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Abstract
Industrial applications and automation controls are closely connected with heterogeneous Wireless Sensor Network

(WSN); thus, Industrial Internet-of Thing (IIoT) enhances the productivity, scalability, and flexibility of the operations.

However, in many cases such as tracking a device or service localization becomes very crucial to state back the operations

at times. Existing literature show a various localization solutions, but they face the drawbacks of high energy consumption,

and non-coherence in heterogeneity. Besides, in a WSN-based IIoT, non-cooperativeness exists among nodes due to

various system and environmental parameters, which make the system resource-exhaustive. In this paper, we introduce a

novel localization algorithm that addresses the above-mentioned problems. We call our proposed algorithm RAnge-free

Power efficient COoperative Localization (RAPCOL). Specifically, the use of co-operative beacon nodes to broadcast the

information to Base Station and low energy consumption highlights the novelty of the work. RAPCOL uses weight metrics

for selecting optimal cooperative beacon nodes to prolong the network lifetime. We also introduce an Improvised Particle

Swarm Optimization (IPSO) that credits in the contribution in RAPCOL. We run a overall nine sets of experiments to

analyze the localization accuracy, effect of beacon nodes, sensor nodes, network connectivity, and sensing field, error

frequency, residual energy, time, and network lifetime. A comparative study with the existing localization models shows

that RAPCOL is 30% better than the existing models in terms of accuracy and resource consumption. We observe

stable performance of RAPCOL with a differentiated effect of beacon nodes and sensor nodes. We also observe that our

proposed IPSO 20% better in fast convergence to the optimal solution. Though RAPCOL localization time is 12% higher

than other existing protocols, RAPCOL’s accuracy and energy saving mechanism make it efficient for IIoTs.

Keywords Localization � Error � Network lifetime � Cooperative communication � Particle Swarm Optimization

1 Introduction

Industry automation and controls are in a revolution where

heterogeneous Wireless Sensor Network (WSN) integrates

with them to provide a full-fledged development of Inter-

net-Of-Thing (IoT) systems. The use of a control system

with machines, actuators, sensors devices, and processors

to accomplish the automation within the process is called

industrial automation. The WSNs-based platform gives the

resources for gathering, handling, and controlling of data

from cyber-physical environments in a configurable and

interoperable way. The platform has been implemented in

various organizations, which gives positive evaluation by

reducing reduce waste, unscheduled downtimes, and

enhancing the overall quality of products. From the

industrial aspects, the ISA SP100 workgroup has intro-

duced six different classes (Class 5–Class 0) of industrial

wireless communication applications, where WSNs also

contribute as a major part [1, 2]. Currently, these WSNs are

utilized in various fields such as military, environmental

monitoring, disaster application, quality control in industry,

mines, power plants, and agronomy [3–7].

Heterogeneous WSNs are the collection of sensor nodes

that have different operating features such as operating

power, computational, and communication capability.

WSNs being the constituent of every industrial automation-

based framework, a concern of sensor localization arises

for functional bug fixing or state measurements. Previ-

ously, a Global Positioning System (GPS) with all sensor

nodes of WSNs was integrated to ease the task. However,
Extended author information available on the last page of the article
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the cost and limited resources exclude the use of 100%

GPS-embedded sensors in WSNs. Thus, for finding the

location of all sensor nodes, localization algorithms use

only a few beacon nodes (with GPS); the remaining nodes’

(unknown nodes) locations are estimated by these beacon

nodes. This process significantly reduces the cost and

resource exploitation. Nevertheless, it is expected that the

number of beacon nodes must be minimized to reduce the

maintenance cost [8, 9]. We can classify the beacon-based

localization approach into two major classes: range-free

and range-based approaches [10, 11]. The range-based

approach requires range measurement parameters for the

location estimation process; such a process is not always

possible for industry infrastructure, but the range-free

approach uses nodes connectivity and hop information [12]

to estimate such location coordinates. Some of the impor-

tant algorithms like Distance Vector-Hop (DV-hop), cen-

troid method, Multi-Dimensional Scaling-MAP (MDS-

MAP), and amorphous method come under the range-free

approaches. The range-free approaches in WSNs provide a

less precise location, but this category gains more attention

due to its low cost, higher lifetime, and design simplicity.

However, sensor networks for high-risk environments,

irrespective of the localization approaches, are resources

constrained in terms of power, size, memory, bandwidth,

and cost of sensor nodes [13–15]. Hence, less energy

consumption and more network lifetime are the most

desirable aspects of WSNs. Therefore, improvement in the

energy efficiency, accuracy, and network lifetime of the

localization algorithm is the most challenging concern for

WSNs, which are suitable for the industrial automation

paradigm.

1.1 Current state of the research

In this section, we emphasize the part of localization in

industry automation and review some important contribu-

tions in the direction of range-free approaches and coop-

erative communication in WSNs-based industries. The

authors in [16] show a range-free localization using a

genetic algorithm with multi-step-localization (MSL) for

improving localization accuracy. Amendatory Simulation

Curve Fitting (ASCF) with beacon nodes are also in use for

the localization [17]. A series of DV-hop localization

algorithms have been developed claiming the improve-

ments in many ways using different optimization tech-

niques to improve the accuracy [18–22]. Distance

Compensation Algorithm (DCA) is another variant of DV-

hop algorithm [23]. An advanced DV-Hop localization

algorithm with approximation coverage, reducing bound-

ing box, and introducing PSO is available in [24]. Hybrid

chaotic strategy-based localization has been proposed in

WSNs. Initially, a Glowworm Swarm Optimization based

on chaotic mutation and inertial weight updating has been

introduced to control the movement of each firefly [25]. A

distributed range-free localization is able to reduce local-

ization error in three-dimensional WSNs and the concept of

coplanarity is introduced to reduce error due to the

collinearity of beacon nodes [26]. Further, the complexity

of the algorithm is reduced by using Fuzzy Logic System

(FLS) [27]. A novel range-free localization algorithm uses

swarm intelligence [28]. To improve the centroid local-

ization algorithm, Linear Weighting and Neighbor

Weighting have also been introduced recently. In the for-

mer, the distance among the nodes are linearly weighted

and in the latter number of intersections between nodes are

estimated [29]. An iterative centroid algorithm has been

shown for WSNs. The centroid location is evaluated on the

basis of Received Signal Strength Indication (RSSI) and

connected beacon nodes between unknown nodes and the

centroid. In order to diminish the localization error, the

beacon nodes with small RSSI is replaced by virtual bea-

con nodes [30].

A localization algorithm with one or more mobile bea-

con nodes uses Particle Swarm Optimization (PSO) for

WSNs [31]. The beacon nodes broadcast their information

periodically to unknown nodes for computing the location

themselves. The effectiveness of localization in the pres-

ence of mobile beacon/anchor nodes is more interesting

and is also considered. Localization also uses a single

mobile anchor that broadcasts its location information

periodically by traveling the deployment area in a trajec-

tory [32]. A Mobile-Assisted Monte Carlo Localization

(MA-MCL) has been proposed as an alternative to a single

mobile beacon-assisted approach. Generally, Monte Carlo

method is used for the movement of a single mobile-as-

sisted seed (converging initialization value) by evading the

diverging route [33]. Another mobile beacon-based

approach uses analytical geometry in which unknown

nodes select the two nearest beacon nodes and compute

their own locations based on the radius and half-length of

the chord [34]. Mobile anchor/beacon-assisted localization

with static path planning algorithm mitigates the problem

of co-linearity of the localization process in WSNs [35].

Recently, MAC protocols are also in use for energy-effi-

cient localization algorithms. Cooperative communication

improves the throughput and network lifetime. An opti-

mization process for such an algorithm has been formu-

lated with single-hop and multi-hop networks [36]. A

multi-path routing scheme for wireless body area network

shows the use multi-path routing scheme based on priority

to classify the routing paths [37]. However, the classifica-

tion is unbalanced and leads to under-utilization of a ded-

icated path.

Cooperative MAC (CMAC) protocol is also suggested

for underwater WSNs. CMAC improves latency,
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throughput, and single-hop packet delivery ratio [38].

Sensor node cooperation with the power optimization

algorithm can also prolong the network lifetime. This way

cooperative nodes are identified based on channel gain and

higher residual energy to broadcast the information to the

BS [39]. A cross-layer-based protocol uses cooperative

MAC to prolong the network lifetime. A constant data rate

is utilized in a cross-layer power allocation scheme for

desired outage probability [40, 41]. This cross-layer

cooperative MAC protocol also has been introduced for

multi-hop WSNs, which improves end-to-end delay, and

throughput, and reduces energy consumption [42–45]. In a

recent study, we see the use of cooperative communication

and network coding strategy to minimize channel impair-

ment and body fading effect in a wireless body area net-

work [46]. Hence, the work claims for reducing the ensued

faults, bit error rate, and energy consumption.

The advancements in WSN technology, embedded

devices, and the demand of various applications require

WSNs to move from static to dynamic network scenarios.

Estimating the location of sensor nodes with energy effi-

ciency and high accuracy in mobile network scenarios is

more critical. Thus, our proposed range-free localization

scheme is a solution to address the issues of mobility,

energy consumption, and network QoS. An existing prob-

lem is identified after analysis of the previous research

works and these problems have been addressed by the

proposed solution shown in Table 1.

1.2 Motivation and contribution

The industrial revolution shows a new paradigm of the

manufacturing process in Industry 4.0 by including

smartness and security. Autonomous vehicles take the next

step in the above-mentioned direction [51]. Such industries

require cooperative localization indeed [52]. The

requirement of a low-cost positioning system with high

accuracy leads to our motivation for the work. At present,

MAC protocols provide the strongest impact for coopera-

tive localization algorithms in WSNs. However, the use of

MAC in localization with reduced energy consumption is

missed by the existing works. The overall performance of

the network in terms of a lifetime can be significantly

upgraded through proper utilization of energy by sending

packets at the MAC layer with cooperative communica-

tions for localization. Thus, our proposed localization

scheme, RAnge-free Power efficient COoperative Local-

ization (RAPCOL), is contributory and novel. To this end,

RAPCOL has the following contributions and key features

that are discussed point-wise:

• Cooperative communication at MAC: In WSNs,

randomness deployment of sensor nodes is done

because nodes may be situated far away from each

other. Hence, direct communication among nodes

consumes more power for their operations. To make

the system more energy efficient, a range-free Power

Efficient Cooperative localization algorithm at MAC

for heterogeneous devices in WSNs for Industrial

Applications is proposed. The cooperative nodes are

selected based on weight metric, residual energy, and

distance among nodes.

• Optimal cooperative node selection: Optimal cooper-

ative nodes are selected based on the highest weight

metric, but firstly it is verified whether it is able to

diminish overall energy consumption than direct com-

munication. The nodes with the smallest energy factor

are nominated as optimal cooperative nodes.

• Improvised PSO algorithm: A mathematical model

for heuristic improvised PSO is incorporated to improve

localization accuracy. All the tasks of localization and

optimization are performed by Base Station (BS)

instead of beacon nodes. The proposed algorithm

Table 1 Addressing existing problem with proposed algorithm

Existing algorithm Existing problems Solution in proposed algorithm

IDV-Hop [14] Redundancy of sensor nodes make the process

complex and also heavy load distribution to some

particular nodes

Nodes are selected based on weight metric, residual

energy, and distance among nodes

NDV-Hop [19] Validation for mobile environment is not considered In the proposed solution, all sensor nodes (beacon

nodes as well as unknown nodes) are mobile in

nature, therefore proposed solution supports full

mobility of the network

Modified DV-Hop [21] As beacon nodes are selected on the basis of the

maximum degree of connectivity, partial

exhaustion of the network exists

Only those beacon nodes are selected for

localization whose residual energy is high

Improved DV-Hop [22] As target nodes act as beacon nodes after

localization, therefore consume more energy for

localization

By selecting optimal cooperative nodes, the overall

energy maintained balanced
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ensures energy efficiency by utilizing cooperative

communication and prolongs the overall network

lifetime.

1.3 Paper organization

We organize the remaining parts of the paper as follows.

Section 2 describes the network model and related method

for the localization process. We also discuss the node

deployment, deployment environment, and definitions for

better clarity of the network model. We show the proposed

algorithm and discuss the simulated results in Sect. 3. We

show the simulation parameters and the evaluation process

along with the metrics in this section. Finally, we conclude

our work in Sect. 4.

2 Proposed method

In this section, we describe the network model. Based on

this model and the WSN scenario, we show the cooperative

communication at the MAC layer, handshake procedure,

and cooperative node selection process. We also show the

conditions for transmission power usage and the condition

for residual energy and channel gain usage of the cooper-

ative nodes and derive the formulation used for different

calculation processes.

2.1 Network model

We can model WSNs as an undirected graph G(V, E),

where V have total N sensor nodes and E describes the edge

set of G. In the proposed algorithm, we consider m beacon

nodes ðm ¼ i1; i2; i3:::imÞ and u unknown nodes ðu ¼
j1; j2; j3; :::; juÞ for localization in 2-dimensional (2-D)

plane. All sensor nodes have been deployed randomly with

random way-point mobility in the sensing area S of

dimension L � L where L represents the length of the side.

As the network scenario is heterogeneous, all the sensor

nodes deployed are with different features. Each sensor

node has a different transmission range. The transmission

range represents a circle, where a corresponding node itself

represents the center of the circle. In a network, each sensor

node has a unique MAC address and different initial energy

values. Multiple mobile sensor nodes share the wireless

channel. Deployment of both sensor nodes with random

way-point mobility is shown in Fig. 1 and represents sce-

nario at the different instant of time. Black nodes represent

unknown nodes and red nodes are beacon nodes.

By introducing the concept of cooperative communica-

tion, one-hop transmission between beacon nodes to BS is

replaced by the two-hop transmission for broadcasting the

information. The neighbour unknown nodes are selected

within one hop for localization. Furthermore, we consider

some assumptions throughout the paper: (i) some special

nodes are distributed with prior known ðxi; yiÞ through GPS

called beacon nodes and these nodes help to find the

location of unknown nodes. All sensor nodes are dis-

tributed with random mobility. Beacon nodes have been

deployed with more resources and communication capa-

bility than unknown nodes, (ii) Base Station (BS) is con-

sidered in the network that can control all the beacon nodes

as well as unknown nodes and it is static. All the com-

puting task of localization for nodes is performed by BS.

Therefore, BS is most powerful in terms of resources and

computational capability, and (iii) some of the beacon

nodes act as helper nodes or cooperative nodes at any

instant to broadcast the information from one point to

another point. Helper nodes just receive the information

from the source beacon nodes and forward that information

to BS. We use the following two definitions for better

clarity of the network model.

Definition 1 The sensing field SðBi;RiÞ represents the

coverage area covered by beacon nodes in the network,

where ði ¼ 1; 2; 3; ::::;mÞ. The coverage area for each

beacon node has been computed by Eq. 1. Every unknown

node placed in this area represents one-hop neighbors of

the beacon node.

Sðin;RÞ ¼ pR2: ð1Þ

Definition 2 We consider n the average number of sensor

nodes placed within the transmission range of the beacon

node called average connectivity. Therefore, n of beacon

nodes can be different at a different time interval and given

by Eq. 2.

n ¼kpR2: ð2Þ

k ¼ jUj
ðmÞ ; ð3Þ

where |U| and m represent the total number of unknown

nodes and beacon nodes, respectively. We use the distances

among nodes for computing the mobility of sensor nodes.

We compute the estimated distances using Friis free space

propagation model [42]. We use the following equation for

computing received power Pr.

Pr ¼ Pt � Gt � Gr �
ðwave lengthÞ2

ð4� p� DistanceÞ2
; ð4Þ

where Pt represents the transmitted power, Gt and Gr

represents the gain of the transmitting and receiving

antenna.
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wave length ¼ c

f
; ð5Þ

where c and f describe the speed of light and operating

frequency of the signals, respectively.

Estimated distances between beacon nodes and

unknown nodes have been computed as follows.

Distancetðb;uÞ ¼
k
ffiffiffiffiffi

Pr

p : ð6Þ

With the help of the aforementioned equation, we get the

exact locations of unknown nodes, which represent the

approximation of distances between nodes. Relative

mobility between nodes can be computed as follows.

Mt
ðb;uÞ ¼ Distancetðb;uÞ � Distance

ðt�1Þ
ðb;uÞ ; ð7Þ

where Distancetðb;uÞ and Distance
ðt�1Þ
ðb;uÞ represent the distance

between beacon node b and unknown node u at time t and

t � 1, respectively. The relative mobility of nodes

describes whether the nodes move closer or away from

each other in the network. All the sensor nodes move with

speed v and stay at each location for a pause time tpause. Let

d be the distance between two waypoints and the average

speed of nodes is computed as follows.

vavg ¼
ðv� dÞ

ðd þ ðv� tpauseÞÞ
: ð8Þ

The proposed algorithm is initialized by broadcasting the

position of BS with its coordinates to beacon nodes across

the network. The distance between BS and beacon nodes

Fig. 1 Random deployment of nodes at different time using random mobility
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has been estimated based on coordinate information

received by each beacon node. The format of a broadcast

message by BS is as follows.

BS ! Beacon nodes: fBS_address; ðX; YÞg,
where (X, Y) represents the coordinates of BS. After

that, the beacon nodes broadcast Nearest Neighbor Request

(NNReq) to one hop neighbor unknown nodes. The format

of broadcasted packets as follows:

NNReq: fIdi; ðxi; yiÞ;Hop count ¼ 0g;
where Idi represents the serial number of ith beacon node

and ðxi; yiÞ describes coordinates of ith beacon node with

count initialized by zero. The transmission of NNReq has

been limited to 1-hop nodes. When unknown nodes receive

the request by beacon nodes, unknown nodes reply with

Nearest Neighbor Reply (NNRep) with Idu and hop count

value 1. The format of NNRep packets is as follows.

NNRep : fIdi; ðxi; yiÞ;Hop count ¼ 1; u Idg.
Idu represents the identification of the unknown node. It

may happen the same message has been received by two-

hop unknown nodes. In such cases, if Hopcount value is

more than 1, the receiving unknown nodes simply discard

the message and stop Hopcount counter. After receiving the

reply from unknown nodes, each beacon node enlists its

neighbor nodes lying within one-hop Neighbor Node List

(NNL) for the localization process. Now, the Neighbor

Nodes List (NNL) is transmitted to BS either directly or

with the two-hop transmission.

Beacon node ! BS: NNL= fIdi; ðxi; yiÞju 1; u 2; :::::g:
In random network scenarios, beacon nodes may be

situated far away from the BS; therefore, direct commu-

nication between beacon nodes and BS consumes more

power during transmission. This problem is solvable by

cooperative communication by developing a new paradigm

beyond the traditional point-to-point and point-to-multi-

point communication models. We show an example of

cooperative communication in Fig. 2. Beacon node S1 is

situated two-hops away from BS and a large amount of

energy would be consumed for direct communication

between S1 to BS. The energy consumption can be reduced

if the information is broadcast through S6 or S2 to BS. This

communication is called cooperative communication and

S6 or S2 can act as helper nodes.

2.2 Cooperative communication at MAC layer

The NNL of beacon nodes is broadcast to BS either in

direct communication or with cooperative communication.

In Direct communication, the sender-beacon nodes

ðSenderBNÞ directly send the information to BS otherwise

the information is broadcast using cooperative communi-

cation. For cooperative communication, all beacon nodes

calculate weight metrics based on residual energy and

distance from BS. Cooperative or helper nodes

ðCooperativeBNÞ are selected based on weight metric for

efficient cooperative communication.

Wi ¼ w1 � Eb
r þ w2 � log

1

DistancebBS

� �� �

w1 þ w2 ¼ 1; 0\w1 and w2\1

8

<

:

ð9Þ

where Eb
r represents the residual energy of beacon node,

DistancebBS represents the distance between beacon node

and BS, and ðw1 þ w2Þ represents random factor for bias.

We select a beacon node with the highest weight metric as

a CooperativeBN by the nearest beacon nodes. Each beacon

node maintains a cooperative table that has information

about the helper nodes as shown in Table 2. The nodes

update the cooperative table periodically and record the

latest information about the helper nodes.

2.3 Handshake procedure in proposed RAPCOL

IEEE 802.11 MAC recommends three control frames:

Request-to-Send (RTS), Clear-to-Send (CTS), and

Acknowledgment (ACK) for data broadcasting. We use

these three control frames along with two additional

frames: Helper-to-send (HTS) and Cooperative-CTS

(CCTS). We introduce these two novel control frames as a

contributory to the novelties of our proposed RAPCOL.

Before transmitting information from the sender beacon

to the destination beacon, the SenderBN first senses the

channel to check if it is idle. If the channel is idle for

Distributed Interframe Space (DIFS), the RTS frame is

transmitted through the channel after the completion of the

required backoff procedure. The RTS frame reserves the

channel for Network Allocation Vector (NAV) during

which channel is busy and we computed it by Eq. 10,

where f represents the ratio of the length of the data packet

to the rate of transmission.

NAVðRTSÞ ¼5� SIFSþ THTS þ TCCTS þ TACK þ f:

ð10Þ

f ¼ Length

Datarate
: ð11Þ

When neighboring nodes of SenderBN receive the RTS

frame, the cooperative node is elected for communication

based on weight metric and reserves the channel for

NAV(HTS) duration as computed by Eq. 12.

NAVðHTSÞ ¼ 4� SIFSþ TCCTS þ TACK þ f: ð12Þ

After receiving RTS and HTS frames, DestinationBS for-

wards a CCTS frame which means the cooperative trans-

mission is ready and reserves the channel for NAV(CCTS)

calculated by Eq. 14. If the destination receives the RTS

frame, but HTS is not received within HTS timeout dura-

tion, DestinationBS forwards CTS frame. This shows that
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direct communication is ready. We calculate HTS timeout
duration by the following equation.

HTS timeout ¼ðSIFSþ THTSÞ: ð13Þ

:NAVðCCTSÞ ¼3� SIFSþ TACK þ f ð14Þ

CCTS and CTS frames hold low power during transmission

from SenderBN to DestinationBS. After receiving CCTS

frame, the optimal helper nodes compute their minimum

power to transmit information to the DestinationBS. Only

the first arrived HTS frame has been received by SenderBN
and it transmits information with optimal cooperative node

if it receives HTS and CCTS frame within CCTS timeout.

The location information is directly transmitted from

SenderBN to DestinationBS, if SBN receives a CTS frame

and the transmission takes place with minimum transmis-

sion power for NAV(CTS) duration computed by Eq. 16.

CCTS timeout ¼ð2� SIFSþ TmaxBackoff þ THTS þ TCCTSÞ:
ð15Þ

NAVðCTSÞ ¼2� SIFSþ TACK þ f: ð16Þ

After successful reception of information, DestinationBS
forwards an ACK frame directly to SenderBN . The infor-

mation transmission is successful if SenderBN gets ACK;

SenderBN goes idle till the next transmission. If the ACK

frame is not received by SenderBN in ACK timeout, which

indicates that transmission of information fails and

SenderBN contends the channel again for data transmission.

We compute ACK timeout by Eq. 17.

Fig. 3 represents the procedure for cooperative communi-

cation and direct communication between SenderBN and

DBS during information transmission respectively. Figure 4

shows the flowcharts of frame exchanges at SenderBN ,

CooperativeBN and DestinationBS, respectively.

2.4 Selection of optimal cooperative nodes

When SenderBN wants to transmit the list of neighbours to

DestinationBS, it ensures the possible number of neighbor

helper nodes for cooperation. After receiving RTS and

CCTS frames, the helper node is selected based on the

highest weight metric and verifies whether it is able to

diminish overall energy consumption in direct communi-

cation by cooperative transmission. Energy consumption in

ACK timeout ¼ ð2� SIFSþ fþ TACKÞ i:e: ACK in Cooperative transmission

ACK timeout ¼ ðSIFSþ fþ TACKÞ i:e: ACK in Direct transmission:

�

ð17Þ

Fig. 2 Network Example with Direct and cooperative communication
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direct communication and cooperative communication is

computed by Eqs. 18 and 19, respectively.

Edirect ¼ðPt þ PrÞ � uþ PSenderBN
t þ Pr

� 	

� f: ð18Þ

u ¼TRTS þ TCTS þ TACK ; ð19Þ

where, Edirect represents the energy consumed in direct

communication, Pt represents the total power required for

transmission of RTS, CTS, and ACK frames, # represents

the total time duration for transmission of RTS, CTS, and

ACK frames, PSenderBN
t represents the transmission power

for data packet transmission from SenderBN to

DestinationBS indirect transmission and Pr describes the

power for reception that can be calculated using free space

propagation model [29].

ECooperative ¼ ðPt þ PrÞ � aþ P
Sender

BN
0

t


 �

þ PCoopertaiveBN
t þ 2PrÞ � f:

ð20Þ

a ¼ðTRTS þ TCTS þ THTS þ TACKÞ ð21Þ

where, ECooperative represents the energy consumption dur-

ing cooperative communication and a is the total time

duration of RTS, CTS, HTS, and ACK frames. The infor-

mation has broadcast to DestinationBS through cooperative

transmission only when cooperative transmission reduces

energy consumption, otherwise, information transmission

takes place directly.

DE ¼Edirect � ECooperative: ð22Þ

Fig. 3 a Procedure for

cooperative communication and

b procedure for direct

communication

Table 2 Cooperative table format

MAC address of helper node Weight metric Distance from source node to helper Distance from helper to BS Residual Energy

h1 w1 Distanceh1SN Distanceh1BS E1
r

h2 w2 Distanceh2SN Distanceh2BS E2
r

. . . . .

hn wn DistancehnSN DistancehnBS En
r
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DE ¼ðPT � THTSÞ þ PSenderBN
t � P

Sender
BN

0
t




�PCooperativeBN
t � Pr

	

� f:
ð23Þ

For cooperative transmission, CoopertaiveBN satisfies the

following condition.

DE [ 0: ð24Þ

The beacon node satisfying the above condition is selected

for cooperative communication. DE equal to zero means

any transmission can be used for information broadcast. To

select an optimal CooperativeBN within the neighborhood,

the energy factor denoted by n is introduced and computed

as follows.

n ¼ Eb
c

Eb
r

; ð25Þ

where Eb
c and Eb

r represent the total consumed energy and

residual energy of the cooperative node, respectively. In

this paper, the energy consumption required for data

transmission is considered for simplicity, and other energy

consumption during sensing and data processing is ignored.

The nodes with the smallest n are selected as cooperative

nodes. By introducing an energy factor, the proposed

algorithm can efficiently evade the situation in which

random nodes are selected for cooperation resulting in a

degraded network lifetime.

2.5 Condition for transmission power

To improve the performance of our proposed RAPCOL,

the transmission power for PSenderBN
t and PCooperativeBN

t

should satisfy two conditions for data transmission effi-

ciency. According to the Shannon theorem, the

Fig. 4 Flowcharts for a frame

exchanges at SenderBN . b
Frame exchanges at

CooperativeBN and c Frame

exchanges at DestinationBS
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transmission power of SenderBN should satisfy the fol-

lowing condition given in Eq. 26.

Bu �
1

2
log2 1þ PSenderBN

t

N0

 !" #

; ð26Þ

where Bu represents the bandwidth utilization during data

transmission and N0 white Gaussian noise. In cooperative

communication, the information is transmitted from

SenderBN to DestinationBS by two-hop transmission shown

as follows.

SenderBN ! CooperativeBN

CooperativeBN ! DestinationBS

�

Therefore, 1
2
factor is introduced in Eq. 26 due to the

requirement of half of the channel resources for one-hop

transmission and it can be deduced as follows.

PSenderBN
t

N0

 !

� 22R � 1: ð27Þ

The condition shown in Eq. 27 should be satisfied by

CooperativeBN in data transmission. The sensor nodes

should adjust their maximum transmission power expres-

sed in Eqs. 28 and 29.

0\PSenderBN
t �Pmax: ð28Þ

0\PCooperativeBN
t �Pmax: ð29Þ

P
ðSenderBN Þ
t remains positive because it is essential power to

transmit information from SenderBN . P
ðCooperativeBN Þ
t can be

zero because in case of zero power information can be

transmitted directly to DestinationBS without any cooper-

ation. In our proposed RAPCOL, We utilize the Shannon

theorem to constrain the transmission power within the

range of maximum transmission power. Shannon’s theo-

rem provides the boundary to the transmission power of the

beacon nodes.

2.6 Condition for residual energy and channel
gain of cooperative nodes

To improve the network lifetime, minimum residual energy

among SenderBN and CooperativeBN during information

transmission should be maximized and can be expressed by

Eqs. 30 and 31, respectively. In Eq. 30, E
ðSenderBN Þ
r repre-

sents the residual energy of SenderBN after current packet

transmission, T represents the duration of packet

transmission, EðSenderBN Þ represents the residual energy of

SenderBN before data packet transmission and u represents

total energy consumption required for data transmission. In

Eq. 32, E
ðCooperativeBNÞ
r represents the residual energy after

information packet transmission, EðCooperativeBN Þ represents

the residual energy before information packet transmission,

and v describes the total energy consumed for data packet

transmission at cooperative nodes.

ESenderBN
r ¼minfESenderBN � #g: ð30Þ

# ¼ðPt þ Pr � u� TÞ: ð31Þ

ECooperativeBN
r ¼minfECooperativeBN � vg: ð32Þ

v ¼ðPt þ Pr � a� TÞ: ð33Þ

In order to prolong the network lifetime, the factor # and v
should be optimized to maximize the residual energy for

both SenderBN and CooperativeBN in cooperative commu-

nication as expressed in Eq. 34.

½max:fESenderBN
r ;ECooperativeBN

r g�: ð34Þ

The Beacon node is selected as CooperativeBN only when

its residual energy and channel gain between itself and

SenderBN / DestinationBS satisfy certain conditions. The

residual energy of CooperativeBN before cooperative

communication should be larger than SenderBN residual

energy after transmitting information directly to

DestinationBS.

ESenderBN � PDT\ECooperativeBN ; ð35Þ

where PD represents the required transmission power for

direct transmission and direct power from SenderBN to

DestinationBS is calculated by Shannon theorem as follows.

Bu � log2 1þ PD

N0

� �� �

: ð36Þ

After rearranging Eq. 36, we obtain:

2n � 1� PD

N0

� ��

: ð37Þ

PD �ðN0ð2Bu � 1ÞÞ: ð38Þ

All the beacon nodes transmit the list of neighbors’

unknown nodes to BS through an optimal cooperative node

or direct transmission. We summarize the process of

optimal cooperative node selection in Algorithm 1.
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2.7 RAPCOL in heterogeneous WSNs

After receiving the NNL from each beacon node, the

process of location estimation is performed by BS. In two-

dimensional WSNs, we consider total m beacon nodes and

u unknown nodes are randomly distributed with mobility.

The vector q ¼ ½v1; v2; v3; :::vðmþuÞ� has the initial coordi-

nates of the nodes and vi ¼ ½xi; yi�T . The coordinates of m

beacon nodes are represented by

½ðx1; y1Þ,ðx2; y2Þ; :::; ðxm; ymÞ�. Therefore, the localization

problem can be mathematically represented by the

following.

ðx̂; ŷÞ ¼ Fi¼1;2;:::mðxi; yi; diÞ; ð39Þ

where ðx̂; ŷÞ represents the coordinates of unknown nodes,

ðxi; yiÞ represents the coordinates of ith beacon nodes, and

ðdiÞ describes the distance among nodes. The main con-

centration of estimating the coordinates of unknown node

in such a way that it contains the least localization error.

2.7.1 Localization of unknown nodes

After receiving the information, we apply 2D hyperbolic

method instead of trilateration or triangulation at BS to

compute the position of unknown nodes. The hyperbolic

positioning algorithm transforms the nonlinear problem

into a linear problem that can be solved with a least squares

estimator, which minimizes the overall localization error.

So to reduce overall localization error, we used hyperbolic

trilateration. The distances among unknown nodes and all

beacon nodes are computed using the following equation.

Distanceesti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � x̂Þ2 � ðyi � ŷÞ2
q

; ð40Þ

where Distanceesti represents the estimated distance

between an unknown node and the beacon node. By rear-

ranging the above equation, we have the following

expression.

x2i þ y2i � 2xix̂� 2yiŷþ ðx̂Þ2 þ ðŷÞ2 ¼ ðDistanceesti Þ2:
ð41Þ

Ai ¼ x2i þ y2i : ð42Þ

Cluster Computing

123



B ¼ ðx̂Þ2 þ ðŷÞ2:
ðDistanceesti Þ2 � Ai ¼ �2xix̂� 2yiŷþ B

Pc ¼ ½x̂; ŷ;B�T

Kc ¼

�2x1 � 2y1 1

�2x2 � 2y2 1

: : :

: : :

�2xi � 2yi 1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

Hc ¼

ðDistanceest1 Þ2 � A1

Distance2est � A2

:

:

ðDistanceesti Þ2 � Ai

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

ð43Þ

For a system of two unknown variables, i.e., X coordinate

and Y coordinate of an unknown node can be modeled as

shown in Eq. 44.

KcPc ¼ Hc: ð44Þ

With the help of the least square method, the coordinates of

unknown nodes are estimated using the following equation.

Pc ¼ ðKT
c KcÞ�1KT

c Hc: ð45Þ

Now, the coordinates of an unknown node are represented

as follows:

x̂ ¼ Pcð1Þ
ŷ ¼ Pcð2Þ

�

To get more accuracy in location estimation, the difference

between actual distances and Distanceesti must be mini-

mized. In localization, the Distanceesti between nodes is

affected due to Gaussian noise in WSNs. Therefore, we

adjust Distanceesti as follows.

D̂i ¼ Distanceesti þ ni: ð46Þ

In the aforementioned equation, ni represents the noise that

affects the estimated distances in the range of

fDistanceesti 	 Distanceesti
Pn

100
g, where Pn represents the

percentage of noise.

2.7.2 Improvised PSO algorithm

We introduce the improvised PSO algorithm in our pro-

posed RAPCOL that improves the estimated distances

between nodes. PSO is a popular heuristic algorithm used

to explore the search space of a given problem to discover

the parameters required to maximize specific objec-

tive [43]. The velocity and position of the particle are

signified by vid and xid, respectively. The personal best of

ith particle is represented by pbestid and the smallest F

among pbestid is denoted by gbestid, which indicates the

global best solution. At each iteration k, the velocity vid and

position xid of each particle are updated by using Eqs. 47

and 48.

vidðK þ 1Þ ¼ x� vidðKÞ þ c1 � r1 � ðpbestid � xidÞ þ c2
� r2 � ðgbestid � xidÞ:

ð47Þ

xidðK þ 1Þ ¼ xidðKÞ þ vidðK þ 1Þ; ð48Þ

where x represents the inertia weight of the particle, c1 and

c2 represents the acceleration constants, and r1 and r2 are

random variable lies between [0, 1]. We show a

flowchart for the proposed improvised PSO algorithm in

Fig. 5. Let ðx̂; ŷÞ be the coordinates of unknown nodes U,

ðxi; yiÞ represents the coordinates of beacon nodes

Biði ¼ 1; 2; :::;mÞ. Therefore, to minimize the localization

error objective function can be formulated as:

Fig. 5 Flowchart for PSO optimization algorithm
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f ðx̂; ŷÞ ¼ 1

m

X

m

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx̂� xiÞ2 þ ðx̂� yiÞ2
q

� D̂i
2

� �

; ð49Þ

where m represents the total number of beacon nodes. The

localization problem can be solved by minimizing the

value of the objective function given in the aforementioned

equation. A minimum value of F has closer to the optimal

global solution than other particles with larger F. The value

of the objective function must be minimized to get an

accurate location estimation of unknown nodes.

3 Results and Discussion

We perform the experimental simulations in MATLAB

2017 to evaluate the outcomes of our proposed RAPCOL

algorithm. We list the simulation parameters considered for

experimentation in Table 3.

3.1 Simulation parameters and performance
metric

In the simulation, we evaluate the results based on various

performance metrics including localization error, error

variance, and network lifetime. Therefore, the influence of

node density, beacon nodes, communication radius, and

sensing field has been analyzed on localization error.

3.1.1 Localization error (Erroru)

Erroru represents the difference between estimated coor-

dinates to true coordinates of an unknown node u. We

measure Erroru as follows.

Erroru ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xestu � xactu

� 	2þ yestu � yactu

� 	2
q

; ð50Þ

whereðxestu ; yestu Þ and ðxactu ; yactu Þ represent the estimated and

actual position of unknown node u, respectively.

3.1.1.1 Average localization error (ALE) It represents the

sum of localization error to the total number of unknown

nodes and is evaluated as follows.

c ¼
PN

u¼mþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxestu � xactu Þ2 þ ðyestu � yactu Þ2
q

ðN � mÞ � R
: ð51Þ

LEV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
u¼mþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxestu � xactu Þ2 þ ðyestu � yactu Þ2
q

� c� R

� �2

ðN � mÞ � R2

v

u

u

u

t

;

ð52Þ

where LEV represents the localization error variance and R

represents the communication radius. The accuracy of the

localization algorithm is computed as follows.

Accuracy ¼ ð1� ALEÞ � 100: ð53Þ

Proportion of Localized Sensor Node (PLSN):
PLSN can be defined as the ratio of a total number of

successfully localized nodes to the number of unknown

nodes. PLSN gives the measurement of positioning cov-

erage and it is formulated as follows.

PLSN ¼ SLN
N � m

: ð54Þ

Proportion of Unlocalized Sensor Node (PUSN): It

represents the ratio of number of unlocalized nodes to the

total number of localized and it shows the stability of our

RAPCOL algorithm. The unlocalized sensor nodes remain

unlocalized after the localization process and can be

evaluated as follows:

PLSN ¼ ULN

SLN
: ð55Þ

The unlocalized nodes are those nodes that have localiza-

tion errors more than R
2
.

Table 3 Simulation parameters
Parameters Value of parameters Parameters Value of parameters

RTS 160bits Population size 30

HTS 192bits kmax: 30

CCTS 120bits c1; c2 2.0

CTS 128bits Sensor nodes 100� 400

Sensing field 100� 100m2 to 400� 400m2 Initial energy 4� 6J

ACK 112bits xmax: 0.9

SIFS 10ls Beacon nodes 10� 40%

DIFS 50ls Communication radius 15� 60m

Pmax: 50mw Network topology Random way point mobility

Bu 10khz Maximum iteration 500
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ETxðk;DistanceÞ ¼ k � EElec þ k � EFS � Distance2 Distance\d0

ETxðk;DistanceÞ ¼ k � EElec þ k � EMP � Distance4 Distance� d0

d0 ¼
ffiffiffiffiffiffiffiffiffi

EFS

EMP

r

:

8

>

>

>

<

>

>

>

:

ð56Þ

ERxðkÞ ¼ k � EElec; ð57Þ

where ETxðk;DistanceÞ represents the required energy for

transmission of k bits data from one node to another node

at a particular distance, ERxðkÞ represents the energy

required for receiving k bits data, EElec represents the

energy consumed by an electronic circuit, EFS represents

the energy required for free space model amplifier, and

EMP describes the required energy for the multi-path fading

model amplifier. The average residual energy Eavg
r of

beacon nodes is an important parameter to evaluate the

performance of RAPCOL.

Eavg
r ¼ 1

m

X

m

ðj¼1Þ
Eb
r : ð58Þ

The variance of the residual energy of all nodes is com-

puted as follows.

Evar
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

m

ðj¼1Þ
ðEb

r � Eavg
r Þ2

v

u

u

t : ð59Þ

Proportion of Unlocalized Sensor Node
(PUSN)

3.2 Simulation results

We compare the outcomes of our proposed RAPCOL

with four existing models: (i) IDV-HOP [14], (ii) NDV-

Hop [19], (iii) Modified DV-Hop [21], and (iv) Improved

DV-Hop [22]. We evaluate the performance of our pro-

posed RAPCOL by varying the parameters of beacon node

ratio, sensor node density, transmission range, sensing field,

and residual energy. Therefore, to analyze the behavior of

the proposed RAPCOL, we execute a set of experiments.

• Experiment 1: Evaluating Average Localization

Error (ALE)

• Experiment 2: Effect of ratio of beacon nodes

• Experiment 3: Effect of total number of sensor nodes

• Experiment 4: Effect of sensing field

• Experiment 5: Frequency of error occurrence

• Experiment 6: Residual energy

• Experiment 7: Localization time

• Experiment 8: Effect of Network Connectivity on

localization

• Experiment 9: Effect of ratio of beacon nodes and

total sensor nodes on LEV

Experiment 1: Average Localization Error (ALE)

For experiment 1, we distribute 100 nodes with random

mobility in 100� 100m2 area having 25% beacon nodes.

Due to the heterogeneity of the network, the range of

communication and initial energy is assumed as 25� 40m

and 4� 6J, respectively. Localization error computed for

each node has been displayed in Fig. 6. The figure shows

that the proposed RAPCOL is better as compared to other

algorithms. We summarize the maximum, minimum, and

average localization errors in Table 4.

Experiment 2: Effect of ratio of beacon nodes

The number of beacon nodes in the network solely

affects the localization performance. In experiment 2, ALE

can be determined with the variation in the ratio of beacon

nodes. 100 number of sensor nodes are distributed in 100�
100m2 sensing field have considered with 15� 60m

transmission range for simulation. The ALE of different

algorithms with variable ratios of beacon nodes is depicted

in Fig. 7. The outcomes show that as the ratio of beacon

nodes increases, the ALE of all algorithms decreases

because large information can be accumulated by more

beacon nodes. From the figure, we infer that our proposed

RAPCOL has the least localization error as compared to

the other algorithms. The localization accuracy of an

algorithm has also affected by the transmission range

shown in Fig. 7 and the ALE of the algorithms decreases as

the transmission range increases. It happens because the

network becomes more connected when the transmission

range increases.
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Fig. 7 : Effect of ratio of beacon nodes and transmission range on ALE

Table 4 Comparison of localization error for different algorithms

Algorithm Maximum localization error Minimum localization error Average localization error

IDV-Hop [14] 7.1274 31.099 20.226

Improved DV-Hop [22] 9.3037 27.7576 18.9072

NDV-Hop [19] 6.2963 22.9624 15.2289

Modified DV-Hop [21] 6.0042 20.2041 14.0147

Proposed Algorithm 9.9561 0.9601 5.34
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Experiment 3: Effect of nodes density on ALE

Node density solely influences the location estimation

process in terms of localization accuracy. The performance

has been evaluated in terms of error by varying node

density in experiment 3. To evaluate the performance, we

deploy 100 to 400 nodes in 100� 100m2 with 20% beacon

nodes having transmission range within 15m to 60m. From

the simulated outcomes, we observe that the expansion of

node density reduces the ALE for all algorithms. As the

node density increases, the connectivity of the network also

increases; it results in the accumulation of large location

information. After reaching a certain limit of sensor nodes,

network connectivity do not contribute more variation and

also minor variation takes place in ALE. Figure 8

demonstrates the influence of node density on ALE. It has

been examined from the simulated outcomes that our

RAPCOL performs effectively as compared to the other

algorithms.

Experiment 4: Effect of sensing field

In experiment 4, the impact of the sensing field on ALE

is examined. We can compute ALE by varying sensing

area from 100� 100m2 to 400� 400m2 with 20% beacon
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Fig. 8 Effect of nodes density and transmission range on ALE
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nodes and total 100 nodes distributed with 25� 40m

transmission range. We see that ALE increases as the

sensing field increases. The connectivity of the network

decreases as the sensing area increases, which influences

the performance of the algorithm. From Fig. 9, it has been

realized that our proposed algorithm outperforms with

respect to other existing algorithms.

Experiment 5: Frequency of error occurrence

We examine the frequency of localization errors in

Experiment 5. We use 100 nodes in 100� 100m2 area

having 20% beacon nodes. To compute the ALE for all

algorithms, we simulate the experiment for 100 times and

observe the average accuracy. Figure 10 reveals that most

localization error lies in intervals of 3� 6 and 6� 9 for our

proposed RAPCOL. The proposed algorithm has the lowest

localization error compared to the other algorithms. We

show the summarized results in Fig. 10.

Experiment 6: Impact of the ratio of beacon node

and total sensor nodes on the percentage of Residual

energy

We execute experiment 6 to examine the percentage of

residual energy for all algorithms and to evaluate the per-

formance. We distribute 100 to 400 nodes with 10 to 40%
of beacon nodes using 25� 40m transmission range and

4� 6J initial energy. Further, the information of all

unknown nodes collected by beacon nodes is transmitted

through cooperative beacon nodes to BS. We compute the

location of all unknown nodes at BS by performing opti-

mization and localization tasks; therefore, the minimum

message exchanges take place between beacon nodes and

unknown nodes. Figure 11 represents the influence of

variation in beacon node ratio and the total number of

sensor nodes on the residual energy percentage of the

network. We understand from the simulated results that our

RAPCOL has more residual energy with respect to other

algorithms.

Experiment 7: Effect of ratio of beacon nodes and

total sensor nodes on LEV

We observe the effect of beacon nodes ratio and total

sensor nodes on LEV in experiment 7. We use 100 to 400

sensor nodes with 10% to 40% beacon nodes in the

transmission range 25� 40m. We observe the influence of

both factors on LEV from Fig. 12.

Experiment 8: Influence of network connectivity on

localization

The proportion of localized nodes and unlocalized nodes

are the critical metrics for measuring the performance of

the localization algorithm in WSNs. To examine the effect

of network connectivity on the coverage of the algorithm,

we compute PLSN and PUSN by altering connectivity

from 2 to 16. Figure 13 depicts PLSN and PUSN by

varying network connectivity for different algorithms.

From Fig. 13, we see that after approaching network con-

nectivity 9, all the unknown nodes are localized success-

fully by our proposed RAPCOL. The simulated results

reveal that RAPCOL has better coverage.

Experiment 9: Computational Efficiency and com-

putational complexity

The computational cost of an algorithm represents the

evaluation of complexity and can be computed by esti-

mating the consumed time to perform a specific task by an

algorithm. It is the computational time required for com-

puting the location of unknown nodes. We show the

localization time of all the algorithms in Fig. 14. We see

from Fig. 14 that IDV-HOP [14] has the lowest localiza-

tion time and the modified range-free approach [21]

requires more time because of TLBO optimization. Our

RAPCOL requires more time than NDV-Hop [19] because
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of improved PSO; however, the overall accuracy of RAP-

COL is better than the NDV-Hop.

The overall computational cost of the proposed

scheme is compared with existing algorithms shown in

Table 5. It can be observed from 5 that the distribution of

nodes took a bit more time for the proposed algorithm

because of random mobility. The proposed algorithm

proves its effectiveness in terms of weight metric compu-

tation, and node selection by consuming less time as

compared to the existing algorithm. The order of Com-

plexity of the proposed algorithm with respect to existing

approaches is shown in Table 5.

Experiment 10: Impact of sensor nodes on packet

loss

In this experiment, we analyzed the impact of total

sensor nodes on packet loss and analysis is represented in

Fig. 15, For this experiment, we have considered direct

communication as well as cooperative communication.

From the figure, it can be clearly observed that the packet

loss in direct communication is more as compared to

cooperative communication. It happens because of random

mobility, at any instant of time if nodes are situated very

far, so in direct communication chances of packet loss

would be high because of distance. On the other hand, in

cooperative communication, two-hop communication

would be adopted.
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4 Conclusion

In this paper, we show a novel range-free localization

scheme, called RAPCOL, which uses cooperative MAC for

power efficiency. We show that cooperative communica-

tion is advantageous as compared to traditional direct

communication in terms of preserving residual energy and

prolonging network lifetime. To maximize the network

lifetime, information from beacon nodes to BS is com-

municated through cooperative beacon nodes. The coop-

erative beacon nodes are selected based on transmission

power criteria to reduce energy consumption. Thus, RAP-

COL is able to reduce the total energy consumption by

30% and prolong the network lifetime. Furthermore,

RAPCOL minimizes the localization error of unknown

nodes using an improvised PSO optimization algorithm.

PSO ensures minimum message exchange between beacon

nodes and unknown nodes as RAPCOL performs local-

ization for one-hop neighbors. We compare the results of

our proposed RAPCOL algorithm with the recent

localization algorithms available in the literature. The

comparative analysis shows that our proposed RAPCOL is

superior in terms of accuracy and energy efficiency. We

observe that RAPCOL provides 30% better accuracy in the

mobility and heterogeneous network conditions. Thus, our

proposed RAPCOL is efficient for WSNs.// Despite of

significant contribution by the present study towards range-

free localization with cooperative communication, it has a

few limitations also. Firstly, the present study only focused

on energy efficiency and accuracy, whereas, secondly, we

have considered energy only for transmission. In future

research direction, the researchers can consider load bal-

ancing and security of nodes for localization algorithm.

Also, overall energy consumption in the network can be

considered in the future.
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