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ABSTRACT The new quantum era is expected to have an unprecedented social impact, enabling the
research of tomorrow in several pivotal fields. These perspectives require a physical system able to encode,
process and store for a sufficiently long amount of time the quantum information. However, the optimal
engineering of currently available quantum computers, which are small and flawed by several non-ideal
phenomena, requires an efficacious methodology for exploring the design space. Hence, there is an unmet
need for the development of reliable hardware-aware simulation infrastructures able to efficiently emulate the
behaviour of quantum hardware that commits to looking for innovative systematic ways, with a bottom-up
approach starting from the physical level, moving to the device level and up to the system level. This
article discusses the development of a classical simulation infrastructure for semiconductor quantum-dot
quantum computation based on compact models, where each device is described in terms of the main
physical parameters affecting its performance in a sufficiently easy way from a computational point of
view for providing accurate results without involving sophisticated physical simulators, thus reducing
the requirements on CPU and memory. The effectiveness of the involved approximations is tested on a
benchmark of quantum circuits — in the expected operating ranges of quantum hardware — by comparing
the corresponding outcomes with those obtained via numeric integration of the Schrödinger equation. The
achieved results give evidence that this work is a step forward towards the definition of a classical simulator
of quantum computers.

INDEX TERMS Models, NISQ, noise, noisy intermediate scale quantum computers, heterostructures,
quantum computing, semiconductor quantum dots, simulation.

I. INTRODUCTION
Although classical electronics and computer science, based
on classical physics, have met the requirements of an
ever-inflating number of pervasive applications for several
decades thanks to astonishing technological development,
some hard problems still remain beyond the reach of classical
computers. Quantum computing is expected to be a viable
answer to overcome the shortcomings of classical computing
in several scenarios. Among these, optimisation [2], image
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processing [3], machine learning [4] and chemical simula-
tions [5] can be mentioned. This application-driven exigency
urges towards the design of reliable quantum hardware able
to encode, process and store for a sufficiently long amount
of time the quantum information. Several technologies have
been proposed for building a quantum computer based
on superconducting devices [6], trapped ions [7], quantum
dots [8], molecules [9] and nuclei in diamagnetic molecules
(NMR) [10].Moreover, some devices fabricated by either pri-
vate companies — e.g., superconducting qubits by IBM [11]
and trapped ions by Quantinuum [12] — or Academia —
e.g., silicon qubits by QuTech [13] at TU Delft — are already
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FIGURE 1. Pictorial representation of the target semiconductor heterostructure devices. In blue are the Y gates, in red the plunger gates,
in pale light blue the barrier gates and in yellow the Al2O3 oxide.

accessible via cloud. Nevertheless, all currently available
devices belong to the so-called Noisy Intermediate Scale
Quantum (NISQ) computers era, meaning that they are
small and affected by several non-ideal phenomena [14].
Accordingly, the optimal exploration of the design space
demands classical trustworthy simulators that must, on the
one hand, be able to take into account the main non-ideal
phenomena affecting real hardware devices and, on the other,
be CPU-and-memory friendly. However, presently accessible
classical simulators of quantum computers mainly belong
to two well-established families: physically accurate but
CPU-intensive simulators based on the direct solution of
Schrödinger and Lindblad equations [15], [16], [17] and fast
high-level ideal simulators [18] developed for handling many
qubit systems. Therefore, there is still an unsatisfied need
for an intermediate-level simulation infrastructure able to
emulate the actual behaviour of real-world quantum hard-
ware and determine, for every technology, the performance
dependence on both physical and control degrees of freedom,
thus enabling their optimisation according to some fiducial
parameters. A possible response to this requirement is the
development of a compact-model based simulation toolchain,
where each device is described in terms of the main physical
parameters affecting its performance in a way sufficiently
light from a computational point of view for providing
accurate results without involving sophisticated physical
simulators. This methodology has already been discussed
in [19] and [20], with a specific focus on NMR technology,
which, on the one hand, represents an iconic example
of a system affected by several non-ideal phenomena —
such as relaxation, decoherence, off-resonance and residual
unwanted coupling – and, on the other, can be regarded as

the archetype of spin-based quantum technologies. At the
time of [20], the other technology supported by the proposed
simulation infrastructure was represented by molecular
nanomagnets.

In this work, a new technology, namely semiconductor
quantum dots, is discussed. It shall be noted that semicon-
ductor quantum computation has been a rapidly growing
field in the past years thanks to a global investigation
on realising fault-tolerant implementations. Experiments on
physical devices are indeed yielding noteworthy results in
terms of charge control, gate fidelities and coherence times,
in both 1D [21], [22] and 2D arrays [23], [24]. In [25], the
authors review recent advances in this field, at the fabrication
and experimental levels, in both Academia and industry.
Quantum dots are one of the most explored possibilities
for semiconductor quantum implementation, thanks to their
flexibility and technological readiness for such applications.
Yet, this is not the only option available for semiconductors:
different technologies, namely dopants [26], [27], [28] and
optically addressable quantum defects [29], are accessible.
Relevant benefits are the small qubit footprint (tens of
nanometres) and the fast gate-controlled manipulation and
read-out procedure [30], but the most notable advantage
is the compatibility with the established CMOS integration
techniques [25], [31]. This makes quantum dots a strong
candidate for large-scale quantum computing integration and
paves the way to the integration of quantum and classical
electronics [32], [33]. Moreover, semiconductor quantum
devices can be controlled through electric (metal gates) and
magnetic (integrated micromagnets) fields, a crucial feature
when envisioning possible control schemes of a dense array
of several qubits together [34]. Physical semiconductor qubits
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FIGURE 2. Proposed quantum simulation toolchain. Currently supported technologies are NMR, quantum dots (presented in this article) and molecular
nanomagnets (the latter technology is discussed in [1]). The input physical parameters can be retrieved from experiments or physical simulations
exploiting currently available software tools. They are provided, together with technology-dependent control parameters, to the compact-model-based
simulation infrastructure. The QASM description of the quantum circuit is compiled by a technology-aware in-house compilation toolchain. The
infrastructure outputs the fidelity and the probability distribution of the eigenstates. The input physical and control parameters for the specific case of
semiconductor quantum dots — discussed in this article — are reported in the dashed grey rectangles.

have also shown long coherence times, and therefore are
promising candidates for building fault-tolerant quantum
processors [22], [23], [35], [36]. As far as the encoding of
the quantum information is concerned, electrons confined in
quantum dots offer different possibilities: Loss-DiVincenzo
qubit [37] — when the quantum information is encoded
on the two Zeeman hyperfine spin levels of the dot ground
state such that |0⟩ = |↓⟩ and |1⟩ = |↑⟩ —, the charge
qubit [38] — when the qubit on the presence of a single
electron in a dot or in another — and the Singlet-Triplet
(ST) qubit [39] — when the qubit is encoded on the single-
triplet many-body eigenstates of a two-electron-in-two-dot
system. This work takes into account Loss-DiVincenzo qubits
encoded in quantum dots built into intrinsic silicon, focusing
on the two most common heterostructures: SiMOS [40] and
SiGe/Si/SiGe heterostructures [41] (cf. Figure 1).
This article is intended to fulfil two objectives:

• First, leveraging the methodology proposed in [20] for
spin-based technology, it presents the detailed derivation
of a novel compact model for two-qubit semicon-
ductor quantum dot systems, which is then inserted
within the MATLAB-based simulation infrastructure
of quantum computing technologies under develop-
ment. Since several different methodologies to initialise
the systems and perform the read-out are routinely
exploited [42], [43], at the time of writing, the proposed
compact model assumes ideal initial states and simple

projective measurements to decouple the simulation
from the specific experimental details and facilitate the
integration in the multi-technology infrastructure. The
approximations employed in the compact model—most
of them involving time dependencies simplifications —
are then thoroughly verified using the Quantum Toolbox
in Python (QuTiP) [15], a Python-based environment
able to solve the Lindblad master equation. The error
between QuTiP exact simulation and the MATLAB
model is plotted with respect to some relevant system
input parameters, in order to prove the validity of the
model approximations. The model is finally validated in
terms of state probability distribution and gate fidelity
by extensively verifying its results when simulating
different quantum algorithms.

• Second, it envisions the development of a compre-
hensive classical simulation toolchain that, starting
from currently available low-level simulators — such
as NextNano [17], QTCAD [16], ORCA [44], [45]
and QuantumATK [46] — or experimental values and
an arbitrary quantum circuit described in OpenQASM
2.0 [47], can determine the expected outcomes in terms
of the eigenstate probability distribution, the fidelity and
the execution time.

The remaining of this work is organised as follows:
Section II discusses the classical simulation toolchain for
quantum computers, Section III describes the detailed
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derivation of the compact model, Section IV presents some
FEM simulations aiming to extract the compact model’s
input parameters, Section V collects the results obtained with
the proposed models and eventually Section VI draws the
conclusions.

II. CLASSICAL MODELLING OF NOISY QUANTUM
HARDWARE
Hardware devices and systems for quantum information
processing are complex, and the process of definition of an
optimal workflow to design and optimise a quantum proces-
sor is still in part a matter of trial and error in development.
Accordingly, a comprehensive classical simulation of their
behaviour — an essential step to empower the understanding
of the parameters that impact the performance that is still
an open problem [48] in both industry and academy —
must include different levels of abstraction, starting from
the physical level, moving to the device level and up to the
system level. On the one hand, it should include low-level
multiphysics simulators [16], [17], [44], [45], [46], [49] for
the accurate characterization of the devices, on the other,
it must be able to handle involved quantum algorithms,
reducing the required resources in terms of RAM and
CPU time, as discussed in [20]. The quantum simulation
toolchain envisioned in this article is hoped to be a first
step towards the development of a design infrastructure that,
leveraging existing physical simulators and novel compact
models, could mimic the well-established multi-level design
procedure routinely employed in classical electronics by
bridging the gap between technology and applications, thus
paving the way for the practical engineering of quantum
systems. As pictorially reported in Figure 2, the relevant
physical parameters — such as Zeeman splittings, T1 and
T ∗

2 time constants, J-couplings and many-body singlet-
triplet splitting, g-factors, chemical shieldings, Coulomb
on-site interaction and several others — can be extracted
from the experimental characterisation of the quantum
devices or by exploiting FEM and ab-initio simulators. The
downstream intermediate-level simulation infrastructure is
provided with the acquired device parameters and with
several technology-dependent control parameters — such as
the static magnetic field, the microwave or radiofrequency
electromagnetic fields and the phase and duration of quantum
gates. Moreover, in an application-driven scenario where
quantum computing is going to be employed for facing real-
world problems, manual quantum algorithm optimisation
is unfeasible. Hence, the input quantum circuit, described
in OpenQASM 2.0 — standard de facto for quantum
algorithms—, is handled by a technology-aware compilation
utility that translates the abstract input description into one
compliant with the target coupling graph and gate native set,
carrying out a technology-inspired logic — proposed in a
previous article [50] — and layout synthesis, trying, at the
same time, to reduce the number of gates, by introducing
some fine-grain technology-dependent optimisations. The

resulting output is a quantum circuit built to work smoothly
with the target device, tailored to properly optimise specific
performance parameters. Then, the noisy-compact model
infrastructure carries out an ideal (state vector) and a noisy
(density matrix, cf. Appendix) simulation and delivers in
the output the probability distribution of the eigenstates and
some performance metrics, such as the fidelity [51] and the
expected execution time on the target hardware device.

The research presented in this article examines the imple-
mentation of a preliminary multi-level simulation toolchain
for semiconductor-based quantum dots.

III. FROM PHYSICAL PRINCIPLES TO COMPACT MODEL
A. THE PHYSICAL, THE COMPUTATIONAL AND THE
CANONICALLY ORDERED EIGENBASES
Focusing on gate-defined spin- 12 qubits in quantum dots, the
spin angular momentum operator of an electron is S, and its
component along the ẑ direction is Sz =

h̄
2σz [52], where σz

is the Pauli z-matrix. Hence, Sz is diagonal over the ordered
eigenbasis {|↑⟩ , |↓⟩}. If a static magnetic field B0 = B0ẑ is
applied to the system, then the Hamiltonian describing the
interaction between the field and the spin magnetic moment
m = γS [53] is H′

0 =
Ez
2 σz [53], where Ez = −h̄γB0 is the

Zeeman energy splitting between the spin-up and spin-down
states, γ = −gµB/h̄, µB is the Bohr magneton and g is the
electron spin g-factor [54]. In a semi-classical picture [52],
the effect of the Zeeman Hamiltonian can be interpreted as a
spin precession about the axis along which the static field is
applied, at the vector Larmor angular frequencyω0 = −γB0,
where |ω0| = ω0 = |γ |B0, and the sign depends on the sign
of g. Therefore:

• Positive g −→ negative γ −→ positive Ez and positive
direction of ω0 −→ positive precession about the ẑ
axis. This is the case for instance of silicon, that has
g ∼ +2 [54]. Therefore, the |↓⟩ state is the spin ground
state, since its energy is reduced by |Ez|/2, whereas the
first excited spin state is |↑⟩, whose energy is increased
by |Ez|/2.

• Negative g −→ positive γ −→ negativeEz and negative
direction of ω0 −→ negative precession about the ẑ
axis. This is the case for instance of GaAs, that has g ∼

−0.44 [54]. Therefore, the |↑⟩ state is the spin ground
state, since its energy is reduced by |Ez|/2, whereas the
first excited spin state is |↓⟩, whose energy is increased
by |Ez|/2.

Since the abstract qubit state |0⟩ is mapped to the lower
physical energy state and vice versa for |1⟩, focusing on
positive-g-factor materials (i.e., silicon and germanium),
the ordered physical eigenbasis {|↑⟩ , |↓⟩} corresponds to
the ordered computational basis {|1⟩ , |0⟩}. However, for
historical reasons — the physical spin ground state of one
of the first technologies employed, namely the Nuclear
Magnetic Resonance (NMR), is |↑⟩ [20] — the ordered
canonical basis customarily employed in the field of quantum
computation is {|0⟩ , |1⟩}. Therefore, a change of basis
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through a unitary matrix UB = σx is needed to make the
description compliant with the canonical formalism adopted
in the simulation infrastructure discussed in this article and
in [20]. The system spin Hamiltonian in the {|↓⟩, |↑⟩} basis
is

H0 = UBH′

0U
†
B = σxH′

0σ
†
x = −

Ez
2
σz (1)

After this change of basis, the spin rotates about B0 in the
opposite way with respect to Larmor precession, i.e., the
same verse as in NMR. The superimposition of a micro-wave
magnetic field applied along +x̂ axis with angular frequency
ωw, phase φ and amplitude 2Bw allows the transitions
between the hyperfine Zeeman levels. The corresponding
micro-wave Hamiltonian in the physical basis is

H′
w = −m · Bw = −2γBw cos(ωwt − φ)

h̄
2
σx . (2)

Moving to the {|↓⟩ , |↑⟩}, the total single-qubit Hamiltonian
becomes

H = σx
(
H′
w +H′

0
)
σ †x

= −
Ez
2
σz + h̄ω∗ cos(ωwt − φ)σx , (3)

which is formally equivalent to [20, Section 3.1] with the
Rabi frequency ω∗ = |γ |Bw = −γBw, considering the
negative sign of γ . As discussed in [20, Section 3.3], moving
to the interaction picture — i.e., to a frame rotating in the
negative verse about ẑ axis at angular frequency ωf via
the linear operator UR = Rz(ωf t) where the Hamiltonian
is H̃ = URHU†

R−ih̄UR∂tU
†
R [55] — and applying the

rotating-wave approximation (RWA) under the assumption
that ωw = ωf leads to the following time-independent single-
qubit Hamiltonian:

H̃ =
h̄
2

{
δσz + ω∗[cos(φ)σx + sin(φ)σy]

}
, (4)

where δ = ωw − ω0 (cf. Appendix for a discussion about
the different approaches adopted to solve systems with and
without Hamiltonians with explicit time dependence).

B. DOUBLE COUPLED QUANTUM DOTS
1) THE FERMI-HUBBARD MODEL
In the setting of quantum field theory, an interacting Fermi
Gas subjected to a confining potential is well described by the
Fermi-Hubbard model. Since a double-quantum dot system
with two electrons is a many-body system of fermions, the
Fermi-Hubbard model is an effective choice that can describe
the relatively complex physics with simplicity and thus a
reasonable starting point for the derivation of a compact
model. The simplest — yet widely adopted [56], [57],
[58] — Fermi-Hubbard model leads to the following formal
laboratory-frame Hamiltonian [57], [59]:

H′
= Hϵ +Hv +Hu +Ht +Hz , (5)

where Hϵ takes into account the on-site energy, Hv the
valley degeneracy, Hu the on-site Coulomb energy, Ht

the tunneling and Hz the Zeeman energy. Henceforth, the
following notation is exploited: σ =↑, ↓ is the index for
spin eigenstates, v = ± for the z-valleys and k for the dot
site. Considering NR electrons in the right dot and NL in the
left dot, the singlet and triplet states are denoted S(NL ,NR),
T+(NL ,NR), T0(NL ,NR) and T−(NL ,NR), where, S stands for
singlet state, and the three T notations are related to the three
possible values of the eigenvalue of the spin operatorM : +1,
0 and −1, respectively.

For a two-qubit system with two electrons in two quantum
dots, the ordered physical basis is {|↑⟩ , |↓⟩} ⊗ {|↑⟩ , |↓⟩}
= {|T+(1, 1)⟩ = |↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |T−(1, 1)⟩ = |↓↓⟩}.
The many-body singlet |S(2, 0)⟩ and |S(0, 2)⟩ states need
to be considered too [57], since they strongly couple to
the |S(1, 1)⟩ =

1
√
2
(|↑↓⟩ − |↓↑⟩) energy state, whereas

the |T(2, 0)⟩ and |T(0, 2)⟩ states are at significantly higher
energies and can be neglected [56]. Hence, the complete
ordered physical basis is

{|T+(1, 1)⟩ = |↑↑⟩ , |↑↓⟩ , |↓↑⟩ ,

|T−(1, 1)⟩ = |↓↓⟩ , |S(0, 2)⟩ , |S(2, 0)⟩} . (6)

Under this hypothesis and considering that, in silicon, the
natural ground state is |↑↑⟩, as shown in Appendix, the
six-level Fermi Hubbard Hamiltonian [56], [57], [58] matrix
form of Equation (5) is:

H′
H =



Ez 0 0 0 0 0
0 1Ez

2 0 0 t0 t0
0 0 −

1Ez
2 0 −t0 −t0

0 0 0 −Ez 0 0
0 t0 −t0 0 U − ϵ 0
0 t0 −t0 0 0 U + ϵ

 , (7)

where the Coulomb on-site interaction energy U is assumed
to be equal for the two dots, t0 is the inter-dot tunnel coupling,

ϵ is the detuning, Ez =
E0
z +E1

z
2 and 1Ez = E1

z − E0
z are the

average and the difference of the qubits Zeeman splittings,
respectively, with E1

z ̸= E0
z to allow for single-qubit

addressability in a many-qubit quantum register. The energy
diagram — i.e., the plot of the eigenvalues of Equation (7)
with respect to the detuning ϵ —, reported in Figure 3 for
a reasonable set of physical parameters (cf. Table 7), allows
the identification of two regimes of control parameters ϵ and
t0 that enable the execution of single-qubit and two-qubit
gates, respectively. The Pauli exclusion principle prevents the
transition between the spin-triplet states with one electron in
each dot (|T+(1, 1)⟩ = |↑↑⟩ and |T−(1, 1)⟩ = |↓↓⟩) to the
singlet states with two electrons in the same dot (|S(2, 0)⟩
and |S(0, 2)⟩) [60]. Accordingly, |↑↑⟩ and |↓↓⟩ in Figure 3
do not interact with |S(2, 0)⟩ and |S(0, 2)⟩, and their energies
are constant for every value of the detuning. Conversely,
the antiparallel spin states shift downward in energy as |ϵ|

approaches the numerical value of U since they contain an
|S(1, 1)⟩ component, and the |S(1, 1)⟩ state has an avoided
crossing with the |S(0, 2)⟩ and |S(2, 0)⟩ states [56], due to the
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FIGURE 3. Energy diagram of a double quantum dot system with respect to the detuning ϵ. The diagram assumes U = 0.9 meV, t0 = 1.65 µeV,
Ez = 64.25 µeV and 1Ez = 868.49 neV (cf. the CPHASE regime parameters for SiMOS heterostructure of Table 7).

finite interdot tunnelling t0. Near |ϵ| ∼ 0 or for |ϵ| ≫ U ,
the eigenstates of the Hamiltonian correspond to the physical
basis states (uncoupled spins), whereas for |ϵ| ∼ U (dashed
black lines) they are a linear superposition of the basis states
(coupled spins), as pictorially represented by mixed colours
in Figure 3.
Near the transition zones, that is for |ϵ| → U — i.e., when

the difference between the chemical potentials is similar to
the on-site electron repulsion —, the resonance frequency
of each qubit depends on the state of the other qubit,
a conditional change that is needed to implement two-qubit
gates. Let:

• f ↓

0 =
1
h

(
E|↓↑⟩ − E|↓↓⟩

)
: the resonance frequency of

q0 when q1 is in |↓⟩;
• f ↑

0 =
1
h

(
E|↑↑⟩ − E|↑↓⟩

)
: the resonance frequency of

q0 when q1 is in |↑⟩;
• f ↓

1 =
1
h

(
E|↑↓⟩ − E|↓↓⟩

)
: the resonance frequency of

q1 when q0 is in |↓⟩;
• f ↑

1 =
1
h

(
E|↑↑⟩ − E|↓↑⟩

)
: the resonance frequency of

q1 when q0 is in |↑⟩.

The behaviour of the resonance frequencies for different
values of ϵ is reported in Figure 4. As expected, as |ϵ|

approaches the transition regions, the difference between f ↓

0
and f ↑

0 (similarly for f ↓

1 and f ↑

1 ) increases. The Heisenberg
exchange interaction parameter J [37] can be computed

as [21]:

J (ϵ) = f ↑

0 − f ↓

0 = f ↑

1 − f ↓

1

=
1
h

(
E|↑↑⟩ − E|↑↓⟩ − E|↓↑⟩ + E|↓↓⟩

)
, (8)

and Figure 5 shows the behaviour of J (ϵ) as a function
of the detuning. For low detuning (ϵ ∼ 0) the system
behaves as two uncoupled quantum dots: the eigenstates of
the Fermi Hubbard Hamiltonian correspond to the physical
computational basis, the resonance frequencies have their
nominal values and the J interaction is negligible. Under
this regime, single-qubit quantum gates can be implemented.
On the other hand, for large detuning (|ϵ| → U ), the system
consists of two coupled quantum dots: the eigenstates of
the Fermi Hubbard Hamiltonian are a linear superposition
of natural computational basis, the resonance frequencies
shifts from their nominal values and the J interaction rises.
This regime allows the execution of two-qubit quantum
gates.

From the above discussion, it follows that the exchange
interaction can be turned on and off on demand, thus allowing
an easy switch from the single-qubit gate to the two-qubit gate
regime and vice versa. The value of J can be finely controlled
through the application of opportunely engineered voltages
on the device plunger gates (that control the detuning) or
by modifying the tunnel coupling t0 (a larger t0 leads to
an increased bending of the Fermi Hubbard Hamiltonian

98880 VOLUME 11, 2023
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FIGURE 4. Frequency diagram of a double quantum dot system with respect to the detuning ϵ. The diagram assumes U = 0.9 meV, t0 = 1.65 µeV,
Ez = 64.25 µeV and 1Ez = 868.49 neV (cf. the CPHASE regime parameters for SiMOS heterostructure of Table 7).

eigenstates in the transition region, because of avoided
crossing).

2) THE LABORATORY-FRAME EFFECTIVE HAMILTONIAN
As discussed in Appendix, under the hypothesis that [56],
[61] U − ϵ ≫ t0, the Schrieffer-Wolff (SW) transformation
can be used to project the six-level Fermi Hubbard
Hamiltonian to the low-energy physical four-state basis
{|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} to the first order, obtaining

H′
SW =


Ez 0
0 1Ez

2 − α (1Ez)
0 β (1Ez)
0 0

0 0
β (1Ez) 0

−
1Ez
2 − α (−1Ez) 0

0 −Ez

 , (9)

where

α (1Ez) ≜
t20

U − ϵ −
1Ez
2

+
t20

U + ϵ −
1Ez
2

β (1Ez) ≜
α (1Ez)+ α (−1Ez)

2
(10)

take into account the |S(2, 0)⟩ and |S(0, 2)⟩ states effect on
the system. If |ϵ| ≪ U and 1Ez ≪ U , then [56]

α (1Ez) ∼ β (1Ez) ∼
2t20
U

=
hJ
2
. (11)

Hence, α and β map the effect of the exchange interaction J
to the four-state SW Hamiltonian. One should consider that
1Ez only slightly influences the value of α and β, since1Ez
is usually in the range 1 × 10−6 eV to 1 × 10−8 eV, whereas
U and ϵ routinely assume values in the meV scale [56].
As discussed in Section III-A, a change of basis is required

to be compliant with the canonical basis. For a two-qubit
Hamiltonian, the change of basis matrix is UB = σx ⊗ σx .
The result of the transformation is the HSW Hamiltonian
in the {|↓↓⟩, |↓↑⟩, |↑↓⟩, |↑↑⟩}={|00⟩, |01⟩, |10⟩, |11⟩}
computational basis.

3) THE ROTATING-FRAME EFFECTIVE HAMILTONIAN
In analogy with Section III-A, the superposition of an
alternating micro-wave magnetic field to a double quantum
dot system leads to

Hw = −
h̄
2

· 2Bw cos(ωwt − φ) [γ0I ⊗ σx + γ1σx ⊗ I] .
(12)

Defining the Rabi frequency of the i-th qubit (denoted as qi)
as ωi∗ = |γi|Bw = −γiBw, the complete Hamiltonian H =
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FIGURE 5. Exchange diagram of a double quantum dot system with respect to the detuning ϵ. The diagram assumes U = 0.9 meV, t0 = 1.65µeV,
Ez = 64.25 µeV and 1Ez = 868.49 neV (cf. the CPHASE regime parameters for SiMOS heterostructure of Table 7).

HSW +Hw in the laboratory frame is:

H =


−Ez h̄

2ω
0
∗η

h̄
2ω

0
∗η −

1Ez
2 − α (−1Ez)

h̄
2ω

1
∗η β (1Ez)
0 h̄

2ω
1
∗η

h̄
2ω

1
∗η 0

β (1Ez) h̄
2ω

1
∗η

1Ez
2 − α (1Ez) h̄

2ω
0
∗η

h̄
2ω

0
∗η Ez

 , (13)

where η =
(
eiωwte−iφ + e−iωwteiφ

)
. Equation (13) shows an

explicit time dependence. Accordingly, the determination of
the time evolution of the system (given by the formal solution
of Equation (70)) is extremely CPU and memory-demanding.
The development of a light compact model requires intro-
ducing a methodology and some approximations, valid in
specific ranges, to remove this time dependence. As done
also in [20, Section 3.3], the first step is to bring the system
into the interaction picture. Among the possible different
choices for the rotating frame transformation operator, the
most convenient one for the purposes of this work is UR =

Rz(ω1
0t)⊗Rz(ω0

0t), whereω
i
0 is the Larmor frequency of qubit

qi. Accordingly, under resonance conditionωw = ω0
0 with q0,

the exact rotating frame spin Hamiltonian is

H̃ = URHU†
R−ih̄UR∂tU

†
R

=
h̄
2

{
ω0

∗

[
cos

(
2ω0

0t − φ
)

+ cos(φ)
]

I ⊗ σx

+ ω0
∗

[
sin

(
2ω0

0t − φ
)

+ sin(φ)
]

I ⊗ σy

+ ω1
∗ [cos(Ωt − φ)+ cos(∆ω0t + φ)] σx ⊗ I

+ ω1
∗ [sin(Ωt − φ)+ sin(∆ω0t + φ)] σy ⊗ I

}
+ H̃J . (14)

where 1ω0 = ω1
0 − ω0

0, Ω = ω0
0 + ω1

0 and

H̃J =


0 0 0 0
0 −α (−1Ez) β (1Ez) e−i1ω0t 0
0 β (1Ez) ei1ω0t −α (1Ez) 0
0 0 0 0

 . (15)

It shall be remarked that Equation (14) still shows an explicit
time dependence. Removing the latter requires introducing
some approximations, which are discussed and verified in the
following.
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FIGURE 6. Probability of the |↑↓⟩ component in one of the antiparallel eigenstates as a function of 1Ez for different values of the detuning ϵ. The diagram
assumes U = 0.9 meV, t0 = 1.65 µeV, Ez = 64.25 µeV and 1Ez = 868.49 neV (cf. the CPHASE regime parameters for SiMOS heterostructure of Table 7).

C. SINGLE-QUBIT GATES IN DOUBLE QUANTUM DOTS
To execute single-qubit gates, the system is brought in a
low-detuning low-tunnel coupling regime that yields HJ ∼

0. Then, the micro-wave field Bw is switched on, and the
rotating-frame Hamiltonian coincides with Equation (14)
withHJ ∼ 0. The rotating wave approximation (RWA) [20],
[62] — for a time-scale τsq such that |Ω|τsq ≫ 2π — leads
to

H̃ ∼
h̄
2

{
ω0

∗I ⊗
[
cos(φ)σx + sin(φ)σy

]
+ ω1

∗

[
cos(∆ω0t + φ)σx + sin(∆ω0t + φ)σy

]
⊗ I

}
.

(16)

If the time scale τsq can be chosen such that |1ω0|τsq ≫

2π , then the complex exponentials e±i1ω0t±iφ — which
describe the off-resonance effect — are rapidly oscillating
and average to zero. Under this hypothesis, the rotating-frame
Hamiltonian can be written as

H̃ ∼
h̄ω0

∗

2

[
cos(φ)I ⊗ σx + sin(φ)I ⊗ σy

]
, (17)

which coincides with the single qubit part of [20, Equation
22] and does not show any time dependence. Therefore,
the implementation of single-qubit gates on quantum dots

under the resonance condition is formally modelled as
discussed in [20, Section 3.4] for NMR, i.e., resorting on
Equation (72) instead of Equation (71). Moreover, thanks to
the formal equivalence of the single-qubit expression between
NMR and quantum dots, the Fourier method proposed
in [20, Section 4.1] — which determines the unwanted
effective rotations to which not-addressed qubits are
subjected — can be effortlessly exploited to provide a
computationally inexpensive approach to model the off-
resonance effect.

D. TWO-QUBIT GATE IN DOUBLE QUANTUM DOTS
From an operational perspective, a two-qubit gate in a double
quantum dot device is implemented as follows:

• The micro-wave field is switched off.
• t0 is set to the operating value through the barrier gate.
• Engineered voltages are applied to the plunger gates to
set the detuning value in the vicinity of U to activate J .

• The detuning is brought back to t0 = toff0 ∼ 0 after the
time t required to implement the quantum gate.

This operation is fully electrical, as it only necessitates the
control of the gate voltages. From a modelling perspective,
the resulting rotating-frame Hamiltonian is H = HJ .
In this operating regime, the system can execute two different
two-qubit gates [56]: the

√
SWAP and the C-PHASE. Which
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gate is executed depends on the relative magnitudes of 1Ez
and t0. Considering the natural basis Fermi Hubbard Hamil-
tonian of Equation (7) or the laboratory-frame Schrieffer-
Wolff Hamiltonian of Equation (9) (under the hypothesis
of applicability of the Schrieffer-Wolff transformation, the
results are almost identical), the probability of the |↑↓⟩

(or equivalently of |↓↑⟩) component in one of the two
antiparallel eigenstates is reported in Figure 6 as a function
of 1Ez for some values of the detuning. When 1Ez is
non-zero but small with respect to t0, the energy eigenstates
of Equation (9) are {|↓↓⟩ , |↓↑⟩ , |↑↓⟩ , |↑↑⟩} when ϵ ∼ 0,
but {|↓↓⟩ , |S(1, 1)⟩ , |T0(1, 1)⟩ , |↑↑⟩} for |ϵ| ≫ 0. Indeed,
Figure 6 shows that for small 1Ez, the probability of |↑↓⟩

component can range from about 0.5 to about 1 for different
values of ϵ. In this range of 1Ez, the system can implement
the two-qubit

√
SWAP gate. Conversely, when1Ez is large,

the Hamiltonian eigenstates are {|↓↓⟩ , |↓↑⟩ , |↑↓⟩ , |↑↑⟩} for
every |ϵ| ≪ U [56], as it can be ascertained from P (|↑↓⟩) ∼

1 ∀ |ϵ| ≪ U in Figure 6. In this range of1Ez, the system can
implement the two-qubit C-PHASE gate.

1) TWO-QUBIT NATIVE GATE
√
SWAP

When the difference in Zeeman splittings 1Ez is small and
t0 is large, both1ω0 and the execution time t (that is inversely
proportional to J ) are small. More in detail, if

1ω0t ∼ 2π1f0 ·
h
4β

∼
π

4
·
1EzU

t20
→ 0, (18)

then the complex exponentials e±i1ω0t ofHJ can be approx-
imated by the zero-order Maclaurin polynomial e±i1ω0t ∼ 1.
Then, the rotating-frame two-qubit Hamiltonian reduces to

H̃ ∼


0 0 0 0
0 −α (−1Ez) β (1Ez) 0
0 β (1Ez) −α (1Ez) 0
0 0 0 0


=
β(1Ez)

2
·
(
σx ⊗ σx + σy ⊗ σy + σz ⊗ σz − I ⊗ I

)
+

α(1Ez) − α(−1Ez)
4

· (σz ⊗ I − I ⊗ σz) ,

(19)

which does not show any explicit time dependence. Since H̃
has a non-zero trace, it cannot be reduced to a generalised
traceless Pauli vector n̂σ . So, there is no simple analytic
relation to determine the corresponding evolution operator.
However, numerical exponentiation with

t = τmq =
h
4β

∼
1
2J

(20)

leads to

U = exp
(

−
i
h̄
H̃t

) ∣∣∣∣
t= h

4β

∼


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = SWAP. (21)

Therefore, halving the duration of the gate, a
√
SWAP gate

can be achieved:

U = exp
(

−
i
h̄
H̃t

) ∣∣∣∣
t= h

8β

∼


1 0 0 0
0 1+i

2
1−i
2 0

0 1−i
2

1+i
2 0

0 0 0 1

 =
√
SWAP. (22)

Assuming that qt is the target qubit and qc the control qubit,
the

√
SWAP gate can be used to implement a CNOT gate:

CNOTc,t = Ht RZt
(π
2

)
RZc

(
−
π

2

)
√
SWAPRZt (π )

√
SWAPHt , (23)

where the symbolAi denotes a quantum gateA acting on qubit
qi.

2) TWO-QUBIT NATIVE GATE C-PHASE
When the difference in Zeeman splittings 1Ez is large and
t0 is small (similar to the weak coupling condition for NMR,
cf. [20]), then

1ω0t ∼ 2π1f0 ·
h
4β

∼
π

4
·
1EzU

t20
→ ∞. (24)

Accordingly, the complex exponentials of HJ are rapidly
oscillating and average to zero e−i1ω0t ∼ 0. Then, the
rotating-frame two-qubit Hamiltonian reduces to

H̃ ∼


0 0 0 0
0 −α (−1Ez) 0 0
0 0 −α (1Ez) 0
0 0 0 0


=
β(1Ez)

2
· (σz ⊗ σz − I ⊗ I)

+
α(1Ez) − α(−1Ez)

4
· (σz ⊗ I − I ⊗ σz) .

(25)

Being H̃SW diagonal, the time evolution operator has a simple
analytic expression

U = exp
(
−

i
h̄H̃t

)
=


1 0 0 0

0 ei
t
h̄α(−1Ez) 0 0

0 0 ei
t
h̄α(1Ez) 0

0 0 0 1

 .

(26)

Considering that, as mentioned above, the difference between
α(+1Ez) and α(−1Ez) is small

α(+1Ez) ∼ α(−1Ez) ∼ β(1Ez) . (27)

Then, setting the time duration to

t = τmq =
h
4β

∼
1
2J

(28)
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one gets

U = exp
(

−
i
h̄
H̃t

) ∣∣∣∣
t= h

4β

∼


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 . (29)

Eventually, the C-PHASE gate is achieved by applying a
couple of rotations about the ẑ-axis:

C-PHASE =


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 [
Rz

(
−
π

2

)
⊗ I

]
[
I ⊗ Rz

(
−
π

2

)]
. (30)

It is worth highlighting that for this choice of t , the
C-PHASE gate is a CZ gate: other controlled-phase rotations
can be achieved with different choices for t . The time
required to implement a CZ gate is twice as long as the
time needed for a

√
SWAP gate, but the larger difference

in Zeeman splitting reduces the off-resonance errors, thus
allowing for higher fidelity. The CNOT gate is obtained
as

CNOTc,t = Ht CZHt . (31)

E. VERIFICATION OF THE PROPOSED APPROXIMATIONS
The approximations discussed in the previous paragraphs
are employed to obtain a time-independent two-qubit
Hamiltonian. These assumptions are validated through a
comparison between the output density matrix computed by
theMATLAB compact model and the one calculated from the
solution of the Lindbladmaster equation, carried out using the
Python-base environment QuTiP [15]. The two matrices are
going to be addressed as ρm and ρq, respectively. The error
percentage ε% due to the compact model approximation is
computed as the fidelity between the two density matrices,
i.e.

ε% ≜

(
1 − Tr

(√
ρ
1/2
m ρq ρ

1/2
m

))
· 100. (32)

The validation has been carried out for several different initial
states. The results reported in the following assume that the
initial state is

ψ0 =
1

√
2
(|00⟩ + |01⟩). (33)

1)
√
SWAP CASE VALIDATION

The input parameters for the simulations are derived from
experimental data [63], [64] except for the tunnel coupling
t0, which is extracted from low-level physical simulations
in Section IV. The two resonance angular frequencies
are ω1

0 = 2π f 10 = 2π (6.9491GHz) and ω0
0 =

2π f 00 = 2π (6.9601GHz), which yield 1ω0 = 2π1f0 =

2π (11MHz), the Coulomb charging energies of the dots U
are both 0.9meV and the detuning is equal to 0.7meV. t0 is

set to 800MHz.1 The simulations are performed spanning the
t0 and 1ω0 values around the starting experimental data and
the error is plotted in Figure 7a. The two ranges of values are:

• 1ω0 = 2π1f0 = 2π [6MHz : 16MHz];
• t0 = [700MHz : 900MHz].

The behaviour of the error agrees with the theoretical
expectations: indeed, it is minimum for low values of1f0 and
high t0 since the gate duration t decreases when t0 increases.
These two conditions yield that the ei1ω0t ≈ 1 approximation
is more accurate, and thus the error is lower. Moreover,
in the centre of the plot, where the values derived from
the experimental data and from the physical simulations are
represented, the error is lower than ∼ 1%, meaning that
the MATLAB model is quite accurate in the description of
a realistic DQD structure with the

√
SWAP as the native

gate. The model validity is also tested on single-qubit gates,
in particular on a RX (π ) gate applied on q0. The duration
of the gate is set through the B1 value to t = 100 ns, and
the error is computed for the same set of 1Ez values as the
two-qubit gate simulation. On the other hand, the value of
t0 is set to 10Hz [32], which translates into switching off the
barrier gate voltage, since in single-qubit gates the exchange
interaction must be negligible. As expected, Figure 7b shows
that the error decreases when the resonance frequencies are
more distant, i.e. when the off-resonance effects are lower.
Neglecting the ringing behaviour, the model error for the
operating value 1Ez = 11MHz is ∼ 5%.

2) C-PHASE CASE VALIDATION
The same analysis is performed for the C-PHASE operating
regime, using the same type of simulation (see Figure 7c).
The input values are again derived from experimental
data and physical simulations: the two resonance angular
frequencies are ω1

0 = 2π f 10 = 2π (15.43GHz) and ω0
0 =

2π f 00 = 2π (15.64GHz), which yield 1ω0 = 2π1f0 =

2π (210MHz), the Coulomb charging energies of the dots U
are both 0.9meV, and the detuning is equal to 0.3meV. t0 is
set to 400MHz.2 The two ranges of values are:

• 1ω0 = 2π1f0 = 2π [50MHz : 300MHz];
• t0 = [300MHz : 500MHz].

In this regime, the approximation introduced is ej1ω0t ≈ 0,
and the plot in Figure 7c shows that the error is minimum
for high 1Ez and low t0, as expected. The error for the
operating experimental values is less than 0.1% meaning
that the model describes very precisely this native gate.
Again, the single-qubit gate error is also explored for a
RX (π ) on q0, setting the gate duration to t = 15 ns, t0 =

10Hz and analyzing the same 1Ez span as the two-qubit
gate simulation. The error plot in Figure 7d shows that the
single-qubit gate error is significantly lower (∼ 1%). The
explanation is straightforward: the C-PHASE scenario yields
a higher1Ez, whichminimises the off-resonance effects, thus

1This value is reasonable considering the simulations carried out in
Section IV.

2Again, this value is reasonable considering the simulations carried out in
Section IV.
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FIGURE 7. MATLAB-QuTiP error for native two-qubit gates and single-qubit gates in the
√
SWAP and C-PHASE regimes.

implying that the model can accurately describe single-qubit
gates in these operating conditions.

F. NOISE MODEL AND INTEGRATION IN THE SIMULATION
INFRASTRUCTURE
1) RELAXATION AND DECOHERENCE
Real-world quantum systems are never completely isolated
from the external environment. The resulting interactions
between the qubits and the environment pave the way to
several non-ideal phenomena [66] that lead to randomisa-
tion of the quantum information, thus ultimately limiting
achievable performance. In the field of quantum information
processing, the description is customarily tackled from a
phenomenological perspective, by introducing two compre-
hensive dynamic non-ideality phenomena: longitudinal and
transverse relaxation. The former — which is described in
terms of exponential decay ruled by a T1 time constant —
models the loss of energy of a qubit when it is in its excited
state thus forcing it to reach the ground state after a transient,
whereas the latter — which is also known as decoherence —

represents the dynamic increase of uncertainty about the
qubit’s phase [51]. The latter phenomenon is customarily
described in terms of exponential decay ruled by a T2 or
T ∗

2 time constant. The difference between the two rep-
resentations traces back to the NMR formalism [10] and
to the different experimental approaches to determine the
relevant time constant: Ramsey’s experiment leads to T ∗

2 ,
whereas the Hahn Echo’s one allows the computation of T2.
Since T ∗

2 ≤ T2, the remaining of this article takes into
account T ∗

2 .
Whereas the standard approach prescribes the use of

Krauss operators [51], in [20, Section 4.2] a different
approach — which reduces the memory requirement but
still provides results that are in noteworthy agreement with
the classical methodology — is proposed and verified.
In a nutshell, this methodology computes decoherence by
adding an exponential decay to the off-diagonal terms of the
system density matrix, and relaxation through a probability
redistribution. The two effects are described separately. The
decoherence process is modelled by a matrix, computed as
the Kronecker product of the decoherence matrices of each of

98886 VOLUME 11, 2023



D. Costa et al.: Advances in Modeling of Noisy Quantum Computers: Spin Qubits

FIGURE 8. Integration of the quantum dot compact model in the quantum simulation toolchain. The symbol Hsq refers to Equation (17); Hj to one
between Equation (17) and Equation (19); r is the relaxation vector of Equation (36) and D is the decoherence matrix of Equation (34).

the n qubit:

D =

0⊗
i=n−1

Di = Dn−1 ⊗ · · ·D0, (34)

where

Di =

 1 e
−

t
T2i

e
−

t
T2i 1

 , (35)

where T2i is the decoherence time constant of the qubit qi.
The whole D matrix is then multiplied element by element
to the system density matrix ρ. Conversely, the longitudinal
relaxation process — which is interpreted as a loss of
probability of the excited states— is described by a relaxation
vector calculated as

r =

0⊗
i=n−1

[
1

e
−

t
Tii

]
=

[
r0,0 , r1,1 , · · · , r2n−1,2n−1

]T
, (36)

where T1i is the relaxation time constant of the qubit qi.
This vector is multiplied by the main diagonal of the density
matrix ρ; then, the total probability lost by the excited states
is computed as the sum of each state probability loss:

Plosttot =

∑
k

Plostk =

∑
k

(1 − rk,k )ρk,k , (37)

where ρk,k is the (k ,k) element of the density matrix ρ. Plosttot
is then redistributed, according to a novel algorithm detailed

in [20, Section 4.2.2], to ensure that the trace of the system
density matrix is unitary (Tr(ρ) = 1).

2) INTEGRATION IN THE SIMULATION TOOLCHAIN
As pictorially reported in Figure 8, the compact model
for double quantum dot devices discussed in this article
is integrated into the multi-technology simulation infras-
tructure — which at the time of writing supports electron
spin manipulation in molecular nanomagnets, nuclear spin
manipulation in diamagnetic molecules via NMR and spin
manipulation in quantum dots — introduced in [19] and
[20] (solid red rectangle), which is in turn integrated into
the multi-level simulation toolchain discussed in Section II.
As far as quantum dots are concerned (dashed red rectangle),
the infrastructure receives in input the following physical
parameters:

• Electron g-factor;
• Coulomb on-site repulsion energy U ;
• Tunnel coupling t0;
• Detuning ϵ;
• Relaxation and decoherence time constants T1 and T ∗

2 ,

and the following control parameters:

• Static magnetic field B0;
• Micro-wave magnetic field Bw for single-qubit gates;
• Gate phase φ for single-qubit gates;
• Gate duration τ for two-qubit gates,
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and the compiled version of the quantum circuit. While
the control parameters are chosen by the user, the physical
ones can be retrieved from experimental data of exploiting
low-level simulators (c.f. Section IV). Afterwards, the
infrastructure carries out an ideal (state vector) and a
noisy simulation (density matrix). The latter exploits the
time evolution operators derived from the Fermi-Hubbard
model for single-qubit gates, C-PHASE and

√
SWAP.

It shall be noted that, when executing two-qubit gates,
the time evolution operator is determined via direct matrix
exponentiation of Equation (19) or Equation (25), whereas
for single-qubit gates it is computed via direct matrix expo-
nentiation of Equation (17) plus one between Equation (19)
and Equation (25), according to the operating regime of the
device (which is fixed for every run of an algorithm):

Usq = exp
{
−i

[
ω0

∗

2

(
cos(φ)I ⊗ σx + sin(φ)I ⊗ σy

)
+

HJ
h̄

]
t
}
(38)

with

HJ =

{
Equation (19), if ∆Ez ≪ t0
Equation (25), if ∆Ez ≫ t0

. (39)

This approach allows the infrastructure to consider the
unwanted residual coupling — due to non-zero tunnel
coupling t0 — when executing single-qubit gates. Then,
the off-resonance effects are accounted for by leveraging
the Fourier model (cf. Section III-C), and relaxation and
decoherence by exploiting the algorithms mentioned in
Section III-F1. Eventually, the comparison between ideal and
noisy simulation characterises the fidelity.

IV. PHYSICAL LEVEL SIMULATION
As discussed above and pictorially reported in Figure 8,
the compact model proposed in Section III requires several
input physical parameters, which can be retrieved by
resorting to experimental data or leveraging existing physical
simulators. In this article, a hybrid approach is pursued: some
physical parameters are obtained through simulations with
NextNano [17] and QTCAD [16], others — which are still
beyond the reach of currently available simulators — are
retrieved from experimental data available in the scientific
literature. This section details the procedure followed to
simulate some target structures: the first step is the description
of the geometry and materials of the structures, as discussed
in Section IV-A. Subsequently, one has to define a proper
mesh throughout the structure and some boundary conditions
for the FEM solvers. As discussed in [67], the next step
is the computation of the potential throughout the structure
by solving the non-linear Poisson equation. Afterwards, the
solution of the single-particle effective-mass Schrödinger
equation under the envelope-function approximation [68]
allows the determination of the single-particle eigenspectra
(bound states, their energy and their probability density).
In real-world quantum devices, the overall structure is
relatively large and should be divided into

• Semiclassical regions: regions where the solution of the
non-linear Poisson equation alone allows obtaining a
reasonable estimate of electrostatics.

• Quantum regions: regions where the Poisson and
Schrödinger equations have to be coupled self-
consistently.

These steps are outlined in Section IV-B — which reports
the simulation results obtained with NextNano for the SiGe
heterostructure —, in Section IV-C — which reports the
simulation results obtained with QTCAD for the SiGe
heterostructure — and in Section IV-D — which reports
the simulation results obtained with QTCAD for the SiMOS
heterostructure. It has to be noted that the two SiGe
heterostructures simulated with QTCAD and NextNano
present a different arrangement of the ohmic contacts and
the n+ doped regions to investigate two possible layouts and
compare the obtained results. Finally, Table 6 summarizes
the main results and the simulation conditions, allowing for a
convenient comparison between the different heterostructures
taken into consideration and the two software tools.

Section III highlights that modelling double-quantum dot
structures is inherently a many-body problem. As outlined
in several research articles [49], [69], [70], [71], [72],
the accurate and quantitative computation of the on-site
Coulomb energy U and the exchange interaction J requires
the introduction of a full configuration interaction (full-
CI, a post-Hartree Fock method) solver that, exploiting
the single-particle wavefunctions determined by the self-
consistent Poisson-Schrödinger solver, calculates precise
many-particle wave functions and energies within the
effective mass approximation. However, on the one hand,
at the time of writing, neither NextNano nor QTCAD
supports a full-CI solver, on the other hand, this post-Hartree
Fock method is known to be CPU and memory intensive.
Accordingly, even though the determination of many-body
wavefunctions remains a relevant future work to be accom-
plished, this article introduces an approximation for the
computation of the tunnel coupling t0, whereasU is retrieved
from experimental data. Indeed, it is known [73] that

t0 ∼
E1 − E0

2
, (40)

where E0 and E1 are respectively the single-particle ground
state and first excited state eigenenergies of a double quantum
dot system with zero detuning.

A. SEMICONDUCTOR HETEROSTRUCTURES
Among the different possible heterostructures that can be
used to implement quantum dots, this article focuses on
a Si0.7Ge0.3 −

28Si − Si0.7Ge0.3 heterostructure and on a
Si −

28Si − SiO2 (referred to as SiMOS) heterostructure,
as presented in [74]. The geometry of the devices follows
directly from the need to achieve 3D electron confinement
through two different effects:

• Material engineering along the ẑ direction to create a
two-dimensional electron gas (2DEG).
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FIGURE 9. Target semiconductor heterostructure devices, obtained with GMSH [65]. The figures report a cut along a plane perpendicular to the XY plane
in the quantum region.

• Potential confinement with metal gates to shape the
profile of the quantum dots along the x̂ and ŷ directions.

It is well known that the band diagram of bulk silicon
is characterized by a sixfold degenerate conduction band
minimum. This sixfold degenerate level is first split into a
higher energy fourfold degenerate level and a lower energy
twofold degenerate one. In SiMOS, this happens thanks to
the 2DEG quantum confinement across the Si/SiO2 [001]
interface [75], [76], while, in Si/SiGe structures, this is due to
the planar tensile strain in the silicon layer (SiGe has a higher
lattice constant than Si) [77]. The further twofold degeneracy
is lifted by the sharp confinement potential of the 2DEG
quantum well [78], [79], providing a unique spin-degenerate
conduction band ground state.

Finally, it shall be highlighted that the mesh is determined
with GMSH [65] when working with QTCAD, whereas
NextNano has an internal software tool to compute the mesh.

1) SiGe HETEROSTRUCTURE
The description follows Figure 9a and Figure 10a. The het-
erostructure begins with a 300 nm linearly graded Si1−xGex
layer, where x ranges from 0 to 0.3.3 On top of this, a 30 nm
relaxed Si0.7Ge0.3 layer4 lies below the 10 nm isotopically
purified 28Si quantum layer. The latter is separated from the
top oxide by a 30 nm relaxed Si0.7Ge0.3 layer. In experimental
devices, the 2 nm Si cap oxidises before the atomic layer
deposition of the Al2O3 top oxide layer and therefore it is
substituted by a 2 nm SiO2 layer in NextNano and removed
in QTCAD. The device utilises a three-layer metal gate
stack: Y-gates, plunger gates and barrier gates, as reported
in Figure 10a. As described in [74], the metal gates are
fabricated with a Ti:Pd gate stack. The 3 nm of Ti are used
as an adhesion layer for the Pd deposition, meaning that the
gates are mostly made of Pd. For the sake of simplicity, the
gates are treated as Pd volumes in the NextNano simulation

3This layer is not included in simulations with QTCAD, since, at the time
of writing, the latter is not able to automatically compute the strain from
the definition of materials and geometry: one has to manually provide in the
input the strain tensor. Therefore, simulating this bottom layer with QTCAD
would not be convenient from a computational perspective. Accordingly, this
layer is not reported in Figure 9.

4As reported in [74], in the experimental structure, this layer is 300 nm
thick. Here, it is reduced to a 30 nm layer to relax the memory requirements
of the simulation.

setup when choosing the metal workfunction in Section IV-
B1. Each metal layer is separated from the below metal
layer by a 7 nm oxide layer. The height of Y gates is 20 nm,
whereas their width is 106 nm. Above the quantum region,
the extension of dot plunger and barrier gates is: 33 nm along
x̂, 33 nm along ŷ and 30 nm along ẑ. The reservoir plunger
gates have a 66 nm extension along x̂. Along the x̂ axis, the
plunger and barrier gates are mutually separated by a 7 nm
Al2O3 layer. Along the ŷ axis, Y gates are separated from
plunger/barrier gates by a 7 nmAl2O3 layer. For the n

+ doped
regions and the ohmic contacts, two different arrangements
are adopted:

• When using NextNano, two 35 × 33 × 42nm vol-
umes— including the SiO2 cap, the Si0.7Ge0.3 layer and
the 28Si quantum layer — are n+ doped, with a dopant
concentration of 1×1020 cm−3. The two ohmic contacts
are located at the discontinuity between the Si cap and
the Al2O3.

• When using QTCAD, at the four corners of the structure,
four 40 × 60 x 45nm volumes — including the top
Si0.7Ge0.3 layer, the 28Si quantum layer and a 5 nm thick
Si0.7Ge0.3 layer below the quantum region — are n+

doped, with a dopant concentration of 5 × 1018 cm−3.
The four ohmic contacts are located at the discontinuity
between the Si0.7Ge0.3 and the Al2O3.

2) SiMOS HETEROSTRUCTURE
The description follows Figure 9b and Figure 10b. The
heterostructure begins with a 40 nm Si layer,5 followed by
the 10 nm isotopically purified 28Si quantum layer. The latter
is separated from the top Al2O3 oxide by a 10 nm SiO2 layer.
The device utilises a three-layer metal gate stack: Y-gates,
plunger gates and barrier gates, as reported in Figure 10b.
Each metal layer is separated from the below metal layer
by a 7 nm oxide layer. The height of Y gates is 20 nm,
whereas their width is 106 nm. Above the quantum region,
the extension of dot plunger and barrier gates is: 33 nm along
x̂, 33 nm along ŷ and 30 nm along ẑ. The reservoir plunger
gates have a 66 nm extension along x̂. Along the x̂ axis, the
plunger and barrier gates are mutually separated by a 7 nm

5As done for the SiGe heterostructure, the 100 nm layer of the
experimental device is here reduced to a 40 nm layer for computational
efficiency.
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FIGURE 10. Graphical representation of the SiGe and SiMOS heterostructures adopted in NextNano [16] and QTCAD [16] simulations, removing
the upper oxide layer to highlight the three layers of gates. The metal gate layers, the ohmic contacts and the n+ doped regions of the SiGe
heterostructure in QTCAD follow exactly the same arrangement of the SiMOS one.

Al2O3 layer. Along the ŷ axis, Y gates are separated from
other gates by a 7 nm Al2O3 layer. At the four corners of
the structure, four 40 × 60 x 25nm volumes — including a
top Si layer (which replaces the SiO2 in these areas), the

28Si
quantum layer and a 5 nm thick Si layer below the quantum
region — are n+ doped, with a dopant concentration of
5 × 1018 cm−3. The four ohmic contacts are located at the
discontinuity between the Si and the Al2O3.

B. SiGe HETEROSTRUCTURE: SIMULATION WITH
NEXTNANO
This section presents the setup and the results from a Poisson-
Schrödinger simulation of the SiGe structure with NextNano.

1) SIMULATION SETUP
The temperature is fixed to T = 10mK and the dopant
concentration to ND = 1×1020 cm−3 (complete ionization is
assumed). The metal workfunction 8m is set to 5.12 eV, the
reported value of the Pd workfunction in vacuum [80].

a: MESH
A static mesh obtained with the NextNano mesh generator is
adopted. The mesh element size ranges from 7.5 nm in the
bottom SiGe layer, to 3 nm above and below the quantum
layer and to 0.15 nm in the silicon quantum layer. In the upper
three-layer metal gate stack, it is set to 3 nm.

b: APPLIED VOLTAGES
The applied voltages — which act as Dirichlet boundary
conditions for the FEM solver — are:

VY1 = 1.1V,

VY2 = 1.1V,

VRL = 1V,

VRR = 1V,

VPL = 1.5V,

VPR = 1.5V,

VBL = 500mV,

VBM = 770mV,

VBR = 500mV, (41)

where VYi is the voltage applied to the i Y gate, VRi is the
voltage applied to the i reservoir gate, VPi is the voltage
applied to the i plunger gate, VBi is the voltage applied
to the i barrier gate, R means right, L left and M inter-
dot. Due to meshing asymmetries along the dots direction,
the plunger voltages have been slightly modified during
simulations in order to obtain a symmetrically distributed
wavefunction. The procedure used to achieve this is the
following:

• Execute a preliminary simulation with VPL = VPR to
understand under which plunger gate the wavefunction
is localized, e.g. PL;

• Increase the voltage value of the other plunger
gate (PR) until the wavefunction is localized under
it;

• Sweep the voltage of PR between these two values until
the wavefunction is symmetrically distributed under the
two plunger gates.

This is the reason why the potential profile looks mildly
asymmetric in NextNano simulations.

c: STRAIN INDUCED CONDUCTION BAND SPLITTING
Bulk silicon has a six-fold degenerate conduction band
minimum along ∆ [42], [54]. The six equivalent minima are
known as valleys. However, in the SiGe heterostructure, the
Si layer is sandwiched between two Si0.7Ge0.3 layers. The
difference in the lattice constants leads to a large in-plane
strain that lifts the energies of the ±x and ±y valleys
(four-fold degenerate level) with respect to the ±z valleys
(two-fold degenerate level). The remaining two-fold degener-
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FIGURE 11. SiGe heterostructure: conduction band minimum from Poisson simulation obtained with NextNano [17] at 10 mK.

acy of the ±z valleys is removed6 by the sharp potential step
in the ẑ direction [42]. Accordingly, the band alignment in the
heterostructure differs from bulk materials [81]. Indeed, the
minimum in the conduction band in the 28Si quantum layer is
expected to lie approximately 160meV below the minimum
of the conduction band in Si0.7Ge0.3 layers [42]. The strain
computation gives as a result that the minimum in the con-
duction band in the 28Si quantum layer lies 161meV below
the minimum of the conduction band in Si0.7Ge0.3 layers.

d: ERRORS
The maximum absolute error for the Poisson solver is set to
5 × 10−7, that for the Schrödinger solver to 1 × 10−7.

2) POISSON SIMULATION
a: CONDUCTION BAND MINIMUM
The minimum of the conduction band in a xy-plane with
z = 336 nm — hence located inside the quantum layer —
is reported in Figure 11a, with shrunk scale to highlight

6Unfortunately, at the time of writing, NextNano does not take into
account the ±z valleys splitting.

the relevant features. On the sides, the dark blue regions
correspond to the n+ doped areas. At the centre of the figure,
the light blue regions indicate the 2D confinement produced
by the plunger, barrier and Y gates, which generates two
circular wells. The behaviour of the confinement potential
(minimum of the conduction band) along the ẑ axis for
x = 126.5 nm and y = 136.5 nm — i.e., through the left
dot — is outlined in Figure 11b, where the ±x and ±y
valleys (11 and 12) and the ±z valleys (13) are plotted.
One can clearly identify the effect of the NextNano strain
computation that splits the 11 and 12 minima (completely
superimposed and thus indistinguishable in the plot) from
the 13 minimum, creating the 161meV conduction band
discontinuity in correspondence of the 28Si quantum layer.
Figure 11c represents the behaviour of the confinement
potential along the x̂ axis through the two potential valleys
at y = 136.5 nm and z = 336 nm. The height of the
inter-dot barrier — computed as the difference from the
maximum inter-dot confinement potential and the minima in
correspondence of the two valleys — is

EBM ∼ 8.8meV. (42)
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FIGURE 12. Classical electron population and E1 − E0 splitting in dependence of the inter-dot barrier gate voltage for the SiGe heterostructure,
obtained with NextNano [17] at 10 mK.

The behaviour of the confinement potential along the ŷ axis
for x = 136.5 nm and z = 336 nm — i.e., through the left
dot — is outlined in Figure 11d.

b: CLASSICAL ELECTRON POPULATION
Figure 12a reports the classical electron population in a
xy-plane inside the quantum layer at z = 336 nm, with shrunk
scale to highlight the relevant features. At the sides, the dark
red regions correspond to the n+ doped areas and represent
the reservoirs of classical electrons.

3) SCHRÖDINGER SIMULATION
The Schrödinger equation is solved in the quantum region,
which extends:

• Along the x̂ axis, from x = 70 nm to x = 263 nm;
• Along the ŷ axis, from y = 89.5 nm to y = 183.5 nm;
• Along the ẑ axis, from z = 325 nm to z = 370 nm, thus
including the SiGe above the 28Si layer.

The quantum region partially includes the confining barriers
along the three Cartesian axes to provide proper boundaries
to the Schrödinger equation.

a: BOUND STATES
The solution of the Schrödinger equation allows the deter-
mination of the single-particle eigenspectra. Figure 13
reports the behaviour of the real part of the eigenfunctions
corresponding to the first two energy levels in a xz- and
in a xy-planes. One can note that, as expected from the
physical geometry, the single-particle wavefunctions are

TABLE 1. Eigenenergies of the first five eigenstates of the SiGe
heterostructure obtained with NextNano [17] at 10 mK.

equally distributed in the two dots.7 Moreover, the barriers
effectively force the electron to be localised in the two dots
since the probability of finding it outside them is negligible.
The eigenenergies of the first five eigenstates are reported in
Table 1.

b: TUNNEL COUPLING
As reported in Equation (40), the tunnel coupling approxi-
mately depends on the difference between the single-particle
first excited state and ground state. With the simulation setup
outlined in Section IV-B1 and considering Table 1:

t0 ∼
E1 − E0

2
∼ 1.625µeV −→ 392.92MHz. (43)

The E1 − E0 splitting, in turn, traces back to the inter-dot
barrier:

7An ideal structure would be perfectly symmetric with respect to the
inter-dot barrier gate, and thus the potential profile would be symmetric,
allowing for an equally distributed wavefunction in the two dots. However,
as discussed in Section IV-B1, both experimental devices and simulation
models are not exactly symmetric, and some voltage tuning is required to
compensate for the asymmetries. For what concerns simulation models, the
mesh introduces some asymmetries that lead to a non-symmetric potential
profile and a localisation of the electron exclusively in one of the dots.
A small offset voltage applied to one of the plunger gates can compensate for
this asymmetric behaviour. It was found that increasing the voltage applied
to the right plunger gate of 15.4085meV totally compensates for the issue.
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FIGURE 13. SiGe heterostructure: bonding ground and anti-bonding first excited state eigenfunctions obtained with NextNano [17] at 10 mK.

FIGURE 14. SiGe heterostructure: conduction band minimum from Poisson simulation obtained with QTCAD [16] at 15 mK.

• A high inter-dot barrier means that the two dots are
almost independent and consequently E0 ∼ E1.

• A low inter-dot barrier leads to strongly interacting dots
and consequently E0 < E1.

Indeed, the tunnel coupling t0 is known to show approxi-
mately an exponential dependence on the E1 − E0 splitting
and the inter-dot distance [54], [64], [82]. Figure 12b reports

the energy level splitting in dependence of the voltage applied
to the inter-dot barrier gate when all other gates assume the
values of Equation (41): it can be ascertained that, as expected
from the above description, the simulation results follow the
exponential fit

2 t0 ∼ e15.87·VBM · 16.19 peV −→
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FIGURE 15. Classical electron population and E1 − E0 splitting in dependence of the inter-dot barrier gate voltage for the SiGe heterostructure, obtained
with QTCAD [16] at 15 mK.

VBM ∼
loge(

2t0
1 eV ) + 24.85

15.87
V. (44)

C. SiGe HETEROSTRUCTURE: SIMULATION WITH QTCAD
This section presents the setup and the results from a
self-consistent Poisson-Schrödinger simulation of the SiGe
heterostructure with QTCAD.

1) SIMULATION SETUP
The temperature is fixed to T = 15mK and the dopant
concentration to ND = 5 × 1018 cm−3 (complete ionization
is assumed). The metal workfunction 8m is assumed to
be

8m = χSi0.7Ge0.3 +
Eg−Si0.7Ge0.3

2
, (45)

where χSi0.7Ge0.3 and Eg−Si0.7Ge0.3 are respectively the affinity
and the band gap of Si0.7Ge0.3.

a: MESH
A static mesh obtained with GMSH [65] is adopted. The
mesh element size ranges from 4 nm in the bottom SiGe layer,
to 2 nm above and below the quantum layer and to 1 nm in
the silicon quantum layer. In the upper three-layer metal gate
stack, it ranges from 2 nm to 4 nm.

b: APPLIED VOLTAGES
The applied voltages — which act as Dirichlet boundary
conditions for the FEM solver — are:

VY1 = 290mV,

VY2 = 290mV,

VRL = 600mV,

VRR = 600mV,

VPL = 780mV,

VPR = 780mV,

VBL = −200mV,

VBM = −150mV,

VBR = −200mV, (46)

where VYi is the voltage applied to the i Y gate, VRi
is the voltage applied to the i reservoir gate, VPi is the
voltage applied to the i plunger gate, VBi is the voltage
applied to the i barrier gate, R means right, L left and
M inter-dot.

c: STRAIN INDUCED CONDUCTION BAND SPLITTING
At the time of writing, QTCAD cannot automatically
determine the strain from the materials and the geome-
try. Therefore, the strain computation is carried out with
NextNano in Section IV-B1. The alignment between the
minimum in the conduction band in the 28Si quantum layer
and the minimum of the conduction band in Si0.7Ge0.3 can
be reproduced in QTCAD by adding a fictitious potential
Vst = −146mV to the Si quantum layer.

d: ERRORS
The maximum absolute error for the Poisson solver is set
to 1 × 10−7, that for the Schrödinger solver to 1 × 10−9

and that for the self-consistent Poisson-Schrödinger solver
to 1 × 10−5.

2) POISSON SIMULATION
a: CONDUCTION BAND MINIMUM
The minimum of the conduction band in a xy-plane with
z = 36 nm — hence located inside the quantum layer —
is reported in Figure 14a, with shrunk scale to highlight the
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FIGURE 16. SiGe heterostructure: bonding ground and anti-bonding first excited state eigenfunctions obtained with QTCAD [16] at 15 mK.

relevant features. At the four corners, the dark blue regions
correspond to the n+ doped areas. At the centre of the figure,
one can clearly identify the 2D confinement — induced by
the plunger, barrier and Y gates — that creates a couple
of circularly shaped local wells. Figure 14b represents the
behaviour of the confinement potential (minimum of the
conduction band) along the x̂ axis through the two potential
valleys at y = 136.5 nm and z = 36 nm. The height of
the inter-dot barrier — computed as the difference from the
maximum inter-dot confinement potential and the minima in
correspondence of the two valleys — is

EBM ∼ 9.33meV. (47)

The behaviour of the confinement potential along the ẑ axis
for x = 136 nm and y = 136.5 nm — i.e., through the left
dot — is outlined in Figure 14c, where one can identify the
161meV conduction band discontinuity in correspondence of
the 28Si quantum layer.

b: CLASSICAL ELECTRON POPULATION
Figure 15a reports the classical electron population in a xy-
plane inside the quantum layer at z = 36 nm, with shrunk
scale to highlight the relevant features. At the four corners, the
dark red regions correspond to the n+ doped areas. The light
blue areas, which in the central region along the x̂ axis reach

the external dot barriers, represent the reservoirs of classical
electrons.

3) SCHRÖDINGER SIMULATION
The Schrödinger equation is solved in the quantum region,
which extends:

• Along the x̂ axis, from x = 93.5 nm to x = 259.5 nm;
• Along the ŷ axis, from y = 60 nm to y = 213 nm;
• Along the ẑ axis, from z = 25 nm to z = 45 nm, thus
including 5 nm of SiGe below and above the 28Si layer.

The quantum region partially includes the confining barriers
along the three Cartesian axes to provide proper boundaries
to the Schrödinger equation.

a: BOUND STATES
Figure 16 reports the behaviour of the real part of the
eigenfunctions corresponding to the first two energy levels
in a xz and in a xy planes. Once more, the single-particle
wavefunctions are equally distributed in the two dots.8 The
eigenenergies of the first five eigenstates are reported in
Table 2.

8In this case, it was found that increasing the voltage applied to the
right plunger gate of 329.96µeV totally compensates for the mesh-induced
asymmetries.
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FIGURE 17. SiMOS heterostructure: conduction band minimum from Poisson simulation obtained with QTCAD [16] at 15 mK.

TABLE 2. Eigenenergies of the first five eigenstates of the SiGe
heterostructure obtained with QTCAD [16] at 15 mK.

b: LEVER ARM
The lever arm αG is a unitless coefficient that determines the
extent to which a gateG is able to tune the chemical potentials
of a quantum dot

µ = µ0 − eαGVG, (48)

where µ is the chemical potential of the dot [43], µ0 is
the chemical potential of the dot when VG = 0 and e
is the elementary charge. Within the constant interaction
model, the lever arm can be shown to be [83]

αG = −
CG
C6

, (49)

where CG is the capacitance between the dot and gate G,
C6 = −

∑
i Ci and Ci is the capacitance between the dot and

the i-th gate. However, the lever arm can also be computed by
performing a linear fit of the response of the electronic struc-
ture of the quantum dot upon gate bias changes [84]. More in
detail, one fixes the potential on all gates but gateG and solves
the Poisson-Schrödinger equation for a range of voltages
VG. Finally, one carries out a linear fit of the ground state
energy with respect to gate bias: the obtained slope is −eαG.
This procedure is automatically handled by QTCAD [85],
which can compute a lever arm matrix (reported in Table 3),

TABLE 3. Lever arm matrix considering the first five eigenstates and the
left plunger gate, the inter-dot barrier gate and the right plunger gate of
the SiGe heterostructure obtained with QTCAD [16] at 15 mK. The voltage
increment used to estimate the lever arm matrix is 100 µV.

repeating the procedure mentioned above for all gates of
interest and for all energy levels of interest.

c: TUNNEL COUPLING
With the simulation setup outlined in Section IV-C1 and
considering Table 2:

t0 ∼
E1 − E0

2
∼ 305 neV −→ 73.75MHz. (50)

Figure 15b reports the energy level splitting in dependence of
the voltage applied to the inter-dot barrier gate when all other
gates assume the values of Equation (46): it can be ascertained
that the simulation results follow the exponential fit

2 t0 ∼ e12.61·VBM · 4.36µeV −→

VBM ∼
loge(

2t0
1 eV ) + 12.34

12.61
V. (51)

To get this physically plausible behaviour, one has to
compensate for the small mesh-induced asymmetries, with a
similar approach to the one outlined for the determination of
bound states.
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FIGURE 18. Classical electron population and E1 − E0 splitting in dependence of the inter-dot barrier gate voltage for the SiMOS heterostructure,
obtained with QTCAD [16] at 15 mK.

D. SiMOS HETEROSTRUCTURE: SIMULATION WITH
QTCAD
This section presents the setup and the results from a self-
consistent Poisson-Schrödinger simulation of the SiMOS
heterostructure with QTCAD.

1) SIMULATION SETUP
The temperature is fixed to T = 15mK and the dopant
concentration to ND = 5 × 1018 cm−3 (complete ionization
is assumed). The metal workfunction 8m is assumed to be

8m = χSi +
Eg−Si

2
, (52)

where χSi and Eg−Si are respectively the affinity and the band
gap of Si.

a: MESH
A static mesh obtained with GMSH [65] is adopted. The
mesh element size ranges from 8 nm in the bottom Si layer,
to 2 nm above and below the quantum layer and to 1 nm in
the silicon quantum layer. In the upper three-layer metal gate
stack, it ranges from 2 nm to 8 nm.

b: APPLIED VOLTAGES
The applied voltages — which act as Dirichlet boundary
conditions for the FEM solver — are:

VY1 = 535mV,

VY2 = 535mV,

VRL = 1.3V,

VRR = 1.3V,

VPL = 700mV,

VPR = 700mV,

VBL = 40mV,

VBM = 400mV,

VBR = 40mV, (53)

where VYi is the voltage applied to the i Y gate, VRi is the
voltage applied to the i reservoir gate, VPi is the voltage
applied to the i plunger gate, VBi is the voltage applied to the
i barrier gate, R means right, L left andM inter-dot.

c: ERRORS
The maximum absolute error for the Poisson solver is set
to 1 × 10−7, that for the Schrödinger solver to 1 × 10−9

and that for the self-consistent Poisson-Schrödinger solver
to 1 × 10−5.

2) POISSON SIMULATION
a: CONDUCTION BAND MINIMUM
The minimum of the conduction band in a xy-plane with
z = 45 nm — hence located inside the quantum layer —
is reported in Figure 17a, with shrunk scale to highlight
the relevant features. Similarly to the SiGe case, the dark
blue regions at the four corners correspond to the n+ doped
areas. At the centre of the figure, the 2D confinement —
induced by the plunger, barrier and Y gates — creates a
couple of circularly shaped local wells. Figure 17b represents
the behaviour of the confinement potential (minimum of the
conduction band) along the x̂ axis through the two valleys
at y = 136.5 nm and z = 45 nm. The height of the
inter-dot barrier— computed again as the difference from the
maximum inter-dot confinement potential and the minima in
correspondence of the two valleys — is

EBM ∼ 11.15meV. (54)

The behaviour of the confinement potential along the ŷ axis
for x = 140 nm and z = 45 nm — i.e., through the left
dot — is outlined in Figure 17c.
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FIGURE 19. SiMOS heterostructure: bonding ground and anti-bonding first excited state eigenfunctions obtained with QTCAD [16] at 15 mK.

b: CLASSICAL ELECTRON POPULATION
Figure 18a reports the classical electron population in a
xy-plane inside the quantum layer at z = 45 nm, with shrunk
scale to highlight the relevant features. Also for this structure,
one can see the n+ doped areas and the reservoirs of classical
electrons, which in the central region along the x̂ axis reach
the external dot barriers.

3) SCHRÖDINGER SIMULATION
The Schrödinger equation is solved in the quantum region,
which extends:

• Along the x̂ axis, from x = 96.5 nm to x = 256.5 nm;
• Along the ŷ axis, from y = 60 nm to y = 213 nm;
• Along the ẑ axis, from z = 35 nm to z = 55 nm, thus
including 5 nm of Si below 28Si layer and 5 nm of SiO2
above the 28Si layer.

As for the SiGe heterostructure, the quantum region partially
includes the confining barriers along the three Cartesian axes
to provide proper boundaries to the Schrödinger equation.

a: BOUND STATES
Figure 19 reports the behaviour of the real part of the
eigenfunctions corresponding to the first two energy levels in
a xz and in a xy planes. The single-particle wavefunctions are

TABLE 4. Eigenenergies of the first five eigenstates of the SiMOS
heterostructure obtained with QTCAD [16] at 15 mK.

TABLE 5. Lever arm matrix considering the first five eigenstates and the
left plunger gate, the inter-dot barrier gate and the right plunger gate of
the SiMOS heterostructure obtained with QTCAD [16] at 15 mK. The
voltage increment used to estimate the lever arm matrix is 5 mV.

again equally distributed in the two strongly confined dots.9

The eigenenergies of the first five eigenstates are reported in
Table 4.

9In this case, it was found that increasing the voltage applied to the
right plunger gate of 329.96µeV totally compensates for the mesh-induced
asymmetries.
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b: LEVER ARM
Following the procedure outlined in Section IV-C3.b, one can
determine the lever arm matrix, which is reported in Table 5.

c: TUNNEL COUPLING
With the simulation setup outlined in Section IV-D1 and
considering Table 4, the tunnel coupling is:

t0 ∼
E1 − E0

2
∼ 1.474µeV −→ 356.41MHz. (55)

Figure 18b reports the energy level splitting in dependence of
the voltage applied to the inter-dot barrier gate when all other
gates assume the values of Equation (53): it can be ascertained
that the simulation results follow the exponential fit

2 t0 ∼ e21.02·VBM · 678.87 peV −→

VBM ∼
loge(

2t0
1 eV ) + 21.11

21.02
V. (56)

As mentioned above, to get this physically plausible
behaviour, one has to compensate for the small mesh-induced
asymmetries, with a similar approach to the one outlined for
the determination of bound states.

V. RESULTS AND DISCUSSION
Whereas Section III-E validates the approximations intro-
duced in the compact model, this section is devoted to
the results obtained comparing the proposed model with
QuTiP [15] when relevant quantum circuits and algorithms
are simulated.

A. SIMULATION SETUP
This section describes the simulation setup adopted to
validate the proposed methodology (whose block scheme is
reported in Figure 8) and the corresponding assumptions.
The same configuration parameters — such as the qubit
timescales T1 and T ∗

2 , the duration of quantum gates and
the quantum circuits to be tested described in OpenQASM
language [47] — are provided to the MATLAB simulator,
taking into account the discussed models of semiconductor
qubits, and to QuTiP [15]. The MATLAB simulator and
the direct integration return the fidelity and the probability
distribution of eigenstates.

1) GENERAL ASSUMPTIONS
Analogously to [20], the model discussed in this article
assumes that:

• The initial state is a pure fiducial initial state, i.e.,
ρ0 = (|0⟩⟨0|)⊗n.

• The measurement operation is an ideal projective
measurement, i.e., when a measurement call is provided
to the simulator, it returns the main diagonal of the
density matrix corresponding to the qubits’ probability
distribution.

2) MODEL STRUCTURE AND INTERFACE
As discussed in Section III-F2, the proposed model for
semiconductor-based quantum dots is embedded in the sim-
ulation infrastructure presented in [19], [20]. Accordingly:

• The quantum algorithm description is read from a
.qasmfile written according to OpenQASM description
language.

• The system is initialised in its pure ground state,
corresponding to a density matrix ρ0 = (|0⟩⟨0|)⊗n,
as mentioned above.

• Each quantum gate is applied for a time amount τsq
or τmq, thus changing both ρ (physical evolution) and
|ψideal⟩ (ideal evolution). In the same time interval, the
effects of non-ideality phenomena on the density matrix
are evaluated.

• After a measurement operation call, the infrastructure
provides in the output the ideal outcomes, those obtained
resorting to the proposed model and the corresponding
fidelities.

3) COMPARISON WITH QUTIP
The model introduced in Section III adopts a time-
independent, Hamiltonian, as discussed at the end of
Section III-F2, with the corresponding set of approximations.
The off-resonance evolution of not-addressed qubits is taken
into account thanks to the so-called Fourier model. To val-
idate the proposed simulation methodology, the obtained
results are compared with the outcomes produced by a direct
numerical integration — performed with QuTiP [15] —
of the complete time-dependent rotating-frame Hamiltonian
of Equation (14). Two-qubit quantum circuits are used as
benchmarks and the evolution corresponding to each quan-
tum gate is simulated according to both approaches. It has to
be remarked that both methods adopt the decoherence model
proposed in Section III-F1 and resort to the assumptions of
Section V-A1. The comparison between the provided results
takes into account:

• The fidelity, which is a scalar quantity that deter-
mines the distance between two quantum states.
According to [51], the fidelity between two mixed
states represented by density matrices ρa and ρb
is:

F(ρa, ρb) ≜ Tr
(√

ρ
1/2
a ρb ρ

1/2
a

)
, (57)

where Tr is the matrix trace. If one of the two states is
described by a state vector |ψ⟩ and the other by a density
matrix ρ, the fidelity can be expressed as

F(|ψ⟩ , ρ) =
√

⟨ψ | ρ |ψ⟩ . (58)

It can be shown that 0 ≤ F ≤ 1 and F = 1 when the
two states coincide [51]. For every quantum algorithm
and for every combination of physical parameters, the
fidelity resulting from the MATLAB model FM =

F(|ψ⟩ , ρMATLAB) and that resulting from the QuTiP
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TABLE 6. Main input and output physical parameters for the different heterostructures and the different software tools. T is the temperature; ND is the
doping concentration; 8m is the metal workfunction; VYi is the voltage applied to the i Y gate; VRi is the voltage applied to the i reservoir gate; VPi is the
voltage applied to the i plunger gate; VBi is the voltage applied to the i barrier gate; CB min refers to the minimum of the conduction band in the dot
region; 12 − 13 is the computed strain-induced conduction band splitting along the ẑ axis; EY is the Y energy barrier computed as the energy difference
between the maximum and the minimum of the conduction band in the quantum region along the ŷ axis (cf. Figure 11d and Figure 17c); EBL is the
left-barrier gate energy barrier computed as the energy difference between the minimum of the conduction band in the quantum region along the x̂ axis
and the maximum of the conduction band in the quantum region below the left barrier gate (cf. Figure 11c, Figure 14b and Figure 17b); EBM and EBR have
similar definitions; Ei is the eigenenergy of the i -th single-particle eigenstate; αPL, αBM and αPR are the lever arms of the left plunger gate, inter-dot
barrier gate and right plunger gate to the single-particle ground state; t0 is the tunnel coupling computed according to Equation (40), ζ and κ are the

fitting parameters of VBM ∼

{
loge(

2t0
1 eV ) + ζ

}
/κ; the symbol — means that the corresponding parameter cannot be computed.

direct integration FQ = F(|ψ⟩ , ρQuTiP) are reported.
In the previous expressions, |ψ⟩ denotes the ideal
noiseless expected output, whereas ρ represents the
noisy output.

• The most probable eigenstate determined by the
MATLAB model (MPEM) and that determined by the
QuTiP direct integration (MPEQ).

• The Kullback-Leibler (KL) divergence [86], [87],
which measures the distance of a target discrete
probability distribution P — for instance coming from
experimental data — from a reference one Q. Accord-

ingly, if dealing with mixed states, the computation of
the KL divergence requires exclusively the diagonals of
the corresponding densitymatrices. Thismetric has been
already employed in [87] for evaluating the reliability of
the execution of a circuit on a superconducting quantum
computer and in [20]. For an n-qubit distribution, the KL
divergence is defined as

DKL(P ∥ Q) ≜
N−1∑
i=0

P(|ei⟩) log2

(
P(|ei⟩)
Q(|ei⟩)

)
, (59)
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where N = 2n and |ei⟩0≤i<N are the orthonormal eigen-
states of the σ⊗n

z Pauli spin operator. By construction,
0 ≤ DKL(P ∥ Q) ≤ +∞, and DKL(P ∥ Q) = 0 if
and only if the two probability distributions coincide.
Hence, the smaller DKL(P ∥ Q) is, the closer P and Q
are. By identifying:

P(|ei⟩) = ρMATLAB(i, i),

Q(|ei⟩) = ρQuTiP(i, i), (60)

DKL(P ∥ Q) evaluates the similarity between the
probability distribution of the eigenstates provided
by the MATLAB simulator and the corresponding
distribution provided by QuTiP.

• The percentage matrix 2-norm of the difference
between the output density matrices provided by the
MATLAB model and the direct integration with QuTiP:

ε% = ∥ρMATLAB − ρQuTiP∥ · 100. (61)

• The wall-clock time tckM required to emulate the
execution of a quantum algorithm with the MATLAB
model and the wall-clock time tckQ required to emulate
the execution of a quantum algorithm with QuTiP direct
integration.

4) PHYSICAL AND CONTROL PARAMETERS
As discussed in Section III-D, depending on the physical
parameters of the structures — in particular, the difference
in Zeeman splittings, the detuning and the tunnel coupling—
the native two-qubit gate can be either the

√
SWAP or the

C-PHASE. To prove the validity and identify the limits of
the proposed approach, the simulation methodology is tested
by emulating the execution of several quantum algorithms on
two semiconductor heterostructures — SiGe and SiMOS —
with two different sets of input physical parameters: the
first set — henceforth referred to as

√
SWAP-regime —

encompasses values routinely found in experimental devices
intended to exploit the

√
SWAP gate as the native two-

qubit gate, whereas the second one — henceforth referred
to as C-PHASE-regime— consists of values routinely found
in experimental devices intended to exploit the C-PHASE
gate as the native two-qubit gate. The physical and (some)
control parameters — extracted from experimental data or
obtained with simulations — are reported in Table 7. Since
the values of the tunnel coupling t0 and the detuning ϵ
for multi-qubit gates directly influence the duration of the
native gates, they are determined10 considering realistic
gate times from experimental data [21], [63], [88], [89].
Equation (51), Equation (56) and Equation (44) allow
retrieving the corresponding voltages to be applied to the
inter-dot barrier gate. Once the duration of single-qubit gates
τsq is fixed according to Table 7, the corresponding value of
the microwave magnetic field is

Bw =
θ

|γ |τsq
, (62)

10The t0 values are coherent with the simulation results from Section IV.

where θ is the rotation angle of the single-qubit gate. The
quantum algorithms presented in Section V-B2 are simulated
by fixing the amplitude of the pulse (∝ Bw) to an optimised
value and varying the pulse width (τ ) according to the
quantum gate that has to be implemented.

B. RESULTS
This section collects the obtained results. Firstly, for
each heterostructure and for each two-gate scenario, the
microwave pulse amplitude is optimised computing, via
direct Hamiltonian integration with QuTiP [15], the fidelity
when a set of gates is sequentially applied to all qubits, for
different values of the pulse width and amplitude. Then, the
τsq value that maximises the device fidelity is used to compare
the MATLAB model and the QuTiP results.

1) FIDELITY OPTIMISATION
The fidelity is calculated — resorting to Equation (58) — by
applying a sequence of Rx(π2 ) from the most significant qubit
(q1) to the least significant one (q0), for different values of the
pulse width and amplitude, and comparing the output noisy
density matrix of QuTiP with the expected ideal state-vector.
In analogy with [20], the choice of this kind of benchmark is
motivated by the fact that the rotation of π/2 about x̂ axis is a
fundamental rotation to implement quantum gates and by the
fact that once a qubit is along the −ŷ axis, it is sensitive to the
unwanted exchange coupling evolution which mainly causes
an unwanted rotation about ẑ.

a: SiGe HETEROSTRUCTURE
The behaviour of the fidelity for different pulse amplitudes
is reported in Figure 20a and Figure 20b for both the
√
SWAP and C-PHASE scenarios. The fidelity plots show a

noteworthy ringing whose periods T = 2π/ |∆ω0| coincide
with the period of the Hamiltonian of Equation (16), where
the term in square brackets represents the unwanted effects
that a field intended to act on qubit 0 has on qubit 1.
Therefore, local maxima occur when the time interval is an
integermultiple of the period of the unwanted time-dependent
part of the overall rotating-frame Hamiltonian. The optimal
time duration τsq for a single-qubit gate should be sufficiently
long for the corresponding Fourier spectrum to be selective on
the frequency of the target qubit. At the same time, it should
be sufficiently short to minimize the unwanted evolution
due to the residual non-zero coupling and to the relaxation
and decoherence phenomena. Therefore, as already discussed
in [20] and considering the noise model of Section III-F1, the
single-qubit pulse width shall be such that:

2π
|∆ω0|

≪ τsq ≪ min

{
1

|Joff|
,

∏n
i T

∗
i

2∑n
i T

∗i

2

,

∏n
i T

i
1∑n

i T
i
1

}
, (63)

where Joff is the residual exchange interaction in the single-
qubit regime. Accordingly, the optimal τsq and the corre-
sponding optimal Bw to be used in the simulation of the
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FIGURE 20. QuTiP fidelity of a sequence of RX ( π
2 ) gate on each qubit in the

√
SWAP and C-PHASE regimes for SiGe and SiMOS heterostructures.

quantum algorithms are:

τ
√
SWAP

sq = 88.68 ns −→ B
√
SWAP

w = 101.25µT,

τC-PHASEsq = 10.69 ns −→ BC-PHASEw = 820.29µT,
(64)

where τ
√
SWAP

sq is the single-qubit gate duration in the
√
SWAP regime and similarly for τC-PHASEsq .

b: SiMOS HETEROSTRUCTURE
The behaviour of the fidelity for different pulse amplitudes
is reported in Figure 20c and Figure 20d for both the
√
SWAP and C-PHASE scenarios. As in the SiGe case, the

fidelity plots show a remarkable ringing whose periods T =

2π/ |∆ω0| coincide with the period of the Hamiltonian of
Equation (16). The optimal τsq and the corresponding optimal
Bw to be used in the simulation of the quantum algorithms are:

τ
√
SWAP

sq = 107.22 ns −→ B
√
SWAP

w = 83.78µT,

τC-PHASEsq = 14.20 ns −→ BC-PHASEw = 630.16µT.
(65)

2) SIMULATION OF QUANTUM ALGORITHMS
The simulation of quantum algorithms shows promising
results in terms of the MATLABmodel performance. Indeed,
as shown in Tables 8 to 11, it is always capable of correctly
simulating the algorithms in tens of milliseconds, while the
QuTiP simulation takes tens of seconds. However, results are
quite different depending on the device scenario. Overall, the
simulations are worse for the

√
SWAP case, substantiating

theMATLAB-QuTiP error analysis carried out in Section III-
E. The lowest fidelities occur for the Deutsch-Josza and the
Grover algorithms, with the QuTiP simulation giving wrong
results. It can be speculated this is due to a greater effect
of the non-idealities — such as off-resonance effects —
especially considering the fairly long duration of the single-
qubit gates. In order to check this, the algorithms have been
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TABLE 7. Physical and control parameters adopted in the simulations. For the tunnel coupling t0, the detuning ϵ and the gate duration τ , sq refers to the
values used when carrying out single-qubit gates, whereas mq stands for the multi-qubit gate regime. The acronym asm. denotes an assumed parameter.

performed again on QuTiP with a larger 1Ez to mitigate
the off-resonance. This resulted in a correct simulation with
higher fidelity, confirming that the

√
SWAP scenario strongly

suffers from the relatively low 1Ez. Moreover, also the error
between the MATLAB model and QuTiP is worse for these
two algorithms. This may be due to the discrepancies between
the two models when taking non-idealities into account.
On the other hand, the C-PHASE scenario shows excellent
results in every field. The fidelities are always higher than
90% and the error and the KL divergence between the two
models are generally low. Instead, the differences between
the SiGe and SiMOS structures are very few and they almost
only arise from the non-identical T1 and T ∗

2 parameters and
duration of the single-qubit gates. Indeed, for the

√
SWAP

case, the SiGe simulations yield lower errors since, as shown
in Table 7, the single-qubit gates are slightly faster and the T ∗

2
is better with respect to the SiMOS counterpart. On the other
hand, the T ∗

2 of the SiMOS structure in the C-PHASE regime
is quite bigger than the T ∗

2 of the SiGe case, thus resulting in
higher fidelities.

VI. CONCLUSION
Moving from the analysis of the qubits’ physical systems —
in terms of many-body Hamiltonian characterisation — this
article, on the one hand, discusses the derivation of a novel
CPU-friendly compact model for semiconductor quantum
dots systems for quantum computers, which leverages the
methodology introduced in [20] and [19], and on the
other hand, it proposes the development a comprehensive
classical simulation toolchain that, starting from currently
available physical-level simulators or experimental values
and an arbitrary quantum circuit described in OpenQASM

2.0 — which is compiled by an in-house technology-
aware compilation toolchain —, can determine the expected
outcomes in terms of the eigenstate probability distribution,
the fidelity and the execution time.

Even though this work does not propose a definitive model
and shall be regarded as a first step towards the development
of a simulation toolchain able to assist the engineering of
semiconductor quantum dot devices, the obtained results
are encouraging. Indeed, the comparison of the outcomes
provided by the model with those provided by QuTiP [15] —
a software tool able to solve the Lindblad master equation
for the density matrix — for several quantum circuits and
for two different heterostructures — namely a SiGe-Si-SiGe
one and a Si-SiO2 one — proves that, on the one hand,
the model can support different families of semiconductor
heterostructures, and on the other hand, it is well performing
in the simulation where the native gate is the C-PHASE,
whereas the error is slightly but notably higher in the

√
SWAP

case. These preliminary results justify the development of a
fast intermediate-level simulation infrastructure capable of
providing physically-reliable evaluations of the execution of
quantum algorithms on some target devices. As a matter
of fact, one of the most relevant advantages of the compact
model methodology is its simulation time. Whereas the
QuTiP simulations are computationally demanding— taking
even hours for the most precise simulations (∼ 1200 data
points) — the MATLAB model takes at most seconds for the
same set of simulations.

The germinal proposal of a multi-level simulation infras-
tructure, which mimics the well-established approach of
classical electronics, seems to be a reasonable approach for
the optimal analysis of the design space of real-world quan-
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TABLE 8. The table reports the fidelity FM (FQ) and the most probable eigenstate MPEM (MPEQ) resulting from the MATLAB simulator (QuTiP [15] direct
integration), the divergence DKL between the eigenstate probability distribution provided by the model and that obtained with QuTiP, the percentage
2-norm ε% of the difference between the corresponding two density matrices and the wall-clock time required to emulate the execution of the quantum
algorithms with the MATLAB model (tck

M ) and the QuTip direct integration (tck
Q ) for the

√
SWAP scenario for the SiGe heterostructure.

TABLE 9. The table reports the fidelity FM (FQ) and the most probable eigenstate MPEM (MPEQ) resulting from the MATLAB simulator (QuTiP [15] direct
integration), the divergence DKL between the eigenstate probability distribution provided by the model and that obtained with QuTiP, the percentage
2-norm ε% of the difference between the corresponding two density matrices and the wall-clock time required to emulate the execution of the quantum
algorithms with the MATLAB model (tck

M ) and the QuTip direct integration (tck
Q ) for the C-PHASE scenario for the SiGe heterostructure.

TABLE 10. The table reports the fidelity FM (FQ) and the most probable eigenstate MPEM (MPEQ) resulting from the MATLAB simulator (QuTiP [15]
direct integration), the divergence DKL between the eigenstate probability distribution provided by the model and that obtained with QuTiP, the
percentage 2-norm ε% of the difference between the corresponding two density matrices and the wall-clock time required to emulate the execution of
the quantum algorithms with the MATLAB model (tck

M ) and the QuTip direct integration (tck
Q ) for the

√
SWAP scenario for the SiMOS heterostructure.

tum devices. The presence of different levels of abstractions,
starting from the physical simulation (FEM and/or ab-initio)
whose outcomes — possibly with some approximations
as done for the tunnel coupling — are provided to the
compact models, up to the quantum algorithms, should ease
and accelerate the design of practical devices able to meet
the requirements of a rapidly inflating application-driven
market. Indeed, the quantum engineer, once the toolchain is

completed, shall be able to conceive and design a physical
architecture resorting to low-level simulators, then extract
the relevant physical parameters, carry out a fast compact
model-based simulation of a set of quantum algorithms to
benchmark the device and come back to optimise the physical
layout.

A latere, it shall be noted that the smooth integration of the
semiconductor quantum dot compact model in the simulation
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TABLE 11. The table reports the fidelity FM (FQ) and the most probable eigenstate MPEM (MPEQ) resulting from the MATLAB simulator (QuTiP [15]
direct integration), the divergence DKL between the eigenstate probability distribution provided by the model and that obtained with QuTiP, the
percentage 2-norm ε% of the difference between the corresponding two density matrices and the wall-clock time required to emulate the execution of
the quantum algorithms with the MATLAB model (tck

M ) and the QuTip direct integration (tck
Q ) for the C-PHASE scenario for the SiMOS heterostructure.

infrastructure of [20] proves the claim that the methodology
envisioned in [20] — encompassing the compact model
approach, the Fourier model and the relaxation and decoher-
ence algorithms—can be straightforwardly extended to other
quantum technologies.

Overall, the compact model approach has proved to be
capable of handling quite accurately a quantum circuit simu-
lation. Moreover, the versatility of the proposed methodology
will enable the introduction of several types of enhancement.
First and foremost, the compact model for quantum dots
shall be extended to support architectures with an arbitrary
number of qubits (as already done for NMR and molecular
nanomagnets). The main problem concerning this point
is that the Fermi-Hubbard model Hamiltonian scales very
fast with the number of qubits. A possible solution could
be to adopt a Heisenberg NMR-like model and derive
the Heisenberg coupling constants between neighbouring
dots from the Fermi-Hubbard model. Secondly, another
improvement to mention is the modelling of the state
readout operation. Indeed, this operation — which has to
be performed in a very precise manner in order to yield
a correct outcome [54] — directly influences the outcome
of real hardware, since it is always carried out after the
manipulation, and it can introduce a large amount of noise.
Thirdly, additional noise sources — such as the temperature,
the valley physics, the interaction with the magnetic field, the
charge noise [90], the nuclear spin noise, and the possible
disturbances affecting the EM signals — should be included
in the compact model and their relation with the T1 and
T ∗

2 experimental constants shall be investigated. These last
two improvements are expected to foster a fairer and more
reliable comparison with hardware devices, thus paving the
way for constructive feedback between experimental devices
and simulation, which is the actual aim of the development
of this toolchain. Fourthly, the capabilities of the simulation
infrastructure shall be broadened, by adding support for
other quantum dot encodings (for instance, singlet-triplet and
exchange-only encodings) and other solid-state technologies,
such as donor-based [91] and hole-based qubits [92]. Finally,
the physical-level simulation must be improved to allow

for the computation of other physical parameters, such
as the on-site coulomb energy U and the singlet-triplet
splitting J . In this regard, it would be interesting to
compare the value of J calculated starting from t0 (as done
in this article) with that determined as the singlet-triplet
splitting.

In conclusion, it can be stated that the route towards
practically employable quantum computing must inevitably
pass through quantum device engineering. Even if the
prototype model proposed in this article is still a work in
progress, it might be regarded as a step forward towards the
enhancement of semiconductor quantum devices.

APPENDIX. DENSITY MATRIX FORMALISM
In a finite-dimension complex Hilbert space HN equipped
with a complete orthonormal basis |ei⟩0≤i<N , the Fisher-Riesz
theorem ensures that a pure single-particle state can be
represented — according to Dirac’s representation of
quantum mechanics — by an abstract state vector |ψ⟩, which
can be expanded as a Fourier series over the basis [93]

|ψ⟩ =

∑
i

ci |ei⟩ , (66)

where the coefficients ci can be interpreted as complex
probability amplitudes. It is well-known that — according
to the probabilistic interpretation of quantum mechanics —
the probability pi to measure the basis state |ei⟩ is pi =

|ci|2. The time evolution of a pure state is ruled by the
Schrödinger equation. However, many real-world quantum
physical systems — such as those interacting with the
external environment through decoherence and relaxation
phenomena — require a description in terms of so-called
mixed states, instead of pure states. This means that a
semi-classical probability distribution of pure states |ψi⟩,
each of them occurring with a probability pi, is associated
with the quantum state [94], [95], [96]. In these cases, the
most appropriate methodology is to describe the system by
adopting the density matrix formalism

ρ =

∑
i

pi |ψi⟩⟨ψi| . (67)
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The density matrix of a pure state is ρ = |ψ⟩⟨ψ |. The
elements on the main diagonal of ρ are, by definition, the
probabilities of finding the system in a basis state. Hence its
trace — i.e., the sum of the terms on the main diagonal — is
always equal to one. The time evolution of a system described
by a densitymatrix ρ is given by the Liouville – vonNeumann
equation [95]:

ih̄
dρ
dt

= [H(t), ρ] , (68)

where H(t) is the Hamiltonian of the system with explicit
time dependence and [A,B] = AB − BA is the commuta-
tor [51]. The time evolution of mixed states is customarily
represented as:

ρ(t) = U (t)ρ(t = 0)U (t)† , (69)

where the unitary time evolution operator U (t) is a formal
solution of the Liouville – von Neuman equation

U (t) = T exp
{
−
i
h̄

∫ t

t0
H(τ )dτ

}
, (70)

and T represents the time-ordered product. The evolution
operator allows the definition of quantum gates and quantum
algorithms on physical devices. As a matter of fact, given
a system described by a Hamiltonian Hsys(t) and a control
Hamiltonian Hctr(t; η(t)), the expected unitary transforma-
tion Ualg can be achieved if there exists a set of control
parameters η(t) (as the phase and frequency of the applied
field) of the total Hamiltonian H(t; η(t)) = Hsys(t) +

Hctr(t; η(t)) such that the time evolution operator [62]

U [t, η(t)] = T exp
{
−
i
h̄

∫ t

t0
H(τ ; η(τ ))dτ

}
(71)

is as similar as possible to Ualg. If the Hamiltonian does
not show any explicit time dependence and the control
parameters are taken to be piecewise constant — i.e., in each
time step tk → tk+1 they are chosen such that the
corresponding evolution operator U (tk+1) implements the
desired quantum gate — then this operator reduces to [95]

U [t, η(t)] = T exp
{
−
i
h̄

∫ t

t0
H(η(τ ))dτ

}
= e

−
i
h̄

∫ tn
tn−1

H(η(tn−1))dτ
· · · e−

i
h̄

∫ t1
t0
H(η(t0))dτ

= e−
H(η(tn))·(tn−1−tn)

h̄ dτ
· · · e−

H(η(t0))·(t1−t0)
h̄ dτ

= U (tn) · · · U (t1) . (72)

APPENDIX. MATRIX EXPRESSION OF THE FERMI
HUBBARD HAMILTONIAN
In the following, a† is the microscopic construction operator
and a the destruction operator satisfying the fermionic
algebraic character

{aχ , a
†
ξ } = δχ,ξ , {a†χ , a

†
ξ } = 0 = {aχ , aξ } ∀χ ξ (73)

where {A,B} = AB + BA denotes the fermionic anticom-
mutator and δ is the Kronecker delta. Adopting this notation,
the second-quantization components of Equation (5) are [57],
[97], [98], [99]:

• On-site energy (detuning between the dots)

Hϵ =

∑
σ,v,k

µknσ,v,k , (74)

where n = a†a is the microscopic fermionic number
operator and µk is the chemical potential of dot k .
This Hamiltonian introduces an energy contribution that
takes into account the number of electrons in every dot,
spin state and valley state, weighted by the chemical
potentials of the dots. As shown in the Appendix, thanks
to the antiparallel spin arrangement of the electrons in
the singlet states, the net effect of the component is to
add an energy contribution proportional to the detuning
(the difference in chemical potentials of the two dots)
between the two dots ϵ = µ1 −µ0 that, according to the
sign of the detuning itself, increases/reduces the energy
of the singlet states.

• Valley degeneracy

Hv =

∑
σ,k

1
2

(
nσ,+,k − nσ,−,k

)
. (75)

• On-site Coulomb repulsion

Hu =

∑
σ,v,k

∑
σ ′,v′

Uk
2
nσ,v,knσ ′,v′,k σ, v ̸= σ ′, v′ , (76)

where Uk is the on-site interaction energy of the
quantum dot, i.e., the energy required for moving both
electrons in the same dot. Hence, this term accounts for
the Coulomb interaction between two electrons residing
on the same site and therefore is a simplification of
the full Coulomb interaction term, which includes other
interactions, such as that between electrons in different
dots [54].

• Hopping term

Ht = −

∑
v,k

∑
v′,k ′

t0
(
a†
↑,v,ka↑,v′,k ′ + a†

↓,v,ka↓,v′,k ′

)
k, v ̸= k ′, v′ , (77)

where t0 is the tunnel coupling (in energy units). This
term accounts for electron tunnelling between two sites.

• Zeeman term

Hz =

∑
k,v

Ezk
2

(
n↑,k,v − n↓,k,v

)
, (78)

where Ezk is the Zeeman energy.
In order to derive the matrix expression of the Fermi-Hubbard
Hamiltonian, one can consider the six lowest energy states
(thus neglecting the valley contribution) for two electrons in
two dots. Under this assumption, the physical basis can be
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expressed by exploiting the second-quantization microscopic
fermionic operators acting on the vacuum state |0⟩ as [100]:

|↑↑⟩ = a†
↑,1a

†
↑,0 |0⟩ ,

|↑↓⟩ = a†
↑,1a

†
↓,0 |0⟩ ,

|↓↑⟩ = a†
↓,1a

†
↑,0 |0⟩ ,

|↓↓⟩ = a†
↓,1a

†
↓,0 |0⟩ ,

|S(0, 2)⟩ =
1

√
2

|0,↑↓ − ↓↑⟩ = a†
↓,0a

†
↑,0 |0⟩ ,

|S(2, 0)⟩ =
1

√
2

|↑↓ − ↓↑, 0⟩ = a†
↓,1a

†
↑,1 |0⟩ . (79)

A. ON-SITE ENERGY
The action ofHϵ on the |↑↑⟩ basis state is:

Hϵ |↑↑⟩ = Hϵa†↑,1a
†
↑,0 |0⟩

=
[
(µ0(n↓,0 + n↑,0) + µ1(n↓,1 + n↑,1)

]
|↑↑⟩

(80)

where 
µ0a

†
↓,0a↓,0a

†
↑,1a

†
↑,0 |0⟩ → 0

µ0a
†
↑,0a↑,0a

†
↑,1a

†
↑,0 |0⟩ → µ0 |↑↑⟩

µ1a
†
↓,1a↓,1a

†
↑,1a

†
↑,0 |0⟩ → 0

µ1a
†
↑,1a↑,1a

†
↑,1a

†
↑,0 |0⟩ → µ1 |↑↑⟩ .

(81)

It follows similarly that

⟨↑↑|Hϵ |↑↑⟩ = µ0 + µ1

⟨↑↓|Hϵ |↑↓⟩ = µ0 + µ1

⟨↓↑|Hϵ |↓↑⟩ = µ0 + µ1

⟨↓↓|Hϵ |↓↓⟩ = µ0 + µ1 (82)

For what concerns the singlet states with two electrons in the
same dot, the action ofHϵ is:

Hϵ |S(0, 2)⟩ = Hϵa†↓,0a
†
↑,0 |0⟩

=
[
(µ0(n↓,0 + n↑,0) + µ1(n↓,1 + n↑,1)

]
|S(0, 2)⟩

(83)

where 
µ0a

†
↓,0a↓,0a

†
↓,0a

†
↑,0 |0⟩ → µ0 |S(0, 2)⟩

µ0a
†
↑,0a↑,0a

†
↓,0a

†
↑,0 |0⟩ → µ0 |S(0, 2)⟩

µ1a
†
↓,1a↓,1a

†
↓,0a

†
↑,0 |0⟩ → 0

µ1a
†
↑,1a↑,1a

†
↓,0a

†
↑,0 |0⟩ → 0 .

(84)

It follows similarly that

⟨S(0, 2)|Hϵ |S(0, 2)⟩ = 2µ0

⟨S(2, 0)|Hϵ |S(2, 0)⟩ = 2µ1 . (85)

Since all non-diagonal terms can be shown to be zero, the
on-site energy Hamiltonian reduces to

Hϵ ∼ Hϵ − (µ0 + µ1)I

=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −ϵ 0
0 0 0 0 0 ϵ

 , (86)

where (µ0 + µ1)I only causes an irrelevant rigid shift of the
energy eigenspectrum and can be ignored.

B. COULOMB ON-SITE ENERGY
The action of the on-site Coulomb Hamiltonian on the basis
states can be retrieved by direct inspection of Equation (76):
indeed, when Hu acts on a basis state, it gives non-zero
contribution only for the sites k in which both n↑,k and n↓,k
count one fermion. Accordingly, all terms in the (1, 1) block
of the Hamiltonian are zero. The action of Hu on the singlet
states is:

Hu |S(0, 2)⟩ = Hua
†
↓,0a

†
↑,0 |0⟩

=
(
U0 · n↓,0n↑,0 + U1 · n↓,1n↑,1

)
|S(0, 2)⟩

(87)

where it has been exploited that
[
nχ , nξ

]
= 0 , ∀χ ̸= ξ .

Then,{
U0a

†
↓,0a↓,0a

†
↑,0a↑,0a

†
↓,0a

†
↑,0 |0⟩ →

U1a
†
↓,1a↓,1a

†
↑,1a↑,1a

†
↓,0a

†
↑,0 |0⟩ →{

U0a
†
↓,0a

†
↑,0a↓,0a

†
↓,0a↑,0a

†
↑,0 |0⟩ → U0 |S(0, 2)⟩

U1a
†
↓,1a↓,1a

†
↓,0a

†
↑,0a

†
↑,1a↑,1 |0⟩ → 0,

(88)

where the algebraic properties of fermionic operators have
been exploited. Therefore,

⟨S(0, 2)|Hu |S(0, 2)⟩ = U0

⟨S(2, 0)|Hu |S(2, 0)⟩ = U1 (89)

are the only non-zero terms.

C. HOPPING ENERGY
The action ofHt on |↑↑⟩ and |↓↓⟩ leads to all-zero columns
since the tunnelling is Pauli-spin blocked. For two spinful
fermions in two sites, Equation (77) reduces to

Ht = −t0
(
a†
↑,0a↑,1 + a†

↓,0a↓,1 + a†
↑,1a↑,0 + a†

↓,1a↓,0

)
(90)

Considering the |↑↓⟩ state:

Ht |↑↓⟩ = Hta
†
↑,1a

†
↓,0 |0⟩

= t0


−a†

↑,0a↑,1a
†
↑,1a

†
↓,0 |0⟩

−a†
↓,0a↓,1a

†
↑,1a

†
↓,0 |0⟩

−a†
↑,1a↑,0a

†
↑,1a

†
↓,0 |0⟩

−a†
↓,1a↓,0a

†
↑,1a

†
↓,0 |0⟩
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= t0


|S(0, 2)⟩
0
0
|S(2, 0)⟩

. (91)

Considering the |↓↑⟩ state:

Ht |↑↓⟩ = Hta
†
↓,1a

†
↑,0 |0⟩

= t0


−a†

↑,0a↑,1a
†
↓,1a

†
↑,0 |0⟩

−a†
↓,0a↓,1a

†
↓,1a

†
↑,0 |0⟩

−a†
↑,1a↑,0a

†
↓,1a

†
↑,0 |0⟩

−a†
↓,1a↓,0a

†
↓,1a

†
↑,0 |0⟩

= t0


0
− |S(0, 2)⟩
− |S(2, 0)⟩
0

. (92)

Considering the |S(0, 2)⟩ state:

Ht |S(0, 2)⟩ = Hta
†
↓,0a

†
↑,0 |0⟩

= t0


−a†

↑,0a↑,1a
†
↓,0a

†
↑,0 |0⟩

−a†
↓,0a↓,1a

†
↓,0a

†
↑,0 |0⟩

−a†
↑,1a↑,0a

†
↓,0a

†
↑,0 |0⟩

−a†
↓,1a↓,0a

†
↓,0a

†
↑,0 |0⟩

= t0


0
0
+ |↑↓⟩

− |↓↑⟩

. (93)

Considering the |S(2, 0)⟩ state:

Ht |S(2, 0)⟩ = Hta
†
↓,1a

†
↑,1 |0⟩

= t0


−a†

↑,0a↑,1a
†
↓,1a

†
↑,1 |0⟩

−a†
↓,0a↓,1a

†
↓,1a

†
↑,1 |0⟩

−a†
↑,1a↑,0a

†
↓,1a

†
↑,1 |0⟩

−a†
↓,1a↓,0a

†
↓,1a

†
↑,1 |0⟩

= t0


− |↓↑⟩

+ |↑↓⟩

0
0

. (94)

Accordingly, the matrix expression ofHt is

Ht =


0 0 0 0 0 0
0 0 0 0 t0 t0
0 0 0 0 −t0 −t0
0 0 0 0 0 0
0 t0 −t0 0 0 0
0 t0 −t0 0 0 0

 . (95)

D. ZEEMAN ENERGY
For two electrons in two sites, Equation (78) reduces to

Hz =
1
2

(
Ez0

(
a†
↑,0a↑,0 − a†

↓,0a↓,0

)
+ Ez1

(
a†
↑,1a↑,1 − a†

↓,1a↓,1

) )
. (96)

Considering the |↑↑⟩ state:

Hz |↑↓⟩ = Hza
†
↑,1a

†
↑,0 |0⟩

=
1
2


+Ez0a

†
↑,0a↑,0a

†
↑,1a

†
↑,0 |0⟩

−Ez0a
†
↓,0a↓,0a

†
↑,1a

†
↑,0 |0⟩

+Ez1a
†
↑,1a↑,1a

†
↑,1a

†
↑,0 |0⟩

−Ez1a
†
↓,1a↓,1a

†
↑,1a

†
↑,0 |0⟩

=
1
2


+Ez0 |↑↑⟩

0
+Ez1 |↑↑⟩

0

= Ez |↑↑⟩ . (97)

Considering the |↑↓⟩ state:

Hz |↑↓⟩ = Hza
†
↑,1a

†
↓,0 |0⟩

=
1
2


+Ez0a

†
↑,0a↑,0a

†
↑,1a

†
↓,0 |0⟩

−Ez0a
†
↓,0a↓,0a

†
↑,1a

†
↓,0 |0⟩

+Ez1a
†
↑,1a↑,1a

†
↑,1a

†
↓,0 |0⟩

−Ez1a
†
↓,1a↓,1a

†
↑,1a

†
↓,0 |0⟩

=
1
2


0
−Ez0 |↑↓⟩

+Ez1 |↑↓⟩

0

=
1Ez
2

|↑↓⟩ . (98)

Considering the |↓↑⟩ state:

Hz |↓↑⟩ = Hza
†
↓,1a

†
↑,0 |0⟩

=
1
2


+Ez0a

†
↑,0a↑,0a

†
↓,1a

†
↑,0 |0⟩

−Ez0a
†
↓,0a↓,0a

†
↓,1a

†
↑,0 |0⟩

+Ez1a
†
↑,1a↑,1a

†
↓,1a

†
↑,0 |0⟩

−Ez1a
†
↓,1a↓,1a

†
↓,1a

†
↑,0 |0⟩

=
1
2


Ez0 |↓↑⟩

0
0
−Ez1 |↓↑⟩

= −
1Ez
2

|↓↑⟩ . (99)

Considering the |↓↓⟩ state:

Hz |↓↓⟩ = Hza
†
↓,1a

†
↓,0 |0⟩

=
1
2


+Ez0a

†
↑,0a↑,0a

†
↓,1a

†
↓,0 |0⟩

−Ez0a
†
↓,0a↓,0a

†
↓,1a

†
↓,0 |0⟩

+Ez1a
†
↑,1a↑,1a

†
↓,1a

†
↓,0 |0⟩

−Ez1a
†
↓,1a↓,1a

†
↓,1a

†
↓,0 |0⟩
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=
1
2


0
−Ez0 |↓↓⟩

0
−Ez1 |↓↓⟩

= −Ez |↓↓⟩ . (100)

Considering the |S(0, 2)⟩ state:

Hz |S(0, 2)⟩ = Hza
†
↓,0a

†
↑,0 |0⟩

=
1
2


+Ez0a

†
↑,0a↑,0a

†
↓,0a

†
↑,0 |0⟩

−Ez0a
†
↓,0a↓,0a

†
↓,0a

†
↑,0 |0⟩

+Ez1a
†
↑,1a↑,1a

†
↓,0a

†
↑,0 |0⟩

−Ez1a
†
↓,1a↓,1a

†
↓,0a

†
↑,0 |0⟩

=
1
2


+Ez0 |S(0, 2)⟩
−Ez0 |S(0, 2)⟩
0
0

= 0 . (101)

Considering the |S(2, 0)⟩ state:

Hz |S(2, 0)⟩ = Hza
†
↓,1a

†
↑,1 |0⟩

=
1
2


+Ez0a

†
↑,0a↑,0a

†
↓,1a

†
↑,1 |0⟩

−Ez0a
†
↓,0a↓,0a

†
↓,1a

†
↑,1 |0⟩

+Ez1a
†
↑,1a↑,1a

†
↓,1a

†
↑,1 |0⟩

−Ez1a
†
↓,1a↓,1a

†
↓,1a

†
↑,1 |0⟩

=
1
2


0
0
+Ez1 |S(2, 0)⟩
−Ez1 |S(2, 0)⟩

= 0 . (102)

Accordingly, the matrix expression ofHz is

Hz =



Ez 0 0 0 0 0
0 1Ez

2 0 0 0 0
0 0 −

1Ez
2 0 0 0

0 0 0 −Ez 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (103)

APPENDIX. SCHRIEFFER-WOLFF TRANSFORMATION
The Schrieffer-Wolff transformation is a unitary transforma-
tion used to perturbatively decouple low-energy and high-
energy subspaces with the aim of achieving a low-energy
effective many-body Hamiltonian [101]. Suppose the com-
plete many-body Hamiltonian can be written as

H = H0 + λV (104)

where H0 is diagonal, V acts as a small perturbation
and λ is an arbitrary constant used to keep track of the
order. The Schrieffer-Wolff transformation aims to reduce the
small coupling between the high and low energy subspaces,

by moving to a generic rotating frame where the Hamiltonian
H is diagonal up to the n-th order of λ (usually, n = 1):

H −→ HSW = eλSHe−λS , (105)

where S is the generator of the transformation, and it
must be anti-hermitian (for eS to be unitary) and block-off
diagonal [102]. The previous definition can be expanded
using the well-known Baker-Campbell-Haussdorf formula
(or by replacing the definition of matrix exponential
eS =

∑
∞

k=0
1
k!S

k ):

HSW = H+ λ[S,H] +
λ2

2!
[S, [S,H]]

+
λ3

3!
[S, [S, [S,H]]] + . . . (106)

Replacing the definition ofH, one gets

HSW = H0 + λV + λ[S,H0] + λ2[S,V]
λ2

2
[S, [S,H0]] +

λ3

2
[S, [S,V]] + . . . . (107)

To make the Hamiltonian diagonal to the first order in λ,
the generator S must be chosen such that no linear term in
λ shows up inHSW expression. More in detail, assuming that

S : [S,H0] = −V , (108)

then to the second order in λ

HSW = H0 +
λ2

2
[S,V] +O(λ3) . (109)

Considering the six-level Fermi Hubbard Hamiltonian of
Equation (7), under the hypothesis that [56], [61]

U − ϵ ≫ t0 , (110)

a low-energy subspace {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} and a
high energy subspace {|S(0, 2)⟩ , |S(2, 0)⟩} can be identi-
fied. Hence, the Schrieffer-Wolff (SW) transformation can
be used to project H′

H to the physical four-state basis
{|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} to the first order. The Fermi
Hubbard Hamiltonian can be decomposed as the sum of a
diagonal matrix and a perturbation off-diagonal matrix

H′
H =



Ez 0 0 0 0 0
0 1Ez

2 0 0 0 0
0 0 −

1Ez
2 0 0 0

0 0 0 −Ez 0 0
0 0 0 0 U − ϵ 0
0 0 0 0 0 U + ϵ


︸ ︷︷ ︸

H0

+

+


0 0 0 0 0 0
0 0 0 0 t0 t0
0 0 0 0 −t0 −t0
0 0 0 0 0 0
0 t0 −t0 0 0 0
0 t0 −t0 0 0 0


︸ ︷︷ ︸

V

. (111)
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It can be shown that, to second order, S has the following
expression [56]:

S =


0 0 0
0 0 0
0 0 0
0 0 0
0 γ (+1Ez) −γ (−1Ez)
0 σ (+1Ez) −σ (−1Ez)

0 0 0
0 −γ (+1Ez) −σ (+1Ez)
0 γ (−1Ez) σ (−1Ez)
0 0 0
0 0 0
0 0 0

 , (112)

where

γ (1Ez) =
t0

U − ϵ −
1Ez
2

σ (1Ez) =
t0

U + ϵ −
1Ez
2

, (113)

and it is trivial to see that [S,H0] = −V . The next step
is the computation of the commutator [S,V], as reported in
Equation (114), where

α (1Ez) ≜
t20

U − ϵ −
1Ez
2

+
t20

U + ϵ −
1Ez
2

= t (γ (+1EZ ) + σ (1EZ )) ,

β (1Ez) ≜
α (1Ez)+ α (−1Ez)

2
. (115)

Therefore, the Schrieffer-Wolff Hamiltonian (λ = 1) to the
second order can be written as reported in Equation (116). It
shall be noted that, thanks to the Schrieffer-Wolff transfor-
mation, the Hamiltonian is now block diagonal and there are
no terms that couple the (1, 1) subspace with the (0, 2) and
(2, 0) subspaces. Therefore, an effective Hamiltonian can be
retrieved projecting Equation (116) to the physical four-state
basis {|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}:

H′
SW =


Ez 0
0 1Ez

2 − α (1Ez)
0 β (1Ez)
0 0

0 0
β (1Ez) 0

−
1Ez
2 − α (−1Ez) 0

0 −Ez

 . (117)
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