 𝜀∗𝑁 }, 𝜏∗ B max{𝜏∗0 ,… , 𝜏∗𝑁 }, 𝛽∗(𝜀) B min{𝛽∗0 (𝜀),… ,𝛽∗𝑁 (𝜀)}
and 𝛾∗ Bmin{𝛾∗0 ,… , 𝛾∗𝑁 }, all the inequalities hold.

Practical attractivity
Without the loss of generality, we assume 𝑅, 𝑟 are given so that Δ ≥ 𝑅 ≥ 𝑟 ≥ 𝛿. Let (𝑙, 𝑖)
be a hybrid time instant after the 𝑁 irregular jumps. By Assumption 8.9, it holds 𝑙+ 𝑖 ≤
𝑇 ∗. Furthermore, Lemma 8.28 gives us 𝑟 = 𝑣 for 𝑣 = 𝛿, and the corresponding tuning
parameters 𝜀∗, 𝜏∗,𝛽∗(𝜀), 𝛾∗. From the definition of parameters in Lemma 8.28, it follows that
the Lyapunov derivatives and differences for functions in Equation (8.26) and Assumption
8.6, are defined for ‖𝜙(𝑡, 𝑗)‖×2 ≥ 𝑢, ‖𝜙(𝑡, 𝑗)‖𝜌 ≥ 𝑢, where 𝑢 is given in the the system
of implications in (8.51). Thus Equations (8.49) and (8.50) guarantee that the trajectories
eventually enter and stay in �̃� neighborhoods before jumps, for 𝑣 = 𝑟 = 𝑢. And from our
practical-stability result, it follows that the trajectory stays in the 𝑟 neighborhood ■

8.C Proof of Theorem 8.21
Similarly to [149, Equ. 13], let the Lyapunov function candidate be given by

𝑉𝑖(𝑞𝑖)B 1
2 (𝑥

𝑒
𝑖 − 𝑐3𝜔𝑖𝑦𝑒𝑖 )

2+ 1
2𝑦

𝑒
𝑖
2+ 1

2𝜃
𝑒
𝑖
2, (8.51)
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where 𝑞𝑖 = col(𝑥𝑖, 𝑦𝑖, 𝜃𝑒𝑖 , 𝜏𝑖, 𝜃𝑖, �̂�𝑖, �̂�𝑖). First, we characterize the upper and lower bounds of
the Lyapunov function candidate. It holds

𝑉𝑖(𝑞𝑖) = 1
2𝑥

𝑒
𝑖
2− 𝑐3𝜔𝑖𝑥𝑒𝑖 𝑦

𝑒
𝑖 + 1

2 𝑐
2
3𝜔

2
𝑖 𝑦

𝑒
𝑖
2+ 1

2𝑦
𝑒
𝑖
2+ 1

2𝜃
𝑒
𝑖
2

≥ 1
2 𝑥

𝑒
𝑖
2 (1− 𝛾)+ 1

2 𝑐
2
3𝜔

2
𝑖 𝑦

𝑒
𝑖
2
(1−

1
𝛾)+ 1

2𝑦
𝑒
𝑖
2+ 1

2𝜃
𝑒
𝑖
2

≥ 1
4𝑥

𝑒
𝑖
2+ 1

2 (1− 𝑐23𝜔
2
𝑖 )𝑦

𝑒
𝑖
2+ 1

2𝜃
𝑒
𝑖
2

≥ 1
4 (𝑥𝑖−𝑢1𝑖 )

2+ 1
4 (𝑦𝑖−𝑢2𝑖 )

2+ 1
4𝜃

𝑒
𝑖
2 = 1

4 ‖𝑟𝑖‖
2 ,

where the second line follows from 𝑎𝑏 ≤ 𝛾
2𝑎

2+ 1
2𝛾 𝑏

2, third line follows from 𝛾 = 1
2 , in the

forth line we assume that 𝑐3 ≤
√
2

2𝜔𝑖
, and 𝑟𝑖 B col(𝑥𝑖−𝑢1𝑖 , 𝑦𝑖−𝑢2𝑖 , 𝜃𝑖−𝜃r). Furthermore, for

the upper bound, we have

𝑉𝑖(𝑞𝑖) ≤ 𝑥𝑒𝑖
2+ 𝑐23𝜔

2𝑦𝑒𝑖
2+ 1

2𝑦
𝑒
𝑖
2+ 1

2𝜃
𝑒
𝑖
2

≤ 𝑥𝑒𝑖
2+𝑦𝑒𝑖

2+𝜃𝑒𝑖
2 = ‖𝑟𝑖‖2 ,

where the second line follows from the former assumption on constant 𝑐3. Thus, the bound
on the Lyapunov function is given by.

1
4 ‖𝑟𝑖‖

2 ≤ 𝑉𝑖(𝑞𝑖) ≤ ‖𝑟𝑖‖2 .

The Lyapunov derivative is bounded similarly to [149, Equ. 14]:

⟨∇𝑉𝑖(𝑞𝑖) | 𝑓𝑖(𝑞𝑖)⟩ = −Σ𝑖(𝑞𝑖)+Λ𝑖(𝑞𝑖),

where Σ𝑖(𝑞𝑖) B 𝑐1 (𝑥𝑒𝑖 − 𝑐3𝜔𝑖𝑦𝑒𝑖 )
2 + 𝑐2𝜃𝑒𝑖

2 + 𝑐3𝜔2
𝑖 𝑦𝑒𝑖

2 and Λ𝑖(𝑞𝑖) B (𝑥𝑒𝑖 − 𝑐3𝜔𝑖𝑦𝑒𝑖 ) (𝑒𝑤𝑖 𝑦𝑒𝑖 − 𝑒𝑣𝑖 −
𝑐3𝑦𝑒𝑖 𝑒𝑤𝑖 𝑐2+𝑐3𝑤𝑒𝜔𝑖 𝑥𝑒𝑖 )−𝑦𝑒𝑖 𝑒𝑤𝑖 𝑥𝑒𝑖 −𝜃𝑒𝑖 𝑒𝑤𝑖 , with 𝑒𝑤𝑖 ∶= �̂�𝑖−𝜔𝑖, 𝑒𝑣𝑖 = �̂�𝑖−𝑣𝑖, and 𝑣𝑖B 𝑐1(𝑥𝑒𝑖 −𝑐3𝜔𝑖𝑦𝑒𝑖 )−
𝑐3𝑐2(𝜔r−𝜔𝑖)𝑦𝑒𝑖 + 𝑐3𝜔2

𝑖 𝑥𝑒𝑖 . To characterize the convergence rate, we upper bound Σ(𝑞𝑖)𝑖 as
follows:

Σ𝑖(𝑞𝑖) = 𝑐1 (𝑥𝑒𝑖 − 𝑐3𝜔𝑖𝑦𝑒𝑖 )
2+ 𝑐2𝜃𝑒𝑖

2+ 𝑐3𝜔2
𝑖 𝑦

𝑒
𝑖
2

≥ 𝑐1𝑥𝑒𝑖
2 (1− 𝛾)+ 𝑐1𝑐23𝜔

2
𝑖 𝑦

𝑒
𝑖
2
(1−

1
𝛾)+ 𝑐3𝜔2

𝑖 𝑦
𝑒
𝑖
2+ 𝑐2𝜃𝑒𝑖

2

≥ 1
2 𝑐1𝑥

𝑒
𝑖
2+(𝑐3𝜔2

𝑖 − 𝑐1𝑐23𝜔
2
𝑖 )𝑦

𝑒
𝑖
2+ 𝑐2𝜃𝑒𝑖

2

≥ 1
2 𝑐1𝑥

𝑒
𝑖
2+ 1

2 𝑐3𝜔
2
𝑖 𝑦

𝑒
𝑖
2+ 𝑐2𝜃𝑒𝑖

2

≥ 𝑐 ‖𝑟𝑖‖2 ,

where the third line follows for 𝛾 = 1
2 , in fourth linewe assume 𝑐1 ≤ 1

2𝑐3 , 𝑐Bmin{ 12 𝑐1, 𝑐2,
1
2 𝑐3𝜔

2
𝑖 }

Now, we write the Lyapunov derivative as

⟨∇𝑉𝑖(𝑞𝑖) | 𝑓𝑖(𝑞𝑖)⟩ ≤ −𝑐𝑉𝑖(𝑞𝑖)+Λ𝑖(𝑞𝑖).

As the jumps restart Λ𝑖(𝑞𝑖) to 0, the jumps of the Lyapunov given by

𝑉 (𝑞+𝑖 )−𝑉 (𝑞𝑖) ≤ 0.
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Let Δ > 𝛿 > 0 be the parameters of the semi-global practical stability. If our Lyapunov
derivative is negative on the desired domain, it follows that

1
4 ‖𝑟𝑖(𝑡, 𝑗)‖

2 ≤ 𝑉𝑖(𝑞𝑖(𝑡, 𝑗)) ≤ 𝑉𝑖(𝑞𝑖(0,0)) ≤ ‖𝑟𝑖(0,0)‖2 ,

Thus for any initial condition with ‖𝑟𝑖(0,0)‖ ≤ Δ, it holds that ‖𝑟𝑖(𝑡, 𝑗)‖ ≤ 2Δ. Using the
previous bound, we can estimate the minimal and maximal value of 𝜔𝑖 as

𝜔𝑖 Bmin𝜔𝑖 = 𝜔r−2𝑐2Δ (8.52)
𝜔𝑖 Bmax𝜔𝑖 = 𝜔r+2𝑐2Δ. (8.53)

Hence, we choose 𝑐2 = 𝜔r
4Δ to ensure 𝜔𝑖 is positive, 𝑐3 = 1

3𝜔r
≤

√
2

3𝜔r
, and 𝑐1 = 1

2𝑐3 .
As Λ𝑖(𝑞𝑖) is differentiable and all of its variables and their derivatives are bounded, we can
approximate it with a constant 𝑀 and write the derivative as

⟨∇𝑉𝑖(𝑞𝑖) | 𝑓𝑖(𝑞𝑖)⟩ ≤ −𝑐𝑉𝑖(𝑞𝑖)+𝑀�̃�𝑖
≤ −𝑐𝑉𝑖(𝑞𝑖)+𝑀𝜎𝑖

Parameter 𝜎𝑖 can be made arbitrarily small, thus enabling arbitrarily close convergence to
the equilibrium point. As there is a constant time between jumps, semi-global practical
stability follows for 𝑐1 = 𝜎𝑖 → 0 [78, Cor. 8.7].
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9
Concluding remarks

Pride is not the opposite of shame, but its source. True humility is the only antidote to shame.

Uncle Iroh

If someone tried to take control of your body and make you a slave, you would fight for
freedom. Yet how easily you hand over your mind to anyone who insults you. When you dwell

on their words and let them dominate your thoughts, you make them your master.

Epictetus

In this thesis, we have studied zeroth-order Nash equilibrium seeking algorithms for both
static and dynamical agents. We summarize our main contributions to the field of zeroth-order
game-theoretic control, argue to which extent we have answered the research questions, and
propose possible directions for future research.
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9.1 Contributions
Wehave advanced the field of zeroth-order game-theoretic control by developing continuous-
time, discrete-time, and hybrid dynamical algorithms for zeroth-order NE and GNE seeking
in this thesis. The main contributions are summarized next:

• Zeroth-order GNE seeking via output derivative estimators
In the first part of this thesis, we identify limitations with an state-of-the-art ex-
tremum seeking method that relies on output derivative estimates (Chapter 2). We
develop a zeroth-order method for seeking Nash Equilibria in a restricted class of
linear systems based on our findings (Chapter 3). To expand our results to general
nonlinear systems, we adopt a multi-timescale strategy and incorporate dual dynam-
ics and existing projections in the dynamics to tackle Generalized Nash Equilibrium
Problems (GNEPs) (Chapter 4).

• Generalized equilibrium seeking without projections
In the second part of the thesis, we develop a continuous time algorithm without
projections that can handle merely monotone generalized Nash equilibrium problems
and adapt it for zeroth-order equilibrium seeking (Chapter 5). To improve the conver-
gence speed, we develop a hybrid gain adaptation scheme. Moreover, because strong
monotonicity of the monotone operator is no longer necessary for convergence, we
propose a method to reduce distortions caused by the standard extremum seeking
algorithm. We then demonstrate the effectiveness of this approach in two practical
applications: oil extraction and photo-voltaic cells (Chapters 5, 6).

• Discrete-time zeroth-order NE seeking
We formulate an algorithm for finding Nash equilibria in a discrete-time setting,
where agents are subject to local constraints. Our approach utilizes novel averaging
theory results, allowing us to incorporate three timescales into the algorithm: one
for perturbations, another for pseudogradient filtering, and a third for equilibrium
seeking. Furthermore, we show that an asynchronous variant of the aforementioned
algorithm where agents sample at different frequencies and are not subject to local
constraints, also converges to the NE, as long as the sampling order eventually
repeats itself and some other mild constraints (Chapter 7).

• Averaging and singular perturbations theory
Our investigation of zeroth-order equilibrium seeking methods in discrete-time and
their application to hybrid plant control has resulted in contributions to the theory of
averaging for discrete-time systems (Chapter 7) and singular perturbation theory for
hybrid systems (Chapter 8). We have developed an averaging theory that accounts
for dynamics with multiple timescales and semi-global practical asymptotic stability
of the averaged system. Moreover, our formulation allows for sequential application,
which eases proving convergence in more complex systems. Additionally, we have
developed a theory for singular perturbations where both reduced, and boundary
layer systems are hybrid systems. Notably, in our theory, the reduced systems jump
from the boundary layer manifold, which allows for “jump-driven” convergence
of the restricted system. This enables the use of sampled controllers with output
feedback on hybrid system plants.
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Answering the researchqestions
Next, we assess the extent to which we have addressed the original research questions
posed in Section 1.3 of this thesis.

(𝑸𝟏) How to design derivative-free equilibrium seeking for GNEPs?
In order to modify a full-information GNE-seeking algorithm for zeroth-order in-
formation, several conditions must be satisfied. First, the algorithm should not
incorporate more than one pseudogradient flow or computation in its formulation,
as the pseudogradient estimation scheme generates only one pseudogradient value.
This limitation arises from the fact that the pseudogradient value is estimated through
output measurements based on the current system state, making it challenging to
estimate a pseudogradient evaluated at a state not currently held by the system
without introducing an auxiliary clone system. In strongly monotone games, as
demonstrated in Chapter 4 of this thesis, simple preconditioned pseudogradient
descent is sufficient. For merely monotone games, Chapter 5 illustrates that this can
be achieved using a modified golden-ratio-like algorithm.
Second, since the problem definition includes constraints shared among agents, the
algorithm must be able to handle at least dual Lagrangian variables by ensuring
their non-negativity. This can be accomplished through projections onto convex sets
(Parts I and III) or by employing novel Lagrangian product dynamics that remain
invariant within the positive orthant (Part II).

(𝑸𝟐) Is time-scale separation necessary for equilibrium seeking in systems with
dynamical agents?
In some instances, single time-scale equilibrium seeking with dynamic agents can
be achieved by leveraging the specific structure of the equilibrium seeking algo-
rithms and/or the agent dynamics. In Chapter 3, we construct a scenario where the
steady-state mapping is equal to one of the parameters in the output time derivative
estimation scheme, allowing for equilibrium seeking without time-scale separation.
However, this method does not generalize to a broader context (Chapter 2), and it
seems that time-scale separation between the algorithm and dynamical system is
the only viable approach.
Conversely, output derivative-based equilibrium seeking methods (Part I) applied
to static systems do not explicitly use singular perturbation or averaging theory
for convergence proof. In contrast, more common sinusoidal perturbation methods
(Parts II and III) employ both averaging for pseudogradient estimation and singular
perturbation theory to filter the estimate through a first-order filter before integrating
it into the equilibrium seeking algorithm. This stems from the fact that averaging
theory fails to demonstrate the convergence of the estimate in the presence of
projections. While these methods utilize two time scales, they can achieve relatively
fast convergence in practice, as the filtered, well-behaved pseudogradient estimate
allows for smaller time-scale separation between the filter and the equilibrium
seeking algorithm.

(𝑸𝟑) Is monotonicity of the pseudogradient sufficient to ensure convergence of
derivative-free continuous-time equilibrium seeking?
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Yes. By appending dual Lagrangian dynamics onto the continuous-time projectionless
golden-ratio algorithm, it is possible to construct a continuous-time algorithm that
requires only monotonicity of the pseudogradient for convergence and that can
be adapted for the zeroth-order information scenario (Chapter 5). Such a complex
algorithm is necessary because other algorithms that only require monotonicity
of the pseudogradient involve more than one pseudogradient computation, and
the continuous-time version of the golden ratio algorithm with projections onto
convex sets lacks an analytic proof of convergence. Therefore, a projectionless
dual Lagrangian dynamic that converges without relying on the strict monotonicity
assumption of the KKT operator has to be constructed.

(𝑸𝟒) Is discrete-time equilibrium seeking applicable to systems with hybrid dy-
namical agents?

The discrete-time equilibrium seeking algorithms can be implemented as sampled
controllers, with the dynamical agents acting as the controlled plants. Since the con-
troller needs the steady-state output value for the pseudogradient estimation scheme,
a time-scale separation using singular perturbation theory should be employed to
study stability. In contrast to existing theory, it is also crucial to consider jumps
from the boundary layer system (Chapter 8). This can be achieved by requiring a
minimum time between the slow state jumps, which correspond to the jumps of the
equilibrium seeking algorithm. It is worth mentioning that the controller remains a
hybrid system, even though it implements a discrete-time algorithm. By leveraging
discrete-time averaging theory that encompasses both multi-timescale dynamics
and SGPAS of the averaged system (Chapter 7), it can be shown that this approach
can effectively solve strongly monotone NEPs with local constraints and strongly
monotone NEPs without local constraints but with asynchronous uncoordinated
sampling, just like its continuous-time counterparts.

9.2 Future research and recommendations
Although there are many open problems left in this field of study, we propose some possible
future research directions based on the work presented in this thesis.

• Projection-based zeroth-order equilibrium seeking
In Chapter 5, we devised a projectionless equilibrium seeking algorithm to take
advantage of the robustness characteristics of outer semicontinuous systems and
demonstrate stability. The latest work in hybrid systems theory [150] facilitates the
employment of discontinuous projections while maintaining both robustness and
stability. By leveraging these findings, it should be possible to establish the stability
of the zeroth-order adaptation of conventional equilibrium seeking algorithms when
applied to games with local and coupled constraints.

• Stochastic equilibrium seeking methods for dynamical systems
In Chapter 7, we established a deterministic averaging result that enables a determin-
istic pseudogradient estimation approach. Conversely, the literature is abundant with
probabilistic (pseudo)gradient estimation techniques and, consequently, probabilistic
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zeroth-order equilibrium seeking methods. By modifying the singular perturba-
tion theory from Chapter 8 to accommodate cases where the restricted system is a
stochastic hybrid dynamical system [151], [152], it should be possible to expand the
range of equilibrium seeking algorithms that can be utilized as controllers for hybrid
dynamical plants.

• Averaged algorithms for merely monotone operators
The averaging theory in Chapter 7, unlike in our proposed discrete-time zeroth-order
algorithms, does not require exponential stability of the averaged system (Assump-
tion 7.4). As a result, it might be feasible to employ algorithms that require merely
the monotonicity of the (pseudo)gradient. The primary challenge lies in the fact that
providing Lyapunov-like convergence rate bounds for these algorithms is generally
quite difficult. Moreover, the tuning parameter should decelerate the dynamics and,
for its minimal value, reduce the jump mapping to the identity mapping. Conse-
quently, if the algorithms do not conform to this form, they may need to be adapted
in a manner similar to the Krasnosel’ski˘ı–Mann iteration. Whether this is possible
is a question for future research.

• Fixed-time GNE seeking
In other works [18], [153], a special class of continuous-time dynamics is adapted
for fixed-time NE seeking, meaning that the convergence time to the solution is
predetermined. Moreover, these algorithms can be adjusted for cases with zeroth-
order information. The primary reason for not adapting these algorithms to the
generalized case is strong monotonicity requirement to ensure convergence, while
the KKT operator exhibits mere monotonicity. It might be feasible to exploit the
structure of the KKT operator to overcome this issue, akin to how precondition-
ing was employed in [44] for the forward-backward operator splitting. The exact
approach remains an open question. Furthermore, numerical simulations indicate
that the discretized version of the fixed-time algorithm shares similar characteristics.
Consequently, developing the corresponding discrete-time theory and establishing
analytical guarantees would be worthwhile.

9.3 Research beyond the scope of this thesis
Finally, we acknowledge some weaknesses of our work that could emerge in practical
applications, which have not been substantially addressed.

• Measurement noise
The primary feature of zeroth-order algorithms is the measurement of the cost
function, making it vulnerable to noise corruption in practical applications. In Section
4.5.1, we tackle this issue through comprehensive numerical simulations. In Chapter
5, we assert robustness to minor disturbances due to the outer semi-continuity of
flow and jump mappings. Nevertheless, this robustness is not quantified theoretically
or numerically in this or other chapters. As a result, additional research is warranted.

• Parameter tuning
Singular perturbation and averaging theory are undoubtedly powerful tools for
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proving various stability results, yet they come with certain drawbacks. While these
theories suggest the existence of numerous small tuning parameters, they do not offer
their maximum values. Consequently, in practical applications, tuning is achieved by
initially setting the parameters to arbitrarily small values and then adjusting them to
observe stability. This approach can potentially result in conservative convergence
rates or, worse, instability if the chosen parameters do not guarantee stability for
some unexamined initial conditions. Since our research relies heavily on singular
perturbation and averaging theory in deriving results, we do not present any findings
related to tuning the various small parameters that emerge in our results. It may be
feasible to establish these bounds on a problem-specific basis rather than in general
terms, but such analysis was beyond the scope of our work.

• Implementability
The equilibrium-seeking algorithms proposed in Parts I and II of this thesis are
presented in continuous time. As a result, implementing them in real-life scenarios
would require the use of an analog computer capable of performing operations such
as addition, constant and variable gains, sinusoidal generation, complex calculations
involved in the derivative estimation scheme, and signal multiplication. However,
such computers may be expensive or hard to come by. An alternative, more straight-
forward approach would be to discretize the control algorithm. Unfortunately, this
procedure might introduce approximations that fail to maintain the stability proper-
ties of the original algorithm. Consequently, further analysis is required to determine
suitable discretization techniques and sampling times.

• Nonconforming strategies
In this thesis, we assume that all agents adopt the same strategy, specifically, our
proposed algorithms. We do not investigate the impact on equilibrium stability if
an agent opts for a different strategy or algorithm. In general, this subject attracts
minimal research attention. Fundamentally, the selection of an algorithm represents
a game in itself, a meta-game, with the situation where all agents adhere to the same
strategy constituting a Nash equilibrium. No agent has a motive to deviate from the
common strategy, as there is no theoretical assurance that pursuing an alternative
strategy would yield better outcomes. In fact, adhering to the same strategy as others
ensures their minimum guaranteed payoff, providing an incentive to conform. On
the other hand, that would not explain how and why the strategies would evolve
into the Nash equilibrium. Such analysis was not conducted in our research.
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Acronyms

AC alternating current
AIL axial induction factor

DC direct current

ESC extremum seeking control

FB forward-backward

GNE generalized Nash equilibrium
GNEP generalized Nash equilibrium problem

I-NESC integral Nash equilibrium seeking control

KKT Karush-Kuhn-Tucker

MMPT Maximum power point tracking

NE Nash equilibrium
NEP Nash equilibrium problem

P&O perturb and observe
PI proportional integral
PV photo-voltaic
PWM pulse width modulation

SGPAS semi-global practical asymptotic stability
SGPpAS semi-global practical pre-asymptotic stability

THD total harmonic distortion

UGAS uniform global asymptotic stability
UGES uniform global exponential stability
UGpAS uniform global pre-asymptotic stability
ULAS uniform local asymptotic stability
ULpAS uniform local pre-asymptotic stability
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vGNE variational generalized Nash equilibrium
VI variational inequality
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