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Abstract. High-quality citizen science data can be instru-
mental in advancing science toward new discoveries and a
deeper understanding of under-observed phenomena. How-
ever, the error structure of citizen scientist (CS) data must
be well-defined. Within a citizen science program, the errors
in submitted observations vary, and their occurrence may de-
pend on CS-specific characteristics. This study develops a
graphical Bayesian inference model of error types in CS data.
The model assumes that (1) each CS observation is subject
to a specific error type, each with its own bias and noise,
and (2) an observation’s error type depends on the static er-
ror community of the CS, which in turn relates to character-
istics of the CS submitting the observation. Given a set of
CS observations and corresponding ground-truth values, the
model can be calibrated for a specific application, yielding
(i) number of error types and error communities, (ii) bias and
noise for each error type, (iii) error distribution of each er-
ror community, and (iv) the single error community to which
each CS belongs. The model, applied to Nepal CS rainfall
observations, identifies five error types and sorts CSs into
four static, model-inferred communities. In the case study,
73 % of CSs submitted data with errors in fewer than 5 % of
their observations. The remaining CSs submitted data with
unit, meniscus, unknown, and outlier errors. A CS’s assigned
community, coupled with model-inferred error probabilities,
can identify observations that require verification and pro-
vides an opportunity for targeted re-training of CSs based on
mistake tendencies.

1 Introduction

Citizen science programs, organized efforts to collect scien-
tific data in collaboration with members of the public, have
become increasingly popular as advances in technology have
made the data collection and submission process more acces-
sible (Bonney et al., 2009; Newman et al., 2012). However,
some scientists, policymakers, and workers in federal water
bureaucracies continue to question the quality of data sub-
mitted by members of the public and have yet to accept the
legitimacy of scientific discoveries advanced by citizen sci-
entists (CSs) (Hunter et al., 2013; Paul et al., 2018; Riesch
and Potter, 2014; Sheppard and Terveen, 2011). Others, how-
ever, have embraced citizen science as an effective means
for increasing the spatiotemporal resolution of scientific data
while acknowledging the data may contain errors. Many cit-
izen science programs investigate the type and frequency of
mistakes in the data collected by program participants and
develop training initiatives designed to reduce errors (Bird
et al., 2014; Crall et al., 2011; Davids et al., 2019). While
mistakes in citizen science data are well-recognized, issues
with incompleteness, data gaps, and fragmentary recording
may also limit the utility of citizen science data (Paul et al.,
2020).

Most CS programs conduct quality control of the data sub-
mitted by their participants, but the time and effort invested
varies widely. For example, CSs report when they feel an
earthquake and rank its strength for the United States Ge-
ological Survey’s (USGS) “Did You Feel It?” program. The
USGS removes outliers and aggregates reported intensities
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at zip code or city level after processing the data through
the Community Decimal Intensity algorithm (Atkinson and
Wald, 2007). On the other end of the spectrum, CS pro-
grams like SmartPhones4Water-Nepal (S4W-Nepal) under-
take an intensive quality control process. CSs submit rainfall
depth observations to S4W-Nepal, and S4W-Nepal checks
the value of each submitted rainfall observation against an
accompanying photograph of the rain gauge and manually
corrects erroneous observations (Davids et al., 2019).

Most error analyses of citizen science data focus on iden-
tifying and removing outliers from a dataset. Trained filters
flag outliers by identifying observations that do not fit within
the expected range of values or classes, such as species range
or allowable count (Bonter and Cooper, 2012; Wiggins et al.,
2011). Some citizen science programs develop eligibility or
trust rating procedures to identify users that are likely to
submit correct observations (Delaney et al., 2008; Hunter
et al., 2013). Rating schemes that consider demographic and
experience-related characteristics have potential for describ-
ing the variability in citizen science data reliability (Kos-
mala et al., 2016). However, some individual CSs do not
submit enough observations to be accurately assigned a rat-
ing. To overcome such limitations, Venanzi et al. (2014) em-
ployed model-based machine learning to group CSs into four
communities, each with a distinct pattern of errors. Machine
learning algorithms have shown promise as a useful tool to
increase the utility of citizen science datasets by making it
easier for citizen science programs to identify and describe
potential errors.

Machine learning algorithms in the form of hierarchical,
generalized linear, and mixed-effects models have been em-
ployed by a variety of citizen science programs to study er-
rors in citizen science data (Bird et al., 2014; Venanzi et al.,
2014). Generalized linear models (GLMs) have largely been
used to study whether and how characteristics of CSs affect
the accuracy of their observations (Butt et al., 2013; Crall
et al., 2011; Delaney et al., 2008). GLMs can determine
whether CS characteristics significantly impact the likeli-
hood of making a mistake, but they cannot infer the types
of errors made. Mixed-effects models add a random-effect
factor to generalized linear models, permitting the study of
errors in relation to an unintended grouping effect, such as
spatial clustering (Bird et al., 2014; Brunsdon and Comber,
2012). Mixed-effects models may effectively group CSs into
communities with similar characteristics or mistake tenden-
cies, but, as with GLMs, they cannot quantify the number
and type of mistakes made. Alternatively, hierarchical mod-
els have been used to study how CS mistakes relate to effort
and site-level effects (de Solla et al., 2005; Fink et al., 2010;
Miller et al., 2011). Most machine-learning-based models
have been used to study errors in qualitative citizen science
data, such as species identification and labeling tweets (Cox
et al., 2012; Lukyanenko et al., 2019; Venanzi et al., 2014).
Thus far, no error-based investigations of CS observations
have developed a unified methodology that can both infer

the number and types of errors present in quantitative data
and group the CSs into communities based on mistake ten-
dency and characteristics. Error modeling has only been em-
ployed to identify erroneous citizen science observations for
quantitative data in a limited manner (Bird et al., 2014; Kos-
mala et al., 2016). In addition, most machine learning citizen
science research has focused on datasets that are relatively
static or slow-moving in the fields of biology and conserva-
tion (Lukyanenko et al., 2019). To our knowledge, the study
presented here is the first attempt to leverage hierarchical ma-
chine learning to assess errors in quantitative citizen science
data with high spatiotemporal variability. Despite the range
of existing research on citizen science errors, broadly adapt-
able methods for analyzing errors in quantitative citizen sci-
ence data remain largely unexplored.

Motivated by the need to reduce the time–cost for quality
control of citizen science data without sacrificing effective-
ness, this study seeks to develop a reliable, semi-automated
method for identifying citizen science observations that re-
quire additional verification. The objective is to improve
quality control of quantitative citizen science data by devel-
oping a Bayesian inference model that discovers, explains,
and possibly corrects the errors in observations submitted by
CSs. The following research questions will be explored:

1. How can the type and magnitude of citizen science data
errors be automatically identified from citizen science
data and corresponding ground truth?

2. Given a calibrated model, to what extent can errors be
detected and corrected without ground truth?

3. To what extent do CS characteristics help in identifying
and screening errors?

A probabilistic graphical model was developed to address
these questions based on assumptions about the probabilis-
tic relationships between CSs, their characteristics, and types
and magnitude of their errors. The model design (research
question 1; see Sect. 2) includes a mixture of linear regres-
sions sub-models relating true and observed values and in-
cludes an unknown number of linear regressions. The model
also includes a probabilistic sub-model relating CS charac-
teristics to error types. The model was applied to investigate
its utility (see Sects. 3 and 4), including the capabilities of
the model in identifying erroneous observations and predict-
ing the true value of submitted observations and the impact
of multiple observations of a single event on model perfor-
mance (research question 2; see Sect. 4.5) and model per-
formance when observations are submitted by CSs with un-
known characteristics (research question 3; see Sect. 4.5.2).
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2 Model development and implementation

2.1 Model approach

The model described here is based on the Community
Bayesian Classifier Combination (CommunityBCC) model
developed in Venanzi et al. (2014). Whereas the Community-
BCC model was initially developed to assess errors in crowd-
sourced tweet labels by grouping participants into communi-
ties of similar labeling tendencies, the model presented here
extends the CommunityBCC model to assess mistakes in CS-
submitted rainfall measurements by grouping CSs into com-
munities of similar characteristics and mistake tendencies.
The communities identified by the model are purely statisti-
cal in nature and do not represent a physical entity or space.
The decision to include CS characteristics as a factor in as-
signing CSs to communities was motivated by past studies
that identified a significant relationship between CS charac-
teristics and performance (Crall et al., 2011; Delaney et al.,
2008; Sunde and Jessen, 2013). The use of communities to
generalize the reliability of quantitative CS observations is
novel, as is the effort to correct those observations based on
the overarching mistake tendencies of the CS’s inferred com-
munity.

2.2 Assumptions and model structure

A Bayesian probabilistic graphical model was developed
based on a number of assumptions about the data being mod-
eled. These assumptions were used to inform the relation-
ships between the variables and ensure the model accurately
represents the modeler’s understanding of the physical pro-
cesses that underlie the data (Krapu and Borsuk, 2019; Winn
et al., 2020). The following assumptions informed the devel-
opment of the citizen science errors’ inference model:

1. Each CS belongs to a single community.

2. CSs in the same community will have similar demo-
graphic and experience-related characteristics and will
have made similar types and frequencies of errors in
prior submissions.

3. Each CS in a particular community always submits an
observation with a community-specific error type distri-
bution.

4. Each CS observation relates to an underlying true value
with a systematic bias and random noise level that de-
pends on the error type of the observation.

While the tendency of CSs to make mistakes may change
as they gain experience, the model developed here assumes
that a CS will not change communities over time. This sim-
plifies the model while also including the potential impact of
experience as a citizen characteristic. CS demographic infor-
mation was assumed to be a factor in determining community

because demographics, such as age, experience, and educa-
tion, are a useful predictor in CS performance (Crall et al.,
2011; Delaney et al., 2008; Sunde and Jessen, 2013). As an
imprint of a CS’s lived experience, demographics may influ-
ence CS performance. For example, education and occupa-
tion imply specific skills’ training, which may present in the
CS’s observation tendencies. In addition, factors like motiva-
tion and recruitment may impact a CS’s dedication to collect-
ing and reporting accurate observations. Notably, motivation
and recruitment method were predictive factors in CS par-
ticipation rate (Davids et al., 2019). The predictive power of
demographics in determining community will be assessed.

These assumptions are translated into the following set of
equations describing the probabilistic relationship between
model variables. The terminology and symbology used here
is based on probabilistic graphical models (Winn et al.,
2020). We first state the main statistical relations used in the
model and provide clarifications for the wider research com-
munity. The model equations are presented following the or-
der of hierarchy in the model; i.e., equations for the observed
data layers are shown first, followed by the equations for vari-
ables in each previous layer.

Notation. Consider there are S CSs with C characteristics
submitting anO observation with ε latent error type for event
e. Let ϑe be the latent true value of rainfall for the submitted
observation, Os,e, for event e. We use a lowercase subscript
to denote an index (e.g., ϑe indicates there is a TrueValue
variable for each event e). Greek letters represent latent (in-
ferred) variables, and Latin letters represent observable vari-
ables. To keep notation simple, we assume a dense set of la-
bels in which all CSs observe all events. However, model
implementation does not require CSs to submit observations
for all events, as in Venanzi et al. (2014).

We quantify systematic (bias) and random (noise) differ-
ences between observations and underlying true values by
means of a linear regression model parameterized by an
error-type specific slope α, offset β, and precision (inverse
variance) τ :

Os,e|ϑe ∼

N∏
n=1

N (αnϑe+βn,τn)δ(εs,e−n), (1)

where Os,e represents the observed amount of rainfall in
event e submitted by CS s, and ϑe is the corresponding true
rainfall amount for event e. Given the TrueValue, ϑe, of an
observation, the observed value is generated from the product
of N Gaussian distributions with a mean equal to an error-
type specific linear function of the true value and an error-
type specific variance, where N is the number of error types.
α, β, and τ depend on error type εs,e. The Dirac delta func-
tion δ() in the exponent is used to mathematically represent
the mixture of linear regressions (i.e., the gate in Fig. 1), as
documented in Minka and Winn (2008). It follows that un-
conditionally, i.e., without knowing the error type, the rela-
tion between observed and true value is a mixture of error-
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Figure 1. The citizen science error model depicted as a factor graph.
A factor node represents a probabilistic relation between variables
in the model and is shown by a black square. A variable is shown
in an oval, with shading identifying observable variables. Arrows
depict the output variable of each factor. A gate is represented by a
dashed box. Plates are represented by gray rectangles with rounded
corners. Symbols adopted from Winn et al. (2020).

type specific Gaussian distributions, with the weight of each
Gaussian distribution in the mixture given by the probability
of the corresponding error type.

Equation (2), below, describes the conditional probability
table for each error type and community. The error type εs,e
of event e observed by CS s is assumed to be generated from
a discrete distribution denoted by Dis that depends on the
community-specific probability vector PErrγ and the com-
munity γs that the CS belongs to:

εs,e|PErr[γs] ∼ Dis(εs,e|PErr[γs]). (2)

Similarly, the community γ to which CS s belongs is a dis-
crete random variable generated from a discrete distribution
that depends on the probability vector PComs , which speci-
fies the prior probability of CS s belonging to each commu-
nity:

γs |PComs ∼Dis(γs |PComs), (3)

The value Zc,s of citizen characteristic c for CS s is gen-
erated from a discrete distribution that depends on the proba-
bility PChar, which is derived from the characteristic c under
consideration and the community γs the CS belongs to:

Zc,s |PCharc[γs] ∼ Dis(Zc,s |PCharc[γs]). (4)

Equation (4) quantifies the probabilistic relationship be-
tween each citizen characteristic and each assigned commu-
nity in the form of a conditional probability table. As seen in
Eqs. (2)–(4), the model assigns each CS to a single commu-
nity, automatically grouping CSs with similar characteristics
and error tendencies.

Finally, the model is completed by specifying priors for
the regression parameters (α, β, τ ), the probability vectors

(PCom, PCharc, PErr), and ϑe, given in Appendix A. The pri-
ors were different for the training and testing phases and are
detailed in Sect. 3.3. Generally, the training phase priors for
PCom, PCharc and PErr are uniform Dirichlet distributions,
and the training phase priors for α, β, τ , and ϑe are Gaussian
distributions with mean and variance informed by the testing
data. The testing phase priors are equal to the training phase
posteriors for all latent variables.

2.3 Representation as a factor graph

Equations (1)–(4) are translated into a factor graph as shown
in Fig. 1. The factor graph describes the joint posterior prob-
ability of the model (see Eq. A5), while omitting the prior
distributions for the sake of clarity. The factor graph includes
observable and latent (inferred) variables, factor nodes, edges
(arrows), plates, and gates. Variables are depicted by shaded
or unfilled ellipses. A shaded variable is an observable value;
an unfilled variable is a latent value. Factor nodes are the
small black boxes connected to variables, describing the rela-
tion between variables connected to the factor. Edges (direc-
tional arrows) connect factor nodes to variables (Winn et al.,
2020).

Plates. Plates are the large boxes outlined in gray sur-
rounding portions of the factor graph. Plates are a simpli-
fied way to express repeated structures. The number of times
a structure will be repeated is based on the index variable
shown in the bottom right corner of the plate (Winn et al.,
2020). For example, in Fig. 1, the structure within the char-
acteristics plate is repeated X times, where X is equal to the
number of CS characteristics the model considers.

Gates. Gates are indicated by a dashed box, as seen around
the “Regression” factor node in Fig. 1. Gates essentially act
as a switch, turning on and off depending on the value of
the selector variable, which is the error type here (Minka and
Winn, 2008). When gates are used to define a distribution,
that distribution is a mixture.

2.4 Model implementation

We implemented the probabilistic model using Microsoft Re-
search’s open-source Infer.NET software framework (Minka
et al., 2018). The Infer.NET framework provides adaptable
tools to develop and run Bayesian inference for probabilistic
graphical models. The modeler must define the variables and
the dependencies between variables and provide prior distri-
butions for the variables that will be inferred.

Infer.NET generates a computationally efficient code for
the inference algorithm using one of three available infer-
ence algorithms: expectation propagation, variational mes-
sage passing, and Gibbs sampling. The model developed here
employs the expectation propagation algorithm because it is
time efficient but reasonably accurate (Minka, 2013). Expec-
tation propagation is a deterministic approximate inference
algorithm for computing the marginal posterior distribution
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of each variable in the model (Minka, 2013). Each posterior
distribution is assumed to take a specific parametric form in
an exponential family (e.g., Gaussian, Gamma, discrete). The
algorithm then aims to find parameter values for each para-
metric posterior that result in a good approximation of the ex-
act posterior in terms of moment matching. For example, for
a Gaussian approximation, expectation propagation will find
a Gaussian whose mean and variance approximate those of
the actual posterior. This is done using an iterative approach
that starts from an initial guess for the approximate posteri-
ors and iteratively refines each posterior in turn via moment
matching. Since all individual posterior updates depend on
each other, the algorithm is iterated until all updates and pos-
teriors stabilize (here in < 5 iterations). The final posteriors
are not necessarily unique and may depend on how the algo-
rithm was initialized. Here, we adopt a random initialization
strategy for mixture models as used in Nishihara et al. (2013)
and Minka et al. (2018) and evaluate non-uniqueness in the
inferred posteriors using multiple runs with different random
initialization.

3 Model application

The model developed in the previous section was applied to
citizen science rainfall data collected through the S4W-Nepal
program. Rainfall data were chosen to test the model because
rainfall is fairly simple to measure and report and is thus the
focus of many citizen science programs (Tipaldo and Alla-
mano, 2017). The water cycle offers a great opportunity to
interrogate CS datasets because water is a ubiquitous natu-
ral resource that is relatively well-monitored, providing rich
datasets against which to compare CS observations.

Satellite rainfall data are available worldwide but at a res-
olution too low to capture rainfall extremes, which may be
hyperlocal and rapidly evolving (Stampoulis and Anagnos-
tou, 2012). Rain gauge observations submitted by CSs have
immense potential to record these extremes and increase the
scientific community’s understanding of rainfall. Currently,
only about 1.6 % of the land surface on Earth lies within
10 km of a rain gauge, and rain gauges can be inconsistent
(Kidd et al., 2017), so much so that the correlation coefficient
for rain gauges 4 km apart in the midwestern United States
was less than 0.5 for instantaneous rainfall (Habib et al.,
2001). A wide array of naturally occurring and equipment-
based factors contribute to the inconsistency of rain gauges.
For example, erroneous rain gauge measurements may arise
from gauge height, splash, wind, poor gauge installation (lo-
cation and technique), and clogging of gauge inlets among
others (Davids et al., 2019). Citizen science rainfall obser-
vation programs must contend with the systematic errors in-
herent in measuring rainfall, as well as the errors induced
by the CSs. Detailed investigations into the errors made by
CSs, such as the efforts of S4W-Nepal, can help increase the

Figure 2. Locations of CSs for which characteristics are known
with the number of CSs at specified locations shown in parenthe-
ses. Average annual rainfall grid created from observed data at 200
weather stations from 1980–2000 (USAID Nepal, 2015).

utility of citizen science data and inform future program de-
velopment and is the subject of this study.

3.1 Study area and data

SmartPhones4Water Nepal (S4W-Nepal) partners with CSs
across Nepal to collect rainfall observations (see Fig. 2).
Across Nepal, rainfall is highly heterogeneous in space and
time. Average annual rainfall in Nepal varies from 250 mm
on the leeward side of the Himalayas to over 3000 mm in the
center of the country near Pokhara (Fig. 2) (Nayava, 1974).
The South Asian summer monsoon brings approximately
80 % of Nepal’s annual precipitation during the months of
June to September (Nayava, 1974). The majority of CSs par-
ticipating in S4W-Nepal’s rainfall data collection efforts re-
side in the Kathmandu Valley, home to about 10 % of Nepal’s
population (Central Bureau of Statistics, 2012). While the av-
erage annual precipitation is approximately 1500 mm in the
city of Kathmandu and 1800 mm in the surrounding hills, it
is highly variable and unpredictable (Thapa et al., 2017).

The S4W-Nepal data used in this model application in-
clude CS rainfall data, CS characteristics, and S4W-Nepal-
corrected rainfall data. A detailed description of the S4W-
Nepal data collection and quality control process can be
found in Davids et al. (2019). The S4W-Nepal program is on-
going and has collected over 24 500 observations from over
265 CSs since 2016. Overall, approximately 9 % of submit-
ted rainfall observations are erroneous. Meniscus errors are
the most common (58 % of errors; records capillary rise),
followed by unknown errors (33 %) and unit errors (8 %;
records data in centimeters rather than millimeters) (Davids
et al., 2019).

CS characteristics from the S4W-Nepal dataset will be
used here to relate individual CSs with the likelihood of
mistakes in the data they submit. All CS characteristics
recorded by S4W-Nepal, regardless of pre-existing evidence
that a characteristic is significantly correlated with CS perfor-
mance, are included in the model. The model will determine
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the relative importance of each CS characteristic in defining
mistake tendencies while inferring the community groups.

3.2 Community and error selection

To select the appropriate number of communities to cap-
ture the differences among the CSs, model evidence was
used. Model evidence indicates which model best explains
the data relative to the model’s complexity (MacKay, 2003,
pp. 343–386). While the model evidence is notoriously hard
to compute, expectation propagation provides a convenient
estimate as a by-product of its posterior approximations.
Model evidence calculation in Infer.NET is achieved by in-
ferring posterior component weights of a mixture consist-
ing of two components, i.e., the entire model and the empty
model (Minka, 2000).

Too many communities may lead to overfitting, whereas
too few communities may lead to underfitting. The model
evidence automatically makes this trade-off and identifies the
optimal number of communities. Model evidence was com-
puted for models with 1 to 10 communities. The number of
communities that resulted in the largest model evidence was
selected as the correct number of communities for the model
and data. Similarly, model evidence was used to determine
how many error types were present in the data. Model evi-
dence was computed for 2 to 10 error types while using the
optimal number of communities. The number of error types
that resulted in the largest model evidence was selected as
the number of error types for the model and data. After se-
lecting the number of error types, model evidence was again
checked to verify that the optimal number of communities
remained constant. Selecting the error types via model evi-
dence may identify more error types than expected, but the
Bayesian model accounts for all possibilities and selects the
one that most accurately represents the data.

3.3 Training and testing the model

Before training and testing, an additional assumption was
incorporated due to the nature of rainfall data: the inferred
value of rainfall was assumed to be between 0 and 200 mm.
Rainfall events cannot result in negative rainfall, and 200 mm
is the maximum rainfall depth that can be recorded in a single
measurement using the S4W-Nepal rain gauges per Davids
et al. (2019). The CS rainfall observations analyzed here
include no observations below 0 mm and two observations
(0.03 %) greater than 200 mm. One could include overflow
as another type of error, but given the rare occurrence, that
was not included here. Similar assumptions unique to a spe-
cific type of citizen science observation may be necessary at
this stage of model development for application to other citi-
zen science programs.

The inference model was trained and tested to ensure
model performance was consistent across different groups of
data. During training and testing, the following characteris-

tics were known for each CS: motivation, recruitment, age,
education, place of residence, occupation, gender, perfor-
mance, and experience. The first seven characteristics were
recorded by S4W-Nepal (as explained in Davids et al., 2019).
The last two characteristics, performance and experience,
were defined based on the observations submitted by each
CS. Performance is simply the percentage of observations
submitted by a CS that did not require correction. A perfor-
mance of 90 % indicates that 90 % of that CS’s submitted
observations matched the true value shown in the associated
photograph. Experience is a count of how many observations
a CS submitted through the 2018 monsoon season. Perfor-
mance and experience rates were split into three levels based
on natural breakpoints in their respective histograms.

3.3.1 Splitting the data

Rainfall observations submitted by CSs with known charac-
teristics from 2016 to 2018 were randomly split into a train-
ing dataset and a testing dataset. The training set consisted
of 92 % of available observations, representing 6091 obser-
vations submitted by 152 CSs. The CSs in the training set
submitted anywhere from 1 to 159 observations, with the av-
erage number of submissions being 43.5. The testing set con-
sisted of the remaining 8 % of available observations, repre-
senting 527 observations from 109 CSs. The CSs in the test-
ing set submitted anywhere from 1 to 159 observations, with
the average number of submissions being 57.4. All CSs in the
testing set were also in the training set. Note that individual
observations in each group were unique.

3.3.2 Training the model

Before training the model, prior distributions were set for the
variables that were inferred. Uniform prior distributions were
set for the citizen characteristics, community, and error. The
prior distribution for the true value parameter was a Gaussian
distribution with a mean equal to the average value of all
submitted observations (15) and 4 times the variance of the
entire dataset (2400; see Eq. A1).

A true value prior variance of 2400 was chosen to reduce
small event bias and accommodate inference of large rainfall
observations. The prior distributions for the Gaussian mix-
ture parameters (α, β, and τ ) were assigned based on the
magnitude of unit, meniscus, and unknown errors classified
by Davids et al. (2019).

While running the model in the training phase, the charac-
teristics for each CS, the submitted observations, and the true
values were known. The community for each CS, the error
type for each submitted observation, the conditional proba-
bility tables for each characteristic and error type, and pa-
rameters for the Gaussian mixture were inferred (see Eqs. 1–
4 and Fig. 1). The training phase provided posterior distribu-
tions that were then used while testing the model.
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Table 1. Inferred regression parameters for the different error types.

Error type Slope, α Intercept, β Precision, τ

None 1.00 0.00 55750.04
Unit 0.10 0.07 36.89
Meniscus 1.00 2.54 1.74
Unknown 0.97 2.37 0.01
Slope outlier 10.31 −0.69 1.50

3.3.3 Testing the model

To test the model, prior distributions for latent variables were
set to the associated posterior distribution calculated during
training. The values of the submitted observations were set.
The model inferred the community for each CS and the prob-
able error type for each observation and provided a poste-
rior distribution for the true value of the submitted observa-
tion. The performance of the model was assessed based on
whether the inferred posterior distribution for the true value
(ϑ) covered the true value identified in the accompanying
photograph submitted by the CS and whether the mode of
the true value posterior matched the actual true value.

A synthetic rainfall event was created to explore how many
observations of a single event are needed to produce a reli-
able estimate of the event’s true value. A synthetic observa-
tion of the event was created by first assigning an error type
to each CS based on the distribution of errors for their re-
spective error communities (see Table 2). Then, the value of
the synthetic observation was calculated using Eq. (1), the α,
β, and τ values from Table 1 with a true value of 15 mm.
Multiple synthetic events were created with two to three ob-
servations of the same event with one to two erroneous ob-
servations per event. The true value of each synthetic event
was predicted by the model.

4 Results and discussion

4.1 Sensitivity of α, β, and τ priors and algorithm
initialization

In the model application examined here, Davids et al. (2019)
provided prior information on the types of errors in the data,
but such information will not always be available. Prior in-
formation on the types of errors in the data is useful but not
necessary to identify some of the errors made by participat-
ing CSs. When prior error information is known, the model
reliably infers the same five errors, even when the uncertainty
of this information is high (i.e., high variance assigned to
the Gaussian prior distributions). When no prior information
is known about the potential types of errors present in the
data (i.e., αε ∼N (1,100), βε ∼N (0,100)), the model reli-
ably infers the “none” error type and splits the meniscus error
into two error types – a 2 mm meniscus error and a 3.8 mm

meniscus error. The two remaining error types identified are
variations on the unknown error type with relatively low R2

values, 0.79 and 0.09, compared with R2 values of 1.0 for
the none and meniscus errors. The model may fail to identify
the unit error type because it occurs in only 0.7 % of sub-
mitted observations. Multiple local optima exist for the error
types, and the model may fail to identify all unique errors if
no prior information on the errors is known. Regardless of
whether error information is known previously, model evi-
dence indicated that four communities and five error types
best capture the variance in the data. When the priors are
vague, the model may require many more iterations (possi-
bly up to 100) to converge.

There is also some variation in the inferred posterior distri-
butions that is based on how the algorithm is initialized, but
the variation is not statistically significant (p > 0.05, per a
two-tailed Student T test). Changing the algorithm initializa-
tion during inference minimally affects the posterior distri-
butions of the error types. For example, with a different ini-
tialization, the α, β, and τ of the slope outlier change from
(10.31, −0.69, 1.5) to (10.31, −0.24, 1.5). The α, β, and τ
values of the remaining error types are more consistent than
the slope outlier type, regardless of how the algorithm is ini-
tialized.

4.2 Number of communities and error types

Model evidence indicated that there are four communities
and five error types present in the data, given the model struc-
ture (see Fig. 3). The model inferred one previously uniden-
tified error type in addition to the four error types that were
identified by S4W-Nepal’s visual inspection of the submit-
ted observations (Davids et al., 2019). The additional, model-
inferred error type, named slope outlier, is significantly dif-
ferent from the other identified error types (see Table 2) and
only occurs twice in the training and testing data. Each iden-
tified error type will be explored more fully in the next sec-
tion. The inference model is a more powerful tool for un-
covering nuances in the data than graphical techniques, and
the number of communities and error types inferred from the
model was used for the remaining analysis.

4.3 Error analysis

Parameters for the error-specific linear regressions were in-
ferred for the five error types in the submitted rainfall ob-
servations (see Table 1 and Fig. 4). The inferred parameters
included the mean and precision, τ , of the Gaussian distribu-
tion, where the mean is based on a linear regression of α, β,
and ϑ as shown in Eq. (1). Four of the five error types align
well with the error types identified by Davids et al. (2019):
none, unit, meniscus, and unknown. The none error type oc-
curs when the submitted observation matches the true value
of the rainfall, as determined from the corresponding sub-
mitted photo. The posterior distribution of submitted obser-
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Table 2. Distribution of errors made by CSs in each community.

Community None Unit Meniscus Unknown Slope outlier

Few (0.47) 0.98 0.00 0.01 0.01 0.00
Few+ (0.26) 0.95 0.00 0.03 0.02 0.00
Meniscus (0.20) 0.80 0.01 0.17 0.02 0.00
Unknown Error (0.07) 0.78 0.06 0.06 0.11 0.00

Note: The probability of each community is shown in parentheses after the community name. Bold values
indicate the most common error type(s) for each community. The probabilities may not add to 1.0 due to
rounding.

Figure 3. Model evidence for selecting the number of communi-
ties and number of error types present in the data given the model
structure. Note that model evidence for communities was calculated
using five errors. Model evidence for error types was calculated us-
ing four communities.

vations inferred to have a none error type has a high precision
(55 750) because there is no deviation from the α and β val-
ues across the submitted observation–true value pairs. Ev-
ery submitted observation inferred to have no error exactly
matches the corresponding true value. Meniscus errors occur
when a CS reports the top of a concave meniscus rather than
the bottom of the meniscus. Unit errors indicate instances
where a CS submitted an observation in units of centime-
ters rather than millimeters, resulting in a unit error slope,
α, of 0.10. Unknown errors do not present a discernible pat-
tern that would explain their origin, as indicated by the low
inferred precision (0.01) for this error type. Slope outliers
signify a case where the CS’s reported observation was ap-
proximately 10 times greater than the true value evident in
the accompanying photograph of the rainfall gauge. The un-
derlying cause of outlier errors is unclear, but these outliers
can likely be attributed to typos (e.g., adding an additional
zero) or a mistake made by reading the gauge from the wrong
direction (e.g., top down). Figure 4 shows that the model-
inferred error types are accurate, with only the unknown er-
ror type encompassing highly variable submitted observa-
tion/true value pairs.

4.3.1 Error distribution within communities

The distribution of errors committed by CSs varied depend-
ing on the assigned community, as seen in Table 2. Each com-
munity was named based on its respective error distribution:

Figure 4. Inferred error types for each pair of submitted observation
and true value of rainfall in the training dataset. Note that the above
plot shows all 6091 observations used in the training dataset. Few
points can be clearly discerned, however, because most (91 %) fall
along the none error type line and are overlapping elsewhere.

Few, Few+, Meniscus, and Unknown Error. The Few com-
munity makes very few errors – only 2 % of submitted obser-
vations are erroneous. Of the erroneous submissions, mem-
bers in the Few community are most likely to make meniscus
or unknown errors (1 % each). The Few+ community also
makes relatively few mistakes but does so at a rate of 5 %.
Members of the Few+ community are almost equally likely
to make meniscus errors (3 %) and unknown errors (2 %).
The two other communities, Meniscus and Unknown Error,
are much more likely to submit erroneous rainfall observa-
tions. The Meniscus community submits erroneous observa-
tions at a rate of 20 %. These observations are largely erro-
neous due to CSs reading the meniscus of the water incor-
rectly (17 %). Lastly, the Unknown Error community makes
the most errors, with 22 % of its observations requiring cor-
rection. While the Unknown Error community makes primar-
ily unknown errors (11 %), meniscus (6 %) and unit (6 %)
errors still represent a large portion of the erroneous submis-
sions. Members of the Unknown Error community are prone
to making a wide variety of errors.

The Few community members may have a high degree of
scientific literacy; more than 97 % of Few community mem-
bers have at least a Bachelor’s degree. The Few+ commu-
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nity members may also have high scientific literacy but oc-
casionally make mistakes. CSs that were initially error prone
but were able to correct their misunderstandings based on
the feedback provided by S4W-Nepal may also be assigned
to the Few+ community. For example, one CS in the Few+
community made three mistakes in the first 16 submissions
but then submitted 44 observations over the next 1.5 years
without making a mistake. The Meniscus community largely
misunderstands how to correctly read the depth of water in
the rain gauge. The Unknown Error community has several
misunderstandings that cross multiple error types; therefore
CSs in this community make a mix of errors.

The distribution of errors within each community is a use-
ful tool not only for selecting which submitted observations
might require verification but also for identifying opportu-
nities to improve or maintain the overall accuracy of sub-
mitted observations. Citizen science project organizers can
use targeted training to help specific communities improve
their performance (Budde et al., 2017; Sheppard and Ter-
veen, 2011). For example, S4W-Nepal could occasionally
send feedback messages to the meniscus community mem-
bers reminding them to read the rainfall depth from the bot-
tom of the meniscus. As another example, members in the
Few community might positively respond to general feed-
back messages acknowledging their strong record of accurate
observations and be motivated to remain engaged with the
program. Knowing the error structure of observations sub-
mitted by different communities may help improve the over-
all effectiveness of citizen science programs.

4.4 Community composition

The model grouped CSs into four distinct communities with
a unique combination of characteristics and probability of
making errors. The Few community is the largest, with 47 %
of CSs in the training group assigned to this community (see
Table 2). The Unknown community is the smallest, with only
7 % of CSs classified into this group. The remaining CSs are
grouped into the Few+ (19 %) and Meniscus (16 %) commu-
nities. Overall, only 24 % of participating CSs are likely to
make errors in more than 8.3 % of their submitted observa-
tions.

The probability that a CS will belong to a specific com-
munity depends, in part, on the unique characteristics of that
CS. Figure 5 provides the posterior probability that a CS with
a particular characteristic would belong to each community,
offering insight into the characteristic composition of each
community. Singular characteristics may have a large impact
on the tendency of a CS to make errors and therefore to be
assigned to a specific community. However, it is also true
that any combination of characteristics could contribute to
the probability of a CS being assigned to a community. In
some cases, CSs are likely to possess a similar combination
of characteristics, which surfaces in the community distribu-
tions. For example, Fig. 5 indicates that CSs recruited during

a random visit, older than 25 years of age, holding less than
a bachelor’s degree, and with an “other” occupation make up
20 % of all CSs in the project and have a similar community
distribution. While community assignment trends for singu-
lar characteristics can be enlightening, the impact of multiple
CSs with a similar combination of characteristics must be ac-
knowledged.

4.5 Inferring the true value of a submitted observation

In addition to providing insight into the error structure of
the submitted observations and the relationship between CS
characteristics and error tendencies, the model provides in-
formation about the true value of submitted observations.
Testing the model reveals that the model can infer a previ-
ously unknown true value based on the value of the submitted
observation and the characteristics of the CS. The inferred
true value differs from the actual true value by a median per-
cent error of 0.9 %. The standard deviation of percent error
is, however, 98.8 %. With a wide true value prior distribu-
tion (here 24 000; see Eq. A1), the model has a tendency to
over-predict unit errors for a small number of observations
submitted with a value of 6 mm or lower which causes the
large standard deviation (see Fig. 6a). In most cases, the ac-
tual true value of the submitted observation falls within the
range of the posterior distribution inferred for the true value
variable as seen in Fig. 6b and c. However, as Fig. 6b and c
show, the mode of the posterior distribution is not always a
good estimate of the actual true value.

To increase the computational efficiency of an inference
algorithm that sometimes needs to consider thousands of
variables, expectation propagation approximates a multi-
mode posterior distribution with a single-mode distribution
(Minka et al., 2018) by minimizing the Kullback–Leibler di-
vergence between the two distributions (Minka, 2005). In
many applications, this method works very well. However,
here, the mixture distribution covers values ranging from
10 % (unit error) of the true value up through 1000 % (slope
outlier error) of the true value. Such a wide range of possi-
ble true values results in a predicted true value posterior with
high variance and a mode that is occasionally shifted left or
right of the true value (see Fig. 6b, c).

While the predicted single-mode true value posterior dis-
tribution does not always estimate the actual true value of
an erroneous submission well, the exact Gaussian mixture
posterior often exhibits a local peak at the actual true value
(see Fig. 6b, c). The mode of the Gaussian mixture poste-
rior usually presents at the value of the submitted observa-
tion because of the high precision associated with the none
error type (see Table 1). Only 8.7 % of submitted observa-
tions have greater than a 20 % probability of being erroneous
in this example application. Therefore, the inferred error type
posterior distribution may be examined in conjunction with
the Gaussian mixture posterior to provide additional infor-
mation on the probability of each error type. For example,
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Figure 5. Community composition for each characteristic. The percentage of participating CSs with the associated characteristic is shown in
parentheses.

Figure 6. (a) The inferred true value is usually a good estimate of the true value of the submitted observation. In some erroneous submissions,
the mode of the estimated single-mode posterior is not equal to the true value; however an exact Gaussian mixture of the true value posterior
distributions has a local peak at the true value of an observation submitted with a (b) unit error and a (c) meniscus error. The points shown in
(b) and (c) are indicated by a plus (+) in (a).

despite the mode of the Gaussian mixture posterior being lo-
cated at the value of the submitted observation in Fig. 6b, the
probability of a none error type is only 0.23, and the unit error
probability is 0.73. The Gaussian mixture posterior and the
error type posterior distributions may provide a more accu-
rate representation of the true value of a submitted observa-
tion than the approximated single-mode Gaussian posterior
distribution.

4.5.1 Multiple observations of a single event

If only a single observation of a rainfall event is available,
the predicted error type is based on the error types observed

during model training. However, analyzing multiple observa-
tions of a single rainfall event should improve the accuracy
of the inferred error type and true value of rainfall.

For each of the simulations described below, the model
was not given any information about the error types asso-
ciated with the submitted observations. The model inferred
the true value solely based on what it learned during model
training. When only one error was made out of two observa-
tions submitted, the model predicted the true value every time
except for instances of a slope outlier error (see Table 3 col-
umn 1). In such cases, the ability of the model to correctly in-
fer the event true value was related to the error communities
of the CSs. Through 12 trials (not shown) with different algo-
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rithm initialization and combinations of CSs from the Few+
and Meniscus communities, the model correctly inferred the
true value only twice. However, the model was able to infer
the true value if one submitted observation had a slope outlier
for other combinations of CS communities (see Table 3 col-
umn 1). If one slope outlier observation was paired with two
or more correct observations, the model consistently failed
to infer the correct true value. The low probability of a slope
outlier combined with the relatively high probability of unit
and meniscus errors causes the model to infer the slope out-
lier as a meniscus error and the correct observations as unit
errors. When one slope outlier error was paired with another
error, the model required an additional correct observation
to accurately predict the true value (see Table 3 column 2).
For the best performance, the slope outlier error needs to be
paired with at least one other erroneous observation and a
correct observation. When two errors were made out of two
observations submitted, the model often failed to correctly
predict the true value. However, when a third observation
without an error was included, the model predicted the true
value every time (see Table 3). Overall, the model inferred
the correct error types when the inferred true value was also
correct.

For instances when multiple observations of a single event
are submitted, at least one error-free observation is likely
necessary to ensure that the model predicts the true value
with minimal uncertainty. When multiple erroneous obser-
vations are submitted, the model performs best when at least
one correct observation is submitted of that same event.
Given that over 90 % of submitted observations do not have
an error, it is unlikely that an erroneous observation would be
submitted without a complementary error-free observation,
assuming that additional CSs are active.

4.5.2 CSs with unknown characteristics

As CS programs expand, recording complete characteristics
data for each participating CS may become challenging. The
model’s ability to infer the correct community for CSs with
unknown characteristics and the correct true value for the ob-
servations they submit was investigated. The characteristics
for each unknown CS were selected from a discrete distribu-
tion estimated from the characteristics data of CSs observed
during training. The prior distribution of the community,
PCom, was set to a discrete distribution equal to the over-
all community posterior distribution of the training set. The
community for each CS and the true values of their submitted
observations were inferred and compared to the communities
and true values inferred when the characteristics were known
precisely, but the community was also unknown.

The model performed well while inferring the community
of unknown CSs and the true values of observations sub-
mitted by unknown CSs. Communities of CSs with known
characteristics were correctly predicted 0.9 % more than CSs
with unknown characteristics. The coefficient of determina-

tion between the actual true values and predicted true val-
ues was 0.015 higher for known CSs than for unknown CSs.
While the predicted true values for known and unknown CSs
were similar, the uncertainty of the true values predicted from
observations submitted by unknown CSs was higher. The
average variance of the inferred true value posteriors was
140.2 mm2 for unknown CSs and 125.6 mm2 for known CSs.
Overall, the value of submitted observations has greater in-
fluence on the inferred true values of rainfall than the charac-
teristics of the associated CS. While knowing the character-
istics of all CSs increases the accuracy of predicting the true
value of submitted observations, it is not essential.

4.6 Limitations in application

While the model has potential for adaptation to a wide va-
riety of citizen science programs, it has limitations. For ex-
ample, the model is data intensive because a large dataset
is required for training and testing the model. This limits its
utility for small-scale or newly developed citizen science pro-
grams. In addition, a record of erroneous data is required for
training the model, which must be identified and corrected
by the citizen science program. This may require a large ef-
fort and may be difficult to achieve, but at least one citi-
zen science program, CrowdWater, has an innovative solu-
tion. The CrowdWater Application collects CS observations
of stream stage, and the CrowdWater Game crowdsources
the true value of the submitted stage observations (Seibert
et al., 2019; Strobl et al., 2019). It could be interesting to
investigate to what extent the model can be trained without
the availability of error-free ground-truth data. For example,
Schoups and Nasseri (2021) showed that fusion of multi-
source data with unknown noise and bias (in their case, water
balance data from remote sensing) is possible in the absence
of ground-truth data. Lastly, the model design requires that
CSs are registered with the program and that submissions
can be linked to registered individuals. This is not the case
for all citizen science programs – some do not require regis-
tration, and some do not track the submission record of their
participants. The model can be implemented for quality as-
sessment in many citizen science programs, but the model is
not universally useful or without limitations.

5 Summary and conclusions

This study developed a probabilistic model to investigate the
type and frequency of errors in citizen science data. The
model assigns CSs to a community based on the charac-
teristics of the CS and their tendency to submit erroneous
observations. This helps to target manual corrections of CS
data. The model then infers a posterior distribution of the
true value of a submitted observation from the value of the
observation and the community of the participating CS. De-
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Table 3. Synthetic tests inferring true value from multiple observations submitted for a single event with a true value of 15 mm.

Inferred Inferred

No. obs. Error types Value (mm) Variance (mm2) No. obs. Error types Value (mm) Variance (mm2)

2 0, 1 14.98 6.26E−2 2 2, 4 168.10 2.89
2 0, 2 15.00 1.39E−3 3 0, 2, 4 15.00 6.54E−5
2 0, 3 14.99 1.39E−2 3 0, 3, 4 15.00 5.43E−5
2 0, 4 153.85 3.45 2 1, 3 16.69 4.23E−1

Different 15.00 9.04E−5 3 0, 1, 3 14.99 1.66E−2
CS community 15.00 5.94E−2 2 1, 2 17.35 5.96E−1
combinations 15.00 5.94E−2 3 0, 1, 2 15.00 3.27E−3
. . . 15.00 5.94E−2 2 2, 3 17.59 1.91E−1

3 0, 0, 4 150.70 1.22 3 0, 2, 3 15.00 3.29E−3
4 0, 0, 0, 4 150.50 0.64

Error types: 0= none, 1= unit, 2=meniscus, 3= unknown, 4= slope outlier.

signed in this way, the model can be adapted to a wide array
of citizen science datasets.

Analysis of the error structure in CS rainfall observations
revealed that individuals can be characterized by one of four
error patterns: not error prone, mostly not error prone, menis-
cus error prone, and random or various error prone. While the
Bayesian inference model developed here used communities
to relate CS characteristics to error tendencies, the magni-
tude and type of errors committed is the crux of every com-
munity assignment. The distribution of characteristics within
each community is useful for investigating potential reasons
for making errors rather than for identifying individuals who
might be particularly error prone.

The Bayesian inference model developed using In-
fer.NET’s software framework uncovered five error types and
their probability distribution within each of the four error-
based communities. The community assignments are a useful
tool for discerning which CSs are more likely to submit er-
roneous observations that require further review. In addition,
training and feedback messages tailored to a community’s
error tendencies may be a powerful tool for increasing the
quality and frequency of submissions.

The Bayesian probabilistic model was often able to pre-
dict the true value of a submitted observation, and the model
extrapolated useful error probabilities for each observation.
These error probabilities, in conjunction with the model’s
inferred error-specific regression and precision parameters,
can be used to calculate a Gaussian mixture distribution that
provides more information about the probable true value of
submitted observations than Infer.NET’s single-mode true
value prediction. As citizen science programs expand to in-
clude multiple participants submitting observations of a sin-
gle event, the model’s ability to predict the true value for
that event may increase. While the results are promising, the
model was only tested with one citizen science program de-
ployed in one country. Further testing with datasets from dif-
ferent citizen science programs is required to assess whether

the method and model perform equally well. Applying the
model to different citizen science datasets may require some
of the model assumptions to be tailored to the specific appli-
cation (e.g., range of acceptable values and censored data).
However, the flexibility of the modeling tool used, Infer.NET,
makes it simple to vary the model to suit the specific needs
of different CS datasets.

As a graphical, assumption-based Bayesian inference
model, the citizen science error model presented here has po-
tential for adaptation to other citizen science programs with
diverse data types. The implementation of error-based com-
munities provides a simple, yet effective method for track-
ing changes in the types and frequency of errors commit-
ted by CSs. The communities also provide opportunities for
targeted re-training and feedback to improve citizen science
data at the point of collection, rather than at the point of cor-
rection. Improving the quality of citizen science data at ev-
ery step enables increasingly more CS-supported decision-
making and scientific discoveries.

6 Future work

Testing and refinement of the model will continue as new cit-
izen science datasets that meet the minimum requirement of
having a CS observation coupled with a known true value are
discovered. Some citizen science datasets can be analyzed
directly with the model formulation presented here, like Paul
et al. (2020), who compare rainfall observations collected by
secondary students with co-located automatic rain gauges.
Others may require some adjustments to the model due to
special features of the data, like the censored stream stage
data collected by CrowdWater (Seibert et al., 2019). In addi-
tion to testing the model further with new datasets, the model
may be improved, for example, by deriving prior distribu-
tions from remotely sensed observations.

Hydrol. Earth Syst. Sci., 27, 3565–3579, 2023 https://doi.org/10.5194/hess-27-3565-2023



J. A. Eisma et al.: Errors in citizen science rainfall data 3577

Appendix A: Prior and posterior distributions

The prior distribution for the true value of each event (ϑe)
was a Gaussian distribution with a mean equal to the mean
of the entire true value dataset (µϑ ) and a variance equal to
4 times the variance of the entire true value dataset (4σϑ 2;
i.e., twice the standard deviation). Here, the true value prior
was set to a Gaussian distribution with a mean of 15 and a
variance of 2400.

ϑe ∼N (ϑe|µϑ ,4σϑ 2) (A1)

The prior distributions for the α and β parameters in
Eq. (1) were set to a Gaussian distribution parameterized by
mean and variance. In the S4W-Nepal case study, the α and β
mean and variance were informed by the mean and variance
of a series of slopes and intercepts from linear regressions
fit to subsets of (ϑ , O) pairs corresponding to error types
identified by Davids et al. (2019). Davids et al. (2019) only
identified four error types, whereas the model evidence indi-
cated five error types were present in the S4W-Nepal dataset.
Therefore, in the case study presented, the priors for the first
four error types are informative, and the prior for the last er-
ror type is noninformative.

αn ∼N (αn|µα,σ 2
α ), (A2)

where µα = (1, 0.1, 1.002, 0.9, 7), and σ 2
α = (0.5, 0.5, 2, 50,

70) for the S4W-Nepal case study. Note that the σ 2 values
used are larger than calculated to provide a wider prior dis-
tribution. And,

βn ∼N (βn|µβ ,σ 2
β ), (A3)

where µβ = (0, 0.02, 2.3, 4.2, 3), and σ 2
β = (0.5, 0.5, 0.2, 50,

30) for the S4W-Nepal case study. Similarly, the σ 2 values
used are larger than calculated to provide a wider prior dis-
tribution.

The prior distributions for the τ parameter in Eq. (1) were
set to a gamma distribution parameterized by shape (A) and
rate (B). In the S4W-Nepal case study, the τ shape and rate
for the first four ε error types were informed by a gamma
distribution fit to observations that corresponded to the four
error types identified by Davids et al. (2019). The shape and
rate for the remaining error type was selected randomly, since
there was no information available regarding this error prior
to training the model.

τn ∼ G(τn|A,B), (A4)

where A= (0.25, 0.75, 1.5, 0.5, 15), and B = (0.05, 0.25,
0.05, 0.01, 10) for the S4W-Nepal case study.

Finally, prior distributions for the various probability vec-
tors in the model, i.e., PCharc, PComs , and PErr, were all set
to uniform Dirichlet distributions, reflecting a lack of knowl-
edge on these variables.

Putting everything together, Eq. (A5) gives the poste-
rior distribution for the model. The posterior is obtained
by writing the joint distribution over latent variables X=
(PCharc,PComs,PErr,ϑ,ε,γ ,αn,βn,τn) and observed vari-
ables D= (Z,O), followed by conditioning on the observa-
tions. Here, N is the number of error types present in the CS
data.

p(X|D)∝
S∏
s=1

C∏
c=1

Dis(Zs,c|PCharc[γs])

S∏
s=1

Dis(γs |PComs)

S∏
s=1

E∏
e=1

Dis(εs,e|PErr[γs])

S∏
s=1

E∏
e=1

N∏
n=1

N (Os,e|αnϑe +βn,τn)δ(εs,e−n)

N∏
n=1

N (αn|µα,σ 2
α )N (βn|µβ ,σ

2
β )G(τn|A,B))

E∏
e=1

N (ϑe|µϑ ,4σϑ 2), (A5)

where the first four lines correspond to Eqs. (1)–(4) in the
paper (and to the four factor boxes shown in the factor graph,
Fig. 1, replicated over the plates that contain them), and the
last two lines denote regression parameter and true value pri-
ors (not explicitly shown in the factor graph). For simplic-
ity, the priors forPCharc,PComs , and PErr are not explicitly
shown in the posterior equation, since they are all uniform
Dirichlet distributions and, as such, are absorbed in the pro-
portionality constant.

Code and data availability. The dataset analyzed for this study
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and Schoups, 2023).

Author contributions. JAE contributed to the conceptualization of
this study, methodology, software development, and writing of the
manuscript. GS contributed to the conceptualization of this study,
methodology, software development, and writing of the manuscript.
JCD contributed to the collecting and curating of the data and the
editing of the manuscript. NvdG contributed to the conceptualiza-
tion of this study and the editing of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/hess-27-3565-2023 Hydrol. Earth Syst. Sci., 27, 3565–3579, 2023

https://github.com/jaeisma08/CSNepal
https://doi.org/10.5281/zenodo.8404002


3578 J. A. Eisma et al.: Errors in citizen science rainfall data

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Data collection and quality control was con-
ducted by SmartPhones4Water (S4W). The authors would like to
thank S4W’s Saujan Maka for instrumental guidance. The authors
would also like to thank the reviewers and handling editor for their
helpful suggestions on improving the manuscript and GitHub repos-
itory.

Financial support. This research has been supported by the Direc-
torate for STEM Education (grant no. 1333468), the Styrelsen för
Internationellt Utvecklingssamarbete (grant no. 2016-05801), and
the Dutch Research Council (NWO; grant no. 040.15.066).

Review statement. This paper was edited by Wouter Buytaert and
reviewed by Jonathan Paul and Björn Weeser.

References

Atkinson, G. M. and Wald, D. J.: “Did You Feel It?” intensity data:
A surprisingly good measure of earthquake ground motion, Seis-
mol. Res. Lett., 78, 362–368, 2007.

Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thom-
son, R. J., Edgar, G. J., Stuart-Smith, R. D., Wotherspoon,
S., Krkosek, M., Stuart-Smith, J. F., Pecl, G. T., Barrett, N.,
and Frusher, S.: Statistical solutions for error and bias in
global citizen science datasets, Biol. Conserv., 173, 144–154,
https://doi.org/10.1016/j.biocon.2013.07.037, 2014.

Bonney, R., Cooper, C. B., Dickinson, J., Kelling, S.,
Phillips, T., Rosenberg, K. V., and Shirk, J.: Citizen Sci-
ence: A Developing Tool for Expanding Science Knowl-
edge and Scientific Literacy, BioScience, 59, 977–984,
https://doi.org/10.1525/bio.2009.59.11.9, 2009.

Bonter, D. N. and Cooper, C. B.: Data validation in citizen science:
a case study from Project FeederWatch, Front. Ecol. Environ.,
10, 305–307, https://doi.org/10.1890/110273, 2012.

Brunsdon, C. and Comber, L.: Assessing the changing flowering
date of the common lilac in North America: a random coefficient
model approach, Geoinformatica, 16, 675–690, 2012.

Budde, M., Schankin, A., Hoffmann, J., Danz, M., Riedel, T.,
and Beigl, M.: Participatory Sensing or Participatory Non-
sense?: Mitigating the Effect of Human Error on Data Qual-
ity in Citizen Science, Proceedings of the ACM on Interac-
tive, Mobile, Wearable and Ubiquitous Technologies, 1, 1–23,
https://doi.org/10.1145/3131900, 2017.

Butt, N., Slade, E., Thompson, J., Malhi, Y., and Riutta, T.: Quan-
tifying the sampling error in tree census measurements by vol-
unteers and its effect on carbon stock estimates, Ecol. Appl., 23,
936–943, 2013.

Central Bureau of Statistics: National Population and Hous-
ing Census 2011: National report, vol. 1, Government
of Nepal, National Planning Commission Secretariat,
https://unstats.un.org/unsd/demographic-social/census/

documents/Nepal/Nepal-Census-2011-Vol1.pdf (last access:
2 October 2023), 2012.

Cox, T., Philippoff, J., Baumgartner, E., and Smith, C.: Expert vari-
ability provides perspective on the strengths and weaknesses of
citizen-driven intertidal monitoring program, Ecol. Appl., 22,
1201–1212, 2012.

Crall, A. W., Newman, G. J., Stohlgren, T. J., Holfelder,
K. A., Graham, J., and Waller, D. M.: Assessing citizen sci-
ence data quality: an invasive species case study: Assess-
ing citizen science data quality, Conserv. Lett., 4, 433–442,
https://doi.org/10.1111/j.1755-263X.2011.00196.x, 2011.

Davids, J. C., Devkota, N., Pandey, A., Prajapati, R., Ertis, B. A.,
Rutten, M. M., Lyon, S. W., Bogaard, T. A., and van de
Giesen, N.: Soda Bottle Science–Citizen Science Monsoon
Precipitation Monitoring in Nepal, Front. Earth Sci., 7, 46,
https://doi.org/10.3389/feart.2019.00046, 2019.

Delaney, D. G., Sperling, C. D., Adams, C. S., and Leung, B.: Ma-
rine invasive species: validation of citizen science and implica-
tions for national monitoring networks, Biol. Invasions, 10, 117–
128, https://doi.org/10.1007/s10530-007-9114-0, 2008.

de Solla, S. R., Shirose, L. J., Fernie, K. J., Barrett, G. C.,
Brousseau, C. S., and Bishop, C. A.: Effect of sampling effort
and species detectability on volunteer based anuran monitoring
programs, Biol. Conserv., 121, 585–594, 2005.

Eisma, J. A. and Schoups, G.: jaeisma08/CSNepal:
Citizen Science Error Model, Zenodo [code],
https://doi.org/10.5281/zenodo.8404002, 2023.

Fink, D., Hochachka, W. M., Zuckerberg, B., Winkler, D. W.,
Shaby, B., Munson, M. A., Hooker, G., Riedewald, M., Shel-
don, D., and Kelling, S.: Spatiotemporal exploratory models for
broad-scale survey data, Ecol. Appl., 20, 2131–2147, 2010.

Habib, E., Krajewski, W. F., and Ciach, G. J.: Estima-
tion of rainfall interstation correlation, J. Hydrom-
eteorol., 2, 621–629, https://doi.org/10.1175/1525-
7541(2001)002<0621:EORIC>2.0.CO;2, 2001.

Hunter, J., Alabri, A., and van Ingen, C.: Assessing the quality and
trustworthiness of citizen science data, Concurr. Comp.-Pract. E.,
25, 454–466, https://doi.org/10.1002/cpe.2923, 2013.

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P.,
Skofronick-Jackson, G., and Kirschbaum, D. B.: So, How Much
of the Earth’s Surface Is Covered by Rain Gauges?, B. Am.
Meteorol. Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-
00283.1, 2017.

Kosmala, M., Wiggins, A., Swanson, A., and Simmons, B.: Assess-
ing data quality in citizen science, Front. Ecol. Environ., 14, 551–
560, https://doi.org/10.1002/fee.1436, 2016.

Krapu, C. and Borsuk, M.: Probabilistic programming: A review for
environmental modellers, Environ. Modell. Softw., 114, 40–48,
2019.

Lukyanenko, R., Wiggins, A., and Rosser, H. K.: Citizen science:
An information quality research frontier, Inform. Syst. Front., 22,
961–983, 2019.

MacKay, D. J. C.: Information Theory, Inference, and Learn-
ing Algorithms, Cambridge University Press, Cambridge,
ISBN 10 0521642981, ISBN 13 978-0521642989, 2003.

Miller, D. A., Nichols, J. D., McClintock, B. T., Grant, E. H. C.,
Bailey, L. L., and Weir, L. A.: Improving occupancy estimation
when two types of observational error occur: Non-detection and
species misidentification, Ecology, 92, 1422–1428, 2011.

Hydrol. Earth Syst. Sci., 27, 3565–3579, 2023 https://doi.org/10.5194/hess-27-3565-2023

https://doi.org/10.1016/j.biocon.2013.07.037
https://doi.org/10.1525/bio.2009.59.11.9
https://doi.org/10.1890/110273
https://doi.org/10.1145/3131900
https://unstats.un.org/unsd/demographic-social/census/documents/Nepal/Nepal-Census-2011-Vol1.pdf
https://unstats.un.org/unsd/demographic-social/census/documents/Nepal/Nepal-Census-2011-Vol1.pdf
https://doi.org/10.1111/j.1755-263X.2011.00196.x
https://doi.org/10.3389/feart.2019.00046
https://doi.org/10.1007/s10530-007-9114-0
https://doi.org/10.5281/zenodo.8404002
https://doi.org/10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0621:EORIC>2.0.CO;2
https://doi.org/10.1002/cpe.2923
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1002/fee.1436


J. A. Eisma et al.: Errors in citizen science rainfall data 3579

Minka, T.: Bayesian linear regression, Tech. rep., Citeseer,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&
doi=929adb1693090be52b328dc0a36f81d35de65ee1 (last
access: 30 May 2021), 2000.

Minka, T.: Divergence measures and message passing,
Technical Report TR-2005-173, Microsoft Research,
https://citeseerx.ist.psu.edu/document?repid=rep1&type=
pdf&doi=fb361fc576e1c70231126e6bbb7eedfb8a7b68f6 (last
access: 22 October 2020), 2005.

Minka, T.: Expectation propagation for approx-
imate Bayesian inference, arXiv [preprint],
https://doi.org/10.48550/arXiv.1301.2294, 2013.

Minka, T. and Winn, J.: Gates, Adv. Neur. In., 21, 1073–1080, 2008.
Minka, T., Winn, J., Guiver, J., Zaykov, Y., Fabian, D., and Bron-

skill, J.: Infer.NET 0.3, GitHub [code], http://dotnet.github.io/
infer (last access: 15 March 2023), 2018.

Nayava, J. L.: Heavy monsoon rainfall in Nepal, Weather, 29, 443–
450, https://doi.org/10.1002/j.1477-8696.1974.tb03299.x, 1974.

Newman, G., Wiggins, A., Crall, A., Graham, E., Newman, S., and
Crowston, K.: The future of citizen science: emerging technolo-
gies and shifting paradigms, Front. Ecol. Environ., 10, 298–304,
https://doi.org/10.1890/110294, 2012.

Nishihara, R., Minka, T., and Tarlow, D.: Detecting param-
eter symmetries in probabilistic models, arXiv [preprint],
https://doi.org/10.48550/arXiv.1312.5386, 2013.

Paul, J. D., Buytaert, W., Allen, S., Ballesteros-Cánovas, J. A.,
Bhusal, J., Cieslik, K., Clark, J., Dugar, S., Hannah, D. M.
Stoffel, M., Dewulf, A., Dhital, M. R., Liu, W., Nayaval, J.
L., Neupane, B., Schiller, A., Smith, P. J., and Supper, R.:
Citizen science for hydrological risk reduction and resilience
building, Wiley Interdisciplinary Reviews: Water, 5, e1262,
https://doi.org/10.1002/wat2.1262, 2018.

Paul, J. D., Cieslik, K., Sah, N., Shakya, P., Parajuli, B. P.,
Paudel, S., Dewulf, A., and Buytaert, W.: Applying
Citizen Science for Sustainable Development: Rainfall
Monitoring in Western Nepal, Frontiers in Water, 2, 62,
https://doi.org/10.3389/frwa.2020.581375, 2020.

Riesch, H. and Potter, C.: Citizen science as seen by
scientists: Methodological, epistemological and eth-
ical dimensions, Public Underst. Sci., 23, 107–120,
https://doi.org/10.1177/0963662513497324, 2014.

Schoups, G. and Nasseri, M.: GRACEfully closing the wa-
ter balance: A data-driven probabilistic approach applied to
river basins in Iran, Water Resour. Res., 57, e2020WR029071,
https://doi.org/10.1029/2020WR029071, 2021.

Seibert, J., Strobl, B., Etter, S., Hummer, P., and van
Meerveld, H.: Virtual staff gauges for crowd-based
stream level observations, Front. Earth Sci., 7, 70,
https://doi.org/10.3389/feart.2019.00070, 2019.

Sheppard, S. A. and Terveen, L.: Quality is a verb: the op-
erationalization of data quality in a citizen science com-
munity, in: Proceedings of the 7th International Symposium
on Wikis and Open Collaboration – WikiSym ’11, ACM
Press, Mountain View, California, 3–5 October 2011, p. 29,
https://doi.org/10.1145/2038558.2038565, 2011.

Stampoulis, D. and Anagnostou, E. N.: Evaluation of global satellite
rainfall products over continental Europe, J. Hydrometeorol., 13,
588–603, 2012.

Strobl, B., Etter, S., van Meerveld, I., and Seibert, J.: The Crowd-
Water game: A playful way to improve the accuracy of crowd-
sourced water level class data, PLoS One, 14, e0222579,
https://doi.org/10.1371/journal.pone.0222579, 2019.

Sunde, P. and Jessen, L.: It counts who counts: an experimental eval-
uation of the importance of observer effects on spotlight count
estimates, Eur. J. Wildlife Res., 59, 645–653, 2013.

Thapa, B. R., Ishidaira, H., Pandey, V. P., and Shakya, N. M.: A
multi-model approach for analyzing water balance dynamics in
Kathmandu Valley, Nepal, J. Hydrol.-Regional Studies, 9, 149–
162, https://doi.org/10.1016/j.ejrh.2016.12.080, 2017.

Tipaldo, G. and Allamano, P.: Citizen science and community-based
rain monitoring initiatives: an interdisciplinary approach across
sociology and water science, Wiley Interdisciplinary Reviews:
Water, 4, e1200, https://doi.org/10.1002/wat2.1200, 2017.

USAID Nepal: Nepal Total Annual Rainfall Distribution,
https://data.humdata.org/dataset/nepal-historical-annual-and-
monthly-rainfall-distribution-for-monsoon-months (last access:
15 April 2020), 2015.

Venanzi, M., Guiver, J., Kazai, G., Kohli, P., and Shok-
ouhi, M.: Community-based bayesian aggregation models
for crowdsourcing, in: Proceedings of the 23rd interna-
tional conference on World wide web – WWW ’14,
ACM Press, Seoul, Korea, 7–11 April 2014, 155–164,
https://doi.org/10.1145/2566486.2567989, 2014.

Wiggins, A., Newman, G., Stevenson, R. D., and Crowston, K.:
Mechanisms for Data Quality and Validation in Citizen Science,
in: 2011 IEEE Seventh International Conference on e-Science
Workshops, IEEE, Stockholm, Sweden, 5—8 December 2011,
14–19, https://doi.org/10.1109/eScienceW.2011.27, 2011.

Winn, J., Bishop, C., Diethe, T., Guiver, J., and Zaykov, Y.: Model-
based machine learning, Microsoft Research, online, https://
www.mbmlbook.com/ (last access: 3 March 2022), 2020.

https://doi.org/10.5194/hess-27-3565-2023 Hydrol. Earth Syst. Sci., 27, 3565–3579, 2023

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=929adb1693090be52b328dc0a36f81d35de65ee1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=929adb1693090be52b328dc0a36f81d35de65ee1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fb361fc576e1c70231126e6bbb7eedfb8a7b68f6
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fb361fc576e1c70231126e6bbb7eedfb8a7b68f6
https://doi.org/10.48550/arXiv.1301.2294
http://dotnet.github.io/infer
http://dotnet.github.io/infer
https://doi.org/10.1002/j.1477-8696.1974.tb03299.x
https://doi.org/10.1890/110294
https://doi.org/10.48550/arXiv.1312.5386
https://doi.org/10.1002/wat2.1262
https://doi.org/10.3389/frwa.2020.581375
https://doi.org/10.1177/0963662513497324
https://doi.org/10.1029/2020WR029071
https://doi.org/10.3389/feart.2019.00070
https://doi.org/10.1145/2038558.2038565
https://doi.org/10.1371/journal.pone.0222579
https://doi.org/10.1016/j.ejrh.2016.12.080
https://doi.org/10.1002/wat2.1200
https://data.humdata.org/dataset/nepal-historical-annual-and-monthly-rainfall-distribution-for-monsoon-months
https://data.humdata.org/dataset/nepal-historical-annual-and-monthly-rainfall-distribution-for-monsoon-months
https://doi.org/10.1145/2566486.2567989
https://doi.org/10.1109/eScienceW.2011.27
https://www.mbmlbook.com/
https://www.mbmlbook.com/

	Abstract
	Introduction
	Model development and implementation
	Model approach
	Assumptions and model structure
	Representation as a factor graph
	Model implementation

	Model application
	Study area and data
	Community and error selection
	Training and testing the model
	Splitting the data
	Training the model
	Testing the model


	Results and discussion
	Sensitivity of , , and  priors and algorithm initialization
	Number of communities and error types
	Error analysis
	Error distribution within communities

	Community composition
	Inferring the true value of a submitted observation
	Multiple observations of a single event
	CSs with unknown characteristics

	Limitations in application

	Summary and conclusions
	Future work
	Appendix A: Prior and posterior distributions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

