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Abstract: In this work, we propose two cooperative passivity-based control methods for networks of
mechanical systems. By cooperatively synchronizing the end-effector coordinates of the individual
agents, we achieve cooperation between systems of different types. The underlying passivity property
of our control approaches ensures that cooperation is stable and robust. Neither of the two approaches
rely on the modeling information of neighbors, locally, which simplifies the interconnection of
applicable systems and makes the approaches modular in their use. Our first approach is a generalized
cooperative Interconnection-and-Damping Assignment passivity-based control (IDA-PBC) scheme
for networks of fully actuated and underactuated systems. Our approach leverages the definition of
end-effector coordinates in existing single-agent IDA-PBC solutions for underactuated systems to
satisfy the matching conditions, independently of the cooperative control input. Accordingly, our
approach integrates a large set of existing single-agent solutions and facilitates cooperative control
between these and fully actuated systems. Our second approach proposes agent outputs composed
of their end-effector coordinates and velocities to guarantee cooperative stability for networks of
fully actuated systems in the presence of communication delays. We validate both approaches in
simulation and experiments.

Keywords: agents and autonomous systems; cooperative control; nonlinear systems; passivity-based
control

1. Introduction

The dynamics of mechanical systems are physically governed by their storage and
dissipation of energy, and the power flow originating from the interaction with other
systems. These systems are at rest when the energy in the system is minimal and the
associated equilibrium tends to be stable and robust to perturbations. Passivity-based
control (PBC) is a control methodology based on these principles, shaping the energy of
a system via suitable control inputs to be minimal at the control objective. This generally
results in robust stabilizing controllers, even when the system under study is nonlinear.

In this work, we propose two novel distributed control architectures for networks
of mechanical systems that inherit the robust stability properties of PBC in a networked
context. We use these properties to develop a framework in which system interconnec-
tions become robust and modular, i.e., independent of the individual system dynamics.
Our approach is applicable to networks of systems, where each system has a different
dynamical model. Such networks are referred to as heterogeneous. The aforementioned
properties are useful in many engineering domains where interaction between varying
system types is beneficial and can have applications in medical, logistic, or aerospace
industries [1,2].

An important distinction between systems is their degree of actuation. The states
of fully actuated systems can be influenced directly from the input. For these types of
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systems, distributed PBC controllers are well-established (see [3] for a summary). On the
contrary, underactuated systems lack actuation in one or multiple directions of the state space.
The resulting control problem for these systems is more complicated and a general approach
is lacking. One of the most general frameworks for these types of systems is Interaction-and-
Damping Assignment passivity-based control (IDA-PBC) [4], which controls the open-loop
system to match, in closed-loop, a desired system with minimum energy at the control
objective. Adding damping to the closed-loop system forces it towards the assigned
equilibrium. Our first method is a cooperative extension of this method that applies to
heterogeneous networks of systems with fully actuated or underactuated dynamics.

We formulate our cooperative objectives in generalized end-effector coordinates,
which include Cartesian coordinates as a special case. Next to the case of synchronization,
we provide control laws that stabilize the network of systems at a static configuration.
With agents assigned as leader, the configuration is achieved at a user-specified reference
position. We refer to this combination of control objectives as the Leader-Follower
Formation Control (LFFC) problem.

In cooperative control, the communication network is critical for the performance and
stability of the multi-agent system. Communication delays can be destabilizing and in a
PBC context can cause the network to lose its passive behavior [5]. Our second method
uses the scattering transformation (ST) [5] to transform the networked variables, making
the network passive. We modify the outputs of the agents to include the generalized
coordinates and their velocities. A local control law ensures passivity of the agents in
the modified outputs as viewed from the network. We show that the cooperative control
scheme converges to the cooperative objectives, even if the delays in the network vary over
time or if communicated packets are lost.

Contribution: this work builds on our previous works [6,7]. We present the methods
in the same framework and include simulations and experimental results. We present two
distributed cooperative passivity-based controllers:

1. A unified IDA-PBC scheme for cooperative stabilization of heterogeneous networks
of fully actuated and underactuated agents that builds on existing single-agent
IDA-PBC controllers. Our approach satisfies the matching conditions of each
underactuated agent, independently of the cooperative input, by suitably defining
the cooperative variables.

2. A cooperative PBC scheme for fully actuated systems that is robust to time-varying
delays and loss of communication packets, while the end-effector dynamics, by
default, are transformed to behave as point-masses in the cooperative space, or follow
desired dynamics as specified by the control designer.

Related Work

The design of stable controllers for a group of systems using passivity-based control
is well-established. In particular, since feedback and parallel interconnections of pas-
sive systems are passive (and stable), complex nonlinear systems may be stabilized by
ensuring passivity for individual systems and their controllers. In this context, it was
shown in [8] that under a particular interaction topology (connected and undirected graph),
control based on a well-designed potential function results in convergence to a desired
set of equilibria for the group of agents, given that the individual agents are passive.
For mechanical systems, control via passivity interacts with both the velocity and force of
end-effectors. This makes it well-suited for control under interaction with the environment
or other robots. Examples of its use are in bilateral teleoperation [5,9,10], where an operator
controls the system remotely and in applications where the robot interacts directly with
its environment [11]. Typically, passivity-based control design models the nonlinear plant
dynamics using Euler-Lagrange (EL) or Hamiltonian dynamics [12], since these modeling
techniques explicitly formulate the kinetic and potential energy of the system.

PBC methods for fully actuated systems are well-developed. LFFC methods for
joint synchronization of a homogeneous network with fully actuated EL systems are
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proposed in [13,14]. These approaches achieve joint synchronization under different net-
work topologies but are applicable only to a limited set of dynamical systems.
The approach in [15] considers networks of underactuated flexible-joint manipulators.
Their control law, relying on a suitable definition of the control error, synchronizes end-
effector Cartesian coordinates when constant unknown communication delays are present.
The work [16] considers similar systems with non-identical model parameters and vari-
able communication delays in the network. Their approach is composed of a local grav-
ity compensating term and a networked term with proportional and derivative action.
Although these approaches are well-suited for the considered system types, they lack
applicability in the general case. We propose a novel distributed LFFC method in gener-
alized coordinates for networks of heterogeneous underactuated and/or fully actuated
systems. We base our approach on IDA-PBC [4]. Our approach extends directly from a
large set of single-agent solutions which include flexible link manipulators and the vast
class of systems with one degree of underactuation [17]. In contrast to distributed IDA-PBC
methods that tackle a specific set of systems, the proposed method applies to all systems in
the aforementioned classes and does not require the control designer to solve nonlinear
Partial Differential Equations (PDEs).

In addition, this architecture allows for the incorporation of other extensions to single-
agent IDA-PBC where the matching conditions are unmodified, such as the work in [18],
which introduces a suitable integral action to overcome matched and unmatched disturbances.

To additionally study the effect of communication delays, we consider the case of fully
actuated system networks with varying communication delays and packet loss. In [19],
a passivity-based controller for networks of heterogeneous fully actuated agents is devel-
oped in the EL framework, which is robust to time-varying time delays when velocities are
sufficiently damped. Additionally, the method does not require velocity measurements.
Similar model-free approaches were also presented [20,21]. Rather than formulating a con-
dition on damping, another typical approach is to ensure that the communication channel
is passive under delays, such that the closed-loop system including the communication net-
work is passive and, therefore, stable. The most common approach for designing a passive
communication channel is to transform the communicated variables to wave-variables, using
the scattering transformation (ST) [5,10]. In contrast to the regular communicated variables,
the power of wave-variables traveling through the network is well-defined. Hence their
energy qualifies as a storage function, making the network passive. Although this ap-
proach is simple and effective, the ST modifies the dynamics of the communication channel
which can lead to deteriorated performance. Therefore, alternative methods have been
proposed that improve the transparency of the communication channel (i.e., its ability to
mimic a direct communication link). Mainly, in [22], the Time Domain Passivity Approach
(TDPA) consisting of a “passivity-observer” and “passivity-controller” are introduced into
the network to monitor the energy and absorb energy, if necessary, such that passivity
is guaranteed. Alternatively, the Passive Set Position Modulation (PSPM) approach [23]
ensures passivity of the network with minimal performance loss for networks sending and
receiving position data. Recently, an extension to the ST was presented in [24], which elimi-
nates the dynamics of the transformed communication channel. Their solution approach
adds a simple algebraic manipulation to the ST, preserving its properties while introducing
an extra degree of freedom that overcomes the negative dynamic effects of the regular ST.

In this work, for simplicity, we apply the regular ST to achieve passive communi-
cation between agents, although the extension in [24] applies directly to the presented
framework. In addition, we make use of Wave-Variable Modulation [25] in discrete-time to
overcome time-varying delays and packet-loss. Our second method builds on two works.
In the first [26], a PBC method incorporating the ST is applied to a multi-agent network
of passive fully-actuated systems with communication delays. Their results show that
synchronization of agent outputs emerge for a set of passive inter-agent control functions.
The second method [27] shows that outputs r consisting of joint velocity and joint co-
ordinates are passive and when applied in this framework result in synchronization of
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the joint coordinates in the presence of communication delays. Since for these outputs
the notion of passivity is not related to physical energy, passivity in this setting is often
referred to as r-passivity. In [28], this result is extended to the case of Cartesian coordinates,
defining r by the Cartesian velocity and coordinates of the end-effector [28]. Our control
approach is based on the same principles, but significantly simplifies the interconnection
of heterogeneous systems. In particular, our framework allows the designer to explicitly
characterize the local and cooperative damping, and the objectives of the multi-agent
system. In addition, the cooperative dynamics can be set by a desired cooperative inertia
matrix which, by virtue of the proposed controller, follow point-mass dynamics by de-
fault. Hence, the controlled network of heterogeneous systems behaves by default as a
network of homogeneous systems, significantly reducing the design effort required for
their interconnection.

Outline: the plant dynamics and control problems are formally introduced in Section 2.
Fundamentals of passivity and IDA-PBC are reviewed in Section 3. Sections 4 and 5
introduce the main contributions: cooperative IDA-PBC and r-PBC. The proposed methods
are validated in simulations in Section 6 and in experiments in Section 7. A discussion is
presented in Section 8 and conclusions are presented in Section 9.

Notation: we will denote vectors and matrices in bold. The left pseudo-inverse of
matrix A is denoted by A† = (ATA)−1AT such that A†A = I. Partial derivatives are
assumed to be column vectors. We denote by In the identity matrix of dimension n and
by 0n×m the matrix with all zero entries of dimension n×m. The quadratic form ||x||2Q is
shorthand for xTQx. The set IN refers to the set of indices {1, 2, . . . , N}.

2. Problem Formulation

We consider simple mechanical systems in a Hamiltonian framework [12]. The kinetic
energy of a simple mechanical system is determined by its inertia matrix
M(qi) = MT(qi) > 0ni ; we will often write system matrices without their explicit de-
pendency on the joint-coordinates, i.e., Mi = Mi(qi). Each agent i is modeled by[

q̇i
ṗi

]
=

[
0ni Ini

−Ini −Ri(qi, pi)

][ ∂Hi
∂qi
∂Hi
∂pi

]
+

[
0ni×mi

Fi(qi)

]
τi, (1a)

yi = FT
i M−1

i pi, (1b)

Hi =
1
2

pT
i M−1

i pi + Vi. (1c)

The state is composed of the joint-coordinates qi ∈ Rni and momenta pi ∈ Rni , which
relate to the joint-velocities via pi = Mi(qi)q̇i. The input τi ∈ Rmi enters via the input
matrix Fi(qi) ∈ Rni×mi . The system is fully actuated if mi = ni and rank(Fi(qi)) = ni and
is underactuated if mi < ni. The natural damping Ri(qi, pi) ∈ Rni×ni is assumed to be zero
throughout this work. The total system energy is given by the Hamiltonian Hi(qi, pi) ∈ R,
which is composed of the kinetic energy and the potential energy Vi(qi) ∈ R.

The generalized end-effector coordinates, zi(qi) ∈ Rl , denote the controlled system
variable, for example Cartesian end-effector coordinates for a robotic arm or the 2D position
of a vehicle. The generalized end-effector velocities are computed from the end-effector
Jacobian Ji(qi) ∈ Rl×ni , defined by

żi = Ji(qi)q̇i, Ji(qi) =
∂Tzi
∂qi

. (2)

We are now ready to formally state our problem definitions.
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Problem 1. Consider a network of N heterogeneous mechanical agents modeled by (1a)–(1c),
communicating over a delay-free, undirected and connected graph G(Σ, E). The cooperative con-
trol objectives on each edge pair Eij, Eji are specified by the final inter-agent displacement vector
z∗ij = −z∗ji. The problem is formally solved by satisfying the following objectives:

lim
t→∞
||q̇i|| = 0, ∀ i ∈ IN (Damping) (3)

lim
t→∞
||zi − z∗i || = 0, ∀ i ∈ IL (Leaders) (4)

lim
t→∞
||zi − zj + z∗ij|| = 0, ∀ Eij (Formation) (5)

where IN = {1, . . . , N} and IL represents indices of the leaders.

Problem 2. Consider Problem 1, where the bidirectional edge pair Eij, Eji ∈ E is subject to
unknown time-varying delays Tij(t), Tji(t) ≥ 0, satisfying Ṫij(t) ≤ 1, Ṫji(t) ≤ 1. We formulate
condition (5) with delays as

lim
t→∞
||zi(t− Tij(t))− zj(t) + z∗ij|| = 0, ∀ Eij. (6)

3. Review of Passivity and Single-Agent IDA-PBC

The passivity property links a system’s externally supplied power, stored energy and
dissipated energy. We formally define passivity as follows.

Definition 1 ([26]). A system is said to be passive if there exists a C1 storage function V(x) >
0, ∀x ∈ Rn \ {0}, V(0) = 0, and a dissipation function S ≥ 0 for which the passivity property

V(x(t))−V(x(0)) =
∫ t

0
y(s)Tτ(s)ds−

∫ t

0
S(s)ds (7)

holds. An equivalent expression, obtained by differentiation, is

V̇ + S = τTy. (8)

When a passive system is not exchanging energy via its input–output port, that is
if τTy = 0, then we have V̇ = −S ≤ 0, which is one of the necessary conditions to
construct Lyapunov functions. Hence, the passivity property is a stability property that
extends to systems where energy is exchanged with an external system (e.g., a controller).
The Hamiltonian dynamical Equations (1a)–(1c) can be shown to be passive.

The open-loop equilibrium q∗OL of the system generally does not coincide with the
control objective q∗. We therefore consider a control law τ, such that the closed-loop
dynamics attain the desired passive dynamics (subscript d). Introducing a desired inertia
matrix Md(q) = Md(q)T > 0n, damping matrix Kv(q, p) > 0m and J2(q, p) = −J2(q, p)T

to introduce necessary gyroscopic forces, the desired dynamics are given by

[
q̇
ṗ

]
=

[
0n M−1Md

−MdM−1 J2 − FKvFT

][ ∂Hd
∂q

∂Hd
∂p

]
+

[
0n×m

F

]
τ̂, (9a)

yd = FTM−1p, (9b)

Hd =
1
2

pTM−1
d p + Vd(q). (9c)

The desired potential function Vd(q) ≥ 0 is designed such that it attains a minimum
at the control objective, i.e., q∗ = argminqVd(q) and is zero if and only if q = q∗.
Equations (1a)–(1c) and (9a)–(9c) directly yields a control law in the fully actuated case.
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For underactuated systems, we find a set of equations that can be decoupled using the
full rank transformation [

FT

F⊥

]
∈ Rn×n,

where F⊥ is an annihilator of F, such that F⊥F = 0n−m×m. This results in two sets of
equations. The last n−m rows denote necessary conditions for matching the plant with
the desired dynamics and are referred to as the matching conditions. They are often split in a
condition on kinetic energy terms

F⊥
(

∂

∂q
(
pTM−1p

)
−MdM−1 ∂

∂q
(
pTM−1

d p
)
+ 2J2M−1

d p
)
= 0, (10)

and in the potential energy terms

F⊥
(

∂V
∂q
−MdM−1 ∂Vd

∂q

)
= 0. (11)

Whereas for fully actuated systems, the potential energy can be shaped directly;
for underactuated systems, often the kinetic energy needs to be shaped along with the
potential energy in order to achieve the control objective. Hence, the main problem in
IDA-PBC design is to find a set of matrices Md, J2 and potential Vd that satisfy the matching
conditions (10) and (11). Although no general solutions to these equations exist, for sub
classes of systems an explicit solution is available (e.g., for systems with one degree of
underactuation such that n−m = 1 [17]). Given a solution to the matching equations, the
resulting IDA-PBC law is given by the first m rows

τ = F†
(

∂H
∂q
−MdM−1 ∂Hd

∂q
+ J2M−1

d p
)
−Kvyd.

The proof of [17], Proposition 1, shows that (q∗, 0) is stable if Md is locally positive
definite in a neighborhood around q∗ and is asymptotically stable if, additionally, the
equilibrium (q∗, 0) is locally detectable from the output yd, which holds if yd → 0
implies q→ q∗.

4. Cooperative IDA-PBC

In the following we solve Problem 1 for networks of fully actuated and underactu-
ated systems.

4.1. Guaranteed Local Matching

The goal of our cooperative scheme is to satisfy the local matching conditions
(10) and (11) for each agent, independent of the received cooperative input, and us-
ing existing single-agent solutions. We propose to use the coordinates z(q) as the
cooperative outputs and leverage the transformation from the coordinates q to z to
satisfy the matching conditions, independently of the cooperative control input. This
leaves the cooperative control input free for achieving the cooperative control objective.
In particular, we pose the following necessary condition on the single-agent solution.

Assumption 1.

F⊥MdM−1 ∂z
∂q

= F⊥MdM−1JT = 0n−m×l .

Through this assumption, the input derived from the cooperative control input is
exclusively in the actuated directions and ensures that the cooperative input cannot violate
the matching conditions. The proposed cooperative control method relies on Assumption 1
to hold for the single-agent IDA-PBC solutions of each individual system. We note that
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the kernel of F⊥MdM−1 is of rank m such that there exists an m-dimensional subspace
where the cooperative coordinates can be defined such that Assumption 1 holds. For the
large class of systems with underactuation degree one, that is, where n−m = 1, an explicit
solution to the matching equations can be found in [17] where Assumption 1 is satisfied [29].
In particular, the cooperative coordinates z converge to the end-effector coordinates when
the unactuated coordinate converges to zero. These solutions, therefore, allow us to control
the end-effectors of these systems, cooperatively. Consider the following structure for the
desired potential to accommodate local and cooperative control

Vd(q) = Vs(q) + Vc(z(q)), (12)

with gradient
∂Vd(q)

∂q
=

∂Vs(q)
∂q

+ JT ∂Vc(z)
∂z

. (13)

Substituting this desired potential function in the potential matching condition (11)
and separating cooperative and local potentials results in the two conditions

F⊥
(

∂V
∂q
−MdM−1 ∂Vs

∂q

)
= 0, (14)

F⊥MdM−1JT ∂Vc

∂z
= 0. (15)

Condition (14) is the single-agent matching condition (11) and is satisfied by con-
struction. By virtue of the cooperative Jacobian J and Assumption 1, condition (15) holds
for all cooperative inputs. The proposed decomposition has not modified the kinetic en-
ergy matching conditions (10), which are, therefore, satisfied by the single-agent solution.
Hence, the proposed decomposition satisfies the matching conditions by design, indepen-
dently of the cooperative input ∂Vc

∂z .

4.2. Multi-Agent IDA-PBC

In the following, we will formulate a multi-agent system from the set of single-agent
systems and solve the IDA-PBC problem for the composed system. We formulate the
uncontrolled dynamics as [

˙̄q
˙̄p

]
=

[
0n̄ In̄
−In̄ 0n̄

][ ∂H̄
∂q̄
∂H̄
∂p̄

]
+

[
0n̄×m̄

F̄

]
τ̄, (16a)

ȳ = F̄TM̄−1p̄, (16b)

H̄ =
1
2

p̄TM̄−1p̄ + V̄(q̄), (16c)

in which the multi-agent variables are given by

n̄ =
N

∑
i=1

ni, m̄ =
N

∑
i=1

mi, V̄ =
N

∑
i=1

Vi,

q̄ =

q1
...

qN

, p̄ =

p1
...

pN

, τ̄ =

τ1
...

τN

, ȳ =

y1
...

yN

,

M̄ =

M1
. . .

MN

, F̄ =

F1
. . .

FN

.
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Similarly to the single-agent problem, we introduce the desired multi-agent dynamics

[
˙̄q
˙̄p

]
=

[
0n̄ M̄−1M̄d

−M̄dM̄−1 J̄2 − F̄K̄vF̄T

] ∂H̄d
∂q̄

∂H̄d
∂p̄

+

[
0n̄×m̄

F̄

]
ˆ̄τ, (17a)

ȳd = F̄TM̄−1
d p̄, (17b)

H̄d =
1
2

p̄TM̄−1
d p̄ + V̄d(q̄), (17c)

with M̄d a block-diagonal composition of single-agent solutions

M̄d =

Md,1
. . .

Md,N ,


and similarly for K̄v, J̄2 (the case where M̄d and J̄2 contain off-diagonal terms, which
introduce interaction between systems; the interested reader is referred to [29], Section
7.2.2, for the treatment of such cases). We extend the decomposed potential (12) to the
multi-agent case, by summing the local terms and coupling the cooperative terms, that is,

V̄d = V̄c(z1, . . . , zN) +
N

∑
i=1

Vs,i. (18)

The cooperative desired potential function V̄c, which depends on all cooperative
coordinates in the network, generates the cooperative inputs. Hence, the cooperative
controller is a gradient descent approach over the cooperative potential energy function
(i.e., forcing the end-effectors in the direction of the largest decrease in artificial energy).
To solve Problem I we require that V̄c = 0 if and only if (4) and (5) are satisfied, similar to
the assignment of Vs in the single-agent case. The following constructive proof solves the
proposed multi-agent IDA-PBC problem.

Theorem 1. Consider a network with N fully actuated and/or underactuated agents, where for
each agent i, single-agent solutions for Md,i, J2,i, Vs,i are known that satisfy (10) and (14), and
the coordinates zi are such that the Jacobian Ji satisfies Assumption 1. Then, the distributed
control inputs

τi = F†
i

(
∂Hi
∂qi
−Md,iM

−1
i

∂H̄d,i

∂qi
+ J2,iM−1

d,i pi

)
−Kv,iyd,i, (19)

with
H̄d,i =

1
2

pT
i M−1

d,i pi + Vs,i + V̄c (20)

solve Problem 1.

Proof. We match the multi-agent plants (16a)–(16c) with the multi-agent desired dynam-
ics (17a)–(17c). The resulting kinetic energy matching condition is decoupled into the
single-agent kinetic matching condition (10) and is satisfied by the single-agent solutions.
The potential energy matching conditions are

F⊥i

(
∂Vi
∂qi
−Md,iM

−1
i

∂V̄d
∂qi

)
= 0, ∀ i ∈ IN . (21)
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Using the partitioning (18), these conditions are split into

F⊥i

(
∂Vi
∂qi
−Md,iM

−1
i

∂Vs,i

∂qi

)
= 0, ∀ i ∈ IN , (22)

F⊥i Md,iM
−1
i JT

i
∂V̄c

∂zi
= 0, ∀ i ∈ IN . (23)

Condition (22) is satisfied by the single-agent solution and (23) is satisfied by the choice
of cooperative coordinates zi. Control law (19) is obtained from the matching equations.
Invoking single-agent IDA-PBC stability proof [17], Proposition 1 ensures ˙̄q→ 0, V̄d → 0,
which implies Vs,i → 0, ∀i and V̄c → 0. The latter, by construction, ensures that conditions
(4) and (5) are satisfied.

Notice that the cooperative input enters control law (19) via the gradient of V̄c with
respect to zi and that we can compute its value by communicating these variables over the
network. A possible choice for the cooperative potential function V̄c is the squared sum of
the cooperative control errors

V̄c =
1
4

N

∑
i=1

N

∑
j=1
||zi − zj + z∗ij||2Aij

+
1
2

N

∑
i=1
||zi − z∗i ||2Bi

, (24)

where the term Aij denotes adjacency, i.e., Aij > 0l×l if and only if node i and j are
connected in the graph. The matrices Bi are leader matrices with non-zero weights if and
only if the associated coordinate is tracking leader reference z∗i . This cooperative potential
is positive semi-definite and its unique minimum satisfies (4) and (5).

4.3. Concluding Remarks

The proposed multi-agent IDA-PBC approach is applicable to fully actuated systems
as well as a large class of existing underactuated systems, most notably those with under-
actuation degree one. We satisfy the matching conditions for all cooperative inputs and,
therefore, the method is, to a degree, robust with regards to time delays in the communi-
cation network. However, our analysis on the composed multi-agent system assumes the
absence of time delays and, hence, stability is not guaranteed when delays are present.

5. Cooperative r-Passivity-Based Control

In the following section we introduce, in the same context, an alternative PBC method
for fully actuated systems that preserves the stability guarantee in the presence of time
delays. We, therefore, solve Problem II for networks of heterogeneous fully actuated
systems. Our approach is based on the cooperative PBC scheme proposed in [26] (see
Figure 1), which we briefly summarize here.

ri

Agent i

τjsi τjsi

ϕjsi

s+
ij

ST

rjs

ST

s+
ji

s−
ji

ϕisj

ris

τisj

Agent j

rj

τisj

(t)Tij

s−
ij

(t)Tji

Figure 1. Multi-agent PBC scheme of [26], depicted on a bidirectional edge.

5.1. Cooperative PBC with Communication Delays

Passive cooperation relies on passivity of the network. An approach for guarantee-
ing network passivity in the presence of delays is the scattering transformation (ST) [5].
The ST transforms the networked input τ and output r of an agent into wave-variables,
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which are communicated over the network. The transformation, which acts on each side of
the communication network, is given by

s+ij =
1√
2b

(−τjsi + brjs) ; s−ij =
1√
2b

(−τjsi − brjs) (25)

s+ji =
1√
2b

(τisj + bris) ; s−ji =
1√
2b

(τisj − bris), (26)

where b > 0 tunes the virtual impedance of the network. The wave variables s+ij , s−ij , s+ji
and s−ji are communicated over the network instead of the original inputs and outputs
(see Figure 1). They transmit the information for cooperation over the network in packets
of virtual energy. The transformation mimics physical communication lines, which obey
an energy conservation law and are, therefore, passive. This passivity can be established
by explicitly quantifying the energy stored in the network (see [5]). Since no energy is
dissipated, the network is lossless in the presence of arbitrary constant delays. In [30], a
delay-dependent gain is introduced into the network, which extends the passivity property
to the case of time-varying delays under the assumption that Ṫij(t) ≤ 1, ∀ Eij, i.e., the
delay does not change faster than time itself. In discrete-time, time-varying delays and
loss of packets both result in missing information on the receiving end [31]. In these cases,
passivity can be preserved by passively reconstructing the wave references [31]. This
strategy, in contrast to the continuous-time case, can handle delays that change faster than
time itself.

The multi-agent PBC scheme of [26] consists of (i) a network with the ST (lossless),
(ii) passive cooperative controls φ(Sjsi, Ujsi) and (iii) passive agents (Si, Ui). The following
convergence property is obtained.

Theorem 2 ([26] Theorems 3.3 and 3.4). The control scheme depicted in Figure 1 with passive
agents, passive controls and the ST (25) is asymptotically stable, and the system converges to the set
where

Sjsi → 0, ∀ Eij, Si → 0, ∀ i ∈ IN , (27)

where Sjsi and Si denote the storage functions of the controls and agents, respectively.

The authors of [27] use the outputs

rq,i = q̇i + λqi, λ > 0, (28)

in the control scheme of Figure 1 to synchronize coordinates rather than velocities. In the
following, we apply a modified version of these outputs and the scheme of Figure 1 to
synchronize generalized end-effector coordinates.

5.2. r-Passivity for Coordinate Synchronization

Define the outputs as
ri = żi + λzi, λ > 0, (29)

where zi(qi) are generalized end-effector coordinates. The velocity component is necessary
to show passivity, while the coordinate component ensures that the control objectives
are observable from the output. The latter prevents drift when packets are lost in the
network [27]. In the remainder, we use the term r-passive to refer to (sub)systems that are
passive (notice that the passivity that we consider is virtual and it is not directly related
to the physical energy of the system) with respect to the input–output pair (τi, ri). We
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propose to apply gradient descent on a cooperative potential as a cooperative control term,
similarly to cooperative IDA-PBC. Specifically, we propose the potential

V̄r
c =

1
4

N

∑
i=1

N

∑
j=1
||ri − rjs +

λ

2
z∗ij||2Aij

+
1
2

N

∑
i=1
||ri − r∗i ||2Bi

. (30)

Compared to the previous potential (24), the wave references replace the net-
worked outputs. We will use the shorthand −r̂jsi to denote the cooperative error term
ri − rjs +

λ
2 z∗ij, where the factor λ

2 compensates for the gain in the output and the ST.
The cooperative control input of each agent is computed as the summed gradient over
the networked outputs of its neighbors

τjsi(r̂jsi) =
∂TV̄r

c (r̂jsi)

∂r̂jsi
, τi = ∑

j∈Ni

τjsi, (31)

where Ni denotes the set of neighbors of agent i. The cooperative controls (31) are odd, i.e.,
−τjsi(r̂jsi) = τjsi(−r̂jsi) and, hence,

τT
jsi r̂jsi = Sjsi ≥ 0,

which implies that these inter-agent couplings are r-passive.

5.3. Local Controller Design for r-Passivity

Although agents are passive in their regular input and output, they are generally
not passive with respect to our modified output ri, which is necessary to invoke the
results of [26] on the control scheme depicted in Figure 1. In the following, we show that
for fully actuated systems, a control law exists that makes agents r-passive as viewed from
the network. A novel controller design (see Figure 2), to which we refer as r-passivity-based
control (r-PBC), is derived in the following theorem.

System

+
-

+
+

Figure 2. Diagram of r-PBC as proposed in Theorem 3.

Theorem 3. Agent i with dynamics (1a)–(1c), where ni = mi and the r-PBC law

τi =
∂Hi
∂qi

+ MiJ†
i

(
τc,i −Kz,iq̇i

)
, (32)

where

Kz,i = Ji

(
(λ + γi)Ini −M−1

i Ṁi

)
+ J̇i, (33)

with γi > 0 a tuning parameter, is r-passive with respect to the storage and dissipation functions

Ui =
1
2

rT
i ri +

1
2

γiλzT
i zi, Si = γiżT

i żi. (34)
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Proof. The derivative of the storage function is

U̇i = ṙT
i ri + γiλżT

i zi

= (ṙi + γiżi)
Tri − γiżT

i żi.

Substituting in the differential passivity property (8) yields

(ṙi + γiżi)
Tri = τT

c,iri.

Hence the l-dimensional dynamics that achieve r-passivity are

τc,i = ṙi + γiżi = z̈i + (λ + γi)żi.

which may be expanded as

τc,i = (λ + γi)Jiq̇i + Ji(Ṁi
−1pi + M−1

i ṗi) + J̇iq̇i,

= JiM−1
i ṗi + Kz,iq̇i,

Feeding back the velocity term Kz,iq̇i by defining τc,i := τ̂c,i + Kz,iq̇i reduces the
passive dynamics to

τ̂c,i+Kz,iq̇i = JiM−1
i ṗi + Kz,iq̇i (35)

τ̂c,i = JiM−1
i ṗi. (36)

To find the corresponding set of n-dimensional system dynamics, note that
JiM−1

i MiJ†
i = Il×l ; hence,

JiM−1
i

(
MiJ†

i τ̂c,i − ṗi

)
= τ̂c,i − JiM−1

i ṗi = 0. (37)

To obtain passivity, we match these dynamics with the plant momenta equations, i.e.,

ṗi = MiJ†
i τ̂c,i = −

∂Hi
∂qi

+ τi. (38)

The proposed control laws satisfy this equation.

The cooperative convergence of the scheme with these r-passive agents, in the sense
that Si → 0, ż → 0, is analyzed in Section 5.4. We remark that convergence of Si to
zero merely implies żi → 0, i.e., only the cooperatively controlled velocities are damped.
Therefore, we need to additionally damp the velocities in the null-space of the coopera-
tive task in the case of redundant systems (ni > l). In the following, we apply subtask
optimization for this purpose as presented in [32].

Consider a potential function Vp,i(qi) ≥ 0 and the null-space definition J⊥i = (Ini − J†
i Ji),

which has the following properties:

JiJ⊥i = 0l×ni
, J⊥i J†

i = 0ni×l , J⊥i J⊥i = J⊥i . (39)

Then a subspace tracking error can be defined as [32]

es,i = J⊥i wi, wi = q̇i +
∂Vp,i

∂qi
. (40)

The null-space definition serves to damp non-cooperative velocities without influenc-
ing the cooperative passivity properties, as we show in the following theorem.



Robotics 2023, 12, 142 13 of 23

Theorem 4. Agent i with dynamics (1a)–(1c), where ni = mi and the r-PBC law

τi =
∂Hi
∂qi

+ MiJ†
i

(
τc,i −Kz,iq̇i

)
−MiJ⊥i

(
ξi

∂Vp,i

∂qi
+ Kv,iq̇i + J̇⊥i wi

)
, (41)

with Kz,i defined by (33) and

Kv,i =
∂T

∂qi

(
∂Vp,i

∂qi

)
+ ξiIni −M−1

i Ṁi, (42)

with local constant gain ξi > 0, is r-passive with respect to the storage and dissipation functions (34),
while es,i → 0.

Proof. The proof of passivity follows the proof of Theorem 3. The last term of the proposed
control law does not influence the cooperative dynamics since JiM−1

i MiJ⊥i = 0l×l . To show
convergence of the non-cooperative coordinates, consider the Lyapunov candidate

Ui =
1
2

eT
s,ies,i. (43)

The derivative is

U̇i = wT
i J⊥i ẇi + wT

i J⊥i J̇⊥wi.

= wT
i J⊥i

(
q̈i +

˙∂Vp,i

∂qi

)
+ wT

i J⊥i J̇⊥wi.

= wT
i J⊥i

[
Ṁ−1

i Miq̇i − J⊥i

(
ξi

∂Vp,i

∂qi
+ Kv,iq̇i + J̇⊥i wi

)
+

˙∂Vp,i

∂qi

]
+ wT

i J⊥i J̇⊥i wi.

where we substituted the dynamics described by the momenta ṗi. Substituting the proposed
Kv,i yields

U̇i = −ξiwiJ⊥i wi = −ξieT
s,ies,i ≤ 0. (44)

Hence, es,i → 0.

A vanishing subspace tracking error, es,i → 0, results in tracking of the subtasks as
long as its vector lies in the null-space of the cooperative task [32]. Since convergence to
the minimum of Vp,i implies that wi = q̇i, we find that the proposed local controller forces
the non-cooperative velocities to zero.

5.4. Cooperative Synchronization

We now show that the multi-agent r-PBC scheme, locally controlled by r-PBC, solves
Problem 2.

Theorem 5. The control scheme depicted in Figure 1 with the ST (25) and (26), outputs (29),
controls (30) and (31) and agents locally controlled by the r-PBC law (41) solves Problem 2.

Proof. Since the requirements for Theorem 2 are satisfied, we may invoke the following result

Si → 0, Sjsi → 0.

This implies that, cooperatively, we have

Sjsi → 0 ⇐⇒ r̂jsi → 0, τjsi → 0, ∀ Eij ∈ E . (45)
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Convergence of Si to zero for the dissipation functions in (34) implies żi → 0.
Hence, convergence of the cooperative error r̂jsi → 0 results in

żjs = −λ(zjs − zi −
1
2

z∗ji), ∀ Eij ∈ E .

Applying the coordinate transformation ẑjsi = zjs − zi − 1
2 z∗ji, we obtain

˙̂zjsi = −λẑjsi (46)

which is a Hurwitz linear system that converges to ẑjsi = 0 exponentially. Reverting the
transformation shows that

lim
t→∞

zjs − zi =
1
2

z∗ji, lim
t→∞

żjs = 0, ∀ Eij ∈ E . (47)

With this local limit established, we rewrite the scattering transformation to obtain
cooperative convergence

rjs =
1
b
(−
√

2bs−ij − τjsi),

ris =
1
b
(
√

2bs+ji − τisj), ∀ (Eij, Eji) ∈ E .

Using (25) and (26) and the transport of signals through the network, this description
results in

lim
t→∞

rjs = lim
t→∞

1
b
(−τisj(t− Tji) + bris(t− Tji)− τjsi)

and a similar description for ris for all edge pairs. Since τjsi → 0 and τisj → 0, we obtain

lim
t→∞

rjs(t) = lim
t→∞

ris(t− Tji), ∀ Eij ∈ E . (48)

Using (47) and (48) and the fact that żi → 0, we finally obtain

lim
t→∞

zj(t− Tji)− zi = z∗ji, ∀ Eij ∈ E . (49)

Which, together with a strongly connected network, implies synchronization of the agents.

Remark 1. For the case of time-varying delays, we apply the modified ST, as presented in [30].
The convergence proof follows that of Theorem 5.

5.5. Cooperative Kinetic Energy Shaping

The proposed r-PBC laws shape agents for homogeneous cooperative behavior. Theo-
retically, this ensures that all systems have the same reaction to cooperative forces; however,
if a system has unmodeled dynamics or friction, then its response may be damped, which
can cause slow convergence or a steady-state offset. By including a desired inertia ma-
trix Mz,i in the storage and dissipation functions (34), the designer gains control over the
response of each system. The following theorem extends Theorem 3 with cooperative
mass matrices. The results of Theorem 4 are unaffected by the cooperative dynamics and,
therefore, also apply in this case.

Theorem 6. Agent i with dynamics (1a)–(1c), where ni = mi and the r-PBC law

τi =
∂Hi
∂qi

+ MiJ†
i

(
M−1

z,i τc,i −Kz,iq̇i −
1
2

Mz,iṀz,iri − γi(M−1
z,i − Il)żi

)
, (50)
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with Kz,i given by (33) and Mz,i > 0l , is r-passive with respect to the storage and dissipation
functions

Ui =
1
2

rT
i Mz,iri +

1
2

γiλzT
i zi, Si = γiżT

i żi. (51)

Proof. The derivative of the storage function is

U̇i = ṙT
i Mz,iri +

1
2

rT
i Ṁz,iri + γiżT

i (ri − żi).

Substituting in the differential passivity, Equation (8) gives the r-passive dynamics as

τc,i = Mz,i ṙi +
1
2

Ṁz,iri + γiżi.

Equivalently, by rearranging terms and inserting Kz,i, we obtain

τc,i = Mz,iJiM−1
i ṗi + Mz,iKz,iq̇i +

1
2

Ṁz,iri + γi(Il −Mz,i)żi.

Define the feedback law

τc,i = Mz,iτ̂c,i + Mz,iKz,iq̇i +
1
2

Ṁz,iri + γi(Il −Mz,i)żi.

We obtain the dynamics τ̂c,i = JiM−1
i ṗi, which match the dynamics of Theorem 3

(Equation (36)) and the rest of the proof follows analogously to the proof of Theorem 3.

An application of Theorem 6 is the case where Mz,i = ηiIl . In this case, all coop-
erative inputs are multiplied by 1

ηi
and the damping on the cooperative coordinates is

scaled accordingly. The resulting cooperative behavior corresponds to a heavier or lighter
cooperative system.

6. Simulation Results

In the following section, we provide a qualitative comparison between IDA-PBC
and r-PBC in simulation, with and without communication delays. We also provide
results for the case of underactuated systems (IDA-PBC) and subtask optimization (r-PBC).
To compare the two methods, we consider a scenario with two robotic manipulators, each
with three joints as depicted in Figure 3a. The control objective is to reach consensus
z1 = z2 in the 2-dimensional plane, without specifying a convergence point a priori.
We define the inputs and joint-coordinates as the torque and angle of each joint, respectively.
The end-effector dynamics of this system are nonlinear and the states have a redundant
degree-of-freedom; hence, it is suitable to illustrate both approaches. For completeness, we
first derive a model for the manipulator.

(a) (b)
Figure 3. Schematics of the simulated systems. (a) Manipulator. (b) UAV.
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Denote by xk, yk the center of gravity, by mk the mass, by lk the length and by Ik the
inertia each of link k, and let γk = q1 + . . . + qk. We can write the potential energy and
end-effector position as

V(q) = g
3

∑
k

ykmk, z(q) =
[

xN + 1
2 lN cos (γN)

yN + 1
2 lN sin (γN)

]
∈ R2.

If we define w =
[
x1 y1 γ1 . . . xN yN γN

]T , then the kinetic energy may be
expressed as

T(q, q̇) =
1
2

ẇTdiag(m1, m1, I1, . . . , mN , mN , IN)ẇ

=
1
2

ẇTMwẇ = q̇T ∂Tw
∂q

Mw
∂w
∂q

q̇.

An expression for the inertia matrix is then given by

M(q) =
∂Tw
∂q

Mw(q)
∂Tw
∂q

.

In the following simulations, let lk = 0.5 m, mk = 2 kg and Ik = 0.05 kgm2 for each
link. In all cases, we set the network gain Aij = 6I2 and Bi = 02×2. In the case of IDA-PBC,
we only compensate for gravity, i.e., Md = M, Vs = 0. We inject damping on the joint
coordinates using Kv = 5I3. Our r-PBC controller is parameterized by λ = 1 and damped
with γi = 3. An advantage of the potential-based control terms used with both methods
is that the 2-norm of the errors in the cooperative potentials (24) and (30) can be scaled to
improve the convergence rate close to the consensus point. Denoting with d the cooperative
error, we apply the following scaling

f (d) =


a1d3 + b1d2 0 ≤ d ≤ r
a2d3 + b2d2 + c2d + e2 r ≤ d ≤ 2Rw

1 d ≥ 2Rw

,

originally presented in [33]. The inner radius r and outer radius Rw are tuned to improve
the rate of convergence. The resulting cooperative potential is

V̄c =
1
4

N

∑
i=1

N

∑
j=1
Aij f (dij) +

1
2

N

∑
i=1
Bi f (di),

where dij, di denote the cooperative and leader tracking error, respectively.
Figure 4a,b depict the cooperative trajectories in the absence of delay and Figure 4c

shows the associated coordinates over time. Both methods converge cooperatively, but
the transient response of cooperative IDA-PBC is slow compared to r-PBC and the end-
effector travels a larger distance. We relate the performance gap to the input matrices.
Where cooperative IDA-PBC is a transpose Jacobian method (as a result of the definition
of the cooperative coordinates), r-PBC is a pseudo-inverse Jacobian method (for details
see [34]). The latter directly maps a motion in cooperative coordinates to the required
motion in joint angles, whereas transpose Jacobian methods are merely an approximation
of this inverse mapping (a disadvantage of pseudo-inverse methods are kinematic sin-
gularities, also present in these examples, and a well-known solution is to apply subtask
optimization to evade these configurations [32]). This is also visible at the end of the simu-
lation where for IDA-PBC, the component of the cooperative force in the direction of the
cooperative mapping is nearly zero, causing slow convergence near the consensus point.
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We repeat the simulations with communication delays. The injected time varying
delays follow a random walk process with 0.3 s ≤ T ≤ 1.0 s, Ṫ ≤ 0.5 and are unique for the
two edges, but consistent between simulations. The resulting coordinates over time are
depicted in Figure 4d. The performance of IDA-PBC is further degraded near the consensus
point, but the method remains stable, even though the delay is not incorporated in the
design. For r-PBC, the transient behavior has changed. The cooperative energy is dissipated
in distinct waves. This is clearly visible in the coordinates of the blue manipulator, which
decays exponentially within a distinct set of time intervals (most visibly around 1 and 3 s).
Nevertheless, the convergence rate is unaffected.
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(d)
Figure 4. Simulated end-effector synchronization of two robotic manipulators. (a) IDA-PBC trajec-
tories. (b) r-PBC trajectories. (c) End-effector coordinates over time for IDA-PBC (top) and r-PBC
(bottom). (d) The case with communication delays for IDA-PBC (top) and r-PBC (bottom).

To illustrate cooperative IDA-PBC with underactuated and fully actuated systems, we
replace one of the manipulators with an Unmanned Aerial Vehicle (UAV) moving in the
x,y-plane (see Figure 3b). The system is actuated by a thrust force and a rotation in the
plane around its center. Since thrust force is vertical with respect to the vehicle frame, it
cannot move in all directions instantaneously and is underactuated. The cooperative end-
effector is a point on the landing gear of the UAV at a distance ε below its center of rotation.
For completeness, we give the model and single-agent IDA-PBC solution; more details are
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given in [29], Chapter 11. The UAV joint configuration is defined by its x, y position (q1, q2)
and its orientation (q3). Via the input transformation,[

u1
u2

]
= −

[
εMq̇3

2

0

]
+

g
ε

[
εM cos q3

I sin q3

]
+

1
ε

[
−εM sin q3 εM cos q3

I cos q3 I sin q3

][
τ1
τ2

]
,

with M and I being the scalar mass and inertia of the system, its Hamiltonian dynamics
satisfy M = I3 and

V(q) =
g
ε

cos q3, F(q) =

 1 0
0 1

ε−1 cos q3 ε−1 sin q3

.

The transformed UAV dynamics have one degree of underactuation. The following
IDA-PBC solution was derived in [17]:

Md(q3) =

k1ε cos q3
2 + k3 k1ε cos q3 sin q3 k1 cos q3

k1ε cos q3 sin q3 −k1ε cos q3
2 + k3 k1 sin q3

k1 cos q3 k1 sin q3 k2

, Vs(q3) =
g

k1 − εk2
(1− cos q3),

J = − k1(k1 − εk2)

2

 0 J1 J2
−J1 0 J3
−J2 −J3 0

,

J1 = pTM−1
d

−2ε cos q3
2ε sin q3

1

, J2 = pTM−1
d

0
1
0

, J3 = pTM−1
d

−1
0
0

.

The resulting single-agent IDA-PBC law stabilizes the UAV in its upright position.
We set the parameters of the solution as k1 = 2.0, k2 = 6.67 and k3 = 1.02, which re-
sult in fast tracking in single-agent simulations. We tune the cooperative control gain
as Aij = diag (0.5, 1.0). The resulting trajectories and generalized end-effector coordi-
nates are visualized in Figure 5a,c, respectively. The UAV stabilizes and descends to
achieve consensus with the manipulator without overshooting the final consensus point.
The joint-coordinates of the UAV are depicted in Figure 5d and show the stabilized orienta-
tion in the upright position.

Lastly, we validate subtask optimization of r-PBC. The simulation of two manipulators
is repeated, specifying a local quadratic potential function Vs,1 = 1

2 Ks,1eT
1 e1, which penalizes

the error e1 = q1,1− q∗1,1 with Ks,1 = 30, q∗1,1 = −π
4 and we set ξi = 1. This explicitly controls

the redundant degree of the first manipulator to a reference angle. Figure 5b,c depict the
trajectories and generalized end-effector coordinates, respectively. Figure 5d plots the
joint-coordinates over time. The first joint angle successfully tracks the reference angle.
Additionally, the cooperative objective is achieved at a similar rate as for the case without
local tracking. At the start of the simulation, the joints start moving directly in order
to satisfy the local objective until around T = 1 s, where the cooperative information is
received and both the cooperative and local goals are achieved at the same time.
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Figure 5. Simulations of end-effector synchronization with an underactuated system (IDA-PBC) and
subtask optimization (r-PBC), without communication delay. (a) IDA-PBC trajectories with UAV and
manipulator. (b) r-PBC trajectories with subtasks. (c) Generalized end-effector coordinates over time
for IDA-PBC (top) and r-PBC (bottom). (d) Joint-coordinates of the UAV in (a) (top) and the blue
manipulator in (b) (bottom).

7. Experimental Results

The following section features an experimental evaluation of the proposed methods.
The experimental setup consists of the Franka Emika Panda [35], a 7 Degree-Of-Freedom
(DOF) robotic manipulator, and an Elisa3 differential drive robot [36]. The dynamics of
these systems are vastly different in terms of inertia matrix, joint-coordinate description,
potential energy function and degrees of freedom, and serve to illustrate the application
scope of the proposed approaches.

A photo and schematic of the experimental setup are provided in Figure 6a,b, respec-
tively. Both systems are controlled from one PC. The robotic manipulator connects to the
PC via an Ethernet connection, which is used to read joint-angles and to send the control
commands at a rate of 1 kHz. Additionally, we obtain the inertia matrix and potential
function through this data link, although in principle a basic model of the 3D, 7-link manip-
ulator can be derived in the same way as the model derived in Section 6 for the 2D, 3-link
manipulator. The differential drive robots are controlled via a wireless communication link
at a rate of 100 Hz. Their position in the x, y-plane is detected via a camera system and a set
of markers (See Figure 6a). We feedback linearize the dynamics of the robot around a point
in front of the robot axis (see [37], Equation (5)). The resulting dynamics are that of a point
mass in 2D, that is, M = I2, J = F = I2. The cooperative coordinates are the x, y coordinates
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as indicated in Figure 6b. Accordingly, the robotic manipulator has redundant degrees of
freedom. We limit its motion by stabilizing the z coordinate at 0.4. In practice, we observe
unmodeled friction in the joints of the manipulator. To compensate, the cooperative mass
of the system for r-PBC is scaled down to Mz,panda = 0.015I2 and we set Mz,elisa = 0.05I2.

(a)

x

y

Manipulator

Differential
Drive	Robots

Camera

Visual	Markers

(b)
Figure 6. The experimental setup. (a) Photo. (b) Schematic.

We validate the control methods in a consensus experiment. In the first experiment, the
robotic manipulator is set as leader with reference (−0.25, 0.0). Trajectories and cooperative
coordinates are depicted in Figure 7a. Both methods achieve consensus and converge to
the leader reference. Due to the guidance of the leader, the trajectories of both approaches
are similar. We repeat the experiment without the leader reference such that the objective is
to reach consensus at an arbitrary point, as visualized in Figure 7b. Both methods converge
faster than with a leader. With IDA-PBC, however, the driving robot is compensating for
the slow convergence rate of the manipulator in the direction orthogonal to its end-effector
orientation, similarly to the effect we remarked in Section VI. In contrast, using r-PBC, both
systems have an approximately equal part in reaching consensus.

We repeat the leaderless experiment, injecting artificial communication delays gen-
erated from a random walk process. The delays are parameterized by 0.8 s ≤ T ≤ 1.0 s,
Ṫ ≤ 0.5. Packet loss is generated by a Bernoulli drop model with p = 0.05. To han-
dle packet loss and time-varying delay, we passively reconstruct the wave variables
on the receiving end of each edge using Wave-Variable Modulation (WVM) [25]. The
reconstruction extracts maximum energy from the network while preserving passivity.
Figure 7c depicts the resulting trajectories and cooperative coordinate evolution. Both meth-
ods show degraded performance compared to the case without delays.
Although the r-PBC trajectories show oscillations in the cooperative plane, the consensus
point is not passed by either system and cooperative consensus forms directly. The co-
operative coordinates also reveal the wave-like convergence, similarly to the simulated
case. We expect that the difference in consensus point with the undelayed case is due to
the velocities that are included in the agent output r, used for control. In the undelayed
case, the manipulator moves rapidly, causing the driving robot to anticipate its movement.
In the delayed case, the driving robot receives this information later, at which point the
manipulator may have already changed its course to meet the driving robot. The trajecto-
ries of IDA-PBC indicate a loss of cooperative dissipation in the presence of delays, which
causes the systems to spiral towards the consensus point. This shows that delays can still
destabilize this controller.
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Figure 7. Experimental results of consensus control between heterogeneous systems, using the
proposed cooperative IDA-PBC and r-PBC methods. (a) Leader at (−0.25, 0), no communication
delays. (b) Leaderless, no communication delays. (c) Leaderless, no communication delays.

8. Discussion

The proposed cooperative IDA-PBC framework extends the application scope of cooper-
ative PBC methods by including heterogeneous systems that satisfy Assumption 1 (e.g., [17]).
This simplifies the interconnection between different system types, especially when a system
is underactuated. r-PBC makes it simple to robustly connect fully actuated systems in practice,
reducing interactive behavior by default to point-mass dynamics. In comparison to [28]
this simplifies the interconnection of heterogeneous systems and makes it intuitive to tune
cooperative interaction. Compared to other cooperative controllers, the wide applicability
of the proposed passivity-based controllers and their computational efficiency (e.g., 1 kHz
control rate) makes them well-suited for practical applications. Additionally, energy-based
control leads to intuitive and stable behavior of all connected robots.

Several challenges remain to further improve the proposed methods. For IDA-PBC,
there is no general single-agent solution for underactuated systems and it is unclear if
Assumption 1 can be satisfied for any solution. Additionally, both schemes require a
measurement of acceleration which may not always be available (e.g., for fully actuated
systems, [19] uses only velocity measurements). The r-PBC scheme theoretically relies on
the assumption that the delay does not change faster than time itself. Although the as-
sumption is mild, it may be possible to capture this case by further modifying the network.
Future work could additionally explore including collision avoidance into these frame-
works to further extend their applicability, for example, to combine passivity-based control
with predictive control.
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9. Conclusions

In this work, we presented two methods for distributed cooperative end-effector
control of heterogeneous mechanical systems. The first method, cooperative IDA-PBC,
incorporates fully actuated systems and underactuated systems for which a single-agent so-
lution exists. The second method, based on r-passivity, stabilizes a network of fully actuated
systems in the presence of time-varying delays. We demonstrated stability and conver-
gence of both approaches in simulation and experiments with and without communication
delays, using academic examples. Our cooperative IDA-PBC approach is theoretically
limited to networks without delays, while r-PBC is limited to fully actuated systems.
Further research may explore a merger of the two methods, by solving the matching
conditions for an r-passive system description.
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