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A B S T R A C T

Autonomous submerged dredging offers numerous benefits, such as reduced ship resistance and lower vacuum
requirements for the dredge pumps. However, this method also presents new challenges, such as stability and
buoyancy control, which must be addressed to minimize the energy requirements and ensure cost-effectiveness
and sustainability. To achieve these goals, this paper proposes a Model Predictive Control (MPC) strategy to
minimize control effort and energy requirements. Compared to traditional motion control methods such as
proportional–integral–derivative (PID) control, MPC shows great promise in terms of energy efficiency and
trajectory-tracking. The Autonomous Low Energy Replenishment Dredger (ALERD) is used as a case study to
showcase the potential of the proposed control strategy. A time-domain simulation model is developed, and the
ALERD is modeled as an underwater vehicle using a state-space representation. The classic PID control and the
proposed MPC framework are compared in terms of trajectory-tracking, energy requirements, and robustness to
modeling uncertainties, using sensitivity analysis. The results show that the proposed MPC control framework
outperforms PID control in all aspects considered. Furthermore, a comparison between the energy requirements
of the ALERD and a conventional dredger, for the same operational profile and hopper volume, indicates that
autonomous submerged dredging can potentially decrease total energy requirements by 66%.
1. Introduction

The Autonomous Low Energy Replenishment Dredger (ALERD) is a
unique underwater vehicle intended for submerged dredging along the
Dutch Coastline to perform coastal replenishment, developed during
the Innovations in the Coastline Care program of the Dutch General
Directorate for Public Works and Water Management (Rijkswaterstaat).
Rijkswaterstaat has the ambition to decrease their emissions to zero
at the latest by 2030 and is therefore looking at sustainable and cost-
effective solutions for coastal maintenance along the Dutch coast. For
the ALERD to be cost-effective even with an expensive zero-emission
energy supply, the total energy consumption should be minimized to
reduce the systems needed for delivering this energy, which reduces
the cost-price making it a cost-effective solution. In fact, as reported
in Hijdra and Van Der Harst (2019), the power for propulsion can
be reduced by 55% due to the absence of wave-making and breaking
resistance, and the required power for the dredging pumps can be
reduced by 80% due to the decreased suction depth. For underwater
vehicles, the stability and buoyancy must be actively controlled, which
requires an additional amount of energy compared to conventional
ships (Renilson, 2015). This energy requirement should be minimized
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to achieve cost-effective solutions and show the benefits of autonomous
submerged dredging compared to conventional dredging.

Conventional remotely operated vehicles or autonomous underwa-
ter vehicles are controlled through several key variables (Jordán and
Bustamante, 2009). These typically include: (i) Depth/Altitude, con-
trolled by adjusting the vehicle’s buoyancy or using vertical thrusters;
(ii) Speed, controlled by varying the thrust provided by the vehicle’s
propulsion system; (iii) Heading/Yaw, usually controlled by the rudder
in surface vehicles, or by differential or vector thrust in fully submerged
vehicles; (iv) Pitch and Roll, controlled by redistributing weight, adjust-
ing buoyancy in different sections of the vehicle, or through the use of
control surfaces or thrusters; (v) Position, often controlled indirectly
through a combination of speed, heading, and depth controls, and may
use GPS or acoustic positioning systems when near the surface, and
inertial or Doppler navigation systems when submerged; (vi) Buoyancy
Control, affecting the vehicle’s depth and trim by regulating the volume
of the ballast tanks or the power of buoyancy control devices.

For controlling underwater vehicles, Proportional–Integral–Deriva
tive (PID) control is widely used in underwater vehicle control due
to the ease of practical implementation (Long et al., 2021; Sahoo
vailable online 11 September 2023
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et al., 2019). PID is often used for flight control, namely controlling
small autonomous underwater vehicles’ combined depth and pitch
motion (AUVs) (Jalving, 1994; Yildiz et al., 2009; Steenson et al., 2011;
Tanakitkorn et al., 2017; Carrica et al., 2019). According to Zhang
et al. (2019), PID control strategies are often considered less accurate
for trajectory tracking and path following and unsuitable for nonlinear
models and uncertain external disturbances. Moreover, it also needs
careful tuning, which can be done manually, or by using tuning rules
or tuning algorithms. To overcome these limitations and increase PID
control’s performance, adaptive tuning algorithms for PID controllers
are developed (Sahoo et al., 2019; Rout and Subudhi, 2017; Kong et al.,
2020; Xiang et al., 2017). Most advanced control strategies proposed
in the literature focus on controlling small AUVs, designing motion
control methods for trajectory-tracking and path-following, and taking
care of the unknown dynamics, system non-linearity, and unknown
disturbances (Londhe and Patre, 2019). Authors of Ma et al. (2021)
focused on modeling and controlling a subsea shuttle tanker, which
is one of the first studies considering a large underwater vehicle.
The authors concluded that classical PID control is insufficient for
controlling the depth of large underwater vehicles, such as the subsea
shuttle tanker, and a feed-forward control strategy is proposed, such as
MPC.

In the literature, more advanced methods of motion control for
trajectory-tracking and path-following are described, such as Backstep-
ping Control (BSC), Fuzzy Logic Control (FLC), Neural Network Control
(NNC), Robust Adaptive Control (RAC), Sliding Mode Control (SMC),
and Model Predictive Control (MPC). These motion control methods
are used to address the complex dynamic control problem associated
with AUVs (Sahoo et al., 2019).

Authors of Yan et al. (2020) used BSC in combination with the
Lyapunov direct method for controlling a multi-input multi-output
system such as underwater vehicles. Nonetheless, authors of Yan et al.
(2020) reported that BSC cannot solve the uncertainty of system pa-
rameters and external disturbances and is, therefore, less applicable for
underwater vehicles. Moreover, according to Zhang et al. (2019), the
computing complexity increases rapidly as the system order increases
because of the repeated differentiation of virtual controllers.

Authors of Kong et al. (2020) applied FLC to effectively control
an underwater vehicle. Their approach is not dependent on an accu-
rate mathematical model and, therefore can easily be used to con-
trol uncertain and strong nonlinear systems. Authors of Xiang et al.
(2017) reported that for inaccurate model parameters, the fuzzy PID
controller has a better performance compared to a traditional PID
controller. Furthermore, the fuzzy PID controller has better robustness
against disturbances due to the capability of adaptively tuning control
gains (Xiang et al., 2017). The main disadvantage is that FLC needs
existing experience to establish fuzzy rules, which is very subjective ac-
cording to Zhang et al. (2019). In Londhe and Patre (2019), the authors
proposed an adaptive fuzzy sliding mode control strategy for robust
trajectory tracking control of an autonomous underwater vehicle.

Authors of Zhang et al. (2019) reported that the performance of the
NNC depends on the architecture of the network, in particular on the
number of nodes, resulting in a large computational cost, which is not
conducive to the practical application of engineering (Yan et al., 2020),
and therefore less applicable for underwater vehicles.

Authors of Tijjani et al. (2021) proposed a RAC control scheme
for real-time control of a fully actuated AUV, including SMC as a
control strategy, as it is a common motion control method used for
controlling underwater vehicles (Yildiz et al., 2009; Londhe et al., 2017;
Healey and Lienard, 1993; Elmokadem et al., 2016). The applicability
of RAC and SMC is, in general, limited to AUVs as it involves complex
controller design (Londhe et al., 2017). According to Hammad et al.
(2017), SMC might lead to undesirable high-frequency oscillations
called ‘chattering’ around the sliding surface, leading to low control
2

accuracy and high energy consumption.
Authors of Budiyono (2011) proposed MPC as an alternative for
direct-tuned PID controllers, as it is considered a promising control
strategy for small underwater vehicles, such as AUVs.

Authors of Zhang et al. (2019) proposed a novel 3D underwater tra-
jectory tracking method for a fully actuated AUV in 6 DOF leveraging
MPC. They considered an MPC closed-loop optimal control strategy,
reporting the capability of dealing with input and state constraints,
while authors of Steenson et al. (2014) successfully applied MPC for
transit and hovering control for the Delphin2 AUV.

More recent research has been carried out to improve MPC for
trajectory-tracking for underwater vehicles. In Yan et al. (2020), a
double closed-loop controller is designed. In Long et al. (2021), the
accuracy of MPC is further improved by using an extended state-based
Kalman filter to estimate system states and external disturbances. The
optimal control and corresponding propulsion force for each of the
seven thrusters is determined for an ROV, considering the presence of
ocean current disturbance and measurement noise (Long et al., 2021).

Authors of Tang et al. (2020) propose an improved kinematic MPC
for high-speed path tracking of autonomous vehicles. The authors
introduce a vehicle sideslip angle compensator to correct the kinematic
model prediction, which significantly improves the performance of path
tracking.

Authors of Tian et al. (2022) propose an adaptive path tracking
control strategy that coordinates active front wheel steering and direct
yaw moment based on the MPC algorithm. The authors use the recur-
sive least square method with a forgetting factor to identify the rear
tire cornering stiffness and update the path tracking system prediction
model.

Authors of Xu et al. (2021) present a trajectory tracking scheme by
utilizing MPC and preview-follower theory, which includes a reference
generation module and a MPC controller. The authors claim that the
proposed method performs well by increasing the effective length of
the reference path.

Authors of Yu et al. (2021) carried out a review discussing the wide
applications of MPC to both single and multiple autonomous ground
vehicles. The authors highlight existing issues and future research
directions, which will promote the development of MPC schemes with
high performance in AGVs.

Table 1 provides a comprehensive summary of the advantages and
disadvantages of each control method, as reported in the existing litera-
ture. The primary objective of this study is to introduce a novel control
strategy, specifically designed to optimize the control and minimize
the energy consumption of AUVs. Our research primarily concentrates
on the aspect of Buoyancy Control, which involves the manipulation
of the requisite mass in both the depth control tank and the forward
trim tank. The distinguishing factor of our approach, as compared to
traditional methods employed for remotely operated vehicles or AUVs,
lies in the incorporation of a hopper within the hull. This addition
results in a mass variation during underwater operations, necessitating
active compensation. The novelty of our research is also encapsulated
in its objectives. Unlike previous studies, our work does not solely
focus on buoyancy control. Instead, it also aims to minimize energy
requirements, thereby promoting cost-effectiveness and sustainability.
This dual focus on control optimization and energy conservation sets
our study apart, offering a fresh perspective on the control strategies
for AUVs.

The control of an underwater dredger presents unique challenges
compared to traditional underwater vehicles. Firstly, the operational
state of an underwater dredger involves taking in liquid cargo while
submerged. This process alters the vehicle’s mass and buoyancy proper-
ties in real-time, adding complexity to the control problem. Traditional
control strategies for underwater vehicles typically assume a constant
mass and buoyancy, which is not the case for a dredger. Secondly,
the dredger operates close to the seabed, which introduces additional
physical constraints. The proximity to the ground can lead to ground

effects, which are hydrodynamic changes that can affect the vehicle’s
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Table 1
Advantages and Disadvantages of different motion control methods for underwater vehicles.

Method Advantages Disadvantages

PID Easy to implement, widely used, can be improved with
adaptive tuning algorithms (Long et al., 2021; Sahoo et al.,
2019; Rout and Subudhi, 2017; Kong et al., 2020; Xiang
et al., 2017)

Less accurate for trajectory tracking and path following, unsuitable for
nonlinear models and uncertain external disturbances, requires careful
tuning (Zhang et al., 2019)

BSC Used for controlling multi-input multi-output systems (Yan
et al., 2020)

Cannot solve the uncertainty of system parameters and external
disturbances, increased computing complexity with system order (Yan
et al., 2020; Zhang et al., 2019)

FLC Not dependent on an accurate mathematical model, can
control uncertain and strong nonlinear systems, better
performance and robustness against disturbances (Kong
et al., 2020; Xiang et al., 2017)

Requires existing experience to establish fuzzy rules, which can be
subjective (Zhang et al., 2019)

NNC Improved performance compared to the physical model when
implemented in the same feedforward-feedback control
architecture (Zhang et al., 2019)

Performance depends on the architecture of the network, large
computational cost (Zhang et al., 2019; Yan et al., 2020)

RAC and SMC Used for real-time control of fully actuated AUVs (Tijjani
et al., 2021)

Involves complex controller design, might lead to undesirable
high-frequency oscillations (Londhe et al., 2017; Hammad et al., 2017)

MPC Promising control strategy for small underwater vehicles, can
deal with input and state constraints (Budiyono, 2011; Zhang
et al., 2019; Steenson et al., 2014)

The performance of the MPC controller is highly dependent on the correct
tuning of the weights in the cost function and the choice of the prediction
horizon
w
𝝂
t

e

𝐌
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m
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stability and maneuverability. These effects are typically not a concern
for vehicles operating in open water and at greater depths. Thirdly,
the dredger must contend with currents affecting its trajectory and
stability. While all underwater vehicles must deal with currents to
some extent, the impact is more pronounced for a dredger due to
its operational proximity to the seabed, where currents can be more
turbulent. Lastly, the dredger often operates in shallow water, which
introduces additional challenges. Shallow water effects, such as wave–
current interactions and seabed boundary effects, can significantly
impact the vehicle’s dynamics and control.

Drawing from the existing body of literature, MPC emerges as a
highly promising method for managing the motion control of under-
water vehicles. This is largely due to its inherent ability to account for
modeling uncertainties and external disturbances, while simultaneously
optimizing the control effort. However, it is noteworthy that most of the
research to date has primarily focused on applying MPC for buoyancy
control. Our research aims to extend the application of MPC beyond this
traditional focus. We propose an innovative approach that leverages
MPC for buoyancy control and emphasizes energy minimization. This
dual focus is designed to enhance the cost-effectiveness and sustain-
ability of AUV operations. To our knowledge, this represents a novel
contribution to the field, as no other research has yet explored the
use of MPC in this manner. By broadening the application of MPC to
include energy efficiency considerations, we aim to advance state-of-
the-art AUV control strategies, potentially paving the way for more
sustainable and economical underwater operations.

Therefore, this paper implements an MPC framework to achieve
energy minimization whilst ensuring autonomous underwater oper-
ations. A PID-based control strategy is used to create a benchmark
and compare the performance regarding trajectory-tracking and energy
savings. The AUV under investigation (ALERD) has been modeled as
an underwater vehicle using equations of motion and mathematical
expressions for the hydrodynamic coefficients. Since it is a new un-
conventional building, no hydrodynamic data is available at the design
stage, and for this reason, a sensitivity analysis has been carried out
to show the effect of modeling uncertainties and the performance of
both controllers. Finally, results are compared with the energy require-
ments of a conventional dredger to show the potential advantages of
submerged dredging.

The rest of the paper is organized as follows.
Section 2 discusses the state-space modeling approach, the pro-

posed MPC framework, and its numerical solution. Next, Section 3
outlines the derivation process of control forces and moments, subse-
quently translating these into corresponding power requirements and
3

energy consumption. Section 4 describes the ALERD, including the
tank arrangement and the disturbances due to the submerged dredging
operations, used for the case study. In Section 5, the experimental
settings are described. The results of the simulations will be presented
in Section 6, using both PID control and MPC, and the results of the
sensitivity analysis will be discussed. In Section 7, the comparison
between the energy requirements of the ALERD and the conventional
dredger is made. Finally, in Section 8, the conclusions will be given.

2. Methodology

In this section, we will deepen the description of the proposed
methodology, starting from the state-space modeling approach pre-
sented in Section 2.1. Subsequently, in Section 2.2, we will describe
the MPC framework considered for controlling the forward speed 𝑢, the
pitch angle 𝜃, and the depth 𝑧. This paper assumes that controlling the
motions in heave and pitch will require the most energy for stability
and buoyancy control. The energy consumption due to the forward
speed control is based on the required power for propulsion, which
is already determined in Hijdra and Van Der Harst (2019) and is not
affecting the energy requirement for stability and buoyancy control.
Furthermore, the disturbances due to the dredging and discharging
operations will mainly influence the heave and pitch motion.

2.1. State-space modeling

The 6 degrees of freedom (DoF) model developed by Fossen (2011)
is frequently used in the literature for the modeling of underwater
vehicles and can be considered the state-of-the-art method for modeling
and control of ships and underwater vehicles. According to Fossen
(2011), the kinematic equations can be expressed in vectorial form

�̇� = J(𝜂)𝜈 (1)

here 𝜼 = [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓]𝑇 is the vector of position/Euler angles,
= [𝑢, 𝑣,𝑤, 𝑝, 𝑞, 𝑟]𝑇 is the vector of velocities, and 𝐉(𝜂) is the Euler

ransformation matrix.
The motions of the ALERD can be described using the complete

quations of motion in 6 DoF as reported in Eq. (2):

�̇� + 𝐂(𝝂)𝝂 + 𝐃(𝝂)𝝂 + 𝐠(𝜼) = 𝝉 + 𝐰 (2)

here 𝐌 ∈ R6×6 is the system inertia and added mass matrix, 𝐂(𝝂) ∈
6×6 is the Coriolis and centripetal matrix, 𝐃(𝝂) ∈ R6×6 is the damping
atrix, 𝐠(𝜼) ∈ R6×1 is the vector with restoring forces and moments, 𝝉 ∈
6×1 is the vector with forces and moments applied to the vessel, and
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𝐰 represents the external disturbances. It is worth noting that external
disturbances have been neglected for this specific application. Eq. (2)
can be rewritten as state-space representation, using the approach
defined in Fossen (2011):

𝒇 (𝒙, 𝒖) = �̇� =
[

𝑴−𝟏[𝝉 − 𝑪(𝝂)𝝂 −𝑫(𝝂)𝝂 − 𝒈(𝜼)]
𝑱 (𝜼)𝝂

]

(3)

where 𝒙 =
[

𝝂⊤, 𝜼⊤
]⊤ is the state vector. Exploiting the Euler transfor-

mation matrix, the velocity vector is transformed from the body-fixed
to the inertial frame, according to Eq. (1).

Ideally, the hydrodynamic coefficients for the numerical simulations
of the ALERD, based on Eq. (3), would have been retrieved using
Experimental Fluid Dynamics (EFD) or Computational Fluid Dynamics
(CFD). Those techniques can be considered state-of-the-art approaches
to obtain the hydrodynamic coefficients required to capture the dy-
namic motions of the considered AUV described by Eq. (2). In fact,
recent studies have been carried out developing CFD models to deter-
mine those coefficients for underwater vehicles (Gabriel et al., 2020;
Gao et al., 2018; Takahashi and Sahoo, 2020) enabling the simulation
of different maneuvers. Nonetheless, since the ALERD is still in the
concept phase, both EFD or CFD-based approaches were impracticable.

Based on the literature, modeling the hull as an ellipsoid has been
proven to be a good approximation of many slender body under-
water vehicles and commonly used as reported in Fossen (2011),
Lee et al. (2011) and Prestero (2001). Therefore, the hydrodynamic
coefficients for the added mass are estimated, assuming the hull is
ellipsoidal (Renilson, 2015; Severholt, 2017; Valeriano-Medina et al.,
2013). Moreover, assuming three symmetry planes, the added mass
and damping matrix become diagonal (Fossen, 2011). Furthermore,
the higher-order damping terms can be neglected by assuming low to
medium-speed operations (Fossen, 2011). The assumption of diagonal
matrices can be considered a satisfactory approximation, since the off-
diagonal coefficients are often much smaller compared to the diagonal
coefficients (Fossen, 2011). By using diagonal matrices for the added
mass and linear damping, the motions become almost decoupled.

The coefficients for the added mass are estimated using the k-
factors from Lamb (Imlay, 1961), and the linear damping terms are
scaled using data from a small AUV (Valeriano-Medina et al., 2013),
using Froude scaling. Since the AUV used in Valeriano-Medina et al.
(2013) and the ALERD have a similar Froude number, the Froude
similarity is used. In general, Reynolds scaling is more applicable for
the ALERD, due to the absence of waves. In submerged operations,
viscous resistance is dominating. However, it is impossible to have
Reynolds similarity between the small AUV and the ALERD. Therefore,
it is chosen to scale the coefficients using the Froude scaling factors.

It is worth noting that the corresponding uncertainties induced by
the estimations of the above-mentioned parameters have been con-
sidered, and sensitivity analysis has been performed and described in
Section 5.1.

2.2. Model predictive control framework

The considered cost function is a sum over a prediction horizon
of length (𝑁𝑃 ), composed of two main contributions (Rawlings and
Mayne, 2009).

For the first contribution, at each step in the horizon, the controller
evaluates the difference between the predicted state of the system,
denoted as 𝜼(𝑘 + 1), and the desired state, denoted as 𝜼𝑑 (𝑘 + 1). This
difference is then weighted by a positive-definite matrix 𝑸, assigning
different weights to different state variables. The result is a measure of
the tracking error of the system. The second term in the sum represents
the control effort. It is the change in control input, denoted as 𝒖(𝑘+ 𝑖),
weighted by a positive-definite matrix 𝑹. This term penalizes large
changes in the control input, which can be important in systems where
abrupt changes in control can lead to instability or are otherwise
undesirable (Kerrigan and Maciejowski, 2002). The controller seeks to
4

o

minimize this cost function, which means it tries to find a sequence of
control inputs that will result in the system closely tracking the desired
state while minimizing the control effort. The proposed cost function
represents a trade-off between tracking performance (how closely the
system follows the desired trajectory) and control effort (how much the
control input changes), and the matrices 𝑸 and 𝑹 are used to tune this
trade-off.

The cost function is quadratic (see Eq. (4)), which means the prob-
lem is a Quadratic Programming (QP) problem if the system dynamics
and constraints are linear (Boyd and Vandenberghe, 2004). QP prob-
lems can be solved efficiently, which is one of the reasons why MPC
is popular for controlling linear systems. Nonetheless, our system is a
nonlinear one, therefore, the problem becomes a Nonlinear Program-
ming (NLP) problem, which is more challenging to solve (Guo et al.,
2017). Optimality and stability are fundamental properties sought in
the control of linear and nonlinear systems using MPC, which explains
the rationale for minimizing the cost function (Mayne et al., 2000).

In particular, the cost function of the MPC is defined by Eq. (4).
Within this equation, the matrices 𝑸 ∈ R2×2 and 𝑹 ∈ R2×2 are char-
acterized as positive-semi-definite, representing the weight parameters
within the function. The cost function’s objective is to accurately track
the desired reference signals, namely the depth 𝑧 and pitch angle 𝜃,
while simultaneously minimizing the adjustments in the manipulated
variable, 𝛥𝑢. These control objectives encapsulate the MPC’s key goal
and are defined more precisely in Eq. (5). The manipulated variables,
namely the required mass in the depth control tank (DCT) (𝑚𝐷𝐶𝑇 ) and
the required mass in the forward trim tank (𝑚𝑇𝑇 ,𝑓𝑜𝑟𝑒), are central to the
controller’s operation and are thoroughly defined in Eq. (6).

𝐽 = min
𝑁𝑝
∑

𝑖=0

(

(

𝜼(𝑘 + 𝑖) − 𝜼𝒅(𝑘 + 1)
)𝑇

𝑸
(

𝜼(𝑘 + 𝑖) − 𝜼𝑑 (𝑘 + 1)
)

+𝛥𝒖(𝑘 + 𝑖)𝑇𝑹𝛥𝒖(𝑘 + 𝑖)
)

(4)

with

𝜼𝑑 (𝑘 + 𝑖) =
[

𝑧𝑑 (𝑘 + 𝑖)
𝜃𝑑 (𝑘 + 𝑖)

]

(5)

𝒖(𝑘 + 𝑖) =
[

𝑚𝐷𝐶𝑇 (𝑘 + 𝑖)
𝑚𝑇𝑇 ,𝑓𝑜𝑟𝑒(𝑘 + 𝑖)

]

(6)

The variation in the manipulated variable, computed via Eq. (7), estab-
lishes the rigid constraint for the controller’s operation. This specific
constraint, detailed in Eq. (8), is equivalent to the mass flow rate as
determined by Eq. (9). This hard constraint is fundamentally derived
from the inherent properties of the physical system in use, namely the
ballast water pump system. Given certain parameters, such as the pipe
diameter for each tank system and a predefined maximum flow velocity
in the pipeline, it becomes possible to discern a maximum volume flow
rate and its correlative mass flow rate. These values, once defined, are
employed to limit the range within which the controller can operate.
This aspect of the system ensures that the controller remains within
the safe and effective operating parameters of the ballast water pump
system.

𝛥𝒖(𝑘 + 𝑖) = 𝒖(𝑘 + 𝑖 ∣ 𝑘) − 𝒖(𝑘 + 𝑖 − 1 ∣ 𝑘) (7)

𝛥𝒖𝑚𝑖𝑛 ≤ 𝛥𝒖(𝑘 + 𝑖) ≤ 𝛥𝒖𝑚𝑎𝑥 (8)

̇ 𝑚𝑎𝑥 = 𝜌𝑠𝑤 ⋅ 𝑣𝑚𝑎𝑥 ⋅
𝜋
4
⋅ 𝑑2𝑝𝑖𝑝𝑒 (9)

he required mass flow rate directly relates to the necessary pump
ower as exhibited in Eq. (12). Optimizing the change in the manipu-
ated variable – that is, the mass flow rate – is intrinsically linked with
ptimizing the power requirement for the ballast water pumps.
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2.3. MPC numerical solution

The numerical solution of this MPC problem involves solving the
optimization problem defined by the cost function described in Eq. (4)
at each time step. The goal is to find the optimal control inputs 𝒖 that
minimize this cost function. Since our system is a nonlinear one, the
problem becomes a Nonlinear Programming (NLP) problem, which is
more challenging to solve (Guo et al., 2017). To solve such an NLP
problem, the literature suggests a number of numerical optimization
methods: (i) Gradient-based methods: these methods use the gradient
(or derivative) of the objective function to guide the search for the
optimal solution. They start with an initial guess for the solution and
iteratively update this guess in the direction that decreases the objective
function the most. Examples of gradient-based methods include steep-
est descent, conjugate gradient, and Newton’s method (Nocedal and
Wright, 1999). (ii) Sequential Quadratic Programming (SQP): SQP is a
popular method for solving NLP problems. It works by approximating
the NLP problem with a sequence of QP problems. The QP problems
are easier to solve, and the solutions to these problems converge to
the solution of the NLP problem (Fletcher, 1981). (iii) Interior-point
methods transform the NLP problem into an equivalent problem that
can be solved more easily. They do this by introducing a barrier
function that prevents the search from reaching the boundaries of
the feasible region (Biegler, 2010). (iv) Genetic algorithms or other
evolutionary algorithms: these are population-based, stochastic search
algorithms inspired by natural evolution principles. They can be used
to solve optimization problems, including NLP problems, especially
when the objective function is non-convex or has multiple local min-
ima (Goldberg, 1989). In our study, we have chosen SQP as our method
for solving the nonlinear programming problem. The justification lies in
its efficacy for complex problems, convergence properties, and ability
to handle constraints. SQP is adept at tackling the intricate optimization
problems that come with marine vehicle control, which often involve
numerous variables and constraints (Nocedal and Wright, 1999). The
performance of marine vehicles can be swayed by a multitude of
factors, such as vehicle dynamics, hydrodynamic forces, and environ-
mental conditions (von Ellenrieder, 2021; Karimi and Lu, 2021). These
factors contribute to a complex optimization problem, which SQP is
well-equipped to manage. In terms of convergence properties, SQP
methods are known for their robustness, with solutions tending to con-
verge swiftly and reliably to the solution of the nonlinear programming
problem (Nocedal and Wright, 1999). This is particularly beneficial in
the context of marine vehicle control, where solutions may be required
in real-time or near-real-time. Lastly, marine vehicles often operate
under a variety of constraints, such as limitations on thruster power or
navigational restrictions. SQP proves effective at managing these types
of constraints in the optimization problem (Fossen and Strand, 1999).

In each iteration of the MPC algorithm, the QP solver will take
the system’s current state and the reference trajectory for the future
𝑁𝑝 steps and return the optimal control inputs that should be applied
to the system. The first input of this optimal sequence is applied to
the system, and the process is repeated at the next time step. The
matrices 𝑸 and 𝑹 in Eq. (4) are used to tune the performance of
the MPC controller. The matrix 𝑸 weights the tracking error (the
difference between the system states and the desired reference), while
the matrix 𝑹 weights the change in control inputs. Adjusting these
weights allows us to control the trade-off between tracking performance
and control effort. The solution of the QP problem will give us the
optimal values for the manipulated variables, 𝑚𝐷𝐶𝑇 and 𝑚𝑇𝑇 ,𝑓𝑜𝑟𝑒, as
defined in Eq. (6). These variables are the key operational parameters
that our controller can adjust to track the desired depth and pitch
angle, as the reference signals specify. Using a QP solver allows us to
systematically and efficiently find the solution to our MPC problem.
However, the performance of the MPC controller is highly dependent
on the correct tuning of the weights in the cost function and the choice
5

of the prediction horizon 𝑁𝑝. a
3. Energy assessment

In this section, the required control forces and moments defined
in Section 3.1 are derived and subsequently translated into the re-
quired power and corresponding energy consumption as reported in
Section 3.2.

3.1. Control forces and moments

The control variables are employed to generate the necessary restor-
ing forces and moments as explicated in Eqs. (10) and (11). Two
integral components – the depth control tank and the trim tank system
– are exploited to produce these restoring forces and moments. The trim
tank system has been modeled considering that the mass extracted from
the forward tank is concurrently added to the aft tank and reciprocally.
This approach ensures that the total mass within the trim tank system
remains conserved. The heave force and the trimming moment are
incorporated within the force vector 𝝉 ∈ R6×1 , as defined in Eq. (3).
It is assumed that the DCTs are positioned so that they do not create
additional trimming moments, so adding or removing weight only
creates additional forces in heave motion. Furthermore, it is assumed
that the center of gravity does not change, meaning the vertical dis-
tance from the center of buoyancy (𝐵) to the center of gravity (𝐺)
remains constant. Adding or removing mass from the DCT can generate
negative and positive forces. In the case of underwater vehicles, the
application of negative forces becomes necessary for ascent. This is
primarily because the weight (𝑊 ) of the vehicle must be less than the
buoyant force (𝐵) for the vehicle to rise. In Eq. (10), the heave force
due to the mass in the DCT can be found.

FDCT = 𝑔 ⋅ 𝑚𝐷𝐶𝑇 (10)

n this study, the authors have resolved not to employ stern-planes as
ctuators for pitch control, a decision mirroring that adopted in naval
ubmarine designs. Rather, a trim tank system has been selected as
he method for managing pitch. The ALERD’s trim tank system is a
losed configuration comprising two interconnected tanks. These tanks
re strategically positioned 30 m apart, both fore and aft, relative
o the central origin point (𝐶𝑂), denoted as 𝑥𝑇𝑇 ,𝑓𝑜𝑟𝑒 and 𝑥𝑇𝑇 ,𝑎𝑓𝑡 in
he longitudinal direction. Thanks to the symmetric positioning of the
anks, no supplemental trimming moments are generated in either the
itch or roll direction. This ensures a balanced, effective system for
itch control.

A more elaborate discussion on the arrangement of the trim tanks
ill follow in Section 4.1, including a schematic depiction of the tank

ayout within the hull, as illustrated in Fig. 4, to provide a detailed
nderstanding of the system’s design.

Keeping this in view, the trim tanks play a crucial role in generating
ecessary restoring moments, ensuring consistent zero-pitch control.
he mass to be inserted or extracted from the forward trim tank
𝑚𝑇𝑇 ,𝑓𝑜𝑟𝑒) is the pitch angle’s control variable. This mass is converted
nto a trimming moment, which then serves as an input in the forces
nd moments vector 𝜏, as represented in the state-space Eq. (3).

The trimming moments (𝑀𝑇𝑇 ,𝑓𝑜𝑟𝑒 and 𝑀𝑇𝑇 ,𝑎𝑓𝑡), as a product of the
rim tank system, are detailed in Eq. (11).

𝑇𝑇 ,𝑓𝑜𝑟𝑒 = 𝑔 ⋅ 𝑥𝑇𝑇 ,𝑓𝑜𝑟𝑒 ⋅
(𝑚𝑇𝑇 ,𝑡𝑜𝑡

2
+ 𝑚𝑇𝑇 ,𝑓𝑜𝑟𝑒

)

𝑀𝑇𝑇 ,𝑎𝑓𝑡 = 𝑔 ⋅ 𝑥𝑇𝑇 ,𝑎𝑓𝑡 ⋅
(𝑚𝑇𝑇 ,𝑡𝑜𝑡

2
− 𝑚𝑇𝑇 ,𝑓𝑜𝑟𝑒

)
(11)

.2. Depth and pitch control energy assessment

The required mass flow for the ballast tanks used for depth- and
itch control and to compensate for the weight in the hopper can be
sed to calculate the required pump power and corresponding energy
onsumption. When the tanks need to be emptied, pumps are used,

nd if they need to be filled, flooding holes are opened. Therefore,
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Fig. 1. Energy consumption flow chart.
only the negative mass flow (i.e., water removed from the tanks) is
considered when calculating the pump power. Positive mass flow rates
are achieved by opening vents, which do not contribute to energy
consumption. The mass flow rate is constrained based on the maximum
fluid flow velocity in the pipelines, which is already described in
Section 2.2. The mass flow rate is then converted to a volume flow rate,
which serves as input for calculating the required power by the pumps,
using Eq. (12). This is also schematically drawn in Fig. 1. In Eq. (12),
�̇�𝑝𝑢𝑚𝑝 is the volume flow in m3∕s and 𝜂𝑝𝑢𝑚𝑝 the pump efficiency. Values
for the pump efficiency for centrifugal pumps vary between [0.6, 0.9]
and are dependent on the pressure head. The total pressure head
(𝛥𝑝++𝑝𝑢𝑚𝑝) includes the static pressure head, the dynamic pressure head,
and the head caused by a height difference in the pipe-flow system
itself.

𝑃𝐵,𝑝𝑢𝑚𝑝 =
�̇�𝑝𝑢𝑚𝑝 ⋅ 𝛥𝑝++𝑝𝑢𝑚𝑝

𝜂𝑝𝑢𝑚𝑝
(12)

Once the required pump power is evaluated, we can calculate the total
energy requirement in kilojoules (kJ) for a single simulation run. This is
achieved by integrating the power over the entire simulation duration.
Detailed comparative analysis can be found in Section 7.

4. Case study description

In this paper, we utilize ALERD as the focal point of our case
study. We aim to demonstrate the potential advantages of integrating
autonomous submerged dredging operations with the proposed MPC
framework. This section will detail an exhaustive characterization of
the ALERD. We will describe its primary architectural dimensions and
the internal configuration of the tank system within the hull. This
in-depth analysis will afford a thorough understanding of the struc-
tural parameters and functional aspects influencing the performance of
ALERD. Moreover, we will explore the disturbances that are intrinsic
to submerged operations. These disturbances, which present challenges
in the practical implementation of the system, will serve to underscore
the robustness and resilience of the proposed MPC framework when
confronted with real-world operational conditions. This comprehensive
analysis will allow a more robust understanding of the theoretical and
practical implications of employing the proposed MPC framework in
autonomous submerged dredging.

4.1. Vessel description

The ALERD is an autonomous submersible dredger that is designed
to deliver sediment to coastlines to protect the land in a sustainable
manner. The ALERD’s autonomous operation and sustainable power
source make it a more environmentally friendly option than traditional
dredgers, as it is powered by a battery and uses a combination of sen-
sors and software to navigate and operate autonomously. This makes
the ALERD a more sustainable option than traditional dredgers, which
are typically powered by diesel fuel. The ALERD’s ability to operate in
shallow waters makes it ideal for coastal replenishment projects. The
ALERD uses a suction dredge to collect sediment from the seabed, and
6

Table 2
Wageningen B3-65 nozzle 19A main characteristics.

Feature Symbol Value Unit

Propeller diameter Dprop 2.8 [m]
Trust coefficient KT 0.207 [–]
Torque coefficient KQ 0.0297 [–]
Number of propellers np 2 [–]

the sediment is then transported to a hopper in the ALERD’s hull. The
vehicle uses its thrusters to navigate to the desired location, where the
sediment is then discharged from the hopper onto the coastline. The
ALERD is designed to be operated autonomously, meaning it does not
require a crew to operate it. The sensors include sonar, GPS, and a
compass. The software uses the data from these sensors to map the
surrounding area and plan the ALERD’s movements.

Given that the ALERD is still in its conceptual phase, the definitive
dimensions and hull form remain indeterminate. However, a prelimi-
nary hull form, illustrated in Fig. 2, has been proposed. This prelimi-
nary hull form derives its foundation from prior research work (Hijdra
and Van Der Harst, 2019), as well as from the ALERD’s predecessor —
the Autonomous Underwater Maintenance Dredger (AUMD). A compre-
hensive description of the AUMD, along with its distinctive attributes, is
available in Hijdra and Van Der Harst (2019). The propulsion system of
the ALERD encompasses two azimuthing thrusters, which are designed
to function as primary propulsors. In addition, batteries are incorpo-
rated to provide the necessary energy on board. The specifications
of the propellers, which form a crucial component of the propulsion
system, are enumerated in Table 2.

Fig. 3 presents a cross-sectional view of the hull. The hopper, which
is used for storing the excavated soil, is strategically positioned within
the hull. The flooding holes situated at the top of the hopper are
clearly delineated in Figs. 2 and 3. ALERD is designed with bottom-door
openings at the hull’s base to facilitate the discharge of the dredged soil.
The hopper is consistently filled either with seawater or a mixture of
seawater and the excavated soil. Throughout the dredging operations,
the dredged material is transferred into the hopper using specialized
dredging pumps. The upper flooding holes have been designed to serve
a dual purpose: they can be used either to drain excess water or to
fill the hopper with seawater. Similarly, the bottom-door openings
function to discharge the dredged soil. Key dimensions of the ALERD
are provided in Table 3. The dimensions and displacement correspond
to the hull form of its predecessor, the AUMD, as shown in Fig. 2. The
initial dimensions of the AUMD serve as the foundational reference for
the ALERD and are consistently utilized in this research. Given the
operational differences between the ALERD and the AUMD, further
optimization of these dimensions will be necessary and will be the
focus of future research. The hopper capacity is deduced based on the
primary dimensions of the hull and previous studies conducted on the
ALERD. These hopper dimensions, in turn, are employed to determine
the ballast capacity of the primary ballast tanks.

The arrangement of the three ballast tank systems and the hopper
is depicted in Fig. 4. The depth control tank (DCT) is employed as
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Fig. 2. Preliminary hull form.
Fig. 3. Schematic overview of the cross-section of the hull.
Table 3
Main dimensions.

Parameter Symbol Value Unit

Length L 80 [m]
Breadth B 20 [m]
Depth D 8.5 [m]
Displacement 𝛥 10 830 [ton]
Hopper volume ∇𝐻 2360 [m3]

an actuator for the motion controller, enabling the active control of
the depth 𝑧. Similarly, the trim tanks situated at the forward and
aft sections of the hull serve as actuators for the motion controller,
enabling the control of the pitch angle 𝜃. The two tank systems are
instrumental in generating the requisite control forces and moments,
as outlined in Section 2. Fig. 3 provides a cross-sectional view of the
hull, showcasing the arrangement of the tanks and the hopper. The
weights associated with the hopper and the main ballast tanks (MBTs)
are detailed in Table 4.

During dredging operations, the hopper is filled with a mixture of
the dredged soil and seawater, which has a density denoted by 𝜌𝑚𝑖𝑥 =
1900 kg∕m3. The MBTs are employed to counterbalance this weight
change and, consequently, possess the same capacity as the additional
weight introduced into the hopper. This capacity is also specified in
Table 5. The design and operation of these systems are meticulously
planned to ensure efficient dredging while maintaining vessel stability.
7

Table 4
Hopper and tank mass details.

Parameter Value Unit

Hopper mass (Water) 2419 ⋅ 103 [kg]
Hopper mass (Mixture) 4484 ⋅ 103 [kg]
Mass main ballast tank 2065 ⋅ 103 [kg]

Table 5
Parameters trim tank system.

Parameter Value Unit

𝑥𝑇𝑇 ,𝑎𝑓𝑡 30 [m]
𝑥𝑇𝑇 ,𝑓𝑜𝑟𝑒 30 [m]
𝑚𝑇𝑇 ,𝑡𝑜𝑡 10 000 [kg]

4.2. Disturbances

Fig. 5 illustrates the changes in the mass of the hopper and the main
ballast tank over time. It is assumed that the filling of the hopper with
dredged soil and the emptying of the main ballast tanks occur simulta-
neously and at equivalent mass flow rates. This hypothesis guarantees
that the mass differential between the main ballast tank and the hopper
during both dredging and discharging operations remains null at all
instances, a phenomenon corroborated by Fig. 5. By adhering to this
approach, the generation of additional heave forces is avoided, thereby
eliminating the need for further compensation. Consequently, the depth
control tank is utilized exclusively for implementing necessary depth
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Fig. 4. Schematic overview of the hopper and the tank arrangement.
Fig. 5. Mass change in the hopper and MBT.

adjustments, while the main ballast tank is devoted to offsetting the
mass variations in the hopper. This strict partition of responsibilities
ensures the stabilization of the vessel during its operations, enhancing
the efficiency of the dredging process.

During the dredging operation, one of the significant disturbances
arises from the resistance of the draghead and suction tubes. The
calculation of this resistance for a traditional dredger can be applied
to the ALERD due to the similar size and quantity of dragheads used
— in this case, two. It is assumed that the resistance exerted by the
dragheads on the ALERD is equal to that on a conventional dredger
due to their similar design and operational parameters. The forward
speed during dredging, set to a constant 2 knots, results in an estimated
resistance from the two dragheads equal to 258 kN, while the resistance
attributed to the suction tubes amounts to 2 kN. These resistances sum
up to a total of 260 kN, which introduces a constant trimming moment
during the dredging operation. This induced moment necessitates ac-
tive compensation from the trim tanks to maintain a zero pitch angle,
thus ensuring the stability of the vessel during operations. This analysis
underscores the importance of accounting for such disturbances in the
design and control strategies for autonomous dredgers like the ALERD.

5. Experimental setting

In this section, we introduce the experimental settings for our study,
where we consider a realistic speed profile reflecting the operational
habits of conventional dredgers engaged in coastal replenishment activ-
ities along the Dutch coastline. This choice is made to create scenarios
that closely resemble real-world operations.

The forward speed during transit, dredging, and discharging is set
at 8.5 knots, 2 knots, and 0.4 knots, respectively. This variation in
speed profile serves as an input for the state-space model, making the
simulation more robust and representative of practical conditions.

The calculation of thrust and torque, as formulated in Eqs. (13)
and (14), are incorporated into the force vector 𝝉 ∈ R6×1 (referenced
in Eq. (3)). These calculations rely on the propeller characteristics,
detailed in Table 2 within Section 4.

T = 0.5 ⋅ 𝜌 ⋅ D ⋅ K ⋅ n2 (13)
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prop4 T
Q = 0.5 ⋅ 𝜌 ⋅ Dprop5 ⋅ KQ ⋅ n2 (14)

where 𝑛 is the propeller speed, and it plays a critical role in the
functioning of the motion controllers, as it is instrumental in achieving
the desired vessel speed. This experimental setting serves to provide a
comprehensive evaluation of the vehicle’s performance under realistic
operational conditions.

In this section, we employ the state-space model delineated in the
preceding segment to conduct time-domain simulations over the span
of one complete dredging cycle. This approach facilitates a thorough
understanding of system dynamics throughout a full operational cycle.
Two control methodologies, namely PID control and MPC, are incor-
porated into the simulation model. The aim of these controls is to
meet the defined control objectives while simultaneously addressing
any disturbances encountered during dredging and discharging oper-
ations. In terms of energy consumption, the main contributors are
the tank systems (MBT, DCT, and TTs), which play a pivotal role
in ensuring stability and controlling buoyancy. These tank systems,
acting as actuators, are utilized by the motion controllers to meet the
control objectives specified earlier. The DCT and TTs, in particular, are
active components in this control scheme, responding to the controller’s
commands to adjust the vessel’s dept (compensating for salinity and
hull compression) and pitch angle. By analyzing their role in the
context of the entire dredging cycle, we aim to gain insights into the
system’s behavior and identify potential areas for energy efficiency
improvement. This also aids in understanding how variations in these
parameters influence the overall performance and energy requirements.

Fig. 6 depicts the prescribed depth trajectory. This reference signal
maps the desired position of the center of origin (𝐶𝑂), which coincides
with the center of buoyancy (𝐶𝐵). Notably, all the forces and moments
in the system are expressed with respect to this reference point. The
operational profile exhibited in Fig. 6 is derived from the median
values of numerous operational profiles from conventional dredgers
performing coastal replenishment activities along the Dutch coastline.
These profiles were obtained via an analysis of data from the Automatic
Identification System (AIS). In this context, the maximum water depth
is postulated to be 21 m, an assumption rooted in the operational
profile analysis. The figure distinctly outlines the three operational
modes: transit, dredging, and discharging. During transit operations,
the vehicle is designed to maintain a depth of 8 m. During dredging
operations, this depth is adjusted to 15 m to facilitate efficient soil
extraction. Subsequently, during discharging operations, the vehicle is
required to ascend to a depth of 4 m, enabling an effective release
of the dredged material. These depth adjustments are integral to the
operational efficiency and energy management.

The target for the pitch angle is to maintain a value of zero degrees
at all times. This decision is informed by a balance of the structural
length of 80 m and the maximum operational water depth of 21 m.
Maintaining a zero-degree pitch angle ensures optimal operational
stability and efficiency in this context. The parameters defining the
operational modes, such as velocity, depth, and duration, are designed
to be analogous to those of conventional dredgers. This strategic simi-
larity enables a direct comparison of energy requirements between the
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Fig. 6. Reference signal for the vertical position.

ALERD and conventional systems, thereby providing a robust measure
of the relative performance and efficiency.

Simulation runs are executed employing the designated reference
signals for both the pitch angle (𝜃) and depth (𝑧), with PID control
serving as the benchmark for controller performance. The innovative
MPC strategy proposed in this study is then implemented, and its
performance is evaluated relative to the PID benchmark. One key aspect
of the comparative analysis lies in measuring the corresponding energy
requirements under both control strategies. To ensure a balanced com-
parison, the ALERD MPC-controlled is juxtaposed with a conventional
dredger of similar hopper volume and operational profile. This compar-
ison aims to elucidate whether the MPC offers any advantages in terms
of energy consumption relative to both the conventional dredger and
the PID. In the following section, the outcomes of these simulation runs
and comparative analyses will be explored and discussed in detail.

5.1. Sensitivity analysis

To quantitatively analyze the impact of modeling uncertainties on
the results of time-domain simulations, a comprehensive sensitivity
analysis is undertaken. The process of creating a state-space model
replete with hydrodynamic coefficients inherently introduces certain
uncertainties. These uncertainties primarily stem from the linear damp-
ing coefficients, which are scaled, and the assumption of an ellipsoidal
hull-form for the computation of the added mass coefficients. Such
uncertainties are inherent in the mathematical modeling of an un-
derwater vehicle, and accounting for them is a critical component of
the simulation model’s effectiveness. The sensitivity analysis aims to
quantify the impact of these uncertainties on the model’s predictive
accuracy and robustness. This procedure not only tests the robustness
of the control strategy, but also provides valuable insights into potential
areas for model refinement and improvement. This level of analysis is
crucial as it can uncover potential limitations or weaknesses within the
model, thereby informing future research and development efforts. It
also assists in understanding the degree to which these uncertainties
may impact the overall efficacy of the proposed MPC strategy for
autonomous submerged dredging. In the next section, the outcomes of
this sensitivity analysis will be thoroughly discussed.

To thoroughly evaluate the influence of model input uncertainties
on the outputs, and to assess the robustness of the control schemes,
we employ a Monte Carlo simulation methodology. This technique
is a class of computational algorithms that rely on repeated random
sampling to achieve numerical results, hence providing a probabilistic
means to assess the uncertainties in the system. The specific coefficients
selected for the uncertainty analysis are detailed in Table 6. Each of
these coefficients is presumed to have an uncertainty of 20%. In the
9

context of this analysis, we assume that the calculated value of each
Table 6
Mean and standard deviation of the chosen coefficients.

Coefficient Unit Mean Standard deviation

𝑍𝑤 [N∕(m∕s)] 2.54 ⋅ 105 1.69 ⋅ 104

𝑀𝑞 [(N m)∕(rad∕s)] 1.35 ⋅ 108 9.02 ⋅ 106

𝑍�̇� [kg] 9.7 ⋅ 106 6.46 ⋅ 105

𝐼𝑦𝑦 [kg m2] 3.6 ⋅ 109 2.4 ⋅ 108

𝜂𝑝𝑢𝑚𝑝 – 0.725 0.048
𝜁 – 70 4.67

coefficient represents its mean value, denoted by 𝜇. The corresponding
standard deviation, denoted by 𝜎, is derived from the aforementioned
20% uncertainty assumption. It should be noted that the choice of a 20%
uncertainty is somewhat arbitrary and serves as a generic assumption
for the purpose of this analysis. This level of uncertainty was selected to
provide a sufficiently broad range of potential values, thus ensuring the
robustness of the results to variations in these coefficients. The Monte
Carlo simulation is then implemented, using these mean values and
standard deviations, to generate a distribution of possible outcomes.
This allows for a comprehensive analysis of the system’s behavior
under varying conditions, and provides insights into the stability and
performance of the control strategies under uncertainty. The results
of this simulation will be presented and discussed in the subsequent
section.

The primary control objectives in our model are the management of
pitch and depth, which are directly influenced by several coefficients
within the equations of motion in these two DoF. Specifically, alter-
ations in added mass or damping coefficients could induce significant
changes in the resulting motions along these axes. This makes these
coefficients particularly suitable for assessing the performance and ro-
bustness of the control mechanisms under investigation. It is, however,
essential to note that the ALERD, in our model, is approximated as an
ellipsoid. This simplification has implications for the calculated values
of the moments of inertia, as they do not perfectly reflect the moments
of inertia corresponding to the actual hull form of the ALERD. While
this approximation aids in the computational tractability of our model,
it also introduces an inherent source of error, further emphasizing the
importance of conducting an uncertainty analysis. By incorporating this
level of variability into our analysis, we can more accurately assess
the effectiveness of the control strategies in a realistic, non-idealized
setting. This not only enhances the robustness of our findings, but also
provides valuable insights into the performance of the controllers in the
face of real-world uncertainties and challenges.

Therefore, the following coefficients have been considered as the
main source of uncertainties:

• 𝑍𝑤: Linear damping coefficient in heave (𝑧)
• 𝑀𝑞 : Linear damping coefficient in pitch (𝜃)
• 𝑍�̇�: Added mass coefficient in heave (𝑧)
• 𝐼𝑦𝑦: Mass moment of inertia in 𝑦-direction.
Two additional coefficients, as listed below, are subjected to random

distribution due to their direct impact on the energy requirement
calculations. These particular coefficients are selected due to the in-
herent uncertainty surrounding their actual values. The efficiency of
the pumps (𝜂𝑝𝑢𝑚𝑝) typically falls within the range of 0.6 to 0.9 for
conventional ships, while the flow resistance coefficient (𝜁) can vary
between 10 to 100. The specific details about the pumps to be utilized
and the exact layout of the onboard pipeline system for the ALERD
are not currently available. This lack of detailed information further
underscores the importance of accounting for variability in these coef-
ficients. Incorporating this range of uncertainty in our model allows us
to anticipate and plan for a broader spectrum of potential real-world
conditions and outcomes.

• 𝜂𝑝𝑢𝑚𝑝: Centrifugal pump efficiency;
• 𝜁 : Resistance factor.
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Fig. 7. PID and MPC depth control comparison.

The parameters 𝜇 and 𝜎 are deployed to generate 10,000 ran-
dom samples conforming to a normal distribution for each of the six
coefficients. These extensive, normally distributed samples enable a
thorough exploration of potential parameter variability. From each of
these normally distributed datasets, a smaller sample of 1000 random
numbers is selected to serve as inputs for the simulation. This process
results in 1000 unique combinations of the six coefficients, each set
representing a different potential realization of model parameters. The
large number of samples enhances the robustness of our statistical
analysis, thereby increasing the reliability and generalizability of the
results.

6. Results and discussion

In this section, we present the results of the time-domain sim-
ulations using both PID controllers and the proposed MPC strategy
(Section 6.1). The performance of the controllers is evaluated based
on their ability to achieve the desired control objectives, namely pitch
and depth control, and their energy consumption. Next, in Section 6.2
the results of the sensitivity analysis are presented to assess the effect
of modeling uncertainties on the outcomes of the simulations.

6.1. Simulation results

In Fig. 7, the results of tracking the desired depth signal, as shown
in Fig. 6, are presented. A comparison between the performance of the
PID controller and MPC reveals that MPC exhibits superior tracking
of the reference depth, with significantly reduced overshoot compared
to PID. This improvement in performance is also reflected in Table 8,
where a reduction in energy consumption for controlling depth can be
observed. This is attributed to the behavior and control effort of the
controllers. Furthermore, Fig. 8 compares the vertical heave velocity
under the control of PID and MPC.

Fig. 9 displays the required mass in the DCT for both controllers.
MPC requires more negative mass (i.e., ballast mass removed from the
tanks) when the ALERD is diving to its reference depth. This leads
to a negative upward force that decelerates the vehicle during the
descending phase, resulting in a smaller vertical velocity compared
to the results obtained with the PID controller, as shown in Fig. 8.
Conversely, if the vehicle is ascending to its new reference depth, MPC
demands more added ballast mass in the tanks than the PID controller,
which again decelerates the motion, thereby reducing the overshoot of
the desired signal. The effect of the added and removed mass in the DCT
on the vertical heave velocity 𝑤 can be observed in Fig. 8. Specifically,
the vertical velocity for the PID controller is higher and remains so for
a longer period during the peaks, which leads to the overshoot of the
desired depth. For the MPC controller, this velocity is smaller due to
10
Fig. 8. PID and MPC heave velocity comparison.

Fig. 9. PID and MPC required DCT mass comparison.

the braking effect of the mass in the DCT. Therefore, the output of the
MPC controller enables to achieve better reference tracking compared
to the PID controller.

The vertical movement during the descending (or ascending) is
slowed down more aggressively by MPC, leading to almost no over-
shoot, while optimizing the control outputs. This can be explained by
looking at Fig. 10. In this figure, it is clear that the mass flow rate is
constrained for both controllers. This constraint is chosen based on the
physical systems, which are the ballast water pump system, including
the pipe-flow systems. It is assumed that the physical constraint is the
fluid velocity in the pipeline, which in combination with a chosen pipe
diameter, constrains the mass flow rate. Although similar maximum
values for the mass flow rate are reached, the duration of the maximum
mass flow rate for the PID controller is larger compared to MPC. The
energy consumption, corresponding to the mass flow rates from Fig. 10,
can be seen in Fig. 11. From this figure, it can be concluded that
using MPC, reduces the required energy consumption for controlling
the depth. The MPC controller output, the required mass in the tanks,
leads to almost perfect reference tracking due to the reduced vertical
velocity while at the same time minimizing the energy requirements.

In Fig. 12, the comparison is shown of the reference tracking from
the desired pitch angle 𝜃. It is clear that the MPC’s maximum devia-
tion is larger compared to the PID controller. Due to the significant
disturbance of the draghead, shown in Fig. 13, extensive control actions
must take place to keep the pitch angle zero. For the pitch controller,
reducing aggressive control moves and minimizing the control effort is
prioritized over perfect reference tracking, using the weight matrices
𝑸 and 𝑹 from Eq. (4). It turned out that aggressive control moves
lead to a significant increase in energy consumption, while the order
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Fig. 10. PID and MPC required DCT mass flow rate comparison.

Fig. 11. PID and MPC DCT energy consumption comparison.

Fig. 12. PID and MPC pitch control comparison.

of magnitude of the current deviation in Fig. 12 can still be considered
negligible. The difference in control effort is shown in Fig. 14, where
the peaks of the PID controller are higher compared to MPC, leading
to the higher energy consumption shown in Fig. 15. Fine-tuning can be
done for the pitch controller by slightly changing the weight factor in
the weight matrices if it is preferred to decrease the maximum deviation
of the pitch angle.
11
Fig. 13. PID and MPC trimming moments comparison.

Fig. 14. PID and MPC required TT mass flow rate comparison.

Fig. 15. PID and MPC TT energy consumption comparison.

In Tables 7 and 8, the comparison between PID control and MPC
can be found for depth and pitch control, respectively, based on some
defined Key Performance Indicators (KPIs). Regarding the energy as-
sessment, the maximum power and energy consumption are chosen as
KPI. To assess the controller performance, the overshoot, settling time,
and rise time are defined as KPI for the depth controller. For the pitch
controller, only the maximum deviation in pitch angle is chosen as KPI,
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Table 7
MPC and PID controllers depth control performance comparison over different KPIs
(i.e., Maximum Power, Energy, Overshoot, Settling Time, Rise Time).

KPI PID MPC Difference

Maximum power [kW] 46 47 +2%
Energy [kWh] 1.98 1.47 −26%
Overshoot [m] 0.879 0.0154 −98%
Settling time [s] 2129 620 −70%
Rise time [s] 200 286 +43%

Table 8
MPC and PID controllers pitch control performance comparison over different KPIs (i.e.,
Maximum Power, Energy, Overshoot).

KPI PID MPC Difference

Maximum power [kW] 201 100 +50%
Energy [kWh] 0.40 0.26 −35%
Maximum deviation [deg] 0.12 0.27 +131%

Table 9
Overshoot analysis results.

PID MPC

0.7935 ± 0.0025 [m] 0.0186 ± 0.0177 [m]

since the reference pitch angle is always zero degrees. From Figs. 7, 10,
Tables 7, and 8, it can be seen that the rise time of MPC is somewhat
slower compared to the PID controller. Furthermore, the MPC pitch
controller’s maximum deviation is larger than the PID controller, as
already explained above. Besides these two KPIs, it can be concluded
that overall the MPC outperforms the PID controller using the defined
KPIs.

6.2. Sensitivity analysis

For the Monte Carlo simulation, 1000 simulations are done using
PID control, and 1000 simulations are done using the MPC strategy,
using randomly picked values from the six normally distributed coef-
ficients described in Section 2. The results will be compared in this
section, looking at the energy requirements for the tank systems and
the controller performance.

In Fig. 16, the controller performance is assessed using the over-
shoot of the desired dredging depth of 15 m. It can be seen that
the overshoot of the PID controller is located around the mean value
of 0.7935 m, which can also be found in Table 9. In this table, the
constructed 95% confidence intervals can also be found. To construct
he 95% confidence intervals, the student’s t-distribution is used, since
or the random sample the standard deviation 𝜎 and mean 𝜇 are
nknown parameters. When comparing the controller performance, it
an be seen that the MPC depth controller has a larger range of both
nder- and overshoot, distributed around the mean value of 0.0403
. The difference compared to the PID controller is the increased

tandard deviation, and corresponding larger confidence intervals. This
ndicates that the optimized solution of the MPC controller, taking into
ccount the cost function and constraints, does not always prioritize
lose reference tracking. This results in the large range, taking into
ccount the minimum and maximum values from the sample in Fig. 16.
t must however be noted that the confidence interval of the mean
alue for the overshoot is still small, as can be seen in Table 9, and the
vershoot within the 95% confidence interval is significantly smaller
ompared to the overshoot from the PID controller.

In Fig. 17, the results from the Monte Carlo simulation for the
CT energy requirements can be found. In Table 10, the corresponding
5% confidence intervals can be found. Both intervals are relatively
mall, and it can be seen that the sample mean of the DCT energy
equirements is smaller using MPC, which corresponds to the previous
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onclusion that MPC is better at minimizing the energy requirements
Table 10
DCT energy requirements.

PID MPC

1.9742 ± 0.0096 [kWh] 1.4082 ± 0.0067 [kWh]

Table 11
TT energy requirements.

PID MPC

0.3960 ± 0.0027 [kWh] 0.2586 ± 0.0016 [kWh]

for depth control. In general, it can be said that uncertainties do
not heavily affect the outcomes of the simulation model, considering
the small confidence intervals. The confidence interval using MPC is
smaller, from which it can be concluded that for depth control, MPC is
better in handling uncertainties while minimizing the control effort and
thus the corresponding energy requirements, compared to PID control.

In Fig. 18, the two normal distributions for the trim tank energy
requirements are plotted, using MPC and PID control. The trim tanks
are used to control the pitch angle, and the same conclusions can be
drawn for the DCT used for controlling the depth. The 95% confidence
intervals can be found in Table 11. MPC shows better performance in
terms of control effort and corresponding energy requirements while
having a smaller confidence interval compared to PID control. It can
therefore also be concluded that MPC can better handle uncertainties in
the state-space modeling approach, which leads to a smaller confidence
interval. This conclusion corresponds to the conclusion for the depth
controller.

7. Comparison with conventional dredging vessel

To support our proposed MPC framework and demonstrate the
benefits of autonomous submerged dredging compared to conventional
dredging, a comparison is made using a reference vessel. The ship
used as a reference for the comparison and benchmarking is shown in
Fig. 19.

To ensure a fair comparison, the energy requirements are calculated
for the same operational profile, and a similar hopper volume is used.
Previous research conducted as part of the Innovations in the Coastline
Care program has calculated the required power for propulsion in
transit, dredging, and discharging modes for both the conventional
dredger and the ALERD, based on the defined operational profile and
hopper volume.

The total energy consumption for the conventional dredger is found
to be 3.75 kWh/m3, while for the ALERD, the energy consumption
is 1.09 kWh/m3 without taking into account the energy requirements
for stability and buoyancy control, which were unknown at the time
of the research. The results of these calculations are presented in
Tables 12 and 13. The comparison demonstrates that the ALERD con-
sumes significantly less energy than the conventional dredger for the
same operational profile and hopper volume, highlighting the potential
advantages of autonomous submerged dredging. As a result of the
present research, the energy requirements for stability and buoyancy
control are estimated using the three tank systems, which need to be
added to the energy requirements for the ALERD. The results of the
calculations, and the corresponding total energy consumption, can be
found in Table 12.

In Table 13, the final results of the comparison are reported. Using
the same operational profile for both the conventional dredger and the
ALERD, it can be seen that the energy consumption can be reduced by
more than 66%.

A few important notes must be made regarding the assumptions
made in this study. The MBT is utilized to compensate for changes
in weight in the hopper to ensure weight balance. It is assumed that
the mass flow rate of the MBTs and the hopper is equal and instan-

taneously available, only considering the constrained mass flow rate.
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Fig. 16. Monte Carlo simulation results for controller performance.

Fig. 17. Monte Carlo simulation results for DCT energy requirement.

Fig. 18. Monte Carlo simulation results for TT energy requirement.
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Fig. 19. Conventional dredger used as reference ship.
Table 12
ALERD energy consumption.

Value Unit

Hopper volume 2360 [m3]
MBT energy consumption 408 [kWh]
DCT energy consumption 1.47 [kWh]
TT energy consumption 0.26 [kWh]
Energy consumption stability and buoyancy control 0.17 [kWh/m3]
Energy consumption other systems 1.09 [kWh/m3]
Total energy consumption 1.26 [kWh/m3]

Table 13
Total energy requirements comparison.

Conventional dredger ALERD Difference

[kWh/m3] [%]

3.75 1.26 −66.4

The dynamics of the dredged soil and the free surface effect in the tanks
and the hopper are not considered. Also, perfect loading and unloading
conditions are assumed, meaning that the hopper is always symmetri-
cally loaded and unloaded, leading to no additional trimming or rolling
moments that need compensation. During the underwater operations
of the ALERD, environmental disturbances are neglected. However,
it is expected that disturbances such as waves, the near-bottom and
surface effect, current, and changes in salinity and buoyancy require
additional control effort, leading to an increase in energy require-
ments. It is important to note that the conclusion drawn in this study,
that underwater dredging shows potential advantages compared to
conventional dredging, is specific to the operational profile studied.
The required energy for the pumps depends on the operating depth;
hence, the potential advantages may vary with different operational
profiles. Nevertheless, the calculations demonstrate promising results
regarding the energy requirements for stability and buoyancy control,
highlighting the potential advantages of submerged dredging.

8. Conclusions

This paper presents a model predictive control (MPC) strategy for an
autonomous submerged dredging vehicle, with the aim of minimizing
energy consumption during operation. To achieve this goal, a time-
domain simulation model is developed using equations of motion in
6 degrees of freedom, which enables the manipulation of key in-
put parameters, such as main dimensions or pump characteristics, to
compare and optimize different designs. A benchmark proportional
14
integral derivative (PID) controller is used for comparison, and the
results demonstrate that the proposed MPC framework outperforms PID
in terms of reference tracking of the desired depth and pitch angle,
while minimizing the control effort. The simulation model is designed
to enable the addition of the remaining degree of freedom, such as
sway, roll, and yaw, to the controller, creating a complete 6-degree-
of-freedom controlled simulation model. The impact of uncertainties
in the input parameters is investigated, and the results show that MPC
exhibits better performance in handling uncertainties, making it a more
reliable tool. Moreover, the use of MPC reduces uncertainty in the
simulation model’s outcomes, enhancing its effectiveness. The results
reveal that, for the specific operational profile defined in this paper,
the vehicle controlled with MPC is more energy-efficient than the one
controlled with PID control or a conventional dredger. Specifically,
using the defined operational profile and a reference dredger with the
same operational profile and similar hopper volume, the autonomous
submerged dredging vehicle exhibits a lower energy consumption with
a decrease of over 66%. Additionally, the contribution of the energy
requirements for stability and buoyancy control to the total amount of
consumed energy is only 13.5%, demonstrating the potential for sub-
merged dredging as a sustainable and cost-effective solution for coastal
replenishment along the Dutch coastline. In conclusion, this paper
presents a robust and reliable MPC control strategy for an autonomous
submerged dredging vehicle, providing excellent reference tracking
performance while minimizing energy consumption. The simulation
model is highly adaptable and can be used to compare different design
parameters, demonstrating the potential of submerged dredging as a
sustainable and cost-effective solution for coastal replenishment.
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