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most challenging engineering issues in many scientific publications [23] Heterogeneity 
and complexity issues are especially critical in the pre-embodiment design phase, where 
system designers have to deal with both system compositionality and component com-
posability questions. Usually the composability issues are explicitly addressed in concep-
tualization and architecting of CPSs, and subsequently, homogenous constituent design 
and development are delegated to the experts of the related fields. For example, devel-
opment of the software constituents is delegated to software engineers, control engineers 
deal with control issues, mechanical engineers solve the hardware problems, and electron-
ic experts design and develop circuits. Since they are working on a manageable and 
homogeneous part of CPS, they can tackle the design challenges by using their expertise. 
However, the compositionality issues of CPSs remain unsolved and challenging for system 
designers. 

A large number of efforts have been made in research and system development to provide 
methods and techniques for addressing the concrete technical challenges. For instance, 
Rajhans, A. et alias suggested using parameters in architectural views to support hetero-
geneous design and verification [24]. Fallah, Y.P., and Sengupta, R. proposed to design 
systems in a top-down manner, by identifying system metrics such as approximate 
measures of awareness, and then characterizing component models and their interactions 
in the process of designing vehicle safety networks [25]. Zhang, J. et alias discussed the 
importance and application of modular verification of dynamically adaptive systems [26] 
Pinto, A., and Krishnamurthy, S. considered uncertainty as key characteristic of cyber-
physical system and proposed analysis and design tools for specification and detailing 
these type of systems in an industrial setting [27] Zilic, Z., and Karajica, B. discussed various 
high-level design and synthesis challenges and proposed an approach with the emphasis 
on the numerical values passed between sensors and the rest of the system [28].  

It must be noted that the above cited works are just examples of the wide ranging efforts, 
which have been made to address the numerous technical challenges of cross-boundary 
architecting and operational design of CPSs. The problem becomes more complicated 
when consideration of some kind of design intentions and/or optimization for multiple 
concerns are added to the problem. Design for X (e.g. customizability, maintainability, 
sustainability, interaction) traditionally has some sort of design principles and/or guide-
lines which are not performing well for CPSs due to the unique characteristics of CPSs. 
Therefore, designing CPSs in the pre-embodiment phase needs new principles, tools, 
techniques, or a kind of design supporting tool. The traditional ‘reductionist’ handling of 
the design and implementation concerns is not advantageous from multi-aspect optimiza-
tion of complicated and complex systems. 

A traditional way of addressing the problem of handling complexity and heterogeneity in 
pre-embodiment design phase is to apply abstraction and to simplify model of the system 
in a level which could be handled logically. Due to the abstraction, the complexity of the 
CPSs is reduced, and heterogeneous components can be represented as simple elements. 
In fact, the system designers are being pushed to formulate the abstract relationship 
among components. We refer to this formulation as logic-based modeling. The logic of the 
systems’ functions could be modelled and simulated through the defined methods of 
operation (usually as mathematic equations) with available modeling and simulation tools 
(e.g. SysML, Simulink, Mathematica, LabVIEW). Many software tools and modeling lan-
guages have been developed recently for these purposes. These tools and languages are 
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RQ12. What are the advantages and disadvantages of the introduced modeling frame-
work in pre-embodiment design of CPSs, in comparison with the current modeling 
frameworks? 

Our research plan was designed to answer the mentioned key questions in five research 
cycles (RCs). For this reason, the key questions are grouped and assigned to research 
cycles. The first research cycle aimed to answer first two questions. The questions three 
and four are assigned to the second research cycle. Focus of the research cycle three was 
on the questions five to seven. The aim of research cycle four was to answer questions 
eight to ten. And finally, the questions eleven and twelve are answered in the fifth research 
cycle. Table  1-1 summarizes the relations of research questions to the chapters. 

The objective of the first research cycle was to explore the state of the art about designing 
CPSs in the pre-embodiment design phase. The concerned studies were done in the 
following contexts: (i) overall characteristics of CPSs, (ii) relevant design approaches, (iii) 
deriving the required design principles, (iv) relevant design-assistive tools, and (v) ad-
vantages of feature technology. 

The objective of the second research cycle was to develop a theoretical framework for 
interdisciplinary and multicultural system-level modeling of CPSs in the pre-embodiment 
design phase. This theoretical framework should support uniform modeling of heteroge-
neous CPSs through specifying the kinds of information which should be captured. The 
theoretical work was supported by empirical studies. 

The objective of the third research cycle was to provide computation methodological 
fundamentals and information constructs to underpin modeling of CPSs. This also investi-
gated the concept and implemented system-level manifestation features. The information 
structures, which specify the required pieces of information for computational modeling of 
CPSs, as well as the relations among the pieces of information, were the main contexts of 
the studies performed in this research cycle. 

In the fourth research cycle, the objective was twofold: (i) testing computational feasibility 
of the results of the theoretical works, and (ii) moving towards implementation of the 
introduced modeling entities and procedures through designing information schema 
constructs and computational processes for the proposed modeling tool. Computationally 

Table  1-1 Mapping of the research key questions to the research cycles 

  Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 

RQ1 
Research cycle 1 

    
RQ2     
RQ3  

Research cycle 2 
   

RQ4     
RQ5   

Research cycle 3 
  

RQ6     
RQ7     
RQ8    

Research cycle 4 
 

RQ9     
RQ10     
RQ11     

Research cycle 5 RQ12     
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2 OVERVIEW OF THE STATE OF THE ART 

 

2.1 INTRODUCTION 

Aim of the first research cycle was to (i) define the concerned knowledge domains of 
interest, and specifically to (ii) specify the addressed research phenomenon, (iii) describe 
the observed scientific/engineering knowledge gap related to it, and (iv) landmark the 
preferred direction of the promotion research. Initially, this research cycle started with the 
study of the wide topic of designing of cyber-physical systems, but it has gradually been 
narrowed down to the investigation of system-level feature-based modeling of cyber-
physical systems as a result of the refinement applied by means of the insights obtained in 
the first research cycle. This was an implication of studying a very large number of recent 
academic research documents and industrial developments in the domains related to our 
research topic. The main guiding research question has been stated as:  

What conceptual frameworks, computational approaches, and implementation methodol-
ogies are needed for the theoretical and practical realization of system-level feature-based 
modeling of cyber-physical systems? 

Designing cyber-physical systems as a technological, epistemological and methodological 
concept has multi-faceted aspects. These aspects could be explored from multiple per-
spectives such as design methods, principles and tools, as well as CPS characteristics and 
other issues associated with design and modeling of CPSs. The studied phenomenon has 
been formulated as advanced computer support for designing of cyber-physical systems in 
the pre-embodiment phase of development. The characteristics of CPSs have a strong 
effect on all domains of knowledge and on the aspects of investigation concerning this 
phenomenon. It was a challenge to find the proper focus, arguable scope, and approach of 
the research. After getting more information about the unknown, the conduct of the 
research has been reinterpreted, narrowed down and streamlined multiple times. This 
thesis however includes only the part of the work that are in the mainstream of our inquiry 
and conceptualization, and those results which are seen as valuable outcome of this work. 

Since the investigated phenomenon is multi-disciplinary (i.e. requires the knowledge and 
methods of multiple disciplines) it was unavoidable to find an exact focal point, which 
enabled us to make decision on the relevant research aspects, and to clarify the domains of 
interest for knowledge aggregations. The backbone of the knowledge aggregation was a 
structured literature survey for exploring the state of the art in the regarding domains. The 
knowledge domains considered for the study are explained by the reasoning model 
presented in sub-chapter 2.1.2. In a nutshell, the studied domains were (i) cyber-physical 
systems, (ii) system design approaches, (iii) design principles, (iv) design supporting tools, 
and (v) feature-based design. The survey of these domains resulted in a rather comprehen-
sive overview of the state of the art, to define a specific knowledge gap that has been 
addressed in our research. The findings of the survey also helped us to define the specific 
objectives for the research with the intent of creating scientific and engineering novelties. 
In simple words, the knowledge gap has been formulated as lack of knowledge (genuine 
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concepts) and proper supporting tools for CPS designers in the phase of pre-embodiment. 
The knowledge gap was addressed from the abovementioned five perspectives. 

2.1.1 Objectives of the first research cycle 

The first research cycle aimed at constructing and formulating a descriptive theory that 
identifies the boundaries of the knowledge gap, determines what part of it can be ad-
dressed in this research, and fills in the identified part of it with new knowledge. The 
orientation studies have made it obvious that there is a relatively large knowledge gap 
related to advanced computer support for designing of cyber-physical systems in the pre-
embodiment phase of development. Consequently, objective of the first research cycle 
was to study (i) the five identified knowledge domains, and synthesize a body of 
knowledge that describes what the current situation is, and (ii) the break out points re-
garding the development of novel tools. There were many useful source materials found in 
academic publications, but also in professional repositories on the web. However, in some 
fields the research was found to be still in an immature state. This especially true for the 
second generation (smart) CPSs. The design principles and supporting tools were more 
exposed and advanced in the case of the first generation of CPSs, which have their roots in, 
e.g. embedded systems, smart robotics, digital networking, systems control, and so forth. 

In addition to the term cyber-physical systems, many similar phrases or nominations have 
been used in the literature to describe systems with similar or resembling paradigmatic 
characteristics: ‘advanced embedded systems’, ‘smart robotics’, ‘intelligent sensor net-
works’, ‘complex adaptive systems’, ‘industrial Internet of things’, and ‘smart connected 
everything’. This resulted in an unclearness, which could not be resolved by the different 
definitions mushrooming in the last years. As a result, many seemingly relevant publica-
tion, claiming focus on and contribution to CPSs, were ignored. On the other hand, it made 
necessary for us to specify own definitions that correctly and exactly conveying the inter-
pretations used in this thesis. Interestingly, the overwhelming majority of publications 
presented mono-disciplinary approaches, although the domain of CPSs is claimed to be 
multi-disciplinary in nature. It is fair to mention that the term cyber-physical system was 
used in many publications just because of its novelty and the imperative trends.  

2.1.2 Reasoning model 

Based on the identification of the pertinent knowledge domains, a simple reasoning model 
was formed. This is shown graphically in Figure  2-1. This model indicates a kind of flow of 
knowledge through the interrelated domains. This flow conveys and blends the 
knowledge associated with ‘cyber-physical system’ and ‘system design approaches’ with 
that of ‘design principles’. This linking allows us to explore and understand causalities with 
regards to the aforementioned knowledge gap. The new two knowledge domains, namely 
‘design supporting tools’ and ‘system-level features’ domains have been included in the 
study because of our intention to provide a theoretical framework and technical solution 
for supporting pre-embodiment design of cyber-physical systems. 

The nature of cyber-physical systems was included in the study with the intent of collect-
ing information about the characteristics of CPSs, which differentiate them from other 
technical systems and traditional products. The conducted study has explored what these 
characteristics are, and why and how these affect the conceptualization, embodiment and 
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feature-based design of CPSs, we also aggregated the requirements that should be con-
sidered at a computational implementation of the technology. Towards this ends, the 
findings of the various domains and sub-domains were critically analyzed and synthesized 
for a physically-based modeling of CPSs. 

2.2 NATURE OF CPSs AND CYBER-PHYSICAL CONSUMER DURABLES 

2.2.1 A brief historical overview 

Cyber-physical systems emerged less than a decade ago as the result of the converging of 
the physical technologies and the cyber technologies, or more specifically, due to the 
growing functional interaction between mechatronic systems and information technologi-
cal (IT) systems [1]. At the beginning, they have been developed based on concepts and 
paradigms such as embedded systems [2] [3], distributed collaborative agent systems, 
smart ubiquitous computing [4] [5], and the internet of things [6]. In 2009, the National 
Science Foundation (NSF) of the USA defined cyber-physical systems as “the tight conjoin-
ing of and coordination between computational and physical resources” [7]. Two years 
later, a more elaborated definition has been proposed, namely CPSs are “engineered 
systems that are built from and depend upon the synergy of computational and physical 
components that are coordinated, distributed, connected, robust and responsive” [8]. 
There have been multiple definitions proposed for CPSs by referring to keywords such as 
engineered systems [9], network-connected [10], tight integration of computing and 
physical constituents in a unified concept [11] [12], incorporation of computing and 
communication with monitoring and control of entities in the physical world [13], envi-
ronment-coupled and diverse in capabilities [14], having feedback loops [15], monitored, 
coordinated, controlled and integrated operations by a computing and communication 
core [16], and working dependably, securely, efficiently in real-time [13]. 

There are different opinions about the origin of CPS due to its multi-disciplinary nature. If 
we want to consider the deepest roots, then we have to go back to the time of the first 
industrial revolution, when the early uses of mechanical feed-back in steam engines was 
seen as a starting point of control systems [17]. This progression was followed by the 
innovation of automatic aircraft guns during World War II [18], and by turning of the 
principles of control systems from analogue to digital by inventing and exploiting digital 
control in 1954 [19]. In the context of digital computing, the roots of CPS go back to the 
advent of the first multi-purpose computer (ENIAC) in 1946, that was used for providing 
close control loops around physical systems [17]. The next steps towards CPSs were facili-
tated by the development of a network implementation called ARPANET in 1969, which 
made it possible to connect large number of computers without any concern about their 
geographical locations [20], and the introduction of wireless communication technology 
as a combination of the concept of worldwide network with already developed wireless 
radio electromagnetic signal transmission technology [21].  

In the last two decades, different kinds of wireless networks and protocols, microelectron-
ics and processor technology, and advanced mechatronics became accessible in a cost 
effective manner. In addition, burgeoning of information technology as a field of both 
theoretical and practical science also facilitated the realization of concepts such as high 
level decision-making, artificial intelligence, big data processing, semantic technologies, 



20 |  

intelligen
together,
the prog
the evolu
ing (as a c
innovatio
domain o

The para
character
relations 
integratio
(SW), and
Hardware
functiona
with cyb
functiona
absent in
just recen
the deve
nisms for
ontologie
constitue

2.2.2 M

The best 
guishing 
character
tions”, “fe
the found
than with
instance, 
ity’, ‘secu
of abstrac
nature’ [1
‘closed lo
system m
demarcat
publicatio
systems a
systems a
ded syste
systems c
mentatio
the physi
typically 

nt robotics, 
, we can ar
ress in mec

ution and c
cyber-enab

ons in the d
of security [

adigm of C
ristics. Figu
among th

ons of ana
d knowled
e and sof
ally active 
berware co
ally active 
n Figure  2-2
ntly, it has
lopment of

r CPSs and t
es to mak
ent of system

Main charac

way for un
characteris

ristics of CP
eatures” an
d publicatio
h intrinsic (
several of 

urity’, and ‘a
ction such 
14], while s
oop feedba
manifestatio
tion line be
on coming
and CPSs. 
are similar t
ems are see
can be see

ons of CPSs 
ical world is
intense mo

knowledge
gue that th
chatronics 
conjoining o
bler) [11]. Th
domains of
23], [24]. 

CPS also e
re  2-2 show
e functiona
logue and
ge, data, a
ftware co
units of CP

onstituents 
units an

2. (It has to 
 become a
f smart rea
the develop
ke cyberw
ms). 

cteristics of

derstandin
stics. In ou
PSs, severa
d “properti
ons dealt w
(from insid
them focus

adaptability
as ‘environ

some of the
ack control’
ons make 
etween CPS

g out at th
The simple

to or resem
en by many

en as part o
may appea
s known to

otor, percep

e engineeri
he advent o
and netwo
of many do
his develop
f energy (po

ntailed ne
ws the abs
al carriers. 
 digital ha

and media 
nstituents 
PSs in cont

that are 
nd accordi

be noted t
an objectiv
soning me

pment of ac
ware an ac

f CPSs and

ng the essen
ur literature
l keywords
es” were us

with extrinsi
e observab
s on particu
y’. Some ot
ment coup
em capture
’ and ‘real 
it difficult 

Ss and the 
he end of t
e reason is

mble those o
y researche

of a technic
ar. However
 be a distin

ptive, and c

ng, and con
of the parad
orking tech
omains of i

pment has b
owering) a

w function
tracted fun
From an a

ardware (HW
contents 
are 

trast 
not 

ngly 
that, 

ve of 
cha-
ctive 
ctive 

 CPCDs 

nce of the c
e survey to
 such as “c
sed to find 
c (from out

ble) charact
ular extrins
ther charac
pling’ , ‘dive
ed  more ta
time’. Thou
and some
other type

the last de
s that man
of the first g
ers as forer
cal form in
r, the multit

nguishing c
cognitive in

Figur

ntext mana
digm of CP
nologies (a
information
been comp
nd sustaina

nal structu
nctional un
architectura
W), contro
as cyberw

concept of 
owards the
characterist
the most re

tside observ
teristics of 
sic characte
teristics are

ersity in cap
angible con
ugh the co
ewhat unn
es of system
ecade tried
y of the ch
generation
runners of C
 which spe
tude of dire
haracteristi

nteraction w

re  2-2 Abst

agement. Pu
PS is essent
as the phys
n technolog
lemented i
ability [22],

res and un
its of a typ

al viewpoin
l, and app
are (CW) c

CPS is to e
e identificat
tics”, “attrib
elated publ
vable) char
cyber-phys

eristics such
e formulate

pabilities’, a
ncepts such

onverging t
ecessary to

ms, we obs
d to disting
haracteristi
 CPSs [27]. 
CPSs. More

ecific (augm
ect interact
ic [26] [27]. 
with human

tract generic

utting every
tially the re
sical enable
gy and eng
n recent ye
 as well as 

nique beha
pical CPS an
nt, CPSs are

lication so
constituent

xamine its 
tion of the

butes”, “spe
lications. M
racteristics, 
sical system
h as, ‘depen
ed in a high
nd ‘networ
h as ‘distrib
technologie
o draw a s
served that
guish emb
cs of emb
Anyway, em

eover, emb
mentative) 
tions of CPS

In addition
n (or other 

c function of

ything 
sult of 

er) and 
gineer-
ears by 

in the 

avioral 
nd the 
e tight 
ftware 
s [26]. 

distin-
e main 
ecifica-

Many of 
rather 

ms. For 
ndabil-
h level 
rked in 
buted’, 
es and 
strong 
 many 
edded 
edded 
mbed-
edded 
imple-

Ss with 
n, their 
living) 

 
f CPSs [25] 



Chapter 2     | 21 

stakeholders and the engineered and/or natural environment/systems is also a distinguish-
ing characteristics of CPSs. 

Below we present a succinct overview of characteristics extracted by the literature survey. 
Since the system characteristics were discussed in the literature from different aspects, we 
sorted the characteristics into seven groups: namely (i) architectural, (ii) processing, (iii) 
behavioral, (iv) networking, (v) timing, (vi) dependability, and (vii) efficiency characteristics. 

The major architectural characteristics have been identified as: (i) closely integrated (i.e. 
deeply integrate computation with physical processes) [28] [29], (ii) highly varied system 
scales and device categories [29], (iii) heterogeneous and divers set of components [30], 
(iv) hybrid systems architecture (which includes analog and digital parts) [31], (v) capability 
to reorganize and reconfigure their internal structure [30], and (vi) open system with 
blurred overall system boundaries [30].  

The major processing characteristics are: (i) distributed cooperative problem solving [30], 
(ii) information processing in real-time [30], (iii) high degrees of automation based on 
closed control loops [28], (iv) different problem solving strategies may be employed to 
achieve the overall objective of system [30], (v) knowledge intensiveness (and components 
handle different information sources) [30], and (vi) unsupervised way of learning from 
history based on smart agents and memorizing [30], and (vii) decentralized operation and 
organization of autonomous subsystems [32]. 

The distinguishing behavioral characteristics are: (i) dynamically reorganizing/ reconfigur-
ing operation [28], (ii) having adaptive capabilities [29], (iii) offering convenient man–
machine interaction [29], (iv) context aware and context dependent reasoning [30], (v) 
situation-based and context-dependent decision making [30], (vi) reactive system behavior 
in continuous interaction with the environment and executing at a pace determined by 
that environment [31] [33], (vii) disappearing computer: due to different type of interfaces, 
the user hardly recognize that information processing is involved [31], (viii) dedicated 
towards a certain application: due to dependability and efficiency [31], (ix) proactive in 
emergent internal and external situation [30].  

The networking characteristics are as follows: (i) networked at multiple and extreme scales 
[28], (ii) relying on heterogeneous and distributed networks [34], (iii) using different kinds 
of connections (e.g., wired/wireless network, Wi-Fi, Bluetooth, and GSM) [29], and (iv) 
connections  with other components can be predefined, ad-hoc or both [30].  

The scheduling and timing related characteristics are: (i) meeting real-time constraints 
[28] [31], (ii) having unequal granularity of time and spatiality in various components [29], 
(iii) concurrent composition of the computing processes with the physical ones [15], and 
(iv) precise timing behavior with reliability that is unprecedented in any other human-
engineered mechanism [15].  

The dependability characteristics are described by the following key words: (i) trustwor-
thiness and confidence [35], (ii) reliability [31] [28], (iii) maintainability [31], (iv) availability 
[31], (v) safety [31], (vi) security [31] [28], (vii) integrity (i.e., absence of inappropriate system 
alterations) [13], (viii) robustness under unexpected conditions [15], and (ix) adaptable to 
subsystem failures [15]. Finally, the efficiency characteristics have been defined as (i) 
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energy efficiency, (ii) run-time efficiency, (iii) code size efficiency, (iv) weight efficiency, and 
(v) cost efficiency [31]. 

Some of the mentioned characteristics are not solely belong to CPSs and can be consid-
ered as common characteristics of (engineered) technical systems. On the other hand, 
some of the characteristics discussed in the literature reflect a particular perspective, e.g. 
system security, while some other mentioned characteristics are very similar or closely 
related to design principles or guidelines (that point to an ideal situation). Consequently, 
some purification of the ideas seemed to be necessary for us.  

2.2.3 A compendium of CPS characteristics 

Having the above findings in mind, we developed a systematic and comprehensive com-
pendium of CPS characteristics. This compendium includes the generic characteristics of 
CPSs [30], but it has also been extended to social-cyber-physical systems (SCPSs) [35], as a 
subcategory of CPSs that are in direct social and mental interactions with end users. The 
items included in the compendium are used in the rest of work as guides at the theoretical 
and development work presented in this thesis. The required characteristics of CPSs are: 

C1. distributed integrity: distributed cooperative problem solving, in harmony with the 
techno-socio-economic environment 

C2. Openness: functional and structural openness system (with blurred overall system 
boundaries) 

C3. Dynamicity: capability to dynamically change boundaries and behaviors, and to 
reorganize/reconfigure internal structure 

C4. Integrity: consisting cyber-part and physical-part in high level functional and 
structural synergy 

C5. Heterogeneity: made of heterogeneous and diverse sets of components which can 
join and leave the collective at any time 

C6. spatiotemporal multiplicity: manifestation in various spatial scales and temporal 
ranges 

C7. real-time processing: real-time information processing capability 
C8. multiple connectedness: connections with other components in a predefined 

and/or an ad-hoc manner at multiple levels 
C9. goal-oriented cooperation: components may operate according to different 

problem solving strategies while achieving the overall objective of the system 
C10. source multiplicity: knowledge-intensive components are able to handle different 

information sources 
C11. situated reasoning: situated decision making, automated problem solving, and 

context-dependent reasoning 
C12. autonomy: memorizing and learning from history in an unsupervised manner by 

smart agents 
C13. proactivity: non-planned functional interactions, and acting proactively in emergent 

internal and external situations 
C14. distributed cooperation: distributed decision making based on reflexive interaction 

of components and multi-criteria analysis and optimization 
C15. strategy variability: different strategies for operation, resource management, 

security, reliability and integrity 
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C16. reproductive intelligence: seeds of reproductive intelligence towards the next 
generation (molecular and bio-computing-based) CPSs. 

The required characteristics of SCPSs are: 

C17. Ability to become aware of the users and their personal and social contexts, and to 
adapt themselves towards and optimal symbiosis. 

C18. Ability to achieve the highest possible level of dependability (trustworthiness and 
confidence), accountability, security, accessibility, and maintainability. 

C19. Operating as a self-organizing holarchic open system with a minimal environmental 
impact and sustainability from ecological, economic and social viewpoints. 

C20. Achieving a balance between overheads and outputs, demand and usage of 
resources, and wastes and gains. 

2.2.4 Some representative examples of CPSs 

Advanced technologies are enablers of the implementation of advanced systems that are 
interconnected, smart and communicative, and able to sense, to make decisions, and act 
according to strategies [36]. There are numerous industrial applications of such systems, 
for example as environment monitoring system, home care surveillance systems, disaster 
warning systems, medical and healthcare monitoring systems, distributed robotics sys-
tems, and process control systems. Moreover, there are applications which benefit from 
the potential smartness of CPSs, such as smart energy grids, smart transportation infra-
structure, smart medical equipment, air traffic management systems, automated manufac-
turing systems, intelligent buildings, autonomic vehicle convoys, and traffic prediction 
systems. Two often cited academic examples of CPSs are the Distributed Robot Garden at 
MIT, which includes distributed sensing and wireless networking integrated into a team of 
robots attending a garden of tomato plants [37], and the system developed in the CarTel 
project in the Boston area, in which real-time traffic information is used for calculating the 
fastest routes for a given time of the day [38]. 

Cyber-physical consumer durables represent a specific manifestation of CPSs. In a wide 
perspective, consumer durables are artefactual products that are (i) developed for long-
term use (> 3 years), (ii) in frequent and direct interaction with the user, (iii) mass-
customized for a wide range of users, (iv) equipped with specific control interfaces for 
users, (v) produced by batch manufacture, and (vi) widely/directly commercialized as 
merchandizes. Their typical representatives are such as major household appliances, 
personal mobility equipment, personal computing devices, and household accessories. 
CPCDs pave the way for the on-going transition to social-cyber-physical systems [39]. The 
reason is that CPCDs deeply penetrate into different domains (perceptive, cognitive, and 
emotional) of human life. Towards this end, they have to be able to work with the semantic 
of information, rather than with its syntax [35]. In general, the user aspects of CPCDs are 
getting more and more into the spotlight. These may give floor to the development of 
CPCDs, e.g., personal rehabilitation assistive systems, sport training systems, smart learning 
enabler systems, home facility management systems, personal safety systems. Due to their 
proximity to the users, CPCDs as heterogeneous and complicated CPSs, need to be devel-
oped for smart interaction with consumers, and should be made conform to consumer-
oriented strategies, such as mass customization. 
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2.2.5 On the need for adaptation of CPSs and CPCDs  

While CPSs are getting embedded human and natural environment and used in social 
contexts, the need for their adaptability increases. The characteristics C2, C3, C9, C11, C13, 
and C15 together circumscribe the ability of adapting to emerging situations. Adaptive 
CPSs are supposed to examine the changes in the whole context of their operation and 
reason based on the actual situations (C11), change their boundaries and behavior (C2, C3) 
in order to adjust themselves to the new objectives (C9), and interact with their environ-
ment proactively according to the internal and external situations and strategies (C13, 
C15). In different words, adaptability of CPSs entails three specific abilities: (i) recognizing 
changes in their working context, (ii) making a proper decision in context, and (iii) acting 
based on the decision. Although adaptation and customization might refer technically to 
the same system architecture and functionality, they imply rather different concepts from 
the user point of view. Customization can be considered as a kind of adaptation that is 
applied to a system according to the (explicit or implicit) demands of its users. Therefore, in 
CPSs (and particularly CPCDs) that are interacting with (functionally active or passive) 
human, customization is a valid type of adaptation. However, dynamicity of such systems 
entails other types of adaptation as well. The well-known term of ‘mass customization’ 
reflects only the marketing perspective of the same concept. 

2.2.6 Customization as a form of adaptation of CPSs and CPCDs 

Traditionally, mass customization (MC) is a win-win proposition for customers and produc-
ers only when producers find efficient and effective means of delivering high level of 
product variety [40]. Product variety fulfills either multiple demands of a user or similar 
demands of multiple users. The former one is sometimes referred to in the literature as 
multi-purpose or multi-functional products [41] [42] [43]. The latter one is alternatively 
called adjustable or configurable products [44] [45]. In any case, customization of a CPCD 
can be considered as a form of adaptation of a CPS. The challenge is how to apply MC 
principles to address CPS customization issues. Due to the limited similarities of CPSs and 
conventional consumer durables, there is a strong limitation with respect to the applica-
tion of conventional MC approaches. In order to find opportunities, we analyzed the 
characteristics of CPCDs and the potentials of MC approaches, as shown in Table  2-1. 

Our literature survey of this aspect resulted in the following conclusions: In the traditional 
practice MC, users are supposed to partly play the role of designers while customizing a 
system. Since CPSs have intense relationship with their embedding environment and 
stakeholders, they should be either self-adaptable or customizable by users. Although 
there are some levels of adaptability in CPSs, the role of user in customizing usually ne-
glected. The role of user is more important in consumer durables due to their direct inter-
actions. Therefore, mass customization receives growing attention in CPCDs.  

Many of the mentioned CPS characteristics imply complexity. Complexity makes it neces-
sary to predict the consequences of a change (even a simple one) with regards to the 
whole of a CPS. In addition to complexity, heterogeneity and integrity are the characteris-
tics that raise challenges for customizing CPCDs. They both entail the necessity of a con-
current customization of hardware and software constituents in a way where changing 
one of them is supported by the other one.  
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2.3 POSSIBLE DESIGN APPROACHES TO MC OF CPSs 

2.3.1 Domains and aspects of MC 

In order to find concrete relations between the current MC approaches and the above-
detailed CPCD characteristics, we scrutinized the known MC approaches. Our investigation 
took a closer look at the essence and the methodology of the design approaches of MC, 
considering their adaptability for MC of CPCDs. These findings are presented below. For 
the sake of completeness we mention that customization is essentially not the same thing 
as mass customization [51]. The term mass customization was coined by Davis [46]. It is 
usually explained as a strategy that involves integration of product variety and process 
efficiency [1]. The main goals of MC are to minimize “customer sacrifice” [47] and to im-
prove customer satisfaction, which can be achieved by fulfilling their particular needs and 
by providing the required product properties at the price that customers are willing to pay. 
Cost, quality, and pace of delivery are the explicit advantages of MC that can be realized 
through improvement of design and manufacturing processes [52] and technology [53]. 

Table  2-1 Challenges and opportunities of MC of CPSs with regards to the characteristics of CPSs 

Characteristics of CPSs Challenges Opportunities 

C1: Distributed integrity Access to the components are 
limited  

Distributed components imply 
modularity 

C2: Openness Composition of the system can be 
changed unintentionally 

Extension by adding components  
can be used for MC 

C3: Dynamicity  Reorganizing or reconfiguring 
internal structures is an opportunity 

C4: Integrity Traditional MC cannot handle 
concurrent SW and HW variability  

C5: Heterogeneity Handling and responding to 
different protocols is challenging  

C6: Spatiotemporal multiplicity Access to other components is not 
applicable for a customer  

C7: Real-time processing  
Real-time customization could be 
obtained by incorporating this 
capability 

C8: Multiple connectedness Traditional MC is not compatible 
with ad-hoc connections 

Exploit different networks provides 
possibility for different customiza-
tion 

C9: Goal-oriented cooperation  MC is limited to predefined problem 
solving strategies 

Goal-oriented customization can be 
devised 

C10: Source multiplicity  
It provides opportunity for multi-
channel user interaction 

C11: Situation dependability Traditional MC is not developed to 
deal with this capability 

It could be handled in different 
levels to provide intelligent custom-
ization 

C12: Autonomy It is in conflict with manual customi-
zation of features 

This characteristic could be utilized 
to achieve auto-customization  

C13: Proactivity MC requires predefined compo-
nent’s interaction  

C14: Distributed cooperation Applying changes requires distrib-
uted component variation 

 

C15: Strategy variability Could cause conflict in customiza-
tion  

C16: Reproductive intelligence Cannot be handled by traditional 
MC  
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Pine and Tseng [48,49] developed the concept of MC for use in marketing and industrial 
applications. They defined MC as offering products with increased variety, whilst keeping 
the economic efficiency of mass production. In the past two decades, many design and 
manufacturing principles, methods, and frameworks have been developed in order to 
realize MC. These principles have been applied in various contexts of product and service 
design, such as home appliances [50], automotive [51], fashion products [52], insurance 
services [47], and hotel facilities [53]. The main issues are how adaptable the MC principles 
are, and what can be done to adopt or adapt conventional MC principles for use in MC of 
CPSs.  

To support our assumptions and reasoning, we 
defined mass customization as a methodology 
(e.g. for designing, manufacturing, and market-
ing) of providing a variety of affordances (e.g. 
from appearance customization to function 
customization) in a certain phase of product life 
cycle (e.g. conceptualization, design, production, 
installation, and use) of an artifact (e.g. consum-
er durable, service, software) by a particular 
actor (e.g. designer, customer, retailer, company) 
[1]. Based on this multi-aspect definition, we 
considered the aspects shown Figure  2-3 as the 
ones we need to consider for our study. Concep-
tually, these aspects are orthonormal and imply 
different definitions and considerations of MC of 
CPCDs. 

There are different MC approaches (types, levels, or degrees) depending on (i) deliverable 
product or service, (ii) provided affordances, (iii) exploited methods of design and manu-
facturing, (iv) actors in customization, and (v) points of actors’ involvement in the product 
life cycle. In our research we referred to ‘MC approach’ as a representative of a type (level 
or degree) of MC along with its associated principles, frameworks, methods, affordances, 
etc. as a package. It is worth mentioning that there is no clear boundary among various MC 
approaches, and that they can be used together, or the underlying methods can be inter-
changeably applied in some cases. For realization of mass customizable products, product 
developers need to apply one of the known MC approaches. This is recommended in the 
literature because MC approaches (i) are recognized as effective ways for realization of 
mass customizable products, (ii) have been employed and evaluated by other companies 
in terms of functionality and applicability, and (iii) work with methods that have been 
already devised and validated [1]. This also underlines the importance of studying the MC 
approaches towards finding principles for realization of mass customizable CPCDs. 

2.3.2 Differences of the MC approaches from the aspect of product life cycle 

Product life cycle (PLC) aspect is important element of many MC taxonomies for the reason 
that it helps distinguish various specific approaches (Table  2-2). Product life cycle refers to 
the phases which lead to delivery of a product. The four-stage model of PLC has been 
frequently used for distinguishing different approaches of MC by researchers [54-57]. This 
model has two parameters, namely (i) the phases of PLC and (ii) the indicator point. As 

 
Figure  2-3 Aspects of MC 
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phases of PLC, it considers four 
phases of design, fabrication, as-
sembly, and use that appear in all 
MC approaches. The differences of 
approaches are usually addressed 
with respect to the point of custom-
er involvement in the PLC. This point 
is also known as the order decou-
pling point (ODP) [58] and has been 
used as an indicator for characterizing MC approaches [59] (Figure  2-4)  

The earlier involvement of the customer in the product life cycle results in higher degree of 
customization because the product or service could be tailored to their specific require-
ments and vice versa. Many taxonomies and classifications of MC approaches have been 
formulated based on different reasoning and perspectives [60-64]. Table  2-2 presents the 
most common classifications in the literature.  

The shortcomings of the current taxonomies can be discussed in terms of both the phases 
of PLC and the indicator point. In terms of phases of PLC, current taxonomies have ignored 
phases of purchasing and preparation for shipping, which are very significant in some MC 
strategies and approaches. Moreover, assembly is considered as a phase of PLC. However, 
we consider assembly as an activity, which can variously be placed before purchase in the 
production phase, after purchase, in the installation phase, or even during the use of 
product. On the other hand, customization is not only confined to ODP. Multiple MC 
approaches might have similar ODP. So, considering ODP as a sole indicator of categoriza-
tion is not enough. We assumed that other indicator points are needed to systematically 
differentiate conventional MC approaches. Accordingly, in order to clarify the position of 
MC of CPCDs in the taxonomy, it was necessary to develop a new classification with finer 
specification of the phases of PLC. We have decomposed PLC into eight phases: (i) concep-
tualization: concepts of a new product are generated, (ii) design: details of a product are 
defined and developed for production, (iii) production: a product is fabricated and assem-

 
Figure  2-4 Customer involvement in the PLC 

Table  2-2 Forms of MC in different studies 

Research Forms of mass customization 

Sharma [65] (i) Customized product, (ii) Modified to customer spec., (iii) Customer specified options, (iv) No option 

Pine [66] 
(i) Modular production, (ii) Point  of delivery customization, (iii) quick response providing, (iv) 
Customized  services, (v) Embedded  customization 

Fisher et al. [67] (i) Stand-alone options, (ii) Package options 
Lampel & 
Mintzberg [68] 

(i) Pure customization, (ii) Tailored customization, (iii) Customized standardization, (iv) Segmented 
standardization, (v) Pure standardization) 

Ross [69] 
(i) Core customization, (ii) High-variety manufacturing, (iii) Post-product customization, (iv) Self-
customization 

Spira [70] 
(i) Assemble into unique configurations, (ii) Additional custom work, (iii) Additional service, (iv) 
Customizing packaging 

Gilmore & Pine 
[71] 

(i) Collaborative, (ii) Transparent, (iii) Cosmetic, (iv) Adaptive 

Da Silveira et al. 
[62] 

(i) Design customization, (ii) Fabrication customization, (iii) Assembly customization, (iv) Additional 
custom work, (v) additional services, (vi) package and distribution customization, (vii) Usage 
customization, (viii) Standardization 

Tien et al. [72] (i) Real-time MC, (ii) MC, (iii) Partial MC, (iv) Minor customization, (v) Mass production 

Design     Fabrication      Assembly      Use

High degree of 
Customization

Low degree of 
Customization

ODP
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bled (however, the product assembly may be postponed if assembly is considered as a 
means of customizing), (iv) launch: introducing a product to markets, (v) purchase: buying 
a product in a physical retail shop or via an internet store, (vi) preparation for shipping: 
time between purchase and shipping which might be used for preparation of a product, 
(vii) installation: setting a product to the place and condition of use (i.e. preparation 
before use), and (viii) use: the phase in which a product performs its roles and functions. 

For identifying different MC approaches, the possible indicator points have been consid-
ered and, as a result, ODP was replaced by four new indicator points (Figure  2-5). These 
points are attained by separating design and customization activities and by assuming that 
performing both (design and customization) has two sub-processes, namely decision 
making and executing. Therefore, the significant indicator points (actions that influence 
MC process) in the PLC have been identified as:  

Ⓣ: (decision making in design); Thinking about unique requirements of user(s): de-
signers investigate changeable features and specifications of products to realize a 
product idea based on the differences in user(s)’ requirements.  

Ⓔ: (executing in design); Enabling customization: putting customization capability in a 
product by producer. This action is not a decision making process, but incorpora-
tion of specified affordances which have already been determined. 

Ⓒ: (decision making in customization); Customization of product/service: decision 
making action to customize a product based on specified user requirements (most-
ly performed by the customer, but it could also be performed in consultation with 
designers and experts). 

Ⓐ: (executing in customization); Applying customization: incorporating the prefer-
ences of the user into the product (this may be performed by anyone; it is simply 
the realization of customer’s wishes). 

Figure  2-6 shows the applied classification of MC approaches. It identifies eight phases of 
PLC, based on the four indicator points introduced above [1]. This classification does not 
consider any level or special advantage of the different approaches of MC. However, the 
first two MC approaches can be considered as approaches of higher level customization. 
Each MC approach is suitable for a particular kind of products and can be adopted by 
companies according to their marketing strategies. In the following paragraphs we briefly 
describe the MC approaches shown in Figure  2-6. 

 

Figure  2-5 A model for taxonomizing MC approaches considering PLC phases and indicators 
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Co-customization approach implies designing and conceptualization of a product based 
on unique requirements of a particular customer. For example designing and tailoring an 
evening dress for a specific ceremony for a given customer. 

Custom-fabrication approach involves customers in ordering a product in the design 
phase. This allows ensuring that the product is made to order. Although the concept of the 
product is similar for all customers, the product details and some configuration will be 
made based on customer’s order. On the line of the previous example, it means supplying 
a product based on a predefined dress, considering only sizes of customers in tailoring. 

Assembly-by-company approach implies applying customization by company based on 
the decision of the customers. Considering their own requirements, the customers should 
choose the components from a catalogue, and the company installs components and 
ships the product. An example of this approach is choosing a particular CPU, RAM, hard 
drive, etc. for a notebook in producer’s website. 

Assembly-by-customer approach means customizing an already purchased product by 
(i) changing the layout of components, (ii) adding or removing some modules, (iii) bending 
or shifting the angle of components etc. As an example, consider a food processor with 
different attachable components for different purposes. 

On-delivery-customization approach is a restricted modification of a product usually for 
personalization. Engraving the owner’s name or special sentences in back of the purchased 
tablet is a good example for this approach. 

Embedded-customization approach implies controlling the capability of a product in the 
use phase by built-in controllers (e.g. fan speed of an air conditioner, and bright-
ness/contrast of a TV set).  

Standard-customization approach means providing various products with a range of 
attributes (e.g. size, color, internal memory) that can be chosen by customers during the 
purchase phase. 

2.3.3 Differences of the MC approaches from the aspect of method 

The second aspect of investigation is ‘method’ which is implied by the fact that various 
methods, tools, and technologies have been developed in order to support MC. Normally, 
two groups of methods are used for these purposes: (i) product design methods, and (ii) 

 

Figure  2-6 MC approaches 
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manufacturing methods [73]. Certain MC approaches have been developed to simultane-
ously address both design and manufacturing aspects of MC due to interdependences 
among design and fabrication tasks. In our research, only design related aspects of MC are 
considered. Below, we briefly overviewed the design and manufacturing methods that 
have been used in MC. We indicate the most important differences of the methods. Typi-
cally time and cost issues drive the designers to redesign or reuse existing designs in most 
of MC approaches. There are endeavors to reuse relevant design experience to achieve the 
economy of scale, even in design processes [74]. Lots of efforts were made to develop 
design methods for mass customization. For instance: 

• the case-based evolutionary design (CBED) method was developed for combining the 
cognitive model of reasoning with experiences and technology for finding and present-
ing such experiences [77] [75], 

• the design for mass customization (DFMC) method was developed for conducting 
family-based design, considering several aspects of product realization such as design, 
manufacturing, sale, market and service, concurrently [49], 

• the modular design (MD) method (which focuses on consumer, functional, physical, 
and process domains to generate modular product architectures) was developed ac-
cording to the assumptions of the axiomatic design theory [76] [77], 

• the product family modeling (PFM) method was developed by including a triple-view 
scheme used in modeling various functional, technical and structural aspects of product 
families [78], 

• the design by customer (DBC) method was developed to address specific individual 
customers’ needs when the uniqueness is regarded as an important requirement [79],  

• the concurrent design for mass customization (CDFMC) method was developed with 
the aim of integrating entrepreneurial development with disciplined systematic ap-
proach [80], and  

• the design for mass personalization (DFMP) method was proposed to effectively and 
efficiently offer personally unique products through creation of a product ecosystem 
based on a design platform and active customer participation [81]. 

All of design methods for MC have been developed according to particular approaches. 
Most of them are based on product family architecture (PFA), which provides a unifying 
product platform to cover diverse customer needs while keeping the economy of scale 
[74]. PFA is efficient and mostly used in MC approaches #2, #3 and #4 in Figure  2-3.  

As for the need to address challenges of maximizing variability and efficiency simultane-
ously, manufacturing methods of MC demands unique characteristics, which stem from its 
underlying strategies such as: (i) dynamic fabrication, (ii) flexible resources (e.g. workers, 
robots, machines, workstations, etc.) [82], (iii) postponement of product variety [83], (iv) 
consideration of PFA [49], and (v) flexible process routing (non-linear process plans, alter-
native routings and variable sequences). It is worthwhile to mention that the importance 
of these characteristics depends on the selected MC approach. For example, ‘dynamic 
fabrication’, ‘flexible resources’ and ‘flexible process routing’ are suitable for MC approach-
es #1 and #2 in Figure  2-3, while “postponement” is important in MC approaches #3, #4 
and #5. Due to the use of mass production methods, cost effectiveness is a major concern 
in MC approaches #6 and #7. Customized products are expensive when produced accord-
ing to the MC approaches #1 and #2, because they are designed and made individually. On 



Chapter 2     | 31 

the other hand, CPCDs are components-based systems, and it is logical to develop and 
design them based on PFA in order to benefit from economy of scale. 

2.3.4 Differences of the MC approaches from the aspect of actor 

There are multiple actors involved in the life cycle of a product. In addition to the activities 
that are accounted for each MC approach, the roles of the involved actors are also influen-
tial. For instance, the task of assembling can be accomplished by the company, by retailers, 
by a third party company or by users in different MC approaches. It was mentioned earlier 
that in some of the MC approaches the user is supposed to play the role of a designer 
during the customization activity. However, most users do not have enough knowledge 
about products, e.g. concerning on material selection, safety issues, and functionality. They 
are usually unfamiliar with “designerly way of thinking” [84] and the uncertainties make 
them puzzled. Perception of customers about complexity, effort, and risk that they have 
count on during the mass customization process could prevent them from buying a 
customizable product [85]. Pine argued that performing the user–designer role may lead 
to confusion during customization. Therefore, he coined the term mass-confusion [24]. 
Many studies considered the phenomenon of mass confusion as a result of the complexity 
inherent in a wide assortment of options [86-88]. It has been recognized that more com-
plex products and user interfaces increase the probability of mass-confusion. 

Three main sources of mass-confusion include: (i) the large number of choices and uncer-
tainty of finding the most appropriate choice, (ii) complexity of translating and addressing 
individual needs to a concrete specification of a product, and (iii) uncertainties related to 
the behavior of the provider (due to missing information) [100]. Therefore, there is a high 
probability of the occurrence of mass-confusion in the case of MC of CPCDs. Nevertheless, 
it can be noticed that to avoid mass-confusion in MC approaches #3, #4 and #6, the cus-
tomer must have a certain level of prerequisite knowledge and skills. For customizing a 
product, the user needs to interact with different stakeholders in different ways. In co-
customization, a direct interaction with concept designer is compulsory, while interaction 
among customer and detail designer is important in custom fabrication. In MC approaches 
#3 and #5 the users interact with sales departments of companies (e.g. through the pro-
ducer’s website). Finally, in MC approaches #4 and #6, the users have to customize the 
product thorough a predetermined interaction with the product. The role of customization 
applier in MC approaches #1, #2, #3 and #5 is played by the company while, in MC ap-
proaches #4, #6 and #7, the users have to apply customization themselves. 

2.3.5 Differences of the MC approaches from the aspect of artifact 

The characteristics and specifications of artifacts are another aspect which influences 
choosing of MC approaches. In this regard, complexity of the product is a major issue 
(which indirectly determines the applicability of the MC approaches). This needs attention 
since complexity is an intrinsic characteristic of CPCDs, which reduces the number of 
applicable MC approaches. The options usable for customization are also affected by the 
complexity of interactions. Three factors have been identified concerning the options of 
customization: (i) width of options, (ii) range of option, and (iii) resolution of option. Width 
of options refers to the number of available options to customize a product. It indicates 
how many features can be controlled by user. For instance, if for an office chair (i) the 
height of the seat, (ii) the tilt, (iii) the armrest height and (iv) the swivel angle are adjusta-
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ble, then the width of options is four. Range of option can be described based on the (i) 
minimum value, (ii) maximum value, and (iii) the distance between these values in an 
option. For instance, in the office chair example, the distance between minimum and 
maximum seat height indicates the range of option. Resolution of option implies the 
number of offered choices in a range of option. If the seat height of the office chair exam-
ple stops at five different levels, then resolution of option is five. In the case of many 
products and options, the resolution of option is continuous. Evidently, the three customi-
zation factors strongly depend on the product characteristics. That is why they are defined 
based on the targeted users and the preferred MC approach. Width of options influences 
the interface complexity of a product more than two times of the other factors. MC ap-
proaches #1, #2 and #3 have the capability to offer the largest width of options, while MC 
approaches #4 and #6 have some limitations. The MC approaches # 5 and 7 have the least 
capability to offer width of options. 

2.3.6 Differences of the MC approaches from the aspect of affordance 

Affordance is a quality of a product, which can be customized by an individual. Affordance 
expresses how deeply a product can functionally be customized. For MC of CPCDs it is 
important to choose the MC approach, which most effectively supports functional af-
fordances. In order to study affordances of various MC approaches, we needed to (i) 
develop a framework for classification of affordances of MC approaches, (ii) define the 
significant characteristics of each type of affordances, and (iii) compare the state of differ-
ent approaches based on developed criteria. The affordances of a MC approach might be 
superficial (such as changing the appearance of a product), or might be deep (such as 
customizing the functional scope and quality of a product). In order to establish a frame-
work, four affordances have been identified, namely: (i) appearance which mean customiz-
ing the appearance of  the product or its packaging in term of color, texture, 2D image, 
engraving, 3D shape, and even smell and taste, (ii) capacity/size which mean changing size 
of product or scale of output, e.g. in a vacuum cleaner, (iii) quality of service which refers to 
different services provided such as quality and speed of printing or number of USB port of 
a notebook, and (iv) function, which implies providing variety of functions in a product 
according to multiple functional demands or the capability of a product to perform diverse 
functions by replacing some components. 

Different MC approaches usually offer different affordances. This means that each MC 
approach is efficient and effective in providing only a particular set of affordances. For 
instance, embedded customization can support affordances #2 and #3. The functional 
affordance is mostly obtained through co-customization or sometimes through assembly-
by-customer. On-delivery customization is mostly suitable for appearance affordances. 
Additionally, custom-fabrication and assembly-by-company are the best MC approaches 
for the quality of service affordance (Table  2-3). 

2.3.7 Recognized constraints and limitations of using MC in the context of CPCDs 

Based on the findings of the study, we argue that the most important generic principles of 
conventional MC approaches are as follow: 

• Postponing the ‘applying customization’ action until the latest possible phase in the 
product life cycle [89]. 
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• Designing products based on independent modules in order to facilitate assembling in 
different ways. 

• Designing the manufacturing process based on independent modules in order to move 
and rearrange manufacturing resources easily. 

• Designing supply network for providing two capabilities: (i) cost-effective supply of the 
basic product, and (ii) flexibility, responsiveness, and quick delivery in taking customers’ 
order. [89]. 

• Process transformation through (i) significant up-front investments, and (ii) flexible 
information flow [90]. 

• Information architecture based integration of different manufacturing technologies into 
a structured framework capable of combining human and technological factors [90]. 

• Reuse of design experiments, process architecture, and supply chain structure [74]. 
• Unifying product platform to cover diverse customer needs while keeping the economy 

of scale [74]. 
• Developing PFA by (i) identifying optimal building blocks, (ii) formulate product family 

structure, and (iii) configuration of the process. 
• Deriving the most economic building blocks and maximizing their applicability [49]. 
• Utilizing inherent flexibility in the production capability and maximizing the repeatabil-

ity of the product family-based design, rather than designing one unique product at a 
time. 

• Promotion of sharing knowledge over different products by incorporating customer 
needs, process experience, and learning [80]. 

• Planning effective information transformation in order to make the demands visible 
throughout the supply chain [91]. 

• Using highly-skilled and -trained employees especially in the information transfor-
mation and product delivery phases. 

• Designing product family architecture and process concurrently. 

Table  2-3 summarizes the major differences of the approaches with regards to sub-aspects 
of MC. It can be used as a basis for selection of a suitable approach for MC of CPCDs. 
However, the generic principles included in this table may be inadequate if they are used 
with an incompatible strategy and approach. In the case of PLC, Table 3 shows the differ-
ences of approaches in terms of the customization tasks. It captures the phase of customi-
zation and categorizes of the approaches as: (i) before production customization, (ii) on-
purchase customization, and (iii) post purchase customization. As far as methods are 
concerned, despite the significant number of publication about product family architec-
ture and module-based design, only three MC approaches exploits PFA. The sub-aspect 
‘cost effectiveness’ has a wide range in MC approaches. Regarding actors, the ‘customiza-
tion applier’ is a ‘company’ in MC approaches #1, #2, #3 and #5. As indicated in Table  2-3, 
usually ‘users interact with’ ‘designer’, ‘retailer’ and ‘product’ in order to customize a 
product. In approaches #4, #6 and #7, the users can customize product without any inter-
action with anyone else. ‘Users’ skill’ sub-aspect is an indicator for the knowledge and skills 
the users need to have for customizing products. In the MC approach 4, users should have 
high level of knowledge about the product they want to customize. In the artifact aspect, 
the sub-aspects are ‘product complexity’ and ‘width of options’. Finally, in the affordance 
aspect, ‘depth of customization’, implies function to appearance range and the numbers 
stands for the different affordances (mentioned in previous part). As shown in this table, 
the MC approaches #5 and #7 are not proper for realization of functional affordance. 
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2.3.8 Mapping the characteristics of CPSs to the findings 

The characteristics of CPSs have been discussed in the previous sub-section. Based on a 
grouping of these characteristics, we propose to consider seven distinguishing generalized 
characteristics of CPCDs: 

GC1 Dynamic function and architecture: Characteristics C2, C3, C5, C7, C8, C9, C11, 
C15 and C16 imply to the fact that function and architecture of CPCDs are 
completely dynamic. Therefore, only post-purchase customization is efficient and 
logically possible in MC of CPCDs. MC approaches #1, #2, #3, #5 and #7 are not 
appropriate for MC of CPCDs. 

GC2 High overall complexity: Characteristics C4, C5, C9, C11, C13 and C16 imply that 
high complexity is an inherent generalized characteristic of CPCDs. So, MC 
approach #4 cannot be used in customizing CPCDs. 

GC3 Component-based architecture: Characteristics C1, C3, C4, C5, C8, C9, C10 and 
C14 imply the component-based architectural nature of CPCDs. MC approaches #1, 
#2, #6 and #7 are independent of PFA, and consequently are not economically 
efficient for MC of CPCDs. 

GC4 Importance of functional affordances: In fact, the primary objective of designing 
and applying CPCDs is providing functional affordances fulfilling certain known or 
emergent needs. All characteristics of CPCDs are associated with this provided 
functionality. MC approaches #5 and #7 were not initially developed for providing 
functional affordances, and therefore they are inappropriate for MC of CPCDs. 

Table  2-3 Comparison of MC sub-aspects for various MC approaches 
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Made-to-order customization ● ●      

On-purchase customization   ●  ●  ● 

Post-purchase customization    ●  ●  

Method 
Depend on PFA  ● ● ●    

Cost effectiveness Low Low Medium Medium Medium High High 

Actor 

Customization applier Company Company Company User Company User User 

For customizing, users 
interact with… 

Designer Designer Retailer Product Retailer Product -- 

Users’ skill Low Low Medium High Low Medium Low 

Artifact 
Product complexity High High High Low High High High 

Width of options High High High Medium Low Medium Low 

Affordance Depth of customization 4,3,2,1 4,3,2,1 4,3,2 4,3,2 1 4,3,2 3,2,1 
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GC5 Functional complexity of components: Functional complexity of CPCDs implied 
by almost all of the mentioned characteristics entails that their customization can 
only be performed by experts. Since the users are regarded as the customization 
applier in MC approaches #4, #6 and #7, these approaches are not suitable for MC of 
CPCDs. 

GC6 Inaccessibly distributed components: Characteristics C1, C6 and C14 indicate the 
distributed nature of CPCDs. Some components belong to common systems (e.g. 
GPS satellites) and this generalized characteristic makes them rather inaccessible. 
Therefore, the users’ control and access to all components of CPCDs are rather 
restricted. As a result, MC approaches #4 and #6 are not efficient for MC of CPCDs. 

GC7 Autonomous system behavior: Characteristics C10, C12 and C14 imply 
intelligence and independence behavior of CPCDs, and therefore the authority of 
users over systems declines. Autonomous behavior of CPCDs disregards the 
demands of users (and even those of the manufacturer) to a large extent. For this 
reason, using MC approaches #1, #2, #3, #4 and #6 are not logical for MC of CPCDs. 

A closer examination of the contents of Table  2-3 and the generalized characteristics of 
CPCDs listed above revealed that there are some mismatches (even conflicts) with regard 

to adopting different MC approaches. Conceivably, as the bottom line, they may lead to 
inefficiencies. We have developed Figure  2-7, to visualize the found mismatches. The filled 
circles indicate conflicts between conventional MC approaches (columns) and the general-
ized characteristics of CPCDs (rows). 

2.3.9 Consideration of a specific form of MC for CPCDs.  

Based on the conducted survey and analysis presented in this sub-chapter, it can be 
concluded that the currently known MC approaches were devised for conventional con-
sumer durables, and have limitations when applied to CPCDs. The reason is the unique 
characteristics of CPCDs such as duality, openness, heterogeneity and distributed nature. 
For example, due to the heavy ‘complexity’ of CPCDs there is a probability of mass-
confusion when the task of customization using conventional customization approaches is 
assigned to users. As an inherent characteristic of CPCDs, dynamicity also needs an appro-

 
Figure  2-7  Mismatches of conventional MC approaches to CPCDs’ generalized characteristics 
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priate MC approach for customization in the later phases of product life cycle. It should be 
seen that the methods and principles of conventional MC approaches are much more user-
oriented than product-driven, while the characteristics of CPCDs entail a function-
orientated rather than usability-orientated approach. Obviously, there are some conven-
tional MC principles, such as module-based design, reusing sources, postponing customi-
zation task, etc. that may be applied in MC of CPCDs after a necessary adaptation. Putting 
everything together, there is a need for novel MC approaches (as well as for new design 
tools and methods) for customization of CPCDs. The conceived approach should be able to 
fulfill the following requirements: 

R1 Providing customization opportunity after purchase: Functional adaptation of the 
of purchased CPCDs to the users requirements and specificities of the embedding en-
vironment implies the need for customizations in the use-phase. 

R2 Appropriateness for adapting high complexities: The chosen MC approach should 
be able to adapt complicated components (i.e., hardware, software, and cyberware 
constituents), and to consider the influence of adaptation of one constituent in the 
adaptation of other constituents. 

R3 Enabling exploitation of functional affordances: It is important to have opportunity 
to explore and utilize functional affordances that are dependent on and can manifest 
in specific application contexts. MC approaches that cannot support capacity, ‘quality 
of service’ and ‘function’ affordances are not appropriate. 

R4 Achieving cost efficiency for all stakeholders: The customization of CPCDs should 
happen in a cost effective way, and the approach of customization should facilitate 
achieving it.  

R5 All-constituent and system-level customization: The approach of customization 
should allow for system-level adaptation, and not only adaptation of one type of con-
stituents (e.g. hardware or software). Customization of all constituents together sup-
ports system-level customization. 

R6 Easy re-customization according to different needs: The approach should make it 
possible to change the customization of CPCDs relatively easily and fast, even under 
dynamically changing conditions. 

 
Figure  2-8 Comparison applicability of MC approaches for CPCDs customization 
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If we assess the MC customization approaches from the point of view of satisfying these 
requirements, or mostly supporting their fulfillment, then, embedded customization (EC) 
seems to be the most appropriate approach among other (Figure  2-9). Accordingly, we 
hypothesized that EC can be adapted for customization of CPCDs. Consequently, the next 
sub-chapter focuses on elaboration of the EC of CPCDs considering the design principles. 

2.4 DERIVING DESIGN PRINCIPLES FOR EMBEDDED CUSTOMIZATION OF CPCDs 

2.4.1 Research on design principles for EC of CPCDs 

In general, design principles are pieces of knowledge that explains how to get to feasible 
concepts and how to realize them in the design phase. The design principles of embed-
ded-customization  specify “what designers should do” in the design phase of a product in 
order to enable its  customization by the user in the use phase.  According to our reasoning, 
the principles of EC that underline the design of CPCDs should be developed according to 
their specific characteristics. To operationalize this in the practice, we followed the scheme 
shown in Figure  2-9. This scheme has been created based on two assumptions. First, we 
assumed that there is a relation between the system features and the design principles of 
EC approach relevant for traditional consumer durables (TCDs). Secondly, we assumed that 
the system features of CPCDs determine the design principles that are applicable for their 
EC, which some of these principles can be derived from the design principles of TCDs. 
Some design principles may be taken over without any change (solid line), some others 
may be taken over after adaptation of various 
extents (dotted line) and some of them 
cannot be used at all for EC of CPCDs due to 
mismatch (wavy line). Yet another set of 
design principles are to be defined starting 
out from the system features of CPCDs 
(dashed line). The objective is to embed 
adjustable and controllable features in a 
CPCD, which could be changed and custom-
ized after purchase, according to the re-
quirements of the users [92]. Without striving 
after exhaustiveness, the following categories 
of design principles for EC have been consid-
ered in our study: 

Strategy principles are rooted in the  nature of the EC approach and that are expected to 
be generally applicable (P01 & P02). Conduct principles are general but also  have specific 
meaning in EC of CPCDs (P03-P06). Architecture principles consider components of the 
system, as well as their structural relations (P07-P12). Exploitation principles are related 
to user  interaction with the system (P12-P23).  The design principles for EC of TCDs are 
presented in detail in [93]. These design principles can be briefed as: 

P01 Think about ‘customization capabilities’ in the ‘conceptual design phase’ and 
design them as ‘product features’ 

P02 Consider prospectively that customization of the product will be done in the ‘use 
phase’ by various users 

 

Figure  2-9 Scheme of deriving novel design 
principles for EC of CPCDs 
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P03 Identify what aspects, functions or features of a product need to  be customizable 

P04 Choose the most straightforward ‘means of customization’ 

P05 Identify the customizable components 

P06 Identify common components 

P07 Design the core-component containing common denominators 

P08 Design the power connection only for the core-component 

P09 Combine several products for the variable requirements of users 

P10 Use available components for different task (by e.g. folding, adjusting) 

P11 Design the product based on an integrated architecture 

P12 Reuse internal and external components and behaviors 

P13 Provide the possibility of customizing for all users with different mental 
and  physical abilities 

P14 Select proper type of adjusting and controlling interface 

P15 Reduce the complexity level of user interface (UI) as much as possible 

P16 Use the same (or universal) connection protocols and ports for all replacea-
ble  components 

P17 Design safe and error-free connectors for replaceable components 

P18 Design efficient feedback on customization of intangible features 

P19 Use meaningful graphical elements (e.g. icons, color) for intangible  customization 

P20 Include a customization assistant for users 

P21 Design controlling and customization means consistently 

P22 Develop a multi-language or language-free customization enabler and  instruction 

P23 Reduce the costs of mistakes and misuses by corrective user interface design. 

2.4.2 Correlation between design principles of EC and system-level features of TCDs 

Below we address the issue of correlations between design principles of EC and system-
level features of TCDs. For a comprehensive investigation of customizability and the 
related customization principles of TCDs, we needed to consider their system features, 
which could be sorted into five groups namely: (i) operational features, (ii) implementation 
features, (iii) application features, (iv) behavioral features and (v) emergent features. For 
pragmatic reasons, we decided to narrow down our investigation to a specific group of 
products for which embedded-customization is a typical form of customization. It is worth 
pointing out that several MC approaches can be applied together to a product, e.g., a 
laptop whose hardware components can be customized through “assembly-by-company” 
approach, with engraved logo of a customer’s company through “on-delivery-
customization” approach, and also can be customized by the user in the use phase by 
using the opportunities provided by the “embedded customization” approach. In our 
investigation, we did not consider features that are brought up through other MC ap-
proaches. Figure  2-10 represents the correlations among design principles of EC and the 
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system features of EC-TCDs. These features are either results of applying the EC principles, 
or require the application of specific EC principles that are still to be realized.  

The system features of TCDs that can be customized based on an EC approach are elabo-
rated in [93], which can be briefly mentioned as:  

F01 Responsive to a wide range of requirements 

F02 Embedded controllers 

F03 Embedded varying mechanisms 

F04 User-controlled functionality 

F05 Multi-functionality (multi-capacity and multi-purpose) 

F06 Component replaceability 

F07 Program-based customizability 

F08 Hardware-based (and/or software augmented) constituents 

F09 Centralized architecture 

F10 Independent predefined input/output 

F11 Dependent on external power sources 

F12 Limited connection possibilities 

F13 Predefined scale of customization 

F14 Predefined and specified diversity of functions 

F15 Customizable in specific ways 

F16 Simplified interfaces 

F17 Easy to learn and easy to use interface 

F18 Manually controllable and configurable 

F19 Simple physical joints 

F20 Standardized and uniform joints 

F21 Possibility of undoing 

F22 Multi-level interaction 

F23 Built-in user notification 

F24 Automated warning notification 

F25 Graphical entity-based interaction 

F26 Real-time prompting 

F27 Updatable and upgradable constituents 

F28 Comprehensive protection 

F29 Misuse prevention, and  

F30 Multi-lingual operations  
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We assumed that there are correlations among the design principles of EC and the system 
features of products. Figure  2-10 shows these correlations between the design principles 
of embedded-customization and the system features of EC-TCDs. It can be recognized that 
one system feature can in principle be related to several design principles, and a design 
principle can also be reflected by multiple system feature manifestations. These inter-
twined relationships can probably also be observed in other approaches due to the com-
monality of most of the MC principles. For comparison of system-level features of CPCDs 
and TCDs, we consider those features of CPCDs which are in one way or another in contrast 
with the above mentioned system features of EC-TCDs. The differences between TCDs and 
CPCDs have been considered from several aspects. The main consideration is architecture 
and function aspects. However for further elaboration, aspects such as application, net-
work, interaction, and maintenance have been studied as well. Although the issues related 
to these complementary aspects can be considered as either function or architecture 
aspects, we group them as separate groups due to their importance.  

From application perspective, the importance refers to different behavior of CPCDs based 
on the various situation; they are so called “situation based” [94]. Unlike TCDs in which 
input and output of components are predefined, in CPCDs, components perform their 
functions differently according to their situations, signals, input data, required output, and 
so forth. From network perspective, ad hoc network possibilities [95] and openness are key 
features of CPCDs. It is always unpredictable to know which components connect to each 
other, and how they behave in operation. Therefore, the functional capability of a system is 
not anticipated in some situations. In addition, CPCDs are combinations of networked and 
decentralized sensors, actuators, and processing components [96]. Decision making is 
distributed over system components [30]. From user interaction perspective, usually only 
expert users can deal with CPCDs due to lack of development of user-interaction. Replac-
ing components in a CPCD require dealing with more sophisticated connection types 
rather TCDs. Re-programming, re-coding, and reconfiguring components are common 
ways of adapting CPCDs, which cannot be modified by a novice user. Additionally, in case 
of connecting additional components, possibility of connecting components in wrong 
ways is high due to high complexity of system and lack of standardization in interaction 
pattern [97]. From maintenance perspective, fault detection systems are not developed 

 

Figure  2-10 Correlation of design principles of EC and features of TCDs 
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well-enough, especially for CPCDs. Therefore, maintaining and detecting errors, faults and 
failures is challenging due to high complexity, integration, and uncertainty of these sys-
tems. Actually, fault detection systems in CPCDs are not as much mature as in TCDs. In the 
following paragraphs, the mentioned aspects of comparison are elaborated further. 

2.4.3 Comparing TCDs with CPCDs based on their system-level features 

By comparing system features for both TCDs and CPCDs which are correlated to the EC 
design principles, we sorted system features into various sets based on their relevance to 
the TCDs and CPCDs. These sets are: (i) features that are usually available in TCDs and do 
not have any similar feature in CPCDs, (ii) features that are more related to TCDs and 
sometimes can be found in lower level CPCDs, (iii) features that are similar and common in 
both groups of consumer durables, (iv) features that are more dominant and critical in 
CPCDs, and (v) features that belong to CPCDs without any congruence with TCDs. The 
mapping of these features in two-dimensional space is represented in Figure  2-11. The 
horizontal axis below the chart represents features of TCDs and the above horizontal axis is 
for features of CPCDs. Distances of each point to these axes show the relevance of the 
features to these consumer durables. In other words, if a feature is more related to TCDs, 
the point is plotted in the lower part of the graph and the points above the graph show 
features with more relevance to CPCDs. Points labeled “F” are the same as the features as 
used in this subchapter. Moreover, we found features that are more manifested in CPCDs. 
These features were briefly discussed in this chapter, and are labeled with “C” in Fig-
ure  2-11. The colored areas (separated by background color) show different sets of the 
stated features. In order to derive design principles for EC of CPCD, It could be proposed 
that: 

 
Figure  2-11 Congruency of features of TCDs and CPCDs 
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• Design principles associated with system features of Set (i) can be ignored because 
they are irrelevant for CPCDs. 

• Design principles associated with system features of Set (ii) need some adaptation 
due to their partial relevance to CPCDs. 

• Design principles associated with system features of Set (iii) can be directly trans-
ferred and used in EC of CPCDs, because these features are common for both TCDs 
and CPCDs. 

• Design principles associated with features of Set (iv) and Set (v) are not available 
yet. Due to novelty of these features, new design principles for EC should be gener-
ated. 

2.4.4 Discussions on the findings 

It has been revealed that the reasons of mismatches of traditional design approaches to 
design of CPSs rooted from insufficiency of design principles for supporting features of 
CPSs. It implies the necessity of deriving design principles and approaches according to 
unique characteristics of families of CPSs including CPCDs. By generalizing the result, it has 
been proved that there are correlations between design principles and products’ features. 
These correlations have been observed in embedded customization of TCDs. Consequent-
ly, the similar kind of correlation could be valid in embedded customization of CPCDs, or 
any other design approaches that are desired to be applied for CPSs. Similarities and 
differences of TCDs and CPCDs could be used as criteria for deriving EC design principles 
for CPCDs. This finding could be generalized as rules for other design approaches and 
groups of CPSs. Although it has been demonstrated that the design principles have corre-
lation with the features of products and systems, the proposed method of deriving new 
design principles has not been practically tested. Therefore, it could be implemented as a 
general method for any design approaches after a validated practical test. 

The investigation in the domain of design principle (i) has shed light on the reasons behind 
the mismatches of conventional design approaches and characteristics of CPSs, (ii) provid-
ed insight about the knowledge gap from the design principle perspective, (iii) proved that 
the design principles could be transferred systematically (e.g. to be exploited with design 
supporting tools), and (iv) argued that the design principles are varied and dependent to 
the chosen design approach, and the targeted product (or system) category. Since we are 
not interested in developing and deriving design principles for customization of CPCDs, 
we give up the continuation of the current line in order to focus on the assisting designers 
of CPSs to tackle the challenges appear in CPS pre-embodiment design. The mass customi-
zation approaches and design principles were mentioned as means of investigation and 
we don’t feel any commitment to refer them again in the following chapters. From now on, 
we assume that the required design principles are provided for designing, and we try to 
focus on the essence of technical challenge. 
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2.5 CURRENT TOOLS TO SUPPORT DESIGN OF CPSs 

2.5.1 General considerations 

Nowadays technical systems are becoming more complex to be handled by traditional 
system engineering approaches [98]. It has been argued that to tackle this growing com-
plexity of CPSs, we need to apply higher abstraction for formal modeling of these systems 
in the early design phases [99]. We embraced the idea of dealing with system design in the 
early design phases and opposed the idea of applying high abstraction in modeling CPSs. 
Our reasoning about these issues is presented in this sub-chapter. Additionally, the main 
part of the current sub-chapter belongs to discussion about the available design tools for 
supporting CPS designers. The main issue in our investigation was to explore the ways that 
the tools support design activities as well as the design phase they are applied. Among the 
available supporting tools for CPSs, no one specifically developed for customization of 
CPSs. However, there are some modeling tools that support some level of configuration 
and adaptation. 

For instance, there has been an effort performed in Renault company for capturing cus-
tomization issues in model-based system engineering (MBSE) [100]. They tried to introduce 
a variability modeling technique based on MBSE. Studying this technique, we understood 
that by variability modeling they mean modeling the compatibility constraints in assem-
bly-by-company approach of MC. The ultimate goal of this technique is to guide users to 
make the customization decisions in order to increase possibility of components compati-
bility and system implementation. This modeling tool is implemented in SysML and called 
Co-OVM [101]. Other variability modeling solutions mentioned in the literature [102], [103], 
and [104] also focus on constraint modeling instead of system modeling. 

Since there is not a specific tool for supporting embedded customization of CPCDs, we 
decided to broaden our investigation to explore modeling tools for CPS design. Using 
models for system design is a common practice nowadays. The terms model-driven devel-
opment [105], model-driven engineering [106], or model-based design [107] are made to 
refer to the concepts addressing challenges of complex technical systems such as CPSs. 
Models can be used for (i) collecting requirements and specifications of systems, (ii) captur-
ing the process of system development, (iii) simulating operations of systems, and (iv) 
analyzing the operations and architecture of systems[108]. 

Considering CPSs as integration of computation and physical processes, designing such 
systems requires understanding software and network processes in dynamic interaction 
with physical processes [108]. Different approaches have been employed for CPS design 
that could not be generalized as some of them are domain-specific approaches. Generally, 
design approaches can be divided into three categories of top-down for conceptual 
design, bottom-up for detail design, middle-out for disparate team work [109]. More 
specific approaches have been developed based on the mentioned general approaches. 

Approach of model driven architecture (MDA) is known based on its three-stepped model 
transformation. In this approach, modeling starts with computation independent model 
(CIM), then, this model is transferred into platform independent model (PIM), and finally 
into platform specific model (PSM) [110]. This approach starts from functional aspect and 
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ends in architectural considerations of system design. Platform-based design (PBD) ap-
proach is originally employed for integrated circuit (IC) and microelectronic devices design. 
It considers cost as an important factor of implementation [111]. This approach integrates 
both top-down and bottom-up view in system design for connecting ‘architecture space’ 
and ‘application space’. This approach exploits ‘reuse’ of platform components to provide 
different functionality and consequently reduce development risks, costs and time to 
market [112]. 

The term actor-oriented refers back to the concept introduced in mid of 1970s by [113]. 
Actor-oriented design can be considered in contrast with object-oriented [114]. In this 
view, actor-oriented modeling is able to formulate concurrency and sophisticated com-
munication among components with the aid of ports. Classes in object-oriented can be 
defined by attributes and methods, while actors in actor-oriented approach can be defined 
by data (state), parameters, and ports. This approach is suitable for behavioral modeling.  

2.5.2 Briefing on the studied systems 

The approaches underpin creation and development of design frameworks and support-
ing tools. Since there are no well stablished framework for pre-embodiment design of 
CPSs, computational tools developed for conceptual design of complex technical systems 
are rare [115]. However, in engineering design and system evaluation context we can 
name several well-known tools. Some of these modeling tools are commercially available 
(e.g. LabVIEW, Simulink), many modeling tools are developed in academic and laboratory 
environments (Ptolemy, Metronomy), and numerous funded projects have focused on this 
issue (e.g. COMPASS [116], DANSE [117]). The following paragraphs brief these tools. 

Simulink from Mathworks is initially developed for control system modeling [114]. It is one 
of the most used commercial model-based-design tools [118] that is able to handle con-
tinuous-time mixed dataflow simulation [119]. There are many add-on products for Sim-
ulink (e.g. SimEvents [120], Stateflow [121]) that can extend its application. 

LabVIEW from National instruments, as a system-design platform, significantly improved 
functional design of embedded systems [122]. It is commonly used for data acquisition and 
instrument control modeling [123]. 

Modelica is an object oriented domain-specific modeling language [124] developed to 
support physical component-oriented modeling of complex systems (e.g. mechanical, 
electrical, hydraulic, thermal, control components). However, modeling of software com-
ponents and the related issues are not supported by Modelica. The library of Modelica 
consists of generic model components and functions in various domains. Since Modelica is 
an open source modeling language, several commercial front-end software have been 
developed to support implementation of this language namely, AMESim [125], Dymola 
[126], Cymodelica, SystemModeler [127], MapleSim [128], CATIA Systems [129], and 
OpenModelica [130]. Modelica is an equational modeling tool [131]. It is object-oriented in 
contrast with Ptolemy [132]. In Modelica ports carry continuous-time signals which are 
connected to other ports through declarative relationships. 

UML is originally created for software development. Therefore, concepts of time, concur-
rency and real-time design are missed in this language. Since UML is a language that can 
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be applied for a broad scope, UML profiles refine it for specific applications. The main 
problem of UML which is inherited to SysML is lack of consistency of the overall descrip-
tions. Thus, it is not possible to check if two parts ppropriately fit together [133]. 

Ptolemy is based on actor-oriented modeling approach [134], where the actors communi-
cate according to the rules defined by model of computation (MoC) [108]. Examples of 
MoC are discrete events (DEs) [135], continuous time (CT) [136], finite state machines 
(FSMs) [137], and process networks (PNs) [138]. Ptolemy II is specialized in handling timing, 
concurrency and heterogeneity challenges of CPSs [139].  

Metro II supports platform-based design approach and handles components interaction 
by non-functional quantities [140]. It suffers from limitation of supporting continues time 
models and MoCs in function modeling [141]. 

MARTE is claimed to be able to support time, concurrency, and quantitative characteristics 
of software and hardware platforms [142]. It is developed as a profile of UML. Profiles in 
UML are standardized extension mechanisms to support domain-specific purposes [143]. 
MARTE is an effort towards linking SysML diagrams to semantics [144]. 

Metronomy integrates functional modeling from ‘Ptolemy’ and architectural modeling 
from ‘Metro II’ in order to provide a function-architecture co-simulation framework [99]. 
The work and results presented in [141] officially introduced Metronomy for timing verifi-
cation of CPSs and after that cited by other researches, i.e., [145], [99], [146], and [147]. In 
Metronomy, timing contract is the sole linkage among architecture and function aspects 
[141]. 

BG-UMF (bond graph based unified meta-modeling framework) is an alternative of UML 
that uses a hybrid approach based on model unification and integration [109]. It originally 
developed with the focus on conceptual design of CPSs and works based on MDA ap-
proach. Similar to Ptolemy and Modelica, It uses MoC for supporting concurrency and 
timeliness. BG-UMF is claimed to be able to represent physical systems across multiple 
domains. 

COMPASS project targeted three problematic issues in modeling system of system (SoS) 
namely [148]: (i) Independence of constituents: separate groups of stakeholders are 
involved in a system development process. They are working separately towards a same 
goal; therefore, changing in one component might affect the other components’ design. 
(ii) Verification of emergent behavior: behaviors of a component in isolation are different 
from the behaviors of the same component composed in a system. (iii) Semantic hetero-
geneity: Multi-disciplinary approaches are required for designing and engineering of 
heterogeneous systems [149]. Therefore, conceptualization, designing, and analyzing of 
such systems are only possible by sharing common semantic framework [148]. COMPASS 
develops its models in SysML. The devolved models are translated systematically into CML, 
which is a language for semantic representation defined by this project [150]. 

Besides the mentioned tools, there are some languages and add-ones to support and 
extend functionality and applicability of the modeling tools. SystemC is a class library of 
C++ that is used for simulation [151]. SpecC is a super set of ANSI C [152]. They both 
support concurrency and a rich set of communicative primitives through special constructs 
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to represent hardware concepts [133]. Timing definition language (TDL) is developed to 
support modeling time and event-triggered components for distributed systems. TDL is 
used for programming dataflow models in Simulink and discrete event (DE) model in 
Ptolemy II [153]. Other remarkable efforts focusing on different aspects of system engi-
neering and design namely, System-On-Chip Environment (SOCE) as a modeling frame-
work based on SpecC language [154], Artemis as a tool for performance evaluation [155], 
PeaCE as an extension of Ptolemy for software-hardware co-design [156], Metropolis as an 
environment based on PBD paradigm [157], and ARTS as a simulation platform based on 
SystemC language [158]. 

2.5.3 Some reflection of the findings 

Major challenges for the current system modeling tools are: (i) integration of heterogene-
ous components of CPSs, (ii) interoperation among this kind of components, and (iii) 
stimulation of modifying existing design [108]. Semantics of heterogeneous components 
in a system model have been largely neglected in the available platform-based design 
principles, and accordingly fails to support model-based design tools [111]. Following 
paragraphs elaborate more specific non-compliances of the mentioned tools to the re-
quirements faced in CPS design and modeling. 

Since UML lacks formal semantics, it cannot be used for simulation, and accordingly UML 
and SysML cannot support CPS design [109]. SysML focuses on syntax of diagrams instead 
of their semantics. Therefore, it is strictly limited in handling system design problems [108]. 
In other words, SysML diagrams could be interpreted differently as they are not connected 
to semantics. Several tools such as MARTE and COMPASS developed with the aim to solve 
the problems faced in SysML. However, in both of mentioned efforts the problem of 
neglecting morphological and physical properties inherited from SysML. Analytical capa-
bility of SysML is limited to the evaluation of simple parametric equations. Therefore, 
trade-offs, representing consequences of requirements changes, and demonstrating 
results of modifying system configuration are not viable in this modeling language [159]. 
PIDO framework could be considered as an effort towards bridging this gap [160]. Howev-
er, morphological concerns are also completely neglected in this approach. 

On the other hand, some tools (e.g. Modelica, LabVIEW, Simulink, and Metronomy) are 
developed for system engineering and analyses rather system-level design and conceptu-
alization (by system-level we do not refer to SoC or embedded systems). For example, 
Metro II suffers from linear mapping between function and architecture. Though architec-
ture is considered as a base for designing, the system components are considered as 
abstract semantic entities. Modelica can be considered as another example that is more 
suitable for system analyzing rather system-level design. It does not sufficiently support 
distributed, heterogeneous system modeling. 

In Ptolemy II, heterogeneity is handled strictly hierarchical, which each node in hierarchy 
belongs to one domain and the components are dependent on the specific communica-
tion mechanism provided by their respective node [140]. Therefore, components are 
limited to communicate with only two levels of the hierarchy. In addition, there have been 
many efforts to integrate different modeling tools to support comprehensive modeling of 
heterogeneous systems [161], [162] and [163]. However, none of them sufficiently support 
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In system conceptualization and engineering design, morphological properties of compo-
nents are as important as logical and operational properties, particularly in CPSs that are 
highly integrated in their surrounding physical world. This consideration is neglected in 
the most of the available modeling tools. The available tools usually have serious problems 
in formulating morphology, physical principles, and architectural attributes, because they 
do not capture physical information of their domains. That is the reason we targeted for a 
modeling tool that deals with system-level design as a composability issue and considers 
morphological aspects in system architecture besides the functional attributes and as-
pects. In the following paragraphs the other aspects of modeling CPSs are more elaborated 
as specific gaps we faced here. 

• Applying higher abstraction is suggested in the literature [164] to tackle complexity in 
system-level design. The important issue is to understand that by system-design they 
usually mean multi-core processor system on chip and not CPSs. It is also argued that a 
model should be a “good abstraction” of the real system, with this meaning that it 
should only remove inessential details [108]. However, it is still unclear what is essential 
and what is not. Lower level of abstraction is the better choice as it is closer to final im-
plementation, for the reason that higher-level abstraction hide unnecessary details 
which might be critical in CPSs [140]. The popularity of abstraction is rooted in hetero-
geneity and complexity of CPSs. Another way to tackle integration complexity is top-
down decomposition [133]. To avoid abstraction, we stick to decomposition. 

• Modeling languages significantly affect the design processes [165] [133]. For instance, 
some modeling languages are unable to handle concurrent functions. Therefore, it has 
been suggested that modeling languages should be developed specifically targeting 
the domains [166]. However, it should be considered that a single modeling language 
more likely is not able to handle all domains. Accordingly, a domain-specific language is 
not able to model CPSs as they are integration of heterogeneous domains. It could be 
concluded and proposed that for heterogeneous systems we should concentrate on 
developing a language-free modeling tool. 

• As it mentioned before system design and engineering analysis can be considered as 
two dispersed concerns. However, they are traditionally complementing concerns. 
Sometimes, lack of relation between the system models (e.g. developed in SysML) and 
discipline-related models, (which consider detailed component-level properties and 
issues), results in a large gap between system design activities and design engineering 
analyses [159]. 

• Another problem with conventional system-level modeling and design tools is that they 
address either software or hardware but not both. Although for many years co-design 
was a hot topic in this context, the proposed methodologies usually considered SW and 
HW issues in a segregated way [133]. This problem rooted in the differences of timing 
and concurrency semantics as well as morphological and architectural attributes of HW 
and SW. 

• Available modeling tools do not sufficiently support heterogeneous nature of CPSs 
[139]. This issue is critical in modeling connections between heterogeneous compo-
nents. Intrinsically different (HW, SW, CW) components should be represented uniformly 
in order to be able to represent heterogeneous connections. The physical properties of 
components should be captured as an important part that interacts with functionality 
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of the modeled system. On the other hand, in a model, no matter how different the 
components are, they should be represented uniformly in order to capture their inter-
connection. 

• The evidences show that morphological properties of a system cannot be studied in 2D 
modeling space, and suggest to capture 3D models of components in CPSs for better 
engineering analyses [145]. By reducing a system to a 2D model, not only one dimen-
sion is missed, but also all physical properties and architectural parameters are omitted 
in functional considerations. That is the reason the tools that cannot consider morphol-
ogy of the system cannot go further than logical analysis. 

We needed to separate what should be captured by our modeling tool from how they 
should be captured. The former refers to epistemological aspect and the later refers to 
methodological aspect of modeling. Accordingly, the epistemological issues were consid-
ered as our priority. By targeting system level design concern along with morphological 
perspective, we understood very soon that there is no practical or theoretical insight 
available to underpin our tool development. That was the reason that we decided to 
develop our own underpinning theoretical framework. 

For developing the required underpinning theory we needed to find a well stablished 
modeling approach as a starting point. This approach should bridge the current modeling 
gap towards the desired modeling tool. We initially selected ‘feature technology’ for this 
purpose due to its ability to handle morphological modeling. Our further study revealed 
that the flexibility of the feature technology makes modifications of the current situation 
possible. These modifications are needed for creating the desired version of feature which 
is named as system-level feature. Feature technology has some advantages that are useful 
for our purposes:  

• Though features can be interpreted concerning logical and/or virtual things, they are 
typically considered to be parts of physical things. 

• Features identify regions of a thing that have meaning and/or importance for one or 
multiple aspects and purposes. 

• Features that can be recognized in multiple things indicate some sort of similarity in 
manifestation and/or functionality. 

• Features are regarded as discrete but interacting modeling entities that can be cap-
tured, predefined, parameterized and represented in multiple forms. 

• Feature entities can be grouped and catalogued according to multiple cognitive mean-
ings and schemes. 

• Features increase the conceptual level of analysis and synthesis of artefactual things. 

• Depending on their nature, meaning, definition, and representation, features are 
adaptable, convertible and reusable entities. 

• Features can be interpreted, recognized and/or defined on multiple compositional 
(structural) levels of things. 

• Features can be standardized in both application-independent and application-
dependent manners. 
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• Features can be captured in engineering ontologies which lend themselves to maintain-
ing consistency and transferability, and reducing redundancy and overheads. 

• Features increase efficiency and consistency of engineering modeling, analysis, while 
reducing efforts, cost, time and cognitive overload. 

• Based on features, different product and service modeling methodologies can be 
developed and applied. 

 

2.6 SYSTEM-LEVEL FEATURES AS A NEW CONCEPT FOR SYSTEM MODELING  

2.6.1 The paradigm of features 

For investigating system-level features, we needed to understand what does ‘feature’ 
mean traditionally, what is the origin of feature, and how its concept has been developed 
chronologically. Features are knowledge entities with engineering significance used in 
generating, analyzing, or evaluating designs of a part or assembly [167], [168]. Features can 
be considered as information sets regarding to form, design reasoning, performance, or 
manufacturing of parts or assemblies [169]. Although there are multiple views on feature 
technology in terms of application (e.g. feature recognition [170]), design-by-feature [171] 
[172] is the approach we need to focus in our investigation. This approach is also referred 
as feature-based modeling or feature-based design. The reason of development of this 
approach lies on its higher potential of supporting the design process better than tradi-
tional CAD systems [169]. 

From this perspective ‘feature’ is defined as knowledge patterns concerning description of 
a part [167], a semantic entity describing a part or assembly by grouping respective infor-
mation about design, manufacturing and functional manner [173], an entity that its formal 
and geometric presence is needed for design process [174], an information carrier that 
supports design and communication among engineering tasks towards manufacturing 
[175], a region of interest, which its respective information entity required in reasoning of 
design, engineering and manufacturing [176], and computer representable data associat-
ing with geometric design, manufacturing process and functional requirements [177]. 

In the classical theory of engineering product features, a feature is something that has 
significance in a given context [178]. For example, form features capture regions of both 
prismatic and freeform industrial shapes that have a meaning for humans or smart system 
agents from a semantic point of view (e.g. chamfer, hole, rounding, sharp edge, depres-
sion, protrusion) [179]. This idea has been extended to applications where geometry, 
structure, materialization, implementation, etc. imply some meaning in the context of a 
particular application (e.g. as is done by manufacturing features, assembly features, piping 
features) [180]. Feature-based design allows transferring many pieces of information 
available in the design phase to a database, which could be used by downstream applica-
tions [173]. Therefore, manufacturing features, assembly features, and process planning 
features could be derived from form features used in the design phase. 

Chronological development of feature technology [181] has been briefed and modified as 
follow: (i) fundamental research about feature definition by Shah (1991) [167], (ii) definition 
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of application feature by Burgett et al. (1995) [182], (iii) parameterization of freeform 
feature by Horváth et al. (1996) [183] [184], (iv) machining process mapping by Chu et al. 
(1996) [185], (v)  mapping product function for conceptual design by Brunetti et al. (2000) 
[186], (vi) definition of advanced, object oriented assembly feature by Ma et al. (2004) 
[187], (vii) generation of concept design at the assembly system level by Jin et al. (2007) 
[188], (viii) virtual reality, physics modeling via CAD by Igwe et al. (2008) [189], (ix) concept 
feature generation with a repository by Bohm et al. (2008) [190], (x) controlling the level of 
details via geometric feature classification by Chu et al. (2009) [191], and component-based 
system design by Lampka et al. (2013) [192].  

Researches about feature technology started in the late 70s. In the early 90s, it was already 
a mature body of research and implementation work [193]. In the last two decades, atten-
tion was paid to ontology-based feature definition [194], information sharing [195], map-
ping [196], and feature conversion [197]. Feature-based design has had more influence on 
the detailed design and planning activities of product development processes, than on the 
conceptual or pre-embodiment design activities [198]. This comes from the dependence of 
meaning on the details of manifestation [199]. 

2.6.2 Feature technology in designing TCDs 

Several issues are concerning the feature-based design e.g. feature classification, feature 
relations, feature validation, feature representation, and feature applications. Some of 
these issues were briefly visited in our investigation to clear out the route towards system-
level features concept. Classification of features is useful for identifying the mechanisms 
they support in designing, providing common terminology, and developing data ex-
change standards [167]. Since initially features were mostly involved in form and geomet-
ric design of products, early classifications of features were about form features. They 
considered five categories: (i) form features, (ii) precision features, (iii) technological fea-
tures, (iv) material features, and (v) assembly features [200], [201].  

The classifications proposed later have added functional and application features to the 
former category of form features. Functional features are used for describing function of a 
component during conceptual design [202], form features refer to generic shape that 
conveys some engineering meanings [203], and application features are used during 
process planning and includes manufacturing, analysis and inspection features [169]. 
According to [204], features originate in reasoning process applied in multiple stages of 
product life cycles, and are intensely associated with particular application domains. 

We proposed ‘purpose’ as a criterion for classification of features. In our view, features are 
considered as products of human cognitive activities which are made according to particu-
lar ways of seeing towards specific engineering purposes. The purposes specify the seman-
tic roles that the associating features are made for. These roles should be considered from 
both epistemology and methodology viewpoints. Epistemologically, the engineering 
purposes provide cognitive frames for making rational decisions. While, methodologically, 
the engineering purposes provide frameworks for decomposing complex objects into 
context-relevant formally-definable elements. Generally, ‘purposes’ can be considered 
according to four categorical reasons: (i) the reason for which anything exists, (ii) the 
reason for which anything is thought, (iii) the reason for which anything is created, and (iv) 
the reason for which anything is done. Subsequently, the associating features are classified 
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respectively into substance features, intellectual features, artefactual features, and proce-
dural features. 

From the engineering point of view, this feature categorization could be used for classifica-
tion of features in feature-based design. Accordingly, the substance feature includes all 
feature classes whose elements describe the characteristics of some existing or conceived 
substances, and define from which substances an object is established as in a real or virtual 
world (e.g. material features). The Intellectual feature category includes all feature classes 
whose elements make possible to reason about existing or conceived objects, and capture 
their paradigmatic, contextual, notional or implicative characteristics in the physical and 
cognitive world, respectively (e.g. conceptual features). The Artefactual feature category 
includes all feature classes whose elements are recognizable on existing or conceived 
objects in a real or imaginary world and make possible to create them and/or change their 
characteristics (e.g. form feature). The procedural feature category includes all feature 
classes whose elements contribute to capturing the process of existence and change, to 
conduct something in time, and to bring an object to an existence that is recognizable in a 
real or imaginary world (e.g. process feature). 

In contrast with the features that describe components, system-level features cannot be 
nested in one of the mentioned categories. System-level features semantically are classi-
fied as very-high-level features. Consequently, as the highest level features, they cover all 
the mentioned purposes. System-level features capture existence of elements of the 
system, their architecture and attributes (substance feature); they capture paradigmatic 
system commonalities including contextual information for taxonomical reasons (concep-
tual feature). System-level features also capture morphological characteristics, parameters’ 
relationships, and input/output transformations (artefactual feature), as well as temporal, 
and event-based state transitions, and procedural system operations (process feature). 

2.6.3 Status of using high-level features in system modeling 

In the beginning of the development of the feature technology, the feature-based design 
mostly was involved in parametric design. However, interests were drawn towards config-
uration, and conceptual design afterward [169], [205] and [186]. In the mid of 90s feature-
based design started to evolve from detail (parametric) design towards conceptual and 
configuration product design [202], which could be considered as first attempts towards 
definition of higher level feature. According to granularity and application levels [181], 
features were divided into two categories of part and assembly features [187] [206]. Part 
features focus on geometric aspect. However, assembly features associate with mating 
relations among parts. In this viewpoint, system-level features are closer to assembly 
feature, as a higher level. Since the term ‘high-level features’ is already reserved for other 
features, i.e., application and conceptual features, we consider system-level features as 
very-high-level features. System-level features associate with multiple pieces of infor-
mation related to various traditional features, e.g., parts-, assemblies-, functional-, applica-
tion-, and conceptual- features. 

System-level features combine functional specifications with geometric ones, as intrinsical-
ly dependent parameters. Architecture and function aspects of systems considered as two 
complementing laminated layers [207] [208]. Traditionally, function aspect was used for 
design-by features. Among the first researches towards using feature technology for 
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designing by functions we can mention [209] [210]. There are also some cases that inte-
grate function, structure and geometry in the feature-based product model (e.g. DICAD, 
GEKO) [211] [212]. However, these features have never been applied in system-level 
architecting and configuration. In many publications, system-level features are used with 
different meaning. The reason is that the system in various disciplines means differently. 
For example, system-level feature used as features of systems on a chip in [213]. The term 
system-level feature implies healthiness of complex mechanical systems in battlefields in 
[214], it refers to modeling online decision support system in [221]. By system-level fea-
tures, we mean features corresponding with the systems (e.g. CPSs) that are composed of 
numerous off-the-shelf components, aggregated from hardware, software, and cyberware 
constituents, usually physically distributed, and open for other components to join or leave 
the system.  

Theoretically, two categories of system-level features can be identified namely: paradig-
matic features and manifestation features, which complement each other on different 
abstraction levels. We defined paradigmatic system feature (PSF) as a logically-based and 
physically-based abstraction of a system as whole that differentiates it from other compa-
rable systems. These features are rooted in inherent characteristics of a system. A system 
manifestation feature (SMF) is related to a specific system in contrast to paradigmatic 
features that are about common characteristics of a group of systems that share some 
similarities. SMFs can be manipulated by designers and cannot violate overall paradigmat-
ic system features.  

The PSF category includes features that distinguish a particular type of system from other 
types of systems. They are generic and abstract, and do not have explicit relations with the 
engineering realization/implementation of systems. The advantage of introducing para-
digmatic features is to avoid the often-cited ‘blind man and the elephant’ situation, i.e. to 
help avoid mistakes in identification of types of systems based on specific details and 
attributes [215]. Table  2-4 compares the paradigmatic system features CPSs with conven-
tional technical systems.  

The second category of system-level features includes features that exist only in a particu-
lar manifestation of a system. While PSFs are archetypal, SMFs are both phenotypic, and 
syntagmatic. Consequently, they form a part in larger syntactic units.  A particular SMF may 
occur multiple times in a system in different instantiations (with different sets of values 
assigned to its parameters and annotations). SMFs may also appear on multiple aggrega-
tion levels. In the language of topology it means that various rougher and finer domain 
topologies can be defined over the overall domain of a system [215]. 

Considering the facts that PSFs and SMFs represent two different levels of abstractions and 
that they are conceptually independent from each other, a strong demarcation line have 
been drawn between paradigmatic features and manifestation features of systems. Not-
withstanding the independence, paradigmatic features may be (strongly) reflected on and 
expressed by manifestation features [215]. SMFs can be represented by parameterized 
engineering models and uniquely characterized by spatiotemporal, architectural and 
operational attributes. Contrasting abstract paradigmatic features, SMFs are concrete and 
self-contained entities. Just as traditional e.g. form-, assembly-, manufacturing-, features, 
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SMFs can be represented by computational constructs containing a structured set of 
interrelated parameters, constraints, values and semantic annotations [215]. 

2.6.4 Issues concerning computational handling of system-level features  

From the perspective of computer technology, features are semantic representation of a 
system and its components that can describe, visualize and analyze different engineering 
aspects within whole product lifecycle [181]. In the context of feature-based design, 
purpose of features could be refined based on (i) the design approach which the features 
are employed for, (ii) the product that the features are used for modeling them, (iii) the 
modeling tool that supposed to handle the features, (iv) the users that operate the model-
ing tool, to design the product through the design approach. Figure  2-13 shows the 
differences between conventional feature-based design (CFBD) and system-level feature-
based design (SLFBD) cases. The mentioned quadruple aspects have significance in com-
putational perspective which is discussed in the following paragraphs. 

Table  2-4 Comparison of paradigmatic features in different systems 

Paradigmatic features Ordinary systems Low-end CPSs High-end CPSs 

Sophistication of overall 
manifestation appearance 

Conventional manifestation Low-end manifestation High-end manifestation 

System complexity Ordinarily compound Linearly complex Non-linearly complex 

Functional objectives Providing means Providing utilities Providing services 

Overall architecture Closed system boundary Extendable system boundary Open system boundary 

Construction topology Predefined fix architecture Predefined modifiable 
architecture 

Runtime dynamically 
architected 

System design principle Hierarchically composable Heterogeneously composable Heterachically compositional 

Functional organization Integrated structure Distributed structure Decentralized structure 

Functional connectivity Stand alone Static networked Dynamically networked 

Operating principles Execution and control Sensing, computing and 
activating 

Observing, reasoning, 
activating and motivating 

Functional intelligence Functionally determined Functionally smart with limited 
awareness 

Functionally autonomous 
and conscious 

Readiness for operation Condition activated Alert in operation Proactive in operation 

Intelligent components None or dedicated problem 
solvers 

Individual agent-based 
reasoning 

Cooperating agent swarm 
reasoning 

System control Manually controlled, 
Feedback controlled 

Adaptive and self-adaptive 
control 

Intelligent control according 
to goal driven operational 
scenarios 

Level of composition of 
scales 

Mono-scale composition Dual-scale composition, Multi-scale composition 

Placement in context Largely independent of 
context 

Context sensitive (situated) 
operation 

Context driven operation 

Adaptability Partial external modifiability Self-adapting capabilities Self-evolving capabilities 

System relations Unrelated or physical of 
relations 

Semantic relations Pragmatic relations 

Heterogeneity Mono-disciplinary system Multi-disciplinary system Trans-disciplinary system 
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Design approach determines (i) the objectives of designing action, (ii) the design phase 
that the modeling actions should be taken place, (iii) the kinds of challenges should be 
dealt with, and (iv) the kinds of parameters that should be specified. Feature technology 
from its beginning has been used for many design approaches such as design for assembly 
(DFA) [216], design for manufacturing (DFM) [217], and cost prediction [218]. In the most of 
the conventional design approaches, modeling actions take place in embodiment and 
detail design phases. However, in the system design approach, modeling is required in the 
pre-embodiment design phase. Since in system design approach, the components are off-
the-shelf and designers should cope with composability challenges, the modeling should 
happen in the pre-embodiment (conceptualization and configuration) design phase, 
which the system designers should specify how the components connect to each other 
functionally and architecturally towards delivering the desired overall system output. 

The subject of design in CFBD is products, components, and parts. However, in SLFBD, 
technical systems (i.e. CPS) are subjects of design and modeling. These technical systems 
are higher level compositions of products, components and parts. Particularly, the model-
ing subjects of CFBD (i.e. system on chip) are the components of the systems that are 
subjects of modeling in SLFBD. In other words, for computationally modeling of CPSs, 
models of components should be used as elements of the greater model. It is noteworthy 
that models of the components cannot be used directly, since they are not reflecting 
system-level knowledge specifications. 

The most common tools used in CFBD are 3D modeling tools, optimization and analysis 
tools, and process planning tools, which are developed for specific tasks and involved in 
detailed level modifications of components. These tools exploit features developed for a 
particular purpose in a specific context. However, SLFBD and accordingly system-level 
tools work with system-level features (e.g. SMFs) which satisfy compound purposes. 
Therefore, SMF-based modeling tool should have a knowledge-intensive environment and 
working principles, which shares no similarity with other conventional modeling tools. 

The users in CFBD tools are product engineers, assembly and manufacturing experts, and 
the experts who are involved in embodiment design of the products. These people are 
more likely experts in their discipline and fully aware of the functional and architectural 
aspects of the modeled components. However, system engineers who are the users of 
SLFBD tools are not fully aware of every functional and architectural aspects of all compo-
nents used for composing the model. They use the components as black-boxes whose 
interfaces are known for them. Towards solving composability challenges, system design-
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ers connect the interfaces of the components (most probably) without being aware of 
their working details. In other words, though working mechanisms, attributes and parame-
ters should be known and analyzed computationally, CPS designers should not be over-
whelmed with extra information (except about interfaces and constraints). 

From a computational point of view, a specific domain of the system together with the 
operations performed by it creates an SMF. From a practical point of view, SMFs are sup-
posed to be a kind of prefabricated ‘components’ that can be used in both architecture 
and operation design of systems. For this reason, both aspects should be captured in the 
computational information structures and models of SMFs. Moreover multi-purpose 
relationship among SMFs should be provided. Ma et al. in [219] reviewed the researches 
about relations in feature based models. They recognized two types of geometric and non-
geometric relations. Geometric relations associate with topological and geometrical 
constraints [220], [221].  While non-geometric relations associate with e.g. sequential 
constraints [222], procedural constraints [223], function flow constraints [224] [198], 
machining constraints [225], etc., which all of them are valid in SMFs interfacing. 

2.6.5 Conclusion: System-level features-based approach can solve the problem  

As a main conclusion, it can be conceived that though there are indications that on the 
basis of system-level features, architecting of CPSs can be more effective, literature does 
not offer effective system-level solutions for CPS design. The closest research works [226] 
are focused on the embedded system design. Normally, in this context, system means 
system on a single chip which is integration of software and hardware constituents. It is 
truly mentioned that the main issue for embedded system design is lack of unified formal 
representation framework for software and hardware co-design [226]. The similar chal-
lenges are addressed in several researches (e.g. Ptolemy [227] [228], and Metropolis [157]), 
and are also valid for CPS design. 

Other findings could be briefed as following: In knowledge-based systems, features could 
be stored as knowledge frames consisting of a data structure that represents an entity 
type, and collection of named ‘slots’ [229]. The slots can be filled by information and linked 
to other frames. Consequently, developing knowledge frames for SMFs is pointed as one of 
the objective of our research in the following research cycles. However, towards that end, 
we had to develop an underpinning theory that supports system-level feature-based 
design. System-level features have significate differences with traditional features. For 
system design, (i) form features are not important for modeling unless values of morpho-
logical parameters are needed for calculating values of other parameters, (ii) operation 
context should be considered in the modeling system due to its undeniable role in the real 
life, and (iii) HW, SW, and CW should be represented uniformly in the system-level in order 
to capture their relations. This solution solves the main obstacle of modeling of hybrid 
systems, which traditionally have been improperly solved through abstractions. 

The term “abstraction levels” is frequently assigned to the levels that entail aggregation of 
components in a system [230]. We oppose this view by proposing a physical view. In 
particular, by connecting and aggregating components together we could have a system, 
and not by abstraction. In our view, in a system modeling, abstraction could be only used 
for visualizations and naming conventions. Figure  2-14 illustrates the point in which 
abstraction could be applied in the system modeling. As it can be seen, three semantic 
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• The mentioned characteristics also create difficulty in adopting the conventional MC 
approaches for designing CPCDs. Our comparative study approved these mismatches, 
and showed that none of the traditional MC approaches sufficiently supports customi-
zation of CPCDs. However, our investigation revealed that EC is the most appropriate 
approach to adapt for CPCDs. 

• Considering correlation between design principles of EC and features of TCDs, It can be 
concluded that new design principles should be developed based on the new features 
of CPCDs. The congruency of features of CPCDs and TCDs is useful for determining how 
the new design principles could be derived. Assuming that all required principles can be 
derived through the proposed mechanism, we decided to shift our focus to a more chal-
lenging issue implied by our explorative studies which is to support CPS designers in 
their design activities. 

• In facing the emerging challenges of CPS design, the available supporting tools are not 
sufficiently effective due to these issues: firstly, since these tools are too much discipline 
related, they are more suitable for system analysis and engineering rather system-level 
conceptualization and design. Secondly, although they consider both functional and 
architectural attributes of CPSs, they mostly neglect physical and morphological proper-
ties in system modeling. 

• We proposed concept of system-level feature to address both mentioned problems. 
Although the traditional feature technology lacks in many aspects such as appropriate 
functional formulation, it has the potential to support the requirements for system-level 
design and modeling. Accordingly, a heavy modification was predicted to adapt the 
traditional feature-based design for system-level feature-based design. 

The five domains of study conducted us to a narrowed down topic of research which is 
“system-level- feature-based pre-embodiment design of CPSs”. And our aim has estab-
lished as “developing a theoretical and conceptual framework for supporting CPS model-
ing tool”. Our survey to uncover the state of art about CPS modeling showed that many 
modeling environment that are currently used for modeling and simulation of CPSs, 
originally were created for system on chip development or embedded system design, 
which have been enhanced and adapted for CPS design. However in CPS design, design 
concerns are totally different. Accordingly, the approaches such as PBD and MDA are not 
useful in the new design context.  

In contrast with embedded systems which designers tackle the compositionality challeng-
es, in CPSs the main concern of design is composability issues. The composability chal-
lenge implies that the components are available, and the designers should find best 
components matches towards composing a system that delivers the desired functionality, 
performance, attributes and properties. We consider this challenge as system-level design, 
since the designers do not deal with component design. Accordingly, our modeling tool 
should support system-level design and address composability challenges. 

There is an interesting trade-off issue concerning the use of computer-based modeling 
tools in modeling complex heterogeneous systems [133]: On one hand they need a do-
main-independent system-level modeling solution to be generally applicable. On the 
other hand, they need a domain-specific model having an underpinning mathematical 
model with strong properties (e.g. finite-state machines, data flow) to make formal analysis 
and component level consideration much easier. Our idea for solving this contradiction is 
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to nest the domain-specific properties (supported by ontological semantics) into features 
of components, and to push the generality issues to system-level model composition. 

As it is discussed before and suggested by the literature, the early stages of design are the 
best for system-level design. We use the term ‘pre-embodiment’ design to refer these 
phase. It implies configuration and conceptual design of a system mostly by using off-the-
shelf components. Accordingly, catalogues of components play an important role in 
system-level decision making. For instance, some components might be required which 
could not be found in catalogues. These components should be ordered to be designed, 
prototyped and fabricated by specific experts. In this situation, the required specifications 
are sent to the related engineers and experts, and the components are created, tested and 
sent back accordingly. 

Another important issue in modeling CPSs is to incorporate physical and morphological 
properties of CPSs as they have tight relation with their embedding environment. Logical 
and analytical formulation of systems does not solely support the system-level design of 
CPSs. Since They are two sides of a coin, considering both functional and architectural 
aspects are equally important in CPS design [140]. The functional aspects are well-
formulated in the current modeling tools; however the architecture aspects have barely 
taken into consideration.  

Feature technology has the potential to serve us for tackling the mentioned problem. The 
chronological development of feature technology demonstrates a great extendibility 
towards different application. That is the reason we believe that it could be well extended 
to system-level design application by capturing both operational and architectural aspects 
of CPSs. The main challenge towards this end is lack of theoretical foundations to support 
our purpose. Subsequently, our research work was directed towards development of 
theoretical framework for supporting system-level feature-based CPS design. We decided 
to start our work with empirical study of the functional and architectural relations among 
components. The empirical study has supported our inductive reasoning towards theory 
formulation. The next chapter elaborates on our research towards development of a 
theoretical framework for system-level feature-based modeling. 
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3 MEREO-OPERANDI THEORY AS A THEORETICAL FRAMEWORK 

 

3.1 ON THE ACTIVITIES COMPLETED IN THE SECOND RESEARCH CYCLE 

In the previous research cycle, the phenomenon of architecting (pre-embodiment design) 
of cyber-physical systems has been studied from five different perspectives (i.e. consider-
ing five domains of study). It has been revealed that system-level feature-based modeling 
of CPSs should be considered as a potential solution, which could fill in the knowledge gap 
of pre-embodiment design that was elaborated on in Chapter 2. It was also discussed that 
for realization of the proposed concept, we needed to develop an underpinning theory 
that supported system-level feature-based modeling of CPSs. This chapter reports on the 
theory developed for this purpose, which is called mereo-operandi theory (MOT). The word 
‘mereo’ expresses that MOT has one of its roots in spatiotemporal mereotopology [1] [2], 
while the word ‘operandi’ refers to the ‘modus operandi’ theory of engineering systems. 

As discussed before, we have chosen the phase of pre-embodiment design as one of our 
concerns. In this phase, CPS designers should tackle many interrelated challenges of 
system conceptualization and configuration. They are more interested in the functionality 
of the system as a whole and the composability of the parts, than in the very technical 
issues of detailing the parts and their connections. In other words, the main challenge of 
CPS designer in the pre-embodiment design phase is ‘composability’. Composability is a 
measure of the degree to which parts can be assembled in various combinations to satisfy 
specific user requirements [3]. Composition typically relies on off-the-shelf parts, however, 
when they are not available or not appropriate from the point of view of the overall opera-
tion of the system, the required parts should be designed and integrated. 

This chapter presents the major assumptions and considerations that supported the 
composition of the proposed theoretical (conceptual) framework that count upon all 
known characteristics of CPSs and facilitates a design supporting computational tool. 
Towards this end, MOT was developed to offer mechanisms for (i) formally definition of 
architectural relations among parts, (ii) formally definition of relations among operations 
provided by parts, (iii) aggregating models of parts architecturally and operationally, (iv) 
capturing information about both roles of parts and their interdependences / interopera-
tions, (v) formulating uniform information sets to capture different kinds of parts, e.g., 
software, hardware, cyberware, and aggregated-ware. The theory of cyber-physical sys-
tems was used as a guide to cope with system compositionality and component compos-
ability issues. These viewpoints are complementary and therefore a combination of them 
was applied in our work [4]. 

At designing the second research cycle, we decided to also conduct empirical investiga-
tions related to modeling of CPSs first, and then to utilize the obtained insights in formulat-
ing the target theory by inductive reasoning. In addition, we also considered and com-
bined some classic theories in the framework. The outcome of this theory synthesis was 
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projected onto a practical case with the objective of confirmation and consolidation. For 
the explorative empirical study, the case of a smart watch was selected based on the 
reasoning that, contrary to its appearing simplicity, it resembles many characteristics of 
more complicated CPSs, and it could even be considered as a functional component of a 
CPS. It was also important consideration that the complexity of a smartwatch was man-
ageable for conducting the explorative studies. The level of heterogeneity of the compo-
nents of a smartwatch was also considerable, but comprehendible for our empirical study. 
In the case of the smartwatch, the analogue hardware was relative simple and permanent, 
but this cannot be claimed for the digital hardware. Likewise, the software and cyberware 
constituents showed a relative large technical complexity. For this reason, we restricted 
our focus and investigation on the operating system. The control of the chosen smart-
watch (Moto 360) was managed by an Android-variant operating system, which is open 
source and thus required pieces of information were accessible. 

3.1.1 Fundamental assumptions 

Four fundamental assumptions have been extracted from the previous research cycle as 
the basis for theory development:  

Assumption 1: Cyber-physical systems are aggregates of system components, which are 
coarse grained building blocks with inside cohesion among the included 
entities (constituents) and with minimal interfaces to the outside. 

Components of a system can be homogeneous, when they include only hardware, soft-
ware, or cyberware constituents, or heterogeneous (aggregated), when they are formed by 
intertwining HW, SW, and CW constituents. Components are typically self-contained 
entities from an operation view point, while constituents are not. Systems are regarded as 
aggregates of components, and components as aggregates of components or constitu-
ents. This reflects a pure physical view, rather than a logical (set-theoretic) or abstract 
(functional) view. The advantage of the pure physical view is that identification of systems 
components and the distinction of HW, SW and CW constituents are straightforward in the 
physical realm. 

Assumption 2: In order to provide a proper pre-embodiment model of cyber-physical 
systems, it is necessary and sufficient to describe and characterize them 
from architectural and operational perspectives. 

The architectural aspect of such a system model makes it possible to describe what com-
ponents the system consists of, while the operational aspect captures what the system as 
whole and its components do. However, the two perspectives are mutually dependent on 
each other. Therefore, they should be combined no matter if a comprehensive system 
model or a specific component model is considered. 

Assumption 3: Instead of an exhaustive description of all operations, which would 
consider each and every primary operation (e.g. mechanical transfor-
mation by a gearbox), secondary operation (e.g. thermal waste due to 
friction), and tertiary operation (e.g. dislocation of atoms towards a crack), 
a non-exhaustive operational description is sufficient for system or com-
ponent development. 
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hardware entities. The reason was twofold: (i) software codes are dynamic since they are in 
many places at the same time (e.g., in the storage, in the RAM, in the processor) with 
different architectural relations, and (ii) they are converted into fundamentally different 
forms (e.g., language code, machine code, binary code) during their life cycle. These issues 
are further elaborated in the next sub-chapters. 

Figure  3-4  shows an architectural de-aggregation of Android OS and the related apps (the 
architectural hierarchy tree) on five levels. These are: (i) the kernel and low level tools, (ii) 
native libraries, (iii) the Android Runtime, (iv) the application framework, and on top of all 
(v) the applications. In this figure, nesting the entities inside each other is done due to the 
limitation of space. It is worth mentioning that this de-aggregation process can be contin-
ued further. As an example, the ‘storage’ was de-aggregated into HW, SW, and CW constit-
uents, one of which is the Android operating system. 

In the lowest level, Android OS befits from the modified version of Linux kernel for special 
needs in power management, memory management, and the runtime environment. The 
second layer consists of libraries, which are written in C/C++. The Android Runtime consists 
of the Dalvik virtual machine and the Java core libraries. The core libraries are collections of 

 

Figure  3-4 Architectural de-aggregation of Android OS 
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classes, utilities, tools, inputs, and outputs. The applications and the framework, as well as 
the runtime core libraries are written in Java and run in the Dalvik virtual machine. Frame-
works provide abstractions of the underlying native libraries and Dalvik capabilities to 
applications. In the framework layer, the activity manager is designed to manage the life 
cycle of apps. The package manager is there for tracking the apps installed on the device. 
In the library layer, the window manager is on top of the surface manager. It controls 
composing of different processes and windows. Telephony manager is responsible for 
phone calls, and content providers let Apps share data with other Apps. View system 
contains all building blocks of user interface and handles event dispatching, layout and 
drawing tasks. XMPP service allows Apps to send device to device data massages. 

The libraries for CPU and GPU intensive tasks are compiled to device optimized native 
code. Basic libraries like the libc or libm were developed especially for low memory con-
sumption. In the libraries layer, surface manager handles screen access for the window 
manager from the framework layer. Media framework is placed in the library layer due to 
the need for heavily optimization of audio and video codecs. OpenGL is in charge of 3D 
graphic handling. However, SGL is there for 2D graphic tasks. FreeType is used for render-
ing text onto bitmaps. SSL stands for security socket layer. SQLite is a relational database 
management system contained in a C programming library. The SQLite library is linked to 
Apps through Dalvik and thus becomes an integral part of the apps. WebKit, which is an 
open source browser engine, is most probably removed from the libraries of Android wear. 
These additional relationships have been not taken into consideration in the architectural 
investigations, but well in the operational investigations. 

To formally synthesize the outcome of the empirical study, we applied a symbolic formal-
ism to describe the architectural relations identified in Android. This way, we intended to 
capture the aggregation from an architectural point of view. The Linux kernel (K) is an 
aggregate of: (i) device manager (KD), (ii) process manager (KP), (iii) memory manager 
(KM), (iv) network manager (KN), (v) storage manager (KG), (vi) UI manager (KU), (vii) visual 
manager (KV), (viii) power manager (KW), and (ix) sensors manager (KS). This can be formal-
ly defined as: 

K≔ {KD , KP , KM , KN , KG , KU , KV , KW , KS} 

With the same logic (and considering bold letters in Figure  3-4), we defined libraries (L), 
application frameworks (F), Android runtime (R), and applications (A) as: 

L≔ {LM , LO , LF , LM , LW , LS , LQ , LB , LT} 

F≔ {FN , FX , FP , FR , FT , FA , FC , FL , FW , FV} 

R≔ {RD , RC} 

A≔ {AR , AU , AM , AD} 

We applied the same formalism for the second level of de-aggregation of the Android 
software, but it can also be applied to the next levels. This empirical study provided practi-
cal evidence that even rather complex software systems can be de-aggregated to a level 
where we can identify system level features, but can also derive their architectural relation-
ships. It was also observed that the hierarchical de-aggregation of architectural entities of 
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all types of constituents/components (i.e. HW, SW, CW, and AW) can be interlinked with a 
functional decomposition. The literature advised us that this applies to linear systems, 
unconditionally. This also gives floor to imposing a physical view in modeling, since a 
composition of lower level architectural entities is the manifestation of a higher level 
entity, but with the constraint that one particular instance of a lower entity can be a part of 
only one entity of a higher level aggregation. At the same time, an entity can be connected 
to several other entities on the same level of aggregation. It hinted at the fact that archi-
tectural relations can be captured as connectivity and containment relations.  

These findings played an important role in considering the formalisms of mereotopology 
to describe these architectural relations. The architectural relationship among the SW, HW, 
CW, and AW entities can be captured by ‘part-of’ (P) and ‘connected with’ (C) relations. 
Figure  3-5 demonstrates all possible ‘part-of’ relations within a system. In this figure (and 
from now on in the whole of the thesis) we use specific symbols to identify entities. For 
example, we use a rectangle for HW, a 
triangle for SW, a circle for CW, and a 
pentagon for AW. The ‘part-of relations’ 
are written as aPb, and this symbolic 
expression can be read as ‘a’ is a part of 
‘b’, where ‘a’ and ‘b’ are constituents 
(i.e. software, hardware, or cyberware) 
and components (aggregatedware) of 
a system. The symbolic examples of the 
‘part-of’ architectural relations identi-
fied in the case of the Moto 360 smart-
watch are shown in Figure  3-5: 

P1: Gesture pattern library is a part of the touch screen controller 

P2: Android is a part of the storage 

P3: Bus is a part of the logic board 

P4: The transceiver is a part of the logic board  

P5: A swipe pattern is a part of the gesture pattern library 

P6: The application frameworks is a part of the Android OS 

P7: Magnetic sticker is a part of charger pack 

P8: Media framework library is a part of Android OS 

There are ‘connected with’ relations among many different kinds of entities. The possible 
connectivity relations are represented in Figure  3-6. The examples of these relations in the 
case of the Moto 360 smartwatch are: 

C1: The rear cover is connected with the strap 

C2: The health data in the relational database of the user profile 

C3: The ‘window manager’ is connected with ‘surface manager’ in Android OS 

C4: The ‘storage is connected with the ‘RAM’ 

 

Figure  3-5 All possible 'part-of' relations in a 
technical system 
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C5: The ‘network manager’ of Android is connected with ‘transceiver’ module 

C6: The heart rate sensor is connected with the generated signal 

C7: The health profile is connected with the health app 

C8: The health App is connected with the pedometer sensor 

C9: The battery pack is connected with the logic board 

C10: The acceleration conversion algorithm is connected with the gyro / accel-
erometer 

The mentioned types of architectural relationships were used as the starting point for 
defining the mereotopological relations used in the specification of system-level features. 

3.2.2 De-aggregation of physical operation of HW, SW, CW 

In order to explore the full range of operations of Moto 360, first we identified the general 
(highest level) and then de-aggregated these to the lower level operations in a physicality-
conscious manner. In the highest level, there were four operations found, namely (i) 
receiving user requests for information, (ii) retrieving data from the connected 
smartphone, (iii) processing the information, and (iv) displaying the required information. 
These four operations together support all services provided by the smartwatch (i.e. 
navigation, notification, voice commanding, displaying weather forecast, monitoring 
health status, etc.).  

Figure  3-7 shows the first and the second level operations. Due to space limitation, pre-
senting the results of de-aggregation of all levels of operations of Moto 360 is not possible. 
The complexity is illustrated by Figure  3-8, which shows the results of de-aggregation of 
touch digitizing, one of the second level operations. The dashed arrows represent con-

 
Figure  3-6 Possible ‘connected with’ relations in a technical system 

 
Figure  3-7 First and second level operations of Moto 360 
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tainment relations in this figure. It means that each column presents a de-aggregation 
level whose number is specified by the circles. 

Containment and connectivity relations identified in the smartwatch have disclosed 
important information in the context of operation. In comparison with architectural 
containment and connectivity relations, there are some major differences with regards to 
these relations. In an operation perspective containment implies existence of lower level 
operation that is physically necessary to realize a higher level operation; therefore they 
have to be aggregated with other lower level operations. When two operations are inter-
connected, it is very probable that one of them is needed (at least partially) for the realiza-
tion of the other one. This aggregation may be sequential, parallel, or any combination of 
these. The ordering of lower level operations in aggregation needs the consideration of 
their dependencies as well as their timing. This is the reason that ‘dependencies’ and ‘time’ 
are considered as important factors in modeling complex operational relations.  

From a physical viewpoint, operations were seen as transformation (i.e. a component 
transforms its inputs into outputs by its operation). For instance, there is a transformation 
when a digitizer converts the user touch into a command as its operation. From a physical 
viewpoint, operations can also be seen as state transition. When there is a change in the 
state of an architectural domain, an operation should definitely be performed. Therefore, 
operations should be seen as both input/output transformations and state transitions. 
Although there are significant differences between operations of HW, SW, and CW entities, 
all of them can be uniformly formulated as I/O transformations and state transitions. 
Operations of a HW constituent are (usually) defined by (observable) operational parame-
ters, such as pressure, acceleration, deformation, and so forth. However, operations of a SW 
constituent, e.g. information processing, instructing, and control of other components, are 
not physically tangible. It is worth mentioning that ‘existence’ is a basic operation that 
could be assigned to any HW, SW and CW entity, which is the main operation of CW 
constituents. The reason is that CW constituents are normally handled by other compo-
nents (for instance, software is needed to operationalize them). 

 
Figure  3-8 Results of de-aggregation of a second level operation (touch digitizing) 

Touch 
digitizing

Data 
interpretation

Touch 
coordination 
measuring

swipe 
recognition

Gesture 
recognition

Coordination 
digitizing

4-Point 
capacitive 

sensing 

Detecting 
∆distance

Detecting 
∆angle

Rotating 
event

Zooming 
event

Considering 
contacts 

continuity  

Considering 
contacts 

displacement  

Pattern 
matching

Vector 
calculation

Considering 
patterns

Adjusting 
swipes

Monitoring 
swipes over 

time

Considering 
swipes position

Associating 
gestures with 
applications

Associating 
gestures with 
UI elements

Considering 
UI items 
positions

Considering 
gestures’ position 

regards to UI items

Making decision 
regards to the 

identified meanings

Identifying In-app 
meanings of 

gestures

Measuring 
∆voltage in 
four points

Converting 
∆voltages to 
coordination 

Carrying 
current in 
sensors

Detecting 
changes in 

voltage

❷
❸

❹ ❺ ❻



 

 

3.2.3 

A syst
Archit
ponen
shorte
nent o
The ‘O
aggre
case o
nume
forth. 
granu
tion/d
usable
system

The re
and o
funda
dence
hierar
level e
(i.e. an
opera
that a
concu
time 
comm
opera
called
tion 
opera
repres
(e.g. s
parall

3.2.4 

The e
(i) soft
CW co
system
archit
conte

Accor
their 
runtim

Concept 

tem can b
tectural de
nts in lower
er duration
of a CPS, bu

OMAP’ proc
egated into
of a CPS, m
erous comp

We assum
ularity. It me
de-aggrega
e (if needed
ms of system

ealization o
operational 
amental dif
ed by the p
rchical ‘part
entity in a g
n object can
ation conta
a lower leve
urrently. Fo
is a part o

manding', 
ations in a 
d 'web-typ

(Figure  3-
ation with 
sentation in
simulation 
el operatio

The lesso

mpirical stu
tware dyna
onstituents
m compone
tecture and
exts. 

rding to ou
life cycle. S

me code, an

of multi-g

be de-aggre
-aggregatio
r levels. Op
 operations

ut it can als
cessor on th
o a myriad 
multiple syst
ponents for

ed that the
eans that sy
tion they w
d) as comp
ms in mode

of such a m
multi-gran

fference in 
practical exa
t-of’ relation
given situat
n be at mu
inment rela

el operation
or instance, 
of 'navigat

and 'n
higher lev

e' contain
-9). Formu

this in m
nterwoven 
of a CPU o
ns). 

ons learned

udies prove
amicity (me
s, (iii) relatio
ents and th
d operation

ur observat
Software ca
n instructio

 

ranularity 

egated mu
on more lik
erational d
s in lower l

so be consid
he logic boa
of other co
tems can p
rms these s
e sought fo
ystem desig
want to wo

ponents for 
eling). 

modeling to
nularity. How

architectu
amples, arc
ns. It mean
tion. In oth
ltiple place
ations, whi
n might be 

in the sma
tion', 'voice
notification
vel. This is
ment rela-

ulating the
mind helps

operations
overload in

d from the

ed to be us
etamorphos
onships (in

he embedd
n. Below w

tion, softwa
an exist in
n in the pro

  

from oper

ultiple time
kely results
e-aggregat
evels. A sm
dered as a 
ard of Moto
omponents

play the role
systems on 
or system-le
gners shou
ork on. The

a higher le

ool entails 
wever, it ha

ural and op
chitectural c
s that a low
er case, the

e at the sam
ch are not 
included a

artwatch ca
e 
’ 
s 
-
e 
s 
s 
n 

 empirical 

eful becaus
sis in its dif
teractions)
ing environ

we further o

are entities
 the form 
ocessor, etc

Figure  3-9

rational an

es both arc
s in smaller
tion more li

martwatch c
system com

o360 is a sys
s architectu
e of a com
the next le

evel model
ld be able t

e compose
evel system

an explicit 
as to be tak
perational 
containme

wer level en
e imposed s

me time). Ho
necessarily

as a part of 
ase, the 'pr

studies 

se it casted
fferent state
 among co

nment and 
operate on

s behave d
of a langu

c. and cons

9 A simple

d architect

chitecturally
r and more
kely results

can be con
mposed of s
stem (on a 
urally and o
ponent, an
evel of de-
ling tool sh
to choose t
d systems 

ms (i.e. to re

handling o
ken into ac
containme
nt relations

ntity is only
strictly phy

owever, this
y hierarchic
several hig

rocessing' o

d light on va
es), (ii) integ

onstituents,
users), and

n the lesso

differently i
uage code, 

equently it

e example of

  Cha

tural viewp

y and ope
e homogen
s in less com
sidered as 
several com
chip) and c
operationa

nd an aggre
-aggregatio
hould supp
the level of
are suppos

ealize the c

of both arc
count that 
nt relation
s can be ca

y a part of o
ysical view i
s is not the 
cal. What it
gher level o
operation i

arious issue
grity of HW
, (iv) relatio
d (v) insepa
ons learned

in various 
a compile

t may chang

f a web type

apter 3     | 

points 

rationally. 
nous com-
mplex and 
a compo-

mponents. 
can be de-
lly. In the 

egation of 
on, and so 
port multi-
f aggrega-
sed to be 
oncept of 

chitectural 
there is a 
s. As evi-

aptured as 
one higher 
is violated 
case with 

t means is 
operations 
in a same 

es such as 
W, SW, and 
onships of 
arability of 
d in these 

phases of 
d code, a 
ge its size, 

 
e operation 

81 



 

| 82 

form, and physical relations. Subsequently, it is important to consider the morphological 
and physical attributes of SW (as well as of CW) and capture the different states of their 
operations separately in the respective forms. It should also be taken into consideration 
that when a software entity is stored as binary code on storage passively, it is nothing but a 
cyberware entity. 

The modeling approach should be able to capture all architectural containment and 
connectivity relations among SW, HW, CW, and AW, even when the modeled system is not 
operating. Concurrent handling the connectivity and containment relations from both 
architectural and operational perspective facilitates the integrity and aggregation of 
constituents. Operational connectivity relations specify dependencies of the interrelated 
operations. In addition, the interactions among connected operations can also be defined 
by operational connectivity. The orientation of the operational relations plays a role in a 
pattern of operational relationships. The observations hinted at the fact that connectivity 
relations among operations can be formulated through streams. As defined by Pahl and 
Beitz, but also many others, in every real system material, energy, and information streams 
can be identified [9] [10]. We concluded that the new modeling approach may considered 
these streams, and the combination of them, as the subjects of transformations, and the 
whole of the transformations of the streams in a system can capture the operation of its 
various constituents, as well as of the whole of a system. 

Since interactions among components should be considered from both architectural and 
operational aspects, the same applies to the interactions between a system and its em-
bedding environment and users. Let us recall that a multitude of architectural and opera-
tional interactions with the surrounding environment and the user were found in the case 
of Moto 360. Some of the architectural relations with user are rather simple, such as the 
interaction between the strap and wrist of the user. Other architectural relationships of it, 
such as specific architectural interaction with the environment, are much more complicat-
ed (e.g. consider the design solutions for making the watch ‘water resistance’). The cases of 
‘voice commanding’ and ‘touching commands’ are examples of complicated operations 
and interactions. At the same time sensing ‘ambient light’ to adjust the screen brightness 
are less complicated component-environment operational interactions. 

The results of our studies showed that while the operational connectivity relations can be 
characterized by the parameters of the input/output streams, the architectural connectivi-
ty relations need to be characterized by information assigned to structural and morpho-
logical parameters. We argue that the idea of formulating architectural and operational 
interaction among components could be used respectively by utilizing ‘morphology’ and 
‘streams’ in order to capture interactions between system components and user/ environ-
ment. This was exploited in the case of specification of system-level features. 

It has been our conclusion that architecture and operation should be formulated, repre-
sented, modeled, and designed in synergy, rather than separately. If they are separated we 
miss important pieces of information in the system modeling that could be derived from 
the complementing constituents and their operations. In turn this opportunity can posi-
tively affect consistency, comprehensiveness, and accuracy of the model. A simple exam-
ple of the real life need for architectural and operational synergy is when the user of 
smartwatch raises and turns his wrist to read the screen. The screen automatically turns on 
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by detecting the displacement of the watch, which is an operation initiation based on 
changing in architectural position. 

An important observation was that operations might change architectural relations in 
almost all specific cases. For instance, transferring a file from the smartphone to the 
smartwatch creates new architectural containment and connectivity relations. In other 
words, we needed to capture the architectural states that were changed by operations 
causing state transitions. Moreover, morphological attributes and parameters which were 
defined as architectural aspects in our modeling exercise played an important role with 
regards to the operation of components. For example, the size of the analyzed semicon-
ductor units affects the heat generated by the processor. 

3.3 EXPLORATION OF POSSIBLE UNDERPINNING THEORIES 

In order to develop a unified theory that allows similar representation and simulation for 
all heterogeneous components of a system and their constituents, we took on a somewhat 
challenging undertaking. The latest literature advised us on (i) where to look for the roots 
and elements of a new theory, (ii) how to formulate it to be reasonably comprehensive, 
and (iii) how to operationalize it in a computer aided practical methodology. The starting 
point was the theory of mereotopology and the recent efforts to extend it from the spatial 
domain to the spatiotemporal domain and beyond [11] [12] [13] [14]. We started out from 
the conclusion that trans-disciplinary system modeling raises the need for concurrent 
handling of architectural and operational aspects, relations, and parameters. At the same 
time, capturing and representation of architectural and operational aspects of a CPS need 
different means. The architectural representation is supposed to identify all physical 
entities and their mutual relationships. The operational description should capture: (i) the 
enablers (causes) of operations, (ii) the actors of operations, (iii) the working space of 
operations, (iv) the changes caused by the effects of the enablers, (v) the changes caused 
by the interaction(s) of the enablers, (vi) the effects of the working space, and (vii) the 
logical and chronological flow of operations. Several efforts have been made towards an 
application context-independent description and integration of the architecture and the 
operation of electromechanical and electronics systems. Among others, publications, such 
as [15] [16] [17] [18], reported on results that are relevant in the context of our research. 
However, the overwhelming majority of the published approaches did not specifically 
consider unification of the representation and handling of HW, SW and CW constituents 
[19] [20] [21]. 

3.3.1 Mereotopological fundamentals 

Following the work of some pioneers, we considered mereotopology as a possible theoret-
ical basis for architectural modeling. The name mereology came from the formal theory of 
parts and associated concepts developed by Leśniewski [22] [23]. It literally means “science 
or theory of parts” [24]. Mereology captures how physical and conceptual parts relate and 
what it means for a part to be related to the whole and other parts. Addressed by classical 
mereology, part-whole relations essentially involve a notion of mereological fusion, or sum 
[1]. Classical mereology is a formal theory that describes part-whole relation [25]. Because 
of its neutrality, the concept of mereology is widely applicable [26]. Consequently, this 
concept has been adopted for specification and representation of architectural contain-
ment relations in our conceptual framework. Examples of using mereology in hardware 



 

| 84 

domain are numerous [27] [28] [29]. Mereology is also used to study composite entities 
and to address the compositionality problem of software constituents [30]. They raised the 
issue of compositionality of: (i) simple entities, (ii) operations, (iii) events, and (iv) behaviors 
in their work. 

In contrast with mereology, topology is dealing with continuous spaces that can be gener-
ated in a combinatorial manner. In its most abstract form, topology implies ontological 
laws pertaining to the boundaries and interiors of wholes to relations of contact and 
connectedness, and so on [31]. In its concrete form, topology handles structural relation-
ships composed by linking discrete entities of continuous spaces. By capturing the neigh-
borhoods of a point in continuous spaces, topology is able to formally define concepts 
such as boundary, interior, and exterior [32]. Consequently, it can provide notations re-
quired for formal definition of architectural connectivity relations in our conceptual 
framework. 

Extending mereology-based specification with topological concepts leads us to mereoto-
pology (MT) that provides an ontological specification of a conceptualization of the spatio-
temporal entity relations of a system [33]. The theory of mereotopology integrates mere-
ology for part-whole relation and topology for component connectedness [34] [35]. In our 
theoretical framework, MT could play an important role in describing architecture of CPSs 
[36]. In this sense, components-system relations and component-component relations can 
be formalized together and defined by mereotopological interpretations [4]. MT offers 
multiple theories that differ from each other in terms of the underpinning concepts (for 
instance, they use either points to reason about spatial relations of physical entities, or 
regions). Most often, regions are used as entities of MT [37]. Regions are proper parts of the 
whole, and have various (not necessarily permanent) relations with each other in space. MT 
can provide a manifestation-independent logical specification for computational pro-
cessing of architectures of artifacts [38] [39]. The mereotopological abstraction makes it 
possible to describe domains without considering their actual metrics (sizes), morphology 
(shape), and materialization (attributes). 

Regions and their relationships may change in time (which is a challenge in architecture 
modeling), for instance, in the case of assembly modeling of non-steady spatial structures 
[40]. Specification of temporal characteristics of regions and reasoning about their rela-
tionships in time need temporal logic, not only predicate logic. This has been included in 
the theory of spatiotemporal mereotopology (ST-MT) [41]. In addition, various theories are 
available to handle multi-dimensional mereotopology [42] [43]. Our investigation has 
shown that further ‘physicalization’ of the entity relationships is possible. It has been 
argued that ST-MT can capture complex operational relations in the physical domain [44]. 

Another relevant and useful knowledge domain is that of the domain theory, also referred 
to as organ theory. Domain theory is developed based on the theory of technical systems 
proposed by Hubka, V. and Eder, W.E. [45], and has been further developed by Andreassen, 
M.M. [46]. According to the domain theory, three views can be applied in product design 
namely ‘part’, ‘organ’ and ‘transformation’ [47]. The term transformation refers to sequence 
of activities needed for utilization of the product [46]. It implies the technical activities 
required for using a system in the application which it is designed for. The term organ 
refers to architectural entities regarding to their functionality. As functional elements, 
organs are supposed to operate in a system according to their design intents. The term 
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part in the domain theory refers to structural properties, materialization and assembly. For 
briefing, part, organ, and transformation explain architecture, function, and application of 
a system, respectively. According to the view of domain theory [45], architectural charac-
teristics of a system should be considered as (i) ‘form’ that is also named as morphology, (ii) 
’material’ that implies architectural attributes, e.g., elasticity, strength, conductivity, (iii) 
‘surface quality’ that refers to properties e.g. smoothness, reflection, and (iv) ‘dimension’ 
that refers to size and tolerances. 

3.3.2 Morphological fundamentals 

The theory of morphology is dealing with the descriptive analysis of spatial forms (shapes) 
and their characteristic (distinguishing) features [48]. Morphologists also study the possible 
shapes-implied relation of three dimensional objects and the principles and laws of regu-
larized shape morphing [49]. Mathematical morphology (MM) is a new mathematical 
theory which can be used to process and analyze both shapes and images [50] [51]. In the 
MM theory, shapes and images are treated as coherent point sets [52], and morphological 
transformations are defined to extract their features and attributes, typically based on 
Minkowski addition and subtraction [53]. The basic MM operators are dilation and erosion 
and the other morphological operations are synthesized from these two basic operations 
[54]. In computational modeling of products morphology has an important role in specify-
ing compatible spatial interfaces. 

Our conceived modeling approach intends to handle the explicit shape, e.g. no structural 
or morphological abstractions have been considered. Striving for an aggregation-driven 
(abstraction-free) representation of the architectures of CPSs in the physical space, we use 
semantic abstraction only in the form of naming conventions for the components aggre-
gated at various aggregation levels. HW, SW and CW constituents, and the components 
aggregated thereof, have different spatiality and occupy the space differently.  

Being three-dimensional (3D) artifacts, HW constituents can be seen from both external 
and internal morphological views. In an external view, they are finite regions of the 3D 
metric space with closed boundaries (e.g. real subspaces of the E3 space). In an internal 
view, they are finite point-sets of the R3 attribute space with specific internal continuity 
properties and attribute distributions. The position, orientation, shape, and motion of an 
artifact change in the E3 space, while other physical properties change in the R3 space. 

SW constituents and system components are quasi-morphed, as they do not have a 
specific geometric form. However, they have physical extent, which plays a role in their 
relations to hardware and/or cyberware. This ‘dimensionality’ can be understood as an 
implicit spatiality of software and considered from both external and internal views. In an 
external view, SW is a code structure that needs a part of the 3D metric space to be stored 
and processed (e.g., as a sequence of dipoles on a magnetic disk). In an internal view, SW is 
a set of instructions for a processor that is seen as part of a one-dimensional attribute 
space. Cyberware is of similar nature and reflects both the external and the internal aspects 
of SW constituents. A cyberware (e.g., a set of data in a file or record) may exist as a physi-
cally stored signal or code sequence, but also as digital values for a processor. 

Like in the case of HW components, spatial position of SW and CW components can be 
identified by reference points in the geometric and the attribute spaces. In our interpreta-
tion, atomic entities of software and cyberware are not separately distinguishable parts. 
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This allows considering HW, SW and CW components, as well as compound HW-SW, SW-
CW, HW-CW, and HW-SW-CW components (which are together named as aggregated-
ware) as operational system domains, with specific physical properties and operation 
capabilities (affordances). A domain capturing the architectural manifestation (spatiality) of 
a component can include subdomains of HW, SW and CW, and the relationships among 
them. 

3.3.3 Exploitation of the engineering modus operandi theory  

The general theory of technical system science is a meta-theoretical control for design, 
development and modeling CPSs [45]. It comprises of (i) the property theory, (ii) general 
transformation and process theory, and (iii) the general conformational theory. Property 
theory has a central role in the theory of technical system and implies the specification of 
the architectural domains that have significance from the operational perspective. General 
transformation theory considers operations as converting input into output by operands. 
The general conformational theory defines the operation of a system as an aggregation of 
operation of its components including the synergetic effects of their relationships [45].  

Engineering modus operandi is used to describe the physical and social ways of operations 
and behaviors of systems. By this term we refer to three things together: physical opera-
tion, functionality and behavior. If we consider “operations” as tangible outcomes of a 
system and the ways of delivering that output by sub-systems, we can describe its function 
at a higher level of generality and abstraction. In fact, operation explains how a function is 
accomplished. However, behavior defines the expected function of a system in context of 
its environment. Then, we need to consider operation of a system and its components in 
order to understand how the desired function is delivered, and the system behaves in its 
environment. 

In a technical system, operations are defined based on four concepts: (i) the physical and 
computational phenomena that enable the operation, (ii) the morphological attributes of 
components, (iii) the physical operation of components, and (iv) the operation flows of the 
system. Take the example of writing with a pen: (i) ink should be carried to the paper by 
gravity and surface tension (as physical phenomena), (ii) the shape and size of ball and 
tube should be purposefully defined (as morphology), (iii) conducting the ink, rolling the 
ball, carrying the ink, placing the ink on the paper should be conceived (as physical opera-
tions of components), and (iv) writing should be completed (as flow of operation that is 
the result of procedural aggregations of the units of operations). These four concepts 
should be specified and harmonized at defining the operation of a system in order to 
ultimately provide the desired operation. 

The essence and most important feature of engineering systems is the set of transfor-
mations what they implement. Operations were regarded as transformations in several 
functional modeling methodologies, which all use somewhat similar approaches [55]. In 
our approach too, operations are considered as transformations between input flows and 
output flows. These flows connect operations together in order to make a higher level 
operation. A flow might be energy, material, signal or combination of them [9]. In the 
context of our work we named them as (energy, material and information) streams, with a 
view to their role to act as operational interfaces. Operations also transform start states, 
values, and events into end states, values and events respectively. We refer to this issue as 
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sion of the mereotopological theory [25] [76] [77]. The starting point of the theory synthe-
sis was the four assumptions introduced earlier in Sub-chapter 3.1. The first assumption 
implies that a CPS should be considered as a heterogeneous composition of HW, SW and 
CW constituents. HW constituents could be analogue hardware, digital hardware, and 
analogue physical constituents. SW constituents might be system software, application 
software, and development software. CW constituents can be categorized as (i) system 
enabling knowledge, (ii) repository data structures, and (iii) digital media ware [1]. 

The second assumption entails the need for a solution for representing a system by inte-
grating its operation and architecture. In order to provide a shared (both physically and 
logically interpretable) entity, we introduced the notion of architectural domain. A domain 
is generated by a decomposition or composition of the whole or part of the architecture of 
a CPS. It is a finite and bounded part within the whole physical extent of a CPS, which lends 
itself to a particular set of operations. It can be represented by one single system compo-
nent of an aggregate of operationally related components. Let’s identify a particular CPS 
by the symbol Σ, denote the whole physical extent of Σ by DΣ, and a given architectural 
domain of it by Di. Likewise, let us denote the overall operation of Σ by OΣ, and the set of 
operations occurring on, or related to, a particular Di by Oi,j. In addition, let us introduce the 
symbol ⊗ to denote the mutual relations between the domains Di and the related opera-
tions Oi,j of a Σ. With these, a CPS can be defined by the following symbolic formula: 
Σ := DΣ ⊗ OΣ, where DΣ = U Di, and OΣ = U Oi,j. In this formula, the symbol ⋃ represents the 
union operation, which is seen as a logical equivalent of the aggregation of Di and a proper 
combination of Oi,j. Note that the notions of domain and operation are considered insepa-
rable in the logical space L and in the physical space R3, as discussed above. Each of the 
architectural domains has at least spatial relations with each other. 

The third assumption suggests that the working of a system can be captured by a neces-
sary and sufficient subset of operations. Let’s call it characteristic operation and denote it 
by COΣ. Let us denote the pertinent sub-set of primary operations by OΣ’ , the secondary 
operations by OΣ’’ , and the tertiary operations by OΣ’’’. With these: COΣ := OΣ’ ⋃ OΣ’’ ⋃ OΣ’’’, 
where: COΣ ⊆  OΣ, Oi,p’ ⊆  OΣ’, Oi,q’’ ⊆  OΣ’’ , Oi,r’’’ ⊆  OΣ’’’. With regard to performing these 
operations, it is assumed that operations are enabled by: (i) one or more interacting physi-
cal, computational, informing, or synergic phenomena, φi,k, appearing on a Di, which has 
got: (ii) a particular spatial arrangement and/or extent of a Di, namely μi, and (iii) performs 
particular transformative actions, αi,l, or changes, ζi,m, and (iv) αi,l or ζi,m happen in a logically 
proper and physically feasible manner as observable operations, OΣ’, or OΣ’’, or OΣ’’’. 

Finally, the fourth assumption postulates that CPSs can be de-aggregated into a finite 
number of distinct (semantically identifiable) entities depending on their actual physical 
manifestations. The result of the subsequent de-aggregation steps is a set of interrelated 
system components. The opportunity of composing hierarchical structures from a set of 
components has already been utilized in various approaches of component-based design 
(CBD) [78] [79]. 

3.4.2 Defining architectural relations by mereotopology 

According to IEEE 1471, architecture is: (i) the fundamental organization of a system 
embodied in its components, (ii) their relations to each other and to the environment, and 
(iii) the principles guiding its design and evolution. Consequently, an architectural model 
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where: x can define type of relations among components and constituents, this indicators 
(Connected-x relationships) are the architectural basis (or carriers) of operational relation-
ships. 

In our conceptualization, a SW or a CW domain cannot be embedded in HW domain, and 
HW, SW and CW parts cannot intersect, but can be adjacent in the physical space. There-
fore, SW and CW domains can have only ‘connected-with’ as architectural relations with 
HW domains. It has to be noted that atomic entities of SW and CW are considered to be 
spatially undistinguishable parts. Consequently, no architectural or operational relations 
are supposed to exist among them. Since every domain may have relations with multiple 
other domains, and the relations can also be multiple, it is reasonable to include the 
concept of layering, which is logical, physical, and representational layering in one. This 
leads us to a stratified mereotopology (SMT) [80]. A layer includes the set of domains and 
the set of pertinent relations that belong together in a particular architectural/operational 
situation [81]. SMT lends itself to the realization of situated analysis and constraint man-
agement. Consider a software tool, which offers multiple alternative interfacing, e.g., 
command line interpreter, graphical user interface, menu driven interface, form-based 
interface, touch panel manager, and natural language interface. In this case the relations 
among the domains of the concerned HW, SW and CW constituents, and their architectural 
and operational relations are placed on different layers. As a bottom line, in the pre-
embodiment design phase, the operational relations should be checked when architectur-
al relations are changed, and vice versa. In case of dynamically operating open systems, 
existing domains may become disconnected from the system architecture, while other 
domains may become connected to it. Therefore, existence of a domain with respect to the 
system is the most basic operation of architectural components. 

3.4.3 Defining operations and operational relations 

According to engineering modus operandi theory, operational modeling should cover and 
provide parameterized representation of: (i) the physical and computational effects under-
lying the operations happening on domains, (ii) the morphological characteristics of the 
domains, (iii) the conduct of operations and their outcomes, and (iv) the flow of operations 
as blending of the particular operations [1]. These four elements were named respectively 
as phenomena, morphology, action, and process in Figure  3-13. MOT implies complex data 
and relation structures, which should extend to architectural, geometric, morphological, 
material, physical, temporal, and behavioral aspects. Methods capture relations among the 
parameters associating with operation and architecture. The phenomena that affect 
operations of a system can be captured through methods. 

The morphology of domains is a dual-constrained overall variable. On the one hand, 
morphology determines how the physical effect can manifest in operation, and, on the 
other hand, operation assumes specific (proper) morphology-effect relationships. In the 
case of hardware components, morphology captures the physical extent, form, shape, 
dimensions, texture, and other geometric attributes. Considering that morphological 
modeling should effectively support pre-embodiment design, a minimal morphological 
representation (MMR) has been stated as adequate target. While MMR varies for different 
objects, it should carry both geometric and topological information needed to model the 
operations of physical components. 
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information sets needed in order to be able to specify SMFs have been defined as shown in 
Figure  3-16. 

We must recollect here that the concept of domain was introduced for defining architec-
tural aspects of SMFs. A domain is created by aggregation of its entities and defined by 
respective morphological attributive parameters. The containment and connectivity 
relations in the architecture side are formulated by mereotopological notations. In the 
operation side, FoO is aggregated of UoOs through the operational containment and 
connectivity relations explained by procedure. The operational connectivity relations 
among UoOs are captured by streams (e.g. energy, information, and material streams). 
UoOs are explained by state transition, input/output transformation and methods of 
operation. Transitions change states of the domain, and transformation turns the input 
streams into the input ones. By interconnecting SMFs, a higher level SMF is created. Con-
sequently, FoOs and domains of the connected SMFs are considered respectively as UoOs 
and domain entities in the newly created SMF. Multi-granularity of SMFs is supported 
accordingly. In this way, streams are the main operational interfaces which are supported 
by events and timestamps in order to including timing issues. Thus, morphological and 
mereotopological connectivity relations were formulated as contracts (input assumption 
and output guarantee) to support architectural interfacing. 

3.6 DEMONSTRATION OF VALIDITY THROUGH PRACTICAL CASES 

The conceptual framework introduced as MOT is derived and formulated based on the 
empirical studies performed formerly. The theoretical results can be examined by applying 
on the empirical cases. Accordingly, validity of the theoretical conceptualization can be 
tested. Although the comprehensive confirmation of MOT is not possible without elabora-
tion of the SMF information structure, partially applying the theory on the practical cases 
can be used as demonstration to show how it works practically. Therefore, we avoided 
going into an exhaustive practice, and instead we have used an example for each case. 

3.6.1 Mereotopological definition of architecture 

Mereotopological definition of architecture of the studied smartwatch needed all ‘part-of’ 
relations that have been introduced by MOT. For instance: 

• Part-of-system-as-component: the innards pack (in), as a combination of compound 
components, is a part of the smartwatch (sm) system: PSyssmComin 

• Part-of-component-as-component: motherboard (mo), as a component, is a part of 
the innards pack (in), which is higher-level aggregative component: PCominCommo 

• Part-of-component-as-constituent: the runtime environment (re) is a component, 
which can be de-aggregated into SW and CW constituents in a lower architectural lev-
el. Being purely software, the Dalvik virtual machine (dv) can be considered as a con-
stituent of it: PComreCondv 

• Part-of-constituent-as-constituent: the Bytecode interpreter (bi) is a SW constituent 
of the Dalvik virtual machine (dv), which is a software constituent in itself: PCondvConbi 
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current. The start state of operation is in which the smartwatch is at the moment when 
placed onto the inductive charger in a specified position. The end state is in which the 
smartwatch is at the moment when picked up from the charger. In these states, both the 
input and the output are energy streams. The input stream is magnetic energy field, and 
the output stream is electric current picked up by the battery of the smartwatch. The 
physical transformation can be modeled by the following procedure: 

Begin 
1. Generate electromagnetic field by charger 
2. Bring smartwatch into physical contact with the charger 
3. Connect inductively to the electromagnetic field 
3. Take power from the electromagnetic field 
4. Convert power into electric current 
5. Conduct the current to the battery 

End 

These together represent one FoO, which composed of several UoOs. There are specific 
computational and/or mathematical methods assigned to each element of the procedure 
(UoO), which cannot be discussed here due to space limitations. In addition to the charac-
teristic variables of the physical effects (e.g. the strength of magnetic field, and the dura-
tion of charging) and the quantitative formulas that describe their relationships, the 
methods also include the morphological variables of the lower level components of the 
ICP such as charging coil, magnetic sticker, and the connector, as well as spatial position 
relationships, for example, the distances between two coils, the length, diameter and 
number of turns of the charging coil, etc. 

The domain of the touch recognition / localization software is a domain with typical 
computational operation. This domain plays an important role in the smartwatch since 
touch and gestures are the main input modes (Figure  3-17 - c). Actually, the touch recogni-
tion / localization domain is a compound domain, i.e., the shared touch panel, the capaci-
tive sensors, the connector to the motherboard, the chipset of touch panel controller, and 
other software constituents. From an operational perspective, the UoO of touch recogni-
tion and the UoO of swipe (sweep vector) and gesture identification are intertwined. We 
analyzed the UoO of touch recognition that involves the descriptive architectural and 
morphological variables of the whole digitizer unit and the embedded software constitu-
ents that is in charge of calculating touch positions. 

The recognition of touch is based on the multiple capacitive sensors, which sense and 
measure Δ voltages in different points. These sensors are at the boundary of the opera-
tional domain. The software constituent computes and recognizes the location of (subse-
quent) elementary touches based on the differences in the detected Δ voltages. Consider-
ing the physical domain of the touch panel, the elementary touches can be combined into 
a sweep vector. As mentioned above, this is seen however as a different computational 
UoO of the same touch recognition/localization domain. The reason is that the changes in 
the Δ voltage values should be processed in time in order to be able to compute and 
identify swipes and gestures. The start state is the untouched state of the domain and the 
end state is again the untouched state of the domain. The start state and the end state are 
characterized by various time and event variables. The input consists of material, energy 
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and analogue signal streams, and output comprises the digital information stream gener-
ated by the domain. The touching human fingers create distortion of the electrostatic field 
on the touch panel, which generates currents in the capacitive sensors according to the 
analog touch signal produced by the user. The computed touch positions are the digital 
information output. 

The transformation procedure between start state and the end state is as follows: 

Begin 
1. Activate if there is a touch 
2. Capture the Δ voltage data in all sensors 
3. Send the data to the touch panel controller 
4. Calculate the position of the point of touch 
5. Record the data of the points of touch 
6. Repeat procedure until touch is detected 

End 
The steps of the above procedure are done by dedicated parts of the software constituent. 
Capturing of Δ voltage data can be done by alternative methods, depending on the 
number and relative position of sensors.  

3.7 CONCLUDING REMARKS 

The issue of transdisciplinary pre-embodiment design of CPSs onto an application, system, 
constituent, and method-neutral foundation have been addressed in this chapter by 
introducing a theoretical framework named as MOT. It was intended to give an overview of 
the elements of this foundation, but due to the concomitant complexity it could not deal 
with all (technical details). Extension of spatiotemporal mereotopology into the physical 
(and computational) realms is a rational step, which can be justified by the growing num-
ber of publications reporting on research in this direction. 

3.7.1 Reflection on the findings 

A comprehensive study of the current literature informed us about the fact that synergetic 
modeling and co-design of cyber-physical systems, which contain countless analog and 
digital hardware components, control and application software components, and 
knowledge, data and media contents as cyberware components, are yet not solved [93] 
[94] [95]. The reasons can be found partly in the differences in the design and implementa-
tion concerns, and partly in the cultural (methodological) differences between the above-
mentioned areas of development [4]. The current disciplinary separation is also caused by 
the lack of a unified theoretical framework and a comprehensive system conceptualization 
methodology. Instead of a unified theory, disconnected partial theories are typically used 
for a multi-disciplinary ideation and conceptual modeling of cyber-physical systems. CPSs 
are not only heterogeneous, but also complex systems that may show various emergent 
characteristics and behaviors [96] [97]. They typically have many interactions with their 
surrounding environments and elicit the information controlling their operation from real 
life processes [98]. A concurrent, trans-disciplinary modeling and co-design of their hard-
ware, software and cyberware parts in the early phase of development can lead not only to 
process advantages, but also to quality enhancements and market benefits. 
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MOT applies the principles of spatiotemporal mereotopology for identifying and repre-
senting the architectural elements of system and their mutual relationships [99] [24]. The 
physical entities are interpreted as proper parts of the whole, domains, that lend them-
selves to ‘associatable’ operations [100]. Though domains are defined as spatial entities, 
mereotopological notation makes it possible to describe them without considering their 
actual metrics, morphology and materialization [101]. Thereupon, MOT is able to describe 
all HW, SW and CW constituents notwithstanding their inherent differences. By imposing a 
purely physical view, MOT assumes that existence is an intrinsic (an indispensable) opera-
tion of all entities included in a system. When existent, each domain performs either 
physical or computational transformations, or concurrently both. Since HW, SW and CW 
have different morphologies and operate according to different principles, the concept of 
flow of operation has been introduced in MOT. It provides a uniform scheme for represen-
tation of operations of HW, SW and CW constituents, and AW components. In fact, FoO 
creates consistency with respect to the material, energy and information streams trans-
formation, and the state transitions of the corresponding architectural domains. 

3.7.2 Enhancements of the concept of MOT 

In order to extend and implement MOT, the next research cycles should focus on (i) re-
finement and improvement of MOT as a whole and its elements, (ii) extending MOT with 
the theory of system manifestation features, and (iii) transferring the extended theory into 
a SMFs-based pre-embodiment design methodology for CPSs. As far as the second and 
third objectives are concerned, some tasks have been identified: (i) development of a 
conceptual and procedural (methodological) framework for SMFs and designing with 
them, (ii) elaboration of a computational representation of SMFs, and (iii) elaboration of a 
SMFs-based synthesis methodology for CPSs. 
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depicts the arrangement of FoOb and the included UoOs, exemplified in Figure  4-8, to-
gether with the related internal and external M-E-I streams. In the matrix representation, 
the operations complementing FoOb are placed into the first position of the descending 
main diagonal of the matrix. It symbolizes a kind of ‘gateway’ for both the input and 
output streams. In the rest of the positions in the main diagonal, the respective UoOs of 
FoOb are placed. In this context, the complementing operation represents all operations of 
the embedding system, while the UoOs de-aggregated in the main diagonal represent the 
operations (FoOs) of the customizing SMFs. 

The arrows in Figure  4-10.b. show the orientation, while the circles contain the identifiers 
of the different M-E-I streams that are processed by the respective UoOs. The places of the 
identifiers will be the same in the matrix representation as in the graphical representation 
of a FoO. The size of MoS matrix equals with the number of UoOs in the FoO added by 1. As 
shown in Figure  4-10.b, all incoming streams of the concerned FoO are included in the top 
first row of MoS, which is called input row. All outgoing streams of the FoO are included in 
the left first column of MoS, which is called output column. That is, the first row and col-
umn of MoS always represent external streams, while the rest of the matrix describes the 
internal streams of a FoO. MoS can be scaled up to capture the aggregation of arbitrary 
number of FoOs.  

To demonstrate the applicability of MoS 
formalism to a real-life case, we use the 
example of the Pablo rehabilitation device 
again. Through this example, we can clarify 
how application oriented meaning can be 
assigned to the formalism and symbols used 
in Figure  4-11. We can also demonstrate how 
information about operations can be extract-
ed from practical processes. Mentioned was 
earlier that a typical operation mode of the 
device is side lift. The device captures the 
range of the movements when side lift is 
exercised. The two components of the device 
that are involved in this flow of operation, 
namely, the MEMS detector and the ASIC 
converter, were discussed from an architectural 
perspective before. They transform acceleration 
into capacitance change (UoOCM), and convert 
the value of capacitance change into value of 
displacement (UoOCA), respectively. Since they 
have specific operational domain and distinct 
operations, we regard them as two SMFs. 

Let us denote the flow of operation by FoOC and 
all complementary operations of FoOC by ∁FoOC. 
With these, we can construct the MoS of the two 
SMFs of the rehabilitation device, as shown in 
Figure  4-12.a. The descriptors of the M-E-I 
streams are shown in Figure  4-12.b. The units of 

 
Figure  4-11 Incoming, internal and outgoing 

M-E-I streams in the FoO of the 
accelerometer 

 
Figure  4-12 Specification of the FoO of 

the accelerometer (UoOC): (a) 
the contents of MoS, and (b) 
descriptors of the streams 
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Figure  44-18 Instantiation of OKF in the casee of FoOCM 
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MoSC, there is an internal energy stream (E ) from UoOCM to UoOCA. As explained before, 
the MEMS detector detects the acceleration and generates a proportional output voltage, E , which is converted into information about the acceleration, I , velocity, I , and 
displacement, I , by the ASIC converter. In the lower aggregation level, E  is an external 
stream from FoOCM to FoOCA that connects the two corresponding MoOs. These transfor-
mations can be modeled and processed through the multi-level handling of operational 
relations, as described above. 

4.6 CONCLUDING REMARKS 

In this chapter, the constructs proposed by MOT have been used for architecture and 
operation modeling of SMFs as building blocks in pre-embodiment design of heterogene-
ous systems. SMFs naturally implement what is called HW, SW and CW co-design [38]. One 
of the main issues considered in this research cycle was information structuring and 
parameterization. Like in the ‘classical’ part feature theory, various issues of information 
structuring and parameterization have been addressed. Parameterization has been con-
sidered not only from geometric and structural aspects in the presented work, but also 
from a semantic aspect. 

A strictly physical view is enforced, which applies the principle of aggregation in the 
generation of the architecture and the operations of a system, rather than that of abstrac-
tion. AKFs and OKFs have been introduced towards a consistent specification of the 
architectural and operational aspects of SMFs. Their information structures are the basis of 
the artefactual modeling of the domains of SMFs, and the simulation of the conceivable 
operations in the pre-embodiment phase of system development. The proposed SMF 
theory complements the mereo-operandi theory and facilitates the realization of a com-
puter-supported system configuration and adaptation methodology [39].  

During our research we obtained some new insights. For instance, due to aggregate 
complexity, the information structures needed to describe the architectural and opera-
tional characteristics of SMFs cannot be anything else but complicated. For this reason, it 
was inevitable to introduce some level of modularity with respect to entity specification 
and software programming. The modularization of the architecture and operation infor-
mation structures led to a large number of information constructs, and to a multitude of 
relationships among them. At studying practical cases, it was recognized that composabil-
ity of SMFs was strongly influenced by the number and nature of relationships. In our 
approach, various constraints (e.g. temporal, logical) are applied to the relationships, the 
combination of which has an important role in fulfilling specific composability conditions.  

Composability is the degree to which SMFs can be assembled in various combinations to 
satisfy specific system and user requirements. A composition of SMFs should meet at least 
the major composability conditions in order to form an architecturally and operationally 
correct and feasible system. To increase composability of SMFs, sufficient functional and 
interfacing information is to be included in the specification of the related information 
constructs. The currently proposed solution is based on formalized input assumptions and 
output guaranties. 
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The next step of the research is considered as the computational level detailing of the 
SMFs-based methodology in order to feasibility test of the theoretical conceptualization. 
Furthermore, it was also our goal to make the specification, operationalization, and exploi-
tation of a large number of SMF possible. Even though we have recognized the advantages 
of a parallel specification or augmentation of the proposed computational approach with a 
SMFs-based, user-orientated pre-embodiment design methodology, we could not accom-
plish it yet because of the necessary experimental work. This has been done in the next 
phase of our research, together with the practical investigation of utility and usability 
issues. 

As system modeling entities, SMFs may represent both physical and computing transfor-
mations of the domains. A system model can be formed by aggregating the domains into a 
feasible structure and combining their UoOs into FoOs. Parameterization of SMFs compris-
ing HW, SW and CW constituents represent a challenge because of the associated hetero-
geneity and complexity issues [40]. Nevertheless, a straightforward and comprehensive 
constraints management and satisfaction is needed. To the best of our knowledge, no 
underlying mathematical theory has been developed for parametrized handling of system 
manifestation features. Being aware of the difficulties, we could strive after only a partial 
theory supporting parameterized computational processing of SMFs. We believe that the 
main advantages of the SMF-based approach are as follows: 

1. connecting previously separated areas of system design such as designing analogue 
hardware, digital hardware, system and application software, knowledge structures, 
concept ontologies, information/data models, and multimedia contents. 

2. providing a uniform system development strategy and methodology for the pre-
embodiment design phase of system development, by only incrementally deviating 
from the currently applied technologies, methodologies, and best practices. 

3. making possible for systems designers to focus on individual elements without losing 
sight of the overall architecture and operation framework, and without drowning de-
signers in cognitive burdens. 

4. allowing dynamic modeling and easy modification of the system concept by various 
aggregates of domains and flow of operations on a relatively high level. 

5. making system modeling transparent for each stakeholder representing different 
professional fields, balancing between different views, and reaching faster to agree-
ment this way. 
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5 COMPUTATIONAL CONSTRUCTS FOR IMPLEMENTATION OF SMFS-
BASED MODELING TOOLBOX 

 

5.1 INTRODUCTION: A bird’s eye view on the proposed modeling tool 

 

5.1.1 Overall concept of the system-level manifestation features-based modeling 
toolbox 

 

This research cycle was concerned with (i) elaboration of the overall architecture of the 
proposed system manifestation features-based modeling toolbox (SMF-TB), (ii) specification 
of the interactions among the various modules of this tool, and (iii) definition of the meth-
odological procedures of creation of and modeling with SMFs. The first step towards the 
implementation of the system-level manifestation features-based modeling toolbox was 
converting the conceptual knowledge frames (AKF & OKF) and the specified information 
structures into information engineering entities that could be implemented, stored, and 
processed, respectively, digitally. The completed process involved, on one hand, the 
specification of the information and computational constructs, and on the other hand, the 
construction of the data processing workflows for SMF creation and modeling. 

We hypothesized that the targeted SMF-TB provides functions for warehousing and 
managing SMFs, and (ii) realization of the CPS modeling process. Consequently, we con-
ceived two fundamental parts, namely: (i) a SMFs creation and warehousing platform, and 
(ii) an SMF instantiation and model composition workbench (Figure  5-1). The platform 
helps knowledge engineers to create SMFs 
and store them as individual modeling 
building blocks. The workbench has to 
general functionality (i) helps system 
designers to generate CPS models through 
instantiation and composition of SMFs, and 
(ii) supports performing visualization and 
simulation of the modeled CPSs (which is 
not in the focus of this research cycle). The 
four major computational issues related to 
SMF creation and CPS modeling were (i) 
information structuring and database 
architecture definition, (ii) software archi-
tecting and specification of component 
interactions, (iii), defining SMF creation 
process and processing workflow, and (iv) 
defining the SMF instantiation and model 
composition process. Each of these issues 
considers the SMF-TB from different 
aspects and viewpoints.  

 

Figure  5-1 Overall architecture of SMF-TB 

Phenotype 
browser

I/O interface

Visualizer

Composer

Model space

Instantiator

Genotype 
warehouse

Genotype 
editor

Phenotype 
warehouse

Phenotype 
editor

Model 
browser

SimulatorModel 
warehouse

Knowledge engineer CPS designer

Pl
at

fo
rm

W
or

kb
en

ch



     Chapter 5     | 137 

5.1.2 Architecture of the modeling toolbox 

The MOT and SMF theories have been used as a guiding framework for information tech-
nological and computational implementation of the SMFs-based pre-embodiment design 
methodology and toolbox. The overall architecture of SMF-TB and the specific software 
tools included in the Platform part and in the Workbench part are shown in Figure  5-1. The 
platform includes those software modules (seen as tools) that are for specification, ware-
housing, and retrieval of SMF implements. It provides user interfaces for both knowledge 
engineers and CPS designers. For realizing the computational functions of warehousing of 
SMFs, relational databases have been considered. The pieces of information specified in 
AKF and OKF, and the relationship among them were the starting point at developing 
database architectures. Thus, at the back-end of the platform, there are two specific 
warehouse databases for managing SMFs - one for SMF genotypes (GTs) and the other for 
SMF phenotypes (PTs).  

The Workbench includes the tools for composition, instantiation, visualization, and simula-
tion of SMF-based models of CPSs. As integral element of the Workbench, the Composer 
tool checks for the constraints and the interface contracts of SMF phenotypes, as well as 
the architectural and operational relations between them. The Instantiator tool assigns 
values to the parameters of phenotypes. The system model is built in the Model space by 
coupling and instantiating selected phenotypes. The model data and relations are saved 
and stored in the database of the Model warehouse. There is a Model browser included 
that can be used to browse the saved models, to retrieve relevant ones, and to invoke the 
data belonging to the chosen model or SMFs thereof. The Visualizer module, like a CAD 
system, produces visual images of architecture views, operation views, and simulation 
views. The Simulator tool simulates the physical and computational operations of the 
system model according to predefined scenarios. Its functionality facilitates time-
dependent analyses and simulations of the system model.  

5.1.3 Concerned stakeholders and interaction with the modeling tool  

Following the conventional but useful principle of part feature-based modeling, we 
assumed that system-level features should be programmed as parameterized entities that 
can be actualized in various application contexts by assigning values to their parameters. 
However, this task is more complicated in the case of system-level features due to their 
larger complexity and descriptive/prescriptive information content. It was also assumed 
that managing system-level features needs a ‘library’, more sophisticated than typically 
used in the case of traditional part features, to support generation, retrieval and opera-
tionalization of the feature entities. As mentioned above, SMFs are regarded as modeling 
building blocks in the SMF-TB, which should be devised according to the actual design task 
and context prior to composing them into a CPS model. In our vocabulary, this task is 
referred to as ‘SMF creation’ and assigned to ‘knowledge engineers’. The execution and 
control of the CPS design and modeling procedures are in the hand of ‘system designers’. 
They are supposed to provide the required pieces of information for a computational 
processing of the SMFs and composition of the system model. Figure  5-2 is included here 
to indicate the human involvement as a use case diagram. 
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modeling entities, and (ii) modeling CPSs as 
compositions of SMFs instances. Creation of 
SMFs needs to specify their structural, 
morphological, attributes and relational 
parameters. Methodologically, this multi-
faceted specification could not be squeezed 
into one procedures due to computational 
and system compositional considerations. 
Therefore, two procedures have been de-
fined, with multiple activities involved in 
each of them. The two procedures focus on 
two discrete in-process manifestations of 
SMFs, which have been called as genotypes 
and phenotypes. Together with the func-
tional architecture of the modeling tool and 
the process of creating SMFs, the above 
technical terms will be explained in detail in the rest of the thesis. 

5.2.2 Stages of creating SMFs 

The sub-process of modeling CPSs is decomposed to (i) the SMF instantiation and the SMF 
composition procedures. SMFs are specific knowledge constructs in which descriptive data 
sets, specification of relations, declarative statements, qualitative equations, and computa-
tional methods are all included. As mentioned in the fourth chapter and in [6], the pro-
posed information structures are arranged in the AKF and OKF. While defining SMF geno-
types and phenotypes may be done with the involvement of knowledge engineers, the 
instantiation and composition are tasks for system architecture and operation designers. 
The abovementioned procedures are implemented by using various components of the 
SMFs-based modeling toolbox such as the I/O interface, the GTs and PTs editor, the GTs 
and PTs warehouses, and the ontology manager [7]. 

From an application point of view, SMFs encapsulate all chunks of information that de-
scribe what the components of the modeled system are (architecture) and what they do 
(operations). The chunks of information concerning the architecture and the operations 
are tightly interrelated. This is important because in the physical world any architecture 
change may affect the operations, and vice versa. We had to consider some pragmatic 
issues concerning the SMF creation and specification procedure. One of them is, for exam-
ple, the issue of entering a relatively large amount of data during the process [8]. It is a 
challenge for knowledge engineers, who are in charge of converting the structural, opera-
tional and attributes data of components into SMF as information entities. In addition, 
consistency of the symbols, notations, and relations should be maintained throughout the 
phases of creating and specifying SMFs and at archiving various SMFs implements in the 
warehouses. Having the dual objectives of (i) processing the related information in a 
consistent way and (ii) reducing the cognitive workload as much as possible, we have 
developed specific procedures for defining SMFs. As shown in Figure  5-4, the overall sub-
process of SMF creation decomposes to the sub-process of ontology development and the 
sub-process of SMF creation. From a procedural perspective, the SMF creation process is 
preceded by the specification of feature concept ontology [9]. 

 

Figure  5-3 Decomposition of a process to 
intermittent and terminal ele-
ments 
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5.2.3 Consider but neglect – Our assumption about using smart ontologies for 
creating SMFs 

The ontology development sub-process is regarded as an important preparatory part, but 
also as a complementary sub-process of SMF creation [10]. Its preparatory and comple-
mentary nature comes from the assumption that initial definition of SMFs is based on 
various concept and entity ontologies. In other words, it is supposed that the formal 
specification of concepts and entities related to the specification of the architecture and 
operations of an SMF are obtained from dedicated ontologies. It is also assumed that the 
SMF ontologies are comprehensive enough to capture all concepts and entities necessary 
for defining hardware, software, cyberware, and aggregated-ware types of SMFs. However, 
no issues and tasks concerning the development of these ontologies have been addressed 
in the completed research. The reason is that this would have gone beyond its initially 
defined scope and extent. On the other hand, we have made a number of assumptions on 
how ontology contents should be imported into the SMF creation process. 

Nevertheless, for the sake of clarity, we must clarify terminological issues related to fore-
seen use of ontology contents. In our diagramming exercises, we used suffix ‘_concept’ for 
naming the ontology tables. These relational tables capture all categorizations of a con-
cept. The kinds defined in the concept tables might have ontological relations to other 
kinds from other concept tables. We need this level of ‘semantic smartness’ in order to 
facilitate the knowledge engineering tasks associated with SMF creation and prevent 
errors. The relations between ontological entities are not presented in this work. Further-
more, contrary to the fact that we did explicitly not deal with ontology development in the 
current work, we identified the main requirements for ontological classifications. The 
assumed ontological tables have been included in our schematic diagrams, and the 
relations between SMF types’ tables and ontological tables have also been elaborated on. 
On the other hand, these tables were not investigated with sufficient depth as ontological 
inputs, and they might be subject to change in the future as a result of some follow up 
investigations and scrutinizing. 

5.2.4 Overview of the SMFs creation process 

As shown in Figure  5-4, creation and parameterization of SMFs happen in three interde-
pendent stages, assuming that the ‘concepts’ needed for commencing with creation are 
obtained from background concept/entity ontologies. The definition sub-process is 
transitive in the sense that each step of SMF creation builds on the previous one, and 
inherits the information and specifications from the preceding ones. In the first step, a 
composition of ontological con-
cepts is used to define alternative 
physically coherent and feasible 
structures for SMF genotypes. The 
genotype creates multiple struc-
tural relations among semantically 
compatible ontological concepts in 
order to form indeed physically 
coherent structures [10]. The 
second step of the sub-process 
introduces structural parameteriza-

 

Figure  5-4 The overall sub-process of creating SMFs 
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tion over the structures captured within a genotype. The structural attributes become 
specified for each phenotype by inheriting from the chosen genotype. This allows select-
ing and assigning morphological and attributive parameters to them. In the third step, 
SMF instances are derived from a morphologically and physically parameterized pheno-
type by assigning values to its morphological and attributive parameters. In the process of 
modeling, deriving SMF instances starts with a kind of ‘coupling’ of selected phenotypes 
through their interfaces in order to make them architecturally and operationally intercon-
nected, and follows with assigning shared values to their morphological and attributive 
parameters (variables). 

Creation of SMF genotypes 

Our starting point is that, when system designers take part in a brainstorming session to 
generate ideas and formally conceptualize a CPS, they think in terms of compositionality of 
the system as a whole, as well as in terms of composability of possible components (e.g. a 
processor, web browser, inductive charger, accelerometer, and so forth). They exchange 
ideas and share concepts with each other either by uttering components as semantic 
entities, or representing (sketching) them as physical entities. For example, system design-
ers are normally aware of what an ‘inductive charger’ means, how does it typically look like, 
what it does, what the principles of operation are, what kinds of components it has, where 
it can be used, and much more, without even referring to a particular inductive charger. 

According to the assumption of our theoretical framework, all of these chunks of infor-
mation can be exchanged among system designers and can be built into a computational 
model of the system through a complex semantic modeling entity named SMF genotype 
(GT). As stated above, a GT defines and actualizes a unique set of internal structural rela-
tionships among concepts which are offered in ontological classes (as genes). Since geno-
types define type-level components, they can refer to more general or more specific 
categories. For example ‘electromotor’, ‘stepper motor’, and ‘hybrid synchronous stepper’ 
belong to same genotype and various templates. It is noteworthy that more specific 
genotypes lead to entering more pieces of information into the database, and vice versa. In 
addition, generic templates of a genotype can provide default values for defining more 
specific templates of that genotype. As an example, knowledge frames of electromotor (as 
a generic template) can be inherited and extended for developing knowledge frames of 
stepper motor (as a more specific template), and so forth. The mechanism of the inher-
itance is referred to as genotype template and is further elaborated on in Section 5.3.5. 

Deriving SMF phenotypes  

When system designers consider a specific component, they usually refer to a particular 
SMF phenotype (PT). The arrangement of the structural entities of PTs and the values of the 
variables representing their structural parameters are either inherited from the parent 
genotype, or interactively defined by knowledge engineers. Thus, a PT is based on a 
specific structure derived from the alternative structures incorporated in a parent GT. 
Multiple child phenotypes can be derived from a parent genotype. In addition, morpho-
logical and attributive parameters are to be specified for each derived phenotype. Con-
crete phenotypes can be generated by assigning specific values to the variables represent-
ing their parameters. Therefore, the procedure of defining phenotypes includes both data 
input and data conversion actions. 
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organization on low level is different, the warehouses show similarity in terms of their 
internal organization. They are built up from three functionally interrelated components: (i) 
relational data tables (database), (ii) database management component, and (iii) meta-
level knowledge base. The inheritance of data from a genotype to phenotypes is jointly 
handled by GT editor and PT editor. 

The GT and PT warehouses are used in two different steps of SMF definition. The workflow 
of creating a PT starts with searching in the GT warehouse to find an appropriate parent GT 
among the stored ones. If this search is unsuccessful, then a GT can be interactively created 
based on the form offered by the GT editor. In both cases, the GT warehouse is responsible 
for sending the various chunks of information to the PT editor, which arranges them 
according to the PT input form. When specification of a PT is completed, the result is stored 
in the PT warehouse. In the course of instantiation and model composition, the required 
PTs are retrieved from the PT warehouse. 

5.3 INFORMATION SCHEMA CONSTRUCTS FOR CREATING OF GENOTYPES  

5.3.1 Introducing information schema constructs as implementation entities 

In the philosophy of science, a construct is an object that is created in the mind to capture 
information about an existent or a conceived thing. Cognitively, a construct is a specific 
mind model, which includes and relates parameters that are necessary and sufficient to 
provide a simplified representation of a thing. According to the related literature, the most 
general interpretation of constructs is that they are abstraction-based structural for-
mations that are used to describe, represent, and examine phenomenon of theoretical or 
procedural interest [12]. In research, constructs are typically used to describe a concept 
formed about an observable phenomenon (e.g. driving a car) or an unobservable phe-
nomenon (e.g. attitude of driver). 

In the context of digital computation, constructs encapsulate variables and their relation-
ships to implement particular computational concepts [13]. They may capture input, 
outcome, structural, transformational, logical, knowledge, storage, interaction, interopera-
tion, etc. concepts. These information constructs can be both static and dynamic, and 
determine the structure - (de)composition - of a computational or informational model 
[14]. Formative constructs have been used to enable programing of data-intensive compu-
tational procedures [15]. In the context of SMFs-based modeling of CPSs, constructs have 
been employed: (i) to support the implementation of complex database schemata, and (ii) 
to assist organization of complex information structures [6]. That is why we named them 
information schema constructs (ISCs). They are neither objects, nor concepts – but they 
can be a model of both. ISCs have been defined based on a semantic framework, which 
specifies the chunks of information needed to represent modeling concepts and their 
'functional 'relationships in a formal manner.  

We used ISCs in our research as cognitive enablers of designing the external schemata of 
the warehouse databases and the data input/transformation procedures. The basis of 
specifying the necessary ISCs for processing genotypes, phenotypes and instances of SMFs 
were the conceived design workflow and the theoretically defined information structures. 
The advantage of using constructs for complex data scheme specification and computa-
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tion organization tasks is that they can be derived easily from the specified unit functional-
ities, and that they enable handling of information in a logically structured and consistent-
in-time manner [16]. In addition, they: (i) are reusable in multiple contexts, (ii) provide 
upward compatibility, and (iii) make validation of large-scale semantic information struc-
tures more transparent. We can differentiate construct transformations performed: (i) 
within the context of a single constructs (i.e. construct versioning), (ii) on two or more 
semantically matching constructs (i.e. construct integration), and (iii) on two or more 
semantically mismatched constructs (i.e. construct adaptation). 

As semantically arranged structure of identifiers, parameters, keys, values, descriptors and 
functional relations, ISCs are based on one or more physical/logical concepts (theoretical 
definitions). They also specify the data elements to be processed, their relationships, and 
the pertaining processing commands and procedures. A construct can be implemented in 
various programming languages. Eventually, an ISC enables the implementation of tailor-
made elementary functions by defining executable code-level components or selecting 
off-the-self components that realize a function.  

5.3.2 Chunks of information needed for creating genotypes of SMFs 

The information structures that underpin the definition of genotypes and phenotypes are 
derived based on the chunks of information contained by the AKF and OKF [6]. All required 
chunks of information have been explored, correlated, and the relational tables of infor-
mation have been designed accordingly. Since in genotype creation step knowledge 
engineers specify structure of relations between ontological concepts, pieces of infor-
mation embedded in AKF and OKF have rationally scrutinized and refined subsequently. 
The ISCs of a genotype are supposed to use the following ontological tables: (i) domain 
concepts, (ii) morphology concepts, (iii) connection concepts, (iv) connection enabler 
concepts, (v) contract concepts, (vi) stream concepts, (vii) state concepts, (viii) event 
concepts, and (xi) operation concepts.  

The information sets taken over from an AKF are as follows: 

Metadata: < kind_of_possible_super_domain >; < kind_of_domain >; < description_of_domain >; 
< associated_operation >; < morphological_kind >; < representative_state >. 

Domain entities: < GT_entity_name >; < GT_entity_description >; < kind_of_entity >. 
Entity morphologies: < kind_of_entity_morphology >. 
Containment relations: < list_of_GT_entities >. 
Connectivity relations: < kind_of_connection >;  < connected_entities >; < kind_of_connection_enabler  >. 
Contracts: < kind_of_contract >. 

The information sets taken over from an OKF are as follows: 

Metadata: < kind_of_possible_super_operation >; < kind_of_operation >; < descrip-
tion_of_GT_operation >; < related_GT_domain >.  

States of domain: < kind_of_start_state >;  < kind_of_end_state >;  < start_event >; < end_event >. 
Streams: < kind_of_external_stream >; < kind_of_internal_stream >.  
Events: < kind_of_even  >.  
Transformative procedure: < associated_stream >; < stream_direction >. 
Methods of FoO: < nil >. 
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Figure  5-24 presents the proposed computational procedures. The actors involved in 
creating GTs are: (i) knowledge engineer as the user of SMF-TB in this step, (ii) I/O interface 
as the module that provides GUI, process the data, and produce output, (iii) GT editor 
which calls queries to invoke the data from database, and inserts the data, relationships, 
and inheritance into the GT warehouse, (iv) GT warehouse as repository for storing chunks 
of information of genotypes and their relations, and (v) ontology tables, as the taxonomical 
arrangements of concepts which are needed for GT creation. 

When a fully-fledged toolbox is available, knowledge engineers select the relevant onto-
logical concepts and specify the relations among them with the support of the toolbox. 
They enter the information requested about the kind of domain, operation, method, and 
streams in the GTs creation input forms by filling in necessary data into the predefined 
fields. More than twenty relational data tables are used in the GT warehouse to capture the 
specific chunks of information required for creating a genotype. Definition of some data 
depends on the definition of others (e.g. inputting data of entity definition should precede 
the input of data of entity connection). Therefore, a dependency analysis of the data has 
been performed to identify the priorities of defining the prerequisite data. 

Based on the dependencies, the data aggregation activities were sorted into the following 
five activity cycles: (i) GT basic definition, (ii) GT operation definition, (iii) GT UoO connec-
tion definition, (iv) GT domain-state definition, and (v) GT entity connectivity definition. 
There is another cycle for overviewing and confirmation of the entered information. The 
activity cycles of creating GTs are structurally rather similar (with minor differences in 
threats, queries, and elements). They start with loading GUI components, and then the I/O 
interface asks for specific pieces of information. The GT editor uses a query to retrieve the 
data from GT or ontology database. The required data is passed to the I/O interface. A GUI 
form is rendered and the knowledge engineer fills in the form and selects from the de-
faulted options. The entered data is checked and passed to the GT editor that fills the 
chunks of information in the GT database. The following paragraphs explain how the input 
information is handled by the associated software modules. There are five tabs assigned to 
the five activity cycles in the user interface (UI) of a GT creation forms. In addition, there is 
another tab, which provides an overview of the information obtained from the knowledge 
engineer to confirm the correctness. 

Activity cycle one: Definition of GT basics 

This cycle specifies basic information about architecture and operations of a genotype. It 
involves defining the name, description, architectural domain, and operations of GT. In 
addition, there are two select-box fields for selecting the kind of domain and the kind of 
operation. The options available in these select-boxes are invoked from the ‘domain 
concept’ and the ‘operation concept’ tables, respectively. Since more than one operation 
may be added to a GT (due to the defined one-to-many relationship in the database) all 
fields of the third partition (operation of GT) are recreated as empty fields when the ‘add 
new operation’ button is pushed. 

Form name: 1. GT basics 

1.0. First partition: 1.0.1.GT name <text box>, 1.0.2.GT template <select box>, 
1.0.3.Template name <text box>, 1.0.4.GT descriptions <text area> 
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1.1. Second partition (Architectural domain of GT): 1.1.1.Domain name <text box>, 
1.1.2.Domain descriptions <text area>, 1.1.3.Domain kind <select box> 

1.2. Third partition (Operation of GT): 1.2.1.Operation name <text box>, 1.2.2.Operation 
descriptions <text area>, 1.2.3.Operation kind <select box>, Add new operation (1.2) 
<button> 

Activity cycle two: Definition of operation 

This cycle specifies the information sets related to operations of a genotype. There are four 
partitions in this tab. The first part is for selecting operation and selecting kind of possible 
super-operation. The second part is allocated to define state transition. The kind of ‘start 
state’ and ‘end state’ and the respective ‘events’ could be chosen from the select-boxes 
that their options are invoked from ontology tables. The third part is named as I/O trans-
formation. Two select box fields are used to specify kinds of input and output streams 
which the options are invoked from ontology tables. The fourth part is for defining UoOs. 
There is a button to add as much as required UoOs. Another button is placed for saving 
current operation and start with the next one. 

Form name: 2. GT operations 

2.0. First partition: 2.0.1.Select operation <select box>, 2.0.2.Kind of possible super opera-
tion <select box>, Add new super operation (2.0.2) <button> 

2.1. Second partition (State transition): 2.1.1.Start state key <text box>, 2.1.2.Start state kind 
<select box>, 2.1.3.Start event kind <select box>, 2.1.4.End state key <text box>, 2.1.5.End 
state kind <select box>, 2.1.6.End event kind <select box>, 2.1.7.Transition descriptions 
<text area>, Add new state transition (2.1) <button> 

2.2. Third partition (Input/output transformation): 2.2.1.Kind of input stream <select box>, 
Add new input stream (2.2.1) <button>, 2.2.2.Kind of output stream <select box>, Add 
new output stream (2.2.2) <button> 

2.3. Fourth partition (Units of operation): 2.3.1.Already defined UoO <select box>, 
2.3.2.Name of UoO <text box>, 2.3.3.Kind of UoO <select box>, 2.3.4.UoO descriptions 
<text area>, Add new UoO (2.3) <button> 

Save & next operation (2) <button> 

Activity cycle three: Definition of UoO connectivity 

This cycle specifies the connections among UoOs. As it is explained in [6], UoOs can only be 
connected through streams. In fact, this cycle is designed to specify both internal and 
external streams of a FoO. The first field is a select box for choosing the FoO. Select boxes 
‘kind of stream’ and ‘kind of event’ (which triggers the stream) could be selected among 
the options invoked from the ‘stream concept’ and the ‘event concept’ tables. Two last 
select-box fields offer UoOs (already defined in the second cycle) as options for two ends of 
a stream. These options are invoked from ‘GT_UoO’ table of genotype database. 

Form name: 3. Operation connectivity 

3.0. First partition: 3.0.1.Select operation <select box>  

3.1. Second partition (UoO connection): 3.1.1.Stream kind <select box>, 3.1.2.Event kind 
<select box>, 3.1.3.Select sender UoO <select box>, 3.1.4.Select receiver UoO <select 
box>, Add new connection (3.1) <button> 
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Activity cycle four: Definition of domain state 

This cycle specifies the chunks of information of architecture attributes regarding domain-
states. First of all the state should be selected. The options are invoked from ‘GT_state’ 
table of genotype database. In the next part, Kind of ‘morphology’, ‘possible super-
domain’, and ‘contract’ can be chosen through options invoked from ontology tables. 
Contract kinds can be selected for both input assumptions and output guarantees. There is 
an add button to multiply contracts in order to support one-to-many relation. Several 
domain entities can be defined for a domain-state. For each entity, the name of entity, its 
description, and the respective UoO should be entered. The options for respective UoO are 
invoked from the list of UoOs entered in the second cycle. Moreover, the kind of entity and 
morphology can be chosen from select-boxes, in which the options are invoked from 
ontology tables. 

Form name: 4. Domain-state 

4.0. First partition: 4.0.1.Select state key <select box> 

4.1. Second partition (Domain-state definition): 4.1.1.Domain morphology kind <select 
box>, 4.1.2.Possible super domain kind <select box>, 4.1.3.Contract <radio button> op-
tions: Input assumption or Output guarantee, 4.1.4.Domain contract kind <select box>, 
Add new contract (4.1.3 & 4.1.4) <button> 

4.2. Third partition (Domain entity): 4.2.1.Entity name <text box>, 4.2.2.Entity kind <select 
box>, 4.2.3.Entity morphology kind <select box>, 4.2.4.Select respective UoO <select 
box>, Add respective UoO (4.2.4) <button>, 4.2.5.Entity description <text area>, Add new 
entity (4.2) <button> 

Add a new domain-state (4) <button> 

Activity cycle five: Definition of entity connection 

This activity cycle processes the information sets concerning the connectivity among the 
entities. In the first block, ‘domain-state’ should be selected. The domain-state options are 
provided from the keys generated in the previous cycle. In the next part, two entities that 
are connected to each other are selected from the options invoked from ‘GT_entity’ table 
of the GT database. In front of ‘entity’ fields there are two select boxes for specifying kinds 
of the connection enablers. The options are invoked from ontology tables. 

Form name: 5. Entity connection 

5.0. First partition: 5.0.1.Select domain-state <select box> 

5.1. Second partition: 5.1.1.Select first entity <select box>, 5.1.2.First connection enabler 
kind <select box>, 5.1.3.Select second entity <select box>, 5.1.4.Second connection ena-
bler kind <select box>, 5.1.5.Connection kind, Add new entity connection (5) <button> 

Activity cycle six: Final confirmation 

The information is represented in unique versions of AKF and OKF tables. All related 
chunks of information entered for creation of the genotype of SMF are invoked from the 
GT database and presented in the GT creation form. The preview is managed and rendered 
by the I/O interface. When the knowledge engineer clicks on the elements, she will be 
redirected to the tab where she can modify the parameter(s). Since the parameters are 
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related together, the other related elements in the table will be highlighted to show the 
consequences of the modifications. 

5.4 INFORMATION CONSTRUCTS FOR CREATION OF PHENOTYPE 

5.4.1 Chunks of information needed for creating phenotypes of SMFs 

The structural relations of concepts are specified in genotypes, and the attributes and 
parameters of phenotypes are specified accordingly. Morphologies, materializations, 
cardinality, positioning, format, conditions, characteristics, and every other kind of qualities 
related to architectural and operational aspects of a SMF have been made ‘manipulatable’ 
through parametrization (i.e. have been considered as ‘attributes’ in its generic meaning of 
the word). Information schema constructs (ISCs) have been introduced to help this proce-
dure. The ISCs of a phenotype use 21 ontological concept tables, namely (i) domain con-
cept, (ii) connection concept, (iii) connection enabler concept, (iv) morphology concept, (v)  
morphology element concept, (vi) morphology parameter concept, (vii) mate concept, 
(viii) mate parameter concept, (ix) domain attribute concept, (x) attribute parameter 
concept, (xi) contract concept, (xii) contract parameter concept, (xiii) protocol concept, 
(xiv) unit concept, (xv) operation concept, (xvi) stream concept, (xvii) event concept, (xviii) 
operation attribute concept, (xix) operation parameter concept, (xx) state concept, and 
(xxi) operation layer concept. These concepts create the semantical basis of defining the 
chunks of information and their relationships in the relational tables of the database of the 
phenotype warehouse. These read-only relational tables assign PKs to each “kind” defined 
in the respective ontologies. These PKs are imported to the relational tables of phenotype 
database in order to specify kinds. The specific chunks of information extracted from AKF 
are specified below. (The chunks of information inherited from genotype is indicated by 
the * sign.) 

Metadata: < kind_of_possible_super_domain >*; < name_of_possible_super_domain >; 
< description_of_super_domain >; < kind_of_domain >*; < descrip-
tion_of_domain >*; < associated_operation >*; < morphological_kind>*; < repre-
sentative_state >*; < architectural_attribute_of_domain >; < architectur-
al_attributive_parameter_of_domain >; < val-
ue_of_attributive_parameters_of_domain >; < morphologi-
cal_element_of_domain>; < parameter_of_morphological_element >; < val-
ue_of_parameter_of_morphological_element >. 

Domain entities: < name_of_entity >*; < entity_description>*; < kind_of_entity >*; < architectur-
al_attribute_of_entity >; < paramter_of_architectural_attribute_of_entity >; 
< value_of_parameter_of_attribute_of_domain >. 

Entity morphologies: < kind_of_entity_morphology>*; < morphological_element_of_entity >; < param-
ter_of_morphological_element_of_entity >; < value_of_morphological_element >. 

Containment relations: < list_of_containment_relations >*; < containment_in_state >. 
Connectivity relations: < kind_of_connection >*; < connected_entities >*; 

< kind_of_connection_enabler>*; < mating_element >; < mating_parameter >; 
< mating_value >; < connection_in_state >. 

Contracts: < kind_of_contract >*; < parameter_of_contract >. 
Constraints: < constraint_of_attributive_parameter >; < con-

straint_of_morphological_parameter < constraint_of_contract_parameter >. 

The specific chunks of information extracted from OKF are as follows: 
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Metadata: < kind_of_possible_super_operation >*; < kind_of_operation >*; < descrip-
tion_of_PT_operation >*; < PT_domain >*; < operation_attribute_of_FoO >; 
< parameter_of_operation_attribute_of_FoO >. 

States of domain: < kind_of_start_state >*; < name_of_ start_state >; < descrip-
tion_of_start_state >; < kind_of_end_state >*; < name_of_end_state >; < descrip-
tion_of_end_state >; < start_event >*; < end_event >*. 

Streams: < kind_of_external_stream >*; < kind_of_internal_stream >*; 
< name_of_stream >; < description_of_stream >; 
< start_time_stamp_of_stream >; < end_time_stamp_of_stream >; 
< halt_time_stamp_of_stream >; < resume_time_stamp_of_stream >; 
< parameter_of_stream >. 

Events: < kind_of_event >*; < name_of_event >; <  description_of_event >; 
< stream_to_event >; < state_of_event >; < time_stamp_of_event >. 

Transformative proce-
dure: 

< streams_to_UoOs >*; < direction_of_stream >*. 

Methods of FoO: < method >; < element_of_method >; < parameter_of_method >. 
Time stamps: < specification_of_time_stamp >; < start_time_stamp >; < end_time_stamp >; 

< halt_time_stamp >; < resume_time_stamp >; < duration >. 
Scheduling conditions: < conditions >; < event_to_condition >; < sequence >; < event_to_sequence >. 

Operational constraints: < maximum_value_of_parameter >; < minimum_value_of_parameter >. 

UoOs: < name_of_PT_UoO >*; < description_of_PT_UoO >*; < kind_of_UoO >*; 
< operation_attribute_of_UoO >; < parameter_of_operation_of_UoO >. 

Domain entities of UoOs: < list_of_entities_to_UoO >*. 

Methods of UoOs: < method >; < elements_of_method >; < parameter_of_method >. 

Operational layers: < list_of_layer_ID >, < method_to_layer >. 

5.4.2 Information schema constructs of the phenotypes database 

The database of the phenotypes warehouse is organized as entity-relation tables incorpo-
rating several various chunks of information. Recall that the tables are related to each other 
through standard connectors. A relation is valid if the PK of one table is represented as an 
FK in another table. A large number of relations are needed because of the large number of 
chunks of information relevant for phenotypes. Actually, the proposed database schemata 
of phenotypes contain 53 tables and 123 exchanged FKs. This complexity explains the 
many information schema constructs defined. Since phenotypes inherit various chunks of 
information from their parent genotype, some ISCs are reusable. 

ISC for specification of operation as state transition 

Like a genotype, a phenotype also captures information about a domain and the opera-
tions associated with it. Therefore, a construct has been designed for this purpose. As 
shown in Figure  5-25, it includes the “PT_SMF” table that has a one-to-one relation with 
the “PT_domain” table, and a one-to-many relation with the “PT_operation” table. Directly 
or indirectly, all operational and architectural warehouse database tables are connected to 
the “PT_operation” and “PT_domain” tables, respectively. The effects of operations on the 
architectural domains are modeled as state transitions. Therefore, the operation database 
tables are connected to the “PT_state_transition table,” which includes chucks of infor-
mation about “start_state,” “end_state,” “start_event,” “end event,” and other descriptors 
of a transition (Figure 13). States are defined by parameters such as “PT_state_name,” 
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These activities of defining PTs are largely similar to those of the ‘genotype basics’ cycle. 
Most of the fields are filled with default values inherited from the chosen genotype, which 
could be extended or modified for finer specification of phenotypes. 

Form name: 1. PT basics  

1.0. First partition: 1.0.1. PT name <text box>, 1.0.2. PT descriptions <text area> 

1.1. Second partition (Architectural domain definition): 1.1.1. Domain name <text box>, 
1.1.2. Domain descriptions <text area>, 1.1.3. Domain kind <select box>, 1.1.4. Media file 
<brows file button> 

1.2. Third partition (Operation definition): 1.2.1. Operation name <text box>, 1.2.2. Opera-
tion descriptions <text area>, 1.2.3. Operation kind <select box>, 1.2.4. Operation attribute 
name <text box>, 1.2.5. Operation attribute descriptions <text area>, 1.2.6. Operation at-
tribute kind <select box>, Add new operation attribute (1.2.4-1.2.6) <button>, Add new 
operation (1.2) <button> 

Activity cycle two: Definition of PT operations 

These activities specify: (i) methods of operation, (ii) state transitions, and (iii) I/O transfor-
mations. As demonstrated in Digital Appendix 2, fields are filled with the chunks of infor-
mation inherited from the chosen genotype. In the beginning, a select box is provided that 
offers options to choose one of the operations defined in the previous cycle. In fact, the 
current form is allocated to further elaboration of the defined operations. The first partition 
of this tab is for specifying possible super-operations. The second partition asks for specify-
ing method of operation as well as the layer the operation belongs to. Methods could be 
defined in two separate areas, one for mathematic equations, and the other for logical 
statements. Multiple methods could be defined for each operation. The third and fourth 
partitions (state transition and I/O transformation, respectively) have several fields filled 
with GT information. Detailed information about associating events, states and streams 
should be provided in these partitions. 

Form name: 2. PT operations 

2.0. First partition: 2.0.1 Select operation <select box>, 2.0.2 Kind of possible super opera-
tion <select box>, 2.0.3. Name of super operation <text box>, Add new super operation 
(2.0.2 & 2.0.3) <button> 

2.1. Second partition (Methods of operation): 2.1.1. Method equation <equation area>, 
2.1.2. Method algorithm <text area>, 2.1.3.Layer of methods <select box>, 2.1.4. layer de-
scription <text area>, Add new layer method (2.1) <button> 

2.2. Third partition (State transition): 2.2.1. Start state name <text box>, 2.2.2. Start state 
kind <select box>, 2.2.3. Start state descriptions <text area>, 2.2.4. Start event name <text 
box>, 2.2.5. Start event kind <select box>, 2.2.6. Start event descriptions <text area>, 2.2.7. 
End state name <text box>, 2.2.8. End state kind <select box>, 2.2.9. End state descriptions 
<text area>, 2.2.10. End event name <text box>, 2.2.11. End event kind <select box>, 
2.2.12. End state descriptions <text area>, 2.2.13. Transition descriptions <text area>, Add 
new state transition (2.2) <button> 

2.3. Forth partition (Input/output transformation): 2.3.1. Input stream name <text box>, 
2.3.2. Kind of input stream <select box>, Add new input stream (2.3.1 & 2.3.2) <button>, 
2.3.3. Output stream name <text box>, 2.3.4. Kind of output stream <select box>, Add 
new output stream (2.3.3 & 2.3.4) <button> 2.3.5. Transformation descriptions <text area> 
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Activity cycle three: Definition of UoOs 

The aim of this cycle is to gather more information about operational attributes and 
methods of UoOs. Names, kinds, and descriptions about UoOs are inherited from the 
chosen GT. The fields in this form are mostly similar to the attribute and method fields of 
operation (in the first and the second cycles). It offers a field for selecting the operation 
that the UoOs are part of. There is a button named ‘Add new UoO’ that makes it possible to 
define several UoOs for a single FoO. This function is supported by the many-to-many 
relations among FoO and UoO database tables. 

Form name: 3. UoO 

3.0. First partition: 3.0.1. Select operation <select box> 

3.1. Second partition (Units of operation): 3.1.1. Name of UoO <text box>, 3.1.3. Kind of 
UoO <select box>, 3.1.4. UoO descriptions <text area>, 3.1.5. Operation attribute name 
<text box>, 3.1.6. Operation attribute descriptions <text area>, 3.1.7. Operation attribute 
kind <select box>, Add new operation attribute (3.1.5-1.2.7) <button>, 3.1.8. Method 
equation <equation area>, 3.1.9. Method algorithm <text area>, 3.1.10.Layer of methods 
<select box>, 3.1.11. layer description <text area>, Add new layer method (3.1.8 – 3.1.11) 
<button>, Add new UoO (3.1) <button>   

Go to the next operation (3) <button> 

Activity cycle four: Definition of operation connectivity 

These activities specify the connections among UoOs. The first partition is for selecting the 
FoO that the connections among the UoOs are realized in. The options for both FoOs and 
UoOs are provided in select boxes from the previously defined operations and UoOs which 
stored in the PT database. The third and the fourth partitions are allocated to definition of 
timestamps of streams and events, respectively. 

Form name: 4. Operation connectivity 

4.0. First partition: 4.0.1. Select operation <select box> 

4.1. Second partition (Stream): 4.1.1. Stream name <text box>, 4.1.2. Stream kind <select 
box>, 4.1.3. Select sender UoO <select box>, 4.1.4. Select receiver UoO <select box>, 4.1.5. 
Stream descriptions <text area> 

4.2. Third partition (Stream timestamps): 4.2.1. Start timestamp <text box>, 4.2.2. Halt 
timestamp <text box, add button>, 4.2.3. Resume timestamp <text box, add button>, 
4.2.4. End timestamp <text box>, 4.2.5. Duration symbol <text box>, 4.2.6. Duration mini-
mum <text box>, 4.2.7. Duration maximum <text box>, 4.2.8. Duration unit <select box> 

4.3. Forth partition (Stream events): 4.3.1. Start event name <text box>, 4.3.2. start event 
kind <select box>, 4.3.3. Start event timestamp <select box>, 4.3.4.Start event descriptions 
<text area>, Add new start event (4.3.1-4.3.4) <button>, and 4.3.5. End event name <text 
box>, 4.3.6. End event kind <select box>, 4.3.7. End event time stamp <select box>, 
4.3.8.End event descriptions <text area>, and Add new end event (4.3.5-4.3.8) <button> 

Add new connectivity (4) <button> 
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Activity cycle five: Definition of events 

These activities are to elaborate on the previously defined events. In the first partition of 
this tab, sequential constraints of events are specified. There are two fields for selecting 
events and for defining their sequential relations (e.g. before, after, coincident, asynchro-
nous). The conditions can be defined in the second partition. The third partition is meant 
for assigning timestamps to the events. 

Form name: 5. Events 

5.1. First partition (Sequence constraints): 5.1.1. First event <select box>, 5.1.2. Sequential 
relation <select box>, 5.1.3. Second event <select box>, Add new sequence constraint 
(5.1) <button> 

5.2. Second partition (Conditions): 5.2.1. Condition description <smart text area>, Add new 
condition (5.2) <button> 

5.3. Third partition (Event timestamp): 5.3.1. Select event <select box>, 5.3.2. Select 
timestamp <select box>, Add new event-time relation (5.3) <button> 

Activity cycle six: Definition of operation parameters 

These activities specify the parameters for both streams and operation attributes. The first 
partition of this form can be used for assigning parameters to streams and/or attributes by 
selecting them from a select box. The options are invoked from the streams and operation 
attributes previously defined and stored in the PT database tables. Constraints can be 
specified on the defined parameters in the second partition of this form. 

Form name: 6. Operation parameters 

6.1. First partition (O_Parameter): 6.1.1. Select attribute or stream for parametrization <se-
lect box>, 6.2.1. Parameter name <text box>, 6.1.2. Parameter kind <select box>, 6.1.3. Pa-
rameter descriptions <text area> 

6.2. Second partition (Constraint): 6.2.1. Parameter Max value <text box>, 6.2.2. Parameter 
Min value <text box>, 6.2.3. Parameter unit <select box>, 6.2.4. constraint descriptions 
<text area>, Add new operation constraint (6.2) <button> 

Add new operation parameter (6) <button> 

Activity cycle seven: Definition of operation parameters 

These activities deal with architectural issues. The first partition is allocated to specify the 
states of the domain of the given phenotype. The domain-state keys generated here will 
be used in the following architecture specification forms. Super-domains and domain 
entities can be defined in the second and third partitions, respectively. The chunks of 
information included in this form are mostly inherited (i.e. imported) from the chosen 
genotype. 

Form name: 7. Domain-state 

7.0. First partition: 7.0.1. Select state key <select box>, 7.0.2. CAD assembly file <brows file 
button> 
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7.1. Second partition (Possible super domain): 7.1.1. Super domain name <text box>, 7.1.2. 
Super domain kind <select box>, 7.1.3. Super domain descriptions <text area>, Add new 
s-domain (7.1) <button> 

7.2Third partition (Domain entity): 7.2.1. Entity name <text box>, 7.2.2. Entity kind <select 
box>, 7.1.3. Entity descriptions <text area>, 7.1.4.Select respective UoO <multiple select 
box>, Add new domain entity (7.2) <button> 

Add new domain state (7) <button> 

Activity cycle eight: Definition of morphology and attributes 

These activities define the morphological and values of the attributive parameters. The 
cycle of activities begins with selecting domain-state or entity-state for which the options 
are invoked from the PT database. There is a possibility of browsing 3D-model file instead 
of defining manually. A translator engine is adopted to draw morphological elements from 
the browsed file and import them to the database. 

Form name: 8. Morphology and attributes 

8.0. First partition: 8.0.1. Select domain-state <select box>, 8.0.2. Select entity <optional se-
lect box> 

8.1. Second partition (Morphology): 8.1.1. Morphology kind <select box>, 8.1.2. Morpho-
logical object name <text box>, 8.1.3. Morphological object descriptions <text area>, 
8.1.4. object CAD file <brows file button>, 8.1.5. Morphological element <select box>, 
8.1.6. morphological element name <text box>, 8.1.7. morphological element descrip-
tions <text area>, 8.1.8. Morphological parameter <select box>, 8.1.9. Morphological pa-
rameter value <text box>, 8.1.10. M-parameter unit <select box>, 8.1.11. M-parameter val-
ue min value <text box>, 8.1.12. M-parameter value max <text box>, Add new M-
parameter (8.1.8-8.1.12) <button>, Add new M-element (8.1.5-8.1.12) <button>, Add new 
M-object (8.2) <button> 

8.2. Second partition (Domain attributes):8.2.1. Attribute name <text box>, 8.2.2. Attribute 
kind <select box>, 8.2.3. Attribute descriptions <text area>, 8.2.4. Attr-parameter kind <se-
lect box>, 8.2.2. Attr-parameter name <text box>, 8.2.6. Attr-parameter unit <select box>, 
8.2.7. Attr-parameter value <text box>, 8.2.8. Attr-parameter min value <text box>, 8.2.9. A-
parameter max value <text box>, Add new Attr-parameter (8.2.4-8.2.9) <button>, Add 
new attribute (8.2) <button> 

Activity cycle nine: Definition of contracts 

These activities specify the domain contracts. The cycle starts with selecting domain-state 
in the first partition. The kind of contracts can be specified in the second partition. The first 
two partitions are fields with default values inherited from the chosen GT. The third and 
the fourth partitions are allocated to the specification of more details about parametric 
contracts and protocol contracts, respectively. 

Form name: 9. Contracts 

9.0. First partition: 9.0.1. Select domain-state <select box> 

9.1. Second partition (Domain contracts): 9.1.1.Contract <radio button> options: Input as-
sumption or Output guarantee, 9.1.2. Domain contract kind <select box>, 9.1.3. Respec-
tive morph-element <select box> 
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9.2. third partition (Parametric contract): 9.2.1. Contract parameter kind <select box>, 9.2.2. 
Contract parameter min value <text box>, 9.2.3. Contract parameter max value <text 
box>, 9.2.4. Parameter unit <select box>, Add new contract parameter (9.2) <button> 

9.3. Forth partition (protocol contract):9.3.1. Protocol kind <select box>, 9.3.3 Protocol de-
scriptions <text area>, Add new protocol (9.3) <button> 

Add a domain-state contract (9) <button> 

Activity cycle ten: Definition of architectural connectivity 

These activities specify the connections among domain entities. The architectural connec-
tions specified in the chosen genotype are imported as default values for the first and the 
second partition of the form. Mates among the connected domain entities could be 
defined in the third partition. The query made for invoking the options for morphological 
elements only consider those domain entities that were selected in the first partition. 
These morphological elements are defined in the eighth cycle. 

Form name: 10. Architecture connectivity 

10.0. First partition: 10.0.1. Select domain-state <select box> 

10.1. Second partition (Connection): 10.1.1. Connection kind <select box>, 10.1.2. Select 
first entity <select box>, 10.1.3. First connection enabler kind <select box>, 10.1.4. Select 
second entity <select box>, 10.1.5. Second connection enabler kind <select box> 

10.2. Third partition (Morphological parameter mate): 10.2.1. First Morph-element <select 
box>, 10.2.2. Second Morph-element <select box>, 10.2.3. Mate kind <select box>, 10.2.4. 
Mate_parameter <select box>, 10.2.5. Mate_parameter value <text box>, 10.2.6. Ma-
te_para_value unit <select box>, Add mate parameter (10.2.4-10.2.6) <button>, Add new 
mate (10.2) <button> 

Add new entity connection (10) <button> 

Activity cycle eleven: Definition of methods 

These activities establish relationships between the specified parameters and the before-
hand defined methods. In the first partition, a method should be selected from the options 
invoked from the ‘PT_method’ table of PT database. The elements of the browsed method 
are automatically recognized and displayed as options in the select box. The second 
partition is for assigning parameters to the elements of the chosen method. The parameter 
options can be invoked from all of the architecture and operation parameter tables. For 
easier sorting, it is possible to apply grouping or automatic filtering of the irrelevant 
parameters. 

Form name: 11. Methods 

11.0. First partition: 11.0.1. Select method <select box>, 11.0.2. Method equation <equa-
tion area>, 11.0.3. Method algorithm <smart text area> 

11.1. Second partition (Assigning method elements): 11.1.1. Method element <select 
box>, 11.1.2. Preferred Unit <select box>, 11.1.3. Parameter <select box>, Assign and next 
(11.1) <button> 

Save and next method (11) <button> 
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phenotypes can be combined and matching values can be generated for the parameter 
variables, with the consideration of the specified constraints. The values of the instantiated 
phenotypes are stored in the model database.  

The interfaces of the phenotypes have a decisive role in terms of the possibility of architec-
tural and operational coupling. Architecture interfaces are exemplified by contracts and 
morphological ports [19]. Operation interfaces provide specifications over external 
streams, and the related states and events. In addition, parameter constraints are also 
specified by both interfaces, depending on the types of the parameters. Instances of SMFs 
take over some chunks of information and their relationships from the relational data 
tables of phenotypes. Instances share parts of the model database. 

5.5.2 Information scheme constructs of the model warehouse  

In the previous sub-chapters, the information structure constructs needed to map geno-
type and phenotype information into relational database schema has been explained. In 
this sub-chapter we present those additional constructs that are needed for mapping the 
results of composition and instantiation of phenotypes in the system model. This sub-
chapter focuses on these constructs, while in the next sub-chapter those complementing 
constructs that are needed for a meta-level handling of the system model are presented. 

As a first step of discussing the ISCs used for structuring the database of the model ware-
house, we present an overview of its external schema in Figure  5-44. The principle of 
aggregation is the fundamental mechanism that governs data management in the model 
warehouse. The phenotypes of SMFs imported to the model space are coupled and instan-
tiated in the model space. This changes their architectural and operational relationships. 
Actually, these relationships should be captured in the database of the model warehouse 
during coupling and instantiation of phenotypes. From a different viewpoint, aggregation 
leads to formation of compound SMFs. Together with the simple instance SMFs, the 
instances of compound SMFs are stored as such in the database of the model warehouse. 
The aggregation process, i.e. coupling and instantiation of phenotypes of SMFs can be 
continued without any theoretical limitation. It has to be noted that the current database 
schemata and storage space requirement are not yet optimized for extremely large system 
models, and for benefiting from cloud services. On the other hand, ‘multi-granularity’ of 
the built SMFs-based models lends itself to an effective composition and decomposition 
processes. 

Phenotypes are placed into architectural and operational relationships when their instanc-
es are derived. The ISCs discussed below should capture these established relationships, 
which do not belong individually to any of the concerned instances, but do belong to 
both. Coupling of phenotypes means that the parameters related to their interfaces will be 
coupled and the assigned values will be shared by both. Consequently, all related parame-
ter variables of the concerned phenotypes are evaluated, i.e. values are assigned to the 
parameters of the created model. In the composition process, the interfaces of phenotypes 
play two important roles, namely, they are both operation interfaces and architecture 
interfaces. Operation interfaces handle external streams and the associated events and 
states. Architecture interfaces handle contracts and respective morphological elements 
(ports). Constraints on parameter values can be considered in both interfaces (depending 
on the type of parameters). 
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duced because of the need for capturing this situation. It specifies if a ‘Domain entity’ is 
part of a ‘Domain’ in a particular state, and if it is a part of another ‘Domain’ in another 
state. If two domains are architecturally connected, they should be registered as ‘First 
domain’ and ‘Second domain’ in one row of the ‘A_connection’ table. This table is similar 
to the table included in the architecture containment and connectivity construct of SMF 
phenotypes. 

The usefulness of this construct can be exemplified by the case of transferring a media file 
from a memory stick (MS) to a hard drive (HD) (Figure  5-48). The operation can be specified 
as ‘moving file’, which transfers the start state (file on MS) to the end state (file on HD). In 
this example, there are two domains (MS and HD) and one domain entity (the media file). 
The media file is part of both MS and HD, but not in the same state. Figure  5-48 shows how 
these relations can be captured in the proposed relational tables. The filem stands for the 
media file which is moved. 
The filew stands for a Word 
file that exists on HD in both 
states. And the filep is a 
Presentation file that is 
deleted; therefore there is 
no ‘part-of’ relation for it in 
the second state. 

ISC for handling assigned metric and attributive values  

The major difference between an instance of a SMF and its phenotype is in the explicit and 
dynamic value specification of instances. In the case of a phenotype, it is sufficient to 
specify the value range of variables (i.e. maximum and minimum values). Technically, there 
are two ways of specifying values of architecture and operation parameters: by their 
(highest and lowest values) constraints, and by their precise values. Typically, constraints 
are therefore used in specification of phenotypes, and mostly precise values are used for 
specification of instances. The values of parameter variables may be of two kinds: constant 
values and variable values. The parameters with constant values may be set to default by 
the phenotype manager, but cannot be changed by input and output operations. Values 
of some parameters may change continuously according to physical variations of the 
related parameters. 

The designed construct is shown in Figure  5-49. The main considerations were as follow: 
Due to interaction with other associated instances, variable values may temporarily change 
in SMF instances. For example, in the case of an electromotor built into a model, the 
output values of speed and torque will change according to the input value for the electric 
current. These dependencies are captured as numerical relations between inputs and 
outputs, and described by ‘methods’ stored as mathematical equations. The temporal 
changes of variable values can be specified either by methods or states of operation. These 
two ways of capturing the changes support both ‘continues-timing’ and ‘discrete event-
based’ simulations. 

In the process of instantiation, there are two sorts of parameters whose values should be 
specified: operation-related parameters and architecture-related parameters. Operation-
related parameters are: (i) time stamps, (ii) duration, (iii) stream parameters, and (iv) opera-

 

Figure  5-48 An example for architecture containment 
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• Input/output of SMFs: Based on I/O streams, events, and states, CPS designers 
could find out what they need for a particular operation composition. If a compo-
nent is replaced, the new component should be connected operationally to the 
streams the former detached from. 

• Morphology and size: Physical positioning and dimensional limitations of a com-
ponent could be a serious issue sometime. For example, if an App should be in-
stalled for navigation, the size of the App should be considered regarding the avail-
able storage space on the disc. 

• Efficiency (performance): The methods of operations stored in SMFs could be 
used as searching criteria in order to find SMFs with a particular performance. 

• Constraints: Many architectural and operational parameters might be defined by 
their constraints (e.g. flexion, temporal, volume), and the constraints could be used 
for searching.  

• Similarity (kind): Instances of SMFs could be traced back to their phenotypes, 
genotypes, and genotype templates. Accordingly, SMFs could be search based on 
their architectural and operational similarities. For example, ‘photovoltaic’ energy 
producing could be used as kind search. 

Following, we elaborate on the major issues of composing models from SMF instances. 

5.6.1 Collecting chunks of information by the entry forms 

The entry form makes the modeling process interactive and conversational. There are 
three entry forms designed for collecting the required chunks of information from the 
system designers, each of which realized in a separate tab of entry form. These entry forms 
successively collect chunks of information concerning: (i) list of phenotypes that are 
composed, (ii) operational composition of the selected phenotypes, and (iii) architectural 
composition of the selected phenotypes. 

In the first entry form, CPS designers need to select the phenotypes that will be used in the 
system model. This model is considered as a very higher level SMF, which can be used to 
compose a system of systems (SoS) model requiring multi-level composition. Name and 
description of any new or SoS instance of SMFs should be included into the first partition 
of the form. In the second partition, the designers will be asked to provide a name and 
description for the architectural domain of the concerned SMF. There is an option for 
uploading a media file. In the third partition, name and descriptions of operations of the 
SMF should be determined. Since there might be several operations for an SMF, for each 
operation, associating UoOs of phenotypes should be selected.  

For example, for composing a new SMF of a smartphone, phenotypes of battery, screen, 
camera, processor, etc., should be instantiated. Multiple operations could be defined for 
the new SMF e.g. navigation, gaming, video calling, photo shooting, music playing. For all 
operations of the new SMF, all operations of the aggregates are not needed. For example, 
navigating (as an operation of smartphone SMF instance) will not need visual sensing (as 
and operation of camera phenotype). Accordingly, in the third partition of the first page, 
operations of the new SMF (FoOs) could be defined by selecting multiple operations 
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(UoOs) imported from the chosen phenotypes. The following declarations represent the 
fields of the first instance form. 

Form name: 1. Composition basics 

1.0. First partition: 1.0.1. Composed SMF name <text box>, 1.0.2. Composed SMF descrip-
tions <text area>, 1.0.3. Select phenotypes to compose <select box, add button> 

1.1. Second partition (Architecture of composed SMF): 1.1.1. Composed domain name 
<text box>, 1.1.2. Composed domain descriptions <text area>, 1.1.4. Composed domain 
Media file <brows file button> 

1.2. Third partition (Operation of composed SMF): 1.2.1. Composed operation name <text 
box>, 1.2.2. Composed operation descriptions <text area>, 1.2.3. Select operations of 
phenotypes to compose <select box, add button>,  

Add new operation (1.2) <button> 

The second entry form is created for configuring operations of the model. It means, each 
operation should be defined as state transitions (i.e. as an input/output transformation). In 
the second tab of the form, the firs partition is allocated to select an operation (among the 
operations defined in the first tab). The state transition should be defined in the second 
partition. There is no need for creating states; they could be selected from the states 
formerly defined in phenotypes. The I/O transformation should be defined in the third 
partition. The streams represented as options in this partition are invoked from external 
streams of the chosen phenotypes. In this way, the interfaces of the phenotypes that 
remain as interfaces of the new SMF could be specified. The next partition specifies the 
external streams of the phenotypes that should be turned into internal streams in the new 
SMF. In order to couple the operation interfaces of the chosen phenotypes, the external 
streams of them should be linked together. We named this action as stream unification. It 
means that FoOs of the phenotypes (which are considered here as UoOs) should be linked 
together as procedural elements of FoOs of the new SMF. 

Sequential constraints of the events are already defined in the phenotypes. However, after 
having composed them, we need to define sequential constraints among the events in 
various phenotypes in order to instantiate them. For instance if end state of one pheno-
type is the start state of the other one, their respective events should be defined as coinci-
dent. In the fifth partition, the sequential relations of the events will be specified. The same 
is applies to defining conditions: there may be a need to define some additional conditions 
that regulate the operational relationship among phenotypes. This kind of conditions can 
be defined in the sixth partition. The events needed to be selected in partitions five and six, 
should be invoked from the database. It means, there is no need to generate a new event. 
The reason is that all external events are formerly created in phenotypes. 

In the second tab of the form, the procedure of the operations of the newly composed SMF 
will be defined by composer module. Methods of operation will be derived automatically 
in the background by the Instantiator module. The following declarations represent the 
fields of the second instance form. 

Form name: 2. Operational composition 

2.0. First partition: 2.0.1 Select operation <select box> 
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2.1. Second box (State transition):2.1.1. Start state <select box>, 2.1.2. End state <select 
box>, 2.1.2. Transition descriptions <text area>, Add new state transition (2.1) <button> 

2.2. Third partition (Input/output transformation): 2.2.1. Input streams <select box, add 
button>, 2.2.2. Output streams <select box, add button>, 2.2.3. Transformation descrip-
tions <text area> 

2.3. Fourth partition (Stream unification): 2.3.1. Stream <select box, add button>, is the 
same as <text>, 2.3.2. Stream <select box, add button> 

2.4. Fifth partition (Event sequence constraints): 2.4.1. Events <select box, add button>, 
2.4.2. Sequential relation <select box>, 2.4.3. Events <select box, add button, Add new se-
quence constraint (2.4) <button> 

2.5. Sixth partition (Conditions): 2.5.1. Condition description <smart text area>, Add new 
condition (2.5) <button> 

New composed operation (2) <button> 

Following the specification of the state transitions in the second tab, the first partition in 
the third tab (architectural composition) is to select the state that the architectural rela-
tions should be specified in. The other partitions are allocated to specify architecture 
containment (partition 2), architecture connectivity (partition 3), and morphological mates 
(partition 4). 

Since the included domain entities and the connections among them are specified in 
association with states, the changes in architectural domain of the new SMF should be 
defined in this tab. The domain entities of the new SMF are the domains of the chosen 
phenotypes that are being instantiated here. The contract defined in the phenotype step 
could be used for defining connections in this step. The architectural composition of the 
new SMF is the result of this configuration and instantiation action completed by the CPS 
designer. After specifying the architectural connections, morphological mates should be 
specified. This partition is more or less similar to the partition allocated to morphological 
mates in the phenotype derivation step. The following declarations represent the fields of 
the third instance form. 

Form name: 3. Architectural composition 

3.0. First partition: 3.0.1. Select state key <select box>, 3.0.2. CAD assembly file <brows file 
button> 

3.1. Second partition (Architecture containment): 3.1.1. Contained domain <select box, 
add button> 

3.2. Third partition (Architecture connection): 3.2.1. Connection kind <select box>, 3.2.2. 
Select first domain <select box>, 3.2.3. First connection enabler kind <select box>, 3.2.4. 
Select second domain <select box>, 3.2.5. Second connection enabler kind <select box> 

3.3. Fourth partition (Morphological mate): 3.3.1. First Morph-element <select box>, 3.3.2. 
Second Morph-element <select box>, 3.3.3. Mate kind <select box>, 3.3.4. Mate-
parameter <select box>, 3.3.5. Mate_parameter value <text box>, 3.3.6. Mate_para_value 
unit <select box>, Add mate parameter (3.3.4-3.3.6) <button>, Add new mate (3.3) <but-
ton> 

Add new connection (3.2) <button> 

Add new domain state (3) <button> 
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5.6.2 Information processing by the Composer and Instantiator modules 

As it is discussed before and indicated in Figure  5-58, structure of the two databases are 
almost similar. Accommodating all level of operations in the same table (table ‘operation’), 
as well as accommodating all level of domains in the same table (table ‘domain’) resulted 
in removing four tables. On the other hand, three tables are added to the model database 
that does not exist in the phenotype database. The tables ‘duration assigner’ and ‘time 
assigner’ are in charge of assigning temporal values to the model variables. The table 
‘operation para value’ connects ‘value assigner’ table to the ‘operation parameter’ table. 
Value assigner is the gate for values should be assigned to all kind of parameters. 

Modeling process of a CPS is considered as an ordered set of systematic procedures that 
several actors are involved in. Accordingly, this procedure can be investigated in many 
aspects. The user workflow, interaction among modules of modeling tool, and information 

Operation tables 

 

Architecture tables 

Phenotype database Model database Phenotype database Model database 

PT_SMF IT SMF PT domain Domain 
PT operation Operation PT possible super domain Domain 
PT possible super opera-
tion 

Operation PT entity Domain 

PT UoO Operation PT entity connection A connection 
PT operation containment Operation containment PT DS A connectivity State A connectivity 
PT operation connectivity Operation connectivity PT DS A containment A containment 
  PT UoO PT entity UoO-entity association 
PT I/O transformation I/O transformation PT domain-state Domain-state 
PT output stream Output stream   
PT input stream Input stream PT morphological object Morphological object 
PT stream Stream PT state morph object State m object 
  PT morph element Morph element 
PT event Event PT state morph element State m element 
PT sequence constraint Sequence constraint PT morphology parameter Morph parameter 
PT condition Condition PT m para value State m  para value 
PT condition assigner Condition assigner   
PT state transition State transition PT mate Mate 
PT state State PT state mate  State mate 
  PT mate parameter Mate parameter 
PT time stamp Time stamp PT mate para value State mate para value 
PT stream time Stream time   
PT duration constraint Duration constraint PT domain attribute Domain attribute 
 Duration assigner PT state attribute State d attribute 
 Time assigner PT domain attr. parameter Domain attribute parameter 
  PT d attr. para value State d attr parameter  
PT operation layer Operation layer Value Value assigner 
PT method Method   
PT parameter assigner Parameter assigner PT contract Contract 
PT operation parameter Operation parameter Contract protocol Contract protocol 
PT constraint Constraint Contract parameter Contract parameter 
PT operational attribute Operational attribute PT DS contract C parameter value 
 Operation para value   

Figure  5-58 projecting tables of phenotype database to model database 
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processing are examples of these aspects, which are in focus of our research. Obviously, 
there are multiple aspects that are excluded from our research, in order to be able to 
reduce it to a manageable amount of work. 

In order to capture the procedure of model composition and instantiation, concept of 
procedural computational schema (PCS) has been created. PCSs represent algorithmic 
activity flows that could be implemented through programming languages. In the follow-
ing, the PCSs of generating SMF-based models are demonstrated. The Composer and 
Instantiator modules are considered, which are main modules directly involved in system 
modeling. Consequently, we mainly focus on the activities of these two modules. The three 
steps represented in Figure  5-43 will be revisited and referred to in below elaboration of 
the process of modeling. The process starts with copying content of the relational tables of 
the chosen phenotypes from the phenotype database to the model database. This infor-
mation transfer is performed according to the mapping table presented in Figure  5-58. 

First step of instantiation 

In the first step of instantiation, the information sets of the chosen phenotypes should be 
copied to the model warehouse. A new SMF also should be created and stored in the same 
relational tables. The containment and connectivity relations (that should be specified in 
the next steps) will connect the new SMF to the copied phenotypes. The only connection 
between the new SMF and the copied phenotypes are stored in the ‘operation contain-
ment’ table (as it is specified in the first step). The following declarations represent the 
procedure construct proposed to be employed by the Composer and the Instantiator in 
the first step. 

PCS 1: Check constraints (actor: Composer) 

• Start with a newly specified operation (FoO) 
• Extract the operations (UoOs) of the chosen phenotypes that composed for deliver-

ing the new operation (FoO) 
• Compare the ‘operation kind’ (specified for the new operation) with list of the ‘op-

eration kind’ defined for the possible super operations of the chosen phenotypes 
• Notify the designer about the mismatches 
• Receive approves or changes 
• If changes applied, repeat the comparison 
• Create operation containment relations 
• Record the relations in the meta-level knowledgebase of the model warehouse 

PCS 2: Create a new SMF (actor: Instantiator) 

• Receive the name and descriptions of the new SMF (and its domain), from the entry 
form and store it in the model warehouse 

• Receive the data sets of the chosen phenotypes and store them in the respective 
table of the model database 

• Receive the operation containment relations among the new SMF and the chosen 
phenotypes, made by Composer, and store them in the ‘operation containment’ 
table 

• Create a report and store it in the meta-level knowledgebase of the model ware-
house 
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Second step of instantiation 

In the second step, the Composer identifies ‘operation interfaces’, and sends them to the 
user interface. After receiving back the user decision concerning the coupling of the 
interfaces, the parameters should be merged and constraints should be redefined by the 
Composer. Subsequently, the Instantiator modifies respective keys of parameters in order 
to link them to the methods and to the newly defined constraints and values. The generic 
algorithms used by the Composer and the Instantiator are represented below. 

PCS 3: Identify operation interfaces (actor: Composer) 

• Group operations of the chosen phenotypes regarding to their participation in the 
operations defined for the new SMF 

• Perform the rest of this process for each group separately 
• Identify external streams of the selected operations of the phenotypes 

o Identify the streams associating with ‘I/O transformation’ table 
o Identify the streams linked to ‘UoO connectivity’ table that are missing one 

side of either cause operation or effect operation 
o Group them as external ‘input streams’ and ‘output streams’ 

• Identify the interface events of the selected operation of the phenotypes 
o Trace the events associating with external streams represented in the 

‘stream’ table as ‘start event’ and ‘end event’ 
o Identify the events represented in ‘state transition’ table as ‘triggering event’ 

and ‘concluding event’ 
o Group them as external ‘start events’ and ‘end events’ 

• Identify the interface states of the selected operation of the phenotypes 
o Extract list of states associating with the chosen events in the table of ‘state 

transition’ 
o Group them as ‘start states’ and ‘end states’ 

• Create a report and store it in the meta-level knowledgebase of the model ware-
house 

All of the selected and sorted streams, events, and states should be sent to the interface for 
being displayed to the user. The user decision will be captured by the entry form. The 
entered information will be sent back to the Composer to be processed and composed. 
Streams, events, and states that are identified as ‘external’ may remain as external stream, 
events, and states of the new SMF, if they will not be connected to each other. They should 
be turned into the internal ones if they are connected, unified, or merged together. 

PCS 4: Connect operation parameters & redefine constraints (actor: Composer) 

• Identify the parameters that should be merged 
o Identify the streams of the phenotypes that are unified (turned to the inter-

nal streams) 
o Trace the ‘operation parameters’ that host the foreign keys of the unified 

streams 
• Consider the identified parameters as merge-able parameters 
• Compare the ‘parameter kinds’ of the merge-bale parameters 
• If there is any difference, notify the designer 
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• Trace the ‘constraints’ associating with the parameters 
• If there is any mismatch in constraints, notify the designer 
• Redefine new constraints by combining the constraints of the parameters 
• Send the result of parameters composition and new constraints to Instantiator 
• Create a report and store it in the meta-level knowledgebase of the model ware-

house 

PCS 5: Modify operation parameter keys and generate new constraints and values (actor: 
Instantiator) 

• Link the chosen states of the phenotypes to the new ‘state transitions’ associating 
with the operations of the new SMF 

o Create new ‘state transitions’ for the operations of the new SMF (specified 
by the user) 

o Link the states chosen by the user to the created state transitions 
• Link the streams chosen as input and output of the new I/O transformations to the 

operations of the new SMF 
o Create an I/O transformation for each of the operations defined for the new 

SMF 
o Link the external streams of the phenotypes (selected by the user to be con-

sidered as input and output of the new operations) to the created I/O trans-
formations 

• Update names and relations of the unified streams 
• Modify relations between timestamps and events 

o Trace the events associated with the unified streams 
o Unify the events through changing their names and relations 
o Assign the respective time stamps to the newly unified events 

• Calculate new durations and link them to the streams 
• Refine the parameters merged by Composer 
• Refine the constraints associating with the merged parameters 
• Update the sequential constraints of the events 
• Update conditions and generate new ones according to the user input 
• Create a report and store it in the meta-level knowledgebase of the model ware-

house 

Third step of instantiation 

The third step is typically about the architectural aspect of instantiation and model com-
position. For providing contents of the user interface in this step, the Composer should 
identify the architecture interfaces of the composed phenotypes. The states specified in 
the previous step will be used for defining the architecture relations. Containment and 
connectivity relationships are the most important issues regarding to the domain states. 
On the other hand, contracts should be used as architecture interfaces that provide op-
tions for domain connections. The morphological elements that are associated with the 
contracts will be seen as ports that could provide connection with other domains. The 
pieces of information filled in by the user will be sent to the Composer for connecting the 
parameters and refining the respective constraints. Subsequently, Instantiator will create 
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new database entity and modify the available primary keys. The generic algorithms used 
by the Composer and the Instantiator are represented below. 

PCS 6: Identify architecture interfaces (Composer) 

• Identify the list of states regarding to the operations defined for the new SMF 
• Identify list of domains respective to the phenotype operations participating in the 

new operations 
• Group and sort the domains according to the associating operations 
• Trace the contracts regarding to each of the listed domains 
• Identify the complementing contracts in different domains for creating smart sug-

gestions 
• Trace the domain elements associating with the contacts 
• Create a report and store it in the meta-level knowledgebase of the model ware-

house 

According to the chunks of information collected by the third entry forms, three group of 
information will be defined by the user at this step related to (i) architecture containment, 
(ii) architecture connectivity, and (iii) morphological mate. The ‘connection kind’ and 
‘connection enabler kind’ that are suggested to the user are derived according to the 
contracts of the selected domains. The user inputs should be processed by the Composer 
and the Instantiator according to the below algorithms. 

PCS 7: Connect architecture parameters and redefine constraints (actor: Composer) 

• Identify the contracts used for creating the connections 
• Identify the morphological elements that associate with the connections 
• Compare morphological elements associating with the contracts to the ones asso-

ciating in the mates 
• Notify the user if there is any difference 
• Trace the new mate parameters and the former contract parameters that are the 

same 
• Check the constraint of the former contract parameters with the value of the new 

mate parameters 
• Notify the user if there is any mismatch 
• Create a list of modification and send it to Instantiator 
• Derive the list of contract that are not used for connections according to the do-

main state of the new SMF 
• Make decision if the contracts that converted to connections are still available as 

contracts for the new SMF 
• Send the list of available contracts to Instantiator 
• Create a report and store it in the meta-level knowledgebase of the model ware-

house 
PCS 8: Modify architecture parameter keys and generate new constraints and values 

(actor: Instantiator) 

• Assign new architecture containment relations regarding to the states of the new 
SMF 

• Assign new architecture connectivity relations regarding to the states of the new 
SMF 
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• Assign new morphological mates to the specified connections 
• Replace the former contract parameters with the new mate parameters in ‘parame-

ter assigner’ table 
• Assign newly specified values to mate parameters 
• Summarize and send the report to the model warehouse 

The process of composing the model of an SMF is done here. However, functions of Com-
poser and Instantiator are not finished. Instantiator should assign values to the variable 
parameters during simulation and Composer should check all constraints at the same time. 

5.6.3 Modifying SMF-based system models 

‘Modification’ is a generic term for all kind of changes needed to be applied manually in 
the process of or after composing a model. It could be divided into two groups of modifi-
cations: (i) parameter and context modification, and (ii) partial modifications of the SMFs 
instances-based model. 

Parameter value and context modification 

This involves changing the values of the parameter variables. These parameters belong to 
a particular instance of a phenotype, composed into the model. For example, if a multi-
functional phenotype is instantiated in a model for using only one of its functions, chang-
ing in its operating mode could be considered as parameter modification. Or, if a pheno-
type with some knobs for adjusting the operation or architecture parameters is instantiat-
ed in a model, setting up the knobs could also be considered as parameter modifications. 
Accordingly, parameter modification could be handled both by simulation engine and 
manually. Simulation of embedded customization could be enabled through parameter 
modification. The options are embedded in phenotypes as interface events which are 
linked to various streams and states. 

Context modification implies changing of the operating contexts of the modeled CPS [21]. 
Simulation engine defines contexts of operation through specifying variable parameters 
that are defined for this purpose (e.g. parameters of the external streams that define input 
and output of the CPS). The context modification might be done in commination of the 
simulation engine with the CPS designer. The Instantiator module is the main actor in the 
course of the above described parameter and context modifications. It captures all applied 
changes and stores them in the meta-level knowledgebase of the model warehouse. The 
knowledgebase is accessible by the simulation engine if it is required. 

Modification of SMF instances-based models 

SMF modification implies Subtracting, adding, or replacing SMF instances composed in a 
model. As it is explained, for modeling a CPS, SMF phenotypes are instantiated and com-
posed to create higher level SMFs, these SMFs could again composed repeatedly till the 
desired model of a CPS is made. For re-designing of a CPS, several times might be needed 
to replace or add SMF instances in the CPS model, and simulate the system to check the 
performance enhancement. Therefore, SMF modification can be considered as an intrinsic 
part of CPS design and modeling. Adding a new SMF to the model is considered as an 
action similar to the model composition, consisting of two phenotypes (the model and the 
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5.6.4 Simulation of the behavior of the modeled CPSs 

Simulation involves assigning values to parameters, as well as calculating the outcomes 
and examining the consequences based on the formulated relations among parameters. 
The model, loaded into the model space can operate according the values defined by the 
user or a scenario generator, according to the time factors imposed by the simulation 
engine. The simulation engine is in a direct interaction with designers to capture the 
required information. On the other hand, it includes a scenario generator module to 
automatically generate values for variable parameters in the defined range and according 
to a particular strategy. Parameters that are manipulated by the simulation engine include 
all variables related to architecture, operation, timing and conditions. The simulation 
engine needs to consider three aspects of parameters namely, their (i) values, (ii) con-
straints, and (iii) relations. These three aspects are captured in the model database. Values 
can be set through the value assigner, time assigner, and duration assigner units. Con-
straints of the parameters are captured in ‘constraint’ table. Relations among parameters 
are captured in ‘method’ table regarding to the operation layers. 

Simulation of one instance could not be separated from simulation of the whole model, 
and vice versa, since all parameters of the instances get connected together after composi-
tion (by the Composer module). The relations between them are handled by methods. For 
example, the change in a morphological parameter of an instance will most probably 
affect a parameter of an output stream of that instance, which is most likely unified with an 
input stream of another instance, and so forth. Parameters are connected either through 
methods (as various kinds of internally related parameters), or stream, event, and state 
unification (as externally related same kind of parameters). This results in a huge network 
of relationship among parameters in various kinds. Changing one of the parameters will 
have consequences on other parameters that should be calculated by simulation engine. 

CPS designers should have access to the parameters for determining their values. Based on 
the input and the other default values, simulation demonstrates (i) the consequences of 
operation, (ii) the constraints that are violated, (iii) the diagnoses that are needed, (iv) the 
optimizations that are possible, and so forth. Simulation techniques were not placed in the 
center of this research currently, and the only purpose of this section was to give an 
overview of the challenges and implementation of simulation. Further investigations and 
elaborations are needed in this domain of the follow up research. 

5.7 CONCLUDING REMARKS 

This chapter reported on the development of the computational constructs of the SMF-
based modeling toolbox. Targeting the feasibility test of SMF-based modeling (as the main 
aim of this research cycle), AKF and OKF were taken as information structures for computa-
tional implementation. The main objective of the research completed in this research cycle 
decomposed to three sub-objectives, namely (i) systematically recognizing logical and 
relations among pieces of information introduced by AKF and OKF, (ii) designing database 
schema for realizing information structure proposed by AKF and OKF, and (iii) devising 
workflow algorithms required for developing information processing application. 
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The objective was accomplished by proposing step-wise process of SMF creation. The 
main novelty achieved in this research cycle is the proposed three-stage procedure. Based 
on this: (i) a major part of repetitive works can be prevented by selecting options from a 
default value list, (ii) the workload of manual entering of the data can be reduced by 
inheritance of values, (iii) inheritance also prevents human error in entering data (even 
considering double checking conformation), (iv) the database size can be reduced due to 
preventing repetition of the assigned pieces of information, and (v) categorization of SMFs 
is possible for future uses. The genotypes and phenotypes of SMFs include specific sets of 
information and associative relationships. The information structural relationships are 
inherited from genotypes through phenotypes to specific instances. This inheritance 
mechanism contributes to an effective architectural and operational processing of the 
SMFs information. 

The proposed computational constructs were intended to realize SMF knowledge frames 
and have been confirmed through critical system thinking and projecting them to numer-
ous practical design cases and the real-world processes. However, it must be emphasized, 
a final utility validation will only be possible through an all-inclusive implementation of the 
SMF-based modeling and simulation toolbox. In a broader research perspective, the 
current chapter can be considered as the computational feasibility confirmation of SMF 
theory.  

From the perspective of usability, the proposed constructs and computation enablers 
operationalize the theoretical specifications that are inevitable for a system-level configu-
ration and conceptualization of CPSs. Usability should be judged with the eyes of CPS 
designers and having their requirements in mind, since they are the decisive stakeholders. 
These issues are considered below: 

 CPS designers do not have to bother with definition of SMFs. They are available for 
them in a relatively high level of preprocessing. The task of specifying the required 
chunks of information about components, and accommodating them into SMFs, is 
delegated to knowledge engineers. Furthermore, computational concerns and the 
design concerns have been considered concurrently, rather than in separation. 
They can pay their attention to the creative part of system-level configuration and 
conceptualization of CPSs in the pre-embodiment design phase. At the same time 
the design thinking and composition process is supported by the systematic com-
putational workflow.  

 The proposed SMF-TB supports various user activities such as SMF definition, con-
tent conversion, CPS model composition, CPS modification, model simulation, and 
so forth, in an integral manner. This has been made possible by the rigorously de-
fined theoretical/methodological frameworks, and the uniform implementation of 
the data processing and process execution resources. 

 The information structures and defined contents of SMFs are reusable. On the other 
hand, capturing and processing system-level information of components are de-
manding with regards to the needed computational resources, and also effort-
intensive from a knowledge engineering perspective. However, in the end, large 
scale reuse of information structures and contents of contributes to efficiency and 
transparency both in the design and the knowledge engineering activities. 



| 204 

 SMFs can be retrieved, adapted and manipulated throughout the whole CPS model 
composition and modification process. This is particularly important in the pre-
embodiment design phase. The SMFs-based implementation even allows suggest-
ing components according to the list of requirements of designers. The taxonomi-
cally aided warehouse management helps designers find the most appropriate 
components for model composition.  

From the perspective of utility, the whole methodology and proposed constructs support 
CPS designers to tackle system composability challenges. It can also be claimed that SMFs 
also facilitate reducing compositionality issues by raising the modeling element level from 
low level constituents to high level system features. The major indicators of utility are as 
follows: 

 Our methodology assumes that CPSs are composed of SMFs. It imposes a strictly 
physical view, which is obeyed by the ISCs and PCSs. This physical view has been 
transferred to the organization of the warehouse databases, which are managed on 
the level of chunks of information, rather than on the level of entities of infor-
mation. 

 The proposed constructs play the role of cognitive enablers of programming. The 
proposed construct oriented thinking introduces a meso-level in between the mi-
cro-level entity management and the macro-level model management. Advantages 
of this can be easily identified from both implementation and application points of 
view. 

 The created CPS models are extensively and rapidly modifiable. The proposed con-
structs capture the architectural and operational data of models through the meso-
level chunks of information and relations. On the other hand, they can manage 
structural re-parameterization and attribute changes in a holistic way [22].  

 The proposed constructs lend themselves to an effective constraints management, 
which capability originates in their abovementioned meso-level manifestation. 
They support not only modeling, but also simulation of operations. The resources 
needed for simulation (e.g. methods, relations, parameters, temporal relations) are 
all accommodated in ISCs. 

 The proposed construct-driven schemas and database management allows the in-
teroperation of the SMF-TB with other modeling and simulation software tools. The 
chunks of information and the relations can be converted to the entities and rela-
tions of micro-level database schemas. However, in this case, many of the ad-
vantages of SMF instances-based modeling are lost. 

5.7.1 Ignoramus et ignorabimus? 

This Latin maxim (meaning ‘not known and not knowable’) was used in the nineteenth 
century to express the position on the limits of knowing. In the context of this chapter, it 
fairly expresses our position about validation of the information schema constructs pro-
posed for instantiation and composition of system manifestation features in pre-
embodiment modeling of cyber-physical systems. Although we have argued with defend-
able reasons that the proposed computational constructs oriented thinking supports 
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feasibility, utility and usability of the SMF-TB, we must recognize the fact that only a fully 
fledge implementation can provide practical evidences for these. 

Using information schema constructs for database development and management for 
instantiation and composition of system manifestation features is a novel and affordance-
rich approach. ISCs help tackle the heterogeneity problem and support multi-granularity. 
In the current stage of our research, we do not have the means that would be needed for a 
comprehensive and systematic validation of the proposition. The testbed implementation 
provided some initial insight in the above mentioned three aspects, but it cannot replace a 
long term testing in benchmark applications. This remains for our future work.  

Our reported work concentrated on the methodology of computation, rather than on the 
methodology of using the proposed system manifestation features-based modeling in 
various application contexts. For this reason it is understandable for us that the presented 
stage of development gives floor to some skepticism. But, the major question is whether 
the impact of the concept of ISCs on the targeted SMFs-based toolbox is just ‘ignoramus’ 
or ‘ignorabimus’. Without being able to building it completely, applying it widely, and 
testing it exhaustively, we tried to consider everything based on which we could forecast 
its merits from feasibility, usability and utility perspectives. Based on our recent findings, it 
seems that our arguments will be defendable. But the Catch-22 situation and the dilemma 
related to that cannot be resolved. 

The SMFs-based modeling process has been decomposed to intermittent and terminal 
process elements. First of all, the process divides into two sub-processes, which are called 
'defining SMF entities' and 'composing CPS models'. The former sub-process includes the 
procedure of creating genotype and the procedure of deriving phenotypes. The procedure 
of creating genotype includes several cycles of activities, such as (i) basic definition of 
genotypes, (ii) operational definition of GTs, and (iii) connectivity definitions of the units of 
operation of GTs. The latter sub-process includes the procedure of composition and 
instantiation of phenotypes and the procedure of model management. As the name 
implies, every cycle of activities consists of specific modeling activities, which further 
decomposes to specific actions. 

Multiple modules of the SMF-TB have been defined to support the execution of instantia-
tion, for instance: (i) the phenotype browser module that is in charge of: (a) finding the 
SMF phenotypes that can be used for modeling of the CPS at hand, (b) presenting the 
information sets to the user, and (c) sending the information sets to the Composer module, 
(ii) the Composer module, that: (a) receives the data packages of the chosen phenotypes, 
(b) updates them with new information, and (c) sends the up-dated data packages to the 
Instantiator module, (iii) the Instantiator module, that which determines and assigns values 
and constrains to parameter variables, and (iv) Model warehouse module, that stores the 
consolidated and tested system model data.  

The task of initial creation SMFs is delegated to knowledge engineers. This is in line with 
the trends of setting up and updating complex information technological systems, such as 
smart cyber-physical systems. The promotion research addressed the challenge of sup-
porting both the methodological and computational processes of creating very-high level 
semantic entities for next-generation system architecting and functional design. The 
computational constructs proposed for the development of the SMF-TB paid attention to 
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the different system user-roles, as well as to the issue of information reusability. The 
knowledge sources and infrastructures needed for the implementation of SMFs are availa-
ble, and will be even more sophisticated in the future. The concept of ISCs allows a lan-
guage independent specification of information structures for both information engineer-
ing and knowledge. Nevertheless, the main objective remains to be a comprehensive 
support of the creative work of system designers. A fully fledge implementation and 
validation of SMF-TB will show to what extent this goal has been accomplished. 

While this promotion research could not reach so far as proving utility and efficacy in 
various application contexts and considering different designers and tasks, the feasibility 
and usability issues have been comprehensively addressed in the completed research. This 
chapter showed that the proposed AKF and OKF provide sufficient information and are 
convertible to computational constructs, which in turn can frame both the computational 
process and the design process. Although the process of creation of SMFs has been de-
scribed as a manual step-wise process, future research however may address the opportu-
nities of a semi-automated or full automated process. In the case of the manual approach, 
several solutions exist to discount the overall effort of SMF creation: 

 Open source libraries: 
By providing open source online libraries, the SMFs defined by one can be used by 
others. Sharing the outcomes of knowledge engineering works contributes to a 
rapid growth of database contents. 

 Company catalogues: 
All new products come out with their digital catalogues. Companies developing 
components tend to produce digital replicas and catalogues of their products, 
which can be used as the basis of SMFs. If SMF creation forms become standard-
ized, this can give impetus to SMF-s based modeling, since nobody knows more 
about their own products than the producer companies. 

 Marketing opportunities: 
Since designers search for components that are appropriate from the aspect of 
their requirements in designing and consequently in modeling, CPSs, availability of 
SMFs as open access can improve visibility of products. Accordingly, defining SMFs 
of products and sharing them can be exploited by companies as a marketing strat-
egy. 

 Creating SMFs market: 
Creating SMFs may stimulate a new focus for undertaking, and compiling cata-
logues of standard definition (interchangeable) and selling them can be a novel 
form of motivation for entrepreneurship for knowledge engineers. Nowadays, pur-
chasing a virtual car in a race game is already a common thing - thinking about 
monetizing SMFs would not be a dream. 

 Automatic SMF creation: 
Studies concerning the opportunities of a semi-automated or a full automated 
generation of SMFs and compiling digital SMF catalogues on the web are still not 
even in a premature stage, but this idea may get more emphasis when research in 
system-level features-based modeling of complex heterogeneous (trans-
disciplinary) systems is further progressing. Some sort of smart collaborating agents 
systems and the smart cyber-physical systems themselves can be considered for 
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the task of facilitating automatic conversion of digital catalogues into open access 
SMFs warehouses. 
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6 BENCHMARKING THE THEORETICAL FRAMEWORK AND METHODO-
LOGICAL FUNDA-MENTALS AGAINST EXISTING SYSTEMS 

 

6.1 INTRODUCTION: OUR INTEREST IN VALIDATION 

This chapter reports on the validation of the developed SMFs-based modeling approach. 
The main intention of the related research was to see how much the proposed theoretical 
framework and computation methodological fundamentals are competitive if they are 
compared with those of other commercial or laboratory tools, systems, and languages. Or, 
in other words: ‘Do they have sufficient cogency from a practical perspective?’ This valida-
tion complements those actions that have been completed in the fourth research cycle to 
prove the computational and methodological feasibility of the proposed approach. We 
developed a specific research design for the validation in the form of comparative bench-
marking and critical analysis. This has been done with awareness of the fact that a com-
prehensive validation would necessitate at least a fully functional and full-scale prototype 
implementation of the system modules and the modeling toolbox. Obviously, this wishful 
fully-fledged implementation would require a large team of experts involved in ontology 
development, software architecting, software programming, and system prototyping, as 
well as sufficient financial and laboratory resources.  

In order to be able to conduct a comparative benchmarking, we had to investigate (i) the 
modeling framework of currently available modeling tools and languages which are 
comparable with the proposed theoretical framework and computational methods, and (ii) 
the aspects of comparison that are important to show competitiveness and cogency at 
modeling and design of CPSs. For the above mentioned reasons, we had to limit the 
comparative benchmarking to framework level instead of the level of detailed functions. 
Consequently, first we had to understand the theoretical assumptions behind the available 
tools selected for benchmarking, instead of the functional features provided by the tools. 
In terms of their implementation, many tools have common roots, or use the same theoret-
ical and computational resources. For instance, several tools have been developed based 
on the Modelica language, which are only slightly different in terms of the functional 
features provided by them. However, the framework which supports Modelica as a lan-
guage is the same for all these derived tools. 

The frameworks determine the underlying logical or semantic structure, or a hypothetical 
description of a complexity, which lends itself to deriving models, representations, proce-
dures, and methods of complex things or phenomena. The implications of the framework 
are presented in the ‘working model’ of the specific tools. This allowed us to make a kind of 
‘reverse engineering’ towards identifying the enablers of the frameworks of the bench-
marked tools. This was actually inevitable since the frameworks were not explicitly docu-
mented, or were just partially specified in descriptive documents. There were some similar-
ities observed in terms of conceiving, processing and handling information among the 
compared modeling frameworks, the combination of these and the entailed working 
model makes the frameworks distinctive from the others. These specifications were the 
main subject of benchmarking in the fifth research cycle. To be able to do so, we needed to 
(i) summarize the novel specifications of SMFs-based modeling framework, (ii) find unique 
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specifications of the other frameworks based on the available knowledge sources, (iii) find 
and list the aspects of comparison based on the requirements of pre-embodiment design 
of CPSs, and finally (iv) compare the specifications of the available frameworks with novel 
specifications of SMF-based modeling framework based on the derived comparison 
aspects. The mentioned steps are presented in the following sub-chapters respectively. 

6.2 NOVELTIES OF THE PROPOSED FRAMEWORK 

The conceptual, computational and methodological elements of the proposed SMFs-
based modeling framework were comprehensively discussed before. In this sub-chapter, 
we expose those novelties that we believe are the most important from the point of view 
of evaluating the possible scientific and professional impacts of the proposed modeling 
framework from computational, implementation and application perspectives. This exposi-
tion helps comparing the SMFs-based modeling framework with those that underpin the 
other benchmarked modeling tools. 

N1 Imposing strictly physical view:  

In contrast with the frameworks that prefer logically-based modeling and neglect captur-
ing the observable physicality of the modeled systems (i.e. physical interaction of compo-
nents and morphological considerations), our framework captures everything in a cyber-
replicate of the physical world. Imposing pure physicality supports aggregation of compo-
nents without the need for applying abstraction. Subsequently, all parameters of lower 
level components are directly determined and affect features of the higher level compo-
nents. SW and CW constituents are also considered as physical entities (instead of logical 
or virtual ones) and can be aggregated with all other constituents. 

N2 Enforced concurrent consideration of architecture and operation:  

SMFs capture both architectural and operational aspects of components concurrently, and 
without any preference. Consequently, creation of a SMFs-based CPS model simultaneous-
ly means creating the architectural and the operational models of a system in interaction, 
as part of a single process. This is in contrast with most of the logically- and mathematical-
ly-based modeling tools, which put emphasis on the functional aspects of components. 

N3 Amalgamating of architectural and operational aspects:  

All information sets that define relations among architectural and operational aspects are 
captured within SMFs (e.g. through constraints, parameters, state-transitions and associat-
ing events, timing, conditions, and logical relations). This results in a robust approach of 
modeling in which the changes due to operation of components are directly reflected on 
their architectural attributes, and the effect of architectural alterations is directly reflected 
on the performed operations of components.  

N4 Using uniform information structures for heterogeneous components:  

The knowledge frames and the corresponding database schema for accommodating 
pieces of information are the same for all types of components. This means that hardware, 
software, and cyberware constituents are practically stored in the same structures and 
relational tables. As a result, the relations among them are being processed uniformly. The 
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differences between the various constituents are made by their semantics, not by their 
descriptive information structure. It allows avoiding unnecessary simplification and ab-
straction (that are typically used by the currently available tools to tackle components’ 
heterogeneity in modeling). 

N5 Multi-level multi-granularity:  

Multi-granularity means the possibility of moving from coarse-grained model to fine-
grained model in the process of modeling, and vice versa. The proposed SMFs-based 
modeling framework considers multiple levels of aggregation and de-aggregation in the 
modeling space. SMFs have the same information structure in all aggregation levels. 
Accordingly, containment and connectivity relations in all levels are captured without 
applying abstraction and simplification. This results in linking the parameters of SMFs in 
multiple various levels, and therefore, considering effects of changing values of parameter 
in both top-down and bottom-up manners. 

N6 Multi-aspects coupling among SMFs:  

The specification of both containment and connectivity relations of SMFs are supported 
through interfaces of SMFs, neglecting the types of components (e.g. if SW, HW, CW, or 
AW). Consequently, the integration is supported by several aspects of multiple coupling. 
SMFs can be connected together through states of operation, events (i.e. timestamps), 
streams, parameters, physical mates, contracts, and so forth. Higher level SMFs can also be 
created if multiple couplings among the lower level SMFs are created. The dynamic integri-
ty is also captured through utilizing concept of spatiotemporal mereotopology, and 
consequently, state-based definition of architectural relations and parameterizations. 

N7 Multi-stage model composition:  

In SMFs-based modeling framework, models are not created in one go. Generating geno-
types, deriving phenotypes, instantiation of phenotypes and model composition are the 
stages that an SMF should go through to eventually end up in a model. The relations 
among these stages of SMFs life cycle provides many advantages that have been discussed 
before. The most important benefit from model composition perspective is that manual 
information input is reduced in the conceptual design phase, since the kernel (default) 
information is already included in SMFs by the knowledge engineers. 

N8 Multi-purpose system-level features:  

Reasoning with higher level semantics, trans-disciplinary fusion of knowledge, and harmo-
nization of pre-embodiment design and computational methodology are the multiple 
purposes that are fulfilled with SMFs as system-level features. Higher-level semantics 
equips with ability to capture those information sets that are needed for system level 
conceptualization. Trans-disciplinary fusion of knowledge enables comprehensiveness of 
the model and communication of experts. The modeling approach is harmonized with the 
computational methodology and the conceptual design methodology. 

N9 Multiple application contexts: 

SMFs as novel system-level features support both system-level conceptualization and 
system-level engineering (analyzing and optimization). They also could be used as means 
of communication among experts when the discipline related tasks are delegated to them. 
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SMFs are reusable modeling entities that could be added, modified, subtracted, and 
regenerated from a model. It makes them suitable for mass customization, problem 
diagnoses, adaptability tests, and so forth. 

N10 Multi-component warehouses:  

The SMFs are organized into warehouses, which facilitate handling and storing of the 
interconnected instances of SMFs and support the feature creation and model composi-
tion process. The proposed database component provides relational tables to store data 
records of the included SMFs. The database management component takes care of storing, 
querying, invoking, and removing records as well as generating keys to track relations 
among information stored in the relational tables. The meta-level knowledgebase compo-
nent is in charge of capturing track of model composition and modification. 

N11 Benefiting from active ontologies:  

Semantic-richness of the SMF-TB is supported by active ontologies. Continuous updating 
of the ontological records is necessary due to emerging of new technologies, materials, 
attributes, protocols, and so forth. Although, effort-intensiveness of this task can be con-
sidered as a drawback, the usefulness of the results cannot be disregarded. 

6.3 AVAILABLE RELATED MODELING TOOLS 

6.3.1 On the selection criteria 

As discussed in Chapter 2, numerous modeling tools are being used for designing, evalua-
tion and optimization of complex technical systems. These tools have been developed for 
general applications, while others are offered for specific applications and specific system 
context. Therefore, it was not easy to choose the tools, which are the most appropriate for 
designing CPSs. To systematize the selection of the relevant tools, we assumed some 
selection criteria, as follows: 

• Appropriateness for system-level design purposes. 

We intended to find general system composition tools for comparison. However, not all of 
the found modeling tools were developed for the purpose of system design. Actually some 
of them are not really suitable for effective system design. For example, some tools specifi-
cally support designers in optimization of systems, while others were developed for circuit 
design, or software architecting, just to mention a few examples. 

• Acceptance by designers of complex technical systems. 

Some tools are not known enough by designers. The reason can be that they are in the 
beginning of their academic and industrial use, or are intended to other experts than 
designers. We wanted to find tools that specifically support pre-embodiment design and 
have been tested by designers in this context. Otherwise, finding enough evidences for 
benchmarking is not possible. Fortunately, there are many publications about the known 
modeling tools, which evaluate them and we also found numerous experts to be asked 
about their experiences of using the tools. 

• Representing different categories of modeling tools. 
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There are several methods of modeling that have been used to underpin the development 
of tools and languages. Therefore the tools represent rather diverse categories. Each 
modeling method has its own advantages and disadvantages, which remains likely the 
same in all tools developed based on it. We tried to select the most dominant tools in each 
category for comparison. A categorization of the CPS modeling tools is discussed in [2]. In 
this publication, six categories of tools were recognized: 

o Model checkers, which are suitable for automatic verification of specification and 
exhaustive model verification in the phase of an early model exploration 

o Block diagram languages, which define a model as a composition of graphs and 
nodes, and can be used for modeling both cyber and physical parts of a CPS 

o Equation-based object-oriented (EOO) languages, which are acausal (meaning that 
modeling is based on equations that do not specify which variables are inputs and 
which ones are outputs) [3] 

o Reactive languages, which are suitable for the cyber parts and their continuous re-
action to the physical environment 

o Hardware description languages (HDLs), which are suitable for modeling and speci-
fying digital circuits 

o Multi-formalism languages and tools, which employ models of computation (MoC) 
and combine them for actor-oriented modeling of CPSs. 

Figure 1 graphically shows the idea of classification presented in [2]. It can be recognized 
that this categorization reflects a combined control point of view and software design 
view. Consequently, this classification was considered just as a guide, and was not adopted 
as a reasoning framework from the perspective of system-level design and conceptualiza-
tion. In order to be able to select comparable modeling frameworks for benchmarking, we 
concentrated on the formalisms, which were in combination associated with various 
languages and tools. In the end, one modeling tool (or language) was selected from each 
of the shown categories. 

 
Figure  6-1 The viewpoints and formalisms applied in the case of system modeling tools and 

languages (based on [2]) 
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Based on the mentioned criteria, five commercial and experimental modeling tools and 
languages were selected, namely Simulink, Modelica, Ptolemy II, SysML, and LabVIEW. 
These are mostly being used for system-level design purposes, widely accepted by design-
ers of complex technical systems, and each of them represents a different category of 
modeling tools. Bellow explains the reasons for this selection: 

• Simulink belongs to category of block-diagram languages, which is also considered as 
an actor-oriented tool [4]. It is one of the most known modeling and simulation tools, 
which is widely used in various contexts. The strength of Simulink is in the function-
oriented modeling of systems through differential equations. 

• Modelica is a popular modeling language which uses mathematical equations for 
modeling relations of physical attributes and parameters. In our benchmarking, it rep-
resents acausal EOO languages. Unlike Simulink, Modelica is a language that was used 
as a basis for development of several modeling and simulation tools. It also partly sup-
ports capturing information about architecture of systems. 

• Ptolemy II is a non-commercial tool which uses models of computation for applying 
multi-formalism approach. Although it was originally developed for modeling embed-
ded control systems and systems on a chip, many efforts have been done recently to 
adopt it for CPS design. In our benchmarking it represents a unique category which 
employs MoC for modeling systems. Moreover, it is the only non-commercial tool in 
our benchmarking. 

• SysML is a logical modeling language, which is developed based on UML for generic 
modeling of systems. It also supports more specific modeling concerns with the aid of 
its add-on profiles. Since SysML is an open-source modeling language, many commer-
cial tools have been developed based on it. It has been selected for its high-level widely 
logic-based system modeling which provides more freedom in conceptual design 
phase. 

• LabVIEW is originally developed for data acquisition. Although it is not considered as a 
modeling tool used for system conceptualization, there are evidences of using Lab-
VIEW in system development [5] [6]. LabVIEW is selected for comparison due to its wide 
use in system design and development, as well as its great contrast to the other select-
ed tools. 

In the following the specifications of the chosen tools and languages are elaborated. 

6.3.2 Simulink 

Simulink is a widely used tool for modeling and simulation of dynamic systems. It provides 
a block diagram environment with a graphical editor and uses customizable block libraries 
for model-based design [7]. The customized functions can be written as MATLAB, Fortran, 
Ada, or C code into a model, or browsed from libraries including, structural blocks (e.g. 
Mux, Switch, and Bus),  algorithmic blocks (e.g. Sum, Product, Lookup Table), and continu-
ous and discrete dynamic blocks (e.g. Integration, Unit Delay) [8]. Simulink mainly supports 
modeling functions of systems. However, there are possibilities to connect the functions 
defined in Simulink to the architectural models of other tools. The functions in Simulink 
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can be defined hierarchically. It means that a set of related block diagrams can be encapsu-
lated in a single block as its subsystems. A Simulink model consists of both signals and 
parameters. Signals are represented by lines that connect blocks together. Parameters 
define system dynamic and behavior by assigning coefficients. Simulink uses solvers to 
perform simulation. During simulation, the system dynamics should be computed over 
time according to numerical integration algorithms which are called as Solvers. Multiple 
solvers are provided by Simulink to support the simulation of a broad range of systems, 
including continuous-time (analog), discrete-time (digital), and hybrid (mixed-signal). 

Through the libraries and add-on products, Simulink supports modeling physical systems 
with mechanical, electrical and hydraulic components. Accordingly, it could be used for 
multiple purposes, i.e., control, aerospace, signal and image processing, and communica-
tions. Simulink also supports hardware-in-loop approach which is known as built-in sup-
port. It means that algorithms designed in Simulink can be connected to low-cost hard-
ware (e.g. Arduino, LEGO Mindstorms NXT, and Raspberry Pi) for running models. This 
approach can be used for control systems, robotics, and other applications in real time 
manner. Both continuous-time and discrete-time methods of simulation are supported by 
Simulink. It uses differential equations for continuous-time, and discrete time difference 
equations for discrete-time simulation [2]. These equations are wrapped in diagrams 
presented with blocks and signals. The equations are solved with numerical algorithms 
built into the vendor’s tool environment, which process that the Simulink model is analytic 
[9]. Simulink is not supporting multi-formalism itself. However, in combination with other 
tools such as Stateflow and SimEvents can combine several formalisms [2]. 

These auxiliary tools also provide particular kinds of blocks which can be used in Simulink 
block diagramming. Stateflow and Simscape are two famous tools. Stateflow allows the 
users to model decision logic based on the state machine and flow chart formalisms. 
Simscape provides fundamental building blocks from various domains (such as electrical, 
mechanical, and hydraulic) that can be combined to model a physical plant [10]. In order to 
support both hardware and software design, numerous efforts have been done. An exam-
ple, in which UML is used for software parts and connected to Simulink for hardware parts, 
is reported in [11]. In this case, UML was used for discrete computation system modeling 
and Simulink was used for continuous physical system modeling. 

The Embedded Modeling Language (ESMoL) environment is a suite of domain-specific 
modeling languages and a set of tools, developed for generating virtual prototypes and 
facilitating design of embedded real-time control systems [12]. By importing a model 
created in Simulink into ESMoL, it becomes the functional specification for instances of 
software components [13]. Moreover, there are some add-on products for Simulink that 
could generate C and C++, HDL, or PLC code directly from Simulink model. Simulink is also 
very useful to support a decision of design concept with minimum of effort on some 
software phase such as developing and testing rapid virtual prototype [14]. Mathworks 
official website has briefed the features of Simulink [8] as tools for importing C and C++ 
codes into models, function blocks for importing MATLAB algorithms into models, multiple 
tools for model analysis and model refining, project and data management tools, simula-
tion engine with fixed- and variable- steps solvers, several libraries and graphical editor. 
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6.3.3 Modelica 

Modelica is considered as a resemblance of object-oriented programming languages. 
However, there are two main differences. Firstly, Modelica can be considered as modeling 
language rather than a programming language. Secondly, Modelica uses different type of 
compilation, which allows it to translate classes into objects which can be implemented by 
a simulation engine [15]. Modelica is characterized as acausal, object-oriented, and domain 
neutral. These characteristics make it suitable for system-level simulation [16]. Modelica 
has major differences in comparison with Simulink in many aspects. For instance, modeling 
entities in Modelica are the architectural components of a system, in contrast with Sim-
ulink models in which blocks represent functions of a system. That is reason that models in 
Modelica are easy to understand. In addition, due to acausal nature, causality derivation 
process is not required in Modelica, which makes it faster [17]. 

In contrast with actor-oriented tools such as Simulink and Ptolemy II, that produces models 
in which components have input and output ports, Modelica is object-oriented acausal 
language which considers equations in modeling [3]. Mathematical functions in Modelica 
allow acausal modeling, high level specification, and increased correctness. Likewise other 
object oriented languages, it benefits from its general concept. It uses a syntax that resem-
bles that of Java and Matlab. However, its efficiency is comparable to C [18]. The visual 
component programming in Modelica supports its hierarchical system architecture charac-
teristics. “Multi-domain modeling” is mentioned as one of the characteristics of Modelica. It 
combines electrical, mechanical, thermodynamic, hydraulic, biological, control, event, real-
time, etc. in one model [17]. However, the currently available libraries are mostly hardware 
components of a system.  

Since software design and higher-level system conceptualization is not supported suffi-
ciently in Modelica, several researches are performed to connect Modelica to UML [19] [20].  
Modelica Modeling Language (ModelicaML) is a profile of UML that supports description of 
time-continuous and time-discrete/event-based system dynamics [21]. It generates exe-
cutable Modelica code based on the UML diagrams [22]. On the other hand, it provides 
modeling entities for presenting the composition, connection, inheritance or behavior of 
classes in UML for graphical model definition. As a result, ModelicaML supports formalizing 
and evaluating system requirements using simulations [23]. 

Owing to the fact that Modelica is an open source language, it is exploited by many differ-
ent tools. Dymola, MapleSim, SystemModeler, and OpenModelica are the most known 
tools created based on Modelica. Each of these tools offers different advantages by provid-
ing specialty in terms of the tasks addressed. For example, Dymola is a tool primarily for 
Modelica coding. It also integrated in CATIA system V6 for supporting 3D interaction [24]. 
MapleSim is more focused on modeling without relying on hand coding, while still having 
the flexibility of accessing code when it is needed [25]. Multi-domain modeling, hierar-
chical modeling, and hybrid systems modeling are mentioned as features of SystemMod-
eler. The numerical solvers of this environment detect and handle discontinuities in hybrid 
systems, so models with sudden events such as switches, collisions, or state transitions are 
correctly simulated [26]. In the tools such as SystemModeler the Modelica language is not 
only used as a design facilitator, but it also supports system analysis and engineering. 
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6.3.4 Ptolemy II 

Ptolemy II is an open-source modeling tool which has been under development since 1996 
[27]. The first generation version of this software is called Ptolemy Classic. In the beginning, 
it was an extension of the interface of Gabriel [28] which was written in Lisp and aimed at 
signal processing [29]. Ptolemy classic is implemented in C++ language [30]. In the Ptole-
my classic, the key idea was to mix models of computation rather than trying to develop 
one, all-encompassing model [31]. This idea was later on incorporated by Ptolemy II in 
order to focus on component-based design to facilitate reusing of components in model-
ing [32]. Ptolemy II creates models as clustered graphs of modeling building blocks and 
relations among them [33]. 

In Ptolemy II, The basic building blocks of a system are actors [34], which represent actions 
of the components of a system. Consequently, a model is a hierarchical aggregation of 
actors. That is the reason that Ptolemy II is considered as actor-oriented modeling frame-
work.  Actors contain a thread of control and provide interfaces to communicate with 
other actors. An actor can create other actors, send messages, and modify its own local 
state [35]. Actors are implemented as java classes and stored in a library. The actors com-
posed in a model can execute concurrently and communicate through messages sent via 
interconnected ports [27]. The actor-oriented view of a system allows separation of data 
transmission from control transferring which makes it different from object-oriented 
modeling. The emphasize of actor-oriented design is on concurrency and communication 
between components [32]. 

Semantics is handled by models of computation In Ptolemy. MoCs are implemented by a 
software component named as director.  A domain is composed of one or more actors 
which are governed by a director that executes a MoC. Consequently, hierarchical compo-
sition of several domains with various MoCs in a model supports modeling of heterogene-
ous systems. Polymorphism and modal models underpin this ability. Polymorphism means 
that components are designed to be able to operate in multiple domains, and modal 
models means that finite state machines can be combined hierarchically with other MoCs 
[32], e.g. Synchronous Data Flow, Kahn Process Networks, Discrete Event, and Continuous 
Time [27]. Actors can be either atomic or composite, which are both executable. Compo-
site actors are executed as a composition of executions of their contained actors  which 
facilitates managing heterogeneity of systems’ models [34].  

Models in Ptolemy are constructive which are often used to describe behavior of a system 
in response to stimulus from outside the system [32]. It means that the models as formal 
representation of systems are defined as computational procedures that mimics a set of 
properties of the system [32]. This type of models is called executable. Executable models 
are made based on MoCs which represent sets of physical principles that regulate interac-
tions among actors. The physical principles are provided by one or more semantics includ-
ed in MoCs. The included semantics might be distinct sets of rules that impose identical 
constraints on behavior [32]. Combining a large variety of MoCs and hierarchical nesting of 
the models are supported by Ptolemy II [36]. 

In Ptolemy II, models can be created either by writing Java codes that instantiates compo-
nents, parameterizes them, and interconnects them or by using Vergil as a graphical editor 
[27]. An XML schema named MoML is used by Vergil in order to store models in ASCII file 
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format [37]. Several specialized tools are available for Ptolemy II, namely HyVisual (for 
hybrid systems modeling) [38], Kepler (for scientific workflows) [39], VisualSense (for 
modeling and simulation of wireless networks) [40], Viptos (for sensor network design) 
[41]. The visual depictions of systems  provided by these tools helps to tackle the complexi-
ty introduced by heterogeneous modeling [42]. 

Since operations  are defined as event-based communication, causal equation-based 
modeling of physical components is not supported sufficiently [72]. Ptolemy also does not 
sufficiently support architectural aspects of the modeled systems [71]. Ptolemy does not 
separately capture attributes of the physical architecture and the focus is on the operation 
of the components. Metronomy is a good example of integrating other frameworks to 
expand functionality. Metronomy uses Ptolemy for capturing functional model, while the 
architectural aspects are supported by MetroII [71].  

6.3.5 SysML 

SysML was brought into existence as a profile of UML in 2003. Then, the Object Manage-
ment Group (OMG) has adopted it as OMG SysML and developed it as a standalone prod-
uct.  SysML is one of the most popular frameworks for Model-Based Systems Engineering 
(MBSE) Purposes due to its simplicity, visual modeling capability, and general purpose 
application [43]. SysML shares many similarities with UML which is a standard general-
purpose modeling language [44]. UML is an object-oriented visual modeling language, 
initially developed for software engineering. It provides sets of graphical notations for 
visual modeling of software systems.  

SysML provides methods to specify internal structure of a system and its behavior [45]. 
Two sets of structure and behavior diagrams are provided by SysML. The structure dia-
grams represent architecture of a system and its components through e.g. block definition 
diagram, package diagram, internal block diagram and parametric diagram. The behavior 
diagrams represent functions of a system and its components through e.g. activity dia-
gram, sequence diagram, state machine diagram, and use case diagram [46]. SysML dia-
grams are not sufficiently supported by an explicit handling of semantics. However, there 
are many add-in products that enhance the capabilities of SysML in specification, analysis, 
design, verification, and validation of system models [47]. Figure  6-2 shows the types of 
diagrams offered by SysML for system modeling. 

Parametric diagram is a new diagram type that shows mathematical relationships among 
components of a system and helps in analyzing performance, verification, and validation 
[47]. However, the issues related to parametric design in SysML are still not sufficiently 
developed. High level of abstractions, insufficiency of semantics, and inability of pro-
cessing numerical constraints are the major issues that SysML is suffering from. Different 
levels of abstraction can be applied in SysML which means different level of details can be 
chosen [47]. However, in the system level design, designers need to apply more abstrac-
tion to reduce the detail level to a manageable amount. Numerical constraints can be 
presented in SysML; however, these constraints are not evaluated and therefore can only 
be used as a kind of information for system designers [9]. In addition, SysML does not 
provide any means to formally analyze the constraints [48]. 
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All these shortcomings are resulted in the endeavor to develop complementary tools such 
as ModelicaML [49], SysML-Sec [50], TEPE [51]. ModelicaML adds Modelica's formal execut-
able modeling for analyses and simulation to SysML diagrams [22]. SysML-Sec employs a 
model-driven approach to focus on security issues during system design [52]. TEPE is 
a  graphical temporal property expression language based on SysML parametric diagrams 
which incorporate notion of physical time and unordered signal reception [51]. 

In SysML, functional modeling is supported by two types of ports: (i) standard port is used 
for event-driven communication and (ii) flow port is used for continuous flow of data or 
material [53]. The attributes of a flow are described by using flow properties. However, to 
support engineering of cyber physical systems, a clear distinction between different 
classes of types is needed [54] which is not supported by semantics. However, it was an 
effort towards employing some kind of semantic entities in SysML modeling [54]. 

6.3.6 LabVIEW 

LabVIEW stands for Laboratory Virtual Instrument Engineering Workbench. It is a visual 
programming language from National Instruments that provides an environment for 
system-design and development. The main application of LabVIEW is for data acquisi-
tion, instrument control, and industrial automation [55]. LabVIEW can be also used for 
developing human machine interface (HMI), sequential control, and safety interlock [56]. 
Besides its main functionality which is data acquisition, LabVIEW is a useful tool for simula-
tion purposes [57]. In order to support CPS simulation, it also can be used together with 
other tools [58].  

National Instruments introduces LabVIEW as “the ultimate system design software used by 
engineers and scientists to efficiently design, prototype, and deploy embedded control 
and monitoring applications” [59]. Libraries of LabVIEW included of the codes needed for 
off-the-shelf hardware (usually from National Instruments). It also provides a variety of 
programming approaches including graphical development, and connectivity to existing 
ANSI C and HDL code [59]. The graphical programming environment offered by LabVIEW is 
mentioned as a user-friendly interface that strongly supports technical design and visual 
simulation [60]. 

A dataflow programming language (named as G) is used in programming LabVIEW [61]. 
Several package options are provided in LabVIEW as libraries to support e.g. data acquisi-
tion, signal generation, mathematics, statistics, signal conditioning, analysis, along with 
numerous graphical interface elements [62]. In LabVIEW, continuous systems are formulat-
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6.4 ASPECTS AND INDICATORS OF COMPARISON  

In order to comparing the modeling frameworks, we needed to specify the aspects and 
indicators of the relevance and sufficiency (or suitability) of the framework-implied charac-
teristics of the frameworks for designing CPSs in the pre-embodiment design phase. 
Otherwise, it is obvious that the chosen tools and languages are the best in their catego-
ries and provide proper assistances for their users as specific groups of system designers 
with particular design concerns. Our comparison targeted the appropriateness of these 
tools according to the specific of characteristics CPSs in the pre-embodiment design phase 
and based on all of the assumptions discussed before. The aspects and the related indica-
tors were also supposed to reflect the design concerns originating in the system composa-
bility challenges and in multi-functionality. Consequently, five groups of aspects of com-
parison are specified which address: (i) comprehensiveness, (ii) heterogeneity, (iii) integrity, 
(iv) complexity, and (v) implementation. In the following paragraphs, the reasons of choos-
ing these aspects and their criteria and indicators are further discussed. 

A1. Addressing heterogeneity of CPSs 

Heterogeneity is one of the major characteristics of CPSs that makes them difficult to 
model and simulate. Heterogeneity of CPSs implies that they are composed of tightly 
coupled HW, SW, CW constituents and AW components. It entails that in addition to 
modeling their architecture and operations, a proper modeling tool should also support 
architectural interfacing of heterogeneous components, as well as their interoperations. 
This characteristic was taken into consideration seriously throughout our research. The 
indicators of suitability related to this aspect have been specified as follow: 

a. Method of tackling heterogeneity: 
In the context of modeling, the term “tackling heterogeneity” is associated with the ca-
pability (and the method employed by) the concerned tool to capture, formulate, and 
represent interfacing and interoperation among heterogeneous components in a sys-
tem. The main method used by the benchmarked modeling tools was simplification of 
the various components to their least common denominators, or imposing certain ab-
stractions on relations among components. 

b. Level of applied abstraction: 
The level of the applied abstraction was chosen by us as an indicator. Abstractions are 
made from various perspectives. Most of the modeling tools use a specific (predeter-
mined) level of abstraction for modeling. The advantages of abstraction are uniform 
representation of modeling building blocks, and capturing heterogeneous components 
despite of their inherent differences. The downside of abstraction is that plenty of prop-
er and useful chunks of information that can be used for simulation, analysis, and opti-
mization of the system are neglected. 

c. Captured relations: 
As mentioned above, models are only simplified representations of the modeled CPSs, 
and simplification can be used up to different extents in various modeling tools. Captur-
ing the relations among systems components is largely influenced by the extent of sim-
plification. As a consequence, the heterogeneous physical relations are reduced to a 
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kind of uniform relations (such as logical relations, mathematical relations, or call-
response relations) in different systems. 

d. Captured types of constituents: 
The last considered indicator was the ability of the modeling tools to capture the differ-
ent types of constituents. Since CPSs are composed of all types of HW, CW, SW and AW 
components, the desired modeling tool should be able to capture all of these. The sys-
tem which is able to capture large level of heterogeneity in modeling is seen as better 
appropriate for modeling CPSs. 

A2. Addressing integrity of CPSs 

Integrity of components in CPSs is also an important characteristic of these systems. 
Nevertheless, it is rather difficult to consider this issue in modeling. Integrity is interpreted 
as completeness and consistency of capturing the important chunks of information re-
quired for representing architectural and operational containment and connectivity 
relations among components of a system. Achieving a higher level of integrity means the 
consideration of more types of information (which is in contrast with simplification). The 
indicators of this aspect are as follows: 

e. Architectural containment: 
This indicator informs about if a modeling tool is able to capture architectural part-of 
relations in a system, and to what extent it is able to do so. Due to the latter, it also de-
scribes how tightly the components are structurally aggregated to form a system. 

f. Operational containment: 
This indicator represents the ability of a modeling tool to capture operational contain-
ment relations. It also represents the mechanism that the operational containment rela-
tions are captured by the modeling tool. 

g. Architectural connectivity: 
This indicator is related to the described amount of architectural relations among com-
ponents and the types of architectural relations that can be specified by the modeling 
tool. The parametric relations among the components are also considered by this indi-
cator. 

h. Operational connectivity: 
This indicator is related to the described amount of operational relations among com-
ponents and the types of operational relations that can be specified by the modeling 
tool. It also indicates with what fidelity operational connectivity is described by parame-
ters and attributes. Finally, it boils down to the ability of a modeling tool to capture all 
required attributes and parameters. 

i. Architecture-operation relation: 
Operations may change the architecture of a component its, and changing architectural 
attributes will affect the operations provided by a component. The range of parametric 
relations and the domain-state relations among operations and architecture of a com-
ponent are captured by this indicator. 
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A3. Addressing complexity of CPSs 

Complexity is an intrinsic characteristic of CPSs and it affects modeling and simulation 
opportunities. It implies large number of functional and structural dependencies among 
the components within the system, and among the system component and the embed-
ding environment. Complexity typically treated by a reductionist approach, but in the case 
of intrinsically connected CPSs this usually cannot be applied. Complexity is against 
simplification of the information structures that the system designers should specify 
and/or process in their design tasks. As the common solution for facilitating model specifi-
cation tasks, available modeling tools provide model-building libraries. The indicators of 
this aspect are given below: 

j. Component libraries: 
Mentioned above, a common solution used by modeling tools to address compositional 
complexity is providing libraries of a wide range of potential components as modeling 
elements. The elements and the libraries are usually manually created with various level 
of support from the modeling tools. This indicator is supposed to provide information 
about how wide and sophisticated the components libraries offered by the systems are, 
and if they provide any semantical grouping and interface specifications. 

k. Component creation: 
The main task of CPS designers is system-level conceptualization through tackling com-
posability challenges. Involving them in creation of component models would distract 
them from their main task and would draw them into an unnecessary loss of awareness 
of the system as a whole. Therefore, this indicator considers how much and in what 
forms the designer is supposed to be engaged in component creation procedures in the 
case of various tools. 

l. System-level view: 
Designing of cyber-physical systems requires the parallel application of a system level-
view and a component-level view. Nonetheless, many systems provide more support for 
working in component-level views, than for working in system-level views. This indica-
tor is introduced to provide information about how much the methods implemented in 
a modeling tool support system-level operations and representations. It is also sup-
posed to provide information about how large amount of information is needed to 
work on system-level in addition to that is needed for working on component level. 

m. Handling Multiphysics: 
Modeling the operation of cyber-physical systems makes consideration of multi-
physical processes inevitable. In order to provide proper support for operation model-
ing, modeling tools are supposed to be able to handle multiple physical phenomena 
and processes in synergy. This indicator is introduced to describe the extent with which 
a modeling tool can capture multi-physics and to provide the information about the 
amount of data that is needed for the computations. 

A4. Addressing information comprehensiveness 

CPS modeling needs huge amount and various pieces and structures of information. This is 
strongly related to the needed fidelity of architectural and operational modeling. In simple 
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words, the indicators introduced in association with this aspect specify how completely 
(sufficiently) a CPS can be modeled by the set of information processed by a tool. Like in 
the case of many of the above discussed indicators, this can obviously be only a qualitative 
indication, rather than a quantitative account. It has to be also added that comprehensive-
ness of information processing is obviously a relative concept, thus we needed to specify 
the information supposed to be required for a comprehensive modeling a system. Our 
assumptions concerning this issue have been discussed in the previous chapters. In our 
investigation we considered it as reference. Based on this, the following indicators have 
been introduced: 

n. Operation/architecture-based modeling: 
There is a need for a proper composition of the model descriptive information to facili-
tate both aspects of CPS modeling. Since some tools target behavioral and operational 
modeling of systems, they mainly focus on capturing information related to this objec-
tive. Other tools aim at architectural modeling and collect and process information for 
this purpose only. This indicator was introduced to express the balance between the 
two information sets, as well as the quality of interoperation of these two sets without 
any concrete numerical measures. 

o. Temporal considerations: 
Both the operation in the physical space and the operation in the cyber space of CPSs 
need to consider temporal aspects (e.g. timestamps, durations, touchpoints, etc.). Ac-
cordingly, two main approaches and methods of handling temporal issues in a model-
ing tool have been identified: (i) continuous-time-based and (ii) discrete event-based 
specification of operations. (Continuous time specification is normally useful for captur-
ing functions of HW constituents and discrete-time specification is needed for SW and 
CW constituents.) This indicator expresses how much these timing approaches are 
treated in synergy, and how much they complement each other in the functionality of 
modeling tools. 

p. System-level conceptualization: 
This indicator evaluates the ability of a tool to support system-level conceptualization, 
architecting, and behavioral design of a system. It reflects the functional elements of the 
support tools that are dedicated to particular conceptualization tasks and address com-
posability. (It has to be mentioned that our investigation did not extend to functional 
elements that would support compositionality in conceptualization of CPSs). 

q. System-level engineering: 
System-level engineering involves not only the development of a system, but also life 
cycle management of CPSs. In the context of this promotion research only the firstly 
mentioned activities and the technological knowledge domain in which systems engi-
neers operate were considered. This indicator evaluates ability of a tool to provide ana-
lytical, and optimization facilities for a deep investigation of the functionality (operation 
and behavior) of the modeled cyber-physical system. It also evaluates how much the 
detailed information about the components supports it. 

r. Inclusiveness of information: 
Physicality-oriented modeling of cyber-physical systems necessitates the availability of 
not only architecture and operation information, but also morphological, geometric, 
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attributive, appearance, performance, etc. information. These various sets of infor-
mation should be ‘processable’ by the tool without causing a cognitive overload for 
designers. This indicator is intended to express how comprehensively the information of 
the above clusters are captured by the systems, transferred to the model, and presented 
in views of the modeling tools. 

A5. Addressing tool implementation 

The last aspect of comparison is concerned with the issues related to implementation of 
modeling tools. Six indicators have been considered from this aspect. Some of these reflect 
identity characteristic of the modeling tools, while other capture usability and utility 
characteristics. The following indicators are associated with implementation. 

s. Category of modeling tool: 
Recall that modeling tools can be categorized into different groups based on their 
modeling mechanisms. Actor-oriented tools, block diagram tools, acausal equation-
based tools, and feature-based tools are examples of categorization according to im-
plementation. Each category has strengths and weaknesses with regards to application 
in pre-embodiment modeling of CPSs that are intrinsic due to the chosen method of 
modeling. This indicator has been considered to correlate the implementation category 
of tools with their ability to support pre-embodiment modeling of CPSs. 

t. Manual programming facility: 
Manual programming helps designers extend the abilities of a modeling tool for solving 
emergent modeling problems. The commercial and proprietary modeling tools usually 
have their own programming languages and syntax. These syntaxes are typically similar 
to standard programming languages, e.g. C, Java. This indicator is intended to express 
how much the (manual) programming facilities incorporated in a tool allows tailoring it 
to pre-embodiment modeling of CPSs. 

u. Modeling view: 
It is common that modeling tools support one or multiple views of modeling. The sup-
ported views are associated with particular sets of information and also influenced by 
the specific system design tasks. These views often appear as visual means of interaction 
between system designers and modeling tools. This indicator intends to capture the 
range of views that are supported by the modeling tools, as well as the measure of sup-
porting system design tasks in the offered views. 

v. Hardware-in-the-loop support: 
The real-time data acquisition and control is a typical feature of all CPSs. Hardware-in-
the-loop can be used for providing inputs for the modeled system. This assumes a rela-
tively short bridge between data acquisition devices and system interfaces. This indica-
tor is considered to express the opportunity and the extent of including real-life data 
sources in inputting data for system-level conceptualization and architecting. 

w. Programming language: 
The language used for programming a modeling tool very much affects the perfor-
mances of the modeling tool. For instance, using Java reduces the speed of information 
processing in comparison with C codes. The performance becomes more crucial in 
simulation of large-scale complex models, when a huge amount of information is to be 
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processed instantly, or at designing timed data transfer on networks. In these cases pro-
cess parallelization also plays a role. This indicator is to express the relationship of per-
formance of the modeling tools and the language(s) used in its implementation. 

x. Semantic richness: 
Semantics and interpretation of semantics play a crucial role in future CPS modeling 
systems. Semantics, on the one hand, helps interpretation by the modeling tool, on the 
other hand, it can control decision making in the entire process of system modeling. 
Semantics processing-enabled modeling supports interpretation of modeling elements, 
symbols, and data. Semantics goes beyond operations on syntax level (combinatorics of 
modeling units and elements) and paves the way to pragmatic approaches (and model-
ing tools), which also consider the optimal way of achieving the objectives of system 
modeling. This indicator was defined to express how much attention processing of se-
mantics received in the development of a particular modeling tool, what functionalities 
have been included for this purpose, and what level of support designers can profit 
from. 

6.5 RESULTS OF THE SURVEY 

6.5.1 Execution of the comparative study and processing the responses 

The conducted comparative study benefited from two sources. There was a literature 
study conducted with a focus on the nature of the benchmarked modeling tools and 
languages, their functionality, strengths and weaknesses. Altogether more than 300 papers 
were studied and some 65 were found absolutely relevant. This not only provided suffi-
cient insights about the frameworks, but also helped us to find information gaps in the 
literature. Finding proper explanations in the case of these information gaps and confirm-
ing the findings of literature study encouraged us to include a second source of 
knowledge. Accordingly, as a second approach a survey was planned with experts, who 
were requested to fill in an online questionnaire. The questionnaire included six groups of 
questions - starting with general questions and asking step by step more concrete tech-
nical questions. In order to validate the correctness of the responses, multiple questions 
were formulated (from the same aspect, but with different inquiry perspectives). The 
questionnaire included questions with multiple-choice, check-boxes, linear scale, and grid 
choice answers. Filling in the questionnaire took 10-15 minutes in average for true experts. 

The link to the questionnaire was shared with expert groups and individual experts/ 
professional on LinkedIn, ResearchGate, and other technical forums/websites. The data-
bases of Google Scholar, Scopus, Web of science, and Springer were used to identify 
relevant scholars, who recently authored publications about the modeling frameworks 
chosen for benchmarking. The information about the link was sent to the assembled 
contact list one by one, to invite the scholars to participate. Altogether 145 responses were 
recorded at the time of downloading the results in the form of spreadsheet. The spread-
sheet is primarily organized in MS Excel and imported to IBM SPSS for thoroughly pro-
cessing. Several filters were applied to increase reliability of answers, excluding the errors 
and outliers. The questionnaire used in the study is available in Appendix 1. The responses 
were analyzed, compacted, and summarized as below: 
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6.5.2 Processing the responses to questions about the basics 

The first part of the questionnaire included a question (Q1.1) for selecting a modeling 
framework. The respondents were asked to choose one or more modeling tool or lan-
guage they preferred to provide information about. Then, a question (Q1.2) was asked 
about the background knowledge and expertise of the respondents in order to see their 
competences and relevance to the chosen modeling framework. Based on the responses, 
the expertise related to modeling tools diagram has been generated, which is shown in 
Figure  6-4. It can be seen that a high percentage of people who provided information 
about Simulink and Modelica were involved in mechatronics and CPSs design. However, 
the respondents who had experience with SysML were mostly software architects. In 
general, the respondents who were familiar with using LabVIEW had electronic engineer-
ing background. In the case of Ptolemy II, the background knowledge was related to 
embedded systems and software design. However, the respondents who have chosen 
Ptolemy II mostly have expertise related to CPS design. 

The third question (Q1.3) concerned to tools developed based on Modelica and SysML. As 
it mentioned before, Modelica and SysML are popular programming and modeling lan-
guages which have been considered as the basis of many other tools. Therefore, the 
rationale behind this question was that supposingly many variants of the tools in question 
may be used by the respondents. The Modelica-based tools most frequently used by the 
respondents were Dymola and OpenModelica, respectively. The variety of the SysML-
based tools was much wider. As examples, MagicDraw, Eclipse Papyrus, and IBM Rational 
Rhapsody were identified as the most frequently used ones in this family. The complete 
overview of the responses is shown in Figure  6-5. 

 
Figure  6-4 Expertise/modeling tool relations 
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6.5.3 Processing the responses to questions about the concerns of design 

The next questions (Q2.1-Q2.2) focused on the concerns of design addressed by the tools. 
Although, the respondents were system experts and researchers, their answers were 
somewhat biased. For this reason we used a third question (Q2.3) to confirm their respons-
es. In addition, their responses were compared with the more detailed questions at the 
end of questionnaire and filtered accordingly. The obtained data showed that system-level 
conceptualization and system engineering were seen as two sides of spectrum of model-
ing concerns. Figure  6-6 shows the opinion of the respondents about suitability of the tool 
used by they for (i) system-level conceptualization concern, for (ii) system engineering 
concern, and (iii) the balance between these two research variables.  

It can be seen that Modelica was selected as the most suitable tool for system engineering. 
However, Ptolemy II was claimed to be the most suitable one for system-level conceptual-
ization. With regards to the balance of appropriateness for both conceptualization and 
engineering, the respondents were asked to make an evaluation according to a scale of 0 – 
7. Here 0 means that no support is provided for system engineering activities, and 7 means 
that no support is provided for system conceptualization and design activities 
(Figure  6-6.c). The assessment of the respondents was that Simulink, Modelica and Lab-
VIEW were better in system engineering, and Ptolemy II and SysML kept a balance be-
tween the two concerns. It should be noted that Ptolemy II was the only tool that was 
found to be slightly better in system-level conceptualization. 

 

Figure  6-5 Tools used more frequently based on Modelica and SysML 

(a) (b) (c)

 
Figure  6-6 Comparison of modeling tools according to the design concerns 
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6.5.4 Processing the responses to questions about the modeling entities 

The next questions (Q3.1-Q3.3) interrogated about the modeling entities used by the 
assessed modeling frameworks. The first question (Q3.1) revealed what constituents could 
be modeled by them. The modeling tools and languages were not able to equally capture 
all types of constituents. This is due to the fact that originally these frameworks were 
developed for specific types of constituents. Figure  6-7 shows the responses of the experts 
in this regard. For instance, the frameworks of Simulink and Modelica were originally 
developed for capturing HW constituents.  

The framework of Ptolemy II and LabVIEW covered almost all types of constituents in 
modeling, though SW and HW were more supported. SysML could also capture all types of 
constituents, except CW constituents, which do not receive enough support. As shown in 
Figure  6-8, the assessed modeling tools were almost similar in terms of their ability to 
capture HW and AW constituents, but Modelica and Simulink was ranked at the bottom of 
the list in terms of capturing SW and CW constituents. 

 

Figure  6-7 Constituents that can be captured by modeling tools 

 

Figure  6-8 Comparison of tools in supporting modeling of various constituents 
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The question (Q3.2) was concerning modeling the interoperation of constituents captured 
by the modeling tools resulted in an interesting insight. Figure  6-9 shows the answers to 
this question. Diagram (a) shows the percentages of the claims that interoperations of 
heterogeneous constituents is supported, and diagram (b) shows the percentage of the 
claims that interoperations of heterogeneous constituents is not supported by the respec-
tive tools, or if answer was not provided by the respondents. Based on the answers we 
concluded that the frameworks of Modelica and Simulink were not designed to capture 
heterogeneous interoperation of SW constituents. However, both frameworks gave con-
sideration to HW and AW interoperations. SysML and Ptolemy II showed higher degree in 
capturing interoperations, which is not surprising due to the fact that they apply higher 
level abstraction, but capturing semantics-richness is rather limited in the case of these 
frameworks. Since they do not consider intrinsic differences of HW, SW, and AW constitu-
ents in modeling, capturing interoperations could be realized easier. 

In the next question (Q3.3) ,the respondents were asked to identify the abilities of the 
modeling tools to capture three main types of architectural attributes: (i) topological 
relations among components of a system, (ii) morphology (e.g. 3D shapes, volume) of 
components, and (iii) physical attributes (e.g. material, flexibility, resilient) of components. 
According to the responses, Modelica was the best framework for capturing architectural 
attributes, and the only framework that was developed for capturing morphological 
attributes of components (Figure  6-10). The other frameworks, however, partially support 
it with the aid of some add-on products, or in connection with other complementary tools. 
On the other side of spectrum, respondents argued, Simulink did not have the ability of 
capturing architectural attributes, as its main focus was on functional attributes. The 
physical attributes of components were partially included in the modeling functions of 
Simulink. There was a remark that SysML could not capture morphological attributes of 
components. Ptolemy showed a reasonable capability to capture topological relations, but 
morphological and physical attributes of components are mostly neglected by its frame-
work. Our conclusion is that architectural attributes could not be handled by most of the 
modeling tools due to the abstractions they applied. 

(a)

(b)

 
Figure  6-9 Comparison of the modeling tools in supporting interoperation of constituents 
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The multi-choice question (Q4.2) concerning the types of relations handled in modeling 
was visually presented as a grid type of question shown in Figure  6-12. By clicking on the 
respective buttons, the respondents could specify what type of relations could be specified 
among components, and in what form were they captured by the modeling tools. The 
options in the rows ask about the relations. The answers could be selected from the 
following options: (i) mathematical relations, (ii) logical relations, (iii) physical relations, or 
(iv) a combination of them. The results were filtered according to the answers to the 
previous question, since the options in the columns resemble the options that were 
addressed by the previous question. 

Figure  6-13 shows four diagrams that visualize the results of responses to question (Q4.2). 
As diagram (a) shows, the architectural relations of components were mostly prescribed as 
physical relations by modeling tools. However, the highest percentage of votes, about 28 
percent, was in the case of SysML, and this most probably happened owing to some add-
ons functionality. It was claimed by the respondents that LabVIEW and Ptolemy capture 
the relations among architectural components as logical relations. It can be seen in dia-
gram (b) that Simulink was claimed to capture functions of components as logical and 
mathematical relations. The same claim was made in the case of LabVIEW. This graph also 
shows that in the case of Ptolemy functional relations were said to be mathematically 
captured. The lowest percentage of votes on the approach to capturing functional rela-
tions was for SysML. Diagram (c) shows that Modelica received the highest number of 

votes concerning the fact that it mathematically specifies architecture-function integra-
tion. At the same time, SysML was mostly claimed to capture architecture-function rela-
tions logically. Simulink was found as the weakest in physically capturing architecture-
function relations. For the sake of completeness, we included diagram (d) in Figure  6-13. 
This indicates the percentage of the answers which did not provided information about 
the capability of the system managing relations. According to the answers, with regards to 
mathematical relations, SysML received the largest number of votes, while with regards to 
capturing physical relations Simulink and Ptolemy received the largest number of votes. 

of architectural components of Functional entities

of integration of function and 
architecture

No relations

(a) (b)

(c) (d)

 
Figure  6-13 Comparison of the four columns included in the grid-type question 
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Unfortunately, based on the selections it was not possible for us to conclude if this meant 
that the tool in question was not able to handle relations, or the respondents did not have 
proper information about this. 

Concerning the managed function-architecture relations, the question (Q4.3) interrogated 
about the way of establishing relations by the modeling system. The selectable options 
were: (i) there is no link between these two aspects, (ii) linked by timing contract, (iii) linked 
through functional and architectural variable parameters, (iv) state-transitions are linked to 
states of architectural domains, (v) each function is defined linked to an architectural 
domain, (vi) other form of function-architecture relation specification is applied. The 
percentages of the votes on how the function aspect was associated with the architecture 
aspect were very different (Figure  6-14).  

It could be concluded the Simulink and Modelica managed these relations through pa-
rameters, while Ptolemy captured the relations mostly through states, and partially 
through parameters and timing. Ptolemy 
obtained the highest percentage of votes 
concerning the fact that it created timed 
relation between functionality and architec-
ture. The respondents indicated that SysML 
created one-to-one relations by assigning the 
functional entities and architectural compo-
nents. It seems that LabVIEW is more balanced 
with regards to linking functionality and 
architecture through parameters, states, or 
one-to-one assignment. 

The next question (Q4.4) concerned the way of 
function aggregation by the modeling frame-
works. In general all of them provided support 

 
Figure  6-14 Comparison of four columns of the questions about function-architecture relation 

 
Figure  6-15 Comparison of methods of 

function aggregation 
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for function aggregation as shown in Figure  6-15. The question offered three options: (i) 
hierarchical, (ii) web-type, or (iii) none. The responses indicated the most of the systems 
supported hierarchical aggregation of functions, but were also to some extent believed to 
able to manage web-type aggregation of functions. SysML proved to be the most support-
ive tool with regards to this type of function aggregation. 

6.5.6 Processing the responses to questions about handling information  

The next cluster of questions was related to information handling capabilities of the 
benchmarked tools. The first question (Q5.1) inquired about the kind of information that 
could be captured by the studied modeling frameworks. The respondents were asked to 
share their opinion about what kinds of information were them. The responses are shown 
in Figure  6-16. It seems that the conceptual frameworks of all modeling tools made them 
capable to process information about (i) architectural connectivity, (ii) functional connec-
tivity, (iii) function-related parameters, (iv) event-based timing, and (v) parameter con-
straints. However, none of the tools were claimed to sufficiently manage information 
about the morphology of components. Simulink was mentioned as having limitations in 
handling architecture containment, architecture related parameters, and morphology of 
components. The restriction of SysML in capturing morphology of components, handling 
continues timing, and multi-physics were also commented upon. 

The next question (Q5.2) concerned the type of views offered for modeling by the various 
tools. Figure  6-17 presents the results in this regards. Assembly view is supported by SysML 
only. Physical 2D view is provided by LabVIEW and Modelica. With the exception of Model-

 
Figure  6-16 Distribution of the opinions on the capability of handling different types of infor-

mation  

 
Figure  6-17 Comparison of the views provided by the modeling frameworks 
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ica, none of the tools provided 3D view. Object communication, energy flow, and material 
flow views were not considered in any of the tools, apart from SysML. In the case of Ptole-
my II, only data-flow view is supported from the abovementioned three views. The answers 
of the respondents were not always converging, most likely because various add-on and 
plug-in tools have been incorporated in the benchmarked tools.  

6.5.7 Processing the responses to questions about model composition  

Related to the cluster of questions concerning model composition, one of the questions 
(Q6.1) inquired about the possible information exchange links among modeling compo-
nents. Eight selection options were provided to the respondents to identify the possible 
information links. Presented in Figure  6-18, SysML supports most of the link options, 
except assumption-guarantees. The reason is that using semantics was not the objective of 
the developers of this tool. Information exchange linking through control streams, states, 
and events are supported by all tools. Linking through physical interaction, energy flow, 
and material flow information can only be realized by Modelica and SysML. Apparently, 
linking through assumptions-guarantees was ignored by the modeling frameworks of the 
studied tools. 

The next question (Q6.2) was about the effects of using abstraction. Actually, this question 
was a complementary question that was supposed to prove many assumptions. It specifi-
cally asked the respondents to identify information sets that they believed were ignored in 
favor of applying abstraction. As presented in Figure  6-19, the information about the shape 
of components is the major issue, since it is ignored by most of the studied frameworks. 
The information about physical attributes was also neglected, especially by LabVIEW. 

 
Figure  6-18 Possible information exchange links among modeling components 

 
Figure  6-19 Information sets ignored because of abstraction 
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6.6 MAJOR FINDINGS OF BENCHMARKING 

6.6.1 Mapping the results into indicators 

The results have been imported into SPSS and research variables have been created based 
on the questions. Table  6-1 shows the variables and maps them onto indicators the an-
swers imply. There are many interdependencies among the indicators - therefore drawing 
a sharp demarcation line was not possible. Moreover, projecting the answers to the indica-
tors circumscribed in Sub-section 6.4 could not be done otherwise, but by subjective 
semantic interpretation and critical reasoning. We tried to use multiple evidences in our 
reasoning in order to end up with a reasonably sound mapping. The main issue was the 
multiplicity of the possible mapping actions. With regards to Table 1 it entails that each 
variable may be associated with several indicators. 

Table  6-1 Mapping of the SPSS variables into comparison indicators 

Question # SPSS variables indicators Aspects 

2.1 System-level conceptualization concern System-level conceptualization l, p A3, A4 

2.2 System engineering concern System engineering l, q A3, A4 

2.3 Conceptualization-engineering balance Conceptualization-engineering balance l, p, q A3, A4 

3.1 Constituents that can be modeled Supports SW constituents a, d A1 

Supports CW constituents a, d A1 

Supports HW constituents a, d A1 

Supports AW constituents a, d A1 

3.2 Interoperation of constituents Interoperation of SW to a, c A1 

Interoperation of HW to a, c A1 

Interoperation of AW to a, c A1 

3.3 Ability of capturing architectural attributes Topological relations a, g A1, A2 

Morphology a, g A1, A2 

Physical attributes a, g A1, A2 

None a, g A1, A2 

4.1 Modeling basis Composition of architectural components i, n A2, A4 

Composition of  functions of components i, n A2, A4 

Integration of architecture and functions i, n A2, A4 

4.2 Types of modeling relations Mathematical relations of c, i A1, A2 

Logical relations of c, i A1, A2 

Physical relation of c, i A1, A2 

4.3 Function-architecture relations No link i A2 

By timing i A2 

Through parameters i A2 

Through states i A2 

One to one assigned i A2 

4.4 Function aggregation Function-aggregation f, p A2, A4 

5.1 The information that can be captured Architectural connectivity g, p, r A2, A4 

Architectural containment e, p, r A2, A4 

Functional connectivity h, p, r A2, A4 

Functional containment f, p, r A2, A4 
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Arch-related parameters e, g, q, r A2, A4 

Function-related parameters f, h, q, r A2, A4 

Function-architecture relations i, p, r A2, A4 

Morphology of components g, p, q, r A2, A4 

Continues timing h, o, p, q, r A2, A4 

Event-based timing h, o, p, q, r A2, A4 

Parameter constraints q, r A4 

Multiphysics methods m, q, r A3, A4 

5.2 Provided views Assembly tree n, r, u A4, A5 

Physical 2D view n, r, u A4, A5 

Physical 3D view n, r, u A4, A5 

Object communication view n, r, u A4, A5 

Stimulus-response view n, r, u A4, A5 

Control view n, r, u A4, A5 

State-transition view n, r, u A4, A5 

Operation view n, r, u A4, A5 

Dataflow view n, r, u A4, A5 

Energy-flow view n, r, u A4, A5 

Material-flow view n, r, u A4, A5 

6.1 Links among modeling components Events h, r A4 

States g, h, r A2, A4 

Control streams h, r A2, A4 

Physical interaction g, r A2, A4 

Assumptions - guarantees g, r A2, A4 

Information flows h, r A2, A4 

Energy flows h, r A2, A4 

Material flows g, h, r A2, A4 

6.2 Negative effects of abstraction Physical attributes b A1 

Architectural parameters b A1 

Functional parameters b A1 

Shape of components b A1 

Event/time -related properties b A1 

Methods of operation b A1 

6.6.2 Comparing the frameworks according to the benchmarking aspects 

The results were mapped and summarized in the following four tables. The first aspect that 
was mapped is ‘addressing heterogeneity’ (Table  6-2). Three different approaches of 
tackling heterogeneity were identified in our studies: (a1) ignoring the constituents that 
cause heterogeneity, (a2) ignoring attributive differences, e.g. shape and physical attrib-
utes, and (a3) ignoring interoperation. The first approach (a1), ignoring constituents such as 
CW and partly SW constituents, was used by Modelica (as shown in Figure  6-7). This is the 
approach which was also used by Simulink and SysML. The second approach was used by 
Ptolemy, LabVIEW, Simulink, and SysML as shown in Figure  6-10. The third approach is 
used by Simulink and Modelica to address the heterogeneity problem in modeling 
(Figure  6-9). 
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Applying abstraction and the level of abstraction have a direct implication on the sets of 
information that are not considered as a result of. Figure  6-19 shows the related compari-
son. Six issues were considered for comparing the applied abstraction from different 
perspective. The percentages of the importance are mentioned in the table. Figure  6-19 
shows that SysML had the highest percentage in the benchmarking with regards to ignor-
ing morphological issues and LabVIEW had the highest percentage in ignoring physical 
attributes due to the applied abstraction. 

The second aspect to consider was the aspect of ‘addressing integrity’. This is closely 
related to the specification of architectural and operational containment. Architectural 
containment was considered by all modeling frameworks except by that of Simulink. It 
seems that operational containment is not sufficiently considered in the conceptual 
framework of LabVIEW and Modelica. However, they support some level of hierarchical 
operation containment relations. Simulink and Ptolemy II supported hierarchical operation 
containment. The only framework that supported web-type operation containment was 
SysML. 

According to the first bar-set of Figure  6-16 (architectural connectivity), all frameworks 
supported architectural connectivity. The fifth bar-set (arch-related parameters) and the 
eighth bar-set (morphology of components) display that the respondents were aware of 
the ability of the modeling tool to handle various component relationships. However, by 
this indicator we intend to express if all related information about the attributes of connec-
tions are captured. Our conclusion has been that the framework of Simulink was not 
developed to capture architectural attributes. Morphological connection attributes are not 
supported by any of the modeling frameworks. As shown in Figure  6-10, topological 
information about architectural connectivity can be captured by Modelica, Ptolemy, and 
SysML. However, Figure  6-18 shows that assumption-guarantee was not considered in the 
frameworks of the studied modeling tools (e.g. for defining architectural connectivity 
constraints). 

All studied modeling frameworks support functional connectivity. In Figure  6-16, the third 
and sixth bar-sets are the evidence for this. However, as it can be seen in the same figure, 
the ninth bar-set shows that the framework of SysML is not able to formulate continuous 
timing (CT) in operation connectivity. Figure  6-18 provides more information about han-
dling functional connectivity relations. Although all frameworks consider events (E), states 
(S), and control streams (CS) in functional connectivity, Modelica framework does not 

Table  6-2 Comparison of the modeling frameworks from aspects of addressing heterogeneity 

Addressing 
heterogeneity Simulink Modelica Ptolemy II SysML LabVIEW SMF-TB 

a. Method of 
tackling hetero-
geneity 

a1, a2, a3 a1, a3 a2 a1,a2 a2 Uniform infor-
mation structure 

b. Level of applied 
abstraction 25.0% 22.6% 21.8% 23.0% 27.8% None 

c. Captured 
relations 

Function-
al/logical 
relations 

Mathemati-
cal/physical 
relations 

Multi-
formalism/ 
logical relations 

Logical 
relations 

Control 
relations 

Physical/logical/ 
mathematical  
relations 

d. Captured types 
of constituents HW, SW, AW HW, AW SW, HW, AW, 

CW 
HW, AW, 
SW 

SW, HW, 
AW, CW Equally all 
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sufficiently support information flows (IF), and the frameworks of Simulink, Ptolemy, and 
LabVIEW have not been developed to consider energy flows (EF) and material flows (MF) 
among operations. Nevertheless, they are able to partially capture these pieces of infor-
mation with the aid of add-on products, manual formulation, or connection to other 
software tools. 

It has been mentioned before that all studied frameworks, except that of Simulink, support 
integration of architecture and operation (Figure  6-11). Though, the integrity of compo-
nents varies according to the information captured to represent architecture-operation 
relationships. Figure  6-14 provided further information to evaluate the integrity of compo-
nents, namely: through parameter (P), through states transition (ST), though timing con-
tracts (TC), and one-to-one (O) relations. 

In the third stage of our benchmarking, the aspects of ‘addressing complexity’ were 
considered (Table  6-4). Modelica had the largest library of components considering all 
other modeling tools. A wide variety of components are covered by the commercial or 
non-commercial libraries of Modelica. The libraries of LabVIEW contains components that 
are developed and produced by NI, i.e. codes of NI components, data-acquisition, signal 
generation, mathematics, statistics, signal conditioning, and analysis libraries. The other 
frameworks also provide libraries that are named differently, e.g. block library in the case of 
Simulink (i.e. functions block, structural block, algorithmic block, and dynamic block), actor 
library for Ptolemy, and unit library for SysML. There is no indicator for comparing libraries 
defined and organized according to different modeling frameworks. With a view to ad-
dressing composability and complexity, the libraries of Modelica were recognized as the 
most comprehensive and intraoperative. However its libraries are mostly developed for 
HW and AW constituents. LabVIEW has a more limited library. Simulink library is a library of 
functions, rather than a library of components. Ptolemy II and SysML have very limited 
libraries – this aspect was not sufficiently considered initially in their frameworks. 

Regarding the ‘component creation’ indicator, Modelica was found to be better than the 
other tools, and LabVIEW is the second to that. In the other modeling frameworks, the 
components should be created manually. However, there is a possibility of reusing com-
ponents in Ptolemy II. The next indicator (system-level view) evaluates the ability of the 

Table  6-3 Comparison of the modeling frameworks from aspects of addressing integrity 

Addressing integrity Simulink Modelica Ptolemy II SysML LabVIEW SMF-TB 

e. Architectural 
containment No Yes Yes Yes Yes Yes 

f. Operational 
containment 

Hierar-
chical 

Hierarchical 
(partly) Hierarchical Web-type Hierarchical 

(partly) Web-type 

g. Architectural 
connectivity No Topology Topology Topology Information 

and control 

Morphologi-
cal/physical 
interaction, 
assumption-
guarantee 

h. Operational 
connectivity 

CT, E, S, CS, 
CT, IF 

CT, E, S, CS, 
EF, MF CT, E, S, CS, IF E, S, CS, IF, EF, 

MF CT, E, S, CS, IF CT, E, S, S, CS, IF, 
EF, MF 

i. Architecture-
operation relation P P P, ST, TC O P, ST, O P, ST, O 
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modeling tools to reduce the complexity implied by the details of components in system-
level design. According to Figure  6-6.a Ptolemy II, SysML, Modelica, LabVIEW, and Simulink 
have been sequentially ranked on the 1st to 5th places. Modelica had the only framework 
that was developed to support Multiphysics. Although there are add-on tools in the case of 
the other tools that facilitate processing Multiphysics, their frameworks were initially not 
designed to handle it. 

The fourth aspect implies a group of indicators that address ‘information comprehensive-
ness’ (Table  6-6). As a starting point, we considered the bases of modeling. Simulink is 
primarily a function-based modeling tool. Modelica has an architecture-oriented (compo-
nent-based) framework that also captures operations of components. Ptolemy II is built on 
an actor-based conceptual framework, in which actors represent operations of compo-
nents in a system. Although actors represent domains, they do not capture sufficient 
information for representation of architectural attributes. SysML works according to both 
an architecture-based and an operation-based modeling framework. However, integration 
of the two sides is not sufficiently supported. LabVIEW is a function (control)-based model-
ing framework that logically links operations to architectural domains (components). 
About the temporal consideration, all studied frameworks, except SysML, support contin-
uous timing (CT).  Event-based (EB) timing is also supported by all studied modeling 
frameworks.  

Regarding ‘system-level conceptualization’ indicator, we considered the votes of respond-
ents with the general applicability (possibility to apply in general system conceptualiza-
tion) of the tools. The reason is that, apparently, the meaning of system was different for 
the respondents of the questionnaire. For instance, Ptolemy was originally dedicated and 
had many applications in the design of embedded system, and in system-on-a-chip design. 
As a consequence, ‘system conceptualization’ means different for its responding users, 
than for genuine CPSs designers. According to our reasoning, SysML had the best frame-
work for system-level conceptualization purposes, followed at a considerable distance by 
Modelica, Ptolemy II, LabVIEW and Simulink, respectively. For system-level engineering, 
Modelica and Simulink were found to be the best, followed by LabVIEW, SysML and Ptole-
my II, in the given order. 

For evaluating comprehensiveness of captured information, responses of four questions 
(Q5.1, Q5.2, Q6.1, and Q6.2) were analyzed and refined to provide scores. Table  6-5 shows 
the mean each piece of information receives according to the answers of the respondents. 
SysML has the highest score (18.54), and followed by Ptolemy II (15.47), Modelica (14.49), 
LabVIEW (13.6), and Simulink (11.91).  

Table  6-4 Comparison of the modeling frameworks from aspect of addressing complexity 

Addressing 
complexity 

Simulink Modelica Ptolemy II SysML LabVIEW SMF-TB 

j.  Component 
libraries 

3rd (block 
library) 

1st (model 
library) 

4th (actor 
library) 

4th (unit 
library) 

2nd (NI 
products) PT library 

k. Component 
creation 4th 1st 3rd 4th 2nd Delegated to 

knowledge engineers 

l. System-level 
view 5th 3rd 1st 2nd 4th 2nd 

m. Multiphysics No Yes No No No Yes 
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It is worth mentioning that the total scores do not show the real ability of the frameworks, 
since it is affected by the opinion of the users and might be biased. Moreover, the re-
spondents evaluate the modeling tools which equipped with multiple add-in products. 
Consequently, reasoning back to the ability of the frameworks in this case is not possible 
and the scores do not reflect valid evaluation of the frameworks. 

Table  6-5 Percentage of the information comprehensiveness according to the respondents 

Ques-
tions indicators Simulink Modelica Ptolemy II SysML LabVIEW 

5.
1.

 T
he

 in
fo

rm
at

io
n 

th
at

 ca
n 

be
 

ca
pt

ur
ed

 

Architectural connectivity 0.69  0.82  0.77  0.95  0.57  
Architectural containment 0.44  0.61  0.85  0.9  0.62  
Functional connectivity 0.69  0.71  0.77  0.87  0.62  
Functional containment 0.56  0.46  0.69  0.82  0.43  
Arch-related parameters 0.31  0.5  0.46  0.74  0.48  
Function-related parameters 0.69  0.75  0.77  0.79  0.76  
Function-architecture relations 0.63  0.64  0.54  0.79  0.57  
Morphology of components 0.13  0.32  0.38  0.18  0.33  
Continues timing 0.56  0.82  0.85  0.33  0.67  
Event-based timing 0.5  0.79  1  0.79  0.52  
Parameter constraints 0.5  0.64  0.77  0.85  0.52  
Multiphysics methods 0.38  0.79  0.31  0.13  0.38  

5.
2.

 P
ro

vi
de

d 
vi

ew
s 

Assembly tree 0.25  0.18  0.23  0.74  0.33  
Physical 2D view 0.31  0.5  0.15  0.15  0.67  
Physical 3D view 0.25  0.46  0.15  0.03  0.38  
Object communication view 0.38  0.29  0.46  0.87  0.43  
Stimulus-response view 0.44  0.14  0.46  0.56  0.33  
Control view 0.75  0.46  0.69  0.67  0.76  
State-transition view 0.44  0.43  0.92  0.92  0.43  
Operation view 0.19  0.25  0.46  0.67  0.52  
Dataflow view 0.56  0.29  0.85  0.82  0.71  
Energy-flow view 0.38  0.46  0  0.64  0.29  
Material-flow view 0.13  0.29  0  0.59  0.19  

6.
1.

 li
nk

s a
m

on
g 

co
m

po
-

ne
nt

s 

Events 0.5  0.5  1  0.92  0.57  
States 0.5  0.57  0.85  0.67  0.57  
Control streams 0.75  0.54  0.92  0.67  0.81  
Physical interaction 0.44  0.79  0.38  0.62  0.43  
Assumptions - guarantees 0.19  0.18  0.08  0.18  0.1  
Information flows 0.5  0.46  0.62  0.9  0.76  
Energy flows 0.25  0.71  0.23  0.62  0.33  
Material flows 0.13  0.5  0.15  0.56  0.19  

6.
2.

 n
eg

at
iv

e 
ef

fe
ct

 o
f 

ab
st

ra
ct

io
n 

Physical attributes  0.25  0.25  0.23  0.13  0.48 
Architectural parameters  0.19  0.18  0.15  0.03  0.1 
Functional parameters  0.25  0.07  0.15  0.03  0.14 
Shape of components  0.56  0.46  0.38  0.85  0.52 
Event/time -related properties  0.13  0.11  0.15  0.15  0.19 
Methods of operation  0.13  0.29  0.23  0.21  0.24 
Sum 13.42 1.51 15.85 1.36 16.76 1.29 19.94 1.4 15.27 1.67 

Total 11.91 14.49 15.47 18.54 13.6 
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The last aspect of benchmarking concerned the ‘implementation of the tools’. It was 
mentioned that Simulink was implemented as a block diagram language, Modelica as an 
acausal mathematic equation-based language, Ptolemy as an actor oriented modeling 
tool, SysML as a logical modeling language, and LabVIEW originally as a data-acquisition 
design tool. If we compare the proposed SMF-TB with these, the principal difference is that 
it is being implemented as a system-level feature-based modeling tool. It is worth men-
tioning that in some of the frameworks, the possibility of manual programing is also 
considered, as shown in Table  6-7.  

Various views were considered in the frameworks of the benchmarked tools. In the ques-
tionnaire, the hypothesized views were: assembly tree view (AT), physical 2D view (P2), 
physical 3D view (P3), object communication view (OC), stimulus-response view (SR), 
control view (CV), state-transition view (ST), operation view (OV), dataflow view (DF), 
energy-flow view (EF), and material-flow view (MF). The results generated by the synthesis 
of the answers of respondents are presented in. It should be noted that many views are 
provided by the tools and add-in products that are not considered here. 

Table  6-6 Comparison of the modeling frameworks from aspect of addressing information 
comprehensiveness 

Reflecting info 
comprehensiveness Simulink Modelica Ptolemy II SysML LabVIEW SMF-TB 

n. Opera-
tion/Architecture 
based modeling 

Function-
based 

Component-based 
(mathematically 
linked to 
operations) 

Actor-based 
(representing 
operations of 
components) 

Logically linked 
architecture-
based and 
function-based 

Function-
based (logically 
linked to 
components) 

SMF-based (tight 
integration of 
operations and 
architecture) 

o. Temporal 
considerations CT, EB CT, EB CT, EB EB CT, EB CT, EB 

p. System-level 
conceptualization 3th 3rd 3rd 1st 4th 2nd 

q. System level 
engineering 2nd 1st 5th 4th 3rd Comparable 

with Modelica 

r. Comprehensive 
information 11.91 14.49 15.47 18.54 13.6 NA 

Table  6-7 Comparison of the modeling frameworks from aspects of tool implementation 

Referring to tool 
implementation Simulink Modelica Ptolemy II SysML LabVIEW SMF-TB 

s. Modeling tool 
category 

Block diagram 
language 

Acausal 
mathematic 
based 

Actor-oriented 
multi-formalism 

logical 
modeling 

data-
acquisition 

System-level 
feature-based 

t. Manual 
programming 
facility 

Matlab, 
Fortran, ADA, C 

Java-, Matlab-
like syntax Java NA MathScript 

component NA 

u. Modeling view CV, DF P2, P3, CV, EF ST, DF, CV AT, OC, CV, ST, 
OV, DF, EF, MF 

P2, VC, OV, 
DF 

all views are 
supported 

v. Hardware-in-
loop support Yes Yes No No Yes No 

w. Codes used for 
tool develop-
ment 

Matlab NA Java NA G NA 

x. Semantic 
richness moderate moderate moderate low moderate high 
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Some of the frameworks such as LabVIEW are initially developed to support hardware-in-
the-loop for real-time simulation and data acquisition purposes. There is no information 
about Ptolemy and SysML whether there was an intention to consider HW-in-the-loop in 
their framework. The other issue is the programming languages used for tool develop-
ment. Simulink is created based on the Matlab codes, Ptolemy II is written by Java, and 
LabVIEW is mostly developed based on G language. Modelica and SysML are considered as 
visual languages that are implemented through different tools. Semantic richness is an 
important but complicated issue that is difficult to evaluate. We know that SysML is suffer-
ing from the lack of proper semantics. The other frameworks are working based on a 
certain level of semantics, which is in comparison lower than that targeted by SMF-TB, 
since the latter strongly counts on semantics and ontology. 

6.7 ANALYSIS AND DISCUSSION ON THE FINDINGS 

The challenges of CPS design are mentioned and discussed before. The requirements to 
tackle these challenges have also been extracted. The aspects of comparison (Sub-chapter 
6.4) are the results of grouping the requirements that manifested as indicators. The indica-
tors were used to specify to what extend the available modeling frameworks address the 
CPS design challenges and reflected in the questionnaire. We believe that the novelties 
proposed and implemented in our work provide a proper solution to address the men-
tioned challenges. The novelties of SMF-based modeling are briefed in Sub-chapter 6.2. 
Figure  6-20 represents the mapping of these novelties to the comparison aspects and the 
questions that regarded to them. The following paragraphs represent how our modeling 
framework fulfils the aspects of comparison in contrast with the studied modeling frame-
works. The results of this projection are summarized in Table  6-8. We note that the pieces 
of information obtained from the two sources (responses to questionnaire, briefed in Sub-
chapter 6.6, and the literature study, summarized in Sub-chapter 6.3) were blended.  

 

Figure  6-20 Mapping of the novelties of the SMF-TB framework to the aspects of modeling CPSs; 
(N = novelty; A = aspect of comparison; Q = question of the survey)  
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6.7.1 Findings concerning imposing a strictly physical view: 

Physical view implies that nothing can be abstracted and simplified in system level. This 
view has the same significance for all constituents (i.e. SW and CW). This novelty addresses 
two aspects namely information comprehensiveness and implementation. Among others, 
physical interaction of components and morphological considerations are the main sets of 
information that neglected by available modeling tools. Simulink reduces a system into its 
functions and relations among its parameters. Modelica simplifies a system into mathe-
matical relations among the parameters of its components. Ptolemy II does the same, in 
the form of actor oriented modeling by ignoring physicality of components. SysML frame-
work is not developed to capture morphology and physicality of components and concen-
trates on the logical relations among components. The main issue in LabVIEW is control 
and signal streams within a system by ignoring physical view on system models. 

6.7.2 Findings concerning enforced concurrent consideration of architecture and 
operation: 

SMFs capture both architectural and functional aspects of components concurrently and 
without any preference. That is the reason that SMF-TB is neither components-based nor 
function-based modeling tool, but hybrid SMF-based modeling tool that architecture and 
operation aspects are inseparable. In view of that, aspect of information comprehensive-
ness is well supported by this novelty. Furthermore, information structures of SMFs as 
capsulations of architecture- and operation- related information facilitate implementation 
of both. In comparison, Simulink is a function-based modeling framework. Modelica is a 
component-based framework that mathematically links architecture aspect to operations. 
Ptolemy is actor-based modeling framework that put emphasis on operation of compo-
nents. SysML supports architecture and function aspects that are logically linked. LabVIEW 
is a function-based modeling framework that supports logical links to architectural aspect.  

6.7.3 Findings concerning amalgamating of architectural and functional aspects: 

All chunks of information that defines relations among architectural and operational 
aspects are captured within SMFs. Although it does not refer to integration of components 
within a system, this novelty supports the integrity issues in modeling by proving internal 
amalgamating of information. SMFs capture relations among architecture and operations 
through constraints, parameters, state-transitions and associating events, timing, condi-
tions, and logically by methods of operation. In comparison, Simulink and Modelica do it 
through limited parameters. State-transition and timing contract are used by Ptolemy. 
SysML creates one to one relations among diagrams related to architecture and operation 
aspects. LabVIEW benefits from linking through parameters, state transition, and logical 
coupling. Comparing the studied modeling frameworks to SMF-based modeling frame-
work shows a considerable contrast, and that is, in SMF-based modeling architecture 
aspects and operation aspects cannot be separated. 

6.7.4 Findings concerning using uniform information structures for heterogeneous 
components: 

The intrinsic differences of SW, HW, CW constituents enforced using abstraction and 
simplification in modeling to facilitate capturing interrelation of heterogeneous compo-
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nents. The studied modeling frameworks use multiple solutions to encounter this issue. 
Simulink neglects capturing CW constituents, and neglects capturing architectural aspects 
of components towards this aim. Framework of Modelica is designed for considering HW 
and AW components. Ptolemy II and LabVIEW ignore physical differences of components. 
SysML makes a higher abstraction and ignores differences of components. SMF-based 
modeling framework tackle this problem in a unique way by providing uniform infor-
mation structures for capturing interoperation of various constituents. This novelty results 
in avoiding unnecessary simplification and abstraction. 

6.7.5 Findings concerning multi-level multi-granularity: 

Moving from higher level of aggregation to lower levels and vice versa is supported by 
almost all modeling tools. All studied frameworks support this issue through some kinds of 
logical relation and by applying abstraction. Consequently, they do not sufficiently support 
relations of the parameters in different levels of aggregation (parameters composability). 
SMF-based modeling framework supports multi-level modeling through multi-granularity 
of SMFs. This novelty implies that the information structures of SMFs are designed to fully 
support physical aggregation of them through containment operational and architectural 
coupling. 

6.7.6 Findings concerning multi-aspects coupling among SMFs: 

SMFs can be coupled together in order to create a higher level SMF. And, this can be 
continued till a model of a CPS is created. The knowledge structures of SMFs provide 
interfaces that support multi-aspect coupling. By ‘multi-aspect’ we mean through states of 
operation, events (i.e. timestamps), streams, parameters, physical mates, contracts, and so 
forth. These interfaces address fully integration of modeled components. In contrast, the 
other studied modeling frameworks create limited number of coupling links among their 
modeling building block which have been mentioned before. Simulink provides function-
al/logical relations among modeling entities. Modelica creates mathematical/physical 
relations among the components. Ptolemy II uses multi-formalism to create logical and 
functional relations among actors. SysML connects blocks through logical relations and 
LabVIEW connects components through control and signal relations. 

6.7.7 Findings concerning multi-stage model composition: 

In our modeling framework, models are not created in one go. Firstly, modeling building 
blocks have to be created, and after that they can be composed together in the modeling 
space by system designer. It reduces the tasks of the system designer by delegating the 
time-consuming tasks to knowledge engineers. Consequently, the system designer can 
focus more on the conceptualization tasks and tackling composability challenges. This 
novelty addresses the complexity aspect. The other frameworks deal with this aspect by 
providing components and functions libraries that is discussed before. In comparison, we 
recognized that in the studied modeling frameworks many tasks are assigned to the 
system designers that distract them from their main responsibility.  
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6.7.8 Findings concerning using multi-purpose system-level features: 

SMFs are smart system-level features that support many purposes. Reasoning with higher-
level semantics relieves them from dealing with unnecessary details which are not im-
portant in system-level conceptualization. The studied modeling frameworks are not 
supported by this level of semantic-richness. Trans-disciplinary fusion of knowledge is 
another purpose that is fulfilled by SMFs which is rare among the studied modeling 
frameworks. Harmonization of design and computational methodologies (elaborated in 
the previous chapter) shows remarkable differences with the other modeling frameworks 
that usually can be used in a particular design phase. SysML is the only framework that 
partially supports the last two issues. However, it suffers seriously from the lack of seman-
tic-richness. 

6.7.9 Findings concerning explicit support of multiple application contexts: 

The two main application contexts that could be supported by the modeling frameworks 
are system-level conceptualization and system-level engineering. According to our reason-
ing, SMF-TB supports both application contexts better than others. SMF-based modeling 
novelty relies on the information structures that comprehensively capture all pieces of 
information required for working in these two application contexts. However, the infor-
mation captured by the other frameworks is specified for a particular design purposes. 
According to Table  6-6, Modelica is the most comprehensive among the other studied 
frameworks. It is followed by SysML, Simulink, LabVIEW, and Ptolemy II, respectively.  

6.7.10 Findings concerning managing multi-component warehouses: 

The libraries in modeling tools are used for providing ready-to-use modeling elements. In 
SMF-TB the libraries are supported by multi-component warehouses. These warehouses 
differ from others in some aspects. Firstly, they physically composed of three components 
of (i) the relational database, (ii) the management component, and (iii) the meta-level 
knowledgebase. Secondly, the changes of the model and SMFs are tracked and recorded in 
the meta-level knowledgebase. This gives opportunity of including historical information 
in SMFs, and transferring and reusing them into other models (same as using second-hand 
components in a system). Thirdly, instances of SMFs are not separated from their GTs and 
PTs. It means not only pieces of information are inherited, but also the information about 
inheritance and the source is included inside SMFs. Since it is handled by meta-level 
knowledgebase, the performances of simulation are not affected by the information 
overload. Finally, meta-level knowledgebase facilitate accessibility to some kinds of infor-
mation that is more frequently used by simulation engine. This ability improves simulation 
performance and speed. None of the abovementioned aspects are observed in other 
modeling frameworks. 

6.7.11 Findings concerning uses active ontologies: 

SMFs are created by using 21 kinds of ontological entities. SMF creation highly dependents 
to ontologies, and has the advantage of semantic-richness. In particular, every attribute 
should be defined and parameterized regarding a concept imported from ontological 
tables. That means pieces of information are not open to interpretation and can be pro-
cessed smartly by computational programs. Consequently, we can expect highly intelli-
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gent tools derived from SMF-based modeling frameworks. Although the development of 
ontologies is excluded from this work, it can be foreseen that active ontologies give an 
outstanding advantage to SMF-based modeling over other modeling frameworks. It means 
that by emerging of new kinds of technologies, material, attributes, etc., the ontological 
tables can be updated and accordingly the new SMFs will be already understandable for 
the modeling tool. 

6.8 CONCLUDING REMARKS 

The performed comparison allowed us to expose the characteristic features and the used 
modeling and computational concepts of the underpinning conceptual frameworks of 
benchmarked modeling tools. These modeling frameworks were chosen as the best and 
most known ones in their categories. Although the studied modeling frameworks are 
supporting sufficiently the purposes that they are designed and developed for, the com-

Table  6-8 Summary of the results of comparing the frameworks 

Novelties in SMF-TB Simulink Modelica Ptolemy II SysML LabVIEW 

Imposing strictly 
physical view 

Simplified to 
functions 
modeling 

Mathematical-
based 

Actor-oriented 
function-based Logical-based Control-based 

Enforced concurrent 
consideration of 
architecture and 
operation 

Function-based 

Component-based 
(mathematically 
linked to 
operations) 

Actor-based 
(representing 
operations of 
components) 

logically linked 
architecture-
based and 
function-based 

Function-based 
(logically linked to 
architecture) 

Amalgamating of 
architectural and 
functional aspects 

Through limited 
parameters 

Through parame-
ters 

Through 
parameters, state 
transition, and 
timing contracts 

One-to-one logical 
coupling 

Through parame-
ters, state 
transition, and 
logical coupling 

Uniform information 
structures for 
heterogeneous 
components 

Ignoring some 
constituents, and 
differences of 
constituents 

Ignoring some 
constituents, and 
their interopera-
tion 

Ignoring physical 
differences of 
constituents 

Ignoring some 
constituents, and 
differences of 
constituents 

Ignoring physical 
differences of 
constituents 

Multi-level multi-
granularity Abstraction Abstraction Abstraction Abstraction Abstraction 

Multi-aspects 
coupling among 
SMFs 

Functional/logical 
relations 

Mathemati-
cal/physical 
relations 

Multi-formalism/ 
logical relations Logical relations Control relations 

Multi-stage model 
composition 

functions, 
structural block, 
algorithmic block, 
and dynamic block 
libraries 

Huge commercial 
and open source 
component 
libraries 

Actor libraries Unit libraries 

Data-acquisition, 
signal generation, 
mathematics, 
statistics, signal 
conditioning, 
analysis libraries 

Multi-purpose 
system-level 
features 

Not supported Not supported Not supported partially support-
ed Not supported 

Multiple application 
contexts (1st) 3rd 2nd 6th 4th 5th 

Multi-component 
warehouses Simple libraries Simple libraries Simple libraries Simple libraries Simple libraries 

Active ontologies Limited ontologies Finite ontologies Limited ontologies No ontology Limited ontologies 
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parative study expressively clarified that they are not appropriate for the purpose of pre-
embodiment design of cyber-physical systems as they cannot sufficiently address the main 
requirements in this particular application context. These frameworks are mostly suffers 
from the high level of abstraction applied in modeling, lack of support for heterogeneous 
components, ignoring morphological and physical attributes of components, not fully 
supporting integrity of components, inability to manage high complexity of components 
in modeling, and insufficient ontological supports. 

In addition, this comparative study approved that the novelties introduced by SMF-based 
modeling framework sufficiently address the challenges of pre-embodiment design of 
CPSs. The 11 novelties explained in this chapter have been projected to the aspects of 
comparison and accordingly compared with the frameworks of the available modeling 
tools. Based on this comparison, those have been approved as novel solution towards 
tackling the regarded modeling and design challenges. It has to be noted that the current 
states of the studied modeling tools are the results of development for a long time. Many 
built-in tools are added to them and many add-in products are developed for enhancing 
their functionalities. By considering SMF-based modeling as novel and proper solution for 
the determined application, it could be expected that the further developments and 
implementations could sufficiently support system-level modeling of CPSs.  
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7 CONCLUSIONS, REFLECTIONS, and FUTURE RESEARCH 

 

7.1 CONCLUSIONS 

The original aim of this promotion research was to deal with customization issues of cyber-
physical consumer durables. The conducted investigations cast light on the fact that the 
currently available design support tools could provide only a limited support when truly 
heterogeneous, complex and multi-faceted systems, such as cyber-physical systems, are at 
stake. CPSs represent the next generation of advanced engineered systems such as mecha-
tronic systems, robotic systems, embedded systems, AI systems, IoT systems, and distrib-
uted networked sensor, actuator and control systems. In the case of CPSs the concerns of 
system design have shifted from discipline-related challenges to inherent interdisciplinary 
and cross-disciplinary challenges. CPS designers either should be equipped with the 
knowledge of all related system domains, or should be a (transdisciplinary) coordinator of 
system experts, in particular at designing CPSs that are systems of systems. We assumed in 
our research that the main task of CPS designers is to address composability challenges. 
The root of this assumption is that conceptual design of CPSs includes: (i) architectural and 
functional composition of at least conceptually defined system definitive components, (ii) 
specification of the required characteristics, interaction and interoperation of the coupled 
components, and (iii) retrieving them from repositories or delegating their embodiment, 
detail design, and development to concerned experts. 

The objective of the presented research was to develop a supporting tool for designers to 
be able to model heterogeneous complex-systems such as CPSs in the pre-embodiment 
design phase. Such kind of tools is needed not only for original architecting and operation 
design of CPSs, but also for preparing them for embedded customization. Towards this 
end, five research cycles have been planned, which respectively concentrated on: (i) 
investigation of the state of the art in customization and computer tool support, (ii) idea-
tion of a conceptual framework, (iii) development of information structures, (iv) elabora-
tion of computational constructs, and (v) benchmarking of the proposed functional and 
methodological framework. Two complementary theories (the MOT and the SMF theories) 
have been developed to underpin the proposed modeling framework. Preliminary feasibil-
ity, utility, and usability tests have been completed on the modeling framework and a 
benchmarking study was performed against five widespread modeling tools and lan-
guages. Following text provides detailed explanation about the performed research. 

7.1.1 Research cycle 1: Investigation of the state of the art in designing CPSs 

The main objective of the first research cycle was to acquire fundamental insights in the 
studied general phenomenon and to provide comprehensive and rigorous descriptive 
knowledge. The key research questions in this RC were: 
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• What is the state of the art and what are observable knowledge gaps in designing 
CPSs in the pre-embodiment design phase? 

• Why do the conventional design methods not sufficiently support CPS designers to 
tackle composability issues in system synthesis? 

In the conducted study, five domains of interest were addressed: (i) CPSs as specific engi-
neered systems, (ii) design approaches, (iii) design principles, (iv) design supporting tools, 
and (v) features technology. The study gained sufficient insight about the achieved overall 
progress and the knowledge gaps from these different perspectives. It has been proved 
that the conventional design principles are not adequate for designing CPSs. The reasons 
of insufficiently of the current modeling tools for supporting pre-embodiment design of 
CPSs were also explored. The following paragraphs summarize the main findings of the 
first research cycle: 

1. Some important sets of modeling information have been neglected due to simplifica-
tions and abstractions applied by the current CPS modeling tools. 

CPSs consist of intrinsically different components such as hardware, software, and 
cyberware. These constituents may also be combined as aggregateware. The interactions 
and interoperations among these intrinsically different components cannot be captured, 
unless the components are modeled and processed in a uniform manner. Consequently, 
simplifications and abstractions are applied by the conventional modeling tools. 

2. CPSs are tightly integrated internally as well as with their surrounding physical envi-
ronment. Accordingly, their internal and external relationships should be defined as 
precisely as possible. This enables a high fidelity modeling CPSs, which is beneficial in 
the stage of pre-embodiment design. The physical nature and realization of CPSs can 
be captured by imposing (a strictly) physical view and considering morphological at-
tributes. This has not been sufficiently implemented or has even been neglected in 
most of the current CPS modeling tools. 

Some of the current modeling tools (e.g. Ptolemy II) were originally developed for model-
ing and simulation of engineered systems other than CPSs (e.g. system on a chip and 
embedded systems). These exemplified systems do not physically (and mechanically) 
interact with their embedding environment, as they typically deal with data flows and 
transformations. Consequently, the original frameworks of the current modeling tools did 
not address the physicality issues (attributes, relationships, and impacts). However, consid-
ering internal physical relationships and external physical interactions with the surround-
ing environment is a must for conceptualization of CPSs. 

3. The main concerns of the current modeling tools are system engineering, analysis, and 
optimization. However, the main concerns in design of CPSs are such as system con-
ceptualization, system architecting, and ensuring system level performances (e.g. de-
pendability, safety, security, maintainability, adaptability, economy, and energy-
efficiency). 

System engineering aims at solving relatively discipline-related problems. However, 
system conceptualization deals with inter-disciplinary and/or transdisciplinary challenges. 
Since current CPS modeling tools are originally developed for specific system engineering 
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purposes, their functional scope have remained the same, even after extending them with 
enablers for the CPS design arena. The abstractions and simplifications remained the basis 
of the working methodology of these extended modeling tools. However, a fully-fledged 
CPS modeling tool should support designers to tackle all logical and physical composabil-
ity challenges (e.g. functional conceptualization and architecting, and feasibility and 
interoperation investigations).  

4. System-level feature-based modeling is capable of capturing interdisciplinary and 
multicultural aspects of designing CPSs in the pre-embodiment design phase. The op-
portunity of managing physicality of components is the main advantage of this kind of 
modeling. 

In contrast with traditional part level orientation, system-level modeling requires dealing 
with composability of components on the system level. Feature technology and feature-
based modeling has many advantages for system-level conceptualization and develop-
ment of CPSs. System-level features allow an explicit specification and representation of 
physical attributes and morphological properties of components in conceptual modeling 
and early simulation. SMFs integrate artifact- and process-related knowledge of the con-
cerned disciplines and aspects, and help interfacing heterogeneous components. 

7.1.2 Research cycle 2: Development of a theoretical framework  

The second research cycle aimed at the investigation of novel concepts and proposed a 
theoretical framework for pre-embodiment design of CPSs. The key research questions in 
this research cycle were: 

• How to consider all required interdisciplinary and multicultural aspects of designing 
CPSs in pre-embodiment design phase? 

• What kind of information should to be considered towards a uniform modeling hetero-
geneous CPSs? 

This research cycle started with empirical studies. After identifying requirements for 
modeling heterogeneous system components and systems as a whole, theories that could 
support constructing a theoretical framework have been explored. As a result, the mereo-
operandi theory (MOT) has been introduced as one important component of the sought 
for theoretical framework. This theory underpinned the rest of our research by shifting the 
paradigm of modeling complex systems to system-level feature-based modeling. MOT 
introduced all information engineering fundamentals that were needed for a uniform 
‘above-the-disciplines’ specification of the components and the whole of CPSs. The follow-
ing paragraphs present the main findings of the second research cycle: 

5. For system-level modeling of CPSs, architecture and operation aspects should be 
considered simultaneously, as well as the interrelations of these aspects. 

A proper modeling and simulation tool should capture what the components are (architec-
ture) and what they do (operation). Accordingly architecture and operation are considered 
as the major complementing aspects of modeling and simulation, each of which goes 
through the specification of an ordered set of parameters and values. Architectural attrib-
utes of components influence their operations, and the operational attributes change their 
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architectural states. Consequently, the architectural and operational parameters have been 
considered as intertwined. 

6. In order to capture the operations of components in a comprehensive manner, opera-
tion prescriptive concepts have been introduces such as: (i) flow of operation, (ii) units 
of operation, (iii) morphological attributes, and (iv) physical phenomena. 

The operations of SMFs are specified by: (i) the procedure of operation, (ii) the procedural 
elements, (iii) the morphological and physical attributes of components, and (iv) the 
principles of the physical and computational phenomena that the operation is based on. 
The flow of operation (FoO) describes the procedure of operation, and the units of opera-
tion (UoOs) specify the procedural elements. Furthermore, the phenomena, which cause 
the operation, are captured as numerical or algorithmic methods of operation. Moreover, 
operations were interpreted both as state-transition and as input/output transformation. 
The former entails architectural changes according to the performed operation, and the 
latter implies the transformation of inputs into outputs caused by the operation. The 
proposed framework takes into consideration both of these views, and handles them in 
relation with other operational attributes. 

7. Architectural relations of all types of components of a CPS (i.e. hardware, software, 
cyberware, and aggregateware) are specified by using the principles of spatiotemporal 
mereotopology in order to provide a uniform formulation of diverse relations. 

By definition, the basis of components of a CPS is an architectural domain that lends itself 
to specific system operations. In addition the morphological and physical attributes 
(physical manifestations) of the individual domains, the relations among them also have 
influence on the operation of components. These relations can be described by the formal-
ism that has been developed based on the notions and notations of spatiotemporal 
mereotopology. The main advantage of the mereotopological formulation of the architec-
tural relations is the opportunity of a uniform representation of relations among all types 
of components. The differences of these relations can be specified on by means of seman-
tic annotations. There are two kinds of architectural relations defined among domains of a 
system, namely (i) part-of relation and (ii) connected-to/with relation. The first kind is 
referred to as architectural containment and the second kind is called architectural con-
nectivity. It has been found that these two kinds of relations were necessary and sufficient 
to fulfill our requirements for describing architectural relations. 

8. The procedural relations of operations can be captured by and described as streams of 
information, energy, and material. 

Considering FoOs as sets of related UoOs, the relations between a FoO and each of the 
contained UoOs can be described by ‘operational containment’ relations.  In harmony, the 
relations among the UoOs were described by ‘operational connectivity’ relations. The 
operational connectivity relations also express dependency of operations. Streams are 
representatives of operational connectivity relations. Consequently, procedural relations of 
a FoO are specified by defining the streams among its UoOs. 
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7.1.3 Research cycle 3: Development of information structures 

The theory of system manifestation features was introduced in the third research cycle. As 
a complement and extension of MOT, the SMFs theory offers a formal description for all 
required aspects of the proposed high-level modeling elements of CPSs and their compo-
nents and constituents in a uniform way. The key research questions in this RC were: 

• What information structure describes the modeling units? 

• Which pieces of information should be captured by knowledge frames in order to 
computationally model components and constituents of CPSs? 

• How the pieces of information need to be combined in order to create modeling 
building blocks? 

The main result of the conducted research is the clarification of the role of different pieces 
of information in the context of SMFs-based modeling of CPSs, and the required construc-
tion of the information structures. These have been explained by the SMF theory. The 
information structures have been captures by both architecture and operation knowledge 
frames. The following paragraphs cast light on the main findings of the third research 
cycle: 

9. System manifestation features resemble real-world components of CPSs and are 
defined as modeling building blocks, which encapsulate all pieces of information and 
their relations required for modeling and simulation of CPSs. 

According to the traditional feature technology, a model of a part can be captured as a 
combination of part-level features. Likewise, a system can be modeled as an aggregation 
of system-level features. In CPS modeling, SMFs are considered as models of assumed or 
real-world components, which can be connected together through their predefined 
interfaces. Interfaces of SMFs include both architecture and operation related pieces of 
information. Besides the information about interfaces, SMFs contain the kernel information 
sets, which explain how the architecture and operation attributive parameters are related 
with each other. 

10. SMFs can capture the required pieces of information and the relations among them 
uniformly for all different types of constituents and components. 

SMFs encapsulate the required information in a uniform (standard) format for all types of 
components. Based on this uniform representation, SMFs can treat hardware, software, 
cyberware, and aggregateware components in the same way (i.e. as similar modeling 
building blocks). These building blocks can be connected with the same compositional 
mechanisms to build higher level building blocks, which can also be considered as new 
SMFs. 

11. Information structures of SMFs are realized through interrelated architecture 
knowledge frames (AKFs) and operation knowledge frames (OKFs). 

The information sets of SMFs and their relations are captured in a stereotyped (standard) 
format called information structure. The standardization of this information structure 
would support the uniformity of SMFs. The information structure of SMFs was realized as a 
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combination of architecture and operation knowledge frames. The pieces of information 
included in these two knowledge frames are linked together. SMFs in various aggregation 
level and the operational and architectural relations among them were captured uniformly 
by AKFs and OKFs. This is supported by vertical associations of knowledge frames. Vertical 
association means that each OKF (which represents a FoO) may be associated with several 
lower level OKFs (as representatives of its UoOs). Since there may be numerous aggrega-
tion levels, the UoOs can be considered as FoOs for their lower-level SMFs. Consequently, 
each of the OKFs of the UoOs can be associated with both higher and lower level OKFs. A 
similar rule applies to the architectural side. That is, each AKF represents a domain that 
associates with a higher level AKF and some lower-level AKFs. Horizontal association, on 
the other hand, refers to connectivity among domains in a same level of aggregation 
(represented by AKFs) and connectivity among operations in a same level of aggregation 
(represented by OKFs). The information about connectivity among the entities of a domain 
and the connectivity among the UoOs of a FoO were captured by the corresponding AKF 
and OKF, respectively. Accordingly, the horizontal association of AKFs and OKFs can also be 
found in their higher level AKF and OKF, respectively. 

12. Layers of operation were defined in SMFs in order to facilitate handling of Multiphysics 
operations. Multiple numerical (mathematical) and algorithmic methods can be as-
signed to different layers of operation for computing multiple interacting physical 
processes. 

We considered methods as means of representing functional relations among (attributive, 
metric, or temporal) parameters. Multiphysics operations raise the need for a parallel 
computation of multiple interacting physical processes. These processes are allocated to 
various computational layers, among which there is a real time data transfer and exchange. 
An example of this situation can be a smartphone, where the heat generated by the 
processor has a relation with the processing load. The processing load dependent estima-
tion of the generated heat can be allocated to one computational layer. Another computa-
tional layer can be allocated to the computation of the effects of the heat on the pro-
cessing performance. In this example we have two methods on two layers that share some 
parameters (e.g. heat). Without this sharing it is not possible to realize Multiphysics com-
putation. Therefore, the assigned methods include parameters that receive their values as 
results of computation on (several other) layers. Three computational layers of operation 
have been considered in the proposed framework to capture Multiphysics, namely: (i) 
concurrent operation, (ii) subordinate operation, and (iii) software manifestation. 

7.1.4 Research cycle 4: Elaboration of information and computational constructs 

The fourth research cycle focused on how the information structure of SMF could be 
converted into computational units and processed computationally. The specific aim was 
to propose information schema constructs (that were used in the development of the 
relational databases of the conceived SMFs warehouses) and computational constructs 
(that were used for the implementation of the computational procedures of SMF specifica-
tion and composition). From a practical point of view, the existence of the needed infor-
mation constructs supports the feasibility of the MOT and SMF theories. The key research 
questions in this RC were: 
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• How the pieces of information and the relations among them can be captured for an 
effective computation? 

• What computational procedures are needed and possible for creating modeling build-
ing blocks? 

• What procedures need to be implemented for creating a CPS model by composing 
modeling building blocks? 

The process of generating SMFs was decomposed to the phases of genotype creation, 
deriving phenotypes, and deriving instances of SMFs. Accordingly, three databases of 
genotypes, phenotypes, and models were designed. Information schema constructs were 
defined to map necessary information sets (and the relations among them) to relational 
database contents. This research cycle also determined the procedures of SMF creation 
and model composition in combination with the entry forms and the warehouses. The 
following paragraphs explain the outcomes of the fourth research cycle: 

13. The chunks of information enclosed in AKFs and OKFs, and their relations were trans-
ferred to computational constructs. 

Computational construct were defined by identifying a specific set of variables and their 
semantics-implied relations. In general, computational construct were designed to facili-
tate data organization, and execution of computational procedures. The data organization 
issue appeared in the context of developing relational data tables for warehouse data-
bases. These constructs have been named as information scheme constructs (ISC). The 
procedures for function operationalization were named as computational processing 
constructs (CPC). At the beginning of designing the abovementioned constructs, the 
interrelated pieces of information in AKF and OKF were grouped into logically related 
(consistent) chunks of information that described specific aspects of SMFs. These groups 
were formalized as constructs and converted into relational database tables, which ac-
commodated the designated chunks of information. The ISCs specified the necessary 
relational data tables and the connections among them. The procedures of receiving 
chunks of information from the designer and mapping them into relational tables were 
also developed. These procedures were specified with the help of CPCs. 

14. SMFs were created and composed into a model through the three steps of genotype 
creation, deriving phenotypes, and descending instances. 

The need for entering a large amount of data during the process of SMF creation is a 
challenge for knowledge engineers. In addition, consistency of the symbols, notations, and 
relations should be maintained throughout all phases of creating and specifying SMFs. 
Reducing the cognitive workload of knowledge engineers and processing the related 
information in a consistent way were two main objectives to be achieved by a step-wise 
procedure of SMF creation. According to our assumption, the formal specification of 
concepts and entities related to the definition of the architecture and operations of SMFs 
are obtained from dedicated ontologies. It is also assumed that the SMFs ontologies are 
comprehensive enough to capture all concepts and entities necessary for defining the 
hardware, software, cyberware, and aggregateware ingredients of SMFs, and thus the need 
for run-time definition of non-warehoused modeling entities is reduced. 
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15. SMF genotypes were introduced to specify structural relations among operation- and 
architecture-related pieces of information.  

Genotypes resemble categories of components, e.g. browsers, gearboxes, screws, and 
modems. A genotype defines and portrays a variable (parameterized) structure. It works 
with s specific (unique) set of possible structural entities and connections among them, 
whose concepts are captured in relevant ontologies. In other words, a genotype is defined 
by arranging structural concepts included in ontological classes (as genes), and internal 
structural relationships among them. These concepts may refer both to architectural and 
operational attributes. 

16. Attributive parametrization and information sets of SMFs were captured as pheno-
types. 

Phenotypes resemble particular components with predefined parameterization. Pheno-
types of SMFs were derived based on choosing an appropriate structure included in the 
parent genotype. By doing so, the structural attributes became specified for each pheno-
type, and this allowed selecting and assigning morphological and attributive parameters 
to them. 

17. Instances of a SMF were conceptualized as descendants of phenotypes, which are 
evaluated for their attributive values and composed into a CPS model.  

The phenotypes manifested in a particular system composition are called instances of an 
SMF. Instances are always derived in a given architectural and operational context of 
system modeling. As a preceding action, phenotypes are first coupled and then instantiat-
ed in order to create a specific part of a system model. By coupling instances of SMFs, their 
parameters become shared. By placing the modeled system in a working context, the 
variable parameters take values according to the interface specifications, morphological 
parameters, or simulation outcomes. One phenotype can be instantiated in multiple places 
of a model. For example, five wheels of an office chair are name-distinguished instances of 
the same phenotype. 

18. Composed parts of models or entire models can be stored as a new SMF and made 
available for use in other models. Accordingly, the concept of system of systems is 
supported in modeling and system architecting by SMFs. 

The part of models or the entire models appearing as the results of composing and instan-
tiation process of phenotypes are supposed to be stored in the model warehouse. After 
disconnecting them from their embedding environment, they can be considered as 
phenotypes and can be stored back in the phenotype warehouse. The phenotypes which 
are not directly inherited from parent genotypes are called compound phenotypes. Using 
compound phenotypes reduces the workload of system design. 

19. The meta-level knowledgebase of the model warehouse is in charge of keeping track 
of model compositions and modifications. 

The model warehouse comprises of three parts: (i) the database, which is in charge of 
accommodating pieces of relational information that specify the SMFs and the composed 
models, (ii) the database management system, which is in charge of writing, reading, 



|  264 

removing, and editing the data in the database, and (iii) the meta-level knowledgebase, 
which is in charge of keeping track of the SMFs imported into the model, history of model 
modification, and history of variable changes. 

The procedures of creating models, modification of models, and other model-level activi-
ties are facilitated and supported by the meta-level knowledgebase. It also supports model 
adaptation, optimization, and customization. Working tightly with the simulation engine, it 
allows the meta-level knowledgebase to provide information even about accumulative 
effects such as aging, wearing, fatigue and erosion. In the case of smart and self-adaptive 
systems, the evolution of system could also be supported by the meta-level knowledge-
base. 

7.1.5 Research cycle 5: Benchmarking the proposed functional and methodological 
framework 

The aim of the fifth research cycle was to validate the theoretical efforts through bench-
marking against five commercial and academic modeling tools and languages. The key 
research questions in this research cycle were: 

• What are the aspects of comparison and indicators of appropriateness of CPS modeling 
tools and languages in benchmarking? 

• What are the advantages and disadvantages of the introduced modeling framework in 
pre-embodiment design of CPSs, in comparison with the modeling frameworks of the 
benchmarked systems? 

The research work included comparing the specificities of the modeling tools and their 
conceptual frameworks, as well as reasoning about their appropriateness in the context of 
benchmarking. The aspects of comparison and the indicators of appropriateness were 
chosen according to the characteristics of CPSs and the requirements of pre-embodiment 
design. The aspects of comparison have been detailed in a questionnaire which was 
presented to expert users of the benchmarked tools and languages. The answers to the 
questionnaire were processed by critical reasoning as well as by descriptive statistics. The 
following paragraphs discuss our takeaways from the fifth research cycle: 

20. The comparison of SMF-based modeling with other commercially and experimentally 
available modeling tools had to be performed on the framework level. 

Comparison of a proposed framework with that of an implemented tool is not theoretically 
possible, unless there is a comprehensive and detailed description of the underpinning 
assumptions and concepts. This was not the case in our context. Since the modeling 
framework proposed in this research is not fully implemented as SMF-TB, many of its 
functionalities cannot be measured explicitly. There were only limited amount of infor-
mation about the frameworks based on which the available modeling tools were imple-
mented. Therefore, we applied a conceptual reverse engineering strategy, and concluded 
about the possible underpinning theories and concept of the benchmarked systems based 
on their documented and observable structural and functional features. We used a litera-
ture study and an expert questionnaire for a multi-source information collection and, more 
importantly, for a cross validation of the results, in order to reduce the uncertainty caused 
by the reasoning. 



Chapter 7     | 265 

21. The benchmarking of the current CPS modeling tools has demonstrated differences in 
terms of their ability to fulfill the assumed requirements of CPS conceptualization and 
architecting. 

The defined requirements of pre-embodiment design of CPSs were grouped into five 
categories of comparison aspects and a relatively large number of appropriateness indica-
tors. The categories of aspects of benchmarking and for comparison of the modeling tools 
were (i) addressing heterogeneity of CPSs, (ii) addressing integrity of CPSs, (iii) addressing 
complexity of CPSs, (iv) addressing information comprehensiveness, and (v) addressing 
tool implementation. The comparison was evaluated based on the synthesized results of 
analyses of the literature and the responses to the questionnaire. The results revealed that 
the chosen modeling tools (i) work based on different principles, (ii) capture dissimilar sets 
of information, and (iii) formulate relations among components differently. Accordingly, 
appropriateness of the studied modeling tools for supporting pre-embodiment design of 
CPSs was identified. 

22. The analyses of the findings of the conducted comparison study, and the projection of 
the novelties of the SMF-based modeling framework onto the appropriateness indica-
tors showed the uniqueness of our proposed solution and the huge potentials it car-
ries. 

We specified a large set of appropriateness indicators in five overall aspects of benchmark-
ing. By objectively comparing the strong and weaker point of the benchmarked tools and 
languages with that of the proposed framework and computational solution, we intended 
to achieve a sound comparison and an objective image. The novelties introduced by the 
SMF-based modeling were assessed according to the same set of indicators. We could 
identify in which sense SMF-based modeling can go beyond the current state of the art, 
but also those points where it needs further attention and elaboration. In general, the 
novelties introduced by our framework makes a better fulfilment of the requirements 
possible. The novelties allow us arriving at a more-fledged modeling toolbox for pre-
embodiment design of CPSs. 

7.2 PERSONAL REFLECTIONS ON RESEARCH AND RESULTS 

This research started four years ago (in 2012) in a somewhat humble way. The initial target 
was determined as facilitating mass customization (MC) of cyber-physical consumer 
durables. For about a year, I performed deep exploration of the approaches of mass 
customization and regarding design principles. Moreover, characteristics of CPSs were 
extensively studied and causalities of mismatches of MC design principles with characteris-
tics of CPSs were investigated. The results showed a deep gap between the available MC 
design principles and the required ones. According to the planned research target, we had 
to derive new design principles that fulfill the requirement of designing customizable 
CPSs. At that moment, we realized that the real knowledge gap is actually is not concern-
ing the principles, but the computer-based tools that could support it in an application-
independent and efficient way. This recognition turned our attention to theoretical issues, 
computational methodology, modeling entities, information structures and constructs, 
and practical computer aided modeling processes. As a consequence, an ambitious deci-
sion was made, which increased my curiosity and devotion to this new issue of developing 
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a supporting tool for CPS designers, instead of supporting only designers of customizable 
CPSs. We believed that developing a successful modeling tool is possible if, and only if, the 
major characteristics of CPSs are taken into consideration with regards to pre-embodiment 
design, as well as the design thinking of CPS designers and architects. However, during the 
time of promotion research, I had to tackle a wide range of challenges and learn the 
relevant and needed bodies of knowledge of related disciplines such as software technol-
ogy, information engineering, computational Multiphysics, warehouse technologies, and 
ontology technologies, just to mention the most important ones. The line of my research 
has significantly deviated from the initial line already at the beginning. I do hope that the 
achievements in developing SMF-based modeling framework prove the worthiness of our 
decision. For us it showed what real research is all about. Doing, learning and thinking, and 
then thinking, learning and doing again. 

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

Since the 1980s feature-based modeling has been employed mostly in the context of 
designing mechanical and software parts using part-level features. The concept of feature-
technology is revived in our work and conveyed to the system-level feature-based design. 
The research about system-level feature is still in its infancy and a proliferating future is 
expected in this scientific context. The advantages of system-level feature in modeling 
complex systems are confirmed through our research, and we recommend it as a novel 
topic for future scientific efforts. 

Our research has introduced many merits of system-level feature-based modeling which 
cannot be used, tested, and validated until the full-fledged implementation of the devel-
oped modeling framework. We believe that the implementation of SMF-TB helps to reveal 
real advantages of SMF-based modeling, and shifts the current state of the modeling tools 
of complex system to a new level. The computational constructs created in our research is 
ready to be implemented by software tool programmers. The following research could be 
about practically implementation of the SMF-TB, evaluation of the results, providing 
concrete feedbacks and improving the concept for further functionalities. In addition, 
creation of ontological contents is the most critical research work that should be done 
towards implementing SMF-TB. Development of the information schema construct is 
performed by assuming the availability of the ontological contents in the relational tables. 
Researching on ontological contents and its implementation is suggested as a part of the 
research work towards SMF-TB realization. 

After implementation of the SMF-TB many further opportunities could be disclosed. 
Among them, we can consider different types of SMFs such as human manifestation 
feature (HMF) and environment manifestation feature (EMF), with similar information 
structure and complementary interfaces. Providing open source online libraries of SMFs is 
another opportunity. It means that the SMFs defined by one can be shared with others. It 
helps rapid growth of databases due to sharing outcome of knowledge engineering works. 
Another implementation opportunity is to work on coupling of the SMF-TB with other 
external tools in order to extend its functionality.  

SMFs can be used as means of interdisciplinary communication which opens a window for 
follow up researches. Step-wise definition of SMFs implies multiple level of concreteness in 
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formal definition of components. This potential characteristic makes SMFs suitable for 
being used as means of communication in multiple design phases, from conceptual 
ideation to concrete elaboration and detail design. In a complex system design project, 
usually, several engineering disciplines are involved in research, design, and development 
tasks; while there are various sequences and dependencies between their activities. Some 
of them use conceptual and ambiguous terminology, while others need some kind of fact 
numbers to work with. Interdisciplinary, multi-step and context-free nature of SMFs makes 
them suitable as a communication medium in this kind of situations. This is another 
ambitious research topic that could be elaborated as future research. 
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SUMMARY 

BACKGROUND 

The research reported in this thesis book has opened a new door towards modeling intricate 
technical systems. It focused on system-level feature-based architecting and modeling of cyber-
physical systems (CPSs) in the pre-embodiment phase of design. The challenges have been ad-
dressed ambitiously in the conducted research by providing the required underpinning theories, 
implementation methodologies, and processes, as well as a conceptual framework for the toolbox 
and a unique strategy of validation. In the theoretical realm, two remarkable theories have been 
developed. With regards to implementation, the main contribution is in development of the 
concept of warehousing, the procedures of knowledge engineering, and the new pre-embodiment 
design approach of CPSs. The developed framework was benchmarked against those of the 
available commercial and experimental system development tools. 

The main challenge of our research with regards to development of a supporting tool for architect-
ing/designing CPSs was to achieve and maintain a balance between a comprehensive system-level 
view and the consideration of the operational and architectural attributes and performance of the 
lower-level components. This issue is crucial in designing complex, integrated, and heterogeneous 
CPSs. According to our assumption, system-level consideration is unquestionably necessary for 
pre-embodiment design (conceptualization and configuration) of CPSs, while designing of the 
components can even be delegated to other experts. This also helps address the compositionality 
and composability of CPSs simultaneously. 

RESEARCH DOMAIN AND ADDRESSED RESEARCH PROBLEM 

The emergence of the concept of CPSs shifts the attention from component to system, from 
fraction to the whole, from efficiency to effectiveness, from means to goals, and from product to 
service. In this new paradigm, “design” implies system-level conceptualization, architecting, and 
configuration. In the future, a part of design will even be delegated to self-aware and self-adaptive 
CPSs for run-time execution. Presently, components are mostly considered as black boxes, and 
composability issues are the main challenges of the CPS designers. The discipline-oriented view 
had a dominant influence on developing conventional design and modeling tools. Consequently, 
the problem of system-level design of CPSs remained ill-solved - nevertheless it has been recog-
nized and emphasized that system-level design needs a holistic and interdisciplinary view.  

The available system design and modeling tools suffer from the lack of a parallel consideration of 
the innate details of components and the system as a whole, and ignore physicality of CPSs in 
interaction with other systems and the embedding operational environments. Though widely used 
for designing CPSs, these modeling tools are mostly based on logical, analytical, and mathematical 
formulation. In order to model CPSs they typically apply some sorts of abstraction and simplifica-
tion, which ignore a huge amount of attributes, constraints, and contracts. In fact, system designers 
are being pushed to formulate the relationship between components in an abstract level. Moreo-
ver, the available system-level modeling tools consider operations and architecture of a system as 
two separate aspects. Although this approach simplifies the inherent complexity of CPSs, ignoring 
mutual relations between architecture and operations is the side effect. 

In our research, we assumed that by targeting three main characteristics of CPS, namely complexi-
ty, heterogeneity, and integrity, a novel tool would be able to sufficiently support CPS designers. 
However, the common solutions of applying excessive abstraction and simplification, and neglect-
ing physicality of components should be avoided. Consequently, system-level feature-based 
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modeling of CPSs was chosen as the focus of our research. The required high-level semantic is 
supported by strong ontological resources. The theoretical fundamentals, the conceptual frame-
work and the computational methodological approach have all been elaborated. However, the 
development of the supporting ontology and fully-fledged implementation of the conceptual 
modeling toolbox were excluded in our research due to the time limitation. 

OVERALL RESEARCH APPROACH 

The research started with studying the state-of-the-art in the domain of CPS conceptualization and 
design supporting tools. The explorative studies in five domains resulted in obtaining sufficient 
insight about the knowledge gap and helped narrowing down the phenomenon to system-level 
feature-based modeling of CPSs. In the second research cycle, our investigations were centered on 
developing the required underpinning theories. As a result, based on integration and enhance-
ment of several classic theories, the mereo-operandi theory (MOT) was proposed to underpin our 
ideas and logical argumentation. It provided the required theoretical framework for development 
of the system manifestation feature (SMF) theory in the third research cycle. The SMF theory was 
meant as a complementary to MOT and explained how it could be methodologically applied. The 
SMF theory specified foundational information structures required for creation of the building 
blocks (named as SMFs) for system modeling. 

In the fourth research cycle, the required information structures, the methodology of implementa-
tion, the computational constructs, and the procedures of processing information have been 
created in order to move towards a computational implementation. Finally, the developed concep-
tual framework of our modeling toolbox was benchmarked against those of a number of leading 
commercial and experimental tools. The results revealed that there are gaps between the func-
tionalities provided by the available modeling tools and the requirements of pre-embodiment 
design of CPSs. Moreover, it has been evidenced that the novelties introduced by the proposed 
SMFs-based modeling framework in properly and effectively addresses the identified challenges. It 
has also been revealed that the proposed conceptual framework provides a higher potential in 
supporting multi-disciplinary pre-embodiment design of CPSs, and can be the basis of a 
knowledge-intensive smart system design application of the future. 

RESULTS AND NOVELTIES 

The conceptual, computational, and methodological elements of our SMFs-based modeling 
framework are comprehensively discussed in the thesis book. The following text briefly mentions 
the novelties of the proposed modeling framework from both computational application and 
implementation perspectives: 

N1 Imposing strictly physical view: The imposed physical view supports aggregation of all 
components (HW, SW and CW) without the need for applying abstraction. Subsequently, all 
parameters of lower level components directly determine and affect the features of the 
higher level components. 

N2 Enforced concurrent consideration of architecture and operation: It results in a simulta-
neous creation of both architectural and operational models of a system in interaction. This is 
in contrast with most of the logically- and mathematically-based modeling tools, which put 
emphasis on the functional aspects of components. 

N3 Amalgamating of architectural and operational aspects: All information sets that define 
relations among architectural and operational aspects are captured within SMFs. This results 
in a robust approach of modeling, in which the changes due to the operation of the compo-
nents are directly reflected on their architectural attributes, and vice versa.  
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N4 Using uniform information structures for heterogeneous components: The knowledge 
frames and accordingly the database schema for accommodating pieces of information are 
the same for all types of constituents. Consequently, the relations among them are being 
uniformly processed, and the various constituents are differentiated semantically, not struc-
turally. 

N5 Multi-level multi-granularity: It offers the possibility of moving from coarse-grained to fine-
grained elaboration in a system model, and vice versa. In the SMFs-based modeling frame-
work, SMFs have the same information structure on all aggregation levels. Accordingly, con-
tainment and connectivity relations are captured likewise on all levels, without applying ab-
straction and simplification. 

N6 Multi-aspects coupling among SMFs: Both containment and connectivity relations of SMFs 
are supported through interfaces of SMFs, neglecting types of components. Consequently, 
the integration is supported by several aspects of multiple coupling. The dynamic integrity is 
also captured through utilizing concept of spatiotemporal mereotopology. 

N7 Multi-stage model composition: In the proposed framework, building blocks of system 
models are not created in one go. Generating genotypes, deriving phenotypes, instantiation 
of phenotypes, and model composition are the stages that an SMF should go through to 
eventually end up in a model. As a result the manual information input is minimized by selec-
tion and mostly excluded in the conceptual design phase. 

N8 Multi-purpose system-level features: Trans-disciplinary fusion of knowledge, reasoning 
with higher level semantics, and harmonization of pre-embodiment design and computa-
tional methodologies are the multiple purposes that are fulfilled with SMFs. 

N9 Multiple application contexts: SMFs as semantically rich and self-contained system-level 
building blocks support both system-level conceptualization and system-level engineering 
(analyzing and optimization). They can also be used as means of communication among ex-
perts. SMFs are reusable and modifiable modeling entities that are suitable for various design 
and engineering approaches.  

N10 Multi-component warehouses: Warehouses of the SMF-based toolbox benefit from three 
interconnected components to support SMF creation and model composition. In this way, 
the tracks of model composition and modification can be captured. 

N11 Benefiting from active ontologies: Semantic-richness of the SMF-based toolbox is sup-
ported by active ontologies. Continuous updating of the ontological records is seen however 
necessary due to emergence of new technologies, materials, attributes, protocols, and so 
forth. Although, effort-intensiveness of this task can be considered as a drawback, the use-
fulness of the results cannot be disregarded. 

VALIDATION AND CONCLUSIONS 

The theoretical results of our research have been validated through benchmarking against five 
commercial and academic modelling tools and languages. The aspects of comparison were chosen 
according to the characteristics of CPSs and the requirements of pre-embodiment design. Since the 
modeling framework introduced by this research is not fully implemented as a prototype toolbox, 
many of its functionalities could not be measured definitely. Consequently, it was compared with 
the characteristics of the frameworks of the available modeling tools, which were derived by a kind 
of reversed engineering. To reduce the uncertainty caused by the reasoning, we used literature 
study and relied on the opinion of CPS modeling experts who participated in our survey. The 
comparison of strengths and weaknesses of the modeling tools and the analyses of the findings of 
the conducted study approved the uniqueness of the proposed solution, as well as its sufficiency to 
support pre-embodiment design of CPSs.  
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The analysis of the findings of our research confirmed the expectable advantages of using system-
level features in modeling complex systems. Putting together everything, our impression has been 
that though the research concerning system-level features is in general still in its infancy, a rapid 
and wholescale proliferation may be expected in the near future. Based on the findings, we propa-
gate this scientific phenomenon and knowledge exploitation context as a novel topic for future 
scientific efforts. Though our research has introduced and elaborated on many merits of system-
level feature-based modeling, it cannot be used, tested, and validated in practical application until 
a full-fledged implementation of the proposed modeling approach is available.  

 

PROPOSITIONS 

• In contrast with the abstractions applied by logic-oriented and analytical modeling 
methodologies, system manifestation features-based modeling is able to capture the 
physicality of cyber-physical systems (CPSs) and their tight interaction with the sur-
rounding physical world in the pre-embodiment design phase. Δ 

• For system-level modelling of CPSs, architecture aspects and operation aspects should 
be considered concurrently, together with their interrelations. Δ 

• While the architecture of CPSs can be decomposed hierarchically, the decomposition 
of their operations cannot be hierarchical. Δ 

• As computational building blocks of high level semantics, system manifestation 
features can encapsulate all pieces of information required for modelling and simula-
tion of the architecture and operation of CPSs. Δ 

• The growing number of Internet repositories, the popularity of social platforms, and 
the ease of network access to digital contents raise the feeling that the future of learn-
ing is searching. Δ 

• The current technological and social trends significantly change the relationship of 
individuals and communities to science. Δ 

• Using the available computational design tools for conceptualization of truly complex 
systems is similar to tightening up a bolt with a hammer. Δ 

• Overcoming complexity, integrity and heterogeneity challenges needs complex, 
integral and heterogeneous thinking. Δ 

• There is no common understanding about the essence of cyber-physical systems 
among CPS experts. Δ 

• The best' is a time-dependent notion - there comes 'a better' always. Δ 

These propositions are regarded as opposable and defendable, and have been approved 
as such by the supervisor prof. dr. Imre Horvath.  
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SAMENVATTING 

ACHTERGROND 

Het onderzoek in dit proefschrift biedt nieuwe benaderingen om ingewikkelde systemen te 
modelleren. Het richtte zich op architectuurbepaling en modelleren van cyberfysische systemen 
(CFS’en) op kenmerkniveau (feature level), in de pre-materialisatiefase van het ontwerpen. Door de 
benodigde onderbouwende theorieën, implementatiemethodologieën en processen voor de 
toolbox te verstrekken, vergezeld van een conceptueel kader en een unieke validatiestrategie, zijn 
de uitdagingen in het uitgevoerde onderzoek op ambitieuze wijze aangepakt. De theoretische 
bijdrage bestaat uit twee opmerkelijke theorieën. Wat de implementatie betreft bestaat de bel-
angrijkste bijdrage uit de ontwikkeling van het concept warehousing, kennistechnologie-
procedures, en een nieuwe pre-materialisatie-ontwerpaanpak voor CFS’en. Het ontwikkelde 
raamwerk is getoetst door vergelijking met bestaande op de markt verkrijgbare en experimentele 
systeem¬ontwikkelingstools. 

Wat de ontwikkeling van een ondersteuningsgereedschap voor architectuurbepaling en ontwerp 
van CFS’en betreft, was de voornaamste uitdaging in ons onderzoek het realiseren en handhaven 
van evenwicht tussen beschouwing op het niveau van enerzijds het gehele systeem en anderzijds 
dat van operationele en architecturale attributen van de deelcomponenten. Het gehele ontwerpen 
van complexe, geïntegreerde en heterogene CFS’en draait om deze kwestie. Waar het ontwerp van 
de componenten ook aan andere deskundigen kan worden overgelaten, zijn wij ervan uitgegaan 
dat beschouwing op systeemniveau in het pre-materialisatiestadium (conceptualisatie en configu-
ratie) van CFS-ontwerp onontbeerlijk is. Op die manier kan ook gelijktijdig rekening gehouden 
worden met met de compositionaliteit en samenstelbaarheid van CFS’en. 

ONDERZOEKSTERREIN EN AANGEPAKT ONDERZOEKSPROBLEEM  

De opkomst van het begrip CFS doet de aandacht verschuiven van component naar systeem, van 
deel naar geheel, van efficiëntie naar effectiviteit, van middel naar doel, en van product naar dienst. 
Onder dit nieuwe paradigma impliceert “ontwerpen” conceptualisatie, architectuurbepaling en 
configuratie op systeemniveau. In de toekomst zal een deel van het ontwerp zelfs in runtime 
worden uitbesteed aan CFS’en die zijn uitgerust met zelfbesef en –aanpassingsvermogen. Nu nog 
worden componenten vooral beschouwd als black boxes, en vormen samenstelbaar-
heidsproblemen de belangrijkste uitdaging voor CFS-ontwerpers. De disciplinegebonden be-
nadering heeft veel invloed gehad op de ontwikkeling van conventionele ontwerp -en modelleer-
tools. Bijgevolg is het probleem van CFS-ontwerp op systeemniveau maar deels opgelost – desal-
niettemin werd het onderkend en benadrukt dat voor ontwerp op systeemniveau een holistische 
en interdisciplinaire insteek nodig is. 

De beschikbare tools voor systeemontwerp en –modellering getuigen van een gebrek aan simul-
tane beschouwing van enerzijds ingewikkelde componentdetails en anderzijds het gehele sys-
teem, en zij negeren de fysische aard van CFS’en in de interactie met andere systemen en de 
operationele omgevingen waarin ze zijn ingebed. Hoewel ze alom gebruikt worden zijn deze tools 
te zeer gebaseerd op logische, analytische en wiskundige formulering. Voor het modelleren van 
CFS’en zijn dan bepaalde abstracties en simplificaties nodig, waarmee een enorme hoeveelheid 
attributen, restricties en verbanden verloren gaat. Eigenlijk worden systeemontwerpers zo ged-
wongen om relaties tussen de componenten op een abstract niveau te formuleren. Bovendien 
beschouwen modelleertools op systeemniveau de werking en de architectuur van het systeem als 
onderling gescheiden. Zo wordt de inherente complexiteit van CFS’en gereduceerd ten koste van 
de wederzijdse relaties tussen de architectuur en de werking. 
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In dit onderzoek hebben we aangenomen dat, door zich te richten op drie hoofdkenmerken van 
CFS’en namelijk complexiteit, heterogeniteit en compleetheid, een nieuwe tool in staat zou 
moeten zijn om CFS-ontwerpers toereikend te ondersteunen. Daarbij moet wel worden vermeden 
dat, zoals in de gebruikelijke aanpak, buitensporige abstractie en simplificatie worden afged-
wongen, en de fysische aard van componenten wordt genegeerd. Daarom is het modelleren van 
CFS’en op systeemniveau uitgaand van features gekozen als onderzoeksfocus. De benodigde 
semantiek op hoog abstractieniveau wordt ondersteund door middel van robuuste ontologische 
kennismiddelen. De theoretische fundamenten, het conceptuele raamwerk en de computationeel-
methodologische aanpak zijn alle volledig uitgewerkt, maar vanwege de beperkt beschikbare tijd 
zijn de ontwikkeling van de achterliggende ontologie en de volwaardige implementatie van de 
modelleertoolbox buiten beschouwing gelaten. 

ALGEHELE ONDERZOEKSAANPAK 

Het onderzoek is begonnen met het in kaart brengen van de state-of-the-art in CFS-conceptu-
alisatie en tools voor ontwerpondersteuning. Verkennende studies in vijf domeinen hebben 
voldoende inzicht opgeleverd in de kenniskloof en hebben zo geholpen om het fenomeen in te 
perken tot kenmerkgebaseerd modelleren van CFS’en op systeemniveau. In de tweede 
onderzoekscyclus richtten onze studies zich op het ontwikkelen van de benodigde onder-
bouwende theorieën. Daaruit kwam, op basis van integratie en verbetering van verscheidene 
klassieke theorieën, de mereo-operanditheorie (MOT) voort, die onze ideeën en logische argumen-
tatie moest onderbouwen. Deze verleende het benodigde theoretische kader om in de derde 
onderzoekscyclus de systeemmanifestatiefeatures(SMF)-theorie te ontwikkelen. De SMF-theorie is 
bedoeld als aanvulling op de MOT om te verklaren hoe deze methodologisch kon worden 
toegepast. De SMF-theorie specificeert de basisinformatiestructuren die nodig zijn om de 
bouwstenen voor systeemmodellering, die SMF’s genoemd worden, aan te maken. 

In de vierde onderzoekscyclus zijn de benodigde informatiestructuren, de implementatiemethod-
ologie, de computationele constructies, en de informatieverwerkingsprocedures vastgelegd, om 
de stap naar implementatie te kunnen maken. Als laatste is het ontwikkelde conceptuele raamwerk 
gebenchmarkt tegenover de conceptuele raamwerken van een aantal toonaangevende op de 
markt verkrijgbare en experimentele tools. De uitkomsten toonden hiaten aan tussen enerzijds de 
functionaliteiten geboden door de beschikbare modelleertools en anderzijds de eisen vanuit de 
pre-materialisatiefase van CFS-ontwerp. Bovendien is bewezen dat de noviteiten die het SMF-
gebaseerde modelleringskader biedt de geconstateerde uitdagingen deugdelijk en effectief 
aanpakken. Ook is aangetoond dat het voorgestelde conceptuele kader een groter potentieel biedt 
qua ondersteuning van multidisciplinair pre-materialisatie-CFS-ontwerp, en de basis kan vormen 
voor toekomstige kennisintensieve smart-system-ontwerpsoftware. 

N1 Voorschrijven van een strikt fysische beschouwingswijze: De voorgeschreven fysische 
beschouwingswijze ondersteunt de samenvoeging van alle componenten (hardware, soft-
ware en cyberware) zonder abstractie te vereisen. Bijgevolg bepalen alle parameters van 
componenten op laag niveau direct de kenmerken van de componenten op hogere 
niveaus. 

N2 Geforceerde gelijktijdige beschouwing van architectuur en werking resulteert in het 
simultaan ontstaan van zowel architecturale als operationele modellen van een interac-
terend systeem. Dit in tegenstelling tot de meeste logica- en wiskundegebaseerde model-
leertools die de functionele aspecten van componenten benadrukken.  

N3 Samensmelting van architecturale en operationele aspecten: Alle informatieverzamel-
ingen die relaties tussen architecturale en operationele aspecten vastleggen zijn ver-
tegenwoordigd in SMF’s. Zo ontstaat een robuuste modelleerbenadering waarin verander-
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ingen als gevolg van de werking van componenten direct weerslag hebben op hun archi-
tecturale eigenschappen en vice versa. 

N4 Gebruikmaking van uniforme informatiestructuren voor heterogene componenten: 
de kenniskaders en overeenkomstig het databaseschema om stukjes informatie onder te 
brengen zijn dezelfde voor alle soorten bestanddelen. Daardoor worden alle onderlinge 
relaties op uniforme wijze verwerkt, en de verscheidene bestanddelen worden niet struc-
tureel maar semantisch onderscheiden. 

N5 Meervoudige granulariteit over meerdere niveaus biedt de mogelijkheid om grofkor-
relige en fijnkorrelige uitwerking af te wisselen. In het SMF-gebaseerde modelleerraamwerk 
hebben SMF’s dezelfde informatiestructuur op alle aggregatieniveaus. Dienovereenkom-
stig worden omvattings- en verbindingsrelaties ook zo vastgelegd op alle niveaus zonder 
abstractie en vereenvoudiging toe te passen. 

N6 Multi-aspectkoppeling tussen SMF’s: Zowel omvattings- als verbindingsrelaties van 
SMF’s worden door interfaces van SMF’s ondersteund, waarbij componenttypes genegeerd 
worden. Zo wordt de integratie ondersteund door verscheidene aspecten van meervoudi-
ge koppeling. De dynamische integriteit wordt ook vastgelegd door het begrip spatiotem-
porele mereotopologie toe te passen. 

N7 Meertraps-modelsamenstelling: in het voorgestelde raamwerk worden bouwstenen niet 
in een keer aangemaakt. Het aanmaken van genotypen, het afleiden van fenotypen, het in-
stantiëren van fenotypen en modelsamenstelling zijn de stappen die een SMF moet onder-
gaan om uiteindelijk een model op te leveren. Bijgevolg wordt het handmatig moeten in-
voeren van informatie geminimaliseerd door selectie, en grotendeels uitgesloten in de 
conceptuele ontwerpfase. 

N8 Multipurpose features (kenmerken) op systeemniveau: Transdisciplinaire samensmelt-
ing van kennis, redeneren met semantiek op hoog niveau, en harmonisatie van pre-
materialisatieontwerp met computationele methodologieën vormen de meervoudige 
doelstellingen die door SMF’s gerealiseerd worden. 

N9 Veelvoud aan contexten qua toepassing: SMF’s als semantisch verrijkte onafhankelijke 
bouwstenen ondersteunen zowel conceptualisatie als engineering op systeemniveau (ana-
lyse en optimalisatie). Ze kunnen ook worden gebruikt als communicatiemiddel tussen ex-
perts. SMF’s vormen herbruikbare en modificeerbare modelleereenheden die geschikt zijn 
voor verscheidene ontwerp- en engineeringsbenaderingen. 

N10 Meer-componenten-depots: Depots (warehouses) van de SMF-gebaseerde toolbox 
profiteren van drie onderling verbonden componenten die het ontstaan van SMF’s en het 
componeren van modellen ondersteunen. Op die manier kunnen de sporen van mod-
elsamenstelling en –modificatie worden vastgelegd  

N11 Profiteren van actieve ontologieën: de rijke semantiek van de SMF-gebaseerde toolbox 
wordt ondersteund door actieve ontologieën. De vastgelegde ontologische gegevens 
moeten echter voortdurend worden bijgewerkt in verband met de opkomst van nieuwe 
technologieën, materialen, protocollen etc. Hoewel de arbeidsintensiviteit van die taak als 
een nadeel kan worden opgevat moet de bruikbaarheid van de resultaten niet worden 
onderschat. 

VALIDATIE EN CONCLUSIES 

De theoretische resultaten van dit onderzoek zijn gevalideerd d.m.v. benchmarking in vergelijk 
met vijf op de markt verkrijgbare en in de academische wereld voorgestelde modellertools en –
talen. De vergelijkingsaspecten zijn gekozen met het oog op de kenmerken van CFS’en en de eisen 
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vanuit het pre-materialiserend ontwerpen. Omdat het voorgestelde modelleerraamwerk nog niet 
als toolbox-prototype geïmplementeerd is, konden veel functionaliteiten niet concreet getoetst 
worden. Daarom is het vergeleken op basis van karakteristieken, die van de modelleerraamwerken 
van beschikbare tools zijn afgeleid d.m.v. een soort reverse engineering. Om de daarmee geïntro-
duceerde onzekerheid te reduceren hebben we een literatuurstudie gedaan en zijn we uitgegaan 
van de oordelen van CFS-modelleringsdeskundigen aan wie we een enquête hebben voorgelegd. 
De vergelijking van sterktes en zwaktes van de modellertools en analyse van de uitkomsten van het 
onderzoek bewezen zowel de uniekheid van de voorgestelde oplossing als haar geschiktheid om 
pre-materialisatieontwerp van CFS’en te ondersteunen 

Analyse van de resultaten van het onderzoek bevestigden de verwachtbare voordelen van het 
gebruik van kenmerken op systeemniveau bij het modelleren van complexe systemen. Alles bij 
elkaar beschouwend is onze indruk dat, hoewel ontwerp naar kenmerken op systeemniveau nu 
nog in zijn kinderschoenen staat, er in de nabije toekomst een snelle uitbreiding naar toepassing 
op volle schaal kan worden verwacht. Op basis van de uitkomsten willen we dit wetenschappelijke 
fenomeen en deze context van kennisexploitatie naar voren brengen als een onderwerp van 
toekomstig vernieuwend wetenschappelijk onderzoek. Hoewel het onderzoek vele voordelen van 
kenmerkgebaseerd ontwerpen op systeemniveau heeft geïntroduceerd en uitgewerkt kan het nog 
niet in de praktijk worden gebruikt, getest en gevalideerd zo lang er nog geen volstandige imple-
mentatie van de voorgestelde modelleerbenadering beschikbaar is. 

STELLINGEN 

• In tegenstelling door logica-gerichte en analytische modelleertools die abstracties hanteren, 
kan systeemmanifestatiefeatures-gebaseerd modelleren de fysische aard van cyber-fysische 
systemen (CFS’en) en de nauwe interactie met de fysieke omgeving bevatten. Δ 

• Voor het modelleren van CFS’en op systeemniveau moeten architectuur- en werkingsas-
pecten, alsmede de verwevenheid daarvan, gelijktijdig beschouwd worden. Δ 

• De architectuur van CFS’en kan hiërarchisch worden ontleed maar hun werking niet. Δ 

• Als computationële bouwstenen van semantiek op hoog abstractieniveau kunnen systeem-
manifestatie-features alle brokken informatie omvatten die nodig zijn voor het modelleren 
van simuleren van de architectuur en de werking van CFS’en. Δ 

• Het toenemende aantal internetarchieven, de populariteit van sociale netwerken en het 
gemak van netwerktoegang tot digitale content doen het gevoel opkomen dat zoeken de 
toekomst van leren is. Δ 

• De huidige technologische en sociale trends veranderen de verhouding van individuen en 
gemeenschappen tot de wetenschap. Δ 

• Het gebruiken van de beschikbare computationële ontwerptools voor het conceptualiseren 
van waarlijk complexe systemen is vergelijkbaar met het gebruik van een hamer om een bout 
aan te draaien. Δ 

• Het overwinnen van complexiteits-, integriteits- en heterogeniteitsuitdagingen behoeft 
complex, integraal en heterogeen denken. Δ 

• Er bestaat onder CFS-deskundigen geen overeenstemming omtrent de essentie van cyber-
fysische systemen. Δ 

• ‘Het beste’ is een tijdsafhankelijk begrip. Er komt altijd een ‘beter.‘ Δ 

Deze stellingen worden opponeerbaar en verdedigbaar geacht en als zodanig goedgekeurd door 
de promotor, prof. dr. Imre Horváth. 
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Page 9: Q6.1, Q6.2, and Q6.3 
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APPENDIX 2: Glossary 

 

Below, the most important terms used as terminus technicus in this thesis are listed and clarified. 
They may slightly or largely deviate from other interpretations that can be found in the related 
literature and may only be valid in the particular context they are used in the thesis and may not be 
well understood outside of it. 

Aggregation: The term refers to a structural relationship that specifies that a compound thing 
constitutes of simple things and represents a "has-a" relationship. 

Architectural domain: In our terminology, domain refers to an architectural area of a component 
in a system that performs a particular operation. A domain could have some ‘entities’. An en-
tity can be considered as a domain for lower lever entities. 

Architecture: A general term to describe the logical and physical structure (components, their 
relations, the properties of both components and relations, and a set of rules and methods) 
that in turn describe the functionality, organization, and implementation of a non-trivial sys-
tem. Architectures are unifying and coherent. 

Artifact-service combination: When the services provided by an artifact are more important than 
the artifact itself, the outcome is not referred to as (traditional) product, but as artifact-
service combination (e.g. physical hard drive vs. cloud storage). 

Chunking: The term refers to and describes how engineering, like nature, constructs complex 
systems from the bottom up with building blocks (systems) that have proven themselves 
able to work on their own. 

Closed system: The term refers to an isolated system that has no interaction with its external 
environment. The outputs of a closed system are knowable only thorough the outputs which 
are not dependent on the system being a closed or open system. Closed systems without 
any output are knowable only from within. 

Complex system: System characterized by manifestation of complexity as opposed to simple, 
linear, and equilibrium-based systems. The characteristics of this kind of system are not re-
ducible to one level of description and cannot be described by a single rule. Complex sys-
tems typically exhibit properties that emerge from the interaction of their parts and which 
cannot be predicted from the properties of the parts. 

Complexity: A systemic characteristic that expresses having a large number of densely connected 
parts and multiple levels of embeddedness and entanglement. It is also description of the 
complex phenomena demonstrated in systems characterized by nonlinear interactive com-
ponents, emergent phenomena, continuous and discontinuous change, and unpredictable 
outcomes. 

Complicatedness: A systemic characteristic that denotes a situation or event that is not easy to 
understand due to the high cardinality of the actors, influences and interactions, regardless 
of its degree of complexity. 

Component: A definitive, uniquely identifiable part, subassembly, assembly, subsystem or system 
that (i) is required to complete or finish an activity, item, or job, (ii) performs a distinctive and 
necessary function in the operation of a system, and (iii) is intended to be included as a part 
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of a finished, packaged, and labeled item. A component is typically aggregated-ware, which 
is a combination of hardware, software, and cyberware constituents. Components are usually 
removable in one piece and are considered indivisible for a particular purpose or use. 

Composability: A characteristic of a system that its overall properties and operations can be 
synthesized as the sum of the properties and operations of its particular components that 
could be composed in infinite conditions. In fact, this is a bottom-up approach of creating a 
system by aggregating (usually) off-the-shelf components. 

Compositionality: A characteristic of a system that its overall properties and operations cannot be 
synthesized as the sum of the properties and operations of its particular components. 

Computational construct: Formal structures for the processing of SMFs containing a structured 
set of interrelated parameters, constraints, values, and semantic annotations. 

Constituents: Units of a system which are homogeneous in nature, e.g. software, hardware or 
cyberware, and not any possible combination of them. If a domain of a system is made of a 
combination of hardware and software, it is not a constituent. 

Constructs: The term refers to abstraction-based structural formations that are used to describe, 
represent, and examine phenomenon of theoretical or procedural interest. In the context of 
digital computation, constructs encapsulate variables and their relationships to implement 
particular computational concepts and may capture input, outcome, structural, transforma-
tional, logical, knowledge, storage, interaction, interoperation, etc. concepts. These infor-
mation constructs can be static and dynamic, and determine the structure of a computation-
al or informational model. 

Decentralized problem solving: There is no one central components in charge of making deci-
sion for all components of the CPS. Instead, there are many components (fully or partially) in 
charge of making decision for their local problem, as well as participating in providing the 
overall operation of a CPS. 

Domain: Logical and/or spatial extension and a form of physical manifestation of a component, 
elements of a component, or aggregation of components, which performs a particular oper-
ation in a system. A domain may be monolithic or composed of some ‘entities’. 

Environment: The whole of things, situations and context within which a system exists. It is 
composed of all things that are external to the system, and it includes everything that may 
affect the system in a given operation mode/state or at a moment/period in time, and may 
be affected by it at any given time. 

Function: This term refers to the changes produced by any component (or subsystem and system) 
that performs the function, without considering the architectural domain that performs it. It 
is captured in the logical-linguistic space, rather than in the physical (spatiotemporal) space, 
and contrasts the notion of ‘operation’ that can only be considered together with the per-
former architectural domain. 

Genotype: The term refers to the result of the first stage of SMF creation. Genotypes are differenti-
ated by their different structural organization, which implies different and unique architec-
tural and operational elements, parameters and values. 

Heterarchy: An ordering of the components of a system in which there is no single top element, 
and in which the element that is dominant at a given time depends on the total situation. 
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Hierarchy: A vertical arrangement of entities (components, subsystems and systems), usually 
ordered from the top downwards rather than from the bottom upwards. The term is often 
used in contrast to heterarchy. 

Holarchy: The term describes system behavior that is partly a function of individual nature and 
partly a function of the nature of the embedding system, generally operating in a bottom 
upwards fashion. 

Information content: The entailment of signals, data and data structures that are (i) accurate and 
timely, (ii) specific and organized for a purpose, (iii) presented within a context that gives it 
meaning and relevance, and (iv) can lead to an increase in understanding and decrease in 
uncertainty. 

Information schema constructs: computational concepts and entities to underpin the program-
ming of a specific system manifestation feature orientated information management and 
composing system models. 

Information theory: Basic data representation, processing, and communication theory that 
applies to the technical processes of capturing, formatting, encoding, transforming, com-
municating, and storing data and data/information structures. 

Information: The term refers to the meaning of data and signals. In a technical sense, information 
referred to the bits of a message, as opposed to "noise" in a communication channel. Infor-
mation also means the bits of data that are processed by the computer as information pro-
cessor. 

Instance: The term refers to the result of the final stage of SMF creation, when SMF phenotypes are 
coupled with other SMF phenotypes in the modeling space, and the interface, structural and 
operational parameters of the concerned phenotypes are jointly evaluated. 

Interface of SMF: It forms a part of the SMF modeling building blocks and specifies several opera-
tional and architectural parameters and constraints to facilitate interoperation. (To couple 
SMFs, all constraints and protocols specified in their interfaces should be satisfied). The main 
interface specifications on the operation side are input and output ‘streams’, and the main 
interface specifications on the architecture side are ‘contracts’. 

Knowledge intensiveness: Ability of a system to gather information from several sources (e.g. 
knowledge bases, sensors, reasoning, learning, and peers) and to reason and make decisions 
based on it. 

Knowledge structure: The term refers to various basic schemes under which knowledge may be 
organized: (i) Declarative knowledge structure (describes how and why the things work the 
way they do; (ii) Procedural knowledge structure (details steps or activities required to per-
form a task or job); and (iii) Conceptual knowledge structure (explains how and why a partic-
ular problem may get solved). 

Level of aggregation: The term refers to the fact that, in a physical view, components can be 
aggregated both architecturally and operationally on various system levels to create higher 
level components. The same is true for operations. 

Linear system: The term is applied to characterize any system in which the cause and effect 
relation shows a linearly proportional character, i.e. the change of values of the operational 
variables can be represented as a series of points suggesting a straight line on a coordinate 
plane. In a linear system, the components are isolated and are non-interactive. 
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Manifestation feature: The set and composition of observable characteristics of a specific system 
that could be manipulated by designers, unless it violates overall paradigmatic system fea-
tures. 

Mereology: The term refers to the formal theory of parts and associated concepts developed by 
Leśniewski. It literally means “science or theory of parts”. Mereology captures how physical 
and conceptual parts relate and what it means for a part to be related to the whole and other 
parts. 

Method: An established, habitual, logical, or prescribed practice or systematic route of achieving 
certain ends with accuracy and efficiency, usually in an ordered sequence of fixed steps. A 
method includes problem and task related techniques. 

Methodology: The term refers to a system of broad principles or rules that support the achieve-
ment of complex objectives within the scope of a particular discipline. A methodology is un-
derpinned by one or more explanatory theories, and provides definitive or alternative proce-
dures, a set of methods, a pool of instruments, and quality criteria. Unlike an algorithm, a 
methodology is a set means and practices, rather than a comprehensive formula. 

Modus-operandi:  The term refers to the engineering theory that claims that a particular function-
ality can be realized by multiple alternative manifestations, which are based on different first 
principles or combinations of them. According to this theory, an operation can be delivered 
by an architectural domain that may work based on different physical and/or computational 
phenomena, and may have different morphologies and materializations. 

Non-planned functional interaction: Ability of a system to interact with its environment, other 
components and technical systems via non-predefined or even unpredicted connections. 

Open system: Open systems are those that exhibit the characteristics of openness and maintain 
their state and operation while their architecture and operation are (dynamically) changing. 
Openness is a form of organization of a system as well as a state and characteristics of that 
state in which a system continuously interacts with its environment and with other systems. 

Operation: The term refers to a particular action (or a chain of actions) performed by a given 
architectural domain. The performer domain may be actual or imaginary. (Operations are de-
fined in relation to particular components, while functions are defined as abstract way of op-
erating). 

Paradigmatic feature: This kind of features makes it possible to identify a category of systems and 
a set of characteristics of a category of systems that differentiates it from other comparable 
system categories. Paradigmatic features imply a set and arrangement of manifestation fea-
tures. 

Phenotype: The term refers to the result of the second stage of SMF creation. Phenotypes are 
derived from genotypes by specification of parameters and the range of values for them. In a 
phenotype, all specifications and constraints of its components and operations are defined.  

Pre-embodiment design phase: The term indicates a phase, which is also called conceptual 
design in product development context, and in which a general concept of a product and 
service combination is delivered as a result. In software engineering, this phase called soft-
ware configuration. In the context of this thesis, pre-embodiment design is the phase in 
which a heterogeneous system as a whole is being designed, before delegating the task of 
component design to the specific experts. 
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Procedure: A fixed, non-repetitive but repeatable step-by-step sequence of activities or course of 
action (with definite start and end points) that must be followed in the same order to cor-
rectly perform an operation. In the context of the thesis, the term identifies a composition of 
elementary operations of a system, which is specified as a self-contained unit of operation. 
The specification of procedures includes information about the dependencies of operations 
as well as the conditions and time stamps. 

Reductionism: One kind of scientific orientation that seeks to understand phenomena by breaking 
them down into their smallest possible parts (a process known as analytic reductionism), or 
by conflating them conversely to a one-dimensional totality (a process known as holistic re-
ductionism). 

Smart products: The term refers to a wide group of products (e.g. smart phones) having a level of 
smartness due to their computational processing units and programmed algorithms or, re-
cently, non-preprogrammed reasoning mechanisms. They could reason based on the col-
lected information and decide to perform predicted functions accordingly. 

Structure: The term refers to a construction or framework of identifiable elements and has defined 
boundaries within which (i) each element is physically or functionally connected to the other 
elements, and (ii) the elements themselves and their interrelationships are taken to be either 
fixed (permanent) or changing only occasionally or slowly. 

System properties: All systems: (i) have inputs, outputs and feedback mechanisms, (ii) maintain an 
internal steady-state (called homeostasis) despite a changing external environment, (iii) dis-
play properties that are different than the whole (called emergent properties) but are not 
possessed by any of the individual elements, and (iv) have boundaries that are usually de-
fined by the system observer. 

System: The term indicates a purposeful organized structure that consists of interrelated and 
interdependent elements (components, entities, factors, members, parts etc.) and set of op-
erations (which continually influence one another either directly or indirectly). 

Topology: In mathematics, the term concerns the theory of continuous spaces that can be gener-
ated in a combinatorial manner. In its most abstract form, topology implies ontological laws 
pertaining to the boundaries and interiors of wholes and to relations of contact and con-
nectedness. In its concrete form, topology handles structural relationships composed by link-
ing discrete entities of continuous spaces. 

Warehouse: In the context of the SMFs-based modeling tool, a warehouse is a composed of three 
parts (i) a database which includes several relational tables for storing the chunks of infor-
mation, (ii) database management system, which is in charge of storing, removing, modify-
ing pieces of information in the relational tables, and (iii) a meta-level knowledge-base.  
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