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MECHANISMS GOVERNING CARBON AND 
NITROGEN PATHWAYS DURING ENHANCED 
WASTE DEGRADATION IN LANDFILL 
SIMULATOR REACTORS 

Cristhian F. Andrade 1, Anne-Catherine Dieudonné 1, Julia Gebert 1, Timo Heimovaara 1 

1 Department of Geoscience & Engineering, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the 

Netherlands 

ABSTRACT: Nitrogen undergoes multiple biogeochemical transformations during waste degradation, 
which depend on speciation, prevailing geochemical boundary conditions, and waste surface properties. 
This study developed a waste biodegradation model with high flexibility in accommodating reaction 
pathways to assess different process dynamics. The model was applied to landfill simulator reactors 
operating anaerobically. Model results show that dilution with adsorption matches the experimental 
dissolved NH4

+ concentration (C/N=25) at the early experimental stages. Also, NH4
+ binding decreases 

due to competition with Ca2+, and the model better captures the dissolved NH4
+ behavior when CaSO4 is 

present in solution. Mass removal due to sampling and posterior dilution are the main mechanisms to 
reduce NH4

+ concentration in the leachate. The model highlights the role of nitrogen sorption as the main 
mechanism for nitrogen accumulation in the solid phase of municipal solid waste. 

Keywords: Nitrogen, sorption, municipal solid waste, inhibitions, boundary conditions. 

1. INTRODUCTION 

Next to carbon, nitrogenous compounds are released from the microbial degradation of organic matter 
in landfilled waste. As a result, landfill gas may contain N2O as potent nitrogenous greenhouse gas (Berge 
et al., 2007). The leachate composition is typically dominated by high concentrations of ammonium 
(NH4+), which next to other contaminants, needs to be reduced before discharge into the environment is 
possible (Kjeldsen et al., 2002). In light of efforts to reduce the intensity of aftercare, it is of interest to 
understand and predict landfill nitrogen transformations. 

Experimental results with landfill simulator reactors (LSRs) are useful to identify nitrogen transfor-
mations at the different solid, liquid, and gas phases (Brandstätter et al., 2015; Fricko et al., 2021). How-
ever, up to this date, results have not been conclusive regarding governing nitrogen conversion mecha-
nisms and pathways (Lubberding et al., 2012). For instance, N2 generation from denitrification is difficult 
to quantify with sufficient accuracy, impacting the nitrogen mass balance estimation in the gas phase. In 
addition, there is a lack of waste degradation models applied to nitrogen, which prevents understanding 
the system dynamics and potentially predicting nitrogen turnover in a landfill. 

Nitrogen can undergo multiple biogeochemical transformations (Oudart et al., 2015) and physical (de-
)sorption processes, depending on its speciation, and hence on the prevailing geochemical boundary 
conditions and waste surface properties (He et al., 2017; Liao et al., 2013). Boundary conditions such as 
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O2 availability and in-out water flow in landfills (or LSRs) determine the rate of organic matter degradation, 
where O2 is usually a limiting factor. 

This research developed a mechanistic biodegradation model based on an existing toolbox (van Turn-
hout et al., 2016). The biodegradation model is a powerful tool for testing hypotheses and identifying 
process dynamics. It has great flexibility to include and evaluate various bio-physico-chemical mecha-
nisms under different environmental conditions. The model tracks chemical speciation at the solid, liquid, 
and gas phases. Therefore, gas and leachate quantity/quality are obtained as a function of time. In addi-
tion, the inclusion of boundary conditions allows to estimate mass outflows and assess the impact of 
external measures such as water or O2 inclusion. 

The biodegradation model is applied to experimental results from LSRs operated under anaerobic 
conditions (Brandstätter et al., 2015), and follows a similar modeling approach as presented by Reichel 
et al., 2007 and van Turnhout et al., 2018 to advance on an explanation for measured NH4+ concentration 
in the leachate. Previous modeling efforts have proven unsuccessful to explain NH4+ concentrations in 
the leachate under anaerobic conditions. The model presented here contributes to an explanation by 
including sorption mechanisms and rigorous handling of boundary conditions.  

2. NITROGEN TRANSFORMATION PATHWAYS 

Landfill waste degradation accompanies the release of nitrogen compounds. Ammonification, which 
results from hydrolysis, releases NH4+ as well as volatile fatty acids (VFA). The extent of NH4+ released 
depends on the waste C/N ratio, which varies depending on regions and waste age (Campuzano & Gon-
zález-Martínez, 2016). VFA and NH4+ accumulation might hinder hydrolysis due to toxicity (Oudart et al., 
2015). In addition, NH4+ volatilization to NH3 is significant at high temperatures, that are achievable at 
aerobic conditions. 

NH4+ adsorption to municipal solid waste (MSW) is a nitrogen sink that is often overlooked. Experi-
mental studies have shown that MSW has a high sorption capacity and a high affinity for NH4+ adsorption 
(He et al., 2017; Liao et al., 2013). On the other hand, desorption is weak, pointing out a strong NH4+ 
binding to MSW. This physicochemical mechanism depends on pH, organic matter content, other cations 
in solution, and the availability of reactive sites, which increase with MSW age (He et al., 2017; Liao et 
al., 2013). 

In addition, biochemical mechanisms such as nitrification, denitrification, anaerobic ammonia oxidation 
(anammox), or nitrogen fixation, can occur if the required substrates and electron acceptors are available 
(Aasfar et al., 2021; Berge et al., 2007; Meyer-Dombard et al., 2020; Strous et al., 1997). Microbial growth 
assimilates NH4+, reducing its release into the leachate, and dilution, for example by infiltrating precipi-
tation, further decreases NH4+ concentration in the leachate. All the above-mentioned mechanisms can 
occur simultaneously. 

3. MODEL DESCRIPTION 

A bespoke bio-geochemical model has been developed based on van Turnhout et al. (2016). The 
model allows great flexibility in accommodating reaction pathways to assess different process dynamics 
that represent the degradation of MSW. The biodegradation model calculates out-of-equilibrium condi-
tions or process kinetics in Python and, as a result, determines the change in concentration of different 
species within the system. For instance, the growth of microorganisms can be tracked, or it is possible to 
identify the production or consumption of byproducts from waste degrading in time. 
Thermodynamic principles allow the creation of biochemical metabolic pathways. In addition, 
energetic differences between autotrophic and heterotrophic organisms are considered when 
calculating metabolic yields (Kleerebezem & Loosdrecht, 2010). Furthermore, the model is capable 
to handle physicochemical equilibrium conditions through a direct coupling between the 
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ORCHESTRA software (An Object Oriented Framework for Composing Chemical Speciation and 
Mass Transport Models, Meeussen, 2003) and the kinetics part of the biodegradation model built in 
Python. Specific concentrations of chemical compounds from the kinetic solver can be passed at 
every time step to ORCHESTRA. Afterward, the chemical equilibrium solver can calculate chemical 
speciation at equilibrium in the solid, liquid, and gas phases. The model integrates a wrapper for 
ORCHESTRA so that its capabilities can be accessed from Python. A C++ version of ORCHESTRA 
was used with pybind11 to develop a package (PyORCHESTRA) that is imported to the model so 
that data can be passed as NumPy or Pandas data-structures. 
The equilibrium state and speciation of certain state variables calculated in ORCHESTRA, such as 
pH or NH4

+ dissolved in the leachate can be passed back to the kinetic solver where certain 
inhibitions to the rates of the kinetic pathways take place. For instance, a high pH might cause 
specific reactions to stop, or high concentrations of dissolved species can be toxic to certain 
microorganisms also causing reactions to halt. The model includes a broad range of environmental 
conditions that act as inhibitions to the system, as well as other enzymatic inhibitions, substrate 
limitations, and toxicities to represent how certain processes affect the reaction rates (El-Fadel et al., 
2009; Monod, 1949; Reichel et al., 2007; van Turnhout et al., 2016; White et al., 2004). 
For every biochemical reaction, the model has a substrate limitation inhibition that accounts for 
conditions when the reactants are limited. Toxicity in the model accounts for conditions in which the 
presence of certain chemical compounds within a threshold affects reaction rates. An example of 
this inhibition is O2 limiting methanogenesis (Jarrell, 1985). The model can also accommodate 
competitive and non-competitive inhibitions to reflect cases in which enzymes are blocked due to the 
presence of other compounds in solution. In the model, every biochemical reaction has an optimal 
pH range and temperature. Therefore, pH and temperature inhibitions account for deviations from 
the optimal range. The model includes mechanisms such as dilution or O2 inclusion into the system 
as boundary conditions. These types of mass exchange allow for quantifying mass loss and better 
simulating operating conditions of landfill simulator reactors. Furthermore, the model can assess 
interactions between the liquid and the solid phases. For instance, different adsorption models in 
ORCHESTRA allow to quantify the adsorption of specific cations in solution to the surface of MSW. 
The model coding philosophy tries to maximize performance. The Phyton scripts include classes and 
vectorized calculations, and the kinetic solver uses an imaginary derivative approach 
implementation. These arrangements lead to a fast integration time for the assessed reaction 
network. The methods in the classes were coded following a generic approach so that it could 
calculate the rates for different numbers of degradation pathways and state parameters. A main script 
contains a class with all the functions to calculate the kinetic rates, obtain the equilibrium calculations 
from ORCHESTRA, and manage boundary conditions. This script connects to a stoichiometry 
module, and a non-equilibrium correction function obtains a new metabolic stoichiometry at every 
time step. The model uses a calling script in which the input information is loaded, the class gets 
initialized, the integration instruction occurs, and the figure plotting takes place. 
In summary, the user can quickly build and test a reaction network and assess the relevance of the 
tested mechanisms. Model complexity can be added in a stepwise approach. Also, the incremental 
change in model results aids the understanding of system dynamics. Particularly, model inhibitions 
can indicate the cause(s) for system stabilization in time, or trace back the resulting concentrations 
to a fundamental bio-physico-chemical mechanism.  

4. EXPERIMENT DESCRIPTION  

This study focuses on the simulation and analysis of LSRs presented by Brandstätter et al. (2015). 
The LSRs have a capacity of 121 L and were operated under anaerobic conditions. LSRs were filled with 
old MSW, and leachate was recirculated every time gas was sampled. A comprehensive experimental 
description can be found in (Brandstätter et al., 2015; Turnhout et al., 2018) as well as model parameters. 
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The experiments lasted for 823 days, with a constant temperature of 308.15 ºK, leachate sampling remo-
ved approximately 2 L of leachate at irregular intervals with a total of 27 samplings. Similarly, deionized 
(DI) water replaced the volume removed. In addition, the gaseous C-discharge (as CH4-C and CO2-C) 
was measured. 

5. MODEL IMPLEMENTATION 

Table 1 shows the resultant reactions this study considers from the catabolic and anabolic pairings. 
This study followed a similar approach from van Turnhout et al. (2018), in most cases model 
parameters were obtained from that research. In this study, there is a clear distinction between non-
metabolic and metabolic pathways. Metabolic pathways follow a coupling between catabolic and 
anabolic reactions, as well, yield determination is corrected by the activities of the compounds 
present in solution.  

Table 1. System's resultant metabolic reactions from the catabolic and anabolic pairings. SOM = Solid organic 
matter, AnaX = Biomass generation. 

Reaction_ID Reaction name Reaction pairing Resultant reaction Maximum rate (𝝁𝒎𝒂𝒙) (d-1) 
C1 Hydrolysis of SOM Non-metabolic Hydrolysis of SOM  0.0101* 
C2 Propionate to acetate C2-A1 Acetogenesis  0.035 
C3 Acetate to CO2 & CH4 C3-A1 Methanogenesis  0.013 
C4 Ammonium oxidation C6-A2 Nitrification  0.2669* 
C5 Acetate-_NO3 C7-A1 Denitrification  0.2669* 
C6 Microbial decay Non-metabolic Microbial decay  0.05∙ 𝜇𝑚𝑎𝑥  

 0.003 (Methanogens) 
A1 AnaX with acetate   
A2 AnaX with HCO3- 

* Maximum rates (𝝁𝒎𝒂𝒙) from van Turnhout et al. (2018) 

 
Figure 1 shows the conceptual model applied to the LSRs. Environmental conditions influence bioche-

mical and physico-chemical processes. Gas venting and leachate sampling are the governing mass 
outflows from the system. Leachate sampling removes mass of dissolved compounds at the sampling 
times. On the other hand, DI water replenishes the sampled volume and carries dissolved O2 with it. 
Dissolved O2 is relatively toxic to methanogens, but is also an electron acceptor for nitrification/denitrifi-
cation. 
This model considers hydrolysis as a non-metabolic reaction, while acetogenesis, methanogenesis, 
and nitrification/denitrification are metabolic pathways. The selection of metabolic and non-metabolic 
pathways falls on the model user. For every metabolic pathway involved in the reaction network, the 
model considers microbial growth and decay. In this implementation, substrate limitations apply to 
every substance involved in a reaction. In the same way, non-ideal pH and temperature modify 
reaction rates. VFA and NH4

+ accumulation reduces hydrolysis (Oudart et al., 2015), as well as 
dissolved O2 coming from the DI water to methanogens. The model considers those effects as 
toxicities.  
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Figure 1. The conceptual model applied to the LSRs at anaerobic conditions. 

Table 2 presents the stoichiometry for every catabolic and anabolic mechanism, as well as the state 
parameters considered at non-equilibrium conditions. Further, the initial compound concentrations are 
shown. Gibbs formation energies of every compound needed to obtain metabolic yields were obtained 
from Kleerebezem & Loosdrecht (2010) and Tro (2017). The ideal pH for all reactions lies between 7 and 
9, and the optimal temperature for all reactions was assumed to be 315.15 ºK (Nie et al., 2021). The 
model includes a NICA-Donnan model from ORCHESTRA to capture the adsorption of cations in solution 
to the MSW. Default parameters are used in the model, but a specific reaction for NH4+ adsorption with 
H+ parameters was added. Simulations consider the presence of Ca2+ and SO42- in solution, so that 
gypsum and calcite can precipitate. This mechanism buffers pH. 
This study considers the effect of different C/N ratios (C/N = 166, C/N = 25) on the amount of dissolved 
NH4+; the selection was based on van Turnhout et al. (2018) and Fricko et al. (2021). The initial carbon 
content was kept constant while the nitrogen concentration varies. The elemental waste compositions the 
model used are as follows: C6H10O4N0.036 for the high and C6H10O4N0.24 for the lower ratio. 

Table 2. Reactions stoichiometry and initial compound concentrations of state parameters at non-equilibrium 
conditions. 

Reaction name\initial 
concentrations 

[mol/L] 

SO
M 

H2O VFA
1* 

VFA2* NH4
+ HCO3

- H2 H+ Xbio O2 CO2 CH4 NO3
- N2 

2.3  55.6  0 0.5   0.027  0.4 0.
01 

 0.020
4 

(0.001
-0.01)  

0 0 0 0 0 

SOM_Hydrolysis -1 -7 1 0 0.036 3 4.
5 

6.856 0 0 0 0 0 0 

Propionate_Acetate 0 1 -1 2 0 -1 -1 0 0 0 0 0 0 0 

Acetate_CO2_CH4 0 0 0 -1 0 0 0 -1 0 0 1 1 0 0 

Ammonium_ox 0 1 0 0 -1 0 2 0 0 -2 0 0 1 0 

Acetate-_NO3 0 0.8 0 -1 0 2 0 -0.6 0 0 0 0 -1.6 0.8 

Microbial_decay 0 -0.6 0 0.5 0.2 0 0 0 -1 0 0 0 0 0 

AnaX_Acetate 0 0.4 0 -
0.525 

-0.2 0.05 0 -0.275 1 0 0 0 0 0 

AnaX_HCO3- 0 0.925 0 0 -0.725 -1 0 0.25 1 0 0 0 0.53 0 

SOM (hydrolysable solid organic matter  C6H10O4N0.036), Xbio/biomass  CH1.8O0.5N0.2, VFA1*/ Propionate  C3H5O2
-, 

and VFA2*/Acetate-  C2H3O2
- 
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6. RESULTS 

Figure 2 (top left) shows that degradable solid organic matter (SOM) hydrolyzes relatively fast during the 
first 200 days of the simulation. On the other hand, degradation occurs at a slower pace between days 
200 and 400, but degradable SOM nearly depletes by day 500. Propionate generation peaks by day 70. 
From that time on, concentration decreases at different rates, and propionate nearly depletes by day 150. 
Acetate concentration in the simulation sharply rises in the first 200 days, then the concentration 
decreases, until depleting at day 800. Abrupt changes in concentrations correspond to leachate sampling 
events (2 L per sampling event). Mass removal due to leachate sampling and the addition of DI water 
strongly affect the concentration of microorganisms, as Figure 2 (top right) shows. Dissolved O2 
concentration is small and follows an off-and-on trend, similar to NO3- and N2, as depicted in Figure 2 
(bottom left). Finally, Figure 2 (bottom right) shows measured and modeled bio-gas. Modeled results do 
not capture the sharp rise at the early experimental stages, but reach the cumulative experimental gas 
production.   

 

Figure 2. Modeled state parameters at out-of-equilibrium conditions in a system with all bio-physical-chemical 
mechanisms considered in the conceptual model at high C/N. Top left: solid organic matter and VFAs, top right: 
microorganisms in the system, bottom left: dissolved O2 and nitrification/denitrification byproducts, bottom right: 
modeled and measured biogas. 

Figure 3 shows substrate limitations inside the system. NH4+ is a limiting substance for acetogenesis, 
while degradable SOM impacts hydrolysis. Those reaction rates are highly impacted after day 500 when 
substrate limitations reach a factor below 0.6. Furthermore, a small O2 concentration strongly substrate 
inhibits nitrification and, in a similar manner, NO3- to denitrification. pH and temperature inhibitions are 
not strong in the system, due to a stable pH and a constant temperature close to optimal conditions as 
stated above. 
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Figure 3. Overview of the main substrate limitations in the system. 

It is possible to identify the dilution effect in all the state parameters within the system. Concentrations 
sharply decline in a staircase shape. Figure 4 shows the experimental and model chloride concentration 
in time. Figure 4 presents the model data with the experimental dilution volume of 2 L. However, the 
model obtains a closer match with a dilution volume of 1 L (Figure 4, right). 
 

 
 

Figure 4. Experimental (dotted) and modeled leachate chloride concentration in time at two dilution conditions. 

Figure 5 presents dissolved NH4+ in five different scenarios. The model considers two different C/N ratios; 
one that was used by van Turnhout et al. (2018), C/N = 166 (so-called high C/N), and another one with 
C/N = 25. Model mechanisms superimpose each other. For instance, simulations considered only a 
dilution effect, then with sorption, and ultimately with Ca2+ and SO42- present in solution. 
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Figure 5. Experimental (dotted) and modeled NH4
+ present in the leachate. Dilution due to replenishment of sampling 

volume, adsorption, and adsorption with enough Ca2+ and SO4
2- (gypsum) present in solution are considered in the 

simulation at two different C/N ratios (C/N = 166, C/N = 25). 

Results show that at a high C/N ratio dilution matches the experimental NH4+ concentrations trend during 
half of the experiment. Afterward, modeled NH4+ falls below experimental values. On the contrary, when 
adding a sorption mechanism, the dissolved NH4+ goes to 0, but when Ca2+ and SO42- are present in 
solution the model obtains a better match for dissolved NH4+. At C/N = 25, dilution is not able to capture 
the experimental dissolved NH4+ behavior. However, by adding a sorption mechanism, the model better 
captures dissolved NH4+ behavior during the first 300 days.  

7. DISCUSSION 

In the investigated LSR, O2 inclusion, which is little due to its low solubility in water (0.00028 mol/L, 
Montgomery et al., 1964), comes from the injection of DI water. Nitrification is limited by O2 availability 
but appears to be enough to produce NO3- in small quantities, which is then consumed by denitrification 
to further produce N2. This condition explains the appearance of NO3- in LSR that operate without an 
apparent O2 source. Concentrations are in the order of ppm, but without O2 limitations, these 
mechanisms may become dominant due to high reaction rates. NH4+ volatilization as NH3 is minor. 
Mass removal due to leachate sampling and posterior dilution with DI water constitutes the dominant 
removal pathway of NH4+ in the studied LSR. The dilution factor is around 10% in the experimental case. 
Furthermore, at a high C/N ratio and without other excess competing cations in solution, sorption can 
bind all NH4+ present in solution. This strong effect is in agreement with the literature (He et al., 2017; 
Liao et al., 2013), but does not explain the experimental case results. On the contrary, by adding excess 
cations in solution (Ca2+), NH4+ binding decreases due to competition with Ca2+, and the model better 
captures the dissolved NH4+ behavior. At C/N = 25, dilution continues to play a significant role in 
decreasing dissolved NH4+ concentrations. In this scenario, a better fit for the experimental data is 
obtained with the sorption mechanism. In all scenarios, the model underestimates dissolved NH4+ 
concentrations at later experimental stages, this could be related to a missing mechanism in the model. 
Furthermore, a better selection of reaction rates might improve the fitting with experimental gas 
production.  
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8. CONCLUSION 

The model shows that the systems considered in this study reach equilibrium or exhaust their reactivity 
by substrate limitations. Furthermore, reaction rates are highly regulated by specific environmental 
conditions, which makes the system progress toward equilibrium slowly. Mass removal due to sampling 
and posterior dilution is the main mechanism to reduce NH4+ concentration in the leachate. Finally, the 
model highlights the role of nitrogen sorption as the main mechanism for nitrogen accumulation in the 
solid phase of MSW which is more than 40 years old. 
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