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Abstract: Surface plasmon technology is regarded as having significant potential for the enhancement
of the performance of 2D oxide semiconductors, especially in terms of improving the light absorption
of 2D MoO3 photodetectors. An ultrathin MoO3/Ir/SiO2/Si heterojunction Schottky self-powered
photodetector is introduced here to showcase positive photoconductivity. In wafer-scale produc-
tion, the initial un-annealed Mo/2 nm Ir/SiO2/Si sample displays a sheet carrier concentration
of 5.76 × 1011/cm2, which subsequently increases to 6.74 × 1012/cm2 after annealing treatment,
showing a negative photoconductivity behavior at a 0 V bias voltage. This suggests that annealing
enhances the diffusion of Ir into the MoO3 layer, resulting in an increased phonon scattering probabil-
ity and, consequently, an extension of the negative photoconductivity behavior. This underscores the
significance of negative photoconductive devices in the realm of optoelectronic applications.

Keywords: negative photoconductivity; thin film; photodetector; plasmonic; 2D oxide semiconductors

1. Introduction

The conversion of light into electrical energy typically relies on two fundamental
mechanisms: positive photoconductivity (PPC) and negative photoconductivity (NPC).
In traditional PPC-based photodetectors, the generation of photocurrent occurs when
incident photons possess energy levels greater than the semiconductor material’s band
gap (∆Eg) [1,2]. Consequently, PPC-based photodetectors can effectively detect photons
with wavelengths of λ that are equal to or less than ∆Eg/hc, where h represents Planck’s
constant. Nevertheless, PPC photodetectors exhibit several inherent limitations, including
narrow optical bandwidths, high dark currents, restricted operation at elevated ambient
temperatures, and slower operational speeds, all stemming from their intrinsic operating
principle, which relies on minority carriers. In contrast, the relatively less-explored NPC
represents a photodetection phenomenon predominantly governed by majority carriers. In
NPC, hot carriers are either trapped through interactions with self-assembled monolayers or
experience reduced mobility due to phonon scattering induced by photothermal effects [3].
Previous demonstrations of NPC have involved the generation of hot carriers through
the excitation of light with wavelengths either closely aligned with the surface plasmon
resonance (SPR) or in proximity to the semiconductor’s band edge, resulting in inherently
narrow spectral bandwidths [3]. This distinction between PPC and NPC mechanisms holds
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significant implications for the design and performance of photodetectors, and further
exploration of the NPC phenomenon may offer promising avenues for the enhancement of
the versatility and efficiency of photodetection technologies.

Semiconductor photodetectors represent a pivotal class of optoelectronic devices that
are known for their ability to harness photon energy through intricate electronic processes.
These devices exhibit exceptional attributes, including ultrafast response times and high
responsivity, rendering them of paramount significance across a multitude of societal appli-
cations. These applications span diverse domains, such as optical communication, where
photodetectors facilitate the transmission of data through light signals, as well as sensing,
motion detection, missile warning, and advanced biomedical imaging systems [4]. A bur-
geoning area of exploration within photodetector research centers on the development of
self-driven and self-powered photodetectors. This pursuit was driven by the ambition to
create photodetectors capable of autonomous operation, obviating the need for external
power sources. Among photodetector types, the Schottky photodiode has emerged as a
notable candidate owing to its unique capacity to operate in two distinct modes [5,6]. First,
the photovoltaic mode enables the Schottky photodiodes to function without bias voltage,
effectively making them self-powered. In this mode, incident photons are directly con-
verted into electrical current, offering the prospect of self-sustaining operation. Conversely,
Schottky photodiodes can operate in a photoconductive mode when subjected to a reverse
bias voltage. This mode empowers these devices to modulate the flow of electrical current,
which is contingent upon the incident light intensity.

Schottky junction-based, self-powered photodetectors offer several compelling advantages [7–9].
They are distinguished by their cost-effectiveness, which stems from a straightforward and
economically efficient manufacturing process. Furthermore, their device architecture is
simple, facilitating seamless integration with complementary metal-oxide-semiconductor
(CMOS) technologies, which are a staple in modern electronics. Notably, these photode-
tectors possess the innate ability to autonomously generate electrical signals, eliminating
their dependence on external power supplies. Moreover, Schottky photodiodes exhibit an
admirable breadth of spectral sensitivity, making them versatile instruments capable of
detecting light across a broad range of wavelengths within the electromagnetic spectrum,
which is highly desirable for numerous scientific and technological endeavors. As a result
of strategically engineered band alignments and the distinct properties of various materials,
plasmonic metal–semiconductor interfaces have gained widespread recognition and show
great promise in semiconductor technologies [10,11]. They are poised to potentially replace
ultra-shallow doped regions with cutting-edge CMOS technologies. Furthermore, these
heterostructures serve as pivotal components within high-performance nanoelectronics
devices, exerting a clear and decisive influence on the devices’ operational characteristics,
including switching speed, open-circuit voltages in solar cells, and the transistor’s ON-state
current and ON/OFF ratios. Conventional metallic nanoparticles, specifically gold and
silver, have established themselves as prominent plasmonic materials in various practical
applications, including photodetectors [12], spectroscopy [13], and novel solar energy har-
vesting concepts [14]. Recent advancements in the field have significantly illuminated the
remarkable capacity of plasmonic nanostructures, with a primary focus on Au and Ag, to
engender “hot carriers” via nonradiative decay processes [15]. This groundbreaking phe-
nomenon of the hot carrier generation has ushered in a new frontier of possibilities across
diverse applications. Notably, it has catalyzed progress in areas such as water splitting [16]
and the dissociation of hydrogen [17], offering intriguing prospects for sustainable energy
solutions. Furthermore, these excitations involving hot carriers have unveiled avenues for
direct light-to-electricity conversion mechanisms, revolutionizing the prospects of highly
efficient photovoltaic devices and photodetectors. This not only amplifies the efficiency
of energy conversion but also holds the potential to redefine the landscape of renewable
energy sources and the realm of optoelectronic technologies [18].

It is well known that Iridium (Ir) is a widely respected transition metal; it has attracted
great attention from the scientific community as it has complex optical and electronic
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characteristics. For instance, one remarkable facet of iridium is its ability to introduce
plasmonic behavior, an occurrence observed in the ultraviolet (UV) to near-infrared (NIR)
spectrum, making it a compelling contender for a range of applications in the field of
optoelectronics [1]. Moreover, the plasmonic response of iridium stems from the coordi-
nated movement of unbound electrons at the intricate junction between the metal and
dielectric substrates. Exploiting iridium’s plasmonic behavior for photodetection encom-
passes two fundamental mechanisms: the photoconductive and photovoltaic effects. The
former entails harnessing the potent plasmonic field to enhance the photoconductivity of
neighboring semiconductor materials. This is effectively achieved by integrating iridium as
a plasmonic electrode alongside semiconductor counterparts such as silicon or germanium.
This collaborative synergy results in a noticeable surge in photocurrent, ultimately bol-
stering the photodetection capabilities [2]. Furthermore, the complex interaction between
the optical and electronic features of metallic iridium (Ir) is a key factor in shaping its
plasmonic properties and its potential for photodetection. The electronic arrangement,
marked by a d-band that is only partially filled, leads to a notable reflectivity in the visible
and near-infrared (NIR) spectrum [3]. Although interband transitions in metallic iridium
(Ir) control the way it interacts with light across the UV to visible spectrum, the emergence
of the plasmonic behavior is rooted in different phenomena. The origin of the plasmonic
response in metallic Ir can be traced to the synchronized oscillation of unbound electrons.
This collective electron oscillation transpires at energy levels lower than those involved
in interband transitions, resulting in a plasmonic region that encompasses wavelengths
from the visible to the near-infrared (NIR) part of the spectrum. This particular spectral
range has generated substantial scientific interest because of its potential applications in
optoelectronics [4]. Therefore, the complex interaction between the optical and electronic
intricacies in metallic iridium (Ir) presents a promising opportunity to utilize its plasmonic
potential and elevate its photodetection capabilities [5]. The deliberate integration of Ir
into photodetectors is expected to yield heightened stability and improved performance,
highlighting its potential to make significant advancements in the field [6]. A notable
illustration of its capabilities involves the use of iridium (Ir) in UV photodetectors based on
localized surface plasmon enhancement within diamond materials. In this scenario, precise
arrays of Ir nanoislands have been carefully crafted, and their impact on photoelectric
performance has been thoroughly investigated [3,7]. Within the scope of this investiga-
tion, a comprehensive examination of a self-powered photodetector featuring an ultrathin
MoO3/Ir/SiO2/Si structure was conducted. The study includes the intriguing observation
of a novel NPC phenomenon that emerges after an annealing process. This phenomenon is
of particular interest due to its amalgamation of aspects from both PPC and NPC within
self-powered photodetector devices. Moreover, the research delves into the multifaceted
role assumed by the Ir layer in the modulation of hot plasmonic effects. This dimension
introduces complexity and fascinating aspects to the study, as it illuminates how the pres-
ence of the Ir layer can exert influence over and govern the behavior of these plasmonic
effects. To obtain a thorough grasp of the Ir layer’s impact, an exhaustive analysis was
carried out on a multitude of photodetector parameters. These parameters encompass
response and recovery times, responsivity, detectivity, and external quantum efficiency
(EQE). Through meticulous scrutiny of these parameters, valuable insights were garnered
regarding the nuanced effects and performance enhancements that the Ir layer imparts to
the self-powered photodetector.

2. Materials and Methods

Initially, the n-type Si substrates were cut into uniform 1 cm2 sections to ensure consis-
tent sample sizes. Following this, the substrates underwent a cleaning process involving
immersion in acetone, isopropyl alcohol, and deionized water within an ultrasonic bath for
a duration of 20 min. Subsequently, they were dried in an oven and with the aid of nitrogen
gas. To activate the substrate surfaces, an O2 plasma cleaner was utilized for a duration
of 1 min before their introduction into the deposition process. To generate an exceedingly
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thin layer of iridium (Ir) measuring only a few nanometers in thickness, we employed a
Leica EM ACE600 US sputter coater. Throughout this procedure, the Ir layer was deposited
onto a high-vacuum film surface at a pressure of 1 × 103 mbar. This was accomplished by
utilizing argon plasma at a deposition pressure of 5.0 × 10−2 mbar and applying a current
of approximately 50 mA. The width of the Ir target was 80 mm, and the layer’s thickness
was monitored using a quartz thickness monitor. The sputtering rate for all the samples
was 0.06 nm/s.

The MoO3 thin film was fabricated using an atomic layer deposition (ALD) system
provided by ANRIC Technologies (AT410). An organometallic precursor material based
on molybdenum, specifically bis(t-butylimido)bis(dimethylamino)molybdenum (VI), was
deposited onto the substrate surface within an argon atmosphere (flowing at 20 sccm,
with a purity of 99.999%) under low pressure, approximately 0.3 torrs. The quantity
of material deposited onto the substrate was influenced by several variables, including
the duration of the valve opening connecting the growth chamber and the precursor
material chamber, the temperature within the growth chamber, and the controlled heating
of the precursor material chamber (around 80 ◦C). To prevent condensation between the
growth and material chambers, the pipes were kept at 100 ◦C, and the outlet manifold
was maintained at 105 ◦C. After deposition, the gases emitted from the substrate were
purged from the growth chamber at a flow rate of 10 sccm. In the subsequent stage, O3
(ozone) was introduced into the growth chamber via the ANRIC Technology ATO3 module.
This resulted in the oxidation of the organometallic layer, leading to the creation of a
monolayer MoO3 thin film. Finally, residual gases were evacuated to complete the cycle.
Nevertheless, the influence of annealing in an air environment at 600 ◦C for 15 min was
also investigated [19,20]. In investigating the influence of Ir, various thicknesses of 2 nm
and 4 nm were deposited, with the MoO3 layer’s thickness held constant at 600 pulses.
These depositions were carried out at 200 ◦C using ALD [21]. To complete the process and
facilitate the creation of conductive electrodes for connectivity with the probe station, silver
paste was applied.

This study employed a range of characterization techniques to investigate various
aspects of the thin films, including their morphology, thickness impact, and electrical/ opto-
electronic properties. To observe the surface morphology, Zeiss Gemini 500 field-emission
scanning electron microscopy (FESEM) was utilized. The thin film’s crystallinity and the
identification of both the 2D behavior and the α-phase of the 2D α-MoO3 phase were exam-
ined through Raman spectroscopy. A laser source with a wavelength of 532 nm and a laser
spot diameter of 2 µm was used for excitation. To assess the electrical properties of the thin
film samples, the SWIN Hall8800 Hall Effect measurement system was employed to mea-
sure carrier concentration and mobility. Various parameters, including Rs (sheet resistance),
Rho (resistivity), VH (Hall voltage), RH (Hall coefficient), Ns/Ps (sheet carrier concentration),
and N/P (carrier concentration), were calculated. For electrical I-V and optoelectronics
measurements, a source meter and a four-probe system were utilized. During these mea-
surements, illumination with a 365 nm UV light lamp was applied. The study included the
preparation of un-annealed MoO3/2 nm Ir/SiO2/Si, un-annealed MoO3/4 nm Ir/SiO2/Si,
post-annealed MoO3/2 nm Ir/SiO2/Si, and post-annealed MoO3/4 nm Ir/SiO2/Si sam-
ples for analysis. For simplicity, these samples are represented as un-annealed Mo/2 nm
Ir/SiO2/Si, un-annealed Mo/4 nm Ir/SiO2/Si, post-annealed Mo/2 nm Ir/SiO2/Si, and
post-annealed Mo/4 nm Ir/SiO2/Si samples.

3. Results and Discussions
3.1. Surface Morphology

The surface morphology of the MoO3 film was meticulously examined through the
utilization of FESEM in both its un-annealed and post-annealed states. Figure 1 captures
the essence of this analysis by showcasing the distinct surface characteristics of two specific
configurations: Mo/2 nm Ir/SiO2/Si and Mo/4 nm Ir/SiO2/Si thin films. The surface
morphologies of the un-annealed Mo/2 nm Ir/SiO2/Si and Mo/4 nm Ir/SiO2/Si thin
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films are shown in Figure 1a,c, respectively, while those of the post-annealed Mo/2 nm
Ir/SiO2/Si and Mo/4 nm Ir/SiO2/Si thin films are shown in Figure 1b,d, respectively. Upon
delving into these images at varying magnifications, a consistent observation emerges.
Both sets of samples exhibit a profusion of closely packed particles that extend across a
substantial area. This feature is maintained at both low and high magnifications. Moreover,
a remarkable homogeneity is evident in the films, characterized by the presence of small
grains that are uniformly dispersed. However, it is crucial to acknowledge the emergence of
white larger particles in these images. These larger particles are a consequence of the sample
preparation process, particularly the cutting procedure that precedes the FESEM analysis.
This underscores the necessity of distinguishing between the genuine surface features and
the artifacts introduced during the analytical stages. Upon a comprehensive assessment,
a significant insight arises. The thin films subjected to the annealing process display a
denser composition in contrast to their non-annealed counterparts. Additionally, there
is a discernible trend concerning the thickness of the Ir layer. An increase in Ir thickness
corresponds to an augmentation in both the size and density of the surface particles, as
visibly exemplified in the images.
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Figure 1. FESEM images comparing un-annealed (a,c) and post-annealed (b,d) samples of a
MoO3/Ir/SiO2/Si thin film with Ir thicknesses of 2 nm and 4 nm, respectively. The main im-
ages were captured at a magnification of 50,000× with a 400 nm scale bar. Insets showcase higher
magnification views at 600,000× with a scale bar of 40 nm.
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Furthermore, EDS elemental analysis and mapping were carried out to gain a deeper
insight into the impact of varying Ir thickness and atom diffusion. This section has been
added to the “Supplementary Materials” section as Figure S1 and Table S1 for elemental
analysis. To gain a comprehensive understanding of element distribution within all the
samples across the thin film, EDS layered mapping scans were conducted and generated ele-
mental mapping distributions for the unannealed samples, as depicted in Figures S2 and S3.
As anticipated, it observed well-distributed surface elements of Mo across all the samples
with minimal interference and excellent integration.

3.2. Raman Shift of α-MoO3

Raman spectroscopy stands as a potent analytical method employed to investigate
the vibrational patterns of molecules. Its utility lies in the insightful data it furnishes
regarding the makeup of chemicals, the arrangement of molecules, and the connections
within materials. This technique reveals a distinctive pattern of peaks that represent typical
MoO3 signatures, as showcased in Figure 2. These peaks correspond to distinct vibra-
tional modes [22]. The most dominant of these peaks, detected at 970 cm−1, is assigned
to the anti-symmetric elongation of terminal oxygen atoms, commonly referred to as the
Ag mode [23,24]. This specific peak serves as confirmation for the development of the
orthorhombic crystalline form of α-MoO3. A subsequent peak at 822 cm−1 indicates the
symmetric elongation of bridge oxygen atoms coordinated doubly (ν(Mo-O-Mo)) [25–27].
The presence of this peak substantiates the material’s stable orthorhombic phase. More-
over, a relatively faint peak at 669 cm−1 emerges in the spectra. This particular peak
is linked to the anti-asymmetric elongation of Mo-O bonds within triply coordinated
oxygen atoms. When scrutinizing MoO3 nanopowders, a distinctive deformation mode
known as δ(O-Mo-O) (B1g) becomes evident. This characteristic feature is represented by
bands at 228 cm−1 in MoO3 nanopowders (B2g) and at 301 cm−1 in MoO3 nanofilms (B3g).
These bands are associated with the δ(O-Mo-O) wagging motion [22]. When comparing
MoO3 nanofilms with their commercial MoO3 nanopowder counterparts, a noticeable
phenomenon emerges: the peaks exhibited by the nanofilms appear broader and exhibit
slight shifts. This alteration in peak characteristics can be attributed to the confinement of
phonons due to the diminished grain size and the dimensional attributes of the ultra-thin
nanofilms [28,29]. An intriguing observation pertains to the peak at 822 cm−1, which
essentially signifies the presence of a layered 2D α-MoO3 structure. These findings align
with those of previous reports [27,30–32]. The peaks at 1298, 1317, and 1442 cm−1 are
closely associated with Si, which is likely indicative of its influence within the samples. A
key factor here is the integration of an Ir layer, which functions as a plasmonic metal layer.
This layer possesses the capability to enhance light reflection compared to that of the oxide
layer of MoO3. This heightened light interaction significantly influences the Raman peaks.
Consequently, a discernible pattern emerges: as the thickness of the Ir layer is increased,
there is a corresponding augmentation in the intensity of the Raman peaks. This outcome
implies a distinct correlation between the Ir layer’s thickness and the amplified crystalline
behavior of the MoO3 layer. This relationship is particularly evident when comparing
higher Ir thicknesses to lower ones.

3.3. Electrical Properties

The electrical characteristics of the thin films made from MoO3 and Ir layers on Si
substrates, both before and after undergoing an annealing process, were carefully examined.
These findings are visually presented in Figure 3. The analysis outcomes reveal some
interesting insights into how the thickness of the Ir layer plays a crucial role in the electrical
performance of these films. Upon close observation, it becomes evident that altering the
thickness of the Ir layer has a noticeable impact on the electrical properties of the films.
However, the effects are particularly pronounced after the annealing process has been
carried out. This annealing procedure involves subjecting the films to controlled heating,
which appears to significantly influence their behavior.
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Figure 3. Electrical IV curves of Mo/2 nm Ir/SiO2/Si (a) and Mo/4 nm Ir/SiO2/Si (b) with un-
annealing and annealing conditions.

One intriguing observation is that the annealing treatment leads to an augmentation
in both the dark current (the current flowing through the film in the absence of any external
illumination) and the photocurrent (the current generated when the film is exposed to
light) for both the samples with 2 nm and 4 nm thick Ir layers. Furthermore, a distinctive
differentiation emerges when comparing the two samples. The film of Mo/4 nm Ir/SiO2/Si
exhibits what is termed ohmic behavior under dark conditions. This essentially means that
the electrical behavior of this film demonstrates a linear relationship between the voltage
and the current, indicating a straightforward conduction mechanism. On the other hand,
the situation is notably different for the film where the Ir layer is a mere 2 nm thick. This
film showcases what is known as Schottky behavior when subjected to UV illumination.
This type of behavior implies a more complex conduction mechanism influenced by the
interaction between the metal and the semiconductor.
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3.4. Zero Bias ON–OFF Dynamic Behavior

The performance of photodetectors and optoelectronic devices is depicted through
their ON–OFF curve. This curve illustrates their response over time when exposed to
light (ON) or when the light source is turned off (OFF state) under a specific bias voltage.
It is crucial to repeat this process multiple times to grasp the devices’ overall behavior
over time. Applying a bias voltage is known to enhance photocarrier generation and,
subsequently, photodetection capacity. However, there is a growing interest in self-powered
optoelectronic devices, like zero-voltage operating devices. These can be activated under
specific conditions, as seen in p–n junction photodetectors [33–35], Schottky junction
photodetectors [5,9,36], and photoelectrochemical-type (PEC-type) photodetectors [37–39].
Figure 4 illustrates the ON–OFF photoresponse for both un-annealed and post-annealed
conditions. In the case of the non-post-annealed MoO3 layer on Ir/SiO2/Si, the MoO3 is
deposited via ALD at 200 ◦C [21]. In contrast, samples subjected to annealing treatments
undergo a rapid annealing process at 600 ◦C in air, as optimized earlier [19]. Under
un-annealed conditions, the Mo/4 nm Ir/SiO2/Si sample exhibits a higher ON–OFF
ratio than that of the Mo/2 nm Ir/SiO2/Si sample. This observation aligns with the
anticipated behavior based on IV electrical curves, suggesting greater conductivity in the
Mo/4 nm Ir/Si sample. Notably, the ON–OFF results reveal a minor decay in the ON
state for Mo/4 nm Ir/SiO2/Si, which is absent in the Mo/2 nm Ir/SiO2/Si case, indicating
higher dynamic stability in the latter. These findings suggest positive photoconductivity
in the un-annealed samples, along with low dark current in both the un-annealed and
post-annealed scenarios. Conversely, the samples subjected to annealing exhibit negative
photoconductivity behavior at a 0 V bias voltage. The ON–OFF ratio is higher for the
Mo/2 nm Ir/SiO2/Si sample compared to that of the Mo/4 nm Ir/SiO2/Si. Both samples
demonstrate consistent signal dynamics over time.
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To gain deeper insights into this behavior, conducting electrical Hall effect measure-
ments on these samples becomes crucial, as shown below. This approach allows us to
comprehend the impact of annealing on factors such as carrier density and sheet resistances.
By examining these parameters, a more comprehensive understanding of the observed
behavior can be achieved.
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3.5. Effect of Carrier Concentrations on the Positive and Negative Photoconductivity

The electrical properties of both the un-annealed and the post-annealed samples
could be understood firstly via the Hall effect measurements. This measurement was
conducted at room temperature and under dark conditions with a constant magnetic field
of B = 6800 G, as recorded in Table 1. The parameters under investigation encompass Rs
(sheet resistance), Rho (resistivity), VH (Hall voltage), RH (Hall coefficient), Ns/Ps (sheet
carrier concentration), N/P (carrier concentration), and Mob (mobility). These metrics
collectively offer valuable insights into the electrical characteristics and behavior of the
samples; in particular, they shed light on the effects of annealing on carrier density, sheet
resistance, and other fundamental properties. At the outset, all the samples exhibited
characteristics indicative of p-type semiconductor behavior. Notably, the Rs value demon-
strates a decline with increased air thickness and the application of annealing treatment.
In the case of the un-annealed Mo/2 nm Ir/SiO2/Si sample, the Ns value registers at
5.76 × 1011/cm2, which subsequently increases to 6.74 × 1012/cm2 after the annealing
treatment. A parallel trend is evident in the N values, which ascend from 7.96 × 1017/cm3

to 9.31× 1018/cm3. This underscores how the annealing treatment bolsters the conductivity
of the Mo/2 nm Ir/SiO2/Si sample and elucidates the higher ON–OFF ratio following
the annealing process. Conversely, the un-annealed Mo/4 nm Ir/SiO2/Si sample records
an Ns value of 2.99 × 1010/cm2, diminishing to 2.80 × 1010/cm2 following the annealing
treatment. Similar behavior is observed in the N values, which decline from 3.18 × 1016

to 2.99 × 1016/cm3. This decrease in Ns and N values after annealing treatment chiefly
contributes to the diminished ON–OFF curves observed in the Mo/4 nm Ir/SiO2/Si sample
after undergoing the annealing treatment.

Table 1. Hall effect measurement results for un-annealed and post-annealed Mo/2 nm Ir/SiO2/Si
and Mo/4 nm Ir/SiO2/Si samples.

Condition Sample Rs
(Ω/sq)

Rho
(/Ω-cm)

VH
(V)

RH
(m3/C) Type Ns

(/cm2)
N

(/cm2)
Mobility
(cm2/Vs)

Un-annealed

Mo/2 nm
Ir/SiO2/Si 1.71 × 105 1.24 × 10−1 2.34 × 10−4 7.84 × 10−6 P 5.76 × 1011 7.96 × 1017 6.31 × 101

Mo/4 nm
Ir/SiO2/Si 1.16 × 105 1.09 × 10−1 1.51 × 10−2 1.96 × 10−4 p 2.99 × 1010 3.18 × 1016 1.80 × 103

Post-annealed

Mo/2 nm
Ir/SiO2/Si 5.34 × 103 3.87 × 10−3 6.68 × 10−5 6.71 × 10−7 P 6.74 × 1012 9.31 × 1018 1.73 × 102

Mo/4 nm
Ir/SiO2/Si 2.86 × 103 2.68 × 10−3 4.82 × 10−3 2.09 × 10−4 P 2.80 × 1010 2.99 × 1016 7.80 × 104

3.6. Origin of Negative Photoconductivity

The initial observation of the NPC effect might be attributed to the presence of ad-
sorbed H2O molecules on the surface, acquired during the annealing treatment process in
air. The significant influence of absorbed and subsequently photodesorbed H2O molecules
on photoelectric characteristics is well documented; it leads to the induction of the NPC
effect in nanoscale materials [40,41]. The significance of surface effects stemming from oxy-
gen adsorption and photodesorption has been acknowledged as pivotal in the modulation
of the photoresponse of semiconductor nanostructures. This holds for various cases, includ-
ing single-walled carbon nanotubes [42], ZnO nanowires [43,44], the CH3NH3PbBr3–ZnO
heterostructure [45] and CdS nanoribbons [46,47]. A similar underlying mechanism could
potentially underlie negative photoresponses. Broadly, the water molecules present on a
semiconductor’s surface act as electron donors [48–50], amplifying the electron concen-
tration within the material. When in dark ambient conditions, oxygen molecules tend to
adsorb onto the surface of p-type ZnSe nanowires [51]. Subsequently, they become ionized
through electron capture from the nanowire due to its pronounced electronegativity. A
similar situation was observed for ZnSe nanowires [52].
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3.7. Transient Behavior Analysis

It is imperative to assess the temporal stability characteristics of the sensor. Both the
un-annealed and post-annealed samples, featuring Ir layers with thicknesses of 2 nm and
4 nm, exhibit distinct responses under conditions of darkness and UV illumination, as
depicted in Figure 5. Under dark conditions, both the 2 nm and 4 nm Ir samples exhibit
an increase in current for the post-annealed specimens. As illustrated in Table 1, this
augmented current is attributed to the improved crystallinity, which facilitates the mobility
of charge carriers, based on the Hall effect measurements. Conversely, when exposed to
illumination, the photocurrent begins to decline, resulting in negative photoconductivity.
In the case of the 2 nm Ir sample, annealing treatment consistently yields a negative
photocurrent characterized by high temporal stability. However, for the 4 nm Ir sample,
stability diminishes along with the reduced photocurrent compared to the 2 nm Ir sample.
These findings corroborate the earlier observations about the ON–OFF behavior.
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Figure 5. Current–time transient behavior under dark and UV illumination of Mo/2 nm Ir/SiO2/Si
(a,c) and Mo/4 nm Ir/SiO2/Si (b,d) for un-annealing and annealing treatment. The measurements
were collected at 0 V bias voltage for self-power photodetector measurements.

Further confirmation was pursued through a comprehensive comparison between the
responses of the un-annealed and post-annealed specimens under varying dark and UV
illuminating conditions, as exemplified in Figure 6. In a broad overview, the outcomes
indicate a distinct photocurrent behavior, with the un-annealed samples exhibiting a
positive photocurrent response and the post-annealed samples manifesting a negative
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photoresponse upon exposure to illumination. This divergence in photocurrent behavior
suggests a notable distinction in the charge carrier dynamics between these two sample
categories. Specifically, it is noteworthy that the 2 nm Ir thick samples consistently display
higher levels of current when contrasted with their 4 nm counterparts, regardless of
whether they have undergone the annealing process. This observation underscores the
influential role of both the annealing and Ir layer thickness in modulating the photocurrent
characteristics of the sensor and has crucial implications for its performance and utility.
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Figure 6. Current–time transient behavior under dark and UV illumination of un-annealed Mo/2 nm
Ir/SiO2/Si (a), un-annealed Mo/4 nm Ir/SiO2/Si (b), annealing treatment Mo/2 nm Ir/SiO2/Si (c),
and annealing treatment Mo/4 nm Ir/SiO2/Si (d). The measurements were collected at 0 V bias
voltage for self-power photodetector measurements.

3.8. Response and Recovery Time Analysis

The assessment of the response and recovery times, with a particular focus on the
influence of annealing processes, holds pivotal significance in the comprehension of the
overall performance characteristics of the self-powered photodetector. The corresponding
results are graphically presented in Figure 7. In a general context, it is evident that the
response time exhibits a shorter duration for the 2 nm Ir thick sample as compared to
its 4 nm Ir counterpart, under both the un-annealed and post-annealed conditions. This
swifter response time can be attributed to the enhanced carrier mobility properties inherent
to the 2 nm Ir samples, which are inherently linked to the electrical characteristics of these
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specimens. Conversely, when examining the recovery time, a slight delay is observed
for the 2 nm Ir sample in comparison to the 4 nm Ir sample. Nevertheless, it is worth
noting that both sample categories demonstrate remarkably rapid response and recovery
times, typically falling within the range of 0.1 to 0.6 milliseconds. Furthermore, the 2 nm Ir
sample distinguishes itself by showcasing the shortest response time of just 0.1 milliseconds.
These findings underscore the critical role played by both the annealing processes and
the thickness of the Ir layer in shaping the response and recovery dynamics of the self-
powered photodetector and thereby offer valuable insights into its operational capabilities
and potential applications.
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3.9. Assessment of Self-Powered Photodetector Parameters

In addition to scrutinizing the response and recovery times, it is imperative to delve
into several other critical parameters that serve as essential benchmarks for evaluating the
overall performance of the photodetector. Specifically, we turn our attention to photocur-
rent gain, responsivity, EQE, and detectivity, which are assessed under both un-annealed
and post-annealed conditions for Mo/2 nm Ir/SiO2/Si and Mo/4 nm Ir/SiO2/Si config-
urations, as represented graphically in Figure 8. It is worth noting that these parameters
have been extensively explored and discussed in numerous research articles [53,54]. As
anticipated, the 2 nm thick Ir sample demonstrates superior performance characteristics fol-
lowing the annealing treatment. In this regard, the sample transforms into exceedingly thin
plasmonic films characterized by elevated carrier concentrations and accelerated charge
mobility. This transformation leads to notable enhancements across various photodetector
parameters. For instance, the detectivity metric exhibits marked improvements under
annealing treatment, reflecting the heightened sensitivity and detection capabilities of the
photodetector. Conversely, the inverse scenario unfolds for the 4 nm thick Ir samples; thus,
it is in alignment with the previously observed trends in optoelectronic measurements.
Annealing treatment adversely affects the photodetector’s performance, resulting in di-
minished photodetection capabilities. These findings collectively underscore the pivotal
role played by annealing processes and the thickness of the Ir layer in influencing the
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photodetector’s key performance parameters and thereby provide valuable insights into its
operational efficacy and potential applications.
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4. Conclusions

This study presents an investigation into a self-powered photodetector device har-
nessing the plasmonic effects of ultrathin Ir (Iridium) films. Specifically, MoO3/Ir/SiO2/Si
structures with Ir thicknesses of 2 nm and 4 nm were meticulously fabricated using sput-
tering and atomic layer deposition systems, which are primarily intended for ultraviolet
photodetection applications. Notably, the impact of annealing treatment on these structures
is a key focal point, revealing a novel observation of negative photoconductivity within
the ultrathin MoO3/Ir/SiO2/Si films. The examination of surface morphology, conducted
through field-emission scanning electron microscopy, provides invaluable insights into
the dynamic transformations induced by annealing in the MoO3 film. These visual rep-
resentations encapsulate the evolving characteristics related to density, particle size, and
homogeneity, with the added dimension of varying Ir layer thicknesses contributing to
this dynamic. Crucially, the study of these MoO3/Ir/SiO2/Si thin films, both before and
after annealing, highlights the substantial influence exerted by the thickness of the Ir layer
on their electrical behavior. Furthermore, the annealing treatment accentuates specific
electrical traits, thereby shedding light on the intricate interplay between material prop-
erties and the external annealing conditions they undergo. Notably, the response time
of these devices was remarkably swift, measuring 0.1 milliseconds under a bias voltage
of 0 V. This characteristic underscores the high-speed performance achievable with these
self-powered photodetectors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16206756/s1, References [55–63] are cited in supplementary
materials. Figure S1: shows the EDX mapping of a pure n-type silicon substrate used in this study.
Table S1: shows the elemental composition amounts of the prepared samples. The concentrations
of all elements are recorded in Wt%. Figure S2: shows the Mo/Ir/SiO2/Si EDX layered images
and elemental mapping distributions of O, Si, Ir, and Mo elements of (a) Mo/2 nm Ir/SiO2/Si,
and (b) Mo/4 nm Ir/SiO2/Si samples. Figure S3: shows the EDS layered images and elemental
mapping distributions of O, Si, Ir, and Mo elements of Mo/2 nm Ir/SiO2/Si (a), and Mo/4 nm
Ir/SiO2/Si (b) samples.
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