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Few-Shot Learning for Fine-Grained Emotion
Recognition Using Physiological Signals

Tianyi Zhang , Student Member, IEEE, Abdallah El Ali , Member, IEEE, Alan Hanjalic , Fellow, IEEE,
and Pablo Cesar , Senior Member, IEEE

Abstract—Fine-grained emotion recognition can model the
temporal dynamics of emotions, which is more precise than
predicting one emotion retrospectively for an activity (e.g.,
video clip watching). Previous works require large amounts of
continuously annotated data to train an accurate recognition
model, however experiments to collect such large amounts of
continuously annotated physiological signals are costly and time-
consuming. To overcome this challenge, we propose an Emotion
recognition algorithm based on Deep Siamese Networks (EmoDSN)
which can rapidly converge on a small amount of training
data, typically less than 10 samples per class (i.e., <10 shot).
EmoDSN recognizes fine-grained valence and arousal (V-A) labels
by maximizing the distance metric between signal segments with
different V-A labels. We tested EmoDSN on three different datasets
collected in three different environments: desktop, mobile and
HMD-based virtual reality, respectively. The results from our
experiments show that EmoDSN achieves promising results for
both one-dimension binary (high/low V-A, 1D-2 C) and two-
dimensional 5-class (four quadrants of V- A space + neutral,
2D-5 C) classification. We get an averaged accuracy of 76.04,
76.62 and 57.62% for 1D-2 C valence, 1D-2 C arousal, and 2D-
5 C, respectively, by using only 5 shots of training data. Our
experiments show that EmoDSN can achieve better results if we
select training samples from the changing points of emotion or the
ending moments of video watching.

Index Terms—Deep siamese network, emotion recognition,
physiological signals, small data.

I. INTRODUCTION

AGROWING number of emotion recognition algorithms
were developed in recent years [1]–[3] to model the

temporal dynamics of emotion states of users. The accurate
recognition of emotions while users consume different types
of media content (e.g., videos, music, movies) can help content
providers to better understand users’ emotions towards the media
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content they provide and adjust it accordingly [4]. Unlike rec-
ognizing only one emotion label for a video clip (i.e., discrete
emotion recognition), fine-grained (normally 0.5 s to 4 s accord-
ing to prior emotion duration measures [1], [5], [6]) emotion
recognition can capture the time-varying nature of human emo-
tions [7]–[9]. Thus, the predictions are temporally more precise
compared with discrete emotion recognition.

To model the temporal dynamics of emotions, physiological
signals such as Electrodermal Activity (EDA), Blood Volume
Pulse (BVP), Skin Temperature (TEMP) and Heart Rate (HR)
are widely used by previous works [1], [2] as the input signals.
These signals can represent the neural activities from both the
autonomic nervous system (EDA and TEMP) and the cardio-
vascular system (BVP and HR). These activities provide suffi-
cient information for V-A recognition [10], [11] according to
James-Lange theory [12]. They are also easy to measure using
unobtrusive and wearable sensing devices such as wristbands or
smartwatches (e.g., Microsoft MS Band).

Previous works [1], [3], [13], [14] on fine-grained emo-
tion recognition rely on large amounts of training data with
fine-grained emotion labels. These labels are required to be
collected in a fine level of granularity (normally the same
or similar frequency as the input signal) to train the recog-
nition algorithms [15]. To collect such fine-grained emotion
labels, researchers either ask users themselves to label their
emotions in real-time while watching videos [8], [16] or in-
vite external annotators to label users’ emotions segment-by-
segment (e.g., using videos of users’ facial expressions [17])
after watching the videos [17], [18]. However, it is challeng-
ing to collect large amounts of annotated signals using any
of the methods. Asking users to momentarily self-report their
emotions can incur more mental workload and result in user
fatigue for longer durations (e.g., a two-hour film). For exter-
nal annotators, at least three annotators are usually required to
get a meaningful agreement between them (e.g., high Kappa
score) [17], [19]. This requires extra labeling effort and is
costly when annotating large amounts of signals. Thus, the
experiments to collect large amounts of continuously anno-
tated signals are time-consuming (require additional annotation
time from users) and costly (hiring professional annotators is
expensive).

The challenge of collecting large amounts of annotated sig-
nals has motivated researchers to explore Few-Shot Learning
(FSL) algorithms [20] for emotion recognition. FSL algorithms
are designed to converge on a small amount of training data and
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provide relatively accurate prediction results. However, current
FSL algorithms are geared towards discrete emotion recogni-
tion [21] using static data modalities such as images [22]. Thus,
it is challenging to directly apply the existing FSL algorithms
for fine-grained emotion recognition using physiological sig-
nals. First of all, there can be temporal mismatch between phys-
iological signals and the fine-grained self-reports (i.e., the de-
lay of annotation). Previous works [23]–[25] found that there
are time delays between an emotional event and its annotation.
The time of the delay ranges from 2 s to 4 s according to the
experiments of Huang et al. [23]. Secondly, some fine-grained
samples in the training set can be labeled incorrectly [1]. The
mislabeled samples can be the result of a distraction of users
when self-reporting their emotions momentarily or from a tem-
porary failure of the system when collecting the labels. Both
the reaction delay and mislabeled training samples can result
in a mismatch between training samples and the corresponding
ground truth labels. Since we only use few annotated samples
for training, the mismatch can cause mis-convergence and over-
fitting for the recognition model. Previous works [23], [26] show
that both the delay of annotation and mislabeled training sam-
ples can lower the accuracy if we directly build the recognition
model between input signals and fine-grained emotion labels.

To overcome these challenges, this paper proposes a few-shot
learning algorithm (EmoDSN1) for fine-grained emotion recog-
nition on small data using physiological signals. EmoDSN is
designed based on Deep Siamese Network (DSN), which can
rapidly converge on a small amount of training data (typically
<10 samples per class (i.e., 10 shot) [27]). It can provide recog-
nition results at fine level of granularity (every 2 s) by maximiz-
ing the distance metric between signal segments with different
emotion labels. To overcome the temporal mismatch between
signals and emotion labels, we design an embedding network to
automatically compensate for the delay of fine-grained emotion
labels. To avoid overfitting caused by mislabeled samples, we
also develop the distance fusion module which can merge the
distance metrics learned from different training samples. This
work makes the following contributions for multimedia com-
munity:
� We propose an end-to-end few-shot learning algorithm

which can predict V-A in fine-level of granularity (2 s) us-
ing physiological signals trained by a small amount (<10
shot) of data. The algorithm can help researchers to under-
stand the personalized experience of users watching videos
by collecting only a small amount of data for training.

� We test our algorithm on three datasets (CASE [16],
MERCA [8] and CEAP-360VR [28]) collected in three
environments (desktop, mobile, and HMD-based Virtual
Reality (VR)). Recognition results show good performance
for both personalized binary (1D-2 C) and 5-class (2D-5 C)
classification on all three datasets. we get an averaged ac-
curacy of 76.04%, 76.62% and 57.62% for 1D-2 C va-
lence, 1D-2 C arousal and 2D-5 C respectively by using
5 shot of training data. Our algorithm enables finding an
optimal trade-off between recognition accuracy and

1[Online]. Available: https://github.com/cwi-dis/EmoDSN

collecting small amounts of continuously annotated phys-
iological signals.

� We test state-of-the-art FSL algorithms [29]–[31] and com-
pare their performance with EmoDSN. Results show that
the recognition accuracy of EmoDSN outperforms other
FSL algorithms. Our ablation study also shows that the
embedding network (+11.86%) and distance fusion mod-
ule (+22.32%) we design can significantly improve the ac-
curacy.

� We run experiments to identify training samples from
which temporal moments of video watching (e.g., begin,
end and changing points [32]) can better represent the dis-
tribution of emotion labels and result in better recognition
results. We find that the changing points of emotion annota-
tion and the ending moments of video watching are better
temporal moments for training samples (result in higher
recognition accuracy) when only few annotated samples
are available.

II. RELATED WORK

In this section, we first review the previous works on emotion
recognition on small data and then narrow our scope to few-shot
learning based emotion recognition.

A. Emotion Recognition on Small Data

Fine-grained emotion recognition requires algorithms to pre-
dict multiple emotion states by relying on signals within one
certain time interval. To train such recognition models, previous
works [1], [3], [13], [14] need large amounts of data which are
annotated in fine-level of granularity. Specifically, they usually
require more than 90% of the annotated data in the datasets (e.g.,
CASE [16], RECOLA [17], K-EmoCon [19], MERCA [1]) to
train an accurate recognition model. That means users them-
selves or external annotators have to continuously annotate 3 to
9 hours (e.g., CASE: 9.5 h, RECOLA: 3.4 hours, K-EmoCon:
5.3 hours, MERCA: 7.5 hours) to obtain an adequate amount of
data for training. That requires large amounts of labeling effort
for either external annotators or users themselves. Thus, it is
challenging to collect large amounts of continuously annotated
data for fine-grained emotion recognition.

To overcome this challenge, previous works have applied
two kinds of methods to build recognition models with a small
amount of training data. The first kind of method [33]–[37]
builds a generative model such as Generative Adversarial Net-
work (GAN) to generate artificial signals which obey the distri-
bution of specific emotion categories. Then the recognition mod-
els are trained with the hybrid of synthetic and real signals. For
example, Chen [33] et al. design a GAN model to generate ECG
samples with the corresponding emotion labels. Their experi-
ments show that the augmented dataset help to increase the ac-
curacy by 5% compared with using only original data. Previous
works on other physiological signals (i.e., Electroencephalog-
raphy (EEG) [34], Electrooculography (EOG) [35], Blood Vol-
ume Pulse (BVP) [36], saccadic eye movement [37]) have also
demonstrated that the augmented signals can promote the recog-
nition accuracy by providing more data to train the recognition
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model. However, to generate generalizable distributions for dif-
ferent emotion categories, the generative model itself also needs
large amounts of signals with continuous annotation [38].

The second kind of method designs machine learning meth-
ods which can be trained by a small amount of ground truth
labels. For example, Romeo et al. [39] implement four weakly-
supervised learning algorithms to estimate fine-grained emotion
states from post-stimuli emotion labels (i.e., the labels user an-
notate after each video watching). The methods they develop can
identify which fine-grained signal segments (i.e. instances) can
represent the post-stimuli valence and arousal [40]. Similar ap-
proach is used by Pei et al. [41] to model the temporal dynamics
of emotional states. In their work, a weakly-supervised Bidirec-
tional LSTM [42] is designed to predict fine-grained emotion
labels according to the probability for that instance to predict the
corresponding coarse labels. Although the weakly-supervised
methods can predict fine-grained emotion labels with less
amount of annotation, they can only identify the annotated
(e.g., post-stimuli) emotion from the baseline emotion (e.g.,
neutral) and categorize all the remaining moments as part of the
baseline. Thus, they can only predict two emotion states (i.e.,
the annotated emotion and neutral) in fine-level of granularity.

B. Few-Shot Learning Based Emotion Recognition

Few-shot learning (FSL) is a kind of machine learning
method which can learn a task from few (typically <10 sam-
ples per class [30], [31], [43]) annotated samples. Compared
with weakly-supervised learning methods, FSL algorithms build
direct mappings between fine-grained emotion labels and in-
put signals, which can provide prediction with multiple emo-
tion categories. FSL has been applied in previous works on
emotion recognition using a variety of data modalities such
as images [22]. To learn the representation of emotions us-
ing few annotated samples, researchers need to design dif-
ferent embedding networks for different data modalities. For
example, Zhan et al. [22] design an affective structural em-
bedding framework to predict the emotions of images. Their
embedding network can learn an intermediate space which
bridges the affective gap between low-level and high-level visual
semantics.

For physiological signals, Jiang et al. [21] develop an FSL
algorithm to recognize the level of stress using ECG, EDA and
respiratory (RESP) signals. Their method, which is based on the
Matching Network [29], achieves 80% accuracy trained by only
30% of the signals (i.e., 31.5 mins) in WESAD dataset [44].
Patane et al. [27] propose a siamese network based arousal
recognition algorithm using ECG signals. Their algorithm ob-
tains +21.5% accuracy increase compared to state-of-the-art
machine learning algorithms trained with a subject-dependent
model. Siamese network [45] is a kind of FSL algorithm which
learns the difference between samples with different labels.
Compared with other FSL algorithms (e.g., the Matching Net-
work [29] used by Jiang et al.), Siamese network uses the
pair-by-pair learning structure (learn the difference between two
samples in two categories) instead of using the one-to-many
learning structure (learn the difference between one sample

and samples in other categories). It has been widely used for
emotion recognition because of its simple and interpretable
structure [46]. For example, Hayale et al. [46] use the Deep
Siamese Neural (DSN) network [47] to recognize 6 basic emo-
tions by facial expressions. For uni-dimensional signals, DSN is
also used by Feng et al. [48] to predict low/medium/high arousal
using speech signals. They obtain 43.4% accuracy trained with
a subject-dependent model.

Although the previous works above provide useful insights on
FSL or DSN based emotion recognition, they only recognize the
overall emotion of an event (e.g., one video watching) instead
of the fine-grained emotion responses. Our work aims to extend
few-shot learning algorithms for emotion recognition with fine-
level of granularity.

III. DSN BASED EMOTION RECOGNITION

In this section, we propose an Emotion recognition algorithm
based on Deep Siamese Network (EmoDSN) to discriminate
fine-grained physiological signal segments (i.e., samples) with
different emotion labels. EmoDSN learns the difference between
samples instead of building the precise mapping between sam-
ples and emotion labels. Thus it can converge with only few
annotated samples as training data. In the training stage, n sam-
ples are used for training. The influences of different temporal
moments of training samples are discussed in Section VI-B.
EmoDSN contains four parts: (1) Pre-processing: the obtained
physiological signals are firstly pre-processed using different fil-
ters to remove the noise and artifacts in signals. (2) Embedding
Network: the pre-processed signals are then fed into an embed-
ding network to learn embeddings representing the difference
of samples between emotion labels. (3) Siamese Learning: the
embeddings are learned based on the siamese structure. The out-
put of siamese learning is a distance metric which can represent
the probability that the two input samples belong to the same
emotion label. After the network is learned, the embedding for
each training sample will also be generated. In the prediction
stage, the pairwise distance metrics between testing and training
samples are fused by the (4) Distance Fusion module to obtain
the probability of the testing samples corresponding to different
emotion labels. The testing samples are predicted as the emotion
label with the highest probability. Below we provide a detailed
description of EmoDSN.

A. Pre-Processing

The physiological signals are first pre-processed by differ-
ent filters to remove the noises and artifacts. We follow the
pre-processing procedures which are widely used in previous
works [10]. For EDA signals, a low pass filter with a 2 Hz cutoff
frequency is used to remove noise [49]. For the BVP signals, a
4-order butterworth bandpass filter with cutoff frequencies [30,
200] Hz is implemented to eliminate the bursts [50]. For TEMP
signals, we use an elliptic band-pass filter with cutoff frequen-
cies [0.005, 0.1] [51]. To decrease measurement bias in differ-
ent sessions (i.e., each subject under each video stimulus), all
signals for each session are normalized to [0,1] using Min-Max
scaling normalization.
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Fig. 1. The architecture of proposed EmoDSN.

B. Embedding Network

The purpose of the embedding network is to automatically
extract features and learn latent vectors of samples to repre-
sent the difference of samples between emotion labels. Previ-
ous works [1], [52] on embedding networks for physiological
signals usually use the fine-grained segments of signals (i.e.,
samples) as the input. However, samples can be misaligned
with the fine-grained emotion labels due to the reaction de-
lay of continuous self-reporting. When continuously annotating
emotions towards videos, users first process the stimuli using
their senses (at ts) and then react to these changes (at ts + td)
which leads to a reaction delay (td). Thus, the sample at ts ac-
tually corresponds with emotion label at ts + td. To address the
problem of reaction delay, we use sliding windows to propose
multiple signal segments (sub-instance) with different delays.
Then, the embeddings of these sub-instances are learned using a
weakly-supervised multiple instance learning network. Below,
we describe the implementation details of each module in the
embedding network.

1) Sub-Instance Proposal: Suppose S = {sn}Nn=1, sn ∈
RL×C is a set of physiological signals with the number of chan-
nels C and the segmentation length L. For each sample sn, there
is a corresponding emotion label lm. To generate embeddings
which consider the delay of reaction, we reconstruct sn with
multiple sub-instances s′n = [sn1, sn2 . . . snK ]T , where snk is a
sub-instance (i.e., each row of sample s′n) with the delay of tk.
We use sliding windows with the window length L and stride
k to generate the sub-instances. After that, the input of the al-
gorithm become S ′ = {s′n}Nn=1, s

′
n ∈ RK×L×C , where K is the

number of sub-instances for each s′n.
2) Sub-Instance Level Feature Extraction: The features are

extracted from each sub-instance snk independently, which
means the feature extraction layers will not influence the in-
dependence between each sub-instance (no features are ex-
tracted from multiple sub-instances). The independent feature

extraction guarantees that each sub-instance has a unique in-
stance gain after the embedding network. The instance gains
can help us understand the duration of delay with which the
network can best discriminate signal segments with different
emotion labels.

The features for each sub-instance are extracted using a
3-layer (kernal size: L/2 + 1− L/4 + 1− L/8 + 1, channels:
4-8-16) 1D-CNN [53]. We use a shallow structure (three lay-
ers) instead of deep to avoid overfitting since each sub-instance
does not contain much information. We use large (i.e., equals
to half of the sub-instance length) convolutional kernels in the
shallow layer of the network. Large convolutional kernels have
a large receptive field across different sampling points in one
sub-instance thus can result in better recognition accuracy [54].
However, the local information can also be omitted by large ker-
nels and result in the difficulty for the network to converge [55].
Thus, we follow a classical strategy that gradually increases
the number of kernels and decreases the size of them when
the network goes deeper [56]. After sub-instance feature ex-
traction, the S ′ = {s′n}Nn=1 is mapped to the feature vectors
F = {fn}Nn=1, fn ∈ RK×L×E , where E = 16 is the dimension
of feature vectors.

3) Multiple Instance Learning: The purpose of multiple in-
stance learning module is to 1) merge the features learned
in sub-instances to generate embeddings and 2) assign each
sub-instance a instance gain representing the weights of sub-
instances for discriminating samples with different emotion la-
bels. The instance gains for all the sub-instances construct the
embeddings for the sample. Here we use a weakly-supervised
multiple instance learning architecture which is shown in Fig. 2.
Multiple instance learning can map the feature vectors of sub-
instances to the probability for that sub-instance to specific task
(in our case, discriminating between emotion labels). Thus, it
can promote the interpretability of our algorithm by helping us
understand with how much delay (sub-instances with high prob-
ability) the signal segment can better predict emotions.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 04,2023 at 12:26:31 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. The diagram for multiple instance learning module.

The feature vectors obtained from the previous module are
first input into a feature level fusion module using uni-dimension
convolution. The convolution is conducted on the dimension of
E to merge the features from different signal channels. After
that, the merged features are activated by a Rectified Linear
Unit (ReLU) function. Another uni-dimension convolution is
implemented on the dimension of L to fuse features for differ-
ent sampling points inside each sub-instance. At last, we ac-
tivate the results from previous modules with a softmax func-
tion. The purpose of the softmax activation is to (a) normalize
the instance gains in the range from 0 to 1 and (b) make the
network easier to calculate the gradient for back-propagation.
After the multiple instance learning module, the feature vec-
tor fi = {fnk}Kk=1, fnk ∈ RL×E is mapped into instance gain
gn = {gnk}Kk=1, gn ∈ R1. At last, the embedding of one sample
h = [g1, g2, . . . , gK ], where K is the number of sub-instances
for one sample.

C. Siamese Learning

The purpose of using the siamese learning network is to learn
a distance metric which can discriminate samples with different
emotion labels. Specifically, for sample si and sj , which are two
signal segments for ti and tj , the siamese learning network learn
a distance metric D with the target of D = 0 if they are with the
same emotion label and D = 1 if they are with the different
emotion labels. To train the network, we first construct two em-
bedding networks with shared weights. The two embeddings hi

and hj generated from the network are trained by contrastive
Loss:

Lcontrast = (1−Y)
1

2
(Dw)

2 +Y
1

2
max(0, 1−Dw)

2 (1)

where Y equals 0 or 1 for si and sj have the same or different
emotion labels respectively. Dw is the euclidean distance for
hi and hj . We also tested the cosine distance metric which is
also widely used for other siamese networks. However, our net-
work cannot converge using cosine metric. The contractive loss
encourages the network to learn embeddings to place samples
with the same labels close to each other while distancing the
samples with different emotion labels in the embedding space.
The siamese learning network is trained with the RMSprop [57]
optimizer because it can automatically adjust the learning rate
for faster convergence.

D. Distance Fusion

In the prediction stage, when a new sample st at time t comes,
we can obtain the pairwise distance metric D = {Dn}Nn=1 by
calculating euclidean distance between st and all training sam-
ples {sn}Nn=1 using their embeddings. The distance metric D
can also be used to represent the probability of st ∈ lm if the
emotion label of snm is available:

P (st ∈ lm|snm ∈ lm) = 1−D (2)

where P (st ∈ lm|snm ∈ lm) represents the probability that st
corresponds to the emotion label lm under the condition of
snm ∈ lm. Previous works [22], [29], [31] on few-shot learn-
ing simply average D with the same emotion labels and predict
st as the emotion label with the closet distance (or greatest pos-
sibility). However, the hypothesis of averaging the distances is
that the labels for all training samples are correct:

P (st ∈ lm) =
M∑

m=1

P (st ∈ lm|snm ∈ lm) · P (snm ∈ lm)

(3)
From (3) we can conclude that if all P (snm ∈ lm) = 1,

1− P (st ∈ lm) equals to the average of D. However, the fine-
grained self-reports, which are used as the labels for training,
can be mismatched with the physiological signals. Thus, some
samples in the training set can be labeled incorrectly. This prob-
lem is not that severe when we use large amounts of samples for
training. However, when we only use few annotated samples,
one or multiple mislabeled samples can significantly lower the
model accuracy.

To solve this problem, we propose the Distance Fusion mod-
ule based on Bayesian Fusion to estimate P (smn ∈ lm). Sup-
pose there are N training samples which are annotated as M
emotion labels, N = {Nm}Mm=1 are the numbers of training
samples with M emotion labels, respectively. Nm is the number
of training samples labeled as lm. smn represents training sample
n annotated as emotion label lm. The probability of smn ∈ lm
can be estimated by:

P (smn ∈ lm) = 1− 1

2

[
1

Nm

Nm∑
k=1

Dmk

− 1

M − 1

M,i�=m∑
i=1

⎛
⎝ 1

Ni

Ni∑
j=1

Dij

⎞
⎠
⎤
⎦ (4)

whereDij represent the distance between training sample si and
sj . The first and second Σ terms of (4) represent the probability
of smn similar to the training samples with the same and dif-
ferent emotion labels of smn respectively. If smn is similar to
the samples with the same label and dissimilar with the samples
with different labels, the probability of smn ∈ lm is high.

After we obtain all P (smn ∈ lm) for Nm samples labeled as
lm, we can calculate P (st ∈ lm) by (3). At last, we predict st
corresponds to the emotion label with the highest probability:

lt = argmax
m

(P (st ∈ lm)) (5)

where lt is the predicted emotion label for the st.
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Fig. 3. Graphical illustration of discretized emotion categories.

IV. DATASETS

We test EmoDSN on three datasets: CASE [16], MERCA [8]
and CEAP-360VR [28] which are collected in three environ-
ments: desktop, mobile and VR, respectively. The problem
EmoDSN focuses on is recognizing valence and arousal (V-A)
in fine level of granularity. Thus, we choose datasets with fine-
grained V-A self-reports as ground truth labels for validating
the performance of EmoDSN. We evaluate EmoDSN on datasets
collected in three different environments to test whether it can
be generalized to different scenarios. We also test EmoDSN by
signals collected using golden standard (CASE) and wearable
(MERCA and CEAP-360VR) devices to test whether EmoDSN
can generalize to different types of physiological sensors.

V. EXPERIMENTS AND RESULTS

A. Implementation Details

To implement a fair evaluation among the three datasets, we
process the physiological signals to be as similar as possible be-
fore inputting them to EmoDSN. Since the three datasets have
different sampling rates, we interpolate the signals in MERCA
and CEAP-360VR to 50 Hz using linear interpretation [58]. We
choose linear interpolation because it is the simplest interpola-
tion method which will not change the distribution of the signals.
For the CASE dataset, the signals are down-sampled to 50 Hz by
decimation down-sampling [59]. The HRs signals of CASE are
extracted from ECG signals using heartpy library [60]. We use
the mean V-A value of 2-second [1] as the labels for training and
testing the algorithm. The window length L and stride k for the
sub-instance proposal are 2 s and 0.5 s respectively according to
previous research [1], [39]. For each timestamp t, we move the
sliding window 12 times to cover the annotation delay for max-
imum 10 s. The amount of time of annotation delay is discussed
in Section VI-A.

We evaluate EmoDSN by two tasks: the one-dimensional two-
class (1D-2 C) classification [61] and the two-dimensional 5-
class (2D-5 C) classification [62], which are widely used as
the tasks for evaluating emotion recognition algorithms using
physiological signals. We follow the standard labeling schemes
from previous works [61], [62] to map continuous values of V-A
to discretized emotion categories. The graphical illustration of
this operation is listed in Fig. 3.

For the training procedure, we train user-specific models for
all the users in three datasets. We follow the standard proce-
dure of testing few-shot learning algorithms with continuous
signals [43]. We randomly sample N (i.e., shot) sampling points

TABLE I
THE PERFORMANCE OF EMODSN TRAINED WITH 5-SHOT

in each emotion category as training samples from one user and
use the rest of the samples for testing. The results reported in
this section are the average results for all users. We also tried
to train user-independent models which use only few annotated
samples from one user and test the model on other users. How-
ever, due to the high inter-subject variability that affects the
physiological signals, building user-independent emotion recog-
nition model is still challenging even using large amounts of
annotated data [39], [63]. In this study, we use only few anno-
tated data for training. User-independent models did not achieve
satisfactory performance (accuracy not above chance level) for
all three datasets and thus the result was not reported in this
study.

B. Classification Results

We use accuracy (acc) and macro-F1 score (m-f1) to evalu-
ate the performance of our algorithm. The accuracy represents
the percentage of correct predictions. The macro-F1 score is the
mean of precision and recall for each label. We use macro-F1
score instead of weighted and binary F1-score to take into ac-
count label imbalance. Compared with accuracy, the macro-F1
score can provide more objective evaluation results by taking
into account how the data are distributed.

The performance of EmoDSN trained with 5-shot is shown in
Table I. EmoDSN can obtain up to 70% for 1D-2 C and 56%
for 2D-5 C, which are much higher than chance level (shown in
Fig. 6). The results are obtained by training with only 5-shot
(10 seconds of sampling points for each emotion category).
That demonstrates that EmoDSN can converge and obtain accu-
rate fine-grained emotion recognition with only few annotated
samples.

C. Results for Different Emotion Categories

The confusion matrices for 2D-5 C are shown in Fig. 4. We
only show the confusion matrices for 2D-5 C because it con-
tains classification results for more emotion categories. From
the confusion matrices we can see that EmoDSN performs well
on discriminating the neutral and non-neutral samples. Almost
all neutral samples are predicted as neutral for the three datasets.
EmoDSN also performs well on discriminating samples with
high valence. An averaged acc of 78.6% is obtained by EmoDSN
when discriminating high/low arousal under the condition of
high valence. However, the performance on discriminating sam-
ples with low valence is not as good as high valence. More than
20% of the LVHA samples are categorized as LVLA on average
of the three datasets.
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Fig. 4. The confusion matrices for 2D-5 C trained by 5-shot.

Fig. 5. The training losses (5-shot, 2D-5 C) of EmoDSN on CASE (left),
MERCA (middle) and CEAP-360VR (right), each curve represents the training
loss for the user-specific model trained on one user.

Fig. 6. Percentage of samples in different emotion classes.

The reason is the class imbalance for different emotion cat-
egories. As shown in Fig. 6(a), for 2D-5 C, the neutral class
has more than 30% of samples for all three datasets. The most
imbalanced dataset is CASE, which contains more than 50% of
samples with neutral labels. We also find the LVLA and LVHA
classes have comparatively fewer samples (16.48%, 31.04% and
29.37% for CASE, MERCA and CEAP-360VR respectively).
That is why discriminating different levels of arousal is more
challenging under the condition of low valence. However, for
1D-2 C, the high/low V-A classes are balanced. We do not find
any classes with less than 40% of all samples. Thus, the perfor-
mance for 1D-2 C is comparatively balanced: the m-F1 score is
3.6% lower than the acc on average of the three datasets. For
2D-5 C, the m-F1 is 7.4% lower than the acc on average of the
three datasets.

However, even taking the class imbalance into consideration,
the acc obtained by EmoDSN is still higher than the chance
level. For CASE, MERCA and CEAP-360VR respectively, the
accuracies are 19.07%, 24.67% and 17.75% higher than the per-
centage of samples in the class with the most samples (i.e., the
chance level). The results show that although EmoDSN provides
relatively imbalanced precision and recall for different V-A cat-
egories, it does not overfit into one specific V-A category and
can still provide accurate predictions.

D. Results for Different Datasets and Subjects

For the comparison between different datasets, our method
performs best on CASE dataset (up to 76% and 58% acc for
1D-2 C and 2D-5 C respectively). The acc of 1D-2 C on
MERCA is similar to CASE but the 2D-5 C acc on MERCA
is 2.69% lower. Both the accuracies for 1D-2 C and 2D-5 C
on CEAP-360VR are lower than the accuracies on CASE for
3.35% on average. We speculate that the different accuracies of
EmoDSN on three datasets is a result of the different experimen-
tal environments. The data collection experiment of CASE was
conducted in an indoor laboratory environment, which contains
less interference and noise (e.g., environment noise, user move-
ment, sensor detachment). Thus, the signals from CASE con-
tain less noise and artifacts caused by both the users themselves
and the outside environment. The results indicate that the mo-
bile (MERCA) and VR environments (CEAP-360VR) are more
challenging for fine-grained emotion recognition compared with
a laboratory-based desktop (CASE) environment. However, the
maximum difference in acc between the three datasets is less
than 7%, which shows that our algorithm does not overfit on
one specific dataset. The test results on different datasets show
good generalizability of EmoDSN among different environments
(desktop, mobile and VR).

For the comparison between different subjects, Fig. 7 shows
the acc for each individual subject of three datasets. From Fig. 7
we can find variability of acc between different individuals: the
average SD for 1D-2 C valence, arousal and 2D-5 C are 10.43%,
11.31% and 6.11% respectively. Our model achieves up to the
chance level (the percentage of samples in the class with the
most samples) accuracies for 86.05%, 85.57% and 82.37% of
the subjects for 1D-2 C valence, 1D-2 C arousal and 2D-5 C re-
spectively. For the subjects which our algorithm does not achieve
above the chance level accuracies, we find the annotations of
their data are highly imbalanced (i.e., subject annotates a high
percentage of neutral emotion). For example, subject 6 in the
CEAP-360VR dataset annotated 72.35% of his or her emotion
as neutral when watching videos. The average percentage of
neutral annotations for these subjects is 28.41% higher than the
subjects whose accuracies are above the chance level. Although
recognition accuracies from some of the subjects are low be-
cause of class imbalance, our model still achieves above the
chance level acc for more than 80% of the subjects. The balanced
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Fig. 7. The recognition acc for individual subject of CASE, MERCA and CEAP-360VR.

Fig. 8. The visualization of embedded features using t-SNE. Red and blue
points denote the train and test samples, respectively. Best viewed in color.

performance on different subjects shows good generalizability
of EmoDSN among different subjects.

E. Visualization of the Embeddings

To visualize the joint sample distribution of the train-
ing/testing set, we use T-distributed stochastic neighbor em-
bedding (t-SNE) to reduce the dimension of the embeddings
to 2D. It is widely used by previous works [64], [65] of few-shot
learning approaches for visualizing the training/testing set. From
Fig. 7 we can see that the embedding trained by EmoDSN con-
structs the compact clusters of the training features close to
the testing features (average purity score = 0.685, 0.657 and
0.614 for CASE, MERCA and CEAP-360VR respectively). The
close temporal position between training/testing samples indi-
cates that the learned embeddings can represent the joint dis-
tributions between few-shot training samples and the remaining
test samples for emotion classification. Previous works [64], [66]
show that the closer the training/testing sets are, the easier the
classification network can complete the learning task. Our visu-
alization results demonstrate the effectiveness of the embedding
network we designed for the Deep Siamese Network.

F. Comparison With Baseline Methods

1) Implementation Details: To compare the performance of
EmoDSN with state-of-the-art emotion recognition methods,
we choose two kinds of baselines: classic FSL networks (i.e.,
Matching network (MN) [29], Prototype network (PN) [30],
Deep Siamese Network (DSN) [47], Relation Network(RN) [31]
and Model Agnostic Meta Learning (MAML) [43]) and
networks designed for physiological-signal-based emotion
recognition (HetEmotionNet (HetNet) [67] and SFENet [68]).
We choose the five FLS baselines because they are widely
used by previous works for emotion recognition using simi-
lar data modalities (i.e., uni-dimensional data modalities such
as speech [48] and physiological signals [21]). To implement
a fair comparison, we fine-tune the structure of these methods

to make them have the same embedding network we designed
in Section III-B. Thus, the difference between each method is
only the learning structure instead of the embedding network for
feature extraction. We also use the same optimizer and learning
rate (lr = 0.001) as EmoDSN to train all four few-shot learn-
ing algorithms. For HetNet, we construct the spatial-temporal
and spatial-spectral graph (by DE features) and train them
using the same graph recurrent neural network. Since the folding
approach used by SFENet is based on the spatial distribution of
EEG electrodes, we cannot use it for other physiological signals.
Thus, we only use the 3D-CNN and ensemble learning designed
in SFENet for comparison. We train the above algorithms with
one, five and ten shot to compare their performance trained by
different amounts of annotated samples. To test the stability of
each algorithm, we run all the experiments 5 times [69], [70]
and report the mean and SD of the accuracies.

2) Accuracy Comparison: Table II shows the results of the
comparison. We observe that the gradient cannot descent (losses
remain constant) when training the MN, PN and RN with 1-
shot and 5-shot for 2D-5 C. As shown in Fig. 5, this problem
does not occur when we use DSN: the losses descend rapidly
after a few epochs (<10) for all personalized models in three
datasets. The performance of MAML is better (acc is 8.89% and
6.94% higher for 1D-2 C and 2D-5 C respectively) than other
FSL methods. However, the acc increase for MAML is not as
significant as other FSL methods: when the number of training
samples increases from 1-shot to 5-shot, the acc increase 3.04%
and 6.94% on average for 1D-2 C and 2D-5 C respectively. The
other FSL methods however, increases 9.22% and 10.76% for
1D-2 C and 2D-5 C respectively.

For the two fully supervised learning methods, we find a sim-
ilar problem with MN, PN, and RN that for 2D-5 C, the gradient
cannot descent (losses remain constant) for 1-shot and 5-shot.
Their average acc for 10-shot is also 5.89% lower than DSN.
We also find the problem of overfitting for them when trained
with 10-shot: the training acc increases rapidly over 90% after 5
epochs but the testing acc does not increase. The results demon-
strate that the fully-supervised learning methods cannot achieve
good performance when only a limited amount of data are used
for training.

In general, the performance of EmoDSN is better than both
the state-of-the-art FSL algorithms and fully-supervised al-
gorithms. To compare the performance difference between
EmoDSN and baseline methods, we follow the previous work
of Kumar et al. [71] which use Z-test and Chi-square test
to compare the classification accuracies. For both the Z-test
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TABLE II
COMPARISON BETWEEN FEW-SHOT LEARNING METHODS

and Chi-square test, we found significant differences (all
p<0.01) between EmoDSN and MN (Z = 14.21, χ2 = 5.48),
PN (Z = 14.14, χ2 = 6.59), RN (Z = 21.04, χ2 = 8.98), DSN
(Z = 14.49, χ2 = 2.99), MAML (Z = 12.36, χ2 = 2.17), Het-
Net (Z = 11.69, χ2 = 3.06) and SFENet (Z = 23.74, χ2 =
5.86). The statistical analysis shows a significant difference
between the performance of EmoDSN and other baseline
methods.

3) Stability Comparison: The stability of 5 FSL
methods (i.e., MN, RN, PN, DSN, MAML) is lower than
the two supervised learning algorithms (i.e., HetNet and
SFENet): the SD for the 5 experiments is 7.81% higher. When
the number of training samples increases to 10-shot, the SD
difference between FSL and fully-supervised learning methods
also increases accordingly (on average 10.75% for 10-shot).
FSL algorithms learn the difference (MN, RN, PN, DSN) or
train a meta learner (MAML) between training samples instead
of learning the exact mapping between samples and labels.
Thus, their performance depends on the quality of training
samples, which leads to instability if we consider all training
samples to be correctly labeled [72]. The fully-supervised
learning methods however, optimize the classifier among all
training samples. Thus, they converge on a worse (i.e., low acc)
but comparatively stable model if only few samples are used for
training. The results are in line with our conclusion in ablation
study that we cannot get stable and accurate recognition results
if we assume all P (snm ∈ lm) are to be 1.

TABLE III
ABLATION STUDY (ACC (SD)) FOR VANILLA SIAMESE (VS), EMBEDDING

NETWORK (EN) AND DISTANCE FUSION (DF)

G. Ablation Study

1) Implementation Details: We conduct an ablation study to
verify the effectiveness of each component in EmoDSN. We
begin with only using the Vanilla Siamese (VS) structure to
train the network. The VS structure directly uses the raw signal
segments without passing them through the embedding network.
Then we test the performance of combining the VS with the Em-
bedding Network (EN) described in Section III-B. For the two
above experiments, instead of using Distance Fusion (DF), we
follow the traditional strategy of few-shot learning algorithms:
average the distances with the same emotion labels and predict
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the samples as the emotion label with the closest distance. Fi-
nally, we replace the simple averaging with the DF described in
Section III-D for the complete EmoDSN. To test the stability of
EmoDSN, we also repeat the experiments 5 times [69], [70] and
report the mean and SD of acc.

2) Accuracy Comparison: From the results (shown in Ta-
ble III) we can see both EN and DF contribute to the classi-
fication tasks. The EN benefits the classification tasks by ex-
tracting deep features and taking reaction delay into consid-
eration. Thus, the accuracies increase 11.85% on average af-
ter combining EN to VS. We also observe a significant in-
crease of accuracies (more than 20% for 1D-2 C and 10% for
2D-5 C) after adding the distance fusion module. This finding
demonstrates that simply averaging the distances from differ-
ent shot is not suitable for fine-grained emotion recognition us-
ing physiological signals. It necessitates considering the prob-
ability that some mislabelled training samples can significantly
lower the model accuracy. In conclusion, the observations above
demonstrate the effectiveness of the components in the proposed
algorithm.

3) Stability Comparison: For the comparison of SD, we find
both VS and VS-EN have relatively unstable performance: the
average SD is 14.39% and 9.58% for VS and VS-ED respec-
tively. Adding DF however, can improve the stability of the net-
work by decreasing the SD to 1.6%. When randomly selecting
only few training samples, some samples with low-confidence
annotation will affect the performance of the network. If all
P (snm ∈ lm) are assumed to be 1, the network is unstable be-
cause the performance is related to the quality of labels selected
for training. However, DF modules can decrease the instability
by assigning less confident samples lower weights for classifi-
cation. The results demonstrate the necessity and effectiveness
of adding DF into EmoDSN.

H. Effectiveness of DF Module

To further clarify the effectiveness of the distance fusion
(DF) module for the wrong labels, we use it to identify poten-
tially wrong labels and correct them when classifying emotions.
Specifically, we first calculate the P (snm ∈ lm) for all training
samples using (4). P (snm ∈ lm) represents the probability of
training sample snm corresponds to the emotion label lm. If the
probability is lower than 0.5, we assume the sample is mislabeled
and correct it. Here we only run the experiments for 1D-2 C be-
cause we cannot estimate the correct label of snm for multi-class
classification if P (snm ∈ lm) is low. For multi-class classifica-
tion, if we know P (snm ∈ lm) <0.5: we do not know which
i can satisfy P (snm ∈ li,i�=m). However, for binary classifica-
tion, since P (snm ∈ lm)+P (snm ∈ li,i�=m) = 1, if P (snm ∈
lm)<0.5 we can easily know P (snm ∈ li,i�=m)>0.5. Thus, the
mislabeled samples are corrected as the label opposite to its orig-
inal annotation. Then we average the distance (D) with the same
emotion labels after the label correction and predict the testing
sample as the emotion label with the greatest possibility. Then
we compare the recognition accuracies among the network a)
without the Correction of Labels (no-CL), b) with the Correc-
tion of Labels (CL) and c) with the DF module. To ensure the

Fig. 9. Recognition accuracies among the network a) without the Correction
of Labels (no-CL), b) with the Correction of Labels (CL) and c) with the DF
module.

TABLE IV
AVERAGE TRAINING TIME FOR DIFFERENT METHODS

stability of the experiment, we run the experiment 5 times [69],
[70] and report the average acc and the SD of 5 experiments.

As shown in Fig. 9, after the correction of labels, the accu-
racies increase 19.12% on average of three datasets. Since both
no-CL and CL use the simple averaging distance learned by the
DSN, the detection of mislabeled samples can promote the clas-
sification performance of EmoDSN. However, we also find that
using DF can result in an average acc increase of 8.43% com-
pared with using CL. In addition, the performance of DF is more
stable than CL: the average SD of DF is 5.26% lower than CL.
The difference between the network with DF and CL is that DF
uses a soft weighted average of D to estimate the emotion label.
CL uses an arithmetic average of D after correcting the labels
of the samples whose P (snm ∈ lm) <0.5. Thus, for few-shot
learning based fine-grained emotion recognition, assigning low
weights for an inexactly labeled sample can result in better and
more stable performance compared with simply correcting it
according to the intra data distribution of training samples (i.e.,
whether the distribution of this sample is coherent with others).

I. Running Time and Efficiency

The average training time for different methods are shown
in Table IV. Our model is implemented using Keras and Ten-
sorflow. All our experiments are performed on a desktop with
NVIDIA RTX 2080Ti GPU with 16 GB RAM. The one-to-many
learning structure is used by MN, PN, RN and MAML. Thus, the
number of training samples for them is n(n− 1) · k2, where n
and k are the numbers of shots and classes of the learning task re-
spectively. Our method uses the pair-by-pair learning structure.
The number of training samples is Σn·k−1

i=1 (n · k − i). For the
fully-supervised learning methods, training samples are directly
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input into the network without combining them into different
pairs. Thus, the number of training samples for them is n · k.

Although the fully-supervised methods have a more complex
structure, the number of samples for training is less than FSL
methods. Thus, their training time is shorter than FSL methods.
However, they do not achieve up-to-chance level acc because
their learning structures are not designed for converging on a
small amount of training samples. For the FSL methods, the
pair-by-pair learning structure used by our method results in
fewer training samples compared with other FSL methods using
one-to-many structures. Thus, our method requires less training
time: EmoDSN requires only 54.83% of the average training
time of other FSL methods. The result demonstrates the good
efficiency of EmoDSN compared with baselines using both fully-
supervised and FSL methods.

Although the result of 10-shot is better, it requires much more
training time compared with 5-shot. As shown in Table IV, train-
ing the model using 10-shot takes almost 4 times as long as
training the model using 5-shot. The testing acc and m-F1 score
however, only increases 0.15 and 0.20% on average for the three
datasets. Increasing the training samples from 1-shot to 5-shot
however, result in the increase of acc and m-F1 for 11.58 and
9.32% respectively. Thus, using 5-shot makes a trade-off be-
tween training time and model accuracies.

VI. DISCUSSION

A. Reaction Delay of Continuous Annotation

According to the research of Metallinou et al. [73], there are
time delays (e.g., due to gender, age, distraction levels) between
the occurrence of an emotional event and its annotation consider-
ing that continuous annotations are performed in real-time. If we
use misaligned annotation as labels to train the network, it will
overfit or not converge. Most of the previous works [23]–[25]
use visual features from video stimuli to align the annotation. In
these approaches (also known as explicit compensation [74]), the
delay compensation and the emotion prediction are performed
separately. However, these approaches assume that the reaction
delay is fixed for different users watching the same video stim-
uli. This assumption is untenable as the reaction time is both
stimulus dependent and individual dependent [74].

The last layer of EmoDSN can identify which sub-instances
(signal segments with different time of delay) can better predict
the fine-grained emotion labels. Once the network is trained, we
can observe the instance gains in the last layer to find out with
how much delay the network can perform the best. Our approach
belongs to the implicit compensation [74], which compensates
for delays while modeling the relationship between input signals
and emotion labels. The uniqueness of our approach is that we
do not have to manually adjust the parameters (e.g., the width
of analysis window for LSTM [26] or the receptive field for
CNN [75]) in the network for compensating different delays for
different individuals.

To obtain the range of reaction delay, we first run the 1D-2 C
task and get the delays of the sub-instances with maximum in-
stance gain (i.e., have the highest probability to predict emotion
labels). We follow the procedure of previous works [23], [25]

Fig. 10. The reaction delays for valence and arousal respectively.

that estimate the delay of each dimension (valence and arousal)
separately. Fig. 10 shows the box plot of reaction delays estimate
by EmoDSN for three datasets.

The mean and standard deviation of delays are: CASE =
2.59(1.47), MERCA = 2.50(1.43), CEAP-360VR = 2.89(1.03)
and CASE = 4.05(1.45), MERCA = 4.21(1.42), CEAP-360VR
= 4.38(1.27) for valence and arousal respectively. The mean
delay for arousal is higher than the delay for valence for all
the three datasets. A Shapiro-Wilk test shows that the delays
for both valence and arousal in three datasets are all normally
distributed (all p > 0.05 for three datasets). For the com-
parison between different scenarios (desktop, mobile and VR
for CASE, MERCA and CEAP-360VR respectively), we per-
form a ANOVA. Here we do not find a significant effect of
scenarios on both valence (F (2, 80) = 0.795, p = 0.455, η2p =
0.019 and arousal (F (2, 80) = 0.416, p = 0.661, η2p = 0.010.
However, through Welch’s t tests, we do find there is signif-
icant difference between the delay of valence and arousal for
CASE (t(58)=2.869, p <0.01, Cohen’s d = 0.944), MERCA
(t(40)=3.804, p <0.01, Cohen’s d = 1.372) and CEAP-360VR
(t(62)=5.045, p <0.01, Cohen’s d = 1.340) respectively.

These results show that users need more time to react for anno-
tating arousal than valence. This finding is coherent with most of
the previous works using explicit [23]–[25] compensation meth-
ods. The averaged delays (2.66 s and 4.21 s for V-A) obtained
by our method are also similar to the results obtained by explicit
methods (e.g., 2 s and 4 s from Huang et al. [23], 3.08 s and
3.95 s from Mariooryad et al. [24] for V-A respectively). Thus,
our method for compensating reaction delay can provide simi-
lar results without using visual and audio features from stimuli.
The average annotation delays in different datasets collected in
different scenarios are comparable. The reason for this finding
is that the annotations of all three datasets were collected using
the joystick-based annotation interface.

We also conduct an experiment to find out whether sliding
windows with long delays can introduce redundant information
from other temporal moments for emotion recognition. Fig. 11
shows the relationship between the steps of sliding windows and
recognition acc for 1D-2 C arousal and valence respectively. The
recognition acc keeps increasing for both valence and arousal
recognition when the steps of delay increase from 0 s to 7 s.
The low acc caused by the short delay time of sliding windows
show that if the sliding windows cannot cover enough delay,
the embedding network will fail to identify the sub-instances
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Fig. 11. The relationship between the steps of sliding windows and recognition
acc.

which represent the emotion label of that moment. The recog-
nition acc for V-A becomes stable after increasing the delay of
sliding windows for 7 s and 10 s respectively. Thus, the noise of
adding steps of sliding windows can be filtered by the MIL mod-
ule: the recognition acc do not decrease when we add the steps
of the sliding window. Instead of fully-supervised learning, all
the sub-instances are weakly supervised by the emotion labels.
The weights learned by MIL layers represent the probability of
one sub-instance for discriminating samples between different
emotion categories. Thus, the redundant information from other
temporal moments can be automatically filtered (i.e., assign low
weights). The results are also in line with the finding that the an-
notation delay of arousal is higher than the delay of valence: we
need to add more steps (i.e., delay time) of sliding windows to
cover the corresponding sub-instances for arousal recognition.

B. Do the Temporal Moments of Training Samples Affect the
Performance?

In Section V, we randomly sample N training samples from
each emotion category to train EmoDSN. Although it is the stan-
dard evaluation procedure to test few-shot learning algorithms,
it is difficult to get randomly balanced number of samples with
different emotion labels. When applying the algorithm for evalu-
ating the user experience of watching videos, the possible meth-
ods are 1) randomly stop the video and ask users to annotate
their emotions or 2) ask users to annotate at some fixed tempo-
ral moments to obtain the emotion labels for training. Since we
use only few annotated samples to train the network, we want
to find out samples from which temporal moments can better
represent the distribution for the whole video watching and re-
sult in better recognition results. We also want to explore the
amount of samples EmoDSN needs to obtain accurate recogni-
tion when selecting training samples in different temporal mo-
ments of video watching. Answering these two questions can
help researchers maximize the performance of EmoDSN and
minimize the amount of training samples by asking users to an-
notate at the most suitable temporal moments in video watching.

To achieve this, we select training samples from both fixed and
random temporal moments of video watching and compare the
recognition acc (1D-2 C) when training with different amounts
of samples. Specifically, we choose the beginning, ending and
the changing points as fixed temporal moments and compare the
result with the random moments:
� Beginning: We choose the first K samples from a video

watching as training samples and test on the rest.

� Ending: We choose the lastK samples from a video watch-
ing as training samples and test on the rest.

� Changing points: According to the research of Sharma et
al. [32], the changing points in continuous annotation can
signify emotionally salient moments. Thus, we want to find
out whether these samples can better represent the distri-
bution for the whole video watching. We select samples
from the changing points of annotation (obtained using the
Changing Points Analysis (CPA) [32]) as the training sam-
ples and test on the remaining samples.

� Random: We randomly choose K samples from one video
watching as the training samples and test on the remaining
samples. Unlike balanced random selection in Section V,
it does not ensure each emotion category has a balanced
number of training samples.

The results of how the acc of EmoDSN changes with differ-
ent amounts of samples from different temporal moments of
video watching is shown in Fig. 12. From Fig. 12(d) we observe
that random selection results in great fluctuation of the recog-
nition acc when more samples are used for training. Selecting
from fixed temporal moments however (Fig. 12(a)–(c)), results
in relatively stable performance when inputting more training
samples. Thus, selecting training samples from fixed temporal
moments can result in more stable performance when we only
use few annotated samples for training.

We also observe that if we choose training samples from the
beginning of video watching, the algorithm needs more training
samples to converge. It needs more than 10 training samples (20
seconds) to increase the recognition acc above 50%. Using the
ending moments however, requires less than 8 training samples
(16 seconds) to achieve 50% acc. The best temporal moments
to select the training samples are the changing points: the acc
exceeds 70% by only using 4 samples (8 seconds) for training.
Thus, the samples at the changing points and the ending mo-
ments can better represent the distribution of the whole video
watching and result in better acc with fewer samples.

The results we obtain are coherent with the peak-end the-
ory [76] that the most salient (peak) or recent (end) moments can
better represent the emotions of users while watching videos. We
also observe that the distributions of samples with specific emo-
tion labels are different across the temporal moments. Fig. 13
shows the percentage of samples with high/low V-A labels in dif-
ferent temporal moments of video watching. Compared with the
ending moments of video watching, most of the samples (more
than 70% for all three datasets) from the beginning moments are
labeled as high V-A. If we choose these samples as training data,
the imbalanced training set can result in mis-convergence of the
learning network (e.g., in Fig. 12(a) when the amount of samples
<12 s, acc <30%). It also explains why fewer training samples
are required from the end of video watching for good results:
the samples are more balanced at the end of video watching.

In conclusion, the temporal moments of training samples do
have influence on the performance of EmoDSN. The take-way
message from this experiment is that samples from the changing
points of emotion and the ending moments of video watching
are better training samples when only few samples are available
for building up an emotion recognition system.
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Fig. 12. The 1D-2 C recognition acc when training EmoDSN with samples from the (a) beginning, (b) ending, (c) changing points and (d) random position of
video watching. The granularity of samples is 2 seconds. The amount of samples are shown in the unite of seconds (e.g., 4 seconds = 2 samples).

Fig. 13. Percentage of samples with high/low V-A labels in different temporal
moments of video watching for CASE, MERCA and CEAP-360VR.

VII. LIMITATIONS AND FUTURE WORK

Given the challenges of predicting valence and arousal labels
at a fine level of granularity using only few annotated samples,
there are natural limitations to our work. First, EmoDSN only
works well for the personalized or subject-dependent emotion
recognition model. Since the patterns of physiological signals
are highly variable between subjects [39], [63], using few an-
notated samples to model it is challenging and relies on the
careful selection of training samples. In the future, we will
extend EmoDSN for subject-independent emotion recognition
model by finding out which training samples can represent
the inter-subject variability of physiological signals. In addi-
tion, EmoDSN requires discretization of continuous labels for
fine-grained recognition since EmoDSN is designed specifically
for classification instead of regression. In the future, we will ex-
tend the EmoDSN into few-shot regression [77] algorithm and
obtain continuous output for emotion recognition. It is also es-
sential for us to compare the performance of EmoDSN on more
datasets to further test its generalizability. However, the number
of datasets with continuously annotated physiological signals is

to date limited. It lacks benchmark results using basic few-shot
learning methods. Thus, it is difficult to make comparisons with
more few-shot learning methods.

VIII. CONCLUSION

Fine-grained emotion recognition requires training the algo-
rithm with large amounts of continuous emotion labels. In this
paper, we propose EmoDSN, a Deep Siamese Network based
few-shot learning algorithm to classify fine-grained valence and
arousal with only a small amount of annotated signals. The em-
bedding network of EmoDSN enables our algorithm to com-
pensate the reaction delay of annotation while predicting the
fine-grained valence and arousal. The distance fusion module
of EmoDSN minimizes the overfitting problem caused by mis-
labeled training samples. The proposed algorithm achieves rea-
sonable performance (averaged accuracy of 76.04, 76.62 and
57.62% for 1D-2 C valence, 1D-2 C arousal and 2D-5 C respec-
tively) by using only 5 shot as training data for subject-dependent
testing on three datasets collected in three different environ-
ments (i.e., desktop, mobile, and HMD-based VR). Our algo-
rithm also outperforms other few-shot learning algorithms which
are widely used for emotion recognition. The ablation study
shows that the embedding network and distance fusion module,
which are specifically designed for physiological signals based
fine-grained emotion recognition, can significantly improve the
recognition accuracy. Our experiment on reaction delay of an-
notation shows that 1) the reaction delay for arousal is longer
than the delay for valence and 2) the reaction delays between
different scenarios have no significant difference. We also find
that the changing points of emotion annotation and the ending
moments of video watching are better temporal moments for se-
lecting training samples: if we select training samples from these
two temporal moments, EmoDSN can provide better recognition
results with fewer annotated samples. Source code for EmoDSN
is publicly available on https://github.com/cwi-dis/EmoDSN.
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