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Grouped People Counting Using mm-Wave
FMCW MIMO Radar

Liyuan Ren , Alexander G. Yarovoy, Fellow, IEEE, and Francesco Fioranelli , Senior Member, IEEE

Abstract—The problem of radar-based counting of multiple
individuals moving as a single group is addressed using an
mm-wave multiple-input–multiple-output (MIMO) frequency-
modulated continuous wave (FMCW) radar. This problem is
challenging because the different individuals are closer to each
other than the range/azimuth resolution, and their bulk Doppler
signatures are difficult to distinguish, as they tend to move
together. A processing pipeline is proposed, based on the combi-
nation of a multiple target tracking algorithm with a classifier to
track each group and count the number of people within. Specific
salient features are defined for the classifier and extracted from
range–azimuth maps and cadence velocity diagrams (CVDs). The
proposed pipeline has been experimentally validated in several
outdoor scenarios with grouped people. The results show that the
combination of tracking algorithm and classifier in the proposed
pipeline outperforms alternative methods from the literature as
well as a commercial toolbox for people counting.

Index Terms—mm-wave radar, people counting, radar signal
processing, tracking and classification.

I. INTRODUCTION

PEOPLE Counting problem (also referred to as ‘Regional
People Counting’ [1]) aims to sense the number or den-

sity of people in a Region of Interest (RoI). There are many
application scenarios for this, such as epidemic prevention
control, shopping malls, elevators, public transportation, secu-
rity, and Internet of Things (IoT) functionalities in smart cities
and urban environments [2].

Based on the existing literature, the problem of People
Counting can be formulated with three different macro objec-
tives relevant to different scenarios: 1) People Counting;
2) true People Counting; and 3) exact People Counting.
Simple People Counting means estimating the density of peo-
ple where/when knowing their exact number in the RoI is
not necessary, e.g., at the airport entrance [3], or on a pedes-
trian road [4]. True People Counting means counting the
specific number of people while the location (range, Angle
of Arrival (AoA), and elevation information) of each person
is not required, e.g., at the subway platform [5]. As the most
advanced type of People Counting, the exact People Counting
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implies counting the accurate number of people and estimating
the location of each person. This provides more information
about people’s behavior for business analysis, epidemiological
investigation [6], and other IoT scenarios [7].

As manual counting is time consuming and prone to mis-
takes, many advanced technologies have been proposed to
solve the People Counting problem, such as Wi-Fi/Bluetooth
devices [8], thermal image sensors [9], video camera [10],
radar [11], and LiDAR [12]. These technologies have different
environmental requirements for proper working (e.g., the radi-
ation of sunlight could influence the detection of the thermal
image sensor [13]). LiDAR is expensive compared to radar,
can be influenced by environmental light conditions, and some
wavelengths may be harmful to human eyes, although it has
the ability to obtain very fine and accurate detection of objects
in space. In this area, radar is increasingly becoming a popu-
lar technology because of its robustness to light and weather
conditions, contactless capabilities, and potential advantages
in terms of privacy preservation.

There are two main categories of radar-based techniques
for exact People Counting proposed in the recent literature.
The first category includes the feature-based counting meth-
ods, where features extracted from the radar data are used to
train a statistical or neural network (NN)-based classifier to
estimate the number of people in the RoI [14], [15], [16].
In other words, this family of approaches defines the People
Counting problem as a classification problem. These meth-
ods have generally low computational requirements and
good performance for multiple stationary people, but they
require large groups of diverse data for training the classi-
fiers [17], [18]. The second category includes the tracking
for counting methods. These are essentially multiple targets
tracking (MTT) algorithms to estimate the motion of each
person in the RoI, i.e., the number of people as well as
their location. Depending on the wavelength and the dis-
tance from the radar, the target person can be considered
as a point-like or extended target. The processing pipeline
before the tracking algorithms may differ because of differ-
ent radar types (i.e., frequency-modulated continuous wave
(FMCW) radar or pulsed UWB radar) [19], [20]. Differently
from feature-based counting methods, MTT-based algorithms
do not rely on training data to address people counting and
can be directly implemented. This offers more flexibility when
counting multiple people in different environments compared
with feature-based counting methods [20].

Radar-based people counting methods need to be robust
against complex and diverse scenarios with multiple targets
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moving. However, to the best of our knowledge, the grouping
phenomenon is often not considered for radar-based people
counting methods, i.e., the event when multiple individuals are
moving together and close to each other as a single group. This
is a challenging scenario for radar-based sensing and count-
ing because these multiple grouped people are separated from
each other by less than the range/azimuth resolution, but also
their bulk Doppler signatures will be similar as they will tend
to move together. This article proposes a dedicated pipeline to
address specifically this problem, i.e., grouped people count-
ing, by combining feature-based and tracking methods into a
single framework. The main contributions of this work are as
follows.

1) One of the most complex movements in the area
of radar-based people counting, i.e., counting multiple
individuals moving as single groups, is studied and
addressed with a dedicated processing pipeline that uses
multiple-input–multiple-output (MIMO) FMCW radar.

2) This pipeline was developed [21] by studying the spe-
cific characteristics of radar signatures of groups of
people, leading to the intuition to combine Range–
Azimuth maps and cadence velocity diagram (CVD) as
salient features to count the number of people, together
with an MTT algorithm.

3) The proposed pipeline has been experimentally validated
in several outdoor scenarios with grouped people at the
TU Delft campus. It is shown that the complementary
strengths of feature-based and tracking-based methods
in the proposed pipeline outperform alternative methods
from the state-of-the-art (SOTA) literature as well as a
commercial toolbox for people counting.

This article is organized as follows. The characteristics of
radar signatures of grouped people are discussed in Section II
to derive salient features from the radar data. Based on this
study, the proposed pipeline combining tracking for counting
and feature-based counting is introduced in Section III. The
pipeline is experimentally validated with three data sets in the
performance study presented in Section IV, with a compari-
son with alternative methods from the literature presented in
Section V. Finally, conclusions are given in Section VI.

II. RADAR-BASED CHARACTERIZATION AND FEATURES

FOR GROUPED PEOPLE COUNTING

In this section, the characteristics of radar signatures of
grouped people are studied to derive features for the proposed
pipeline later presented in Section III.

A. Definition of Grouped People and Its Modeling

Grouped People is defined as a cluster of people sharing
neighboring locations and moving together, as shown in
Fig. 1(a). This behavior is common in everyday life, such as
friends walking in pairs or couples taking a walk together.
From the perspective of analyzing radar data, separating
grouped people is challenging, as the individuals are closer
than the range/azimuth resolution, and their Doppler signatures
are mixed together. In the existing literature on radar-based
People Counting, the assumption on people’s motion is often
limited to walking without grouping, even when multiple

Fig. 1. (a) Ground-truth video for a group of three individuals, and schematic
model of grouped people: (b) in the top view with the three parameters defin-
ing the size of the group, and (c) in the front view with control points and
segments inspired by the Boulic model.

people are present in the scene. Although some of the existing
articles state that people move randomly, the grouping phe-
nomenon seems to be not considered in their assumptions [18],
or it is assumed that individuals do not always move as a
group [15]. In other words, the people observed by the radar
will always separate at a certain moment and move as separate
individuals.

To help define the grouping scenario and study the grouped
people’s signatures in the radar’s view, a model of Grouped
People is developed [21]. First, a 3-D model of a walking
individual is built inspired by the popular Boulic model [22]
which considers 11 control points with ellipsoids to model
the different body segments, as shown in Fig. 1(c). Then, the
connection between different individuals closely located in a
group is modeled with three parameters. These are shown in
Fig. 1(b), namely, d1 is the chest width of the individuals,
d2 is the shoulder width, and d3 is the Euclidean distance
between two neighboring individuals. The parameters d1 and
d2 essentially define the dimensions of the ellipse with the
area occupied by each individual in a group. These parameters
could be derived from publicly available population data, or by
enlisting volunteers to participate. d3 is the distance between
people in the group, which is related to the angular resolution
cell of the radar. Simulated spectrograms for one individual
and two grouped people derived from this model are shown
in Fig. 2. It is visible how even with only two individuals it is
difficult to isolate the envelope or individual body parts from
the spectrogram. Therefore, in the next section, other radar
data domains are analyzed for grouped people’s signatures. It
is important to note that this model was used to initially study
the grouping scenario and possible features from relevant data
domains, such as the examples of spectrograms in Fig. 2, but
the data analysed for the subsequent sections with results are
all experimentally collected.

B. Analysis of Radar Data Domains for Grouped People
Counting

Noted from the previous section the challenge to use spec-
trograms for grouped people counting, different radar domains
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Fig. 2. Simulated spectrograms based on the proposed Group People model
when (a) 1 person is walking and (b) 2 people are walking.

are considered. The aim is to find whether salient features
can be extracted from specific radar domains. The readers
should note that the data used to generate these example fig-
ures belong to the collected experimental Data Set I, which is
discussed in more detail in Section IV.

First, the Range–Azimuth domain is considered. Range–
Azimuth map shows the spatial location of targets in the RoI.
This domain is commonly used in narrow areas, such as vehi-
cle, elevator, and metal ramp [3]. Not all radar systems are able
to provide angular information, as MIMO radar is needed to
estimate azimuth and sometimes even elevation information
of targets. However, a potential weakness of this representa-
tion is that radar has poorer angular resolution for extended
targets, such as people compared to LiDAR, and the resolu-
tion degrades away from the boresight direction. Nevertheless,
the Range–Azimuth map can provide some information for
Grouped People Counting as it shows directly relevant spatial
information for the area occupied by a group of people.

At farther distances however, the link between the number
of occupied cells in the range–azimuth domain and the number
of grouped people is found to be less pronounced on its own to
estimate the number of people in a group [21]. For example, in
Fig. 3, where three and five people walk together as a group at
approximately 16 m of distance, the number of occupied cells
seems to be the same. This can be explained by the Grouped
People model. As people get further away from the radar, their
angular footprint gets smaller and smaller until it is less than
the angular resolution. The results when only using the fea-
tures in range–azimuth domain for Grouped People Counting
are provided later in Section IV-C.

C. Study of Synchronization Between People in Groups

Additional consideration is then given to the Doppler
domain. Micro-Doppler spectrograms are typically used in the
literature on radar-based human monitoring for gait and activ-
ity recognition. From the simulated spectrograms in Fig. 2, it
was noted that it is difficult to separate micro-Doppler con-
tributions from multiple people walking together as a group,
even when they are just two individuals, because their signa-
tures are mixed together. However, the simultaneous analysis
of experimental recordings for grouped people [21] showed

Fig. 3. (a) Video ground truth for three people and five people walking as
a group in two cases denoted by A and B. (b) Range–Azimuth map in the
case A at about 9 m, with comparison of the detected cells for groups of 3
versus 5 people (c). (d) Range–Azimuth map in the case B at about 16 m,
with comparison of the detected cells for groups of 3 versus 5 people (e).

that this mixing can be less pronounced than in the simulated
signatures. Essentially, what appeared to happen when the par-
ticipants could walk in a natural way was that they would
walk together with a relatively consistent, synchronized pace.
While this “synchronization phenomenon” was not perfect (as
for example the case of soldiers marching together), it was still
noticeable in the spectrograms for a relatively small number
of grouped people and tended to disappear for larger groups.

To quantify the synchronization phenomenon, the CVD is
introduced starting from the spectrogram. The spectrogram is
defined as

Ŝ(l, g2) =
Nb−1∑

n=0

s(n + l�l)w(n)e−j2πg2n/Nb (1)

where s(n) is the complex signal in the range–time domain,
and Ŝ(l, g2) is the spectrogram calculated from this STFT pro-
cess. w(n) is the Hanning window of the length Nb. �l is the
number of overlapping samples between each two window.

The CVD Sc (g1, g2) is then calculated by taking the FFT of
the spectrogram across the time axis

Sc(g1, g2) =
Nw−1∑

l=0

|Ŝ(l, g2)|w(l)e−j2πg1l/Nw (2)
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Fig. 4. Analysis of the synchronization for two people walking as a group.
Ground truth with estimated skeleton in (a) high synchronization case for peo-
ple of similar height, and (b) low synchronization case for people of diverse
height. Spectrograms for (c) high synchronization and (d) low synchroniza-
tion case, with Doppler velocity displayed in absolute value. CVD maps in
(e) high synchronization and (f) low synchronization case, with CVD profiles
in (g) high synchronization and (h) low synchronization case.

where w(l) is the Hanning window with length Nh. Nw is the
total number of windows when applying FFT. The indices are
defined as g1 = 0, 1, 2, . . . , Nh −1 for cadence frequency, and
g2 = 0, 1, 2, . . . , Nw − 1 for Doppler.

By taking the FFT across the time axis, the CVD represents
the frequency with which the Doppler velocity in the target
signature repeats, essentially the periodic synchronization in
the Doppler signature. Due to the fact that the frequency of
the limbs’ swinging during normal human walking movement
will not exceed 2.5 Hz and will not fall below 0.5 Hz [23],
the CVD is selected in this range of cadence frequencies for
subsequent study. To investigate the relationship between CVD
and the synchrony of human movement, two sets of data from
Data Set 1 (described later in Section IV) were selected. Each
set of data was collected by two different volunteers. Fig. 4
shows detailed information on the difference between the high
synchronization case and the low synchronization case.

The degree of synchrony of human movement was found to
be related to the height of the people. When there was little
difference in height between the two volunteers, they were
more likely to move in high synchrony due to the similarity
in their stride length [in Fig. 4(a)]. On the contrary, when there
was a larger difference in height between the two volunteers,
they were more likely to move asynchronously [in Fig. 4(b)].
In Fig. 4(a) and (b), according to the control points and the
estimated skeleton marked on the people, it is shown that in the
high synchronization case the two volunteers’ feet are raised
from the ground at the same time and their arms are swung at

Fig. 5. Distributions of the synchronization factor parameter derived from
the CVD for different numbers of grouped people.

a similar angle. However, in the low-synchrony situation, the
two volunteers’ feet landed on the ground at different times,
and their arms swung at different frequencies.

In terms of spectrograms, this is much less “clean” in
the case of low synchronization [in Fig. 4(d)] compared to
that of high synchronization [in Fig. 4(c)]. As conclusions
beyond this are difficult to obtain through empirical obser-
vation, CVDs are extracted. In Fig. 4(e), it is seen that there
is one vertical line with high amplitude around 1.5 Hz along
the cadence frequency. By calculating the mean value along
the Doppler velocity of the CVD map, we can obtain the CVD
profile and clearly find a peak at around 1.5 Hz as shown in
Fig. 4(g). This peak represents the periodic motion of the two
participants. In contrast, as in the case of low synchronization
the inconsistency of the two gaits leads to “unclean” CVD, the
resulting peak in the CVD map/profile is not very pronounced.

Based on this intuition, a quantitative parameter of synchro-
nization factor is defined to be used as a possible feature
for Grouped People counting. By comparing the difference
between CVD profiles of high and low synchronization cases
in Fig. 4(g) and (h), we can see that the shape of the peaks
between 0.5 and 2.5 Hz is different. The higher the synchro-
nization is, the higher the peak and the narrower its width will
be. Conversely, the lower the synchronization is, the lower and
wider the peak will be.

To represent this difference, the synchronization factor δ

is proposed inspired by [24], and its calculation is listed in
Algorithm 1. The synchronization factor is the highest when
there is only one person walking and will decrease when
more people will walk together as a group, indicating that
it can be used as a suitable feature for Grouped People count-
ing. To validate the contribution of CVD for Grouped People
Counting, the training set of Data Set I (described in detail
in Section IV-A) is used. Based on the fact that the calcu-
lated synchronization factor is the highest when there is only
one person moving in the RoI, a normalization is proposed to
constrain the synchronization factor from 0 to 1. In Fig. 5, the
phenomenon of synchronization is studied by fitting Gaussian
distributions to the values of the synchronization factor derived
from the CVD for different number of grouped people. It can
be seen that as the number of people increases, the synchro-
nization factor becomes on average smaller. Moreover, the
peak of the fitted distributions for different number of Grouped
People is relatively well separated and consistent, suggesting
that this can be a useful feature for grouped people counting.
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Algorithm 1 Proposed Synchronization Factor From CVD
Profile
Require: CVD Profile |Sc(g1)|k| as defined in [28], with g1 =

0, 1, ..., Nh − 1, k = 1, 2, ..., K, overlapping frequency
factor σl, and sampling duration Tc

1: Calculate ambiguity of CVD Frequency: fs = 1/(NwσlTc)

= 1/(Nw − �l)Tc

2: Calculate CVD step: xc = linspace (−fs/2, fs/2, g1)

3: Select the appropriate interval of CVD profile:
4: if 2.5 ≥ xc ≥ 0.5 then
5: |Sc1(xc)|k| = |Sc(xc)|k|
6: end if
7: Gmax = max(|Sc1(xc)|k|)
8: xc0 = arg maxxc(|Sc1(xc)|k|)
9: Find the largest local minimum G1 = |Sc1(xc1)|k| around

xc0
10: Find the minimum G2 = |Sc1(xc2)|k|
11: δk = ((Gmax − G1)/G1) + (Gmax − G2)/G2))/2
Ensure: δk

Fig. 6. Overview of the proposed people counting pipeline, which combines
relevant elements of the tracking for counting and feature-based counting
approaches typically used in isolation in the literature.

To conclude this section, it was shown that both features
from the Range–Azimuth maps and the synchronization factor
from CVD maps should be considered to address the problem
of Grouped People counting.

III. PROPOSED METHOD

This section presents the proposed method which combines
a “tracking for counting block” and a “feature-based count-
ing block”. The method can be divided into four main parts:
1) radar cube generation; 2) preprocessing; 3) people tracking
and counting block; and 4) post-processing part, as shown in
Fig. 6.

A. Radar Cube Generation and Preprocessing

The radar cube generation step converts the digitized raw
data acquired from the radar into a standard cube format
for subsequent processing. When using FMCW MIMO radars
with multiple transmitter and receiver channels, the size of the

resulting cube is Number of Channels × Number of Fast Time
Bins × Number of Slow Time Bins × Number of Frames.

Subsequent preprocessing aims to obtain the Doppler veloc-
ity, Range and Angle information from the radar cube. Rather
than applying an FFT across the three dimensions of the cube,
in this article the Doppler-based angle estimation method is
applied. The base idea is to generate the Range–Doppler map
first with a 2-D FFT across fast and slow time samples. Then,
a detection method (i.e., 2-D CA-CFAR [25]) is applied to
find the range–Doppler bins containing targets and at the same
time remove static clutter contributions near the zero Doppler.
Finally, the FFT beamforming is performed along the Channel
dimension only at those range and Doppler bins selected by
the CFAR.

After preprocessing, moving targets are defined in the pro-
cessed radar cube as sets of values of Angle × Range ×
Doppler × Frame. Sliding windows across M frames are then
applied to select multiple frames and generate the complex
signal in the range–time domain. In this case, the time of this
complex signal in the range–time domain equals the num-
ber of frames (M frames) multiplied by the time per frame.
Afterwards, after applying (1) and (2), spectrograms and then,
CVD maps are generated in the subsequent people tracking
and counting blocks of the pipeline. In this work, the length
of the sliding window M is set at ten frames, with an over-
lap of 90% between consecutive frames. For each window,
the number of people in the scene and their location will be
estimated.

B. People Tracking and Counting Block

The people tracking and counting block is designed to
estimate the location and number of Grouped People by a com-
bination of tracking and feature-based counting. This includes
a counting unit to process each decision window and estimate
the number of Grouped People, and a multiple target tracking
(MTT) algorithm to predict and update people’s location in
the scene.

1) Grouping: Grouping is the first operation of the people
tracking and counting block, and its aim is to separate dif-
ferent groups in the scene from the Range–Azimuth map and
pass each group’s feature (i.e., the Range–Azimuth map, and
the CVD map) to the subsequent Group classifier. This oper-
ation relies on clustering and assignment algorithms. The use
of clustering serves two purposes. First, to calculate distances
on the Range–Azimuth map based on the density of measure-
ments, and thus to separate the different clusters within the
scene corresponding to different groups of people. Second, to
calculate the cluster centroid based on the measurements of
each group, which is later used in the tracking algorithm. In
this article, the grid-based density-based spatial clustering of
applications (DBSCAN) is used [26]. Compared to standard
DBSCAN, grid-based DBSCAN takes the relation between
angle bin and range bin into account to calculate distances. As
a result, different groups with their measurements are divided
in the scene, and the centroid of each group is calculated and
passed to the MTT block. The assignment algorithm has two
purposes. The first is to assign the processed feature to the
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Fig. 7. Overview of the steps for the proposed group classifier.

correct group. For example, Group 1 is detected walking from
range bin 130 to range bin 137 in one window, and then the
spectrogram calculated in that range is assigned to Group 1.
The second purpose is to select the best association hypothesis
θ i

k (i.e., the hypothesis in the ith frame and the kth decision
window) between each frame, and to prune all other hypothe-
ses θ i

k ∈ �i
k. Thus, the single N-target hypothesis is applied.

In this article, the best association hypothesis is determined
by the distance between each estimated position of the groups
with the Gaussian model [27].

2) Group Classifier: The group classifier estimates the
number of people in each group. In this article, a statistical
ML-based classifier is used as shown in Fig. 7. As previously
discussed, features from the range–azimuth domain and CVD
map are used. For features in the range–azimuth domain, three
kind of features are extracted, i.e., 1) the length of the occu-
pied azimuth bin; 2) the peak amplitude; and 3) the mean
amplitudes calculated across two consecutive frames. As a
consequence to calculate features every two frames, the length
of the feature vectors extracted from the Range–Azimuth maps
is 15 (three features for each pair of frames in a sliding window
of ten frames). For the CVD map, four features are extracted
inspired by [28], i.e., 1) the synchronization factor δ men-
tioned in Section II-C; 2) the maximum cadence frequency
of the CVD profile; 3) two half-height cadence frequencies
from the CVD profile; and 4) the selected mean amplitudes of
the CVD map along the Doppler velocity axis. Normalization
is applied to each selected feature extracted from Range–
Azimuth map and CVD map. Then, the two sets of feature
vectors are concatenated and principal component analysis
(PCA) is used to reduce the dimensionality of the predic-
tor space from the 25 features. Reducing the dimensionality
can help classification models prevent overfitting [15]. In this
work, only the principal components that retain 80% of the
information are kept and passed to the classifier. The selec-
tion of the classifiers and the study of their performance are
provided in Sections IV and V.

3) Multiple Targets Tracking: After the best association
hypothesis is selected within the Grouping block, the MTT
block updates all tracks from the Range–Azimuth map and
initiates new tracks if needed. This is performed by the global
nearest neighbor (GNN) tracking algorithm [29], with constant
velocity target motion model. The core of the GNN tracking
is the extended Kalman filter for the prediction and update

Fig. 8. Results when applying the post-processing block (ground truth with
1 group and 3 people present): estimated number of people per group before
and after applying the post-processing block.

step. Compared to other MTT algorithms, such as Gaussian-
mixture probability hypothesis density (GM-PHD) or Poisson
multi-Bernoulli mixture filter (PMBM) [30], [31], [32], GNN
tracking algorithms require fewer target and motion models to
be built and thus save computation power.

A “feedback loop” between feature-based counting and
tracking for counting is also introduced for better estimation
of the position and number of grouped people. The counting
results from the proposed group classifier help the tracking
part decide the confirmed trajectory and tentative trajectory to
reduce the influence of false detection (FD) and missed detec-
tion. Meanwhile, the tracking for counting part also helps the
feature-based counting block deal with the static targets in the
scene.

The results when combining tracking for counting block and
feature-based counting block are provided in Section IV.

C. Final Post-Processing Block

After the number and location of each group of people
are estimated by the people tracking & counting block, they
are recorded in chronological order. Then, the post-processing
block combines and updates results over time to smooth any
inconsistency. Specifically, in this article a five-point median
filter is applied to average the estimation. Fig. 8 shows an
example for this algorithm in the post-processing block.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup and Data Collection

The TI IWR6843ISK radar is chosen to validate the
proposed approach for grouped people counting. It is a
60-GHz mmWave radar with three transmitters (Txs) and four
receivers (Rxs) forming a virtual 12-channel array. The radar is
used with an mmWave ICBOOST board and a DCA1000EVM
board enabling to record raw data rather than just point clouds.
The radar is configured for outdoor People Counting scenar-
ios, with parameters listed in Table I. The maximum detection
range is about 20 m and a field of view (FoV) of 120◦ is
chosen for experiments as shown in Fig. 9. To the best of
our knowledge, this experimental region is wider than some
existing Radar-based People Counting studies [15], [18]. The
experiments were carried out in an outdoor open area of the
TU Delft campus.
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TABLE I
SETTINGS OF THE IWR6843ISK RADAR FOR THIS WORK

Fig. 9. Radar equipment and scene for the experimental setup to validate
the proposed grouped people counting pipeline.

Three different data sets are collected as listed in Table II,
with the aim of validating different blocks of the proposed
pipeline. Data set I is used to test the performance of
the feature-based counting block and for comparisons with
state-of-the-art methods. Data set II is used to evaluate the
capability of the tracking for counting block, hence it does
not need training data. Data set III is used to evaluate per-
formances when combining both feature-based counting and
tracking for counting blocks. As the focus of this study is the
initial validation of the proposed pipeline to count grouped
people, it is assumed that during the data collection the groups
will not be mixing, spawning, or be occluded. Mixing happens
when multiple target groups share the same tracks at a cer-
tain time [33]. Spawning (or splitting) occurs when a single
extended target group separates into two or more extended
targets [34]. Occlusion means that an existing target group is
obscured by a new target or obstacle, resulting in missed detec-
tions [35]; this occlusion can happen within the same group
or between different groups.

Two approaches are followed to increase the robustness of
the validation. First, diversity in the body characteristics of
the volunteers is ensured: similarly to the experimental design

TABLE II
COLLECTED DATA SETS (EACH GROUP HAS MAXIMUM FIVE PEOPLE)

TABLE III
PHYSICAL CHARACTERISTICS OF PARTICIPANTS IN THE DATA SETS (M

DENOTES MALE, AND F DENOTES FEMALE PARTICIPANTS)

of [15], 15 volunteers were invited to participate in the data
collection. As shown in Table III, their heights varied from
1.65 to 1.90 m, and weights from 45 to 85 kg. Second, it was
ensured that the volunteers involved in the acquisition of the
test set and the training set were not the same, while their
acquisitions were carried out at different times.

B. Performance Metrics

Performance metrics that can assess the behavior of both
the feature-based counting block and the tracking for count-
ing block of the proposed pipeline are selected. These are the
mean-square error (MSE), average probability of true posi-
tives (ATPs), and multiple groups tracking accuracy (MGTA).
Detailed explanations for these metrics are introduced as
follows.

Inspired by Choi et al. [18], MSE can characterize how
much a prediction differs from the true number of people in
the RoI, hence reflecting the accuracy and precision of the
classification process. MSE is defined as

LMSE =
∑

k
∑

i

(
N̂i

k − Ni
k

)2

∑
k imax

(3)
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where imax represents the maximum number of Groups in a
certain window. Ni

k represents the predicted number of peo-

ple in the ith Group at the kth window, and N̂i
k is the true

number of people, with N̂i
k ∈ N and Ni

k ∈ N (set of nonnegative
integers).

ATP is used to characterize how well the group classifier
in the proposed pipeline works for each trained class. It is
defined as

LATP =
∑

Cγ
TP

|Cγ | (4)

where |Cγ | represents the number of trained classes. In this
thesis, γ equals 6, and thus Cγ is ranged from 0 to 5 and
Cγ ∈ N. TP is the probability of true positives from the con-
fusion matrix. Since each class of the training set used in this
work is balanced, ATP is a suitable metric for classification
performances.

Finally, MGTA is proposed to study the performance of the
tracking for counting block. In the general case of multiple tar-
gets, multiple objects tracking accuracy (MOTA) [36] is used
to study missed/FDs and mismatches of tracking methods. In
this work, grouping is introduced, and a single identity (ID)
is used to represent a whole group instead of using different
identity switches (IDSs) to represent people in a group. It is
defined as

LMGTA =
∑

k(MD + FD + IDS)
∑

k Ntotal
t

(5)

where Ntotal
t is the total number of people in the RoI during

each window. MD ∈ N is the number of missed detections.
FD ∈ N is the number of FDs. IDS ∈ N is the number of iden-
tity switch events. The identity switch (or mismatch) relates
to the tracks’ IDs of each group, and it could affect accu-
racy when information from different groups is passed to the
Group classifier in the proposed pipeline. The ground truth
is obtained from a simultaneous camera recording during the
experiment. The values of FD and IDS are obtained by com-
paring the difference between the true location of people (i.e.,
the ground truth) and the estimated location of people at each
decision window.

C. Case 1: Grouped People Counting in a Single Group

For this case, only the feature-based counting block of the
proposed pipeline is used to estimate the total number of peo-
ple in the RoI based on the data of Data set I. This contains
approximately 6 min for each number of Grouped People for
training the classifier, and 1.5 min for testing. Two aspects
are explored: first the type of statistical classifier that provides
the best results, and second the selection of the most suitable
features to improve performances, out of those discussed in
the previous section.

Four common statistical classifiers are used and compared.
They are: 1) Naïve Bayes; 2) Random Forest; 3) support vector
machine (SVM); and 4) k-nearest Neighbors (KNNs) clas-
sifiers. The parameters of each classifier are determined by
a hyperparameter optimization [37]. The Naïve Bayes was
created with Gaussian Kernel, and the probabilistic model is

TABLE IV
RESULTS OF DATA SET I WHEN APPLYING THE FEATURE-BASED

COUNTING BLOCK WITH DIFFERENT CLASSIFIERS (RA DENOTES

FEATURES FROM THE RANGE–AZIMUTH DOMAIN, CVD THOSE FROM

THE CVD MAPS)

selected to fit the Gaussian distribution. The Random Forest
was created with maximum 496 splits and 30 learners. The
SVM classifier used a Gaussian kernel with scale equal to
0.75. The number of neighbors when applying KNN was set
to 10. Table IV provides the results when using the Data set I,
and the MSE and ATP metrics are used for performance com-
parison, as this case study does not include the tracking block,
hence no MGTA.

From the values of MSE and ATP, it is shown that SVM
provides both the smallest MSE and the largest ATP, hence it is
the best of the four tested classifiers. Random Forest and KNN
have similar performance, while the Naïve Bayes performs
the worst. This may be due to its assumption of conditional
independence of features [38], i.e., each feature is assumed to
affect independently the classification results whereas there is
still significant correlation between the features used here.

Furthermore, a study of the feature selection for the
proposed feature-based counting method is provided. This is
to characterize whether features from both the range–azimuth
domain and CVD map are valuable in solving the Grouped
People Counting problem. As summarized in Section II-B,
Grouped People are distinguishable in the range–azimuth
domain when they are located at range bins near the radar,
where different numbers of grouped people occupy distinct
azimuth bins. However, groups of people with similar number
(e.g., three or five people walking as a group) occupy a simi-
lar number of azimuth bins in the far range, here empirically
defined as approximately beyond 12 m, based on the model
of grouped people [21]. To overcome this, features based on
the CVD maps were introduced. Here, the classification is
performed using an SVM classifier, based on the results in
Table IV, for samples of Data set I where the groups of people
were moving in the far range (above 12 m).

From Table V, when the CVD and Range–Azimuth maps
are fused, MSE and ATP are improved and the fused results
are better than in the case where one type of features is used
in isolation. Moreover, the MSE is really large when only
CVD is used to classify samples collected at far range. This is
due to the fact that CVD maps (and spectrograms from which
they are derived) do not include any information related to the
distance and azimuth of the targets. This can generate confu-
sions between smaller groups of people moving near the radar
and larger groups moving in the comparatively far range. To
summarize, two general conclusions can be drawn. First, the
features extracted from the range–azimuth domain are promis-
ing to classify the number of Grouped People in the near range,
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TABLE V
FEATURE SELECTION STUDY FOR THE PROPOSED SVM CLASSIFIER. (RA

DENOTES FEATURES FROM THE RANGE–AZIMUTH DOMAIN AND CVD
FEATURES FROM THE CVD MAP; “FAR” DENOTES SAMPLES OF DATA

SET I CAPTURED IN THE FAR RANGE > 12 m)

Fig. 10. Results when applying the proposed tracking for counting block.
The dot in the track is the instant corresponding to the picture provided as
a ground truth (note that the orientation/geometry of picture and track plot
are rotated). (a) Tracks for two separate individuals in the RoI. (b) Tracks for
two individuals coming closer and one individual walking across in the RoI.
(c) Tracks for two individuals walking together as a group in the RoI.

while in the farther range those features can be complemented
by CVD based features. Second, the features from the CVD
map can improve the group counting accuracy in the farther
range, but only if they are combined with location information
(i.e., range and azimuth) and not on their own.

D. Case 2: Multiple Individuals Tracking

In this section, the performance of the tracking for counting
block within the proposed pipeline is tested. Data set II is
used where multiple individuals exist in the RoI, i.e., they are
not grouped together while walking (hence, the feature-based
counting block tested in Case 1 is not used here).

Fig. 10 demonstrates with an example the robustness of the
performances when applying the proposed tracking for count-
ing block. Fig. 10(a) is the moment when two individuals are
walking toward each other. From the estimated tracks, it can
be clearly seen that there are two tracks, and they have a trend
of moving toward each other. In Fig. 10(b), the two individ-
uals finally meet, and another individual crossed the scene in
front of them. Although partial occlusion happens for the tar-
gets denoted by ID 1 and ID 2, the tracking algorithm still
holds their tracks. At this moment, three tracks are clearly
shown in the Range–Azimuth map. In Fig. 10(c), ID 3 walked
out of the RoI, and ID 1 and ID 2 walk together. From the

TABLE VI
SUMMARY OF THE RESULTS OF THE PROPOSED TRACKING FOR

COUNTING BLOCK. MDTOTAL, FDTOTAL, AND IDSTOTAL REPRESENT THE

SUM OF THE MD, FD, AND IDS EVENTS ACROSS ALL DECISION

WINDOWS

Range–Azimuth map, there is only one target existing in the
RoI, and ID 1 is merged into ID 2 based on the fact that ID
1 and ID 2 are now walking as a group.

This example shows that the proposed tracking for counting
block performs well even in case of events such as partial
occlusion and merging of two individuals. Even if by using
suitable clustering and prior knowledge of the two separate
tracks the algorithm could distinguish target ID 1 and ID 2,
they are instead clustered together when they move as a single
group. This will ensure that this tracking block will pass the
correct information to the feature-based counting block in the
overall proposed pipeline in order to classify the number of
people in each group.

Table VI provides a summary of the results for the track-
ing block when processing Data set II. The total number of
the three possible errors and the MGTA metric are provided,
counted over 40 decision windows for each number of people
in the scene. The performance is good with overall MGTA less
than 5%. Two conclusions are drawn from the results. First, as
the number of people in the scene increases, the probability
of MD and FD errors increases, as expected. Second, there
are few IDS errors even with more people in the scene, which
means that the assignment algorithm within the tracking block
works well avoiding switching between groups.

E. Case 3: People Counting in Multiple Groups

After analyzing the results of the feature-based counting
block and tracking for counting block separately, the result
of the proposed pipeline combining them both is provided.
Data set III is used in this section for the testing stage, where
there are multiple groups of people in the RoI, whereas the
training data for the feature-based classifier block comes from
Data set I. An example of ground truth and results is shown
in Fig. 11. There are two groups walking in the RoI, and blue
and red lines represent the tracks of each group. As mentioned
in the description of the experimental setup, there is no further
grouping, mixing, or spawning events happening for a given
group. Hence, the estimated tracks in Fig. 11(b) do not cross
each other. Meanwhile, the predicted number of people in each
group is equal to the ground truth.

The overall MSE when applying the proposed method is
0.0013, and the ATP is 96.25%, which are even better values
than those obtained in Table IV for the simpler scenarios of
Data set I (0.0058 MSE and 94.32% ATP, respectively). This
good result is supported by the combined effect of the feature-
based counting block and the tracking for counting block, with
the additional effect of the median filter at the post-processing
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Fig. 11. Example of results for the proposed pipeline. (a) Ground truth where
two groups and six people in total are present in the RoI. (b) Estimated tracks
of two groups and predicted number of people in each group.

TABLE VII
SUMMARY OF THE RESULTS FOR THE TI 3-D PEOPLE COUNTING.

MDtotal , FDtotal , AND IDStotal REPRESENT THE SUM OF THE MD, FD, AND

IDS EVENTS ACROSS ALL DECISION WINDOWS

stage (described in Fig. 8). The MGTA metric is 1.67%, which
is an acceptable value. Among the three defined types of
errors, almost no IDSs occur. Equally, MDs did not occur
continuously on entire tracks. This means that the features
of Grouped People could be passed from the tracking block
to the Group classifier successfully. Moreover, although FD
events may occur, the proposed group classifier retains a high
accuracy in classifying zero targets in the group, i.e., rejecting
FDs that the tracking part may have picked up.

Additionally, it is worth highlighting that Data set III
includes cases where the total number of people in the RoI
is greater than the maximum number of expected people per
group, i.e., the number for which the feature-based count-
ing classifier has been trained for. In a general classification
problem, it is not possible for a classifier trained with con-
ventional supervised learning approaches to output classes
for which no training examples were provided. Specifically,
in Data set III, the training set for the classifier within the
proposed pipeline is Data set I, where only one group exists
in the RoI with a maximum number of people equal to five.
Thus, for the group classifier block, the expected outputs can
only range from 0 to 5. However, thanks to the combination
of the tracking block with this classifier bloc, it is possible to
deal with situations when the total number of people in the
RoI is more than five, i.e., higher than the number the pipeline
has been originally trained for. This capability of “classifica-
tion beyond training” is an advantage of the proposed pipeline
compared to simply using a classifier in isolation.

V. PERFORMANCE COMPARISON

A. Comparisons With Existing People Counting Product

In this section, an existing People Counting commercial
product is compared with our pipeline, namely, the 3-D
People Counting demonstration lab from the TI Industrial
Toolbox [39]. When their people counting method is applied,
moving targets are continuously tracked until they leave the

Fig. 12. Visual ground truth and TI 3-D people counting visualizer results
when (a) 1 person and (b) 2 people walking as a group are present.

scene. This toolbox applies a “group tracker” approach to track
individuals in the scene, essentially tracking a group of point
clouds rather than a group of people. After applying the Range
FFT, the minimum variance distortionless response (MVDR)
beamforming is applied to estimate the angle. Finally, the
detected points are determined by the Doppler FFT where the
maximum amplitude in the power spectrum is selected.

To establish a comparison, a repetition of the experiments
performed for the collection of Data set I and II was carried
out. It was not possible to use exactly the same data, as the
radar does not record raw data but only point clouds when this
3-D People Counting demo lab is activated. Fig. 12 shows an
example of the ground truth and visualizer output of the TI
counting demo lab for two scenarios. In Fig. 12(a), there is one
individual walking toward the radar. The visualizer showed
that the target was tracked, and the estimated target number
was 1, which is correct. However, when two people walked as
a group, a missed detection occurred whereby only one person
was detected in the cluster and the number of estimated people
in the RoI was incorrectly set at 1, as shown in Fig. 12(b).

The performance metrics for the TI 3-D People Counting
approach are reported in Table VII. Here, the expressions
“New Data set I and II” are used to indicate that the data
are similar to the Data set I and II described in Table II, but
not exactly the same. The New Data set I focuses on groups of
people and contains groups with numbers ranging from 1 to 3
participants; the New Data set II focuses on single individuals
to be tracked and contains up to 3 individuals walking in the
RoI. Both new data sets includes data for 40 decision windows
for each number of people in the scene. The overall MGTA
metric is higher than 40% for each data set, much worse than
the MGTA obtained by our proposed pipeline in the case stud-
ies analyzed in the previous section. Particularly significant is
the number of MD events for the New Data set I which is
focused on the grouping case. This happens since the TI tool-
box does not have in its localization and tracking algorithm a
block to deal with the grouped people phenomenon. Even if in
the TI 3-D People Counting implementation guide, a “Group
tracker” is mentioned, this refers to only tracking an extended

Authorized licensed use limited to: TU Delft Library. Downloaded on November 01,2023 at 12:31:57 UTC from IEEE Xplore.  Restrictions apply. 



REN et al.: GROUPED PEOPLE COUNTING USING mm-WAVE FMCW MIMO RADAR 20117

target, i.e., a group of detections, without attempting to esti-
mate how many distinct participants belong to each group.
Additionally, the TI toolbox under-performs when multiple
people enter the RoI at the same time, even without mixing
or grouping behavior. Managing this situation would require
the tracking algorithms to predict and update multiple targets’
birth at the same time; the difficulty in this case is reflected
by the high number of FD events in Table VII.

B. Comparisons With Alternative People Counting Methods

In this section, four radar-based people counting methods
from the literature are compared to our proposed pipeline,
namely, two methods based on a statistical classifier, and two
methods based on NNs. As these methods do not use tracking,
Data set I is used to compare their performances as its focus
is on distinguishing the number of people in the only group
present in the RoI. The results are reported in Table VIII.

The first alternative method [17] extracts features from the
range profile for clustering, and then with the help of a prob-
ability density function (PDF), the clustered major amplitudes
with their distance information are associated to the number
of people in the scene. As in Table VIII, the resulting ATP is
50.15%, meaning that there is a high probability of estimating
the wrong number of people in the RoI. This suggests that
the maximum amplitude extracted from the range profile is
not enough for reliable people counting. The MSE is 0.2281,
suggesting that the estimated values are scattered and not very
precise. This could be due to the fact that the PDFs for differ-
ent classes overlap a lot with each other, leading to a not so
robust classification performance in case of different people
in a single group.

The second alternative method was proposed in [15].
This method fused features of the range profile and fea-
tures of the Doppler domain to perform People Counting.
As in Table VIII, the ATP is 66.88%. Although the overall
performance is still not good for addressing Grouped People
Counting, it is better than the previous method that only
uses manually extracted features from the range profile. This
proves the importance of using multidimensional features for
the Grouped People Counting problem. The MSE is 0.0687,
which is much smaller than that of the previous method [17],
but still possible to improve. For example, it is hypothesized
that a limitation of this method [15] is the extraction of fea-
tures from separate range and Doppler domains, rather than
doing this jointly.

The first NN-based method for comparison is proposed
in [16]. It used the range–time matrix for classification with
the help of ResNet-14. As in Table VIII the ATP is 60.42%,
with a minimum probability of true positives equal to 40.2%.
This indicates that using only features from the range–time
domain is not enough to solve the People Counting problem.
The MSE is 0.0798, which means that the predicted result is
not precise enough. As an additional drawback, the proposed
network was rather deep, requiring a significant computational
training load to achieve the aforementioned results.

The second NN-based People Counting method that is reim-
plemented for performance comparison uses CNN and LSTM
networks [18]. As shown in Table VIII, even this method could

TABLE VIII
PERFORMANCE COMPARISON BETWEEN THE PROPOSED APPROACHES

(TOP 2 ROWS) AND IMPLEMENTATION OF ALTERNATIVE METHODS FROM

THE LITERATURE. (RA DENOTES FEATURES FROM THE RANGE–ANGLE

DOMAIN, CVD FEATURES FROM THE CVD MAP)

not address the Grouped People Counting problem, with the
reported ATP equal to 63.48% and the MSE to 0.1240. By
comparing the two NN-based methods, it is found that both
methods have comparable ATP performances using features
from the range profile or range time maps, but the second
method [18], which combined CNN and LSTM, performed
slightly better. This is attributed to the self-attention Bi-LSTM
network which is used in such method to focus and learn
frame-by-frame information, which is instead implicit if only
range–time maps are used as in [16].

It should be noted that the performance results reported in
the original papers for the alternative methods [15], [16], [17],
[18] were higher than those achieved here with their reimple-
mentation. This is caused by the fact that the methods were
tested with grouped people data, hence a more challenging
scenario that appears to be too complex for such methods, but
that can be addressed by our proposed pipeline.

Comparing the four methods with each other, it is interesting
to observe that the best results are achieved by the statisti-
cal classifier using combined range and Doppler features [15],
which appears to also outperform the NN-based methods. This
can be attributed to the usage of features from multiple, com-
bined radar domains (i.e., range and Doppler) rather than
features from a single domain, and reinforces the idea in our
proposed pipeline to combine features from range–angle plots
and CVD plots. Compared with the alternative methods reim-
plemented from the literature, our proposed pipeline achieves
much better results to address the grouped people counting
problem. The ATP using the proposed group classifier alone
is higher than 94%, and the MSE is two orders of magnitude
better than the alternative methods. Furthermore, the ATP of
the full proposed pipeline (group classifier & tracking block
combined) is even above 98%.

VI. CONCLUSION

This article proposes a radar-based people counting pipeline
that can deal with the complex situation of multiple indi-
viduals moving together as a single group. The proposed
pipeline is based on the complementary combination of a
tracking algorithm and a feature-based classifier that estimates
the number of people of each group tracked in the scene of
interest. It is shown that a combination of features extracted
from the range–azimuth domain and CVD maps of a 60 GHz
MIMO FMCW radar provides robust results. The proposed
pipeline has been experimentally validated with diverse data
sets collected in an outdoor environment at the TU Delft

Authorized licensed use limited to: TU Delft Library. Downloaded on November 01,2023 at 12:31:57 UTC from IEEE Xplore.  Restrictions apply. 



20118 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 22, 15 NOVEMBER 2023

campus, showing good results and outperforming alternative
methods from the literature as well as the 3-D People Counting
toolbox provided by Texas Instrument.
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