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in Chaotic Systems
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Abstract. Abrupt and rapid high-amplitude changes in a dynamical
system’s states known as extreme events appear in many processes
occurring in nature, such as drastic climate patterns, rogue waves, or
avalanches. These events often entail catastrophic effects, therefore their
description and prediction is of great importance. However, because of
their chaotic nature, their modelling represents a great challenge up to
this day. The applicability of a data-driven modularity-based clustering
technique to identify precursors of rare and extreme events in chaotic
systems is here explored. The proposed identification framework based
on clustering of system states, probability transition matrices and state
space tessellation was developed and tested on two different chaotic sys-
tems that exhibit extreme events: the Moehliss-Faisst-Eckhardt model
of self-sustained turbulence and the 2D Kolmogorov flow. Both exhibit
extreme events in the form of bursts in kinetic energy and dissipation.
It is shown that the proposed framework provides a way to identify
pathways towards extreme events and predict their occurrence from a
probabilistic standpoint. The clustering algorithm correctly identifies the
precursor states leading to extreme events and allows for a statistical
description of the system’s states and its precursors to extreme events.

Keywords: Machine Learning · Extreme events · Clustering · Chaotic
Systems · Precursors

1 Introduction

Extreme events, defined as sudden transient high amplitude change in the system
states, are present in many nonlinear dynamic processes that can be observed
in everyday life, ranging from rogue waves [3], through drastic climate patterns
[2,4], to avalanches and even stock market crashes. These kinds of instances
are omnipresent and often result in catastrophes with a huge humanitarian and
financial impact. As such, the prediction of these events can lead to a timely
response, and therefore the prevention of their disastrous consequences.

Unfortunately, many of these problems are so complex that the creation of a
descriptive mathematical model is nearly impossible. Over the years, three main
approaches have been developed in an attempt to tackle this problem. Statisti-
cal methods, such as Large Deviation Theory [16] or Extreme Value Theory [12]
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focus on trying to predict the associated heavy-tail distribution of the proba-
bility density function of the observable. Extreme events can be quantified with
this method, but are not predicted in a time-accurate manner. Time-accurate
forecasting, on the other hand, focuses on predicting the evolution of the sys-
tem state before, during, and after extreme events. These methods are often
based on Reduced Order Modeling and deep learning to try to accuractely
reproduce the dynamics of the systems, including extreme events [5,6,13,17].
Theses approaches generally consider the full system states or a partial physical
description which may not always be available. The last approach is precursor
identification, which aims at identifying an observable of the system which will
indicate the occurrence of extreme events within a specific time horizon. The
precursors are typically identified based on characteristics of the system closely
related to the quantity of interest which determines extreme incidents. Such
precursors have traditionally been identified from physical consideration [7,10]
which made them case-specific and non-generalizable. Recently, a clustering-
based method [14,15] was developed that aims to identify such precursor in a
purely data-driven manner by grouping the system’s states by their similarity
using a parameter called modularity and identifying the pathways to extreme
states. This approach showed some potential in providing a purely data-driven
approach to this problem of precursor identification which could be generalized
to other chaotic systems but was limited to a low-order system.

The purpose of this work is to re-explore this clustering-based approach,
apply it to high dimensional systems and assess its predictive capability (sta-
tistically and in terms of prediction horizon). The two systems explored here
are the Moehlis-Faisst-Eckhardt (MFE) model [9] of the self-sustaining process
in wall-bounded shear flows, also investigated in [14,15], and the Kolmogorov
flow, a two dimensional flow which exhibits intermittent bursts of energy and
dissipation. To the authors’ knowledge, it is the first time this latter system is
analysed using such clustering-based approach.

The structure of the paper is as follows. First, the methodology behind the
developed algorithm is presented, with the specific steps made to reduce the
problem at hand. The criteria for the extreme events and the construction of the
transition matrix are described. The concept of modularity is then presented,
together with the process of clustering the graph form of the data. Then, in
Sect. 3, the results for the two discussed systems are shown, followed by a statis-
tical description of the clusters found by the algorithm. The paper is concluded
with a summary of the main findings and directions for future work.

2 Methodology

2.1 Preparatory Steps

The initial step consists in generating a long time evolution of the considered
systems. These are obtained using ad-hoc numerical methods which will be dis-
cussed in Sect. 3 to create appropriate datasets on which to apply the proposed
precursor identification technique.
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The obtained dataset is then represented in a phase space which is chosen
such that the system’s dynamics is accurately represented, with the extreme
events clearly visible. A combination of the time-dependent states from the data
or a modification of them (from physical consideration) is chosen to span the
phase space, allowing for a clear representation of the system’s trajectory.

The phase space is then tessellated to reduce the system’s size as a given
system trajectory (in the phase space) only occupies a limited portion of the full
phase space. A singular (high-dimensional) volume resulting from the tessella-
tion of the phase space is referred to as a hypercube. This allows for a precise
discretization of the system’s trajectory, with no overlaps or gaps.

The time series defining the trajectory in phase space is then analyzed, trans-
lating the original data into indices of the respective hypercubes. The result is
a time series of the hypercube index in which the system lies at a given time.
At this point, the indices of the extreme events are also defined. For a certain
point to be considered extreme, all of its quantities of interest must surpass a
given specified threshold. These quantities of interest are some (or all) of the
parameters spanning the phase space, which are used for defining the extreme
events. The criteria for the extreme events are calculated based on user input
and are here defined as:

Nα⋂

α=1

|xα| ≥ μα + d · σα, (1)

where μα and σα are the mean and standard deviation of the considered state
parameter xα. The total number of variables used to define the extreme events is
Nα. Note that Nα could be smaller than the dimension of the phase space as one
could use only a subset of the variables of the system to define an extreme event.
The constant d is given by the user and is equal for all considered quantities of
interest. All the criteria are then calculated (according to Eq. 1) and applied.
A certain region in phase space, for which all of the quantities of interest fulfill
the extreme criteria, is labeled as extreme. The tessellated hypercubes which
fall into that region are also marked as extreme, which is later used for extreme
cluster identification.

2.2 Transition Probability Matrix and Graph Interpretation

The tessellated data is then translated into a transition probability matrix. The
algorithm calculates elements of the transition probability matrix P as:

Pij =
m(Bi ∩ F1(Bj))

m(Bi)
i, j = 1, ..., N, (2)

where Pij describes the probability of transitioning from hypercube Bi to hyper-
cube Bj , N is the total number of hypercubes on the system trajectory and F1

is the temporal forward operator. The notation m(Bi) represents the number of
instances (phase space points) laying in hypercube i.

The result of this process is a sparse transition probability matrix P of the
size Mn, where n is the number of dimensions of the phase space and M is
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the number of tessellation sections per dimension. The P matrix is generally
highly diagonal as for the majority of the time, the trajectory will stay within
a given hypercube for multiple consecutive time steps. The transitions to other
hypercubes are represented by non-zero off-diagonal elements and are therefore
much less frequent.

The transition probability matrix can then be interpreted as a weighted and
directed graph. The nodes of the graph are the hypercubes of the tessellated
trajectory and the graph edges represent the possible transition between hyper-
cubes. The edge weights are the values of the probabilities of transitioning from
one hypercube to another. This representation allows to interpret the system’s
trajectory as a network and further analyze it as one. This approach also pre-
serves the essential dynamics of the system.

2.3 Modularity-Based Clustering

The clustering method adopted for this project is based on modularity maximiza-
tion, as proposed in [11] and applied to identify clusters (also called communities)
in the weighted directed graph, represented by the transition probability matrix
P obtained in the previous subsection. The Python Modularity Maximization
library [1] was re-used here. It implements the methods described in [11] and [8].

The chosen algorithm is based on maximizing the parameter called modular-
ity which is a measure of the strength of the division of a network into communi-
ties. This parameter was created with the idea that a good division is defined by
fewer than expected edges between communities rather than simply fewer edges.
It is the deviation (from a random distribution) of the expected number of edges
between communities that makes a division interesting. The more statistically
surprising the configuration, the higher modularity it will result in [11].

The modularity value for a division of a directed graph into two communities
can be written as:

Q =
1
m

∑

ij

(
Aij − kin

i kout
j

m

)
δsi,sj

, (3)

where m is the total number of edges and Aij is an element of the adjacency
matrix and expresses the number of edges between two nodes. In this equation,
si determines the specific node affiliation, such that when using the Kronecker
delta symbol δsi,sj

only nodes belonging to the same community contribute to
the modularity. Notations kin

i and kout
j are the in- and out-degrees of the vertices

for an edge going from vertex j to vertex i with probability kin
i kout

j

m . A community
division that maximizes the modularity Q will be searched for.

The method proposed in [11] and used here solves this modularity maximiza-
tion problem by using an iterative process that continuously divides the network
into two communities at each iteration, using the division that increases the
modularity the most at that given iteration. The process is finished once no
further division increases the overall modularity of the network.
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Matrix Deflation. After the new communities are identified by the algorithm,
the transition probability matrix is deflated. A community affiliation matrix D is
created, which associates all the nodes of the original graph to a given community
(or cluster). The new transition probability matrix P(1), which described the
dynamics amongst the newly found communities, is then created by deflating
the original matrix P according to:

P(1) = DTPD. (4)

P(1) can then again be interpreted as a graph. The process of clustering, deflating
the transition probability matrix and interpreting it as a graph is repeated itera-
tively until one of the two criteria is reached - the maximum number of iterations
is exceeded or the number of communities falls below a specified value (making it
humanly tractable). After this step, the matrix will still remain strongly diagonal,
indicating that most of the transitions remain inside the clusters. Off-diagonal
elements will then indicate the transitions to other clusters.

2.4 Extreme and Precursor Clusters Identification

Once the clustering algorithm is done, the extreme clusters are identified. The
clusters containing nodes which were flagged as extreme are considered extreme.
This is a very general definition, since even clusters containing only one extreme
node will be marked as extreme. The deflated transition probability matrix is
then used to identify all the clusters which transition to the extreme clusters.
These are considered precursor clusters, since they are direct predecessors of the
extreme clusters. All the other clusters are considered as normal clusters which
correspond to a normal state of the system, i.e. far away from the extreme states.
Compared to earlier work that also used a similar clustering-based approach [15],
we identify the extreme and precursor clusters and perform a further statistical
analysis of them, in terms of time spent in each cluster, its probability of tran-
sitioning from a precursor cluster to an extreme one and over which time such
a transition will take place. Details on this additional analysis will be provided
in Sect. 3.

3 Results

The results of applying the proposed clustering method applied to two chaotic
systems exhibiting extreme events, the MFE system, also investigated in [15],
and the Kolmogorov flow are now discussed.

3.1 MFE System

The MFE system is a model of the self-sustaining process in wall-bounded shear
flows. It is governed by the evolution of nine modal coefficients, ai, whose govern-
ing equations can be found in [9]. From those nine modal coefficients, the velocity
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field in the flow can be reconstructed as u(x, t) =
∑9

i=1 ai(t)φi(x) where φi are
spatial modes whose definitions are provided in [9]. The governing equations of
the MFE system are solved using a Runge-Kutta 4 scheme and are simulated
for a total duration of 100,000 time units (400,000 time steps).

The turbulent kinetic energy k = 0.5
∑9

i=1 a2
i and energy dissipation D =

tr
(∇u(∇u + ∇uT )

)
were calculated and used as observables. This allowed for a

reduction of the size of the system to consider from 9 to 2 dimensions. While such
a dimension reduction of the system may seem like a simplification of the prob-
lem, it is actually a practical challenge for the precursor identification method
as trajectories which were distinct in the full space may now be projected onto
a similar reduced space making it harder to appropriately identify a precursor
region. The evolution of the system is displayed in the k-D phase space in Fig. 1
(left). The phase space was then tessellated into 20 sections per dimension, which
is also seen in Fig. 1 (right), where k and D are normalized using their respective
minimum and maximum and divided into 20 sections. Both k and D are used for
clustering as well as the determination of the extreme events. From the evolution
shown in Fig. 1, the probability transition matrix, P, is constructed as described
in Sect. 2 and interpreted as a directed and weighted graph.

Fig. 1. The trajectory of the Moehlis-Faisst-Eckhart model represented in the phase
space (left) and in a 20× 20 tessellated phase space (right)

The resulting graph consisted of 165 nodes and 585 edges. This was reduced
to 27 nodes and 121 edges after the deflation step, which resulted in a deflation of
the transition probability matrix from 400 × 400 to 27 × 27, a decrease by a factor
of over 200. The clustering algorithm identified 27 clusters, out of which 14 were
extreme, 6 were precursor clusters and 7 were considered normal state clusters.
The clustered trajectory of the MFE system, in tessellated and non-tessellated
phase space, is displayed in Fig. 2, where each cluster is represented by a different
color, and the cluster numbers are displayed in their centers. In the tessellated
phase space (Fig. 2 (right)), the criteria of the extreme event classification are
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Fig. 2. (left) Trajectory of the MFE system in phase space and (right) in a 20× 20
tessellated phase space. Red dashed lines represent the region considered as extreme.
The cluster numbers used for their identification are shown in the cluster centers; the
extreme cluster numbers are marked in red. (Color figure online)

also shown as red dashed lines. These criteria had to be confirmed visually,
ensuring that an adequate part of the trajectory lies within them. The majority
of the trajectory is located in the bottom left corner, in clusters 20, 25 and 26,
which represent the normal state experiencing low k and D. The closer to the
top right extreme section, the less frequent but more severe the events get.

In Fig. 3, the statistics of the most important clusters are provided. Namely,
we compute: (i) the average time spent in each cluster; (ii) the percentage of time
spent in each cluster (in proportion to the entire duration of the dataset); (iii)
the probability of transition from the given cluster to an extreme one; and (iv)
the average time for such a transition to occur from the given cluster. In Fig. 3
(left) where the first two quantities are plotted, we can observe that there are a
few normal clusters (clusters 20, 21, 25 and 26 in blue) where the system spends
the largest portion of the time (in average or as a proportion of the total time
series duration) while for the precursor (orange) and extreme (red) clusters the
proportion is much smaller. This confirms that the proposed approach is efficient
in determining clusters which contain the essential dynamics of the system and
furthermore, the obtained division helps to contain most of the normal states in
one (or few) cluster(s) and isolate the extreme and precursor states.

In Fig. 3 (right), among the precursor clusters (in orange), cluster 23 stands
out as having a very large probability of transitioning towards an extreme cluster
indicating that this is a very critical cluster as, if the system enters it, it will
nearly certainly results in an extreme event. For the other precursor clusters,
the probability is not as high indicating that, while they are precursor clusters,
entering in those does not necessarily results in the occurrence of an extreme
event as it is possible that the system will transition again towards a normal
cluster. An additional metric shown in Fig. 3 (right) is the average time before
the transition to an extreme event which is a proxy for the time horizon which
would be available to prevent the occurrence of the extreme events. As could
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be expected, this time horizon is low for precursor clusters (2–3 time units)
while it is much larger for the normal cluster (up to 142 time units for cluster
19). The results discussed here highlight how the proposed algorithm provides
clusters of system states which can be further classified using a combination of
the probability of transitioning towards an extreme cluster and the time horizon
over which it can happen. This latter would enable an assessment of the criticality
of the system state and cluster.

Fig. 3. Statistics of the MFE clusters showing (left) the percentage of the time series
and average time spent in cluster and (right) the maximum probability of transitioning
to an extreme event and the minimum average time to an extreme event. The extreme
clusters are colored red and their direct precursors orange. (Color figure online)

To help illustrate the observation made above, the time series of the kinetic
energy and dissipation of the MFE system for two extreme events is plotted in
Fig. 4 where the plots are colored by the types of cluster the system is in at a
given time (normal, precursor or extreme). One can observe that, according to
the precursor cluster definition, each extreme cluster is preceded by a precursor
cluster. This time during which the system lies in a precursor state varies in
the two cases but illustrates the horizon over which actions could be taken to
prevent the occurrence of the extreme event.

The false positive rate was also calculated as the ratio of the identified pre-
cursors without a following extreme cluster transition to all identified precursor
clusters. It showed to be very high, at over 75%. It was noticed that often not
only is there a precursor state preceding, but also following the extreme events,
when the trajectory is getting back to the normal states, as can be seen in Fig. 4
(left) around t = 40. These transitions were accounted for and the corrected
rate of false positives was calculated and reduced down to 50%. Other observa-
tions included the fact that extreme events come in batches, often with a false
positive slightly preceding it (see Fig. 4 for example where in both cases shown,
there is an identified precursor state approximately 10 to 20 time units before
the occurrence of the extreme event). This might be leveraged as an additional
indication of the upcoming extreme events.
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Fig. 4. Time series sections of the kinetic energy (dotted black line, right axis) and
energy dissipation (red line, left axis) for the MFE system. Background color indicates
the type of clusters the system is in (blue: normal; orange: precursor; red: extreme).
(Color figure online)

3.2 Kolmogorov Flow

The Kolmogorov flow is a two-dimensional flow governed by the incompressible
Navier-Stokes equations with the addition of a harmonic volume force in the
momentum equation [5]. These are here solved on a domain Ω ≡ [0, 2π]× [0, 2π],
(using a grid of 24 × 24 with periodic boundary conditions (same conditions
as in [5]), with a forcing term of the shape f = (sin(kfy), 0), with kf = 4 and
Re = 40. The dataset of the Kolmogorov flow is obtained using a pseudo-spectral
code and it is generated for a duration of 5,000 time units (500,000 time steps).

The intermittent bursts of energy dissipation, D, are of interest for the Kol-
mogorov flow, with the kinetic energy, k, as an observable. In [5], additional
observables related to the extreme events were identified to be the modulus of
the three Fourier modes of the velocity field: a(1, 0), a(0, 4) and a(1, 4), which
form a triad (where kf = 4 is the forcing wavenumber and where a(i, j) indicates
the i-th,j-th coefficient of the 2D Fourier mode). This approach was applied in
the current work, and the algorithm was tested by including one of these three
Fourier modes, together with k and D, for the clustering analysis, reducing the
system dimensionality to 3. This resulted in five different cases, depending on
which/how the Fourier mode is considered, which are detailed below:

– Case 1 - k, D, and modulus of Fourier mode |a(1, 0)|
– Case 2 - k, D, and absolute value of the real part of Fourier mode |Re(a(1, 0))|
– Case 3 - k, D, and absolute value of the imaginary part of Fourier mode

|Im(a(1, 0))|
– Case 4 - k, D, and modulus of Fourier mode |a(0, 4)|
– Case 5 - k, D, and modulus of Fourier mode |a(1, 4)|
A comparative analysis between the different cases was also performed which
showed which Fourier mode is the most effective in helping identify precursors
of extreme events. Cases 2 and 3, which include the real and imaginary part
of the Fourier mode rather than its modulus, were chosen because of an error
encountered for case 1 in the clustering process, which will be detailed hereunder.
In all cases, the extreme events were defined using only the values of k and D.

It should be noted that it would be possible to consider all Fourier modes
simultaneously, in addition to k and D which was attempted. However, this
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resulted in a non-convergence of the modularity maximisation algorithm as it
became impossible to solve the underlying eigenvalue problem. It is inferred that
this was due to an excessive similarity of the parameters (the various Fourier
modes) leading to the underlying eigenvalue problem being too stiff to solve.

The time series of the different parameters taken into account are shown in
Fig. 5. At first glance, all Fourier modes seem aligned, experiencing peak values
correlated with the peaks in k and D. This could lead to the conclusion that
all the cases considered above would lead to similar performance in precursor
identification. This was not the case, as will be discussed in more detail below.

Fig. 5. Time series of the energy, energy dissipation and different Fourier modes taken
into account for the analysis of the Kolmogorov flow.

The trajectory of the Kolmogorov flow is shown in a phase space spanned
by k and D, which makes for an easier comparison of the results obtained from
different cases, since it is common for all of them. Once again, the tessellation was
performed using 20 sections per dimension. The phase space, together with its
tessellated form (where k and D are normalized using their respective minimum
and maximum and divided into 20 sections), is presented in Fig. 6.

The case including the modulus of |a(1, 0)| was tested first (case 1), as this is
the one used in [5]. The clustering converged successfully, but resulted in abnor-
mally large values of time spent in both the extreme and precursor clusters. Over
a quarter of the total time is spent in precursor clusters. This makes the cluster-
ing unusable, since little information can be gained about the probability and
time of transitioning to an extreme event. This abnormal result was attributed
to a cluster located in the middle of the trajectory, which includes a single node
positioned in the extreme section of the phase space (see Fig. 7).

The other cases yielded much better results, as will be discussed next,
although slightly different from each other, varying in the number of clusters
and percentage of time spent in extreme and precursor clusters. This highlights
the necessity of appropriately choosing the variables used to define the phase
space trajectory of the system.
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Fig. 6. The trajectory of the Kolmogorov flow represented in the phase space (left)
and in a 20× 20 tessellated phase space (right).

Fig. 7. The clustered phase space of the Kolmogorov flow for case 1, with the faulty
extreme cluster colored in red. (Color figure online)

Comparison Between All Cases: To understand the differences in the results
for the discussed cases of the Kolmogorov flow, segments of the time series of the
energy dissipation are plotted with the transitions to different types of clusters
marked (Fig. 8). This plot shows a significant difference between the first and
other considered cases. At a macroscopic level, cases 2 to 5 seem to identify the
peaks of D at the same instances, while for case 1 the transitions are occurring
constantly throughout the considered time. This shows the results of incorrectly
clustering the system’s trajectory making it impossible to deduct any reasonable
conclusions and recommendations.

Case 1 shows a very chaotic behavior identifying extreme events where no
peaks of D are present. The other cases identify the extreme clusters in a nar-
rower scope, with the smoothest transitions appearing in case 4. For the analysis
of the extreme events and their precursors, the percentage of time spent in the
precursor and extreme clusters, as well as the false positive and false negative
rates for all of the discussed cases are presented in Table 1.
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Fig. 8. Time series sections for all cases of the energy dissipation, D, for the Kol-
mogorov flow for 2 different extreme events (left and right). Background color indicates
the type of clusters the system is in (blue: normal; orange: precursor; red: extreme).
(Color figure online)

Table 1. Extreme event statistics of the Kolmogorov flow for different cases.

Case % time in
extreme

% time in
precursors

% false
positives

% false
positives
(corrected)

% false
negatives

1 2.78 27.85 77.15 55.11 0.0

2 0.71 0.87 66.67 35.71 0.0

3 0.76 1 69.44 37.96 0.0

4 0.85 0.79 57.30 15.73 0.0

5 0.81 1 59.70 22.39 0.0

As mentioned already, case 1 was disregarded, due to faulty clustering result-
ing in a high percentage of time spent in the precursor clusters. Table 1 also shows
that the rate of false positives is the highest for this case, which is explained by
the positioning of the faulty extreme cluster (located in the center of the phase
space trajectory). All of the discussed cases have a false negative rate of 0 %
which is due to the used definition of precursor cluster as being always followed
by an extreme cluster. Case number 4, which shows the lowest false positive rates
both before and after applying the correction (57.3 % and 15.73 % respectively)
was chosen for further analysis hereunder.

It should be noted that compared to earlier work [5], we observe here that
using |a(1, 0)| did not enable the identification of a precursor of extreme events,
while using |a(0, 4)| did. This contrasting view may be related to the fact that
we use directly the magnitude of the Fourier mode compared to the energy flux
between modes used in [5]. Our analysis suggests that when considering the
magnitude directly, |a(0, 4)| becomes more adapted as is detailed next.
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Case 4: The original trajectory of the flow expressed in graph form contained
1,799 nodes and 6,284 edges. After deflation, this decreased to 105 nodes and
719 edges. The transition probability matrix was reduced from 8,000× 8,000
to 105× 105. The clustering algorithm identified 105 clusters, out of which 11
were extreme and 8 were precursor clusters. The clustered trajectory of the
Kolmogorov flow is shown in Fig. 9, with each cluster represented by a different
color and the cluster numbers displayed in their centers. As for the MFE system,
the statistics of the main clusters are shown in Fig. 10.

Fig. 9. (left) Trajectory of the Kolmogorov flow (case 4) system in phase space and
(right) in a 20× 20 tessellated phase space. Red dashed lines represent the region
considered as extreme. The cluster numbers used for their identification are shown
in the cluster centers; the extreme cluster numbers are marked in red. (Color figure
online)

Fig. 10. Statistics of the Kolmogorov flow clusters (case 4) showing (left) the per-
centage of the time series and average time spent in cluster and (right) the maximum
probability of transitioning to an extreme event and the minimum average time to an
extreme event. Red: extreme clusters; orange: precursors cluster. (Color figure online)

The resulting statistics showed that most of the time the trajectory is within
the normal states, with a few dominating clusters (Fig. 10 (left)). There is one



326 U. Golyska and N. A. K. Doan

extreme cluster (cluster 32) where the system spends on average a large time
which is related to a very critical extreme event where the flow exhibit a long
dissipation rate (related to a long quasi-laminar state of the Kolmogorov flow).
Compared to the MFE system, there is no single (or few) clusters in which the
Kolmogorov flow spends the majority of the time which is related to the higher
complexity of its dynamics. Regarding the precursor, their combined contribu-
tion is shown and, on average, the system spends less than 1 time unit within
these precursors states indicating a low predictability horizon. A finer analysis is
provided in Fig. 10 (right) which shows the presence of three precursor clusters
with a very high probability of transitioning to an extreme event. Surprisingly, a
normal state cluster (cluster 10) also exhibits a high value of probability of tran-
sitioning to an extreme event. Because of this, the cluster could also be regarded
as another precursor cluster. The average times to extreme event show a large
range of values, with low values (below 1 time unit) for the precursor clusters,
but reaching up to 64 time units for the clusters considered the safest.

While the cluster identified here may not provide as much prediction time as
for the MFE system, the proposed analysis still provided some useful information
regarding the system dynamics identifying pathways for extreme events to occur
and providing indications of the most critical states that will lead to an extreme
events. The statistical analysis that can be carried out thanks to the output of
the algorithm reveals the severity of each cluster, which can then be quantified
and used for further, more insightful predictions. The clusters can therefore
be classified based on any of the calculated parameters to track the real-time
progression of the system.

4 Conclusions

In this work, we proposed a clustering-based approach to the identification of
precursors of extreme events. This was applied to two chaotic systems, the MFE
system and, for the first time, the Kolmogorov flow. The results showed that
the proposed algorithm gives satisfactory results in terms of enabling the iden-
tification of such precursors, but has some limitations. The clustering part was
successful for most cases, with the essential dynamics of the systems preserved.
The results showed that the clusters were found based on the system’s trajec-
tory. For the extreme cluster identification, the algorithm managed to correctly
identify them, with the exception of one of the cases of the Kolmogorov flow.
The clustering-based approach also suggested that a different Fourier mode may
be more adapted as a precursor of extreme events compared to the one obtained
from a variational-based approach in [5]. The clustering-based precursors were
identified correctly and, due to their adopted definition, the false negative rate
was equal to zero for all cases. Compared to earlier work [15], a further statistical
analysis of the identified precursor cluster allowed to obtain an understanding
of their critical nature, depending on their actual probability of transition to an
extreme state and the time horizon over which such transition could occur.

Further work will be dedicated to investigating how to improve the identifi-
cation and assessment of precursor clusters and applying the proposed method
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to experimental measurements obtained from systems exhibiting extreme events.
Application to real-time data should also be explored, to verify current cluster
identification and prediction of its upcoming transitions in such a setting.
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