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Abstract - Due to the non-deterministic nature of longitudinal human driver behaviour, motion cueing algorithms
currently cannot fully utilize the workspace of driving simulators. This paper explores the possibility of using vari-
ous predictor variables to predict longitudinal driving behaviour. Through the development of a logistic regression
model, it is shown that a combination of the current vehicle velocity, the speed limit eight seconds ahead and
the accelerator pedal deflection yields the most accurate estimate of the probabilities that drivers will acceler-
ate or decelerate. Based on these probabilities, a driving simulator was linearly pre-positioned in combination
with a classical washout algorithm. The perceived motion incongruence was subjectively evaluated by the drivers
(N = 34), testing: (i) no pre-positioning, (ii) pre-positioning, and (iii) pre-positioning with an increased longitudinal
classical washout gain enabled by the pre-positioning. Results show that the pre-positioning improves the margins
with respect to the longitudinal workspace limits (better workspace management), without affecting the motion
incongruence ratings. When using the increased margins to increase the longitudinal gain, however, no significant
reduction in motion incongruence ratings was observed. This is likely due to the small motion space of the hexa-
pod motion system used in the current study. However, this paper shows that longitudinal driving behaviour can be
accurately predicted and can enable improved workspace utilization for driving simulators.

Keywords: motion cueing, behaviour prediction, pre-positioning, workspace management

Nomenclature
MCA Motion Cueing Algorithm
CWA Classical Washout Algorithm
CPT Conditional Probability Table
AUC Area Under the Curve
ROC Receiver Operator Characteristic
TPR True Positive Rate
FPR False Positive Rate
PMI Perceived Motion Incongruence
MIR Motion Incongruence Rating
SPR Section-wise Post-hoc Rating
MPC Model-Predictive Control

1. Introduction
In driving simulation, knowledge on future vehicle
states can be used by the Motion Cueing Algorithm
(MCA) to pre-position the simulator (Weiss, 2006).
This potentially decreases the mismatch between
the reference vehicle and simulator motion, increas-
ing the realism of the simulation (Cleij, et al., 2018)
and decreasing simulator sickness. As future vehicle
states depend on inherently unknown driver inputs, a
prediction of future vehicle states is required for pre-
positioning. Especially longitudinal driving behaviour
is notoriously difficult to predict (Hansson and Sten-
beck, 2014; Pitz, 2017), because (unlike lateral and
yaw motion) longitudinal motion does not always fol-
low the strict geometry of the road, and is thus more
influenced by individual driving behaviour.

In literature, several proposed implementations for
predicting longitudinal driving behaviour and simu-
lator pre-positioning exist. In the implementation of
Hansson and Stenbeck (2014), the mean vehicle
accelerations when braking and accelerating were
used, resulting in a reference pre-positioning offset.
Pitz (2017) considered legal speed limit signs, road
crossings, pedestrian crossings, and traffic lights as
potential triggers for longitudinal pre-positioning. No
significant improvement in objective or subjective
motion cueing quality as a result of pre-positioning
was reported. Recently, Kraft, He, and Rinderknecht
(2022) compared several strategies, including that of
Hansson and Stenbeck (2014), showing that, gener-
ally, pre-positioning results in larger allowable scaling
factors of a Classical Washout Algorithm (CWA).

In literature, currently no implementation considering
a driver’s actual intent to accelerate and decelerate
exists, which might be of additional use to the cur-
rent implementations of vehicle velocity and the legal
speed limits. Furthermore, to apply pre-positioning, it
must be better understood under which conditions it
provides a benefit. For small simulators, the provided
benefit might be too small to be of any meaningful
impact on the motion cueing quality. For large simu-
lators, the time required to fully pre-position the sim-
ulator might be larger than the look-ahead time, such
that only partial pre-positioning is possible.

This paper provides three contributions to the state-
of-the-art. First, the development of a logistic re-
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Figure 1: BMW’s small hexapod simulator ”Orange Vector”.

gression model for drivers’ longitudinal accelera-
tion/deceleration behaviour is described, considering
speed limits, current velocity, but also the accelerator
and brake pedal deflections (representing the driver’s
intent) as potential predictor variables. Using this lo-
gistic regression model, pre-positioning is applied to
a small driving simulator in combination with a CWA.
Third, the paper summarizes the results of a driver-
in-the-loop experiment, in which the prediction and
pre-positioning were evaluated in terms of workspace
management and perceived motion incongruence.

The paper is structured as follows. Section 2 de-
scribes the development of the driver behaviour pre-
diction module, the pre-positioning module, and the
experiment set-up. The results are presented in Sec-
tion 3, and are followed by the discussion in Sec-
tion 4. The paper is concluded in Section 5.

2. Methods
2.1. Driver Behaviour Prediction
2.1.1. Driving Data Acquisition
First, a prediction model was developed to determine
the probabilities that the driver in the loop will acceler-
ate or decelerate. This was done by analyzing driving
data from a previously performed experiment (Par-
duzi, Venrooij, and Marker, 2020) on a small hexapod
simulator (Fig. 1) at BMW Group.

These data contain 21 southward (S) and 16 north-
ward (N) drives on the same road through a rural
area (Fig. 2). This road contains multiple speed limit
signs, a small village, various curves (maximum cur-
vature: 0.029 m−1), and hills (maximum slope: 14%).
The sections in which longitudinal maneuvering takes
place are denoted S1 to S4 and N1 to N4. The start-
ing and stopping maneuvers were excluded from the
analysis, as these are considered exceptions to nor-
mal continuous driving behaviour and likely require a
separate approach. Participants drove a 2018 BMW
530i model with automatic transmission.

2.1.2. Model inputs
As the pre-positioning should occur below the hu-
man acceleration perception threshold, it is possi-
ble to compute the time required to pre-position the
simulator. We assume this perception threshold to
be a = 0.05 m/s2 (Fischer, 2009). As the simulator
needs half of the allowed pre-positioning distance
(d = 0.2 m) to accelerate and half to decelerate and
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(a) Southward

N1
N2

N3
N4
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100

50

100

1000 m
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Figure 2: The southward route (a), used for fitting the
prediction models, and the northward route (b), used for

evaluating the prediction models and used in the experiment.

stop at the pre-positioning position, using d = 1
2 at2 it

can be derived that t =
√

2d/a =
√

2 · 0.2/0.05 = 2 s,
such that 4 s are required to pre-position.

In order to pre-position the simulator before the ac-
celeration or deceleration commences, it is neces-
sary to use a larger look-ahead time tla than the 4 s
required for pre-positioning. Based on this analysis,
a look-ahead time of 5 s is used. The maximum ac-
celeration and deceleration between the current time
and the look-ahead time, ax,peak[t . . . t+5], was deter-
mined. To avoid the pre-positioning needlessly mov-
ing around the simulator for imperceptible accelera-
tion improvements, only the predicted peaks larger
than 0.5 m/s2 or smaller than −0.5 m/s2 were counted
as acceleration or deceleration events, respectively.
This revealed that relevant accelerations occurred for
33% of the events. Deceleration was just as common
(33%). In the remaining 34% of the events neither ac-
celeration nor deceleration were present.

2.1.3. Predictor Variables
The vehicle’s velocity, legal speed limits and driver
control inputs were considered as potential predic-
tor variables. Earlier analysis showed that other road
environment attributes, such as the road curvature,
slope, and road width are less relevant for predicting
longitudinal control in this scenario (Eppink, 2020).

2.1.3.1. Vehicle velocity and legal speed limits
First, the vehicle velocity Vveh is considered, which
was the only variable used by Hansson and Sten-
beck (2014). The rationale is that at a higher velocity,
deceleration becomes more likely, and vice versa. It
can be expected that only considering the vehicle’s
current velocity is not necessarily accurate, as accel-
eration can still occur at high velocities (e.g., when
the speed limit is increased). Similarly, deceleration
can still occur at low velocities.

Therefore, the legal speed limit is considered as a
predictor as well, as in Pitz (2017). This results in
another predictor variable, by subtracting the legal
speed limit Vlim from the vehicle’s velocity Vveh. As
drivers probably anticipate upcoming road signs well
before reaching them, another predictor variable was
defined using the speed limit further down the road
instead of the speed limit at the vehicle’s position.
For this purpose, the speed limit that applies tlim sec-
onds in advance, V̂lim,t+tlim

, is used. This approach
is simplified by assuming that the current vehicle ve-
locity remains constant.
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2.1.3.2. Control inputs By only considering states
of the vehicle, potentially useful information directly
coming from the driver is left unused. Therefore, the
accelerator and brake pedal deflections (denoted δa
and δb, respectively) are considered as predictor vari-
ables. Here, the rationale is that if one of the ped-
als is pressed, it signals the driver’s intention before
this becomes measurable in the vehicle motion. The
pedal deflections are on a normalized range between
0 (not pressed) and 1 (fully pressed). The rate of
change of pressing the accelerator deflection δ̇a was
also considered as a potential predictor variable, as
the act of pressing or releasing the accelerator pedal
quickly likely indicates future accelerating and decel-
erating, respectively.

2.1.4. Model structure
2.1.4.1. Conditional probability tables Possible
values for model inputs were divided into segments.
The probability that a certain behaviour occurs in the
near future, P , was calculated for all combinations
of model input segments and assumed valid for the
center of these segments, resulting in a Conditional
Probability Table (CPT). The resulting CPTs were
both linearly interpolated and extrapolated to calcu-
late P for any exact set of model inputs. Each CPT
contains

∏n
i=1 mi parameters, where n is the num-

ber of predictor variables and mi is the number of
segments of variable i. For simplicity, equally sized
segments spanning the complete range of sample
data were used. The amount of segments is a trade-
off between resolution (i.e., more segments) and ac-
curacy (i.e., more data per segment). Empirically, an
mi of 8 was chosen when one predictor variable was
used. When using two predictor variables, a lower mi
of 5 was chosen, to compensate for the further seg-
mentation of the data. CPTs were used to compare
predictor variables, as they were straight-forward to
use. A drawback of the CPTs is the large amount of
parameters.

2.1.4.2. Logistic regression Each CPT was used
to fit a logistic regression model. Here, a linear rela-
tionship is assumed between the predictor variables
xi, and the log-odds of the probability ℓ that a specific
maneuver will occur in the near future (Dobson and
Barnett, 2008):

ℓ = ln P

1 − P
= β0 +

n∑
i=1

βixi, (1)

such that:

P = (1 + e−(β0+Σn
i=1βixi))−1, (2)

with the probability of the event P and the model
coefficients βi. As there are n predictor variables in
each model fit, each model contains n + 1 parame-
ters. The mnrfit function in Matlab was used to de-
termine the model coefficients.

2.1.5. Model selection
Only the southward drives were used for model
fitting, whereas the northward drives were used
for model evaluation. The outputs of the CPTs
and logistical regression models are the prob-
abilities that acceleration and deceleration are
about to occur, i.e., P (ax,peak[t . . . t + 5s] > 0.5) and

Table 1: Area Under the Curve (AUC) values and highest
F-scores for acceleration- and deceleration conditional

probability tables for various predictor variables. The highest
values are underlined and those settings were used in the

further analysis.

Acceleration Deceleration

Predictor variable(s) AUC F1 AUC F1

Vveh 0.54 0.46 0.50 0.39
Vveh − Vlim 0.66 0.47 0.53 0.38
Vveh − V̂lim,t+4s 0.73 0.51 0.65 0.42
Vveh − V̂lim,t+8s 0.74 0.54 0.75 0.55
δa 0.81 0.60 0.71 0.53
δb 0.54 0.45 0.64 0.43
δa, δb 0.81 0.60 0.73 0.51
δa, δ̇a 0.81 0.60 0.70 0.53
Vveh − V̂lim,t+8s, δa 0.84 0.64 0.77 0.53
Vveh − V̂lim,t+8s, δb 0.74 0.54 0.76 0.57

P (ax,peak[t . . . t + 5s] < −0.5), respectively. Gener-
ally, a classification threshold is selected to deter-
mine above which P -value a maneuver is predicted.
Receiver Operator Characteristic (ROC) curves
(Metz, 1978) were created to be able to see how
the True Positive Rate (TPR) and False Positive
Rate (FPR) change for various threshold values. The
Area Under the Curve (AUC) was used as a per-
formance metric independent of the selected thresh-
old. Moreover, F1-scores (Chinchor, 1992) were cal-
culated for each threshold, to find the optimal clas-
sification thresholds and their corresponding scores.
Both scores are in a [0, 1] range, where 1 indicates
perfect predictions, and 0 indicates no prediction ac-
curacy.
The AUCs and highest F1-scores for the models
of various combinations of predictor variables are
shown in Table 1, where the best scores are un-
derlined. It can be seen that subtracting the current
speed limit from the vehicle velocity yields improved
predictions compared to only considering the vehi-
cle velocity. Even better results are obtained when
using the upcoming speed limit 8 s ahead. When
considering only the control inputs, the accelerator
pedal deflection provides AUC scores that are higher
than the velocity and speed limit combinations, show-
ing the usefulness of including this predictor vari-
able. Adding the decelerator pedal deflection and/or
the time derivative of the accelerator deflection does
not improve predictions. Surprisingly, the accelerator
pedal deflection predicts both acceleration and de-
celeration better than the brake pedal deflection. The
highest prediction scores are obtained when using
the vehicle’s velocity w.r.t. the legal speed limit 8 s
ahead, combined with the accelerator pedal deflec-
tion (Vveh − V̂lim,t+8s, δa).

A graphical representation of the CPTs of this pre-
dictor variable combination is given in Fig. 3. These
probabilities were interpolated to obtain finer predic-
tions. The probabilities in the top and top right corner
of the figure were initially unknown, as they represent
a rather unusual combination of vehicle speed and
accelerator deflection which did not occur in the train-
ing data. Model outputs in this region are obtained
through linear extrapolation. It can clearly be seen
that generally, a higher Vveh − V̂lim,t+8 decreases
the chance of acceleration and increases the chance
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Figure 3: Conditional probability tables for
acceleration/deceleration prediction with predictor variables
Vveh − V̂lim,t+8s and δa; white areas indicate a combination

of both predictor variables for which no data is available.
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Figure 4: Logistic regression models for
acceleration/deceleration prediction with predictor variables

Vveh − V̂lim,t+8s and δa.

of deceleration, whereas a higher δa increases the
chance of acceleration and decreases the chance of
deceleration.

Based on the data of the predictor variables (Vveh −
V̂lim,t+8s, δa), the predicted probability (See (1)) of
the acceleration is:

Pacc(t) =
(

1 + e−(β0+β1(Vveh−V̂lim,t+8)+β2δa)
)−1

, (3)

with β0 = −3.3, β1 = −0.35, and β2 = 5.6. Similarly,
for the deceleration:

Pdec(t) = 1 −
(

1 + e−(β0+β1(Vveh−V̂lim,t+8)+β2δa)
)−1

,

(4)
with β0 = 0.62, β1 = −0.25, and β2 = 2.6. These
models are shown in Fig. 4, indicating that indeed
the same trends as in the CPT data are present
(Fig. 3). The ROC curves of both model architectures
are shown in Fig. 5. The points with the highest F1-
scores are denoted with “+”. No large differences are
found between the two model types with regard to
their ROC curves. Table 2 shows the AUC and high-
est F1-scores for both model architectures. For accel-
eration prediction, the AUC and F1-score are slightly
better for the CPT. For deceleration prediction, the
highest F1-score is slightly better for the logistic re-
gression model. As the logistic regression model con-
sists of only 3 parameters, compared to the 25 param-
eters of the CPT, it is used throughout the remainder
of this paper.

0 0.2 0.4 0.6 0.8 1

FPR

0.2
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0.8
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T
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R

(a) Acceleration
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Figure 5: Receiver Operator Characteristic (ROC) curves for
acceleration/deceleration prediction models with predictor
variables Vveh − V̂lim,t+8 and δa. Points with the highest

F1-scores are denoted by “+”.

Table 2: Area Under the Curve (AUC) and highest F-scores
for acceleration- and deceleration using a Conditional

Probability Table (CPT) and logistic regression with predictor
variables Vveh − V̂lim,t+8 and δa.

Acceleration Deceleration

Model architecture AUC F1 AUC F1

CPT 0.84 0.64 0.77 0.53
Logistic regression 0.83 0.62 0.77 0.55

2.2. Pre-positioning
The pre-positioning module consists of two elements.
First, based on the probabilities of longitudinal accel-
eration/deceleration from the driver behaviour predic-
tion model, the pre-positioning is determined through
the pre-positioning logic, see Fig. 6. Here, linear re-
lationships between the pre-positioning position sig-
nal and th acceleration/deceleration probabilities are
used:

ppp,acc(t) = Pacc(t) · ppp,min, (5a)

ppp,dec(t) = Pdec(t) · ppp,max. (5b)

The resulting pre-positioning signals are summed
to obtain the total pre-positioning signal, i.e.,
ppp,ref (t) = ppp,acc(t)+ppp,dec(t). The pre-positioning
is limited to not exceed ppp,min and ppp,max: the
largest allowed rear and front positions, respectively.
These values must be smaller than the workspace
limits, due to a possible overshoot in the pre-
positioning controller, and were empirically tuned to
ppp,min = −0.14 m and ppp,max = 0.20 m.

CWA

px,cwa

Pre-
positioning

Logic

Linear
Regression

Model

+
+

px

ppp,fin

ppp,ref

Pacc

Pdec

Vveh − V̂lim,t+8s

δa

ax,veh

Prediction Pre-positioning

Pre-
positioning

Controller

Figure 6: Merging of prediction-based pre-positioning with
the Classical Washout Algorithm (CWA).
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Figure 7: Linear pre-positioning for an example drive,
showing the output of the pre-positioning logic (reference)

and the pre-positioning controller (final).

Second, the outputs of the pre-positioning logic are
limited to stay below the acceleration and jerk thresh-
olds by the pre-positioning controller proposed by
Fischer (2009), with thresholds of 0.05 m/s2 and
0.1 m/s3, respectively. These values have empirically
been found acceptable for pre-positioning (Hansson
and Stenbeck, 2014). Fig. 7 shows the reference and
final signals of the pre-positioning controller, indicat-
ing the lagged response of the final position signal,
as a result of the acceleration and jerk controller.
This final output of the pre-positioning ppp,fin(t) is
added to the classical washout algorithm longitudi-
nal position output px,cwa before being sent through
the workspace limiting block. This limits the simulator
motion and sends the final signal to the simulator.

2.3. Experiment
A driver-in-the-loop experiment was performed, simi-
lar in experiment set-up to the experiment of Parduzi,
Venrooij, and Marker (2020) that was used for the
model development in Subsection 2.1. Participants
only drove on the Northward route, see Fig. 2(b).

2.4. Independent variables
The experiment had two independent variables: the
presence of pre-positioning (active or inactive), and
the longitudinal acceleration gain of the MCA (Kx =
0.24 or Kx = 0.33). Three conditions were tested.
Condition C1, in which only the classical washout
algorithm (Kx = 0.24) was tested with the pre-
positioning inactive, served as the baseline. In con-
dition C2 the pre-positioning was active, but Kx was
kept as in C1, to enable testing whether adding pre-
positioning improves workspace management with-
out affecting motion cueing quality (Hansson and
Stenbeck, 2014). In condition C3 the pre-positioning
was active, whereas Kx was increased to 0.33. This
increase in gain (38%) was only possible due to the
presence of pre-positioning. All other MCA tuning
parameters were kept constant across these exper-
imental conditions.

2.5. Dependent variables
2.5.1. Workspace management
The evaluation of the workspace management is per-
formed by comparing the minimum margin from the
workspace edge in longitudinal direction, dws,x,min.
The starting and stopping procedures are not in-
cluded in this analysis, as the MCA and the pre-
positioning module were not tuned for those. A larger

margin indicates that there is more workspace avail-
able to deal with unexpected longitudinal driving be-
haviour or to increase the longitudinal acceleration
gain of the MCA.

2.5.2. Motion Incongruence Ratings
The Perceived Motion Incongruence (PMI), defined
as the deviation between the expected vehicle mo-
tion and the perceived simulator motion (Kolff, et al.,
2023b), was rated by the participants. An 11-point se-
mantic differential scale was used as Motion Incon-
gruence Rating (MIR), where 0 indicates perfect mo-
tion and 10 indicates that the motion is highly unre-
alistic. Participants were asked to only rate the longi-
tudinal PMI, as this was the only degree-of-freedom
that was varied throughout the experiment. The MIR
data were collected through a Section-wise Post-hoc
Rating (SPR), where the PMI was rated at the end of
sections N1 to N4 (see Fig. 2) separately, resulting in
four SPRs per drive.

2.5.3. Hypotheses
Based on the three experimental conditions, the fol-
lowing hypotheses are tested:

H1: Compared to the baseline (C1), adding pre-
positioning (C2) increases the workspace man-
agement (H1a), without affecting the SPRs (H1b).

H2: Compared to the baseline (C1), the combined ef-
fect of adding pre-positioning and increasing the
longitudinal gain (C3) results in lower SPRs.

2.6. Participants and Procedures
Thirty-four employees of BMW Group (32 males, 2
females) took part in the experiment. They were
aged between 18 and 63 years (µ = 37.7 years, σ =
13.4 years). All participants were in possession of a
driver’s license. The yearly mileage was on average
18, 161 km (σ = 9, 585 km). Participation was on a vol-
untary basis and participants provided informed con-
sent. The study was approved by BMW Group and
TU Delft’s Human Research Ethics Committee.

Preceding the measurement phase, several train-
ing drives including all motion conditions were per-
formed, to get participants accustomed to the sim-
ulator and the rating method. After training, the ex-
periment started. Each participant drove each of the
three conditions twice, resulting in a total of six mea-
surement drives per participant. A 5-minute break
was held after the third measurement drive. Random-
ized Latin square matrices were used for the condi-
tions to balance out order effects. Participants were
instructed to drive as they would do during everyday
driving, without time pressure and while respecting
road regulations. Traffic was only present on the op-
posite lane.

2.7. Rating predictions
Cleij, et al., 2018 introduced the use of continuous
ratings for PMI analysis, in which drivers continuously
rate the PMI through a rating interface. This method
is only possible in open-loop driving (i. e., drivers are
passengers) and results in a continuous rating sig-
nal R(t). Kolff, et al. (2023b) proposed a linear model
that predicts the continuous rating of the average
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participant as function of mismatch signals, i.e., the
difference in inertial motion (specific forces and ro-
tational rates) between the vehicle motion S̃veh,m(t)
and the simulator motion S̃sim,m(t), i. e., ∆S̃m(t), with
P̃m(t) = |∆S̃m(t)|. Here, m represents the mismatch
direction. The ratings can be predicted using low-
pass filter transfer functions Hm(s) between the mea-
sured mismatch signals P̃m(t) (inputs) and a mod-
eled rating signal R̃(t) (output):̂̃
R(jω) =

∑
m

Hm(jω)̂̃P m(jω) =
∑

m

K
P̃m

(
ωc

jω + ωc

) ̂̃
P m(jω),

(6)
with the cut-off frequency ωc and K

P̃m
the gains

of the several mismatch channels. The (̂·)-terms in-
dicate the Fourier transforms. Kolff, et al. (2023b)
showed that the continuous ratings of a classical
washout algorithm as measured in that study could
be largely explained when considering the mismatch
channels P̃fy

, P̃fx
, and P̃ωz

, with respective gains of
0.93, 0.66, and 2.77, together with ωc = 0.35 rad/s.

The usefulness of predicting continuous ratings lies
in the fact that these correlate to section-wise post-
hoc ratings. Kolff, et al. (2023a) found a predictive re-
lation between R(t) and SPR by considering the most
incongruent point, i. e., the maximum of the continu-
ous rating signal:

SPR = 1.33 · max[R̃(t)] − 0.33 (7)

Thus, this allows for comparing the three conditions
of the experiment in an offline manner. These rating
models are applied as a use-case in testing whether
the subjective differences in the experimental condi-
tions can be explained through the rating model.

3. Results
3.1. Prediction
To compare the quality of the prediction of the exper-
iment to the preliminary data set, the AUC is deter-
mined. Across all experimental drives, the AUC was
0.80 for acceleration and 0.73 for deceleration. Both
scores were lower than those calculated using the
preliminary data set and presented in Table 2. When
averaging over all drives, the root-mean square of the
longitudinal vehicle acceleration found for the experi-
mental data (µ = 0.77 m/s2) was 34% higher than in
the preliminary data (µ = 0.54 m/s2). This indicates
that participants drove more aggressively in the cur-
rent experiment when compared to Parduzi, Venrooij,
and Marker (2020).

As a means to analyze the prediction performance
over the length of the drives, the acceleration and
deceleration prediction errors (ϵp̂acc and ϵp̂dec

, respec-
tively) are calculated as a function of driven distance:

ϵp̂acc
(t) = p̂acc(t) − yacc(t) (8a)

ϵp̂dec
(t) = p̂dec(t) − ydec(t) (8b)

yacc(t) =
{

1 ax,peak[t · · · t + 5s] ≥ 0.5
0 ax,peak[t · · · t + 5s] < 0.5 (8c)

(a) Acceleration prediction error
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Figure 8: Medians and interquartile ranges of the
acceleration and deceleration prediction errors.

ydec(t) =
{

1 ax,peak[t · · · t + 5s] ≤ −0.5
0 ax,peak[t · · · t + 5s] > −0.5 (8d)

yacc and ydec denote binary variables indicating
whether ax,peak[t · · · t + 5s] exceeded the accelera-
tion/deceleration threshold, as in Eq. (8c-d). Thus,
ϵp̂acc

(t) and ϵp̂dec
(t) represent the error in the esti-

mated probability of acceleration and deceleration,
respectively.

Fig. 8 shows the median and interquartile range of
the prediction errors against the driven distance. A
positive prediction error indicates an overestimation
of the probability that maneuvering will occur (i.e.,
false positives), and likewise, a negative prediction
error indicates an underestimation (i.e., false neg-
atives). An ϵp̂ of zero indicates correct predictions,
which is the case for a major part of the track.

There are several points at which the prediction is in-
correct, for various reasons. In the acceleration pre-
diction error, two negative peaks are present at A,
which are caused by differences in position on the
road on which the acceleration is applied. At B, the
accelerator deflection was increased by participants
to maintain a desired velocity while driving a road
with an increasing slope. As the accelerator deflec-
tion was increased merely to maintain speed, and
thus not to accelerate, p̂acc was overestimated. At C,
many participants drove faster than the legal speed
limit. When the velocity is higher than the legal speed
limit, a deceleration maneuver is expected. However,
since drivers maintained their velocity (or even in-
creased it, as speeding was apparently intended) the
deceleration probability was overestimated. Finally,
road curvature seemed to have played a role in veloc-
ity choice of some participants, resulting in false neg-
atives in the deceleration prediction with a relatively
large spread in the behaviour, for example in N2. Fur-
thermore, at D participants entered a small village, in-
cluding corners. Here, drivers braked as a response
to the anticipated curvature of the road. As this is
not accounted for in the proposed prediction model,
the deceleration probability is underestimated. Sub-
sequently, they also accelerate again, resulting in a
false negative in the acceleration prediction error.

-124- Antibes, 6-8 Sep 2023



DSC 2023 EuropeVR Eppink et al.

workspace

limits

reached

C1 C2 C3

-0.1

0

0.1

0.2
n = 34 n = 34

n = 34

Figure 9: Workspace margin of the three conditions.

3.2. Prepositioning
3.2.1. Workspace management
The minimum workspace margin is shown in Fig. 9.
The distributions were tested using a repeated
measures ANOVA, revealing significant differences
(F (2, 66) = 37.8, P < 0.05). Post-hoc testing, in
which a Bonferroni correction was applied to correct
for the problem of multiple comparisons, revealed
that only when comparing C1 (µ = 0.025 m) to C2
(µ = 0.084 m), a significant increase in workspace
margin was present, t(33) = 7.38, P < 0.05. The
effective increase in workspace obtained using pre-
positioning is used to intensify cueing in C3, result-
ing again in a decreased workspace margin (µ =
0.020 m). Negative workspace margin values indicate
that workspace limits were reached. This was the
case for 37% of the C1 and 34% of the C3 drives.
For C2, the limits were never reached, thus showing
better workspace management compared to C1 and
C3.

3.2.2. Motion incongruence ratings
The SPRs are presented in Fig. 10 are calculated
as the mean of the two drives for each participant.
Reaching the workspace limits (Fig. 9) could result in
false cues due to braking of the simulator and miss-
ing cues due to the inability to accelerate further in
the direction of the workspace edge. For this rea-
son, SPRs of sections where workspace limits were
reached were omitted. The number of data points (in-
dicated by ‘n =’ in the figures) is therefore some-
times smaller than 34. Using a repeated measures
ANOVA with Bonferroni correction, no significant dif-
ferences were found between conditions in any of the
sections. The model predictions in Fig. 10 (indicated
by the cross in each graph) also show that the lack of
differences in MIR could have been predicted, by cal-
culating the predicted MIR over all drives prior to the
experiment. Only the mean is shown, as the model
predicts a rating of the average participant for each
separate drive, in which individual scaling differences
are not represented anymore. The estimated ratings
in all conditions are lower (around 2.5) compared to
the measured SPRs (between 3.5 and 6). As partic-
ipants were only asked to evaluate the longitudinal
PMI, it is possible that a larger gain was used by par-
ticipants to rate the longitudinal motion compared to
what the model accounts for, which is based on mea-
surements of the PMI in all directions. However, the
main interest lies within the differences between the
three conditions, which are in line with the measured
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Figure 10: Section-wise Post-hoc Rating (SPR) distributions,
excluding ratings of a section where workspace limits were

reached. Each box plot contains a model prediction
(crosses).

ratings: The model predictions confirm that no differ-
ences exist between C1 and C2, as well as that there
are no differences between C1 and C3.

4. Discussion
The results of comparing the conditions C1 and C2
showed that adding pre-positioning without increas-
ing the longitudinal acceleration gain results in larger
workspace margins (i.e., better workspace manage-
ment), confirming hypothesis H1a. At the same time,
the SPRs of all four sections showed no differences
between C1 and C2, confirming H1b. Increasing the
longitudinal acceleration gain of the CWA from Kx =
0.24 (C1 and C2) to 0.33 in condition C3, however, did
not result in any differences in SPR, meaning that hy-
pothesis H2 cannot be confirmed. Thus, these results
suggest that the differences as imposed by the pre-
positioning were likely too small to be of any notice-
able effect on the SPRs, likely caused by the limited
size of the motion system.
The results of the prediction module showed that the
considered predictor variables (current vehicle veloc-
ity, upcoming speed limit 8 s ahead, and the accelera-
tor pedal deflection) accurately predict the behaviour
the participants in the experiment, with the AUCs of
0.80 (acceleration) and 0.73 (deceleration), slightly
lower than the values on which the prediction model
was fit (0.84 for acceleration, 0.77 for deceleration).
One explanation for these lower values is that even
though participants were explicitly asked to drive as
they would do in everyday driving, rating longitudinal
motion cueing might have been an incentive to drive
more aggressively. Nevertheless, as the results from
the pre-analysis showed, the accelerator and brake
pedal deflections provide a large contribution to the
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AUC, and thus provide useful information on the pre-
diction of longitudinal driving behaviour.

Especially this latter finding is important, because
the accelerator pedal deflection is the only informa-
tion that currently captures the drivers’ intent, rather
than the current state of the vehicle (vehicle velocity
and speed limits). As the accelerator pedal deflec-
tion, current velocity, and the speed limit are typically
available in any simulation, the presented model al-
lows for an improvement in prediction compared to
the current state-of-the-art, while allowing for imple-
menting the prediction method in virtually any simu-
lation without requiring more elaborate and invasive
tools, such as eye trackers.

As the results showed, there are currently three limi-
tations in the model structure. First, depending on the
scenario, it is possible that the role of the slope of the
road is underestimated. Here, an improvement can
likely be achieved by correcting the accelerator pedal
position for the slope of the road. Second, the model
assumes the adherence to speed limits, which may
sometimes be ignored by the drivers. Especially in
German highway scenarios, where generally no legal
speed limit exists, drivers can set their own maximum
velocity, such that a personalized approach might be
more suitable. Third, in tight curves, the velocity cho-
sen by the driver depends more on the curvature of
the road (i.e., tight corners would result in lower ve-
locities, and vice versa), rather than the speed limit.
Instead of the legal speed limit, the maximum (future)
curve-driving velocity (Bosetti, Da Lio, and Saroldi,
2015) could therefore be used at instances where
this velocity is lower than the legal speed limit, such
as in urban scenarios.

Two additional avenues for further work are recom-
mended. First, the AUC was used as the metric to
select the best predictor variables. For the use case
of pre-positioning, however, the impact of an incor-
rect prediction can differ depending on the situa-
tion. A false positive acceleration prediction is, for in-
stance, worse when decelerating than when driving
at a constant speed; in the first case the MCA output
and the pre-positioning yield a simulator excursion in
the same direction, such that the simulator limits are
more likely to be reached. A model score tailored to
the use-case of pre-positioning that emphasizes crit-
ical instances could help to select a more suitable
prediction model. Second, for the pre-positioning it
is recommended to investigate its potential benefits
on larger motion systems, for which rating models as
proposed by Kolff, et al. (2023b) can be used as a
prediction tool. This also extends to the implemen-
tation of pre-positioning in other MCA types. Model-
Predictive Control (MPC) algorithms might be more
suitable for exploiting the extra knowledge on pre-
dicted states, as these can explicitly incorporate this
knowledge in their optimization. For use in MPC the
prediction model would need to be adapted to predict
the future longitudinal acceleration signal, instead of
the probabilities of braking and accelerating.

5. Conclusion
The combination of using speed limits, current veloc-
ity, and the current accelerator pedal deflection as
predictor variables best predicts the drivers’ accel-
eration and deceleration behaviour on a rural road,
with an Area Under the Curve (AUC) of 0.84 and 0.77,

respectively. By using this real-time prediction of ac-
celeration and braking maneuvers, the algorithm can
be used to control a pre-positioning module added to
a classical washout algorithm, considerably extend-
ing the simulator workspace for representing longi-
tudinal accelerations. In a human-in-the-loop exper-
iment, where participants drove over the same rural
road, the AUCs were 0.80 (acceleration) and 0.73 (de-
celeration), showing that the longitudinal driving be-
haviour of the participants can be successfully pre-
dicted. Compared to the baseline (C1), the addition of
pre-positioning (C2) results in larger workspace mar-
gins (i.e., better workspace management). However,
using these larger margins to increase the longitu-
dinal acceleration gain (C3) yields no significant im-
provement in subjective motion incongruence ratings,
likely caused by the too small motion system. Never-
theless, the prediction performance and the improve-
ment in workspace management demonstrate the
potential of combining information from dynamic ve-
hicle states, driver inputs, and the road environment
within the real-time simulation environment, paving
the way for future prediction-based MCAs.
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