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ABSTRACT
Open-access remote sensing products provide data for transbound
ary water management. This study presents a comprehensive over
view of the applications, uncertainties and implications of these 
remote sensing data products in the context of transboundary 
water management. Focusing on different stages within the trans
boundary cooperation continuum, we delineate the potential role 
and application of remote sensing data at the various stages of this 
cooperation. Despite the uncertainties and capacity requirements 
for data acquisition, processing and interpretation, we argue that 
remote sensing broadens opportunities to monitor, assess, forecast, 
track or validate compliance in transboundary basins, thereby chal
lenging traditional notions of water data exclusivity.
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Introduction

Sustainable development in transboundary basins requires cooperation and operational 
arrangement on water management among riparian states (Bernauer & Böhmelt, 2020; 
McCracken & Meyer, 2018; Yalew et al., 2021). Such cooperation requires data and 
information exchange across political and/or administrative boundaries. A ‘regular 
exchange of data and information’ between riparian states was outlined as a duty in the 
1997 United Nations’ ‘Convention on the Law of the Non-Navigational Uses of 
International Watercourses’ (United Nations, 1997). In practice, however, only 30–50% 
of transboundary agreements in different continents include a direct mechanism for 
information sharing (Gerlak et al., 2011). The need for regular data and information 
exchange is again emphasized in the United Nations’ Sustainability Development Goals 
(SDGs) on transboundary water management (United Nations, 2015). Many trans
boundary basins, however, still lack operational arrangements for water cooperation 
and data-sharing mechanisms. As the sole indicator of transboundary water cooperation 
in SDG 6.5.2 considers the ‘Proportion of transboundary basin area with an operational 
arrangement for water cooperation’ (United Nations, 2015). However, only a small 
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number of countries reported that all their transboundary basins are covered by coop
eration and data exchange arrangements with respect to the SDG 6.5.2 indicator 
(UNECE, 2021).

There are many cases where there is disagreement over data and models used for 
transboundary water management, as well as on the water availability and/or use in 
a basin (Heggy et al., 2021). Such disagreements can negatively influence negotiations 
and delay agreements over the management of shared waters. Assessment studies on 
transboundary basins sometimes present biased overviews based on the data and per
spective of only one or two of the riparian countries (Uereyen & Kuenzer, 2019). Lack of 
timely and accurate data or lack of willingness to share it among riparian states – a major 
challenge for operational as well as strategic planning in transboundary water manage
ment – leads to suspicion, conflict and confrontation (Carius et al., 2004; Mianabadi 
et al., 2020).

In recent decades, information from remote sensing data has served as 
a complementary source of data for water management, thanks to improvements in 
remote sensing data coverage, accuracy and resolution. Sensors onboard satellites can 
now provide time-series of spatially distributed data that can be used to derive key 
hydrological variables such as rainfall (Beck et al., 2017; Stisen & Sandholt, 2010), 
evapotranspiration (ET) (Irmak, 2012; Zhang et al., 2016), changes in the water levels 
of lakes and rivers (Frappart et al., 2006; Morris & Gill, 1994), extent of lakes and 
reservoirs (Cai et al., 2016; Duan & Bastiaanssen, 2013; Gao, 2015; Pekel et al., 2016), 
and groundwater storage anomalies (Castellazzi et al., 2018; Sun, 2013). Continuing 
advancements in remote sensing technology and data acquisition as well as data assim
ilation approaches can therefore improve efforts to assess natural resources for conserva
tion and sustainable water management.

More importantly, many of the remote sensing data or products are open access. 
These open-access data or products present an opportunity for supporting transbound
ary water management. While remote sensing data can be used for water resources 
management in general, its application for water management in transboundary basins 
may play an important role in addressing unique challenges such as data-sharing 
problems and regulation/compliance monitoring issues between riparian states. 
Furthermore, remote sensing challenges the exclusivity of transboundary water data by 
government bodies. The availability of such open-access remote sensing data to indivi
dual, non-governmental organisations (NGOs) and/or researchers accelerates the ‘demo
cratization’ of water data (Craglia & Shanley, 2015). Nevertheless, it is important to 
recognize that the journey towards a complete data democracy can be obstructed by 
challenges such as power and resource imbalances, particularly in transboundary 
settings.

In this study, we offer an updated summary of the utilization of open-access remote 
sensing products for transboundary water management. We specifically focus on water 
bodies that span multiple sovereign nations, a context where such data are vital due to the 
absence of a unified authority enforcing data sharing. Our emphasis is on ‘basins’ as 
defined by the 1997 UN Watercourse Convention, which includes both surface water 
flows and underlying groundwater resources. We delve into the application of remote 
sensing-derived data through a review of the latest literature, highlighting key examples 
of remote sensing-derived estimates of basic water balance components such as 
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precipitation (P), evapotranspiration (E) and changes in water storage (∆S/∆t). The study 
evaluates the applicability, accuracy and uncertainty associated with these remote sen
sing-derived data products and discusses their implications in fostering cooperation in 
transboundary water management. The study targets water experts, diplomats and other 
stakeholders involved in transboundary water challenges, aiming to bridge the gap 
between the technical understanding of remote sensing and its practical policy 
applications.

Data needs and the role of remote sensing

Data needs for transboundary water management are essentially the same as any other 
basin except that the data acquisition across borders is often challenging. Data required 
for water management in general relate to applications such as estimation of the basin 
water balance, water budget or water accounting for deciding on water entitlements, the 
monitoring and management of floods and droughts, the monitoring of water quality 
and water pollution in particular, groundwater assessment, agricultural water manage
ment including irrigation water use assessment, and monitoring of ecological conditions. 
Some of the most important variables needed for estimating the above include data on 
water availability, stream flow, water abstractions, use and consumption from ground
water and surface water, water quality and groundwater recharge (Sheffield et al., 2018). 
Such data are often required at different spatial and temporal resolutions in different 
contexts. Short latencies or long time-series of data are required for various applications, 
such as long-term planning and infrastructure design, disaster forecasting and response 
or real-time operational management. In transboundary contexts, hydrological variables 
related to a water-sharing agreement (e.g., inflow to a country or water level in a specific 
reservoir) may require dedicated monitoring. Furthermore, water resources are also 
strongly linked with the management of land and other resources (Leb, 2020), and thus 
additional data such as land-use and land cover change, vegetation health, biomass 
accumulation and land degradation, are important data requirements.

Remote sensing provides the opportunity to directly or indirectly derive the data and 
information required to meet data needs on these and related hydrological components, 
such as precipitation, ET, water storage (surface/ground) and water level. Sheffield et al. 
(2018) provide a comprehensive description of the data required for water resources 
management, including data derived from remote sensing, in-situ measurements and 
modelling, and their limitations. In this section, we focus our review on existing infor
mation based on remote sensing-derived data from some of these major hydrological 
components required for water resources assessment in transboundary basins, including 
associated uncertainties.

Precipitation

Precipitation is one of the primary hydrological variables in the water cycle. Ground- 
based measurements of rainfall (rain gauges) are often sparsely located. Satellite remote 
sensing has been used to estimate precipitation on the global scale, covering diverse areas 
of the Earth’s surface, including deserts, high mountains and oceans which are infeasible 
to monitor using conventional rain gauges or meteorological radars (Sun et al., 2018; 
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Tian & Peters-Lidard, 2010). A continuous and open-access availability of precipitation 
datasets is an important criterion for transboundary water management. Only a few 
satellite precipitation products meet these criteria. These include GPM (Global 
Precipitation Measurement Mission), CHIRPS (Climate Hazards Group InfraRed 
Precipitation with Station), PERSIANN (Precipitation Estimation from Remotely 
Sensed Information using Artificial Neural Networks), CMORPH (Climate Morphing 
technique), and MSWEP (Multi-Source Weighted-Ensemble Precipitation). Passive 
microwave sensors, such as those on board the TRMM and GPM satellites, measure 
the natural microwave emissions from the Earth’s surface and atmosphere. The detected 
microwave radiation is directly related to the temperature and moisture levels in the 
atmosphere, which can be used to estimate precipitation (Lettenmaier et al., 2015). 
Remote sensing is a valuable source of precipitation data, not only because it enables 
data gathering in areas where stations are sparse and unevenly distributed, but also 
because the low level of collaboration in most transboundary waters makes the collection 
of precipitation data more difficult, restricting a comprehensive understanding of hydro
logical processes in shared basins. It is also important to note that most remote sensing 
precipitation products are based on assimilation of satellite data and gauge data (Sheffield 
et al., 2018). While remote sensing data provide extensive coverage, gauge data offer 
localized accuracy. This synergy aims to maximize the strengths of both data types. 
However, in regions where gauge data are scarce or unavailable, the calibration and 
validation of remote sensing precipitation estimates may be compromised, potentially 
leading to larger errors in precipitation estimates (Gleason et al., 2018).

Evapotranspiration (ET)

ET is another primary component of the water cycle with important implications 
in transboundary river basins, particularly in the context of agricultural water 
management, such as for irrigation. It is one of the most important hydrological 
components, functioning as a water depletion mechanism, and its key role in 
moisture flux (Kalma et al., 2008; Srivastava et al., 2013). ET is often estimated 
indirectly using potential ET and a variety of land surface parameters derived 
from climatological data (Liou & Kar, 2014). Remote sensing-derived ET products 
primarily make use of thermal infrared and optical remote sensing data, in 
addition to climatological data, to estimate parameters such as land surface 
temperature and vegetation indices, which are incorporated into models like the 
surface energy balance and the Penman–Monteith equation to estimate ET 
(Bastiaanssen et al., 1998; Pelgrum et al., 2010). Direct measurements of ET are 
mainly based on a variety of complex measurements such as lysimeters and/or 
eddy covariance techniques (Ghiat et al., 2021). In addition to the limited utility 
of such measurements at local, field or landscape levels, their accessibility is also 
constrained (Ashouri et al., 2016; Singh et al., 2021). Some of the continuous and 
open-access ET products include SSEBop (Operational Simplified Energy Balance), 
MODIS (Moderate Resolution Imaging Spectroradiometer) ET, and WaPOR 
(Water Productivity through Open access of Remotely sensed derived data). 
Remote sensing data can be used to estimate actual ET of river basins (Gonzalez- 
Dugo et al., 2009; Vinukollu et al., 2011; Zhang et al., 2016). Accurate ET data are 
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essential to understand the water balance of a basin, to monitor and forecast 
droughts, as well as to estimate agricultural water consumption so as to improve 
the efficiency of irrigation systems.

Surface water and groundwater storage

The use of remote sensing data for surface and reservoir water detection, delineation and/ 
or monitoring changes is an established practice in the literature (Bhangale et al., 2020; 
Bijeesh & Narasimhamurthy, 2020; Huang et al., 2018). Remote sensing data can be used 
to derive information on surface water levels using radar altimetry (Frappart et al., 2006; 
Morris & Gill, 1994), when combined with other datasets, volumes (Cai et al., 2016; Gao,  
2015), and reservoir impoundment or water releases from reservoirs (Deng et al., 2020; 
Muala et al., 2014). Changes in surface water extent are often determined using time 
series of optical satellite data at various resolutions depending on the scale of application. 
The Global Surface Water Explorer (Pekel et al., 2016) is an example of the more recent 
open-access global datasets on surface water dynamics. Techniques such as the Synthetic 
Aperture Radar (SAR) are used for applications such as to determine inundation extents 
for mapping floods under cloudy conditions (e.g., Tarpanelli et al., 2022) and/or to detect 
variations in water levels of lakes, rivers and reservoirs, allowing researchers to indirectly 
infer changes in water storage (Brisco, 2015). The GRACE satellite system estimates 
groundwater changes by tracking variations in the Earth’s gravitational field, a technique 
that enables indirect measurement of total terrestrial water storage, including ground
water, by assessing changes in the gravitational pull between twin satellites (Rodell et al.,  
2004; Wahr et al., 2004). This provides data on total water storage variations including 
surface water, snowpack, soil and groundwater (Tapley et al., 2004). Overall, remote 
sensing data can be used to detect and monitor changes in surface water bodies, such as 
the volume and surface area of lakes, groundwater recharge and storage.

Other remote sensing data

In addition to the major hydrologic components often required for water budget assess
ment in river basins, remote sensing-derived data products are also applied for measur
ing other important components for basin water assessment, including snow cover, 
depth and/or snow water equivalent (Shi et al., 2016; Xu et al., 1993), soil moisture 
content (Mohanty et al., 2017), water level-derived streamflow (Michailovsky et al.,  
2012), and flood inundation extent and/or depth (Rosser et al., 2017). The application 
of remote sensing data for land-use/land-cover and soil characterization, important 
variables in most basin water assessment models, is a well-documented practice in the 
water resources literature (Brown et al., 2022; Gómez et al., 2016; Kussul et al., 2017; 
Pareeth et al., 2019). Other remote sensing applications include water pollution/water 
quality observation (Ritchie & Cooper, 2001; Wang & Yang, 2019), wetland assessment 
and monitoring (Munyati, 2000; Perennou et al., 2018), water productivity and/or water- 
use efficiency (Cai et al., 2013; Karimi et al., 2013), and biomass productivity (Qi et al.,  
2019).
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Uncertainties associated with remote sensing data

The availability of open-access and spatially and temporally continuous remote sensing 
data significantly aids in managing water resources, transboundary or otherwise. 
However, the quality of the varied remote sensing data products is subject to several 
factors. These include the spatial and temporal resolution of the data, the algorithms used 
in estimating variables, and the presence of ground-truth data that can be used for 
validation (Figure 1). In the context of transboundary basin agreements and practices, 
stakeholders have traditionally depended on conventionally collected hydrological data 
(Leb, 2020). This reliance often results in a certain level of resistance or scepticism 
towards adopting data from newer sources such as remote sensing. As such, it becomes 
imperative to offer accurate and thorough reporting on the uncertainties and error 
margins tied to remote sensing-derived data. Such information is particularly important 
when comparing the data’s reliability with those sourced from conventional methods.

Remote sensing-based measurement and/or data can introduce several sources of 
errors during data acquisition, processing, analysis, conversion and presentation 
(McMillan et al., 2018; Tian & Peters-Lidard, 2010). Data processing errors in remote 
sensing occur during the initial stages of handling and refining raw data obtained from 
satellite sensors. These include radiometric errors (sensor inconsistencies, atmospheric 
effects or variations in surface reflection), geometric rectification errors (distortions in 

Figure 1. Spatial and temporal resolution of remote sensing data products for major hydrologic 
components.
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the spatial positioning of pixels in the image), and bias correction errors (systematic 
inaccuracies introduced by the sensor (Slater, 1985) or the processing chain (Povey & 
Grainger, 2015). Data analysis errors occur during the interpretation and evaluation of 
the processed data, which include classification errors, generalization errors, parametri
zation errors and data gaps (Mayr et al., 2019). For example, the data obtained from 
optical sensors are often contaminated by clouds (which can introduce radiometric 
errors) resulting in data gaps which for many applications are statistically filled (which 
can introduce data analysis errors; Siabi et al., 2022). These gap filling approaches can 
introduce uncertainties in the estimates depending on the geographical location and the 
ability of cloud-masking algorithms to accurately detect clouds (Foody, 2002). The 
undetected clouds and the cloud shadow after applying cloud masks are also a key source 
of uncertainties. Modelling based on remote sensing data can further introduce errors 
including on spatial and temporal representation and interpretation.

The remote sensing methods employed to estimate precipitation from spaceborne 
instruments are, for example, affected by both relative errors (difference between the 
remote sensing data estimate and ground observations) and uncertainties (range of 
values within which the estimated value lies with some level of confidence from the 
ground observation data; Massari & Maggioni, 2020). According to Massari and 
Maggioni (2020), the most common sources of uncertainty in remote sensing precipita
tion data are related to sampling uncertainty due to limited satellite overpasses, proces
sing errors (parameter calibration, gap filling) and/or errors in the a priori databases. 
Such uncertainties are challenging to quantify, particularly over a large area in data- 
scarce regions, and remain largely unknown, limiting the usefulness of remote sensing 
precipitation data. Additionally, the inherent discrepancy between point-based gauge 
measurements and area-based (or pixel-based) remote sensing measurements presents 
another challenge. While gauge data provide precise measurements at specific locations, 
remote sensing data provide averaged measurements over a larger area (the pixel size). 
This fundamental difference can introduce additional uncertainties when comparing or 
combining these two types of data, and needs to be carefully considered in data analysis 
and interpretation. Some studies, however, report that satellite-derived products some
times outperform gauge data during calibration of conceptual models (Awange et al.,  
2016; Stephens et al., 2022).

Uncertainties in ET products are mainly attributed to the discrepancies in the forcing 
datasets such as meteorological data, solar radiation, soil moisture stress and water 
storage changes (Ali et al., 2022). Furthermore, model structural limitations of the 
water and energy balances and vegetation processes can contribute to this (Jung et al.,  
2019). Although non-remote sensing-derived ET data generated with, for example, 
hydrological models are arguably equally uncertain and come with their own intrinsic 
flaws (Puy et al., 2022), it is still difficult to conduct a comprehensive and systematic 
evaluation of remote sensing-derived ET products due to limited ground data 
(Weerasinghe et al., 2020). The reported uncertainties of remote sensing ET data vary 
widely. For example, Velpuri et al. (2013) reported a mean uncertainty of up to 50% on 
point and 25% on basin scale ET, while Rodell et al. (2011) found that water budget-based 
estimates of monthly ET are often too large to be of use. Furthermore, Badgley et al. 
(2015) reported that choice of forcing data can produce up to 20% difference in global 
monthly mean ET, while Karimi and Bastiaanssen (2015) reported an overall 95% 
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accuracy on seasonal ET estimates from remote sensing-based models for a particular 
water accounting case.

With regard to water storage and groundwater data, uncertainties remain large. For 
example, while GRACE data are useful for tracking total water storage variations (Tapley 
et al., 2004), the coarse spatial and temporal resolutions – pixel sizes of roughly 300– 
400 km at approximately monthly scale – present a large uncertainty in total storage 
assessment (Long et al., 2014; Richey et al., 2015).

Overall, the level of accuracy of remote sensing data for water resources management 
depends on a variety of factors, including the specific data products being used and the 
methods employed to analyse and interpret the data. The main uncertainties generally 
depend on the spatial and temporal resolution of specific datasets, accuracy of the specific 
sensor, cloud cover and other atmospheric conditions, and data processing methods 
applied to the estimation or quantification of these datasets.

Opportunities and challenges of remote sensing data in transboundary 
cases

As remote sensing data have become increasingly pivotal in transboundary water man
agement over recent decades, it has begun to transform how data access is viewed. This 
non-exclusive open-access data encourage broad participation, allowing various stake
holders such as NGOs, academics and individuals to join in the process of data analysis 
and decision-making. As it does not allow a single riparian country to monopolize, it 
provides opportunities to foster an inclusive and cooperative attitude towards water 
management. The realization of this potential, however, hinges on adequate internet 
access, suitable infrastructure, and the ability to process and interpret this data, high
lighting the need for capacity-building in this regard.

Besides the data required for water resources management in general, such as for 
water budget assessment (P, ET, ∆S/∆t) as described above, remote sensing data have the 
potential to support cooperation in transboundary basin management. As described by 
Sadoff and Grey (2002, 2005), the process of cooperation in transboundary river basin 
can be represented as a continuum framework, from unilateral action/dispute to coordi
nation, collaboration and joint action/integration (Figure 2). In this ‘Continuum of 
Cooperation’, the initiation of cooperation, that is, the transition from unilateral action 
towards cooperation can involve information sharing and regional assessments of water 
resources. Then a transition from cooperation to collaboration can involve converging 
national agendas in adapting plans to mitigate regional costs or to capture regional gains 
as well as join preparation and investment. Finally, a transition from joint collaboration 
to joint action can involve joint equity ownership of assets, institutions and/or project 
design and assessment.

In situations where cooperation is just starting, for example, remote sensing data 
and applications such as general precipitation assessment and ET mapping and 
monitoring (Figure 2, left side) are more relevant. For example, in the case of the 
Mekong basin, which is shared by six countries in Southeast Asia, cooperation has 
progressed to the stage of joint management through the establishment of the 
Mekong River Commission (MRC) to coordinate and manage the shared water 
resources (Hensengerth, 2009). In such cases, remote sensing data can be used to 
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monitor general water resources assessment to inform water management decisions 
by providing a spatially and temporally continuous record of water balance, water 
levels, flow rates, etc. Remote sensing data are applied in the Mekong transbound
ary basin for assessing general water balance (Dinh et al., 2020), stream flow 
variability (Mohammed et al., 2018), monitoring of reservoir inundation dynamics 
(Shin et al., 2020), monitoring and assessment of water pollution (Tran-Thanh 
et al., 2022).

In the case of fully fledged transboundary cooperation (Figure 2, right end), more 
targeted and precise information on transboundary water quantity and quality may be 
required. The Senegal River basin, which is shared by four countries in West Africa, is 
a good example of a relatively advanced level of cooperation on transboundary basins. 
Governed by the Senegal River Basin Development Authority (OMVS), the cooperation 
in this transboundary basin is considered to have progressed into a level of structured 
cooperation through joint investment and the development of common policies and 
strategies for the management of the shared river (Nguyen, 1982; Varis et al., 2008). In 
this transboundary basin, remote sensing data are applied, for example, to simulate 
discharge (Stisen et al., 2008), to forecast flood and reservoir operation (Bruckmann 
et al., 2022), and to monitor compliance with transboundary water use agreements 
(Merem & Twumasi, 2008; Ragettli et al., 2017).

Ultimately, remote sensing data can play a pivotal role in monitoring potential sources 
of transboundary water, including rivers, lakes and aquifers, during the initial stage of 
cooperation. Progressing along the cooperation continuum (Figure 2), these data can 
then be applied to assessing the quantity and quality of transboundary water resources. 
Furthermore, remote sensing data can be instrumental in the forecasting of transbound
ary water resources, including in real-time hydrological modelling, early warning systems 
for droughts and floods, predictions of potential water quality issues, and predicting 

Figure 2. Continuum of cooperation in transboundary basins.
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changes in ecosystem health and biodiversity. As cooperation strengthens in transbound
ary basins, remote sensing data can play a crucial role in enforcing compliance with water 
agreements and conservation measures, providing open-access and spatially distributed 
data to support equitable resource management and conflict resolution.

It is important to note, however, that the stages or phases of cooperation outlined in 
Figure 2 are not necessarily sequential and may not necessarily be achieved by all 
transboundary river basins. Furthermore, the level of cooperation among countries can 
vary depending on a variety of factors, including the level of conflict or political tensions 
between the countries, the level of trust between them, and the availability of resources 
for cooperation (Martin et al., 2011).

A wide range of remote sensing applications for transboundary water management 
exist in the literature (Table 1). Some of these applications involve, for example, the use of 
remote sensing data for monitoring compliance of transboundary agreements (Bretreger 
et al., 2021), water level of reservoirs and rivers (Biancamaria et al., 2011; Seyler et al.,  
2008), flood inundation modelling and forecasting (Amarnath et al., 2016; Dubey et al.,  
2021), and monitoring and assessment of transboundary aquifer storage changes 
(Fallatah et al., 2017; Voss et al., 2013). Further applications include monitoring of 
land cover change (Khoshnoodmotlagh et al., 2020; Schulte to Bühne et al., 2017).

Overall, remote sensing data can be a valuable source of information for transbound
ary water management, as it provides timely and cost-effective data over large areas on 
various hydrological, meteorological and land cover variables. Existing earth observation 
and remote sensing based geospatial decision support systems on transboundary basins, 
for example, SERVIR tools (SERVIR-Amazonia, 2023; SERVIR-Mekong, 2023), part of 
the SERVIR-Global initiative (Flores et al., 2018), provide valuable information for water 
resources management for riparian states beyond their political border, thereby present
ing viable alternatives whenever on-ground observations are lacking or unavailable. The 
SERVIR-Mekong decision support tools, for example, enable the MRC and its member 
states monitor flood and drought for decision-making and planning processes in the 

Table 1. Studies on remote sensing applications in transboundary basins (note that the colour shade 
the message conveyed in Figure 2).

Broad 
categories Applications References

Monitoring Water level of reservoirs Gao (2015); Muala et al. (2014); Seyler et al. (2008)
Water level of rivers Biancamaria et al. (2011); Hossain et al. (2013)
Reservoir operation rules (construction/filling of 

dams), monitoring
Muala et al. (2014); Eldardiry and Hossain (2019); 

Kim et al. (2022); Das et al. (2022)
Pollution/water quality Ritchie and Cooper (2001); Wang and Yang (2019)
Wetland/environmental/ecological flow Munyati (2000); Perennou et al. (2018)

Assessment Water use/consumption estimation/efficiency, 
e.g., irrigation

Bretreger et al. (2022); Akbari and Torabi Haghighi 
(2022)

Water resources assessment/water accounting/ 
water budget

Karimi et al. (2013); Kumar et al. (2022); Chen et al. 
(2021)

Storage change of transboundary aquifers Voss et al. (2013); Fallatah et al. (2017); Khaki and 
Awange (2019)

Water productivity, water use efficiency, net 
primary productivity

Karimi et al. (2013); Cai et al. (2013); Qi et al. (2019)

Forecasting Flood forecasting Dubey et al. (2021); Biancamaria et al. (2011)
Drought forecasting Zhang et al. (2020); Das et al. (2022)

Compliance Enforcement of transboundary water 
agreement/regulation

Merem and Twumasi (2008); Ragettli et al. (2017); 
Bretreger et al. (2021)
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Mekong basin (Das et al., 2022). Remote sensing data can cover large areas at relatively 
high spatial resolutions; some satellite sensors can provide estimates of P and ET at 
resolutions as fine as 1 km or less, much finer than the resolution of most ground-based 
weather stations. Therefore, remote sensing data can provide spatially distributed infor
mation of areas where most of the water is generated and of those locations where most 
of the water is consumed. On the other hand, temporal resolution of P can be as high as 3 
hourly and near real time, which provides opportunity in establishing flood and drought 
forecasting models at basin level. This information can be compared with existing plans 
and agreements on water allocation and use among countries and competing sectors.

Using remote sensing data in models and frameworks such as the WA+ (water 
accounting plus; Karimi et al., 2013), for example, one can further produce an assessment 
of water resources availability and use, as well as evaluate the impact of future develop
ment plans in transboundary basins. Furthermore, open-access remote sensing data 
supports transparency and allows for re-examinability of data and information compared 
with traditional measurements: in case of disagreements on assessment results, riparian 
states can reprocess the raw data retroactively and examine the results. The character
istics of remote sensing data are therefore instrumental for establishing a dialogue in 
transboundary water management. The evaluation of remote sensing data, the assess
ment of its accuracy and related uncertainty can therefore be joint processes to foster 
such a dialogue. Furthermore, while countries may occasionally contest the validity and 
accuracy of remote sensing data, its universally accessible nature fosters non- 
governmental cooperation in transboundary water management, even regardless of 
formal governmental consensus.

While generally cost-effectiveness, wide and repeatable coverage, and reasonably 
favourable accuracy make remote sensing data valuable sources of environmental data 
(Zhang et al., 2016), challenges related to consistency under diverse conditions, and 
limited availability of calibration and validation datasets remain important (Bhattarai & 
Wagle, 2021). Furthermore, the presence of open-access remote sensing data does not 
automatically mean that they will be used for transboundary water management. 
Cooperation in transboundary water management is also influenced by other considera
tions such as differences in legal frameworks, historical practices, technical abilities, and 
cultural backgrounds (Ibrahim, 2020; Timmerman & Langaas, 2005).

Besides the more measurable aspects of uncertainty related to remote sensing data 
which can be very large in some products and cases, however, there is also scepticism and 
perceived uncertainty associated with the utility of remote sensing data (Povey & 
Grainger, 2015). In-situ data, which, while also subject to errors and uncertainties, tend 
to be regarded as ‘truth’. However, it is important to note that there is no agreed 
convention to systematically report uncertainty when reporting hydrological data even 
when using in-situ data. Furthermore, the level of error or uncertainty in remote sensing 
data is location and climatic zone specific (Awange et al., 2016; Zhang et al., 2016). The 
same data product may perform badly in some location but may give good validation 
results elsewhere. Perceptions, however, can pose further challenges towards the uptake 
of some remote sensing data in transboundary water management.

The impact of uncertainty of remote sensing products in transboundary basins 
depends on the position of riparian states in the cooperation process. Under low 
cooperation condition, for example, any error can be politicized or, even worse, remote 
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sensing data can be used to mislead the public opinion (e.g., the ‘water panic’ in Wheeler 
et al. (2020, p. 6) ‘people feel losses much more acutely than gains of comparable size’; 
and they ‘feel water losses more acutely than they do losses of almost any other 
commodity’). It is, therefore, important that transboundary water management practi
tioners understand which remote sensing products are most appropriate for their situa
tion and also identify the most important remote sensing data uncertainties. 
Notwithstanding the many promising potentials outlined earlier, remote sensing data 
may not be sufficient on its own for transboundary water management, as it does not 
provide detailed information about the physical, chemical and biological characteristics 
of water resources. Furthermore, it also lacks information on various social and hydro- 
political drivers in a shared basin. Remote sensing data are, therefore, likely to remain 
a complementary product in the near future, not least due to inaccuracy (real and/or 
perceived), uncertainty, limited validation datasets, and difficulty to rely on remote 
sensing data with respect to cloud cover and other atmospheric interferences. Ongoing 
research on technologies such as the SAR (Brisco, 2015), which can ‘see through’ clouds, 
aims to detect variations in the water levels of lakes, rivers and reservoirs. This could 
indirectly improve the estimation of remote sensing-derived hydrological components 
such as changes in water storage.

The human capacity for remote sensing data gathering, processing, analysing and 
storing information on shared waters is another challenge and could be a key priority for 
riparian states to develop (a certain level of) confidence in remote sensing data itself. This 
could, in turn, help to facilitate dialogue and promote joint factfinding in situations 
where remote sensing data give rise to unexpected, surprising, differing or even conflict
ing interpretations. Since remote sensing is capable of providing information about water 
use across political borders, it may be, and has been, perceived as a potential security 
concern because it enables the observation of water use in neighbouring countries. 
Ironically, and perhaps surprisingly, this may also create a new motivation for riparian 
states to share conventional (ground-observed) data. In any case, riparian states should 
ideally have an interest in building and maintaining strong technical capacity and 
competence in collecting, validating, interpreting and critically assessing data derived 
from remote sensing to be able to interrogate and corroborate any application with an 
impact on their shared waters. Such interrogation and corroboration of remote sensing 
data, including the assessment of its accuracy and related uncertainty, can be joint 
processes. This collaboration could ideally foster further dialogue on transboundary 
water management. Strengthening and promoting inter-institute and/or inter- 
university cooperation on remote sensing applications in specific transboundary river 
basins could prepare the grounds for a more formal intergovernmental transboundary 
cooperation on a more robust application of remote sensing data for transboundary 
water management.

Conclusions

The increasing availability of open-access, timely remote sensing data presents an 
opportunity for water resources management in general. Such data are particularly useful 
for addressing unique transboundary water assessment challenges such as data-sharing 
and monitoring of compliance to transboundary water allocation agreements. Remote 
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sensing data complements existing models and could encourage riparian states to share 
conventional data, knowing other states may use these datasets.

The primary challenges to remote sensing data use in transboundary water manage
ment involve uncertainty, data collection and processing capacity, and other considera
tions such as legal and political perspectives. Despite its great potential for transboundary 
water management, the role of remote sensing data will most likely remain limited to 
a complementary one due to these challenges.

Despite this, remote sensing data present a real opportunity for transboundary basin 
management, particularly in data-scarce regions. However, for such an opportunity to 
materialize, it presupposes a strong technical capability for validating, interpreting and 
critically assessing remote sensing data on shared waters. It is thus in the interest of riparian 
states to build strong technical capacity and competence in remote sensing to be able to apply, 
interrogate and corroborate any application with an implication on their shared waters.
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