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Summary

Radar-tracking of low-observable targets such as drones suffers from low detection perfor-

mance. In these type of applications, it is desirable to avoid data thresholding in order to

preserve the weak target signal in the raw sensor data. This thesis considers the Multi-

ple Object Tracking (MOT) problem in the context of radar Track-before-Detect (TrBD)

processing, where the raw radar data is fed into the filtering process without previous

compression into a finite set of detection/plots.

Despite its inherent advantages, TrBD processing is in slow development. This is

because most mathematical machinery developed over many decades for traditional Detect-

before-track (DBT) processing cannot be transferred. Some approaches to the TrBD MOT

problem manage to formulate rigorously the Bayesian state estimation problem for un-

known and time varying number of targets. However, these solutions suffer from degraded

estimation performance when considering the closely-spaced target scenarios targeted by

this thesis. This type of degradation is showcased in chapter 2 and can be traced back to

the lack of solutions for characterizing labeling uncertainty in the context of TrBD.

In traditional DBT context, Data Association (DA) techniques solve the pair-matching

problem between plots and labels, which is a problem of probabilistic nature tackled in

a pre-filtering stage. As plots do not even exist in TrBD, the problem of characterizing

labeling uncertainty considered in this thesis can be described as the TrBD counterpart of

the DA problem.

The labeling problem is tackled in this thesis at different levels. Chapter 3 derives a

method to reduce labeling uncertainty by exploiting interacting target dynamics, which are

commonly observed in closely-spaced target scenarios. In the same chapter, a contribution

to the situational-awareness abstraction level is also provided. In particular, a Bayesian

algorithm capable of inferring anomalous target-interacting behavior in the surveillance

area is provided.

The remainder of the thesis places the focal point on DA-free characterization of

labeling uncertainty. This problem is considered by assuming the worst-case scenario

where the TrBD measurements do not carry any labeling information. This assumption

does not preclude the incorporation of methods for reduction of labeling uncertainty in

practical applications. For instance, micro-Doppler signature-based classification methods,

other methods such as the one provided in chapter 3, or labeling solutions based on third

party systems such as interrogators can be integrated with the proposed solutions in a

Bayesian model-based manner.

Chapter 4 provides a sensible performance evaluation method suited for assessing the

quality of track-formation by an arbitrary DA-free tracking solution. Examples of these

solutions will be proposed in chapters 5, 6 and 7. It is a recurrent focus along these chapters

to deal with the underlying problem of decomposing the Bayes posterior, as it is in this

decomposition where the information about labeling resides. In order to evaluate the

quality of the proposed DA-free decompositions, chapter 4 provides a particle filtering
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algorithm able to calculate analytical references for evaluation of labeled tracks and labeling

certainty estimates.

Chapters 5, 6 and 7 aim at inferring DA-free decompositions relevant for labeling

uncertainty characterization. The method presented in chapter 5 derives an implementa-

tion of the Unique Decomposition (UD) theory by Blom and Bloem for non-linear and/or

non-Gaussian (non-LG) systems. This implementation is used to tackle the labeling prob-

lem in TrBD by considering label-permutation-invariance characteristics of the posterior

multitarget density.

The method developed in chapters 6 and 7 uses a novel approach coined as the Cross

Modeling Tracker (CMT). Its novelty lies in decomposing the joint multi-object posterior

density by means of hypothesizing crosses between objects. The notion of cross-between-

objects is firstly defined in the low dimensional case based on physical interpretation, then

an analytical generalization is derived for arbitrarily high dimensional spaces, were the

definition of cross-between-objects has no physical interpretation.

Chapter 7 starts by providing numerical results on the estimation performance of

the UD-based vs. the CMT algorithms. Both approaches provide comparable results in

terms of track estimation and labeling uncertainty characterization when the targets are

not extremely close to each other. The advantage of applying the UD-based solution is

that approximation artifacts are prevented by design, allowing stable estimation with less

amount of particles than the CMT.

The CMT outperforms the UD-based algorithmwhen tracking extremely closely-spaced

targets, especially in cases where the multitarget density becomes unimodal. In spite of

the CMT performing better, chapter 7 proves analytically that the CMT does not provide

exact statistics of interest for track-formation, and illustrates how the CMT approximations

degrade estimation performance for unresolved targets. Chapter 7 provides an optimized

CMT algorithm based on analytically founded observations, which manages to mitigate

the degradation due to the approximations compared to the original CMT algorithm.

The main advantage of the CMT is its wider applicability in arbitrarily high dimensional

cases. This is a current limitation for the UD theory, which has no existent generalization

for joint densities with more than two targets. The CMT can be considered as the first step

towards the TrBD counterpart of DBT Multiple Hypotheses Tracking (MHT).
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Samenvatting

Het door middel van radar volgen van slecht observeerbare doelen zoals drones wordt

gehinderd door verminderde kwaliteit van detectie. Ten einde het zwakke signaal in de

ruwe sensor data te behouden, is het in dit soort toepassingen wenselijk om het drempelen

van data te voorkomen. Dit proefschrift behandelt Multiple Object Tracking (MOT) in

de context van radar Track-before-Detect (TrBD), waarbij het filter proces gevoed wordt

met de ruwe radar data, zonder voorafgaande compressie tot een eindige verzameling van

detecties/plots.

Ondanks alle inherente voordelen, gaat de ontwikkeling van TrBD processing langzaam.

Dat komt, omdat de meeste wiskundige technieken die ontwikkeld zijn gedurende vele

tientallen jaren voor traditionele Detect-before-track (DBT) processing, niet overgenomen

kunnenworden. Voor sommige oplossingsrichtingen voor het TrBDMOT probleem lukt het

om het Bayesiaanse toestandsschattingsprobleem strikt te formuleren voor een onbekend

en variabel aantal doelen. Echter, de schattingskwaliteit van deze oplossingen vermindert

wanneer closely-spaced target scenarios
´
, waar dit proefschrift zich op richt, in beschouwing

worden genomen. Dit soort degradatie wordt geillustreerd in hoofdstuk 2 en kan herleid

worden naar het ontbreken van oplossingen voor het karakteriseren van de onzekerheid in

de labeling in de TrBD context.

In de traditionele DBT context lossen Data Associatie (DA) technieken het probleem

van het bij elkaar passen van plots met labels op, hetgeen een probleem van kansrekenings-

technische aard is dat afgehandeld wordt in een pre-filtering stap. Omdat plots niet bestaan

in TrBD, kan het probleem van het karakteriseren van de onzekerheid dat beschouwd wordt

in dit proefschrift, beschreven worden als de TrBD tegenhanger van het DA probleem.

In dit proefschrift wordt het probleem van labeling op meerdere niveaus aangepakt.

Hoofdstuk 3 leidt een methode voor het reduceren van labelingonzekerheid af, door ge-

bruik te maken van onderling samenhangende doelsdynamica, hetgeen vaak voorkomt in

closely-spaced scenarios
´
. In hetzelfde hoofdstuk wordt een bijdrage geleverd aan het ab-

stractieniveau van situational awareness. In het bijzonder wordt een Bayesiaans algoritme

gepresenteerd dat in staat is om abnormaal onderling doelsgedrag te onderkennen.

Het vervolg van het proefschrift focusseert op de DA-vrije karakterisering van labeling-

onzekerheid. Dit probleem wordt beschouwd onder de aanname van het worst-case sce-

nario, waarbij de TrBD metingen geen enkele informatie ten aanzien van de labeling

bevatten. Deze aanname sluit het gebruik van methoden voor het reduceren van labeling

uncertainty in praktische gevallen niet uit. Zo kunnen bijvoorbeeld op micro-Doppler

signatuur gebaseerde classificatie methoden, zoals die gegeven in hoofdstuk 3, of labeling

oplossingen gebaseerd op third party systemen, waaronder zogeheten interrogators, op

een Bayesiaanse model gebaseerde wijze geintegreerd worden.

Hoofdstuk 4 verschaft een verstandige evaluatiemethode die geschikt is voor het beoor-

delen van de kwaliteit van track formatie van een willekeurige DA-vrije tracking oplossing.

Voorbeelden van dergelijke oplossingen worden voorgesteld in de hoofdstukken 5, 6 en
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7. De terugkerende focus in deze hoofdstukken is hoe om te gaan met het onderliggende

probleem van de decompositie van de Bayesiaanse a posteriori kansdichtheid, omdat in

deze kansdichtheid de informatie over de labeling aanwezig is. Om de kwaliteit van de

voorgestelde DA-vrije decomposities te beoordelen, verschaft hoofdstuk 4 een particle fil-

tering algoritme dat is staat is om analytische referentie getallen te berekenen ten behoeve

van de evaluatie van de gelabelde tracks en de schattingen van de labelingonzekerheid.

Hofdstukken 5, 6 en 7 richten zich op DA-vrije decomposities die relevant zijn voor het

karakteriseren van labelingonzekerheid. Demethode in hoofdstuk 5 leidt een implementatie

af van de Unique Decomposition (UD) theorie van Blom en Bloem voor niet lineaire en/of

niet-Gaussische (non-LG) systemen. Deze implementatie wordt gebruikt om labelling in

TrBD aan te pakken door middel van het beschouwen van label-permutatie-invariante

karakteristieken van de a posteriori multitarget kansdichtheid.

De methode die ontwikkeld wordt in hoofdstukken 6 en 7, gebruikt een nieuwemethode

die de naam Cross Modeling Tracker (CMT) gekregen heeft. De nieuwheidswaarde zit in

de decompositie van de gezamenlijke multi-object a posteriori kansdichtheid door middel

van het veronderstellen van het kruisen van objecten. Het begrip van een kruising tussen

objecten wordt eerst gedefinieerd in een laag dimensionale situatie die gebaseerd is op een

fysische interpretatie, waarna een analytische generalisatie wordt afgeleid voor arbitrair

hoog dimensionale ruimtes, waarbij de definitie van een kruising tussen objecten geen

fysische betekenis heeft.

Hoofdstuk 7 begint met het verschaffen van numerieke resultaten van de schattings-

prestatie van het UD-gebaseerde algoritme tegenover het CMT-algoritme. Zolang de doelen

niet extreem dicht bij elkaar zijn, leveren beide oplossingen vergelijkbare resultaten op in

termen van onzekerheden in de doelsschatting en de labeling. Het voordeel van het gebruik

van de UD-gebaseerde oplossing is dat benaderingsfouten door het ontwerp voorkomen

worden, hetgeen een stabiele schatting mogelijk maakt met minder particles dan met CMT.

In het geval van doelen die extreem dicht bij elkaar zitten, presteert de CMT-methode

beter dan het UD-gebaseerde algoritme, vooral in die gevallen waarbij de multitarget

kansdichtheid unimodaal wordt. Desondanks bewijst hoofdstuk 7 analytisch dat de CMT

geen exacte statistieken levert ten aanzien van het formeren van tracks en illustreert

hoe de benaderingen in de CMT de schattingsprestatie voor niet geresolveerde doelen

verminderen. Hoofdstuk 7 verschaft een geoptimaliseerd CMT algoritme, dat is gebaseerd

op analytisch gefundeerde bevindingen, dat er in slaagt om het effect van de benaderingen

te verminderen vergeleken met het originele CMT algoritme.

Het belangrijkste voordeel van de CMT is zijn bredere toepassing in willekeurig hoog

dimensionale situaties. Dit is een huidige beperking van de UD-theorie, waarvoor nog geen

generalisatie voor gezamenlijke kansdichtheden voor meer dan twee doelen beschikbaar is.

De CMT kan beschouwd worden als de eerste stap naar de TrDB tegenhanger van de DBT

Multiple Hypotheses Tracking (MHT).
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T
he recent rise of Unmanned Aerial Vehicle (UAV) development has enabled newmilitary

strategies. Traditional plot-based tracking algorithms are not optimal for tracking

these low-observable targets. This is because low-observable target signals often do not

exceed the detection threshold and do not produce plots. In these cases, it is desirable to

avoid thresholding so as to preserve the weak signal information in the raw sensor data [2].

Nevertheless, the consideration of point measurements commonly referred to as “plots”, is

still imperative nowadays for the large majority of state-of-art tracking algorithms. This

also applies for the approaches based on the relatively recent application of Finite-Set

Statistics (FISST) to Multiple Object Tracking (MOT) [3].

Track-before-Detect (TrBD) processing tackles the MOT problem by incorporating

non-thresholded data (also called radar video), rather than plots, into the tracking algorithm.

Therefore, TrBD processing of radar data has the potential to enhance the performance

of counter-UAV defense systems when tracking low-observable targets. In the context of

radar systems, non-thresholded data sets are for instance range-Doppler or range-azimuth

maps. Some solutions exist for the specific TrBD MOT problem, such as the ones presented

in [4], [5], [6] and more recently in [7]. However, these solutions lack labeling uncertainty

characterization, resulting in degraded performance when tackling closely-spaced targets.

1.1 Motivation

Labeling uncertainty characterization, which is traditionally realized by Data Association

(DA) techniques in Detect-before-track (DBT) approaches, is not trivial in TrBD due to

the absence of detection/plots. The inherent advantages of TrBD tracking for tackling

low-observable target scenarios, motivate this thesis to address DA-free characterization

of labeling uncertainty. This is the major motivation of this thesis and the one producing

most thesis results.

Closely-spaced targets are required to perform coordinated maneuvering in order to

become and remain closely spaced. Most existing techniques for tracking in scenarios

involving closely-spaced targets assume independent motion of the various targets. This is

an additional motivation which triggers the study on interacting motion modeling and its

advantages when incorporated in the tracking algorithms.

In complex surveillance scenarios, the transformation of tracking results into relevant

situational awareness is not trivial for a human operator. For this reason, an additional

level of abstraction is incorporated in advanced software radar architectures. This layer of

abstraction operates at semantic level, providing meaningful interpretation of situational

awareness. Anomaly detection is one example relevant in coastal surveillance, where for

instance, the smuggling of goods is a major concern. This motivates the thesis to study

how estimation of target interactions may aid at detecting such type of malicious target

behavior. The interpretation of situational awareness has the potential to provide early

warnings, which would otherwise escape from visual inspection of the tracks.
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1.2 Historical MOT interest VS relevance of new
MOT problems

MOT is one of the major problems addressed in the Information Fusion community. MOT

refers to the problem of jointly estimating the presence and states or trajectories of objects

based on noisy measurements from sensors such as radar or camera. MOT finds its

applications in both military and civilian contexts. To name a few societal applications,

MOT solutions are an essential component in radar area surveillance and play a key role

in autonomous navigation.

In the context of MOT for autonomous navigation, optical systems such as LIDAR

and camera have been used due to their ability to produce high quality data under fa-

vorable weather and lighting conditions. However, safety demands in self-driving in-

dustry point to MOT solutions based on radar as a non-replaceable technology due to

its robustness against non-favorable conditions [8]. Self-driving demands encourage the

development of radar-based MOT solutions not only for tracking but also for radar plat-

form self-localization [9]. Lower levels of automation based on radar MOT solutions are

present in standard commercial-off-the-shelf products. For instance, radar-based Adaptive

Cruise Control (ACC) for assistance to navigation [10] has become increasingly popular in

mass-produced cars over the last decade.

The long lasting interest in radar-based MOT has driven the development of many

MOT Bayesian solutions, most of the solutions model sensor measurements as radar plots.

This modeling already constraints the processing capabilities of the radar system from

a very early stage. Indeed, discarding part of the data-set via thresholding is opposed to

the idea of inferring as much information as possible from the measurement set. One

reason for modeling measurements after thresholding is that traditional computational

resources would not run tracking algorithms in real-time, unless data complexity is reduced

to detection plots.

Aside of plot-based MOT being pushed by high interest in radar applications, the

development of plot-based MOT algorithms is an attractive mathematical problem in

its own right. This dual interest has set a favorable context for engineering successful

plot-based trackers for many decades.

The increasing interest in new tracking problems where sensors do not provide point

measurements, but rather intensity maps type of measurements, requires the consideration

of more complex observation models. An important consequence of not modeling point-

measurements is that none of the traditionally accepted tracking algorithms, such as for

instance Multiple Hypothesis Tracking (MHT) [11], can be utilized.

The relevance of new MOT problems based on intensity map measurements can be

easily justified. For instance, MOT relying on Wireless Sensor Networks (WSN) becomes

relevant for the tracking of objects in mountainous regions, where radar performance

is severely degraded by extensive shadow regions. Ito and Godsill recently studied this

MOT problem using intensity maps data given by Received Strength Signal Indicator (RSSI)

readings [7]. An extensive study of a similar MOT problem can be found in [12].

One does not need to depart from the radar sensor to find out that range-Doppler

maps (see Fig. 1.1) or range-azimuth maps are certainly richer measurement sets than the

detections extracted semi-heuristically from these maps (e.g. via Constant False Alarm
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Rate (CFAR) detection). In fact, incorporation of such radar intensity maps inside the

tracker is essential, for instance, in radar MOT problems involving low-observable objects.

Low-observable objects are those delivering measurements for which the sensor responses

have an SNR value lower than 10dB (see Fig. 1.1 b). In these cases, it is desirable to avoid

thresholding so as to preserve the weak signal information in the raw sensor data [2].

Figure 1.1: Range-Doppler maps from two scenarios involving high and low SNR targets. In a) the SNR is high

and it is easy to discern the target as a high peak. In b) the SNR is low and it is not possible to distinguish the

target from the noise.

Figure 1.2: In low SNR target scenarios, the target may not lead to a detection.

1.2.1 Track-before-detect (TrBD) radar tracking
TrBD algorithms provide solutions to the problem of tracking targets avoiding undesired

data thresholding. This is done by means of using multiple frames of the raw sensor data.

Consequently, TrBD algorithms jointly estimate the existence of the target (detection) as

well as track its kinematic state (filtering). In fact, it is the existence of a track that implicitly
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reports the detection of a target as opposed to what happens in the traditional processing

chain, where the existence of detections may trigger the initiation of tracks (according to

track management system heuristics).

Among all sensor systems (both in centralized and distributed architectures) providing

intensity maps type of measurements, this thesis focuses on the development of tracking

algorithms for radar intensity maps, e.g. the ones in Fig. 1.1. TrBD MOT does not only

prevent loss of potentially relevant information in these maps. Additionally, TrBD MOT

copes with closely-spaced objects tracking in cases where a DBT approach would have to

deal with merged measurements. Therefore, TrBD MOT provides an inherently increased

resolution capability over DBT MOT, which makes it all the more important to address the

characterization of labeling uncertainty in the absence of detections.

1.3 Situational awareness
The level of situational awareness offered by radar-based solutions is directly linked to the

operational performance of the radar system. The boundaries of operational performance

are strictly dependent on two main aspects: the quality or the radar measurements and

the quality of the processing algorithms turning radar measurements into user-level data.

Drawing a line between the analog and digital parts in the radar receiving path provides a

reasonable split between these aspects in most radar systems.

A Frequency Modulated Continuous Wave (FMCW) radar can be taken as an example

to introduce the scope of this thesis in the context of a radar system. Firstly, every hardware

design choice along the signal path, from signal generation to sampling of the beat frequency

signal, conditions the quality of the radar measurements. These measurements are the

"in-phase and quadrature-phase" (I/Q) samples in the so-called “data cube”. This is the first

input to the processing algorithms. For a particular “data cube”, software design involving

signal and data processing choices, conditions the quality of the user-level data. A higher

level governing the quality of both measurements and user-level data involves the online

tuning of hardware and software parameters. This tuning task has been traditionally

performed by a radar operator to a very limited extend, e.g. by means of switching between

operational profiles or modes.

Over the last decades, most advanced multi-function radar systems are increasingly

incorporating a level of abstraction referred to as cognitive control [13], [14], [15]. These

cognitive radars assist the (human) operator in the tuning of hundreds of parameters in

real time according to some definition of optimality. It can be argued that cognitive radars

introduce a remarkable control processing-load even before the generation of the transmit-

ted signal based on various sensing-control loop closure concepts [16], [17], [18], [19], [20]

and [21]. Ultimately, these concepts contribute to optimize the quality/usability of ex-

pected I/Q samples as well as the tuning of processing parameters so as to enhance overall

operational performance and situational awareness.

1.4 Scope of the thesis
Based on previous definitions, the processing software in a generic radar can be separated

in sensing software and control software. A minimalistic decomposition of the sensing

software can be made based on three levels: i) digital signal processing, ii) statistical
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data processing and iii) analysis of situational awareness. Common submodules in i) are:

extraction of range Doppler maps (via double FFT processing), CFAR detection, Angle of

Arrival (AoA) estimation, clustering, plot extraction, clutter removal, ambiguity unfolding,

signature-based classification etc. The major module in level ii) is the MOT algorithm. The

level iii) may vary significantly from one system to another depending on the application.

In the general case, it will be built as a set of post-processing analyzing algorithms.

The scientific content in this thesis is inherently within the statistical data processing

level ii). Furthermore, key functionalities in traditional DBT MOT such as detection,

clustering and plot extraction are implicitly tackled given the TrBD approach to the MOT

problem adopted in this thesis. Therefore, a remarkable portion of the functionalities in i)

is covered as well. Finally, a minor part of the results fall under level iii). In particular, by

means of modeling target interactions, a Bayesian method for detecting abnormal target

behavior will be provided. Overall, this thesis provides various contributions on algorithm

design to tackle MOT problems in complicated surveillance scenarios. The type of scenario

complexity considered in this thesis involves low-observable, closely-spaced and potentially

interacting targets.

1.5 Related open problems
The thesis investigates problems associated to the tracking of low-observable, closely-

spaced and/or interacting targets in TrBD context.

1.5.1 The problem of tracking interacting targets
Interacting and even coordinated motion can for instance be found in groups of drones

that intentionally move together in formation (see Fig. 1.3). Coordinated maneuvering is

required for these objects to become and remain closely spaced, coordinated maneuvering

is also required for instance when well-separated objects are executing a joint plan. Moni-

toring some of these scenarios may be the purpose of, for instance, a ground-based counter

UAV radar or a radar-based coastal surveillance system. In both scenarios, targets become

low-observable either due to low RCS in the case of the drones or due to high intensity sea

clutter in the case of the coastal surveillance system (see Fig. 1.4).

Detection of anomalous target behavior
Inference of situational awareness is the most relevant high level application of area surveil-

lance systems. In particular, one important societal application is detecting suspicious

target behavior. In most of such anomalous scenarios, high degree of interaction can be

observed between the targets. For instance, coordinated motion of the targets is inherent in

attack missions involving formations of air-targets or drone swarms. Also, goods smuggling

in coastal areas commonly involves at least two well-separated objects performing coupled

maneuvering way before gathering close to each other.

Discriminating suspicious target behavior from the ones involving regular activities is

vital in safety assessment. By means of detecting spikes in the level of target interaction,

one may detect irregular activities in early stages.
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Figure 1.3: Drones are low-observable. Therefore, TrBD filters have the potential to outperform traditional

detection-based tracking algorithms when tracking these types of objects. Additionally, drones dynamic behavior

is specially constrained by interactive motion when flying in formation. Image from“Army RCCTO pursues drone

swarming capability after first contract award” by Pvt James Newsome (11th Armored Cavalry Regiment) is in

the Public Domain, CC0

Degraded tracking performance due to underestimation of coordinated
motion modeling

Sensor resolution is a physical limitation affecting the quality of labeling decisions in

closely-spaced targets scenarios. Additionally, even when the targets can be resolved in

the measurements; scan update rate limitations may also preclude easy labeling decisions.

Slow measurement update rates in the other of two to six seconds can for instance be found

in mechanically rotating surveillance radars. When targets are too maneuverable for a

particular measurement update rate, the present state of one target may not only correlate

with its own previous state but also with the previous state of another target. This may

introduce uncertainty in the solution of the so-called target labeling problem [22].

Mentioned effect due to limited update rate can be mitigated when accounting for real-

istic target maneuverability in the dynamic models. Sometimes, target maneuverability is

complex to model, for instance due to interacting motion between targets. It is then a com-

mon practice to use standard independent motion models such as the “Continuous White

Acceleration” model [23]. When the realistic motion of targets is captured very poorly,

labeling ambiguity (DA ambiguity in traditional DBT MOT) may get even overlooked.

Not considering labeling ambiguity results in severe estimation under-performance as the

MOT method may provide a single (potentially faulty) labeling solution [24]. Disregarding

whether DBT or TrBD techniques are considered, incorporation of interactive motion

modeling in the estimation algorithms is expected to improve tracking performance.
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Figure 1.4: Crowded harbor where objects dynamics are affected by the existence and dynamics of other objects.

1.5.2 The labeling problem when tracking closely-spaced ob-
jects in TrBD

The problem of deciding which track state estimate belongs to which physical object over

time is known as the labeling problem. Labels are considered as unique identifiers assigned

to each physical object in the track initiation stage. In closely-spaced objects tracking,

sensor systems may not provide enough information to uniquely match objects labels and

track-state estimates consistently over time, leading to uncertainty in the labeling [22].

The terms labeling problem and labeling uncertainty might be misleading, hence it is

important to remark that there is no uncertainty in the labels as they have been assigned

(and are therefore fully known) within the tracker. The uncertainty is about the assignment

of tracks to the fully known set of labels [24]. However, due to historical reasons we will

continue referring to this problem and the uncertainty as labeling problem and labeling

uncertainty. As mentioned before, labeling uncertainty can play a role already in sensor

systems even if the objects can be resolved by the sensor. This will occur if maneuverability

of the objects and/or sensor update intervals get large.

Characterization of labeling uncertainty
DA is an essential component in DBT tracking which wraps the filtering process and

turns it into a tracker by explicitly characterizing labeling uncertainty. This is done by

solving the pair matching problem. In words of Peter Willett regarding one of his recent

talks on Data Association and Target Tracking: “To thread measurements (well, many call

them “hits” or “plots”) of radar, sonar or imaging observations to a credible, smooth and

reportable trajectory requires a filter. We will discuss those - Kalman, Unscented, particle,

etc. - very briefly. But one cannot even begin to filter without knowing which hits come

from which targets, and which hits are complete nonsense (clutter). When wrapped inside

some scheme for such data-association, a filter becomes a tracker.”
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DA is imperative in DBT, but impossible in TrBD. In other words, due to the absence of

detection points, no kind of DA solution can be formulated in TrBD. However, this does

not mean that labeling uncertainty does not exist or can be overlooked in TrBD context.

Assumptions
The specific problem formulations in this thesis will consider two assumptions that will hold

throughout the chapters. Firstly, regarding characterization of labeling uncertainty, this

thesis considers the worst case scenario by assuming that intensity map measurements do

not provide any labeling information. In other words, it is assumed that the likelihoodmodel

for the measurements given the state is invariant under label permutations. Despite this

assumption, and although techniques based on identification through measurements fall

out of the scope of this thesis, the solutions that will be presented allow seamless integration

of classification techniques in order to reduce labeling uncertainty when tracking objects of

different radar signatures. Secondly, this thesis considers the TrBDMOT problem assuming

the number of targets is fixed and known. This assumption aids at isolating the problem of

characterizing labeling uncertainty by disregarding the problem of cardinality estimation.

On the topic of cardinality estimation, some solutions already exits for the TrBD MOT

problem, see [4].

1.6 Selected Challenges for PhD research
The first challenge in this thesis is showcasing how tracking performance becomes degraded

as a consequence of overlooking labeling uncertainty estimation, in the context of TrBD.

This will be presented in Chapter 2. The second challenge is studying methods for labeling

uncertainty reduction. In particular, due to the first assumption, these methods should not

rely on radar-signature-dependent classification algorithms or third party systems such

as interrogators etc. Instead, labeling uncertainty reduction should be tackled inside the

filtering process by formulating the challenge from the target dynamics point of view.

The third challenge of this thesis is automatically detecting anomalous target behavior

in the surveillance area. In particular, this thesis focuses on the type of anomalous behaviors

involving some level of coordinated target-maneuvering. Second and third challenges will

be tackled in Chapter 3.

TrBD processing poses difficulties for root-cause identification of underperformance

due to its early stage of development and adoption. However, mentioned first challenge-

showcase will illustrate analogies with identified concerns in traditional DBT context. In

particular, the problems of “labeling-confusion” and “track-coalescence” in TrBD processing

will be mapped to well identified problems in the Information Fusion community. In fact,

TrBD “labeling confusion” has the same effect as DBT Global Nearest Neighbor (GNN)

“wrong DA”. Additionally, TrBD “track-coalescence” has the same effect as DBT Joint

Probabilistic Data Association (JPDA) “track-coalescence”. Identification of the root-causes

producing “labeling confusion” and “track-coalescence” in TrBD will also be part of the

first challenge.

Following with analogies in well-developed DBT algorithms, the main challenge in

this thesis is to pave the way for the development of the “MHT counterpart” algorithm

for TrBD trackers. This defines the ambitious goal of preventing described estimation

underperformance by extending existent TrBD developments in a similar way as DBT
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MHT was created to overcome the underperformance of DBT GNN and JPDA. To realize

this extension, the TrBD MOT problem (including the subproblem of DA-free labeling

characterization) for known and constant number of closely-spaced objects, is considered

from chapter 4 to the end of the thesis.

1.7 Proposed solutions
This thesis formulates the TrBDMOT problem in the Bayesian framework to tackle the first

challenge. Based on such formulation, this thesis proposes the incorporation of interacting

target motion models in order to tackle the second and third challenges. By means of

modeling such interactions, Chapter 3 provides an automatic parameter tuning method

to do on-line learning and exploitation of coupled accelerations between targets. For

the first time in literature, the presented method exploits such information to close the

sensing-tuning loop inside the tracker. This automatic tunning method will result in

enhanced tracking performance, including reduction of labeling uncertainty. To solve the

third challenge, this thesis proposes the incorporation of interacting behavior modeling in

a Multiple Model (MM) Bayesian filter implementation.

Tackling the challenge of DA-free characterization of labeling uncertainty is instru-

mental to prevent degraded tracking performance in TrBD MOT of closely-spaced objects.

In order to tackle this challenge, the thesis presents two methods to infer label-dependent

decompositions of the joint multiobject posterior density. The first method derives an

implementation of the Unique Decomposition (UD) by Blom and Bloem [25] for non-linear

Gaussian systems. This implementation is used to tackle the labeling problem by looking

at the label-permutation-invariance characteristics of the posterior density. The second

method is coined as the Cross Modeling Tracker (CMT), its novelty lies in decomposing

the joint multiobject posterior density by means of hypothesizing crosses between objects.

1.8 Structure of the thesis and publication status
Chapter 2 formulates the TrBD MOT problem in the Bayesian framework and showcases

the labeling problem for closely-spaced objects tracking. An extensive literature review on

this problem is provided as well. Chapter 3 looks at the labeling problem from the dynamics

point of view, providing an algorithm able to learn and exploit interacting target motion.

In the same chapter, an application of the algorithm to detect anomalous target behavior

is also illustrated. These results have been published in [26]. Chapter 4 introduces an

evaluation criterion especially suitable for comparison of estimation performance between

different DA-free trackers. This result has been published in [22]. Chapter 5 generalizes

existent implementations of the UD to non linear-Gaussian problems, resulting in a DA-

free Particle Filter (PF) algorithm to solve the TrBD MOT problem. This result has been

submitted for publication in IEEE Transactions on Aerospace and Electronic Systems as
“Implementation of the Unique PDF Decomposition for tracking closely-spaced objects with

Track-Before-Detect radar systems”. Chapter 6 derives the so-called CMT, a new DA-free

Bayesian solution resulting from physical interpretation of the labeling problem in the

low dimensional case. This result has been published in [27]. Chapter 7 compares the PF

solutions presented in chapters 5 and 6 based on the performance evaluation method in

chapter 4. Additionally, the CMT solution is optimized in order to account for the tracking
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of unresolved targets. The manuscript for submitting these contents to the Journal of
Advances in Information Fusion is under preparation.
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2
Track-before-detect MOT

problem and Labeling
subproblem

2.1 Introduction
The TrBD MOT problem introduced in previous chapter encapsulates the labeling sub-

problem. This subproblem is inherent in the estimation of joint multi-target position

uncertainties. In TrBD, the labeling problem should be tackled by probabilistically charac-

terizing the pair-matching mapping between two sets: labels and tracks. Note that this

differs from the pair-matching problem formulated to associate the set of detections and

the set of labels in DBT. In fact, the labeling problem in DBT is solved in a pre-filtering

stage via DA, while the same problem in TrBD needs to be solved in a post-filtering stage.

Solving the labeling problem is not always required by the radar system. Examples can

be found in autonomous-driving applications based on automotive radar. For instance, in

radar-aided Adaptive Cruise Control (ACC), the relevant information is only extracted from

the track in front of the vehicle. In this case, it is not even relevant whether track labels

have been swapped, for instance due to vehicles in track being temporally closely-spaced.

In fact, using a GNN-based tracking algorithm to process the plots will accomplish the

task. Note that although GNN provides labeled point estimates, these come from hard DA

decisions. Since DA uncertainties are not propagated over time, one cannot keep control

over label confusion. It is in this particular sense that GNN does not solve the labeling

problem, as for instance DBT MHT would do.

In many other radar applications however, solving the labeling problem without relying

on signature-dependent classification is important. This is the case when for instance a

Multi Function Surveillance Radar (MFSR) system attempts to keep “identities” of existent

tracks. Solving the labeling problem becomes relevant in this cases because the use of

classification modes imposes demanding time-on-target and heavy processing. As these

demands need to be taken into account by the scheduler in the radar cognitive-processor,

classification tasks may not monopolize the resources in order to preserve optimal over-
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all functionality. In other words, classification time-budget may be limited in complex

scenarios so as not to compromise tracking performance and searching of new threads.

Additionally, even when used, classification methods may not aid at solving the labeling

problem when tracking targets of similar radar signature as it happens to be case with

drone swarms.

The labeling problem is specially challenging in closely-spaced objects scenarios, and

lacks solutions in TrBD. Labels have been rigorously incorporated in MOT solutions by

two different means. Firstly, by using random vector formulations. In this case, the order

of partitions in the random vector implicitly determines the labels of the tracks. Secondly,

by using Random Finite Sets (RFS) formulations [3] and explicitly introducing labels as

additional components in the (unordered) state variable.

The scope of this thesis is limited to the case of known and constant number of objects in

order to isolate the essence of the labeling problem. Inside this scope, one is not interested

in the built-in cardinality estimation capabilities of RFS formulations. For this reason,

vector formulations are considered sufficient to tackle the labeling problem along this

thesis. Namely, the incorporation of labels in this thesis is given implicitly by the order of

the partitions in the state vector.

2.2 DBT vs TrBD processing architecture
In a traditional MOT setting, the raw radar data is preprocessed through detection, cluster-

ing and extraction stages (see Fig. 2.1 a). Finally, the tracker is fed with the preprocessed

radar data. Unlike traditional MOT settings, integrated processing settings allow the tracker

to make use of the raw radar data with no prior processing nor associated information

losses (see Fig. 2.1 b). The term TrBD is more extended in literature than the term integrated

processing, so TrBD will be used along the rest of the thesis.

Figure 2.1: Block diagrams of traditional (detect-before-track) and integrated (track-before-detect) approaches to

the Multiple Object Tracking problem in figures a) and b) respectively.

Both traditional and TrBD approaches provide a solution to the MOT problem including

extraction of labeled point estimates (note that several point estimates with the same label
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define a track). However, this does not mean that both tracking approaches provide a

legitimate solution to the labeling problem. While in a DBT tracker, preprocessing raw

data before filtering allows to explicitly characterize labeling uncertainty (e.g. MHT does

this), current TrBD trackers do not have control over label confusion in the reported tracks.

Therefore, in vanilla TrBD trackers, labeling confusion may get unnoticed unless captured

by heuristic ad-hoc mechanisms. In this particular sense, this is similar to what happens in

DBT GNN-based trackers. The main difference being that GNN does not propagate DA

uncertainties over time deliberately, in TrBD trackers DA does not even take place (see

Fig. 2.1 b)) as the radar image is fed into the filtering process without previous compression

into a finite set of points. Examples of this type of data incorporation can be found, for

instance, in Ch. 11 in [28].

2.2.1 Implications of TrBD tracking in processing architec-
ture

Performing MOT based on map data does not only involve the replacement of observation

models in the Bayes recursion. From the processing architecture point of view, structural

changes are also required, leading to the removal of the detector and integration of the

tracker inside the radar processing chain, so that detection and track-confirmation occur

simultaneously. In practice, the detection algorithm and additional pre-processing is

replaced by a single TrBD algorithm, which also implements the tracking functionality.

For this reason the term TrBD is also known as “integrated processing” in some references.

When shifting from DBT to TrBD systems, changes in the algorithm design should

follow from mentioned changes on architecture and data flows. In principle, it should

be sufficient with replacing the DBT observation likelihood model by the TrBD one. In

fact, as Bayesian inference provides a generic framework for incorporating data, the

generation of the posterior density of interest should follow from mentioned likelihood

model replacement. However, the mere replacement of the observation likelihoods does

not produce TrBD posterior densities with the labeling structure offered by algorithms

such as DBT MHT. The ability to generate this structure is ruled out in vanilla TrBD as

pre-filtering DA cannot be formulated due the absence of detections.

Common practice in TrBD tracking and associated drawbacks
Existent TrBD tracking solutions do Bayesian filtering using raw measurement observation

likelihoods and manage to formulate rigorously the Bayesian state estimation problem

for unknown and time varying number of targets, for instance see [4]. In connection to

the discussion in previous subsection, these solutions overlook that the mere replacement

of likelihood models in the Bayes update cannot make up for the pre-filtering labeling

uncertainty characterization offered by, for instance, DBT MHT. Nevertheless, this does

not degrade estimation performance in non-closely-spaced target scenarios. In cases where

the objects move far apart from each other, labeling uncertainty is negligible and a TrBD

tracker such as the one in [4] suffices to infer the correct pair-matching between labels

and point estimates, leading to proper track estimation. However, when the 𝑡 objects move

closely-spaced, labeling uncertainty degrades tracking performance and even the optimal

MOT solution is prevented from stating the correct pair-matching (label/point-estimate)

free of uncertainty. Under these complicated conditions, regular TrBD trackers result either
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on overconfidence of labeling decisions or “track-coalescence”. The former issue raises the

probability of labeling confusion, the later severely degrades the performance of estimation

on target dynamics.

2.3 Problem description
Consider an MOT problem based on raw (TrBD) measurements and a scenario containing

𝑡 objects moving in a𝑀-dimensional space (𝑡 −𝑀𝐷 setting). Additionally, consider that 𝑡 is

constant and known by the tracker.

According to commented drawbacks in previous subsection, it is precisely due to the

physical limitations for providing uncertainty-free labeling in complicated scenarios, that

estimation of certainty regarding all potential labeling possibilities is a topic of major

importance. For this reason, the labeling problem considered in this thesis is described by

the following two questions:

• What is the list of 𝑡! labeled point estimates for the current dynamic state of the

objects? Here each labeled point estimate hypothesizes the state of the 𝑡 targets with

indication of the labels.

• What is the certainty corresponding to each labeled point estimate in the list?

2.3.1 Problems with current TrBD MOT solutions
Regular TrBD trackers are known to fail at answering the questions due to the drawbacks

highlighted in previous section. This subsection digs deeper into the root-cause of these

drawbacks by showcasing the degraded tracking performance of regular TrBD algorithms.

Both “labeling overconfidence” and “track coalescence” will be exemplified with numer-

ical simulations. Firstly, “labeling overconfidence” is due to the fact that particle-based

approximations (required due to the highly non-linear nature of the TrBD measurement

models) cannot approximate multimodal densities for long periods of time [1], leading to

the so-called particle “self-resolving” artifact. Secondly, “track-coalescence” underperfor-

mance [29] is due to extraction of Minimum Mean Square Error (MMSE) point estimates

from a TrBD multimodal posterior density. In regular TrBD implementations, both errors

get unnoticed without heuristic built-in mechanisms.

The particle “self-resolving” artifact is linked to the “particle mixing” phenomenon

observed in [1] and illustrated by particles of different colors being mixed in similar regions

of the state space in Fig. 2.2

When “particle mixing” happens, different particles are represented with permuted

order of partitions in the state vector. This phenomenon is natural and expected when

approximating multimodal densities, which are characteristic in the tracking of closely-

spaced objects. In fact, it is in the multimodality of the multi-object Bayes posterior where

the information about labeling resides [1][30].

The root cause of cloud “self-resolving” is the impoverishment of the particle cloud [31]

observed in implementations with resampling stage such as the Sequential Importance

Resampling (SIR) filter. Therefore, particle “self-resolving” is an artifact as it destroys

the natural mixing in the particle cloud, concentrating all the particles in one of the

modes and overlooking other areas of high probability mass such as the ones supporting
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Figure 2.2: Illustration of expected “particle mixing” phenomenon when targets are closely-spaced and after

separation. The particle filter is not “self-resolved” when “particle mixing” can be preserved.

alternative labeling hypotheses. This is the reason why particle “self-resolving” may lead

to unnoticeable labeling confusion as illustrated in Figs. 2.3, 2.4 and 2.5.

Figure 2.3: Results from a TrBD tracking implementation: raw-data on the left hand side, labeled ground truths

and labeled particles for position and velocity dimensions in the center and in the right hand side respectively.

Before the two targets become closely-spaced, the particle filter assigns labels correctly.

There are some generic solutions to tackle “self-resolving”. In fact, any attempt to
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Figure 2.4: When the targets become closely-spaced “particle mixing” occurs, representing high labeling uncer-

tainty.

Figure 2.5: After the targets split, the PF “self-resolves” eventually due to its inability to approximate multimodal

densities over long periods of time [1], leading to labeling confusion approximately 50% of the time.

mitigate impoverishment of the particle cloud, will reduce “self-resolving”. These attempts

can for instance be found in the Markov Chain Monte Carlo (MCMC) filters and the particle-

flow filters [32]. A specific approach for mitigating particle “self-resolving”, relevant in

the context of our problem, is the one by García-Fernández et al in [33] based on a PF

implementation with “mirror” particles.



2.3 Problem description

2

19

Later in this thesis, a new alternative method to keep the multimodal character of the

TrBD posterior density will be provided. This will be achieved by means of propagating

the invariant component of the Unique density Decomposition (UD) [25] on isolation from

the rest of the TrBD posterior density. Another way to illustrate successful operation of

the filter after target separation is by representing the distribution of probability mass in

the joint space as in the right hand side of Fig. 2.6.

Figure 2.6: Symmetric bi-modal approximation of the position density associated to the last scan of the trajectories.

This spread of probability mass represents that “particle mixing” has been preserved after target separation.

This type of symmetric spread of probability mass also represents that the PF implemen-

tation does not suffer “self-resolving”. As opposed to the “self-resolved” particle cloud in

Fig. 2.5, this particle-based approximation constitutes a reliable base-line for the tracker to

take informed track-formation decisions. In fact, the multi-modal character of the density

represents that the filter “remembers” a previous closely-spaced target situation leading

to strong labeling uncertainty. In this particular case, the two modes hypothesize the

existence of two objects in the same two specific locations, but disagree on the assignment

of labels.

Even under the assumption that the filtering method captures the multimodal character

of the Bayes posterior, naive track extraction leads to tracks nowhere close to the real

trajectories after targets split. This “track-coalescence” undesired effect is illustrated in

Fig. 2.7, where tracks are extracted via optimization over the common MSE metric by

partitions in the particle cloud from Fig. 2.2.

Mentioned undesirable effects happening in TrBD context can be related to recognized

underperformance in DBT context. In particular “track-coalescence” occurs when DBT

JPDA-based methods operate in scenarios with high DA uncertainties. In DBT, this problem

can be tackled with JPDA* [34], which inserts a simple heuristic in the JPDA algorithm.

The “track-coalescence” problem has been also tackled in literature by extracting tracks

based on Maximum a Posteriori (MAP) or Mean Optimal Subpattern Assignment (MO-

SPA) optimization. In both cases, preventing track-coalescence is achieved at the cost of

disregarding labeling uncertainty, and therefore losing control over labeling confusion.

As this is undesirable in applications where labeling of the objects matters, this thesis
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Figure 2.7: Illustration of degraded track estimation performance known as track-coalescence.

develops the TrBD methods presented in chapters 5, 6 and 7 to provide track extraction

based on the labeled metric MMSE, while preventing “track-coalescence” and keeping

control of labeling uncertainties. This will be done by inferring a particular decomposition

of the Bayes posterior density. This desired decomposition of the Bayes posterior should

be relevant for labeling uncertainty characterization [24], but should not rely on any DA

technique so as to be usable in TrBD. In another analogy to the better understood DBT

context, the desired decomposition could be considered as the TrBD counterpart of the

DBT MHT decomposition for known and constant number of targets.

2.4 Formulation of the labeling problem in TrBD
The formulation of the labeling problem in TrBD, and the link between the DA problem

and the labeling problem in DBT is formulated mathematically in this section based on the

following definitions:

• DA defines hypotheses matching plots and labels.

• Labeling association defines hypotheses matching updated point estimates and labels.

Ambit:

• DA applies before update.

• Labeling association applies after update and point estimates extraction.

Applicability:

• DA is used to generate updated DA-dependent densities, these are the ones resulting

from taking the prior densities and updating them according to the DA hypotheses.
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• Labeling association is used to extend existing tracks, this is done by association of

extracted point estimates to existent tracks. Note that this is equivalent to consider

the “pair matching” problem between extracted point estimates and labels.

The relevant problem from the application point of view is the labeling problem. The

link between the DA and labeling problems can be described in the context of traditional

DBT trackers. In fact, DBT filters only tackle the DA problem but, once the DA problem is

solved, the solution of the labeling problem follows right away: one only needs to perform

DA-dependent updates and extract (labeled) point estimates, from each DA-dependent

posterior density.

To support the claim that once DA is solved in DBT, the solution of the labeling problem

follows right away, let us take the following assumptions without loss of generality.

• Perfect detectability, no false detections.

• No merged measurements.

• The measurements do not provide any info about label.

Let us define 𝝒𝑘 as the vector of plots at time step 𝑘 with explicit indication of correct DA:

𝝒𝑘 = [𝒑𝟏,𝒑𝟐, ..., 𝒑𝒕]
𝑇
. In other words, the information in 𝝒𝑘 is based on “known DA” as the

subscripts are not only used to differentiate one plot from another, but they also link the

plots to the labels of the targets which generated the plots, e.g. the plot in the first position

of 𝝒𝑘 has been generated by target 1, being this statement not a hypothesis but a fact.

In practice, the tracker cannot access 𝝒𝑘 but a version of it with unknown DA, which

we denote as 𝒛𝑘 = [𝒅𝟏,𝒅𝟐, ..., 𝒅𝒕]
𝑇
. Note that the subscripts here are merely differentiating

one plot from another, but they do not represent correct DAs. Let us define the vector

𝝎 = [𝜋1,𝜋2, ...,𝜋𝑡!]
𝑇
, which contains the functions to perform all possible permutations of 𝑡

elements in a vector. For instance, 𝝎 = [𝜋1(𝒛𝑘),𝜋2(𝒛𝑘), ...,𝜋𝑡!(𝒛𝑘)]
𝑇
represents all possible

permutations of the plot vector 𝒛𝑘 .

In short, the subscripts in 𝝒𝑘 provide correct DA while the subscripts in 𝒛𝑘 provide

differentiation between the elements. Although the subscripts in 𝒛𝑘 happen to coincide

with the particular order in which plots are collocated in the vector, this could have been

different. In fact, as the order is random:

𝑃(𝒛𝑘 = 𝜋𝑚(𝝒𝑘)) = 𝑃(𝒛𝑘 = 𝜋𝑛(𝝒𝑘)) ∀{𝑚,𝑛} ∶ {𝜋𝑚,𝜋𝑛} ∈ 𝝎 (2.1)

Let us consider the state vector 𝒔𝑘 , where the individual states of 𝑡 objects are stacked

with explicit indication of labels: 𝒔𝑘 = [𝒔1
𝑘
, 𝒔2

𝑘
, ..., 𝒔𝑡

𝑘
]𝑇 . Solving the DA problem requires:

generation of DA hypotheses and evaluation of the DA hypotheses.

Let us use 𝒉𝑘 to note the set of generated DA hypotheses: 𝒉𝑘 = {(𝒂𝟏,𝒂𝟐, ...,𝒂𝒕!)}, where

𝒂𝒎 = 𝜋𝑚(𝒛𝑘). Note that the subscripts in the vector 𝒂𝒎 are not labels, the labels are implicit

in the order of the elements represented by 𝒂𝒎. Note that in any case, these labels represent

hypotheses of association not correct associations. 𝒂𝒎. For illustrative purposes, consider

a simple two objects case and the association hypothesis 𝒂𝟏 = [𝒅𝟐,𝒅𝟏]𝑇 . According to the

notation, 𝒂𝟏 hypothesizes that the detection which came in second position in 𝒛𝑘 was

produced by target labeled as 1 and the one which came in first position was produced by

the target labeled as 2.
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Given the model for the likelihood of the measurements conditioned on the state

𝑙(𝒛𝑘 |𝒔𝑘), a DA dependent decomposition of 𝑝(𝒔𝑘 |𝒁𝑘) can be formulated as:

𝑝(𝒔𝑘 |𝒁𝑘) ≈

𝑡!

∑

𝑚=1

𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1) (2.2)

From Equation (2.2), one can conclude that in DBT an analytical decomposition rel-

evant for labeling characterization follows from solving the DA problem. In fact, each

component in the sum directly relates one DA hypotheses 𝜋𝑚(𝒛𝑘) with its association-

dependent posterior density 𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1). Furthermore, extraction of sufficient

statistics from each component in the sum, by minimizing the MMSE, provides a labeled

point estimate. Note that a labeled point estimate explicitly hypothesizes one particular

association between point estimates and labels. According to this labeling association, the

tracks can be extended. This trivial derivation demonstrated in DBT context that, once DA

is solved, the solution of the labeling problem follows right away.

• Remarks:

– The analytical evaluation of labeling association hypotheses has a one-to-

one relation to the evaluation of DA hypotheses. In particular, the certainty

associated to the labeled point estimate extracted from 𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1)

is:

𝑝(𝜋𝑚(𝒛𝑘)|𝒁𝑘) =
∫ 𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1)𝑑𝒔𝑘

∑
𝑡!
𝑚=1 ∫ 𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1)𝑑𝒔𝑘

(2.3)

– Under the assumption that 𝑝(𝒔𝑘 |𝒁𝑘−1) can be formulated as one single density

∀𝑘, Equation (2.2) does not run into “combinatorial explosion” over time. As will

be explained in chapter 4, this assumption only holds in implementations using

particle-based approximation of the various DA-dependent updated densities.

– This analytical derivation is the base of the optimal reference derived in chapter

4 and that will be used to evaluate the proposed DA-free methods proposed in

the last chapters of the thesis.

As a conclusion, it is trivial to solve the labeling problem in DBT by tackling the DA

problem. Unfortunately, the same analytic method cannot be applied in TrBD filtering to

solve the labeling problem due to the absence of detections.

In TrBD context, the raw data noted by 𝐳𝑘 is defined as the power reflected from the

tracking scenario for each radar cell at time step 𝑘. For instance, a 2D range-bearing raw

data-set 𝐳𝑘 can be modeled as in [4] by 𝑁𝑟 ×𝑁𝑏 power measurements 𝑧
𝑖𝑗

𝑘
, where 𝑖 = 1,2, ...,𝑁𝑟

and 𝑗 = 1,2, ...,𝑁𝑏. The same TrBD measurement model has been used to generate the

raw measurements illustrated in the left hand side of Figs. 2.3, 2.4 and 2.5. The detailed

formulation of this TrBD measurement model will be provided in chapter 3.

The permutation of measurement 𝒛𝑘 by using the functions in 𝝎 cannot be replicated

for the TrBD measurements 𝐳𝑘 . In fact, 𝜋𝑚(𝐳𝑘) has no physical interpretation, so it cannot

be used to decompose the TrBD posterior density. However, note that the evaluation of
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𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘) and 𝑙(𝒛𝑘 |𝜋𝑚(𝒔𝑘)) are equivalent for a given prior density 𝑝(𝒔𝑘 |𝒁𝑘−1). Therefore,

one could interpret that Equation (2.2) does have a TrBD counterpart:

𝑝(𝑠𝑘 |𝐙𝑘) ∝

𝑡!

∑

𝑚=1

𝑙𝑇 𝑟𝐵𝐷(𝐳𝑘 |𝜋𝑚(𝑠𝑘))𝑝(𝑠𝑘 |𝐙𝑘−1) (2.4)

where we use 𝑝(𝑠𝑘 |𝐙𝑘) to denote the posterior density, 𝑙𝑇 𝑟𝐵𝐷(𝐳𝑘 |𝒔𝑘) to denote the likelihood

model for the raw measurements conditioned on the state and 𝑝(𝑠𝑘 |𝐙𝑘−1) to denote the

predicted density. We consider the worst case scenario, where TrBD measurements do

not incorporate information about objects’ labels (as described by the first assumption

in the introductory chapter). Under this assumption, 𝑙(𝐳𝑘 |𝒔𝑘) is invariant with respect to

permutation of partitions in the state vector:

𝑙(𝐳𝑘 |𝜋𝑚(𝑠𝑘)) = 𝑙(𝐳𝑘 |𝜋𝑛(𝑠𝑘)) ∀{𝑚,𝑛} ∶ {𝜋𝑚,𝜋𝑛} ∈ 𝜔 (2.5)

This is a remarkable difference with respect to DBT, where 𝑙(𝒛𝑘 |𝑠𝑘) is permutation variant

(even when the measurements do not provide any information about the labels). Due

to (2.5), Equation (2.4) provides a decomposition in which all components end up being

identical disregarding whether the objects are closely-spaced or not. As this does not

make sense, Equation (2.4) cannot be relevant for labeling characterization in TrBD. In fact,

Equation (2.4) can be simplified as:

𝑝(𝑠𝑘 |𝐙𝑘) ∝

𝑡!

∑

𝑚=1

𝑙(𝐳𝑘 |𝜋𝑚(𝑠𝑘))𝑝(𝑠𝑘 |𝐙𝑘−1) ∝ 𝑙(𝐳𝑘 |𝑠𝑘)𝑝(𝑠𝑘 |𝐙𝑘−1) (2.6)

The simplification in Equation (2.6) illustrates that, although 𝑝(𝑠𝑘 |𝐙𝑘) can be calculated,

an analytical decomposition of 𝑝(𝑠𝑘 |𝐙𝑘) relevant for labeling characterization cannot be

accessed by the TrBD filter. The inference of relevant label-dependent decompositions of

𝑝(𝑠𝑘 |𝐙𝑘) in TrBD defines the specific problem which needs to be tackled to answer the two

questions of interest formulated by the problem description in section 2.3.

2.5 Related literature
A plethora of MOT techniques have been developed over recent decades including Joint

Probabilistic Data Association (JPDA) [35], MHT [11] and Probability Hypothesis Density

(PHD) [36]. These algorithms are designed to work with detections. As the scope of this

thesis is within TrBD MOT, none of these methods are suitable.

Some RFS-based trackers use multitrajectory densities instead of multiobject densi-

ties [37]. A multitrajectory random variable incorporates the states of the entire history for

each trajectory in the set. With this information, track formation is enabled without any

type of label incorporation. [38] describes multitrajectory RFS methods accommodating

standard (point based) measurements. Interestingly, it also mentions that the method

can be applied to TrBD measurement. However, the guideline in [38] regarding TrBD

measurement update is to proceed as in [39], where a multiobejct RFS filter is used instead

of a multitrajectory RFS. In particular, the method in [39] tackles TrBD measurements by

means of fitting a particle-based multiobject density approximation as a Labeled Multi-

Bernoulli (LMB) RFS density after each filtering iteration. Nonetheless, this would not
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allow propagation of labeling uncertainty as one would need to use a LMB mixture to do

so.

In [40], a backward simulation method is proposed to recover full trajectory (labeling)

information from unlabeled filtering mutiobject densities. However, the process (generating

unlabeled filtering posteriors, recovering trajectory information andmarginalizing to obtain

the filtering density of interest) involves a complexity overhead unfordable by practical

implementations targeted in this thesis. More specifically, this complexity is prohibitive

when implementing this solution in TrBD context, where RFS prior conjugacy cannot be

exploited as particle-based approximations are required to accommodate highly nonlinear

TrBD observation models. Additionally, the problem in the scope of this thesis does not

even need to be formulated with RFS as the number of objects is assumed known and

constant.

Aoki et al. provided a mathematical characterization of the labeling uncertainties with

clear physical interpretation in [41]. However, the proposed Multitarget Sequential Monte

Carlo filter algorithm involves computational complexity of 𝑂(𝑁 2
𝑝 𝑡!

2), being 𝑁𝑝 the number

of particles. This computational bottleneck is prohibitive for tracking in scenarios with

more than two objects.

Blom and Bloem [25] introduced a decomposition of the exact Bayes posterior density

into the weighted sum of permutation invariant and permutation strictly variant compo-

nents. The so-called Unique Decomposition (UD) was used by García-Fernández in [33]

to provide a particle filtering solution relevant for our problem description. The main

focus in [33] is on calculating the probability of successful labeling after object separation,

assuming the posterior multiobject density has symmetric nature [42][30]. In particular, the

contribution of García-Fernández to the labeling problem is based on linking the so-called

probability of successful labeling to the particular metric and point estimate considered [33].

These contributions were exemplified for the tracking of two objects with aWireless Sensor

Network (WSN).

A generalization of the UD [25] was provided by Croise et al. in [43], where the main

focus is on demonstrating how the UD can be used to approximate MMOSPA estimates.

Although MMOSPA estimates do not provide answers to the questions in the Problem

Description section due to its unlabeled nature, it is important to remark that the con-

sideration of OSPA metric (or its generalization GOSPA) has been reported successful at

preventing track-coalescence. Nevertheless, MMOSPA estimates are very computationally

demanding to calculate and therefore its implementation in dynamic systems has only

been reported under some approximations [44] [45].

The use of MMOSPA estimates has been encouraged by the majority of reviewed

solutions. Only [33] has reported successful results at avoiding track-coalescence using

MMSE estimates. This becomes possible as the specific problem formulated in the Problem

Description section is tackled by incorporating characterization of labeling uncertainty in

the filtering process. Interestingly, this characterization does not rely on DA techniques

and therefore it is usable in TrBD. Unfortunately, although proposed as future work in [33],

the generalization of this solution for more than two objects has not been addressed.
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2.6 Conclusions and connections to upcoming chap-
ters

Does the fact that DA cannot be formulated in TrBD mean that the labeling problem is

inherently solved through Bayesian filtering? To answer this question, it is important to

note that it is in the multimodality of the Bayes posterior where the information about

labeling resides. In fact, when the multitarget density becomes multimodal, the modes tend

to show up in symmetric regions of the joint state space (when the objects get sufficiently

separated after being closely-spaced) [1][30].

The answer to the question is no, vanilla TrBD tracking algorithms, such as the one

in [4] provide a non-decomposed posterior density, which happens to be multimodal in

scenarios where closely-spaced targets are involved. Unlike in DBT tracking, where DA

decomposes the multimodal posterior density based on labeling uncertainty, one cannot

rely on any existent decomposition method for the TrBD problem. Therefore, the labeling

problem is not solved inherently through plain TrBD Bayesian filtering.

Connections to the contributions in upcoming chapters can be made on the basis of

the labeling problem. There is a clear distinction between chapter 3 and chapters 5, 6 and

7. In chapter 3, the focus is on labeling uncertainty reduction. Chapters 5, 6 and 7 focus

on labeling uncertainty characterization. Chapter 4 provides a criterion to evaluate the

algorithmic solutions provided in chapters 5, 6 and 7. Chapter 3 illustrates that proper

estimation of targets interacting-dynamics aids at reducing labeling uncertainty so as to

avoid label confusion even in scenarios with closely-spaced targets. Chapters 5, 6 and 7

provide the main contribution of this thesis by considering a more generic TrBD MOT

problem, where labeling uncertainty reduction methods are not implemented or simply

not sufficient to provide uncertainty-free point-estimate-to-label assignment. Resorting

again to analogies with traditional DBT methods, chapters 5, 6 and 7 attempt to derive and

implement the TrBD counterpart of DBT MHT for constant and known number of targets.





3

27

3
Tracking of Interacting

targets

3.1 Introduction
Before delving into the main contribution of this thesis, namely generic TrBD labeling

uncertainty characterization, this chapter illustrates how labeling confusion can be tackled

in particular scenarios where interacting targets are involved. This chapter looks at the

labeling confusion problem from the dynamics point of view, which is especially effective

when some structure can be extracted from the coupled motion of the targets. Detection of

anomalous target behaviors is a related higher level challenge, which is also considered in

this chapter. Both challenges are tackled by means of modeling and estimating interacting

targets motion.

Interacting and even coordinated motion can be found in objects that fly in formation,

groups of objects that intentionally move closely together as a group such as drone swarms,

and even well-separated objects that are executing a joint plan. There exist all sorts of

other constraints on movements due to environmental limitations. These could come from

circulation infrastructure or rules and the physical size of objects. Due to these types

of limitations, target dynamics are also affected. For example, road vehicles may not be

able overtake each other unless following some particular trajectories. For flying objects,

some rules apply in controllable scenarios as defined in the International Civil Aviation

Organization (ICAO) for Remotely Piloted Aircraft Systems (RPAS) regulation [46]. These

rules determine remain-well-clear and collision-avoidance volumes for maneuvering of

closely-spaced objects according to Fig. 3.1.

In hostile scenarios, regulations in [46] are obviously not taken into account. However,

due to the physical dimensions of targets, closely-spaced trajectories are still constrained

by the collision volumes as objects cannot simply keep on moving through each other.

Unlike in signature-based classification solutions, where labeling information is ex-

tracted via characterization of measurements, this chapter focuses on estimating labeling

The contents provided in this chapter have been published in “Tracking of interacting targets,” C. M. Leon, L.

S. Mihaylova and H. Driessen, in proceedings of the 20th International Conference on Information Fusion, Xi’an
(China), 2017, pp. 1-8.
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Figure 3.1: Thresholds and volumes affecting closely spaced object as defined by the ICAO RPAS.

information by characterizing coupled target dynamics. Given a previously labeled set

of tracks, if prediction of exact dynamic states of the objects would be possible, there

would not be uncertainty so as to which label corresponds to which track. Although exact

prediction is not possible, this chapter illustrates how on-line learning of dynamic coupling-

parameters aids at producing better prediction models. As a result, labeling confusion can

be reduced even in closely-spaced target scenarios.

Some literature exists on group tracking, which is certainly a particular case of inter-

acting targets tracking. In [47], a framework based on the so called “Evolving Networks” is

proposed to perform targets state estimation and group structure discovery. The method

relies on a graphical network-like representation where each node represents a different

target. When the targets are considered in the same group, the evolution model becomes

coupled along the coordinates of different objects. However, although it is fairly under-

standable that different objects traveling in a group are interacting with each other, the

method does not cover any kind of interactions between targets which are not considered

in the same group. Modeling this type of interactions between non-closely-spaced targets

is relevant for detection of anomalous behavior of targets that are far away from each

other.

In this chapter we present a method for tracking interacting targets disregarding

whether or not the targets are close to each other. The method relies on parametric

modeling of targets interactive motion. The presented filtering solution incorporates

the parameters of the model in the state vector together with the targets dynamic state.

Moreover, the parameters of these interactive motion models are auto-tunable as they

are modified on-line, exploiting the (Bayes) posterior certainty of estimation results. The

proposed method is applied in a simulated MOT application where target dynamics become

coupled and independent alternatively along the simulation.

Numerical simulations will show that the presented approach results in estimation error

reduction, allows detection of interactive target behaviors and reduces labeling confusion

for closely-spaced targets in TrBD tracking. The benefits of modeling interacting target

dynamics also apply in traditional DBTMOT, aiding at reducing DA uncertainties. However,

simulations in this chapter are based on TrBD measurements to align with the research
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direction of the thesis.

3.2 Proposed approach
The method presented in this chapter is motivated by the idea that all possible interacting

behaviors can be modeled relying on two different sources of information. Firstly, the

set of points that the targets get attracted to or repulsed from. Secondly, the models of

interaction between the targets and these points of attraction/repulsion. By these means,

any interacting behavior can be understood as variable accelerations of the targets in

relation with the set of attraction/repulsion points. These unknown points can be variable

in number, fixed, dynamic, or even be another target of interest.

A complete solution would estimate the attraction/repulsion points, the coupling pa-

rameters (modeling interactions between the targets and these points), and the dynamics of

the targets, all together in the joint space. To this end, we model target interactions by using

a very simplified version of the so-called Social Force models applied separately for each

coordinate. Social Force models, introduced by Helbing [48], have been used extensively

in pedestrian tracking. In these applications, social forces are proven to effectively reduce

data association errors as in [49]. Several challenges as handling occlusions [50] or tracking

with cameras with no overlapping fields of view [51] have been tackled by using these

models.

The chapter is organized as follows. In Section 3, the assumptions of the interacting

target motion model are formulated in continuous time and the associated discretized

model is derived. In Section 4, the incorporation of the discretized model in a TrBD

MOT application is discussed. First, the measurement model is defined and then, it is put

together with the proposed interacting motion model in the context of recursive Bayesian

estimation. In Section 5, simulation examples are presented. Firstly, preliminary results

showing estimation error reduction are provided. Secondly, detection of suspicious target

interacting-behavior is illustrated based simulation results using a Multiple Model (MM)

filtering implementation. In the final part of section 5, it is shown that labeling confusion

can be prevented by means of inferring coupled target-dynamics. Conclusions are provided

in section 6.

3.3 Interacting Target Motion Modeling
Independent target motion models are oftentimes used for the tracking of any target

disregarding its degree of interaction. This subsection formulates a generic dynamic

system to set the base line. Interacting dynamics modeling will be incorporated to the base

line in the following subsection. For sake of simplicity in the formulation, let us consider

2D objects. For each object, the state vector 𝑠(𝑡) comprises two coordinates (𝑥 and 𝑦) and

for each coordinate we consider two dimensions: position (𝑥(𝑡), 𝑦(𝑡)) and velocity (𝑥̇(𝑡),

𝑦̇(𝑡)). Then 𝑠(𝑡) = [𝑥(𝑡) 𝑥̇(𝑡) 𝑦(𝑡) 𝑦̇(𝑡)]𝑇 .

A generic continuous-time dynamic model can be represented by a first order linear

differential stochastic system as in Fig. 3.2.
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𝑠̇(𝑡) = 𝐴𝑠(𝑡)+𝐵𝑢(𝑡)+𝐺𝑣̃(𝑡) 𝑠(𝑡)𝑢(𝑡)

Figure 3.2: Generic first order linear dynamic system

where 𝐴 is called the system matrix, 𝐵 is the (continuous-time) input gain, 𝐺 is the

(continuous-time) noise gain. 𝑠(𝑡) is the state vector, 𝑢(𝑡) is the input vector and 𝑣̃(𝑡) is the

(continuous-time) process noise. The Continuous White Noise Acceleration model [23] is

a widely used independent target motion model. It is characterized by having zero input

contribution and matrices,

𝐴 = 𝑑𝑖𝑎𝑔(𝐴1,𝐴2, ...,𝐴𝑁 ) (3.1)

where 𝑁 is the total number of coordinates,

𝐴𝑛 =
(

0 1

0 0)
;𝑛 = 1, ...,𝑁 (3.2)

𝐺 = 𝑑𝑖𝑎𝑔(𝐺1,𝐺2, ...,𝐺𝑁 ) (3.3)

𝐺𝑛 =
(

0

1)
;𝑛 = 1, ...,𝑁 (3.4)

being 𝑣̃(𝑡) continuous-time Standard White Gaussian.

In some more elaborated models the input contribution is considered. When the input

vector is fully known, it only causes an explicit time dependency in the deterministic part

of the evolution model. However, in MOT applications, the control signals applied on each

target are seldomly modeled (if ever) by the tracking system. Therefore, the control vector

causes also a dependency in the random component 𝑣̃(𝑡). As we will see in Subsection 3.3.1,

the unknown control vector will be considered part of the state vector to be estimated by

the tracker.

3.3.1 Assumptions on targets interaction
Interacting targets perform accelerations depending on the dynamics of other objects and

the environment. Therefore, independent target motion modeling is not optimal when

tracking interacting targets as coupled accelerations get overlooked. In this subsection our

parametric model of targets interaction is presented.

In this chapter we consider a toy scenario where two objects (labeled as “b” and “r”)

move in 2D, the state vector can be represented as 𝑠(𝑡) = [𝑠𝑏(𝑡) 𝑠𝑟 (𝑡)]𝑇 . Furthermore, we

assume that the target labeled as “b” is the only point of attraction/repulsion.

When the motion along the same coordinates is assumed to be coupled for different

targets, obtaining an explicit expression of the model in discrete time is not straightforward.

Special considerations have to be taken into account as the calculation of the discrete

transition matrix and the covariance of the discrete process noise cannot be decomposed
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at coordinate level. Therefore, interacting assumptions need to be defined in continuous

time and the discretization of the transition model needs to be worked out. The assumed

structure of the interactive motion is formulated as,

𝑥̈
𝑟
(𝑡) = 𝑘1(𝑥

𝑏
(𝑡)−𝑥

𝑟
(𝑡))−𝑘2𝑥̇

𝑟
(𝑡) (3.5)

𝑦̈
𝑟
(𝑡) = 𝑘1(𝑦

𝑏
(𝑡)−𝑦

𝑟
(𝑡))−𝑘2𝑦̇

𝑟
(𝑡) (3.6)

with 𝑘1 and 𝑘2 assumed constants with units [𝑠−2] and [𝑠−1] respectively.

The model basically represents that the accelerations performed by the object labeled

as “r” are the result of combining two aspects. These are: the intention of target labeled

as “r” to interact with the target labeled as “b” and the maneuvering limitations of the

target labeled as “r” due to inertia. The second aspect is especially dominant in fix wing air

targets. In this particular case only two parameters are needed (𝑘1 and 𝑘2). We consider

the state vector ordered in the following manner, 𝑠(𝑡) = [𝑠𝑥(𝑡) 𝑠𝑦(𝑡)]
𝑇
where,

𝑠𝑥(𝑡) = [𝑥
𝑏
(𝑡) 𝑥̇

𝑏
(𝑡) 𝑥

𝑟
(𝑡) 𝑥̇

𝑟
(𝑡)]

𝑠𝑦(𝑡) = [𝑦
𝑏
(𝑡) 𝑦̇

𝑏
(𝑡) 𝑦

𝑟
(𝑡) 𝑦̇

𝑟
(𝑡)]

Expresions in (3.5) and (3.6) can be directly incorporated as inputs in the generic model

from Fig. 3.2. Choosing to do so allows us to consider the input as a good representation

for the intention of the pilot controlling the “r” object. In this case, matrix 𝐵 is given by,

𝐵 = 𝑑𝑖𝑎𝑔(𝐵𝑛,𝐵𝑛), (3.7)

𝐵𝑛 = (0 0 0 1)
𝑇

(3.8)

and,

𝑢(𝑡) = 𝐾𝑠(𝑡), (3.9)

where,

𝐾 = 𝑑𝑖𝑎𝑔(𝐾𝑛,𝐾𝑛), (3.10)

and

𝐾𝑛 = (𝑘1 0 −𝑘1 −𝑘2) (3.11)

By these means, we have modeled accelerations depending on unknown control decisions

(which ultimately depend on the dynamics of other objects). Now, we can put this model

for the accelerations together with a Continuous White Noise Acceleration model,

𝑠̇(𝑡) = 𝐴𝑠(𝑡)+𝐵𝐾𝑠(𝑡)+𝐺𝑣̃(𝑡) = (𝐴+𝐵𝐾)𝑠(𝑡)+𝐺𝑣̃(𝑡) (3.12)

resulting in the system,

𝑠̇(𝑡) = 𝐴𝑐𝑠(𝑡)+𝐺𝑣̃(𝑡) (3.13)

where,

𝐴𝑐 = 𝑑𝑖𝑎𝑔(𝐴𝑝 ,𝐴𝑝), (3.14)

being 𝐴𝑝 the matrix,

𝐴𝑝 =

⎛
⎜
⎜
⎜
⎝

0 1 0 0

0 0 0 0

0 0 0 1

𝑘1 0 −𝑘1 −𝑘2

⎞
⎟
⎟
⎟
⎠

(3.15)
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3.3.2 Discretization of the continuous time model
We can split the discretization of the system from (3.13) in two equal parts and associate

the separate results (for “x” and “y” directions) with block chunks in the discrete transition

matrix and the covariance matrix of the discrete process noise. The discretization will be

derived for one of the two directions and duplicated for the other. If we select the direction

“x” for discretization,

𝑠̇𝑥(𝑡) = 𝐴𝑝𝑠𝑥(𝑡)+𝐺𝑣̃𝑥 (3.16)

where,

𝑣̃𝑥 =
[

𝑣̃𝑥𝑏

𝑣̃𝑥𝑟 ]
(3.17)

its discrete version can be represented as,

𝑠𝑥,𝑘+1 = 𝐴𝑏𝑠𝑥,𝑘 +𝑣𝑥,𝑘 (3.18)

Moreover, the discretization of the entire system in (3.13) can be expressed as,

𝑠𝑘+1 = 𝐴𝑑𝑠𝑘 +𝑣𝑘 (3.19)

where 𝐴𝑏 can be replicated in the discrete system transition matrix 𝐴𝑑 as,

𝐴𝑑 = (
𝐴𝑏 0

0 𝐴𝑏
) (3.20)

the derivation of 𝐴𝑏 can be found in Appendix A.1, as well as the definition of 𝜆′𝑠, resulting

on:

𝐴𝑏 =

⎛
⎜
⎜
⎜
⎜
⎝

1 𝛿𝑡 0 0

0 1 0 0

𝜆2(1−e
𝛿𝑡 𝜆3 )−𝜆3(1−e

𝛿𝑡 𝜆2 )

𝜆2−𝜆3
𝐴𝑏(3,2)

𝜆2 e
𝛿𝑡 𝜆3−𝜆3 e

𝛿𝑡 𝜆2

𝜆2−𝜆3

e𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3

𝜆2−𝜆3
𝜆2 𝜆3(e

𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3 )

𝜆2−𝜆3
𝐴𝑏(4,2) −

𝜆2 𝜆3(e
𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3 )

𝜆2−𝜆3

𝜆2 e
𝛿𝑡 𝜆2−𝜆3 e

𝛿𝑡 𝜆3

𝜆2−𝜆3

⎞
⎟
⎟
⎟
⎟
⎠

(3.21)

where

𝐴𝑏(3,2) = −
𝑘1(e

𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3−𝛿𝑡𝜆2+𝛿𝑡𝜆3)+𝑘2𝜆2(1−e
𝛿𝑡 𝜆3 )−𝑘2𝜆3(1−e

𝛿𝑡 𝜆2 )

𝑘1 (𝜆2−𝜆3)

and

𝐴𝑏(4,2) =
𝑘1(𝜆2−𝜆3−𝜆2 e

𝛿𝑡 𝜆2+𝜆3 e
𝛿𝑡 𝜆3 )−𝑘2𝜆2𝜆3(e

𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3 )

𝑘1(𝜆2−𝜆3)
.

Furthermore, 𝑣𝑘 in (3.19) is the discrete process noise with zero mean, and covariance

matrix given by,

𝑐𝑜𝑣[𝑣] = 𝐶𝑑 = (
𝐶𝑏 0

0 𝐶𝑏 )
(3.22)

The discrete time random component for direction “x” 𝑣𝑥 is given by the integral:

𝑣𝑥(𝑘𝛿𝑡) = ∫

(𝑘+1)𝛿𝑡

𝑘𝛿𝑡

𝑒
𝐴𝑝((𝑘+1)𝛿𝑡−𝜏)𝐺(𝜏)𝑣̃𝑥(𝜏)𝑑𝜏 (3.23)
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which represents a four dimensional multivariate Gaussian distribution parameterized by

zero mean and covariance matrix:

𝐶𝑏 = 𝑞̃𝑥 ∫

𝛿𝑡

0

𝑒
𝐴𝑝(𝛿𝑡−𝜏)𝐺[𝑒

𝐴𝑝(𝛿𝑡−𝜏)𝐺]
𝑇
𝑑𝜏. (3.24)

where 𝑞̃𝑥 is the continuous-time process noise intensity in “x” direction.

3.3.3 Consideration of variable targets interacting behavior
Hidden interactions between the objects and the environment may vary and therefore

the unknown parameters 𝑘1 and 𝑘2 should account for this variability as well. Objects

may even gradually transition from independent motion to interacting motion when, for

instance, targets that are initially far away from each other moving independently “decide”

to gather and travel in group formation for a while.

Incorporation of the knowledge about objects interacting behavior requires an effort

of on-line learning 𝑘1 and 𝑘2. This can be done directly by extending the state vector

with 𝑘1 and 𝑘2 and their respective change rate. The extended state vector considered

is 𝑠(𝑡) = [𝑠(𝑡) 𝑘1(𝑡) 𝑘̇1(𝑡) 𝑘2(𝑡) 𝑘̇2(𝑡)]
𝑇
. Indeed, 𝑘1 and 𝑘2 are not considered constants any

more. Instead, 𝑘1 and 𝑘2 are considered variables and are assumed to evolve according to

independent Continuous White Noise Acceleration models.

Then, the model considered for the new state vector can be expressed as,

𝑠𝑘+1 = 𝐴𝑒𝑠𝑘 +𝑣𝑒,𝑘 (3.25)

where,

𝐴𝑒 = (
𝐴𝑑 0

0 𝐴𝑘
) (3.26)

the blocks of 𝐴𝑒 associated to coordinates 𝑘1 and 𝑘2 are straightforward to calculate as they

are uncoupled from any other coordinate,

𝐴𝑘 = (
𝐴𝑢 0
0 𝐴𝑢 ) ;𝑤ℎ𝑒𝑟𝑒 𝐴𝑢 = (

1 𝛿𝑡
0 1 ) (3.27)

being,

𝑣𝑒 = [𝑣 𝑣𝑘1 𝑣𝑘̇1 𝑣𝑘2 𝑣𝑘̇2]
𝑇

(3.28)

which represents a twelve dimensions multivariate Gaussian distribution parameterized by

zero mean and covariance matrix,

𝑐𝑜𝑣[𝑣𝑒] = (
𝐶𝑑 0

0 𝐶𝑘 )
(3.29)

𝐶𝑘 = (
𝐶𝑢 0
0 𝐶𝑢 ) (3.30)
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again, the blocks 𝐶𝑢 associated with coordinates 𝑘1 and 𝑘2 can be calculated straightfor-

wardly,

𝐶𝑢 =
(

𝛿𝑡3

3
𝛿𝑡2

2
𝛿𝑡2

2
𝛿𝑡 )

𝑞̃𝑘 (3.31)

where 𝑞̃𝑘 is the continuous-time process noise intensity of the variables modeling the

interacting motion.

3.4 Integration of Interacting Motion Modeling in
a TrBD Tracking Application

This section contains all necessary aspects to develop a particle filtering algorithm based

on the formulated model of targets interaction.

Let 𝑠𝑘 denote the state vector and 𝑧𝑘 denote the TrBD measurements at time index 𝑘.

𝑍𝑘 denotes the set of measurements up to time k, including 𝑧𝑘 : 𝑍𝑘 = {𝑧1, 𝑧2, ..., 𝑧𝑘}. The state

space model can be represented by two conditional probability densities:

𝑠𝑘+1 ∼ 𝑝(𝑠𝑘+1|𝑠𝑘), (3.32)

𝑧𝑘 ∼ 𝑝(𝑧𝑘 |𝑠𝑘), (3.33)

where in our particular case, 𝑝(𝑠𝑘+1|𝑠𝑘) is the dynamic model presented in previous subsec-

tion (Eq. (3.25)). 𝑝(𝑧𝑘 |𝑠𝑘) is the probability density of the measurements given the state.

This density function is presented in Subsection 3.4.1.

3.4.1 Observation model: radar track-before-detect measure-
ments

For the numerical experiments we consider a radar TrBD measurement model as in [52].

The used measurement model defines the power reflected by the tracking scenario for each

radar cell. One measurement 𝑧𝑘 is composed of 𝑁𝑟 ×𝑁𝑏 power measurements 𝑧
𝑖𝑗

𝑘
, where

𝑘 ∈ ℕ and 𝑁𝑟 and 𝑁𝑏 are the number of range and bearing cells.

𝑧
𝑖𝑗

𝑘
= |𝑧

𝑖𝑗

𝐴,𝑘
|
2
= |𝐴

(1)

𝑘
ℎ
(1)𝑖𝑗

𝐴 +𝐴
(2)

𝑘
ℎ
(2)𝑖𝑗

𝐴 +𝑛𝐼 (𝑡𝑘)+ 𝑖𝑛𝑄(𝑡𝑘)|
2

(3.34)

where 𝐴𝑐
𝑘
is the complex amplitude of the target labeled as 𝑐.

𝐴
𝑐
𝑘 = 𝐴̃

(𝑐)

𝑘
𝑒
𝑖𝜙𝑘 , 𝜙𝑘 ∈ 𝑈(0,2𝜋) (3.35)

ℎ
(𝑐)𝑖𝑗

𝐴 (𝑠
𝑐
𝑘) = 𝑒

−
(𝑟𝑖−𝑟

𝑐
𝑘
)2

2𝑅
−
(𝑏𝑗 −𝑏

𝑐
𝑘
)2

2𝐵 , 𝑖 = 1, ...,𝑁𝑟 , 𝑗 = 1, ...,𝑁𝑏 (3.36)

𝑟 𝑐
𝑘
and 𝑏𝑐

𝑘
are the range and bearing of the target 𝑐. Note that 𝑐 is used for the target labels,

which could either be 1 or 2 as in Eq. (3.34). For sake of easier visualization of simulation

results, target labels will be associated to colors 𝑏𝑙𝑢𝑒 and 𝑟𝑒𝑑 in following subsections. 𝑅

and 𝐵 are constants related to the size of the cells. Additionally,

𝑟
𝑐
𝑘 =

√

(𝑥𝑐
𝑘
)2+(𝑦𝑐

𝑘
)2 and 𝑏

𝑐
𝑘 = 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑦𝑐
𝑘

𝑥𝑐
𝑘

) (3.37)
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The noise in Eq. (3.34) is complex Gaussian, where 𝑛𝐼 (𝑡𝑘) and 𝑛𝑄(𝑡𝑘) are independent,

zero-mean white Gaussian with variance 𝜎2
𝑛 accounting for the in-phase and quadrature

phase components respectively. These measurements, conditioned on the state are assumed

to be exponentially distributed [53],

𝑝(𝑧
𝑖𝑗
|𝑠𝑘) =

1

𝜇
𝑖𝑗
0

𝑒
− 1

𝜇
𝑖𝑗
0

𝑧
𝑖𝑗

𝑘
(3.38)

where

𝜇
𝑖𝑗
0 = (𝐴̃

(1)

𝑘
)
2
(ℎ

(1)𝑖𝑗

𝐴 (𝑠𝑘 , 𝑡𝑘))
2
+(𝐴̃

(2)

𝑘
)
2
(ℎ

(2)𝑖𝑗

𝐴 (𝑠𝑘 , 𝑡𝑘))
2
+2𝜎

2
𝑛 (3.39)

Assuming that the noise is independent from cell to cell and that the reflections of

the two targets are independent, the density model of the measurements given the state

becomes:

𝑝(𝑧𝑘 |𝑠𝑘) =∏

𝑖𝑗

𝑝(𝑧
𝑖𝑗
|𝑠𝑘) (3.40)

3.4.2 Algorithm
In the framework of recursive Bayesian estimation the prior density 𝑝(𝑠𝑘+1|𝑍𝑘) and the

posterior density 𝑝(𝑠𝑘+1|𝑍𝑘+1) can be obtained, according to the Chapman-Kolmogorov

and Bayes equations, as:

𝑝(𝑠𝑘+1|𝑍𝑘) = ∫ 𝑝(𝑠𝑘+1|𝑠𝑘)𝑝(𝑠𝑘 |𝑍𝑘)𝑑𝑠𝑘 (3.41)

𝑝(𝑠𝑘+1|𝑍𝑘+1) =
𝑝(𝑧𝑘+1|𝑠𝑘+1)𝑝(𝑠𝑘+1|𝑍𝑘)

𝑝(𝑧𝑘+1|𝑍𝑘)
(3.42)

A PF is selected for the implementation due to the non-linearity in the dynamic and

measurement models (see Eqs. (3.25) and (3.34)). The particle cloud representation of

the joint probability density at time 𝑘 is given by the weighted set of particles {𝑠𝑖
𝑘
,𝑤𝑖

𝑘
}
𝑁𝑝

𝑖=1.

An Importance-Sampling-based filter algorithm suffices to show the benefits of modeling

target interactions. Algorithm 1 presents the SIR filter that will be used in the simulations

in Subsection 3.5.1.
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1 𝑘 = 0;

2 Draw 𝑁𝑝 samples 𝑠𝑖
𝑘
from 𝑝(𝑠𝑘);

3 𝑘 = 𝑘+1;

4 Draw 𝑁𝑝 samples 𝑣𝑖
𝑘
from 𝑝(𝑣𝑘);

5 Obtain 𝑁𝑝 samples 𝑠𝑖
𝑘
from 𝑝(𝑠𝑖

𝑘
|𝑠𝑖
𝑘−1

, 𝑣𝑖
𝑘
);

6 Given 𝑧𝑘 , obtain 𝑤̃𝑖
𝑘
= 𝑝(𝑧𝑘 |𝑠

𝑖
𝑘
);

7 Normalize weights 𝑤𝑖
𝑘
= 𝑤̃𝑖

𝑘
/∑

𝑁𝑝

𝑗=1 𝑤̃
𝑗

𝑘
;

8 Resample from 𝑝̂(𝑠𝑘 |𝑍𝑘) = ∑
𝑁𝑝

𝑖=1𝑤
𝑖
𝑘
𝛿(𝑠𝑘 −𝑠𝑖

𝑘
);

9 Extract point estimates from 𝑝̂(𝑠𝑘 |𝑍𝑘), e.g. according to MMSE metric;

10 go to 3

Algorithm 1: Pseudo-code of the SIR filter. Simulations in next section incorporate the

interacting motion and TrBD measurement models (from Sections 3.3.3 and 3.4.1) in the densities

from lines 5 and 6.

3.5 Simulation examples
This section presents simulation results for different scenarios involving interacting targets.

Based on these simulations, we compare the performance of a traditional filter based on

independent motion assumptions (using the base-line model presented in the introduction

of Section 3.3) with the proposed method (based on the interacting target motion model in

Subsection 3.3.3).

3.5.1 Preliminary results
The initial set of interacting trajectories simulated could effectively depict the movement of

a water-skier being towed by a rope attached to a boat. The trajectories of the water-skier

and the boat are illustrated by the continuous red and blue lines in Fig. 3.3 respectively.
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Figure 3.3: Position estimates of a traditional filter with independent motion assumptions on the left hand side.

Estimation error of the track of target labeled as red on the right hand side.

The trajectories are generated using the dynamic model in (3.25) with evolution of 𝑘1

and 𝑘2 as represented by the continuous lines in Fig. 3.4.

Tracking results are shown in Figs. 3.3 and 3.5. Fig. 3.3 shows the estimation per-

formance of a traditional filter assuming decoupled motion of the two targets. Fig. 3.5
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Figure 3.4: Estimation of the parameters in the interacting motion model.

shows the estimation performance of the formulated extension with inference of targets

interaction.

Although the trajectories are strongly coupled, the traditional filter manages to keep

the targets in track because the process noise covariance of the model is tuned in relation

to the coupled maneuverability of the objects. Such prior information is not available in

real operation, but has been used here so that the traditional filter keeps the 𝑟 target in

track. This is essential to produce a high quality base line for evaluation of the contribution

in this chapter. Nevertheless, the traditional filter incurs in large estimation errors when

large accelerations take place due to target interactions (in this case produced by physical

tightening of the rope), see Fig. 3.3 right hand side. Fig. 3.5 shows the estimation error

reduction in the position estimates when the information about target interaction is esti-

mated and exploited on-line. Estimates of the coupling parameters 𝑘1 and 𝑘2 are illustrated

in Fig. 3.4. This estimates can be readily exploited on-line, lowering the uncertainty in the

prediction step.
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Figure 3.5: Position estimates of the proposed filter encapsulating interacting motion inference on the left hand

side. Estimation error of the track of target labeled as red on the right hand side.
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3.5.2 Final results: prevention of labeling confusion and de-
tection of anomalous target behavior

Detecting certain types of coupled motion is relevant for the system to provide situa-

tional awareness at user level. The purpose of this section is not only improving tracking

performance by exploiting real-time estimation of coupling parameters. We also aim at

detecting changes between interactive/no-interactive targets behavior. A Multiple Mode

(MM) filtering implementation can be used to integrate both aims. In order to evaluate

the benefits of such MM implementation, we compare a traditional filter with a MM filter

where the two models used in previous subsection are encapsulated. By these means, the

posterior mode probabilities can be used as a measure of certainty about whether or not

the objects have interacting behaviors. As the MM mechanism gives more importance

to the mode with higher posterior probability, reduction in estimation error is expected

disregarding the degree of target interaction.

Let 𝑚𝑘 = 1 and 𝑚𝑘 = 2 denote the non-interacting and interacting modes at time step 𝑘

respectively. The posterior probability of each mode can be calculated using the particle-

based approximation as follows,

𝑝(𝑚𝑘 = 1|𝑍𝑘) ≈ ∑

𝑖∶𝑚𝑖∗
𝑘
=1

𝑤
𝑖∗
𝑘 ≈

#{𝑚𝑖∗
𝑘
= 1}

𝑁𝑝
(3.43)

𝑝(𝑚𝑘 = 2|𝑍𝑘) ≈
#{𝑚𝑖∗

𝑘
= 2}

𝑁𝑝

(3.44)

where 𝑤𝑖∗
𝑘
and 𝑚𝑖∗

𝑘
are used to denote the weight after resampling and the mode after

resampling of particle 𝑖 at time instant 𝑘 respectively.

Algorithm 2 summarizes the MM SIR filter used in the simulation example in this

subsection.

1 𝑘 = 0;

2 Draw 𝑁𝑝 samples 𝑠𝑖
𝑘
from 𝑝(𝑠𝑘);

3 Draw 𝑁𝑝 samples 𝑚𝑖
𝑘
from 𝑝(𝑚𝑘);

4 𝑘 = 𝑘+1;

5 Draw 𝑁𝑝 samples 𝑣𝑖
𝑘
from 𝑝(𝑣𝑘);

6 Obtain 𝑁𝑝 samples 𝑠𝑖
𝑘
from 𝑝(𝑠𝑖

𝑘
|𝑠𝑖
𝑘−1

, 𝑣𝑖
𝑘
,𝑚𝑖

𝑘−1
);

7 Given 𝑧𝑘 , obtain 𝑤̃𝑖
𝑘
= 𝑝(𝑧𝑘 |𝑠

𝑖
𝑘
);

8 Normalize weights 𝑤𝑖
𝑘
= 𝑤̃𝑖

𝑘
/∑

𝑁𝑝

𝑗=1 𝑤̃
𝑗

𝑘
;

9 Resample from 𝑝̂(𝑠𝑘 |𝑍𝑘) = ∑
𝑁𝑝

𝑖=1𝑤
𝑖
𝑘
𝛿(𝑠𝑘 −𝑠𝑖

𝑘
);

10 Calculate 𝑝(𝑚𝑘−1|𝑍𝑘) according to Eqs. (3.43) and (3.44);

11 Extract point estimates from 𝑝̂(𝑠𝑘 |𝑍𝑘), e.g. according to MMSE metric;

12 Draw 𝑁𝑝 samples 𝑚𝑖
𝑘
from 𝑝(𝑚𝑘 |𝑚

𝑖
𝑘−1

);

13 go to 4

Algorithm 2: Pseudo-code of the MM SIR filter.

The final results show the performance of a MM particle filter exposed to periodical

switches between interacting and independent target motion. The MM filter is compared

with a traditional particle filter were no efforts are made to model interactions. For a fair
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comparison, we run the traditional particle filter with the same amount of particles used in

the MM filter. However, the variance of the process noise in the traditional filter should

be tuned to a larger magnitude (in relation to targets maneuverability) than in the MM

implementation due to the lack of interacting information. Otherwise, the traditional filter

will not be able to maintain the targets in track.

In the upcoming simulation experiment the trajectory set is such that the targets

maneuver coordinately every now and then, as represented by the continuous lines in

Fig. 3.6 (left hand side).
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Figure 3.6: Estimated position of the targets by the traditional filter on the left hand side. Estimation error of

target labeled as red in the right hand side, where each curve is referenced to the axis scale on its same color.

Time scale is also shown over the trajectory.

Such type of on-off chasing behavior can be replicatedwith varying coupling parameters

𝑘1 and 𝑘2 as represented by the ground truth curves in Fig. 3.7. In the simulation segment
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Figure 3.7: Estimation of the parameters in the interacting motion model.

between 43 and 61 seconds, the targets are moving independently. Over the first 42 seconds

and the last 39 seconds, “r” target dynamics are dependent on “b” dynamic state.
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Figs. 3.6 and 3.8 show the point estimates extracted from the traditional and MM

filters respectively. The MM particle filter provides more accurate point estimates than

the traditional filtering solution. In Fig. 3.6 it is also clear that the large uncertainty when

using a traditional filter compromises labeling with respect to target identity if the targets

get close enough (both in position and velocity space). This “labeling confusion” has been

avoided by the proposed incorporation of interacting motion models in the filtering process.
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Figure 3.8: Estimated position of the targets by the MM filter on the left hand side. Estimation error of target

labeled as red in the right hand side, where each curve is referenced to the axis scale on its same color. Time scale

is also shown over the trajectory.

Fig. 3.7 shows the estimation of the coupling variables in the interacting motion model.

Periods of interaction/no-interaction are correctly detected relying on the estimated poste-

rior mode probabilities of the MM filter (see Fig. 3.9). Thresholding this posterior statistic

allows for detection of anomalous amount of target interaction, which can be reflected as a

suspicious target-behavior warning at higher system levels.
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Figure 3.9: The posterior mode probability can be used to infer the amount of interaction between the targets.

The interpretation in this case is that the motion of the targets is strongly coupled over the simulation, except

from 50 to 65 seconds, where the targets perform independent motion.
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The “curse” of dimensionality inherent in PF implementations with high-dimensional

state vectors can be observed in the roughness of the estimation of the coupling parameters

(see Fig. 3.7). Despite this, rough estimation of 𝑘1 and 𝑘2 still provides valuable information

to enhance tracking performance as shown in Fig. 3.8. Since the main contribution in

this chapter is on the modeling of interacting motion, these efficiency problems of the

implementation (that will appear when considering larger number of targets) fall out of

the scope of the study.

3.6 Conclusions
This chapter has looked at the labeling confusion problem in TrBDMOT from the dynamics

point of view, which is especially effective when some structure can be extracted from the

coupled motion of the targets. Detection of anomalous target behaviors is a related higher

level challenge, which has also been considered in this chapter. Both challenges are tackled

by means of modeling and estimating interacting target motion.

In this chapter we have provided a PF solution to estimate and exploit interacting

targets behavior in a TrBDMOT application. The method uses parameters to model coupled

accelerations along coordinates of different targets. The hidden parameters used to model

interactive motion are estimated as part of the state vector and exploited on-line. For the

first time in literature, the presented method exploits such information to close the sensing-

tuning loop inside the tracker, resulting in enhanced tracking performance (including

avoidance of labeling confusion). Additionally, this chapter proposes the incorporation of

the interacting motion models in a Multiple Model (MM) Bayesian filtering implementation.

This enables detection of suspicious target behavior correlated to non-regular degrees of

targets interaction.
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4
Performance evaluation
criterion for TrBD MOT

solutions

4.1 Introduction
In order to estimate the trajectories of the targets, various track-formation strategies can be

adopted. Track-formation is the problem of connecting target state estimates that belong

to the same target to form tracks. In order to take informed track-formation decisions

in TrBD MOT, the labeling problem as defined in [27], needs to be solved. To solve the

labeling problem, a method for labeling uncertainty characterization is required.

An optimal solution to the labeling problem is especially important when tracking

closely-spaced objects. TrBD MOT copes with closely-spaced objects in cases where a

traditional plot-based approach would have to deal with merged measurements. Due to

integration over time, TrBD MOT provides an inherently increased resolution capability

over Detect-before-track (DBT) MOT, which makes it all the more important to address

the characterization of labeling uncertainty in the absence of detection plots.

Characterizing labeling uncertainty involves decomposing the multi-object Bayes poste-

rior density. This decomposition has been traditionally done by solving the Data Association

(DA) problem, the Multiple Hypotheses Tracking (MHT) decomposition [11] is an exam-

ple. In TrBD context, association-dependent decompositions cannot be formulated due to

the absence of detections (and plots). Nevertheless, labeling uncertainty still needs to be

characterized. Therefore, a DA-free method to perform a label-dependent decomposition

of the Bayes posterior is required. The contents in chapters 5, 6 and 7 propose various

implementations for such a method.

The remainder of this thesis keeps the focus on the TrBD MOT problem for closely-

spaced objects. This chapter revisits a sensible method for evaluation of TrBD DA-free

The contents provided in this chapter are based on the publication “Evaluation of Labeling Uncertainty in

Multiple Target Tracking with Track-before-detect Radars,” C. M. Leon and H. Driessen, in Proceedings of the
22nd International Conference on Information Fusion, Ottawa, 2019, pp. 1-8.
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solutions. The evaluationmethod, published by the author of this thesis in [22] and revisited

in [27], calculates the evaluation references relying on a label-dependent decomposition

based on DA. Although this chapter does not provide a new contribution compared to the

published results, it does provide a more compact and simplified formulation.

The method presented in this chapter departs from the current literature trend based

on optimization over the Mean Optimal Sub-Pattern Assignment (MOSPA) metric. Instead,

the presented criterion is based on traditional MSE optimization. In spite of this, the

proposed generation of evaluation references prevents “track coalescence” and “track swap”

underperformance. Additionally, the evaluation criterion does not suffer “combinatorial

explosion” as it would be expected given its DA-based construction. This becomes possible

when implementing the performance evaluation criterion with a PF due to the fact that

several association-dependent PFs with the same particle support can be unified as a single

PF. This differs from parametric methods, where the sum of different data association-

dependent densities, for instance a Gaussian mixture, cannot be represented as one unified

parametric density.

The main contribution of this chapter is a PF algorithm implementation providing

optimal statistics relevant for track formation. These statistic are labeled tracks and

corresponding labeling certainties. Additionally, such algorithm is incorporated as part of a

criterion for performance evaluation of DA-free trackers. Despite its DA-based construction,

the evaluation criterion can be used legitimately to evaluate solutions such as the UD-based

and CMT algorithms provided in following chapters.

The chapter is organized as follows. In section 2, we provide the context and outline

the trend in literature for performance evaluation of MOT algorithms. In section 3, the

proposed generation of optimal references is presented. Also, the elaboration on how PF

approximations enable a suitable performance evaluation, departing from optimization

over MMOSPA, is provided. In section 4, the mathematical description of the proposed

approach is formulated and the PF algorithm for practical implementation of the evaluation

method is provided. Finally, numerical results are discussed before extracting conclusions

and closing the chapter.

4.2 Related trends and context
In [54] Svensson et al. show that when targets are closely spaced, traditional tracking

algorithms can be adjusted to perform better under a performance measure that disregards

identity. This performance measure is MOSPA and it has become the standard benchmark

metric for evaluation of tracking performance in the Information Fusion community. In

a nutshell, optimizing over MOSPA in closely-spaced targets scenarios provides better

results than optimizing over MSE or MAP as long as the research question is only “where

are the targets now?” and the question of “which target corresponds to which estimated

location?” does not matter at all or can be answered relying on additional classification

processing or additional systems such as Identification Friend or Foe (IFF).

The main arguments supporting the use of MOSPA metric when labeling of the tracks

does not matter can be traced back to chapter 2. The same arguments can be found in [55],

where it is explained that optimizing over traditional metrics leads to estimation under-

performance known as “track coalescence” (for MMSE) or “track swap” (for MAP) when

considering multimodal PDFs. Such cases become problematic due to the existence of
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multimodalities in the posterior PDF as a result of several association hypothesis holding

non negligible probabilities. One heuristic way used to avoid track-coalescence while

optimizing over traditional MMSE is taking the mean of the most likely hypothesis. How-

ever, this does not take into account the uncertainty of other (potentially non-negligible)

hypotheses.

A theoretically complete solution for the evaluation method when tracking of identities

matter (as it happens to be the case in our problem description from section 2.3) is an

MHT-type of solution [11]. In fact, MHT-based algorithms generate optimal references for

answering the two questions in the overall thesis problem description from section 2.3 (in

DBT context). Firstly, reference labeled tracks can be extracted by optimizing over MMSE

individually for each and every hypothesis. Secondly, not only every mode in the posterior

density would have an unbiased point estimate representative, but also the corresponding

labeling uncertainty would be analytically characterized by the MHT DA probabilities.

Unfortunately, practical implementation of this complete solution would not be feasible

as DA hypotheses grow exponentially from one scan to the next one [11]. Additionally,

left aside “combinatorial explosion” problems, displaying multiple DA-dependent solutions

in the screen of the radar operator is not acceptable [44].

4.3 Proposed approach
The outcome of this chapter is a PF algorithm for the generation of the output Optimal

references in Fig. 4.1. This optimal references are a key component in the complete plot-

based framework for evaluation of DA-free trackers.

Figure 4.1: Plot-based labeled-MOT criterion for evaluation of DA-free decompositions.

The block diagram in Fig. 4.1 receives plots as input and produces two sets of outputs

(represented by the two arrows). Each set of outputs contains several pairs. Being each pair

composed of labeled tracks and corresponding labeling certainty estimate. To be precise,

the arrow 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 “contains” as many pairs as the factorial of the number of

targets, matching all possible ways of assigning labels to the tracks for an arbitrary discrete

time-step. The output on the left hand side contains the analytic references calculated by
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the desired evaluation algorithm. The output on the right hand side is formated in the exact

same way, contains the final estimates provided by a generic DA-free solution. Examples of

such solution, will be proposed in following chapters. The evaluation criterion quantifies the

similarity between both sets of outputs, as will be presented in the performance evaluation

of the various algorithms in chapters 5, 6 and 7.

The meaning of the major processes involved in the evaluation criterion are provided

on the right hand side of Fig. 4.1. The description of the block diagram is as follows. The

DA process takes a prior believe and a plot-set as inputs, and it generates an analytic

DA-based decomposition (association-dependent posterior beliefs) as outputs. Optimal

references for the labeled tracks and labeling certainties, are calculated for each independent

component. According to fundamental analytical principles, these optimal references are

calculated based on MMSE estimation and DAP processes and provided as outputs in the

left downwards-pointing arrow.

The described procedure brings nothing new compared to MHT-based theory. In fact,

the well known practical concern of MHT “combinatorial explosion” arises at this point as

propagating all DA-dependent posterior densities is not tractable using parametric density

representations. The novel contribution in the implementation of the evaluation algorithm

resides on how to circumvent the “combinatorial explosion” problem without resorting to

pruning, merging or capping techniques commonly used in MHT-based implementations.

Instead of using these techniques, the problem is tacked by removing the DA structure in

the DA-dependent decomposition through the Unification (U) process in Fig. 4.1. This U

process can only be supported by PF implementations of the evaluation algorithm.

The U process is only supported by PF approximations as it produces the unification

of several DA-dependent particle-based approximations into a single particle cloud. The

reason why the U process is not supported with parametric implementations is because the

unification of several DA-dependent parametric densities cannot result on a single unified

parametric density, but on a mixture.

Choosing to implement the evaluation algorithm with particle-based approximations

does not only circumvent the “combinatorial explosion” problem. Also, the unification

of different DA-dependent particle-based approximations into a single particle cloud is a

process that removes the DA structure. Hence, the outcome of this process resembles the

type of DA-free posterior densities produced in TrBD filtering.

Overall, choosing a PF to implement the evaluation method provides: approximation

of updated densities with explicit label-dependent structure and the ability to remove

this structure. The first aspect enables generation of references for evaluation and the

second aspect enables tractability and generation of inputs for the DA-free algorithms

under evaluation. This way, the algorithm provided as the main contribution in this chapter

gets incorporated into the performance evaluation criterion pictured in Fig. 4.1.

To finalize the high level description of the evaluation criterion, the functionality

implemented in the bottom right block in Fig. 4.1 needs to be defined. This functionality

can be described as the inference of the optimal references produced in the bottom left

block, assuming one has only access to a PF approximation of the posterior density after

unification, i.e. and approximation of the DA-free or non-decomposed posterior density.

This block will be implemented by the DA-free tracking algorithms proposed in chapters 5,

6 and 7.
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Circumventing “combinatorial explosion” in the evaluation algorithm
This subsection provides a deeper description on how the evaluation criterion circumvents

the “combinatorial explosion” concern. Fig. 4.2 illustrates the exponential growth of

components in the posterior density when considering implementations with parametric

densities. The “combinatorial explosion” problem resulting from extending the hypotheses

tree over time is due to the fact that all DA-dependent components cannot be unified as a

single density after each measurement incorporation. For instance, a Gaussian mixture

density cannot be described parametrically as one single parametric density. Therefore,

one needs to propagate each parametric density in the mixture from one recursion to the

next one.

Figure 4.2: Hypotheses tree growth along first two scans by exact MHT, assuming two targets, no false alarm and

perfect detection. Dropping these assumptions would result in an even quicker hypotheses growth.

The unification of association dependent densities can be performed when considering

implementations based on particle-based approximations. The proposed evaluation algo-

rithm prevents “combinatorial explosion” by unification of several DA-dependent particle

clouds into a single particle cloud. This is possible provided all association-dependent

clouds share the same particle basis as illustrated in Fig. 4.3. The notation 𝑠 and 𝑤 are used

to refer to particles’ states and weights respectively.

Figure 4.3: The use of PFs enables the approximation of the theoretically complete solution without running into

“combinatorial explosion”. The proposed hypotheses growth unification for PF implementations requires that all

DA-dependent PFs share the same particle basis.
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As illustrated in Fig. 4.3, two association-dependent PFs (with same particle support

and different association-dependent weights) can be unified as a single PF taking the same

sample support and adding up (followed by normalizing) the weights.

Association dependent PF approximations, for instance after incorporation of measure-

ments in the second scan, {𝑠𝑖2,𝑤
𝑖,𝐷𝐴1
2 }

𝑁𝑝

𝑖=1 and {𝑠𝑖2,𝑤
𝑖,𝐷𝐴2
2 }

𝑁𝑝

𝑖=1 in Fig. 4.3, are used individually

for extracting labeled tracks and labeling probabilities analytically. Labeled tracks are opti-

mized over MMSE and labeling probabilities are calculated as the association probabilities.

These labeled tracks and labeling probabilities will be considered as references for evalua-

tion. Then the association-dependent PFs are unified as explained in previous paragraph.

At this point the link can be made with the overall block diagram in Fig. 4.1. In fact, the

unified particle cloud is fed as the DA-free density approximation for the algorithms that

will be presented in following chapters.

For sake of fair evaluation, it is explicit in the design of the evaluation criterion that

both the algorithm generating evaluation references and the algorithm under evaluation

need to be executed using the same plot data-set. Although perhaps counterintuitive, the

algorithms to be presented in following chapters, designed for operation in TrBD, need to be

validated in DBT. This is not a contradiction, these DA-free algorithms support estimation of

label tracks and labeling certainties from non-decomposed densities, disregarding whether

the these densities are calculated in TrBD or DBT context.

It is precisely because no analytical solution of the desired decomposition can be derived

analytically in TrBD, that we will be interested on using this criterion in order to compare

the optimality of the solutions in chapters 5, 6 and 7.

4.4 Mathematical description
The essential theory required to build up optimal references for evaluation is directly linked

to the relation between the labeling problem and the DA problem described in section 2.4.

Based on this, the optimal references for the labeled tracks and labeling certainty estimates

can be described mathematically as follows:

• In DBT context

– Generate the analytical decomposition of 𝑝(𝒔𝑘 |𝒁𝑘):

𝑝(𝒔𝑘 |𝒁𝑘) ∝

𝑡!

∑

𝑚=1

𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1) (4.1)

– For each DA-dependent component 𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1)

⋄ Extract MMSE labeled point estimates:

𝐸[𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1)] = ∫
𝒔𝑘

𝒔𝑘 𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1)𝑑𝒔𝑘 (4.2)

⋄ Extract labeling certainty associated:

𝑝(𝜋𝑚(𝒛𝑘)|𝒁𝑘) =
∫ 𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1)𝑑𝒔𝑘

∑
𝑡!
𝑚=1 ∫ 𝑙(𝜋𝑚(𝒛𝑘)|𝒔𝑘)𝑝(𝒔𝑘 |𝒁𝑘−1)𝑑𝒔𝑘

(4.3)
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– Unify the decomposition in Equation (4.1) (only possible in PF implementations)

– Start new filtering iteration

Please note again that the optimal references in Equations (4.2) and (4.3) need to be

derived from the DBT analytical expression in Equation (4.1). Nonetheless, the validation

of the module in the lower right corner in Fig. 4.1 (using plots) guarantees equivalent

inference quality in TrBD.

4.4.1 Algorithm implementation
Alg. 3 is the pseudo-code to generate the PF approximation of the optimal references

described mathematically in section 4.4.

1 𝑘 = 0;

2 Draw 𝑁𝑝 samples 𝒔
𝑗

𝑘
from 𝑝(𝒔𝑘);

3 Draw 𝑁𝑝 samples 𝒏
𝑗

𝑘
from 𝑝(𝒏𝑘);

4 𝑘 = 𝑘+1;

5 𝒔
𝑗

𝑘
= 𝑓 (𝒔

𝑗

𝑘−1
,𝒏

𝑗

𝑘−1
);

6 Generate data-association-dependent posterior beliefs;

for i=1 until t!;

7 Given 𝒛𝑘 , obtain 𝑤̃
𝑖,𝑗

𝑘
= 𝑝(𝜋𝑖(𝒛𝑘)|𝒔

𝑗

𝑘
);

8 Normalize weights 𝑤
𝑖,𝑗

𝑘
= 𝑤̃

𝑖,𝑗

𝑘
/∑

𝑁𝑝

𝑗=1 𝑤̃
𝑖,𝑗

𝑘
;

9 Extract Labeled Point Estimates (LPEs) according to the particle-based

approximation of Equation (4.2);

11 Obtain certainty measures of LPEs according to

particle-based approximation of Equation (4.3);

11 Sum data-association-dependent posteriors in order to

approximate 𝑝(𝒔𝑘 |𝒁𝑘) with a single particle cloud;

for j=1 until 𝑁𝑝;

12 𝑤
′𝑗

𝑘
=∑

𝑡!
𝑖=1𝑤

𝑖,𝑗

𝑘
;

13 Normalize weights 𝑤
𝑗

𝑘
= 𝑤

′𝑗

𝑘
/∑

𝑁𝑝

𝑗=1𝑤
′𝑗

𝑘
;

14 Resample 𝑁𝑝 times from 𝑝̂(𝒔𝑘 |𝒁𝑘) = ∑
𝑁𝑝

𝑗=1𝑤
𝑗

𝑘
𝛿(𝒔𝑘 −𝒔

𝑗

𝑘
) to generate

𝑝̂(𝒔𝑘 |𝒁𝑘) =
1
𝑁𝑝

∑
𝑁𝑝

𝑗=1 𝛿(𝒔𝑘 −𝒔
𝑗

𝑘
);

go to 3

Algorithm 3: Pseudo-code for generation of optimal references

4.5 Numerical results
Implementation of Alg. 3 for a closely-spaced MOT scenario leads to the results in Figs. 4.4

and 4.5.
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Figure 4.4: Generation of references (resulting from hypothesis 𝜋1) for evaluation of DA-free algorithms.
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Figure 4.5: Generation of references (resulting from hypothesis 𝜋2) for evaluation of DA-free algorithms.

The figures illustrate the two DA-dependent set of references. Not surprisingly, labeled-

track references are very close to the real trajectories. In fact, when target identity is

not of interest, one would simply use the ground-truth trajectories to measure estimation

performance.

Unlike ground-truth trajectories, ground-truth labeling certainties are not known as a

design choice of the simulation. Instead, the ground-truth labeling certainty needs to be

calculated due to its dependency on all modeling aspects. In fact, the calculation of when

and how quickly the ground-truth labeling certainty drops down to 0.5 depends on the

parameters of the simulation. The choice of simulation parameters is shown in Table (4.1).
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Table 4.1: Parameters of the simulation

parameter value

𝑑𝑖 1.66 m

𝑑𝑚 0.22 m

𝜎𝑛 0.14 m/s
3/2

𝜎𝑣 0.045 m

𝜏 1 s

𝑁𝑝 100000 particles

The evaluation can be reproduced by setting up the trajectories for the objects with

initial and minimum distance as indicated by 𝑑𝑖 and 𝑑𝑚 in Table (4.1). The evaluation

considers the dynamic and measurement models as nearly constant velocity [23] and

linear-Gaussian. The standard deviations of the process noise and observation noise are

indicated by 𝜎𝑛 and 𝜎𝑣 respectively in Table (4.1), where 𝜏 denotes the revisit time.

4.5.1 Discussion of numerical results
As expected, over the first 12 seconds of the simulation only one of the DA hypotheses

holds full certainty. The certainty associated to the alternative DA hypothesis is so low that

the first labeled point estimates in Fig. (4.5) can be disregarded. Also expected, the labeling

certainty drops down to around 0.5 as soon as the objects get closely-spaced. This means

that labeling information has been lost and cannot be recovered after the split under the

assumption that the likelihood is permutation invariant (the measurements do not carry

any information of identity).

4.6 Conclusions
This chapter presented a sensible method for evaluation of DA-free MOT solutions. The

main contribution of this chapter is a PF algorithm implementation providing optimal

statistics relevant for track formation. As no analytical form of such statistics exists in

TrBD context, the evaluation algorithm provided in this chapter calculates them in DBT

context, where a Data Association dependent decomposition can be formulated analytically.

This analytical decomposition enables extraction of references both for the labeled tracks

and corresponding labeling certainties.

The presented algorithm will be incorporated as part of a criterion for performance

evaluation of DA-free trackers. Despite its DA-based construction, the evaluation criterion

can be used legitimately to evaluate solutions such as the UD-based and CMT algorithms,

which will be designed for operation in TrBD context in following chapters. This is because

these algorithms will be designed to infer a relevant label-dependent decomposition of any

posterior density, disregarding whether this density has been generated in the context of

DBT or TrBD.

The algorithm presented in this chapter provides evaluation references departing from

current trends based on MOSPA-based estimation. Special attention has been directed to

prevent the problems of “track coalescence” and “track swap” commonly observed when

MOT algorithms do not account for labeling uncertainty characterization.
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The evaluation method prevents “combinatorial explosion” as well, which is expected

in parametric implementations of exact MHT-like algorithms. This practical problem

has been avoided by means of approximating the Bayes recursion with a PF. The conve-

nience of a particle-based implementation of the evaluation method is twofold. Firstly,

association-dependent PFs can be unified after extraction of association-dependent refer-

ences for evaluation. Secondly, the unified PF is the type of input required by the labeling

characterization algorithms to be presented in the last part of the thesis.

This chapter complements the rest of the thesis. It constructs the inputs for the algo-

rithms in the last chapters in the form of a non-decomposed approximation of the posterior

density. Also, it provides the reference outputs (expected from the algorithms in the last

chapters) associated the optimal label-dependent decomposition.

in TrBD MOT by recovering a label-dependent decomposition from a non-decomposed

TrBD posterior density.

Let us consider, for instance, that the measurements in the second scan have been

incorporated and that we only have access to the unified posterior density approximated

by particle cloud {𝑠𝑖2,𝑤
𝑖
2}
𝑁𝑝

𝑖=1. The inference problem is about recovering the tracks and

labeling probabilities extracted from the two association-dependent PF approximations

{𝑠𝑖2,𝑤
𝑖,𝐷𝐴1
2 }

𝑁𝑝

𝑖=1 and {𝑠𝑖2,𝑤
𝑖,𝐷𝐴2
2 }

𝑁𝑝

𝑖=1.
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5
DA-Free Tracking:

Generalization of Blom and
Bloem’s Uniqe
Decomposition

5.1 Introduction
This chapter presents a DA-free tracking solution for the TrBD MOT problem based on the

Unique Decomposition (UD) by Blom and Bloem [25]. The UD is a theoretical method to

decompose a two-targets PDF into its Permutation Invariant (PI) and Permutation Strictly

Variant (PSV) components. Although applications, implementations and generalizations

of the UD presented in 2009 have been published [56] [57], none of these results cover

the implementation for non-linear and/or non-Gaussian (non-LG) problems. Without this

implementation, the UD cannot be applied in the TrBD MOT problem due to the highly

non-linear nature of the TrBD radar measurements.

The UD allows interpretation of the labeling problem in generic MOT contexts. This

remains valid even when considering measurement models precluding formulation of DA –

as illustrated in [33] for an MOT problem in the area of Wireless Sensor Networks (WSN).

This chapter derives two solutions to estimate separately the PI and the PSV components

under non-LG conditions. One solution applies the decomposition at each scan in a

single filter, the other solution tracks the decomposition over time, using a two filter

implementation. The algorithm for the two-PFs solution will be provided as the preferred

UD implementation due to its ability to tackle particle depletion.

The two algorithms are showcased in simulations, involving low-observable closely-

spaced object scenarios in TrBD context. Simulation results illustrate the potential of the

two-PFs algorithm to perform DA-free labeling uncertainty characterization and to aid at

The contents provided in this chapter have been submitted for publication in IEEE Transactions on Aerospace and
Electronic Systems as “Implementation of the Unique PDF Decomposition for tracking closely-spaced objects with

Track-Before-Detect radar systems,” C. M. Leon, H. Driessen and A. Yarovoy.
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taking informed track-formation decisions. Ultimately, this results in a novel approach to

the TrBD MOT problem.

The chapter is organized as follows. Section 2 presents the related literature. Section

3 presents the estimation framework and modeling assumptions. Section 4 describes

analytically the proposed single filter solution. Section 5 derives the dual filter solution

presented as the main contribution of this chapter. Section 6 presents simulation results

and section 7 concludes the chapter.

5.2 Related literature
In 2009, Blom and Bloem presented the existence and characterization of a unique decompo-

sition for two-target densities [25]. Practical implementations under Gaussian assumptions

were presented by the same authors in [56] and [57]. In [25], Blom and Bloem gave an

interpretation of the UD in the context of MOT problems. In particular, Remarks 1 and 2

in [25] state the PDF conditions required to declare total labeling certainty or total labeling

uncertainty.

The UD theory based on the problem described in [25] is indisputable. In fact, the

UD (summarized by the first four equations in this chapter) is fully analytical. Despite

theoretical correctness and interpretations in [25], it is not certain whether the UD theory

can be applied for optimal characterization of labeling uncertainty in a TrBD MOT problem.

A sensible application of the UD theory to the labeling problem has been done in [33]

by interpreting the invariance coefficient of the UD as a measure of labeling ambiguity.

The same authors have illustrated that this interpretation cannot be extended to densities

out of the scope of [25] such as multimodal-non-symmetric densities (see [58, A.17]).

A relevant question would be whether mentioned problematic densities can be re-

produced from practical MOT scenarios. This does not seem to be the case as when the

joint-multitarget density becomes multimodal due to closely-spaced targets, the modes

tend show up in symmetric regions as the objects get sufficiently separated (after being

closely-spaced) [1][30].

In [33], the authors tackle an MOT problem based on (strongly non-linear) signal

intensity measurements from a WSN. As measurements are not modeled by detection

points, labeling uncertainty cannot be characterized via DA probabilities. In order to

characterize labeling uncertainty, [33] estimates the permutation invariance weight of the

posterior PDF. This weight, defined in the UD by Blom and Bloem, was mapped into the

probability of successful labeling for a non-LG MOT problem. Although proposed as future

work in [33], the generalization of this solution for more than two objects has not been

addressed.

Despite being based on the UD theory by Blom and Bloem, the contents in [33] do not

derive the non-LG implementation of the UD “per sé”. In fact, the implementation suggested

in [33] considers a relaxed version of the problem. Due to this relaxation, estimation is only

expected to be accurate if the targets have separated sufficiently after being closely-spaced.

The present chapter aims at deriving a more generic implementation of the UD for non-LG

problems.

The application of the UD expands the estimation of labeling probabilities (referred to

as probability of “track swap” in [56] and [57], and as probability of “successful labeling”

in [33]). Another application of the UD is to ease the optimization of point estimates over
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the Mean Optimal Sub-Pattern Assignment (MOSPA) metric. In fact, some literature results

show that calculation of Minimum-MOSPA (MMOSPA) point estimates can be eased by

first doing a transformation of the posterior PDF into its UD. In particular, [43] derives an

exact method to obtain the MMOSPA error estimate inspired by a proof in [59], and shows

that the mean of the strictly permutation variant PDF can be shown to be an approximation

to the MMOSPA estimate.

5.2.1 The Uniqe Decomposition theory
According to [25], any joint PDF 𝑝(𝑠𝑘) of a two target state vector 𝑠𝑘 = [𝑠1

𝑘
𝑠2
𝑘
]𝑇 can be

decomposed as a weighted sum of its permutation invariant component 𝑝𝐼 (𝑠𝑘) and its

permutation strictly variant component 𝑝𝑉 (𝑠𝑘):

𝑝(𝑠𝑘) = 𝛼
𝐼
𝑘𝑝

𝐼
(𝑠𝑘)+ (1−𝛼

𝐼
𝑘)𝑝

𝑉
(𝑠𝑘) (5.1)

where:

𝛼
𝐼
𝑘 = ∫

𝑠𝑘

𝑚𝑖𝑛(𝑝(𝑠𝑘),𝑝(𝜋𝑠𝑘))𝑑𝑠𝑘 (5.2)

𝑝
𝐼
(𝑠𝑘) =

𝑚𝑖𝑛(𝑝(𝑠𝑘),𝑝(𝜋𝑠𝑘))

𝛼𝐼
𝑘

(5.3)

𝑝
𝑉
(𝑠𝑘) =

𝑝(𝑠𝑘)−𝛼𝐼
𝑘
𝑝𝐼 (𝑠𝑘)

1−𝛼𝐼
𝑘

(5.4)

where 𝜋 denotes the permutation matrix. In our case of study, where two scalar targets are

considered (2−1𝐷 targets case):

𝜋 =
(

0 1

1 0)
(5.5)

5.3 Estimation frameworkandmodelingassumptions
In recursive Bayesian estimation, the posterior and predictive densities 𝑝(𝑠𝑘 |𝑍𝑘) and

𝑝(𝑠𝑘 |𝑍𝑘−1), are desired. The general non-linear dynamic system and observation mod-

els can be denoted as 𝑓 and 𝑞 respectively:

𝑠𝑘 = 𝑓 (𝑠𝑘−1, 𝑞𝑘−1) (5.6)

𝑧𝑘 = 𝑞(𝑠𝑘 , 𝑣𝑘), 𝑘 ∈ ℕ (5.7)

where 𝑠𝑘 , 𝑞𝑘 , 𝑧𝑘 and 𝑣𝑘 represent the state, process noise, the measurement, and the mea-

surement noise respectively.

We tackle the MOT problem in the framework of recursive Bayesian filtering. The

predicted and posterior densities of interest 𝑝(𝑠𝑘 |𝑍𝑘−1) and 𝑝(𝑠𝑘 |𝑍𝑘) are obtained by iteration

over the Chapman-Kolmogórov and Bayes equations:

𝑝(𝑠𝑘 |𝑍𝑘−1) = ∫ 𝑝(𝑠𝑘 |𝑠𝑘−1)𝑝(𝑠𝑘−1|𝑍𝑘−1)𝑑𝑠𝑘−1 (5.8)
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𝑝(𝑠𝑘 |𝑍𝑘) =
𝑝(𝑧𝑘 |𝑠𝑘)𝑝(𝑠𝑘 |𝑍𝑘−1)

𝑝(𝑧𝑘 |𝑍𝑘−1)
(5.9)

in this framework, the models in Equations (5.6) and (5.7) are expressed in the form of

𝑝(𝑠𝑘 |𝑠𝑘−1) and 𝑝(𝑧𝑘 |𝑠𝑘) respectively.

Due to the non-linear and non-Gaussian character of our TrBD problem, the densities

are not known as an easy parametric function, though rather in a sample-based (particle)

approximation. This poses the difficulty on how to compute the UD for the predictive and

posterior densities (to be more precise how to compute the minimization as formulated in

Equations (5.2) and (5.3)), since in many Particle Filters (PF) the evaluation of the density

per particle is not readily available.

Particle filtering based on Sequential Importance Resampling (SIR) will be the choice

for approximating the densities of interest. As computational efficiency is not on the focal

point in this chapter, other filtering implementations, e.g. the ones based on rejection

sampling or particle flow filters etc, are not considered.

This chapter derives and implements algorithms for computing the UD in a running

filter that can deal with generic, i.e. non-LG problems. The derivations in this chapter

assume that both dynamic and observation models are invariant with respect to label

swapping. This means that there should be no distinction between the dynamic models

used for the various objects, i.e. 𝑝(𝑠𝑘 |𝑠𝑘−1) = 𝑝(𝜋𝑠𝑘 |𝑠𝑘−1), and that the likelihood function

used to model measurements should not change when swapping the labels of the targets, i.e.

𝑝(𝑧𝑘 |𝑠𝑘) = 𝑝(𝑧𝑘 |𝜋𝑠𝑘). The first assumption holds in practical implementations when tracking

similar targets, unless coupled motion is modeled explicitly. The second assumption is

already described in the introductory chapter as it is equivalent to consideringmeasurement

models which do not carry any labeling information. This is the case in the TrBD models

considered throughout this thesis .

Following sections will derive and provide implementations for two decomposition

filters based on the UD theory. The structural difference between both algorithms is how

the filters start each recursion. The first filter decomposes the predictive density based on

a non-decomposed previous posterior density. The second filter runs a recursion on the

decomposed density using two filters.

The first proposed filter can be regarded as a partially decomposed recursive solution

whereas the second filter can be regarded as a fully decomposed recursive solution. In

both filters the update step is the same, while the difference is in the prediction step. The

description of the steps includes a derivation of the analytical formulas and a description

of the particle-based approximation. For the sake of clarity, derivations are left to the

appendix section A.2.

5.4 Analytic description and algorithm implemen-
tation of the partially decomposed filter

As the update step is the same for both proposed solutions, its description will only be

provided in this section and referred to from next section.
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5.4.1 Update step
This section provides a description of the update step for both the invariant and strictly

variant parts of the predictive density. In particular, we are interested in computing the

densities and weights required by the desired decomposition of the posterior:

𝑝(𝑠𝑘 |𝑍𝑘) = 𝛼
𝐼
𝑘|𝑘𝑝

𝐼
(𝑠𝑘 |𝑍𝑘)+𝛼

𝑉
𝑘|𝑘𝑝

𝑉
(𝑠𝑘 |𝑍𝑘) (5.10)

Assuming the decomposition of 𝑝(𝑠𝑘 |𝑍𝑘−1) is available, i.e. 𝑝
𝐼 (𝑠𝑘 |𝑍𝑘−1), 𝑝

𝑉 (𝑠𝑘 |𝑍𝑘−1), 𝛼
𝐼
𝑘|𝑘−1

and 𝛼𝑉
𝑘|𝑘−1

= 1−𝛼𝐼
𝑘|𝑘−1

are known, the update of the decomposition when receiving a new

measurement for which the likelihood is invariant under permutation, i.e. 𝑝(𝑧𝑘 |𝑠𝑘) =

𝑝(𝑧𝑘 |𝜋𝑠𝑘) is given by (using 𝑋 ∈ {𝐼 ,𝑉 }):

𝑝
𝑋
(𝑠𝑘 |𝑍𝑘) =

𝑝(𝑧𝑘 |𝑠𝑘)𝑝
𝑋 (𝑠𝑘 |𝑍𝑘−1)

𝑝𝑋 (𝑧𝑘 |𝑍𝑘−1)
(5.11)

with

𝛼
𝑋
𝑘|𝑘 =

𝑝𝑋 (𝑧𝑘 |𝑍𝑘−1)𝛼
𝑋
𝑘|𝑘−1

𝑝(𝑧𝑘 |𝑍𝑘−1)
(5.12)

𝑝
𝑋
(𝑧𝑘 |𝑍𝑘−1) = ∫ 𝑝(𝑧𝑘 |𝑠𝑘)𝑝

𝑋
(𝑠𝑘 |𝑍𝑘−1)𝑑𝑠𝑘 (5.13)

𝑝(𝑧𝑘 |𝑍𝑘−1) = 𝑝
𝐼
(𝑧𝑘 |𝑍𝑘−1)𝛼

𝐼
𝑘|𝑘−1+𝑝

𝑉
(𝑧𝑘 |𝑍𝑘−1)𝛼

𝑉
𝑘|𝑘−1 (5.14)

Please refer to the appendix section A.2 for the derivation of Equations (5.11) and (5.12).

This update step comprises two regular update steps for both invariant and variant densities

𝑝𝑋 (𝑠𝑘 |𝑍𝑘) including an update of the weights 𝛼𝑋
𝑘|𝑘

associated with the invariant and variant

densities.

Particle filtering description
In order to approximate the expression in (5.11), the update step proceeds as the independent

updating of both available particle clouds {𝑠
𝑋,𝑖

𝑘|𝑘−1
, 𝛾

𝑋,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 (with 𝑋 = {𝐼 ,𝑉 }):

{𝑠
𝑋,𝑖

𝑘|𝑘
, 𝛾

𝑋,𝑖

𝑘|𝑘
}
𝑁𝑝

𝑖=1 ∼ 𝑝
𝑋
(𝑠𝑘 |𝑍𝑘) (5.15)

with {𝑠
𝑋,𝑖

𝑘|𝑘
}
𝑁𝑝

𝑖=1 = {𝑠
𝑋,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 and:

𝛾
𝑋,𝑖

𝑘|𝑘
=
𝑝(𝑧𝑘 |𝑠

𝑋,𝑖

𝑘|𝑘−1
)𝛾

𝑋,𝑖

𝑘|𝑘−1

𝑝̂𝑋 (𝑧𝑘 |𝑍𝑘−1)
(5.16)

The approximation of (5.13) can be written as

𝑝̂
𝑋
(𝑧𝑘 |𝑍𝑘−1) =∑

𝑖

𝑝(𝑧𝑘 |𝑠
𝑋,𝑖

𝑘|𝑘−1
)𝛾

𝑋,𝑖

𝑘|𝑘−1
(5.17)

The updating of the weights from the expression in (5.12) then is done via:

𝛼̂
𝑋
𝑘|𝑘 =

𝑝̂𝑋 (𝑧𝑘 |𝑍𝑘−1)𝛼̂
𝑋
𝑘|𝑘−1

𝑝̂(𝑧𝑘 |𝑍𝑘−1)
(5.18)

where

𝑝̂(𝑧𝑘 |𝑍𝑘−1) = 𝑝̂
𝐼
(𝑧𝑘 |𝑍𝑘−1)𝛼̂

𝐼
𝑘|𝑘−1+ 𝑝̂

𝑉
(𝑧𝑘 |𝑍𝑘−1)𝛼̂

𝑉
𝑘|𝑘−1 (5.19)
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5.4.2 Prediction step
This section provides a description of the prediction step for the partially decomposed PF.

Both the description in this section and the one provided in the following section provide

expressions for calculating the elements in the desired UD of the predictive density:

𝑝(𝑠𝑘 |𝑍𝑘−1) = 𝛼
𝐼
𝑘|𝑘−1𝑝

𝐼
(𝑠𝑘 |𝑍𝑘−1)+𝛼

𝑉
𝑘|𝑘−1𝑝

𝑉
(𝑠𝑘 |𝑍𝑘−1) (5.20)

The differentiating feature of the filter in the current section is that it assumes a running

conventional, i.e. non-decomposed, particle filter, where the decomposition of the density

in Equation (5.20) is then based upon the previous non-decomposed posterior 𝑝(𝑠𝑘−1|𝑍𝑘−1).

As opposed to this, the second description provided for the fully decomposed filter in the

following section relies on the availability of a decomposed previous posterior.

Analyticdescriptionusinganon-decomposedprevious posterior 𝑝(𝑠𝑘−1|𝑍𝑘−1)
The UD of the predictive density 𝑝(𝑠𝑘 |𝑍𝑘−1) immediately follows by applying the definition

of the UD:

𝑝
𝐼
(𝑠𝑘 |𝑍𝑘−1) =

𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1))

𝛼𝐼
𝑘|𝑘−1

(5.21)

𝑝
𝑉
(𝑠𝑘 |𝑍𝑘−1) =

𝑝(𝑠𝑘 |𝑍𝑘−1)−𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1))

𝛼𝑉
𝑘|𝑘−1

(5.22)

𝛼
𝐼
𝑘|𝑘−1 = ∫

𝑠𝑘

𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1))𝑑𝑠𝑘 (5.23)

𝛼
𝑉
𝑘|𝑘−1 = 1−𝛼

𝐼
𝑘|𝑘−1 (5.24)

Particle filtering description: In order to approximate Equations (5.21),(5.22) and (5.23),

the ability to evaluate the predictive density 𝑝(𝑠𝑘 |𝑍𝑘−1) for each particle is required. To

fulfill this requirement (given a PF approximation of 𝑝(𝑠𝑘−1/𝑍𝑘−1) {𝑠
𝑖
𝑘−1|𝑘−1

, 𝛾 𝑖
𝑘−1|𝑘−1

}
𝑁𝑝

𝑖=1) one

can use the Chapman-Kolmogórov equation:

𝑝(𝑠𝑘 |𝑍𝑘−1) = ∫ 𝑝(𝑠𝑘 |𝑠𝑘−1)𝑝(𝑠𝑘−1|𝑍𝑘−1)𝑑𝑠𝑘−1 (5.25)

to analytically produce a continuous approximation of the predictive density:

𝑝̂(𝑠𝑘 |𝑍𝑘−1) =∑

𝑖

𝑝(𝑠𝑘 |𝑠
𝑖
𝑘−1|𝑘−1)𝛾

𝑖
𝑘−1|𝑘−1 (5.26)

Equation (5.23) can be rewritten introducing the importance density 𝑞(𝑠)

𝛼
𝐼
𝑘|𝑘−1 = ∫

𝑠𝑘

𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1))

𝑞(𝑠𝑘)
𝑞(𝑠𝑘)𝑑𝑠𝑘 (5.27)

using this importance density to sample particles allows the approximation of Equa-

tion (5.23) as:

𝛼̂
𝐼
𝑘|𝑘−1 =∑

𝑖

𝛾̃
𝐼 ,𝑖

𝑘|𝑘−1
(5.28)



5.5 Analytic description and algorithm implementation of the fully decomposed filter

5

59

where

𝛾̃
𝐼 ,𝑖

𝑘|𝑘−1
=
𝑚𝑖𝑛(𝑝̂(𝑠𝑖

𝑘
|𝑍𝑘−1), 𝑝̂(𝜋𝑠

𝑖
𝑘
|𝑍𝑘−1))

𝑞(𝑠𝑖
𝑘
)

𝛾
𝑖
𝑘|𝑘−1 (5.29)

with {𝑠𝑖
𝑘|𝑘−1

, 𝛾 𝑖
𝑘|𝑘−1

}
𝑁𝑝

𝑖=1 ∼ 𝑞(𝑠𝑘). Assuming the distribution 𝑞(𝑠𝑘) is the predictive density, i.e.

𝑝(𝑠𝑘 |𝑍𝑘−1), like in a running SIR filter, the approximation in Equation (5.29) becomes:

𝛾̃
𝐼 ,𝑖

𝑘|𝑘−1
= 𝑚𝑖𝑛

(
1,
𝑝̂(𝜋𝑠𝑖

𝑘|𝑘−1
|𝑍𝑘−1)

𝑝̂(𝑠𝑖
𝑘|𝑘−1

|𝑍𝑘−1) )
𝛾
𝑖
𝑘|𝑘−1 (5.30)

The invariant density from Equation (5.21) can then be represented with the particle

cloud:

{𝑠
𝐼 ,𝑖

𝑘|𝑘−1
, 0.5𝛾

𝐼 ,𝑖

𝑘|𝑘−1
,𝜋𝑠

𝐼 ,𝑖

𝑘|𝑘−1
, 0.5𝛾

𝐼 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 ∼ 𝑝
𝐼
(𝑠𝑘 |𝑍𝑘−1) (5.31)

with {𝑠
𝐼 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 = {𝑠𝑖
𝑘|𝑘−1

}
𝑁𝑝

𝑖=1 and {𝛾
𝐼 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 =
{𝛾̃
𝐼 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1

𝛼̂𝐼
𝑘|𝑘−1

in the above notation, it is implied that both the particle 𝑠
𝐼 ,𝑖

𝑘|𝑘−1
and its permuted version con-

tribute to constructing the approximation. This results in a theoretically perfect invariant

approximation, with each individual particle carrying half of the weight.

The variant density from Equation (5.22) can now be approximated by the particle

cloud:

{𝑠
𝑉 ,𝑖

𝑘|𝑘−1
, 𝛾

𝑉 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 ∼ 𝑝
𝑉
(𝑠𝑘 |𝑍𝑘−1) (5.32)

with {𝑠
𝑉 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 = {𝑠𝑖
𝑘−1

}
𝑁𝑝

𝑖=1 and {𝛾
𝑉 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 =
{𝛾̃
𝑉 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1

1−𝛼̂𝐼
𝑘|𝑘−1

, where

𝛾̃
𝑉 ,𝑖

𝑘|𝑘−1
=
𝑝̂(𝑠𝑖

𝑘
|𝑍𝑘−1)−𝑚𝑖𝑛(𝑝̂(𝑠𝑖

𝑘
|𝑍𝑘−1), 𝑝̂(𝜋𝑠

𝑖
𝑘
|𝑍𝑘−1))

𝑞(𝑠𝑖
𝑘
)

𝛾
𝑖
𝑘|𝑘−1 (5.33)

Assuming the distribution 𝑞(𝑠𝑘) is the predictive density, i.e. 𝑝(𝑠𝑘 |𝑍𝑘−1), Equation (5.33)

becomes:

𝛾̃
𝑉 ,𝑖

𝑘|𝑘−1
=
(
1−𝑚𝑖𝑛

(
1,
𝑝̂(𝜋𝑠𝑖

𝑘|𝑘−1
|𝑍𝑘−1)

𝑝̂(𝑠𝑖
𝑘|𝑘−1

|𝑍𝑘−1) ))
𝛾
𝑖
𝑘|𝑘−1 = 𝛾

𝑖
𝑘|𝑘−1− 𝛾̃

𝐼 ,𝑖

𝑘|𝑘−1
(5.34)

finally, the approximation of Equation (5.24) is

𝛼̂
𝑉
𝑘|𝑘−1 =∑

𝑖

𝛾̃
𝑉 ,𝑖

𝑘|𝑘−1
= 1− 𝛼̂

𝐼
𝑘|𝑘−1 (5.35)

Notice that the invariant and variant particles in this decomposition are equal, only

the weights are different.

5.5 Analytic description and algorithm implemen-
tation of the fully decomposed filter

The solution proposed in this section comprises an update and prediction steps in both

invariant and variant densities. The update step is identical to the one provided in pre-

vious section. Regarding the prediction step, the algorithm presented in this section
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assumes that the decomposition of the previous posterior density 𝑝(𝑠𝑘−1|𝑍𝑘−1) is avail-

able, i.e. 𝑝𝐼 (𝑠𝑘−1|𝑍𝑘−1), 𝑝
𝑉 (𝑠𝑘−1|𝑍𝑘−1), 𝛼

𝐼
𝑘−1|𝑘−1

and 𝛼𝑉
𝑘−1|𝑘−1

= 1−𝛼𝐼
𝑘−1|𝑘−1

are known, and

assuming the dynamic models are the same for both targets, i.e. 𝑝(𝑠𝑘 |𝑠𝑘−1) = 𝑝(𝜋𝑠𝑘 |𝑠𝑘−1), a

recursive decomposition of the predictive density is given by a three stages Extrapolation-

Decomposition-Merging (EDM) step.

Extrapolation: The first stage amounts to extrapolating the invariant and variant

densities:

𝑝
𝐼 𝐼
(𝑠𝑘 |𝑍𝑘−1) = ∫ 𝑝(𝑠𝑘 |𝑠𝑘−1)𝑝

𝐼
(𝑠𝑘−1|𝑍𝑘−1)𝑑𝑠𝑘−1 (5.36)

and

𝑝
𝑀𝑉

(𝑠𝑘 |𝑍𝑘−1) = ∫ 𝑝(𝑠𝑘 |𝑠𝑘−1)𝑝
𝑉
(𝑠𝑘−1|𝑍𝑘−1)𝑑𝑠𝑘−1 (5.37)

Together they describe the predictive density:

𝑝(𝑠𝑘 |𝑍𝑘−1) = 𝛼
𝐼
𝑘−1|𝑘−1𝑝

𝐼 𝐼
(𝑠𝑘 |𝑍𝑘−1)+𝛼

𝑉
𝑘−1|𝑘−1𝑝

𝑀𝑉
(𝑠𝑘 |𝑍𝑘−1) (5.38)

Assuming permutation invariant target dynamics, the density 𝑝𝐼 𝐼 (𝑠𝑘 |𝑍𝑘−1) is invariant,

therefore it is referred to with the superscript II. However, the density 𝑝𝑀𝑉 (𝑠𝑘 |𝑍𝑘−1) can be

mixed (containing invariant and strictly variant components), therefore it is referred to

with MV. For this density the unique decomposition is used.

Decomposition: The mixed predictive density 𝑝𝑀𝑉 (𝑠𝑘 |𝑍𝑘−1) is decomposed into an

invariant density 𝑝𝐼𝑉 (𝑠𝑘 |𝑍𝑘−1) and a strictly variant density 𝑝𝑉𝑉 (𝑠𝑘 |𝑍𝑘−1) using the UD

definition

𝑝
𝑀𝑉

(𝑠𝑘 |𝑍𝑘−1) = 𝛼
𝐼𝑉
𝑘|𝑘−1𝑝

𝐼𝑉
(𝑠𝑘 |𝑍𝑘−1)+𝛼

𝑉𝑉
𝑘|𝑘−1𝑝

𝑉𝑉
(𝑠𝑘 |𝑍𝑘−1) (5.39)

with,

𝛼
𝐼𝑉
𝑘|𝑘−1 = ∫

𝑠𝑘

𝑚𝑖𝑛(𝑝
𝑀𝑉

(𝑠𝑘 |𝑍𝑘−1),𝑝
𝑀𝑉

(𝜋𝑠𝑘 |𝑍𝑘−1))𝑑𝑠𝑘 (5.40)

𝑝
𝐼𝑉
(𝑠𝑘 |𝑍𝑘−1) =

𝑚𝑖𝑛(𝑝𝑀𝑉 (𝑠𝑘 |𝑍𝑘−1),𝑝
𝑀𝑉 (𝜋𝑠𝑘 |𝑍𝑘−1))

𝛼𝐼𝑉
𝑘|𝑘−1

(5.41)

𝑝
𝑉𝑉

(𝑠𝑘 |𝑍𝑘−1) =
𝑝𝑀𝑉 (𝑠𝑘 |𝑍𝑘−1)−𝑝𝐼𝑉 (𝑠𝑘 |𝑍𝑘−1)

𝛼𝑉𝑉
𝑘|𝑘−1

(5.42)

with 𝛼𝑉𝑉
𝑘|𝑘−1

= 1−𝛼𝐼𝑉
𝑘|𝑘−1

This decomposition can be evaluated in a running particle filter using a sample-based

evaluation of 𝑝𝑀𝑉 (𝑠𝑘 |𝑍𝑘−1) as was explained for the case with a non-decomposed previous

posterior.

Merging: Finally the elements of the desired decomposition (see Equation (5.20)) can be

written down. The invariant density 𝑝𝐼 (𝑠𝑘 |𝑍𝑘−1) and its weight are the result of merging

both invariant densities 𝑝𝐼 𝐼 (𝑠𝑘 |𝑍𝑘−1) and 𝑝𝐼𝑉 (𝑠𝑘 |𝑍𝑘−1)

𝑝
𝐼
(𝑠𝑘 |𝑍𝑘−1) =

𝛼𝐼
𝑘−1|𝑘−1

𝑝𝐼 𝐼 (𝑠𝑘 |𝑍𝑘−1)+𝛼𝑉
𝑘−1|𝑘−1

𝛼𝐼𝑉
𝑘|𝑘−1

𝑝𝐼𝑉 (𝑠𝑘 |𝑍𝑘−1)

𝛼𝐼
𝑘|𝑘−1

(5.43)

𝛼
𝐼
𝑘|𝑘−1 = 𝛼

𝐼
𝑘−1|𝑘−1+𝛼

𝑉
𝑘−1|𝑘−1𝛼

𝐼𝑉
𝑘|𝑘−1 (5.44)
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and the variant density and its weight are

𝑝
𝑉
(𝑠𝑘 |𝑍𝑘−1) = 𝑝

𝑉𝑉
(𝑠𝑘 |𝑍𝑘−1) (5.45)

𝛼
𝑉
𝑘|𝑘−1 = 𝛼

𝑉
𝑘−1|𝑘−1𝛼

𝑉𝑉
𝑘|𝑘−1 (5.46)

A sample-based implementation of the merging step for the invariant density suggests

itself. For the variant density only the weight needs to be adjusted.

Particle Filtering description: To approximate the expressions in Equations (5.36) and (5.37)

from the extrapolation step, one needs to describe two particle clouds:

{𝑠
𝐼 𝐼 ,𝑖

𝑘|𝑘−1
, 0.5𝛾

𝐼 𝐼 ,𝑖

𝑘|𝑘−1
,𝜋𝑠

𝐼 ,𝑖

𝑘|𝑘−1
, 0.5𝛾

𝐼 𝐼 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 ∼ 𝑝
𝐼 𝐼
(𝑠𝑘 |𝑍𝑘−1) (5.47)

{𝑠
𝑀𝑉 ,𝑖

𝑘|𝑘−1
, 𝛾

𝑀𝑉 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 ∼ 𝑝
𝑀𝑉

(𝑠𝑘 |𝑍𝑘−1) (5.48)

Both clouds in Equations (5.47) and (5.48) are trivial to generate as the predicted clouds

of the invariant and strictly variant components of the previous posterior approximation.

The decomposition step needs to be applied to the cloud in Equation (5.48) in order to

approximate Equations (5.40), (5.41) and (5.42). As the PF approximation of the invariant

part of the previous posterior remains invariant under prediction (given the assumption

that dynamic models are the same for all targets), no decomposition is required for the

cloud in Equation (5.47).

The approximation of Equations (5.41) and (5.42) can be represented with the clouds

{𝑠
𝑋𝑉 ,𝑖

𝑘|𝑘−1
, 𝛾

𝑋𝑉 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1 ∼ 𝑝
𝑋𝑉

(𝑠𝑘 |𝑍𝑘−1) (5.49)

where

𝑠
𝑋𝑉 ,𝑖

𝑘|𝑘−1
= 𝑠

𝑀𝑉 ,𝑖

𝑘|𝑘−1

𝛾
𝑋𝑉 ,𝑖

𝑘|𝑘−1
=

𝛾̃
𝑋𝑉 ,𝑖

𝑘|𝑘−1

𝛼̂
𝑋𝑉 ,𝑖

𝑘|𝑘−1

𝛾̃
𝐼𝑉 ,𝑖

𝑘|𝑘−1
= 𝑚𝑖𝑛

(
1,
𝑝̂(𝜋𝑠

𝑀𝑉 ,𝑖

𝑘|𝑘−1
|𝑍𝑘−1)

𝑝̂(𝑠
𝑀𝑉 ,𝑖

𝑘|𝑘−1
|𝑍𝑘−1) )

𝛾
𝑀𝑉 ,𝑖

𝑘|𝑘−1

(5.50)

𝛾̃
𝑉𝑉 ,𝑖

𝑘|𝑘−1
=
(
1−𝑚𝑖𝑛

(
1,
𝑝̂(𝜋𝑠

𝑀𝑉 ,𝑖

𝑘|𝑘−1
|𝑍𝑘−1)

𝑝̂(𝑠
𝑀𝑉 ,𝑖

𝑘|𝑘−1
|𝑍𝑘−1) ))

𝛾
𝑀𝑉 ,𝑖

𝑘|𝑘−1
(5.51)

𝛼̂
𝑋𝑉
𝑘|𝑘−1 =∑

𝑖

𝛾̃
𝑋𝑉 ,𝑖

𝑘|𝑘−1
(5.52)

Now the merging of the two invariant densities will be specified. Computing the individual

weights of the three terms:

𝛼̂
𝐼 𝐼
= 𝛼̂

𝐼
𝑘−1|𝑘−1

𝛼̂
𝐼𝑉

= (1− 𝛼̂
𝐼
𝑘−1|𝑘−1)𝛼̂

𝐼𝑉
𝑘|𝑘−1

𝛼̂
𝑉
= (1− 𝛼̂

𝐼
𝑘−1|𝑘−1)(1− 𝛼̂

𝐼𝑉
𝑘|𝑘−1) = 1− 𝛼̂

𝐼 𝐼
− 𝛼̂

𝐼𝑉

(5.53)
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we have three particle clouds (represented by expressions in Equations (5.47) and (5.49)),

two of which represent invariant densities that need to be merged into one. Let us first

compute

𝛼̂
𝐼
𝑘|𝑘−1 = 𝛼̂

𝐼 𝐼
+ 𝛼̂

𝐼𝑉
(5.54)

The merging can be done in several ways. We choose to use a two-step procedure, where

we repeatedly randomly select between the invariant-invariant and the invariant-variant

cloud according to their probabilities

𝛼̂𝐼 𝐼

𝛼̂𝐼
𝑘|𝑘−1

,
𝛼̂𝐼𝑉

𝛼̂𝐼
𝑘|𝑘−1

(5.55)

and then take a sample from the selected particle cloud according to the particle weights.

This procedure eventually leads to a single merged invariant particle cloud,

{

𝑠
𝐼 ,𝑖

𝑘|𝑘−1
, 𝛾

𝐼 ,𝑖

𝑘|𝑘−1

}𝑁𝑝

𝑖=1
∼ 𝑝

𝐼
(𝑠𝑘 |𝑍𝑘−1)) (5.56)

with the corresponding 𝛼̂𝐼
𝑘|𝑘−1

.

Due to the merging operation (and/or the following resampling steps) this algorithm

will finally result in two densities that do not share the same particle basis anymore. The

updating that was described in Section 5.4.1 (which can deal with particle clouds that do

not have the same particle basis) and the prediction step of the two clouds described in

this section, complete the specification of the recursive fully decomposed algorithm.

5.6 Simulation Results
This section provides simulation results for the two algorithms using the particle filtering

descriptions from previous sections. The targeted clouds and weights for each step of both

algorithms can be found in Table 5.1, 𝑠𝑖 and 𝛾 𝑖 are used to denote the state and weight of

an arbitrary particle out of the 𝑁𝑝 particles. The superscript 𝑋 is used to denote both 𝐼 and

𝑉 . For instance, the abbreviation {𝑠
𝑋,𝑖

𝑘|𝑘−1
, 𝛾

𝑋,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1, 𝛼̂
𝑋
𝑘|𝑘−1

in Table 5.1 is equivalent to:

{𝑠
𝐼 ,𝑖

𝑘|𝑘−1
, 𝛾

𝐼 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1, 𝛼̂
𝐼
𝑘|𝑘−1

and {𝑠
𝑉 ,𝑖

𝑘|𝑘−1
, 𝛾

𝑉 ,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1, 𝛼̂
𝑉
𝑘|𝑘−1

Both algorithms are recursive in essence, the main difference is that the algorithm in

the left column propagates a non-decomposed posterior from 𝑘 to 𝑘 +1, while the one in

the right column propagates a decomposed posterior.

5.6.1 Simulation models and parameters
The simulations in this section consider nearly constant velocity formodeling dynamics [23]

and a lower dimensional version of the TrBD measurement model in [52] for modeling

observations.

The measurement model used defines the power reflected by the tracking scenario for

each radar cell. One measurement 𝑧𝑘 is composed of 𝑁𝑟 power measurements 𝑧𝑛
𝑘
, where

𝑘 ∈ ℕ and 𝑁𝑟 is the number of range cells.

𝑧
𝑛
𝑘 = |𝑧

𝑛
𝐴,𝑘 |

2
= |𝐴

(1)

𝑘
ℎ
(1)𝑛

𝐴 +𝐴
(2)

𝑘
ℎ
(2)𝑛

𝐴 +𝑛𝐼 (𝑡𝑘)+ 𝑖𝑛𝑄(𝑡𝑘)|
2

(5.57)
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Table 5.1: Two algorithms to realize the non-LG implementation of the Unique Decomposition.

steps partially

decomposed

algorithm:

fully

decomposed

algorithm:

1 {𝑠𝑖
𝑘−1|𝑘−1

, 𝛾 𝑖
𝑘−1|𝑘−1

}
𝑁𝑝

𝑖=1 {𝑠𝑖
𝑘−1|𝑘−1

, 𝛾 𝑖
𝑘−1|𝑘−1

}
𝑁𝑝

𝑖=1

2 {𝑠
𝑋,𝑖

𝑘|𝑘−1
, 𝛾

𝑋,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1, 𝛼̂
𝑋
𝑘|𝑘−1

{𝑠
𝑋,𝑖

𝑘|𝑘−1
, 𝛾

𝑋,𝑖

𝑘|𝑘−1
}
𝑁𝑝

𝑖=1, 𝛼̂
𝑋
𝑘|𝑘−1

3 {𝑠
𝑋,𝑖

𝑘|𝑘
, 𝛾

𝑋,𝑖

𝑘|𝑘
}
𝑁𝑝

𝑖=1, 𝛼̂
𝑋
𝑘|𝑘

{𝑠
𝑋,𝑖

𝑘|𝑘
, 𝛾

𝑋,𝑖

𝑘|𝑘
}
𝑁𝑝

𝑖=1, 𝛼̂
𝑋
𝑘|𝑘

4 {𝑠𝑖
𝑘|𝑘
, 𝛾 𝑖
𝑘|𝑘
}
𝑁𝑝

𝑖=1 𝑘 = 𝑘+1

5 𝑘 = 𝑘+1

𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 1
{𝑠
𝑋,𝑖

𝑘−1|𝑘−1
, 𝛾

𝑋,𝑖

𝑘−1|𝑘−1
}
𝑁𝑝

𝑖=1, 𝛼̂
𝑋
𝑘−1|𝑘−1

𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 2

where 𝑛 = 1, ...,𝑁𝑟 , 𝐴
𝑐
𝑘
is the complex amplitude of the target labeled as 𝑐,

𝐴
(𝑐)

𝑘
= 𝐴̃

(𝑐)

𝑘
𝑒
𝑖𝜙𝑘 , 𝜙𝑘 ∈ 𝑈(0,2𝜋) (5.58)

and,

ℎ
(𝑐)𝑛

𝐴 (𝑠
𝑐
𝑘) = 𝑒

−
(𝑥𝑛
𝑘
−𝑥𝑐

𝑘
)2

2𝑅 (5.59)

Note that 𝑐 is used for the target labels, which could either be 1 or 2 as in Eq. (5.57). For

sake of easier visualization of simulation results, target labels will be associated to colors

𝑏𝑙𝑢𝑒 and 𝑟𝑒𝑑 in following subsections. The noise in Eq. (5.57) is complex Gaussian, where

𝑛𝐼 (𝑡𝑘) and 𝑛𝑄(𝑡𝑘) are independent, zero-mean white Gaussian with variance 𝜎2
𝑛 accounting

for the in-phase and quadrature phase components respectively. These measurements,

conditioned on the state are assumed to be exponentially distributed [53],

𝑝(𝑧
𝑛
|𝑠𝑘) =

1

𝜇𝑛0
𝑒
− 1
𝜇𝑛
0
𝑧𝑛
𝑘

(5.60)

where

𝜇
𝑛
0 = (𝐴̃

(1)

𝑘
)
2
(ℎ

(1)𝑛

𝐴 (𝑠𝑘 , 𝑡𝑘))
2
+(𝐴̃

(2)

𝑘
)
2
(ℎ

(2)𝑛

𝐴 (𝑠𝑘 , 𝑡𝑘))
2
+2𝜎

2
𝑛 (5.61)

Assuming that the noise is independent from cell to cell and that the reflections of

the two targets are independent, the density model of the measurements given the state

becomes:

𝑝(𝑧𝑘 |𝑠𝑘) =∏

𝑛

𝑝(𝑧
𝑛
|𝑠𝑘) (5.62)

The ground truth trajectories are defined by the initial dynamics denoted with subscript

𝑜 in Table 5.2 . The standard deviations of the process noise (𝜎𝑞 ), the SNR of the targets, the

revisit time (𝜏) and the number of particles used in the implementation are also provided

in Table II. Labeled track estimates are calculated relying on traditional MMSE estimation

considering only the permutation strictly variant density approximation. The associated

labeling certainty is calculated as 1−
𝛼̂𝐼
𝑘|𝑘

2
.
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Table 5.2: Parameters of the simulation

parameter value

𝑥1𝑜 22 m

𝑥̇1𝑜 2 m

𝑥2𝑜 12 m

𝑥̇2𝑜 2.8 m

𝜎𝑞 1.4142 m/s
3/2

𝑆𝑁𝑅 11

𝜏 1 s

𝑁𝑝 1000 particles

5.6.2 Partially decomposed recursive algorithm: simulation
results

Relevant statistics such as labeled track estimates and labeling certainty estimates are

plotted in Fig. 5.1. As expected, estimation of labeled tracks are more accurate when

extracting them after measurement incorporation.
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Figure 5.1: Estimation results of the partially decomposed recursive algorithm from Table 5.1. In the top figure,

relevant statistics are extracted from the decomposition of the predicted density. In the bottom figure, relevant

statistics are extracted from the decomposition of the filtering density.

The partially decomposed recursive algorithm becomes overconfident about the right

labeling assignment (according to the 𝑃𝑠𝑙 curve) after targets separation. This overconfi-

dence signals very poor labeling uncertainty estimation. In fact, the partially decomposed

algorithm does run into labeling confusion very often, as it is the case in the particular

simulation from Fig. 5.1. This happens because the resampling operation, essential to
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prevent particle degeneracy of the cloud {𝑠𝑖
𝑘|𝑘
, 𝛾 𝑖
𝑘|𝑘
}
𝑁𝑝

𝑖=1, makes the partially decomposed

recursive algorithm vulnerable against particle “self-resolving” artifacts [1].

The term “self-resolving” sounds better than it is, since it does not resolve anything,

it just destroys the potential theoretically correct partially invariant characteristics of a

multi-target particle representation of the posterior density.

Same way as if we would have calculated the UD from the output of a regular SIR

filter, self-resolving does not only negatively impacts (even potentially destroys) the filter

operation but also the labeling uncertainty estimation as illustrated in Fig. 5.1.

In order to provide a non-LG implementation of Blom and Bloem’s decomposition,

circumventing the problem of PF “self-resolving”, the two-PFs fully decomposed recursive

algorithm was presented in section V. Its PF recursion is summarized in the right column

of Table 5.1.

5.6.3 Fully-decomposed recursive algorithm: simulation re-
sults
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Figure 5.2: Estimation results of the fully decomposed recursive algorithm. In the top figure, relevant statistics are

extracted from the decomposition of the predicted density. In the bottom figure, relevant statistics are extracted

from the decomposition of the filtering density.

Regarding estimation of labeled tracks, both algorithms provide similar accuracy. The

simulations show that the so-called “track-coalescence” effect does not seem to degrade

tracking performance after target separation. As opposed to what happens with naive

point estimates extraction from a multimodal PDF, the presented algorithms prevent “track-

coalescence” by extracting MMSE estimates from the permutation strictly variant density

approximation.
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As expected from theory, Fig. 5.2 shows that the labeling probabilities by the two-PFs

solution do not “self-resolve”, leading to more stable estimation of track labeling uncertainty

(compared to the results in Fig. 5.1). This was expected as in the fully decomposed recursive

algorithm, the invariant component is propagated in isolation from the rest of the density

between consecutive iterations. In fact, “self-resolving” is avoided by design. As a result,

the multi-modalities inherent in the posterior density when tracking closely-spaced targets

can be preserved.

5.7 Conclusions
This chapter derives an implementation of the Unique Decomposition (UD) theory [25] for

non linear and/or non-Gaussian (non-LG) problems. Without this generalization, the UD

cannot be applied in the TrBD MOT problem due to the highly non-linear nature of the

TrBD radar measurements.

The filtering equations of the decomposition have been derived for two different SIR-

based filtering implementations. One solution applies the decomposition at each scan

in a single filter, the other solution tracks the decomposition over time, using a two

filter implementation. Both algorithms have been simulated using synthetic radar TrBD

measurements from low-observable targets.

Simulation results have shown that relevant statistics for track formation, namely

labeled tracks estimates and respective labeling certainty estimates, can be exacted by

both presented solutions. The algorithms prevent “track coalescence” by extracting track

estimates based on traditional MMSE estimation applied to the permutation strictly variant

component of the density. Regarding labeling uncertainty characterization, the single

filter implementation is prone to labeling confusion as a result of not capturing existent

labeling uncertainty due to particle “self-resolving” artifacts. Label confusion is prevented

by the fully-decomposed 2-PF solution. This is accomplished by propagating the invariant

component in isolation from the rest of the density.

Overall, application of the UD theory to the TrBD MOT problem for closely-spaced

targets provides stable estimation of labeled tracks and labeling uncertainty. In particular,

the dual-filter implementation allows to take informed track-formation decisions without

formulating the pair-matching problem between plots and labels. This results in a novel

contribution to the state-of-the-art in TrBD MOT.
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6
DA-free Tracking: the Cross

Modeling Tracker

6.1 Introduction
The track-formation problem needs to be tackled in any MOT solution. To take informed

track-formation decisions, estimation of track point-estimates and characterization of

labeling uncertainty is required. Extracting these estimates and characterization is not

trivial in the context of Track-before-Detect (TrBD), especially when tackling closely-spaced

target scenarios, as the formulation of DA hypotheses is ruled out.

The algorithm presented in previous chapter is especially suited for the TrBD MOT

problem due to its ability to decompose the joint multiobject density without the need of

formulating any DA problem. However, the current limitation of the UD theory is that it

cannot be applied in scenarios with more than two objects.

The aim of next two chapters is to overcome the burden of UD-based algorithms. This

will be done by providing a generic algorithm, with labeling characterization capabilities,

suited for the TrBD MOT problem for an arbitrary number of targets. To this end, the

algorithm coined as the The Cross Modeling Tracker (CMT) will be presented.

The CMT introduces a new decomposition of the Bayes posterior based on hypothesiz-

ing crosses between objects. A definition of cross-between-objects is taken here as a tool

for characterizing labeling uncertainty in cases where the DA problem cannot be formu-

lated. Among these cases, TrBD tracking is probably the most important one due to TrBD

inherent capabilities for tracking low-observable objects and for handling closely-spaced

object scenarios (in cases where detection-based trackers would have to deal with merged

measurements).

The CMT results provided in this chapter are evaluated against the performance evalua-

tion method presented in chapter 4. Simulation results involving challenging closely-spaced

The contents provided in this chapter have been published in “Efficient characterization of labeling uncertainty in

closely-spaced targets tracking,” C. M. Leon, H. Driessen and P. K. Mandal, in proceedings of the 19th International
Conference on Information Fusion, Heidelberg, 2016, pp. 449-456. and in “Data-association-free Characterization

of Labeling Uncertainty: the Cross Modeling Tracker,” C. M. Leon, H. Driessen and A. Yarovoy, in Journal of
Advances in Information Fusion, December 2021
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objects scenarios will be provided. The results illustrate that the CMT is usable in the

general 𝑡 −𝑀𝐷 objects case provided that the number of targets 𝑡 is known and constant

in line with the first assumption in the introductory chapter. Therefore, the proposed

solution extends the state-of-the-art of TrBD MOT by providing DA-free characterization

of labeling uncertainty with validated estimation performance, which can be seamlessly

used in generic 𝑡 −𝑀𝐷 targets scenarios.

6.2 Proposed solution
The contents in this chapter are based on the first definition of cross-between-objects in [24,

Section IV]. Although the decomposition proposed in [24, Section IV] is only usable for the

2−1𝐷 objects case, [27] gave analytical generalization to arbitrary 𝑡 −𝑀𝐷 objects cases.

Both [24, Section IV] and [27] are published results by the author of this thesis. In this

chapter, a self contained presentation of these results is provided.

6.2.1 Modeling crosses in the 2−1𝐷 objects case
Figure 6.1 illustrates the idea of cross modeling in the most simple scenario where the

labeling problem appears: two one-dimensional objects approach each other, stay closely-

spaced for a while and finally split.

Figure 6.1: Representation on top hypothesizes that objects have (physically) crossed an even number of times

from 𝑘 = 0 to 𝑘 = 𝑘′. Representation at the bottom hypothesizes that objects have (physically) crossed an odd

number of times from 𝑘 = 0 to 𝑘 = 𝑘′.

At 𝑘 = 0, the tracker places a label to each object according to the tracker’s convention:

e.g. blue to the target that is further away and red to the other. At later point in time, for

instance 𝑘 = 𝑘′, two labeling possibilities are worth considering. One where the furthest

object is blue and the nearest one red (example trajectories on top of the figure) and the

other with opposite colors, positions being the same (example trajectories at the bottom of

the figure).

We are using here color labels instead of number labels for sake of printing clarity. In

order to align with the implicit label incorporation inherent in random vector formulations,

one just needs to define the convention for mapping the set {𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑} to the two partitions

in the stated vector.

Note that the questions in section 2.3 are not concerned with past states but only

current information, for instance at 𝑘 = 𝑘′. To answer the questions however, it is essential

to estimate whether or not the objects have crossed an even or an odd number of times
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from 𝑘 = 0 to 𝑘 = 𝑘′ in order to characterize the two possible labeling solutions. Based

on described estimation of crosses, [24, Section IV] proposed a method to decompose the

association-free TrBD posterior density.

The TrBD posterior density 𝑝(𝒔𝑘 |𝐙𝑘) in Equation (6.1) displays symmetric multimodality

for the closely-spaced target scenario exemplified in Fig. 6.2:

𝑝(𝑠𝑘 |𝐙𝑘) ≈ 𝑙(𝐳𝑘 |𝑠𝑘)𝑝(𝑠𝑘 |𝐙𝑘−1) (6.1)
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Figure 6.2: Illustration of a closely-spaced targets situation. Ground truth trajectories of two targets moving in a

line (2−1𝐷 objects scenario) in the left hand side. Last joint multiobject position density (position components of

𝑝(𝒔𝑘 |𝐙𝑘)) represented in the right hand side.

where 𝑙(𝐳𝑘 |𝑠𝑘) is the likelihood function of the TrBD measurements conditioned on

the state. One label-permutation-dependent decomposition can be formulated as in Equa-

tion (6.2). However, due to the assumption that 𝑙(𝐳𝑘 |𝑠𝑘) is invariant with respect to label

permutations, all components (indexed by 𝑚 in Equation (6.2)) are identical disregarding

whether the targets are closely-spaced or not. Therefore, the decomposition in Equation (6.2)

cannot be relevant for characterizing labeling uncertainty.

𝑝(𝑠𝑘 |𝐙𝑘) ∝

𝑡!

∑

𝑚=1

𝑙(𝐳𝑘 |𝜋𝑚(𝑠𝑘))𝑝(𝑠𝑘 |𝐙𝑘−1) ∝ 𝑙(𝐳𝑘 |𝑠𝑘)𝑝(𝑠𝑘 |𝐙𝑘−1) (6.2)

One physical interpretation of the multimodality in 𝑝(𝒔𝑘 |𝐙𝑘) (illustrated in Fig. 6.2)

is that the objects may have well crossed each other from one time scan to the next one.

As one can see in Figure 6.2, the probability mass of 𝑝(𝒔𝑘 |𝐙𝑘) concentrates in separated

regions of the joint state space. These regions represent different labeling permutations of

the information of interest.

In [24, Section IV], it is assumed that the state variable is a vector where partitions are

stacked: 𝒔𝑘 = [𝑥𝑏
𝑘
𝑥̇𝑏
𝑘
𝑥𝑟
𝑘
𝑥̇𝑟
𝑘
]𝑇 . Positions of each partition are denoted as 𝑥𝑘 and velocities as

𝑥̇𝑘 . 𝑏 and 𝑟 are the labels for the first and second partition respectively (blue and red for

printing clarity). In order to hypothesize crosses between objects, the concept of 𝑜𝑟𝑑𝑒𝑟 at

time step 𝑘 was defined in [24, Section IV] as:

𝑜𝑘 = 𝑑(𝒔𝑘) =

{
1 if 𝑥𝑏

𝑘
> 𝑥𝑟

𝑘

2 otherwise

(6.3)
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For two objects moving in one dimension, the variable 𝑜𝑟𝑑𝑒𝑟 determines whether the

position of one 1D object is larger or less than the position of another 1D object. Additionally,

it is trivial to interpret a permutation of 𝑜𝑟𝑑𝑒𝑟 in the state vector as a cross of objects between

time steps 𝑘 −1 and 𝑘 (see Figure 6.3).

Figure 6.3: No permutation of 𝑜𝑟𝑑𝑒𝑟 (left hand side), permutation of 𝑜𝑟𝑑𝑒𝑟 (right hand side)

This trivial notion of order/cross in 1D, escapes to physical interpretation in higher

dimensional problems. One cannot tell whether the position of one 2D object is larger or

less than the position of another 2D object as the definition of “>” and “<” is only valid in

the 1D line. In fact, although one 𝑜𝑟𝑑𝑒𝑟 definition was provided in [24, Section V] for the

2−2𝐷 objects case, counterexamples were found proving its lack of generality.

6.3 Generalized characterization of Cross Model-
ing

Figure 6.4 illustrates the generic block diagram of a TrBD MOT solution based on cross

modeling. [24, Section IV] provided an algorithm according to this block diagram to solve

the formulated problem in section 2.3 for the 2−1𝐷 objects case.

Figure 6.4: The illustrated block diagram describes the operation of the CMT. The block diagram is generic in the

sense that it should be applicable in any arbitrary 𝑡 −𝑀𝐷 objects case. However, the definition of 𝑜𝑘 provided in

Equation (6.3) does not allow its use out of the 2−1𝐷 objects case. Hence, the importance of generalizing the

definition of 𝑜𝑘 .

As the definition of 𝑜𝑘 provided in Equation (6.3) does not apply out of the 2 − 1𝐷

objects case, the generalization of 𝑜𝑘 Equation (6.3) is essential in order to model crosses for

any arbitrary 𝑡 −𝑀𝐷 object problems. The solution based on Equation (6.3) was designed

in [24, Section IV] for particle-based implementations of the Bayesian filter. In particle

filtering, “particle mixing” is a characteristic phenomenon inherent in approximations

of multimodal densities [60]. Interestingly in the context of our labeling problem, when

“particle mixing” happens at least two particles are represented with permuted order of
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partitions in the state vector [61]. In order to generalize the definition of order/cross in [24,

Section IV] to arbitrarily high dimensional problems, this chapter proposes to analyze and

exploit “particle mixing” effects in the particle cloud. Exploitation of such “particle mixing”

analysis is realized by means of clustering the particle cloud.

Clustering the particle cloud will result in a relevant decomposition aiding at extracting

relevant statistics. This decomposition will enable straightforward extraction of labeling

certainty estimates and trouble-free use of computationally efficient MMSE estimation

(even when 𝑝(𝑠𝑘 |𝐙𝑘) is multimodal).

6.3.1 State space model
The general nonlinear dynamic system and observation models can be denoted as 𝑓 and 𝑞

respectively:

𝒔𝑘 = 𝑓 (𝒔𝑘−1,𝒏𝑘−1) (6.4)

𝐳𝑘 = 𝑞(𝒔𝑘 , 𝒗𝑘), 𝑘 ∈ ℕ (6.5)

where 𝒔𝑘 , 𝒏𝑘 , 𝐳𝐤 and 𝒗𝑘 represent the state, process noise, the measurement and the

measurement noise respectively.

We tackle the MOT problem in the framework of recursive Bayesian filtering. The pre-

dicted and posterior densities of interest 𝑝(𝒔𝑘 |𝐙𝑘−1) and 𝑝(𝒔𝑘 |𝐙𝑘) are obtained by iteration

over the Chapman-Kolmogórov and Bayes equations:

𝑝(𝒔𝑘 |𝐙𝑘−1) = ∫ 𝑝(𝒔𝑘 |𝒔𝑘−1)𝑝(𝒔𝑘−1|𝐙𝑘−1)𝑑𝒔𝑘−1 (6.6)

𝑝(𝒔𝑘 |𝐙𝑘) =
𝑝(𝐳𝑘 |𝒔𝑘)𝑝(𝒔𝑘 |𝐙𝑘−1)

𝑝(𝐳𝑘 |𝐙𝑘−1)
(6.7)

in this framework, the models in Equations (6.4) and (6.5) are expressed in the form of

𝑝(𝒔𝑘 |𝒔𝑘−1) and 𝑝(𝐳𝑘 |𝑠𝑘) respectively.

Due to the nonlinear nature of TrBD measurement models, the Bayesian recursion

formulated in Equations (6.6) and (6.7) cannot be implemented via (stochastic) parametric

models [28]. For this reason, a PF will be used to approximate the recursion.

6.3.2 A generic decomposition of 𝑝(𝒔𝑘 |𝐙𝑘) in TrBD
As detailed in the subsection 2.4, the underlying concern to answer the questions in

section 2.3 is how to decompose 𝑝(𝒔𝑘 |𝐙𝑘) in TrBD. A generic decomposition of 𝑝(𝒔𝑘 |𝐙𝑘)

can be formulated by introducing an auxiliary variable 𝑜𝑘 :

𝑝(𝒔𝑘 |𝐙𝑘) =

𝑡!

∑

𝑖=1

𝑝(𝒔𝑘 , 𝑜𝑘 = 𝑖|𝐙𝑘) (6.8)

Please note that the desired definition of 𝑜𝑘 is not the one in Equation (6.3) as we are target-

ing its generalization to the 𝑡 −𝑀𝐷 objects case. The new density of interest 𝑝(𝒔𝑘 , 𝑜𝑘 |𝐙𝑘),

can be factorized as:

𝑝(𝒔𝑘 , 𝑜𝑘 |𝐙𝑘) = 𝑝(𝒔𝑘 |𝑜𝑘 ,𝐙𝑘)𝑃(𝑜𝑘 |𝐙𝑘) (6.9)
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where 𝑝(𝒔𝑘 |𝑜𝑘 ,𝐙𝑘) is the posterior density of the state vector given 𝑜𝑘 and themeasurements,

while 𝑃(𝑜𝑘 |𝐙𝑘) is the posterior probability of 𝑜𝑘 . Both can be computed using the association-

free (non-decomposed) TrBD filter output 𝑝(𝒔𝑘 |𝐙𝑘) and a certain probabilistic definition of

the auxiliary variable 𝑜𝑘 :

𝑝(𝒔𝑘 |𝑜𝑘 ,𝐙𝑘) =
𝑃(𝑜𝑘 |𝒔𝑘 ,𝐙𝑘)𝑝(𝒔𝑘 |𝐙𝑘)

𝑃(𝑜𝑘 |𝐙𝑘)
(6.10)

𝑃(𝑜𝑘 |𝐙𝑘) = ∫
𝒔𝑘

𝑃(𝑜𝑘 |𝒔𝑘)𝑝(𝒔𝑘 |𝐙𝑘)𝑑𝒔𝑘 (6.11)

Assuming that the generalized definition of 𝑜𝑘 is conditionally independent on 𝐙𝑘 given

𝒔𝑘 (as it is the case in the 2−1𝐷 targets case definition from Equation (6.3)), Equation (6.10)

can be rewritten as:

𝑝(𝒔𝑘 |𝑜𝑘 ,𝐙𝑘) =
𝑃(𝑜𝑘 |𝒔𝑘)𝑝(𝒔𝑘 |𝐙𝑘)

𝑃(𝑜𝑘 |𝐙𝑘)
(6.12)

The generic decomposition in Equation (6.8) together with the desired definition of

𝑃(𝑜𝑘 |𝒔𝑘) should allow answering the questions of interest for generic 𝑡 −𝑀𝐷 problems.

When MMSE estimation is the choice for extracting point estimates, the desired definition

of 𝑃(𝑜𝑘 |𝒔𝑘) should ensure that each component in Equation (6.8) 𝑝(𝒔𝑘 |𝑜𝑘 = 𝑚,𝐙𝑘) is uni-

modal. Under this condition, the list of 𝑡! label point estimates (question 1 in section 2.3)

can be provided avoiding track-coalescence. Finally, the desired definition 𝑃(𝑜𝑘 |𝒔𝑘) should

be such that 𝑃(𝑜𝑘 = 𝑚|𝐙𝑘) represents the certainty of labeling association 𝑚 (question 2 in

section 2.3).

Labeled Point Estimates and labeling certainties of the CMT
In a particle-based implementation of the Bayesian recursion, 𝑝(𝒔𝑘 |𝐙𝑘) is represented with

a weighted set of particles {𝒔𝑖
𝑘
,𝑤𝑖

𝑘
}
𝑁𝑝

𝑖=1. According to the decomposition in Equation (6.8),

order-dependent Labeled Point Estimates (LPEs) can be calculated as the expected value of

𝒔𝑘 given the 𝑜𝑟𝑑𝑒𝑟 and measurements:

𝐸[𝒔𝑘 |𝑜𝑘 ,𝐙𝑘] = ∫
𝒔𝑘

𝒔𝑘𝑝(𝒔𝑘 |𝑜𝑘 ,𝐙𝑘)𝑑𝒔𝑘

Eq (6.12)

=
1

𝑃(𝑜𝑘 |𝐙𝑘)
∫
𝒔𝑘

𝒔𝑘𝑃(𝑜𝑘 |𝒔𝑘)𝑝(𝒔𝑘 |𝐙𝑘)𝑑𝒔𝑘

≈
1

𝑃(𝑜𝑘 |𝐙𝑘)
∑

𝑖

𝑤
𝑖
𝑘𝒔

𝑖
𝑘𝑃(𝑜𝑘 |𝒔

𝑖
𝑘)

(6.13)

Order-dependent labeling certainties are necessarily in the second factor of Equation (6.9)

𝑃(𝑜𝑘 |𝐙𝑘) = ∫
𝒔𝑘

𝑃(𝑜𝑘 |𝒔𝑘)𝑝(𝒔𝑘 |𝐙𝑘)𝑑𝒔𝑘 ≈∑

𝑖

𝑤
𝑖
𝑘𝑃(𝑜𝑘 |𝒔

𝑖
𝑘) (6.14)
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Evaluation of 𝐸[𝒔𝑘 |𝑜𝑘 ,𝐙𝑘] for each possible realization of 𝑜𝑘 provides a different vector

of LPEs (answer to question 1 in section 2.3):

𝐸[𝒔𝑘 |𝑜𝑘 = 𝑚,𝐙𝑘] ≈
1

𝑃(𝑜𝑘 = 𝑚|𝐙𝑘)
∑

𝑖

𝑤
𝑖
𝑘𝒔

𝑖
𝑘𝑃(𝑜𝑘 = 𝑚|𝒔

𝑖
𝑘) ≈

1

𝑃(𝑜𝑘 = 𝑚|𝐙𝑘)
∑

𝑖|𝑜𝑖
𝑘
=𝑚

𝑤
𝑖
𝑘𝒔

𝑖
𝑘 where 𝑚 ∈ {1,2, .., 𝑡!}

(6.15)

In the same way, evaluation of 𝑃(𝑜𝑘 |𝐙𝑘) for each possible realization of 𝑜𝑘 provides a scalar

with the associated labeling probability (answer to question 2 in section 2.3):

𝑃(𝑜𝑘 = 𝑚|𝐙𝑘) ≈∑

𝑖

𝑤
𝑖
𝑘𝑃(𝑜𝑘 = 𝑚|𝒔

𝑖
𝑘) ≈ ∑

𝑖|𝑜𝑖
𝑘
=𝑚

𝑤
𝑖
𝑘

(6.16)

Algorithm implementation
Algorithm 4 is the practical implementation of the functionalities illustrated in Figure 6.4.

Same way as in Figure 6.4, the algorithm is generic given a generic definition of “order” (𝑜𝑖
𝑘

at particle level).

1 𝑘 = 0;

2 Draw 𝑁𝑝 samples 𝒔𝑖
𝑘
from 𝑝(𝒔𝑘);

3 Draw 𝑁𝑝 samples 𝒏𝑖
𝑘
from 𝑝(𝒏𝑘);

4 𝑘 = 𝑘+1;

5 𝒔𝑖
𝑘
= 𝑓 (𝒔𝑖

𝑘−1
,𝒏𝑖

𝑘−1
);

6 Calculate 𝑜𝑖
𝑘
according to the definition of “order” under test;

7 Given 𝐳𝐤, obtain 𝑤̃𝑖
𝑘
= 𝑝(𝐳𝑘 |𝑠

𝑖
𝑘
);

8 Normalize weights 𝑤𝑖
𝑘
= 𝑤̃𝑖

𝑘
/∑

𝑁𝑝

𝑗=1 𝑤̃
𝑗

𝑘
;

9 Resample from 𝑝̂(𝒔𝑘 |𝐙𝑘) = ∑
𝑁𝑝

𝑖=1𝑤
𝑖
𝑘
𝛿(𝒔𝑘 −𝒔𝑖

𝑘
):;

10 Extract LPEs according to Equation 6.15;

11 Obtain certainty measures of LPEs

according to Equation 6.16;

go to 3

Algorithm 4: Pseudo-code of the PF algorithm for implementation of the CMT. Exten-

sions over the plain SIR TrBD particle filter and traditional MMSE estimate extraction

are highlighted in blue color. 𝑝(𝒔𝑘) and 𝑝(𝒏𝑘) denote the initial prior and the process

noise models.

6.3.3 Performance evaluation of the CMT for the 2− 1𝐷 ob-
jects case

Before delving into the problem of generalizing the solution in [24, Section IV], it is relevant

to understand the performance evaluation of the low dimensional CMT solution. In fact,

although [24, Section IV] presented numerical results, these were not evaluated against the

references described in chapter 4. Namely, reference labeled tracks and reference labeling

probabilities.
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Table 6.1: Parameters of the simulation

parameter value

𝑑𝑖 1.66 m

𝑑𝑚 0.22 m

𝜎𝑛 0.14 m/s
3/2

𝜎𝑣 0.045 m

𝜏 1 s

𝑁𝑝 10000 particles

The choice of simulation parameters to evaluate the solution in [24, Section IV] is

shown in Table 6.1. This parametrization generates a high amount of labeling uncertainty

in order to challenge the MOT algorithm. This becomes apparent when considering the

overlapping in between partitions of different colors (labels) of the predicted and posterior

particle cloud in Figure 6.5.

Figure 6.5: Illustration of real trajectories as well as predicted and posterior particle clouds along all simulation

time steps. The particle mixing effect can be observed, for instance, in the posterior particle clouds after object

separation. In fact, different particles hypothesize the state of the same physical object with different partitions.

The evaluation can be reproduced by setting up the trajectories for the objects with

initial andminimum distance as indicated by 𝑑𝑖 and 𝑑𝑚 in Table 6.1. The evaluation considers

the dynamic and measurement models as nearly constant velocity [23] and linear-Gaussian.

The standard deviations of the process noise and observation noise are indicated by 𝜎𝑛 and

𝜎𝑣 respectively in Table 6.1, where 𝜏 denotes the revisit time. Without loss of generality,

choosing these simple models suffices to validate Alg. 4 against the evaluation references

calculated by Alg. 3.
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The definition of 𝑜𝑘 in Equation (6.3) can be rewritten in a probabilistic form:

𝑃(𝑜𝑘 = 1|𝒔𝑘) = 1 𝑖𝑓 𝑥
𝑏
𝑘 > 𝑥

𝑟
𝑘

𝑃(𝑜𝑘 = 2|𝒔𝑘) = 0 𝑖𝑓 𝑥
𝑏
𝑘 ≤ 𝑥

𝑟
𝑘

(6.17)

The definition in (6.17) can be plugged into Equations (6.12) and (6.11) in order to decompose

𝑝(𝒔𝑘 |𝐙𝑘) using the CMT (Algorithm 4). By these means, LPEs and associated labeling

certainties can be generated with Algorithm 4 and evaluated with the optimal reference

generated by Algorithm 3. Simulation results illustrated in Figures 6.6 and 6.7 validate the

cross modeling solution for the 2−1𝐷 objects case using the evaluation method described

in chapter 4.
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Figure 6.6: Evaluation of estimation performance of the CMT for a 2−1𝐷 objects scenario. Cross modeling based

estimates are extracted only from the cluster associated to “order” 1.

Comments on the results
Algorithm 4 decomposes the particle cloud in two (𝑡!) clusters. These clusters explicitly

approximate the DA-free decomposition in Equation (6.8). The cluster associated to “order”

1 supports the hypothesis that the maneuvers of the two labeled objects lead to non-crossed

trajectories with respect to the initialization ∀𝑘. This cluster produces LPEs represented in

Figure 6.6 as 𝑥̄
𝑏,𝑟

𝑘
(𝑜 = 1). The certainty measure associated (𝑃(𝑜 = 1|𝒁𝑘) curve) is extracted

from the particle approximation of the joint multiobject posterior in step 11 of Algorithm 4.

Over the first 6 seconds of the simulation, the LPE(𝑜 = 1) holds full certainty. No single

particle belongs to the cluster 𝑜 = 2 and therefore, no representative can be extracted

from there (see Figure 6.7). As expected, 𝑃(𝑜𝑘 = 1|𝒁𝑘) drops down to around 0.5 after the

objects remain closely-spaced for some time. This means that labeling information has

been completely lost. Labeling information cannot be recovered after the split as suggested

by the measure of certainty. The LPE(𝑜 = 2) supports the hypothesis that the maneuvers of

the two labeled objects lead to crossed trajectories with respect to the initialization ∀𝑘.
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Figure 6.7: Evaluation of estimation performance of the CMT for a 2−1𝐷 objects scenario. Cross modeling based

estimates are extracted only from the cluster associated to “order” 2.

Estimation results produced by the CMT closely match the ground truths generated

by Algorithm 3. This validates the CM method as a solution to the problem defined in the

Section 2.4 for the 2−1𝐷 objects scenario.

6.4 First generalization of the definition of 𝑐𝑟𝑜𝑠𝑠:
scenarios with arbitrary number 𝑡 of 1D objects

In a 2− 1𝐷 objects setting, given the state of one particle at time step 𝑘, Equation (6.3)

provides its 𝑜𝑟𝑑𝑒𝑟 . We will refer to this calculation as an absolute evaluation of 𝑜𝑟𝑑𝑒𝑟 .

Unlike 1-D points, 2-D points cannot be ordered making use of the operators ≤ and >. For

this reason, finding an absolute evaluation of “order” in 2-D is not a trivial concern.

6.4.1 Absolute versus relative 𝑜𝑟𝑑𝑒𝑟 calculation and the defi-
nition of 𝑐𝑟𝑜𝑠𝑠:

An alternative method to obtain the 𝑜𝑟𝑑𝑒𝑟 can be realized by relative evaluation: relying

on the prior 𝑜𝑟𝑑𝑒𝑟 at time step 𝑘 −1 and detecting whether or not the objects have crossed

from time step 𝑘 −1 to 𝑘,

𝑃(𝑜𝑘 = 1|𝒔𝑘) = 1 𝑃(𝑜𝑘 = 2|𝒔𝑘) = 1

𝑃(𝑜𝑘−1 = 1|𝒔𝑘−1) = 1 no cross cross

𝑃(𝑜𝑘−1 = 2|𝒔𝑘−1) = 1 cross no cross

For 2−1𝐷 objects scenarios:
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𝑥𝑟
𝑘
< 𝑥𝑏

𝑘
𝑥𝑟
𝑘
≥ 𝑥𝑏

𝑘

𝑥𝑟
𝑘−1

< 𝑥𝑏
𝑘−1

no cross cross

𝑥𝑟
𝑘−1

≥ 𝑥𝑏
𝑘−1

cross no cross

Hence, to declare a cross, either of the two following conditions must be met:

𝑥
1
𝑘−1 < 𝑥

2
𝑘−1 𝑎𝑛𝑑 𝑥

1
𝑘 ≥ 𝑥

2
𝑘 (6.18)

𝑥
1
𝑘−1 ≥ 𝑥

2
𝑘−1 𝑎𝑛𝑑 𝑥

1
𝑘 < 𝑥

2
𝑘 (6.19)

The relative 𝑜𝑟𝑑𝑒𝑟 evaluation method shifts the generalization problem from the defini-

tion of 𝑜𝑟𝑑𝑒𝑟 to the definition of 𝑐𝑟𝑜𝑠𝑠. A 𝑐𝑟𝑜𝑠𝑠 detector for 2−1𝐷 objects can be derived

from the absolute definition in Equation (6.3). Let us denote 𝒔
′𝑝

𝑘
as the position part of the

state vector 𝒔𝑘 = [𝑥𝑏
𝑘
𝑥̇𝑏
𝑘
𝑥𝑟
𝑘
𝑥̇𝑟
𝑘
] of particle 𝑝 at time step 𝑘: 𝒔

′𝑝

𝑘
= [𝑥

𝑝,𝑏

𝑘
𝑥
𝑝,𝑟

𝑘
]. Since 𝒔

′𝑝

𝑘
and 𝒔

′𝑝

𝑘−1

are vectors in a 2D space (2 objects placed along 1D spacial dimension), one can calculate

the Euclidean distance or 𝑙2−𝑛𝑜𝑟𝑚 between them in the joint space as (superscript 𝑝 is

dropped for notation simplicity):

𝑛𝑜𝑟𝑚(𝒔
′
𝑘 −𝒔

′
𝑘−1) =

√

(𝑥𝑟
𝑘
−𝑥𝑟

𝑘−1
)2+(𝑥𝑏

𝑘
−𝑥𝑏

𝑘−1
)2 (6.20)

=

√

(𝑥𝑟
𝑘
)2−2(𝑥𝑟

𝑘
𝑥𝑟
𝑘−1

)+ (𝑥𝑟
𝑘−1

)2+(𝑥𝑏
𝑘
)2−2(𝑥𝑏

𝑘
𝑥𝑏
𝑘−1

)+ (𝑥𝑏
𝑘−1

)2 (6.21)

=

√

(𝑥𝑏
𝑘
−𝑥𝑟

𝑘−1
)2+(𝑥𝑟

𝑘
−𝑥𝑏

𝑘−1
)2+2(𝑥𝑟

𝑘−1
−𝑥𝑏

𝑘−1
)(𝑥𝑏

𝑘
−𝑥𝑟

𝑘
) (6.22)

Then,

𝑛𝑜𝑟𝑚
2
(𝒔

′
𝑘 −𝒔

′
𝑘−1) = (𝑥

𝑏
𝑘 −𝑥

𝑟
𝑘−1)

2
+(𝑥

𝑟
𝑘 −𝑥

𝑏
𝑘−1)

2
+2(𝑥

𝑟
𝑘−1−𝑥

𝑏
𝑘−1)(𝑥

𝑏
𝑘 −𝑥

𝑟
𝑘) (6.23)

𝑛𝑜𝑟𝑚
2
(𝒔

′
𝑘 −𝒔

′
𝑘−1) = 𝑛𝑜𝑟𝑚

2
(Π𝒔

′
𝑘 −𝒔

′
𝑘−1)+𝐾 (6.24)

where 𝐾 = 2(𝑥𝑟
𝑘−1

−𝑥𝑏
𝑘−1

)(𝑥𝑏
𝑘
−𝑥𝑟

𝑘
) and Π denotes the permutation matrix:

Π =
(

0 1

1 0)
(6.25)

Each of the Equations (6.18) and (6.19) define the conditions to declare a cross. Interestingly,

when any of these equations is applied to the function 𝐾 , the result is 𝐾 > 0 as long as

𝑥𝑟
𝑘−1

, 𝑥𝑏
𝑘−1

, 𝑥𝑟
𝑘
and 𝑥𝑏

𝑘
take positive values. Variables 𝑥𝑟

𝑘−1
, 𝑥𝑏

𝑘−1
, 𝑥𝑟

𝑘
and 𝑥𝑏

𝑘
can only take

positive values in our application problem as these are range magnitudes. Therefore,

Inequation (6.26) holds as long as a cross in the state vector of particle 𝑝 takes place:

𝑛𝑜𝑟𝑚
2
(𝒔

′𝑝

𝑘
−𝒔

′𝑝

𝑘−1
) > 𝑛𝑜𝑟𝑚

2
(Π𝒔

′𝑝

𝑘
−𝒔

′𝑝

𝑘−1
) (6.26)

Equivalently, the next 𝑜𝑟𝑑𝑒𝑟 𝑠𝑤𝑖𝑡𝑐ℎ condition can be used to find out whether or not a

cross should be declared for the particle 𝑝 between time instants 𝑘 −1 and 𝑘.

𝑛𝑜𝑟𝑚(𝒔
′𝑝

𝑘
−𝒔

′𝑝

𝑘−1
) > 𝑛𝑜𝑟𝑚(Π𝒔

′𝑝

𝑘
−𝒔

′𝑝

𝑘−1
) (6.27)
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The result in Equation (6.27) can be pictured in a physically meaningful way as in

Figure 6.8.

Figure 6.8: The illustration in the left hand side represents an 𝑜𝑟𝑑𝑒𝑟 𝑠𝑤𝑖𝑡𝑐ℎ as the points 𝑝𝑘 and 𝑝𝑘+1 belong in

different sides of the diagonal 𝑥𝑟 = 𝑥𝑏. Indeed, Inequation (6.27) holds in this case. In the right hand side the point

𝑝 does not cross the line 𝑥𝑟 = 𝑥𝑏 between time instants 𝑘 and 𝑘 +1 meaning that the order remains the same in

this case. Indeed, Inequation (6.27) does not hold.

6.4.2 Generalization of 𝑐𝑟𝑜𝑠𝑠 from 2−1𝐷 to 𝑡 − 1𝐷 cases
This generalization considering 1𝐷 objects makes use of the relative definition of “order”

based on Inequation (6.27), applied to all possible pairs of partitions in the state vector. As

the number of possible labeling solutions is 𝑡!, only the extension from two to three targets

will be exemplified due to space limitations. Nevertheless, there is no loss of generality as

the same technique can be applied to any arbitrary number of targets 𝑡.

For a three-object scenario, the three partitions in the state vector can be ordered in six

different ways according to, for instance, the convention in Table 6.2:

1D magnitude

increasing direction

→

𝑜 = 1 1𝑠𝑡 2𝑛𝑑 3𝑟𝑑

𝑜 = 2 1𝑠𝑡 3𝑟𝑑 2𝑛𝑑

𝑜 = 3 2𝑛𝑑 1𝑠𝑡 3𝑟𝑑

𝑜 = 4 3𝑟𝑑 1𝑠𝑡 2𝑛𝑑

𝑜 = 5 2𝑛𝑑 3𝑟𝑑 1𝑠𝑡

𝑜 = 6 3𝑟𝑑 2𝑛𝑑 1𝑠𝑡

Table 6.2: Order convention for the 3 scalar-targets case

The convention in Table 6.2 groups in cluster 1 those particles complying with: position

of the first partition is less than the position of the second partition, being the position of

the second partition less than the position of the third partition. For the sake of printing

clarity in forthcoming simulation experiments, the first, second and third partitions will be

identified with colors green, red and blue respectively.

Between the time steps 𝑘 −1 and 𝑘, there are eight distinct types of crosses that could

occur. Each cross type is composed of three boolean variables. These are used to codify

whether or not a cross is declared between pairs of partitions. When the boolean variable
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is set to 1, a cross is declared between the corresponding pair of objects. For instance, one

can adopt the following convention:

cross of

partitions

1𝑠𝑡 −2𝑛𝑑

cross of

partitions

1𝑠𝑡 −3𝑟𝑑

cross of

partitions

2𝑛𝑑 −3𝑟𝑑

C1 0 0 0

C2 0 0 1

C3 1 0 0

C4 0 1 1

C5 1 1 0

C6 1 1 1

C7 1 0 1

C8 0 1 0

These cross-type codes can be used now for relative evaluation of the 𝑜𝑟𝑑𝑒𝑟 at time

step 𝑘, given the order at time step 𝑘 −1:

𝑜𝑘 = 1 𝑜𝑘 = 2 𝑜𝑘 = 3 𝑜𝑘 = 4 𝑜𝑘 = 5 𝑜𝑘 = 6

𝑜𝑘−1 = 1 C1 C2 C3 C4 C5 C6

𝑜𝑘−1 = 2 C2 C1 C7 C8 C6 C5

𝑜𝑘−1 = 3 C3 C7 C1 C6 C8 C4

𝑜𝑘−1 = 4 C4 C8 C6 C1 C7 C3

𝑜𝑘−1 = 5 C5 C6 C8 C7 C1 C2

𝑜𝑘−1 = 6 C6 C5 C4 C3 C2 C1

6.4.3 Simulation results
The estimation performance of the CM method for a 3−1𝐷 objects scenario, using Inequa-

tion (6.27) as the “cross detector”, is illustrated in this subsection. Note that the validation

method summarized in chapter 4 is based on evaluation of data association hypotheses.

Therefore, Algorithm 2 can be used right away to generate optimal LPEs and labeling

probabilities in any arbitrary 𝑡 −𝑀𝐷 objects case. Figure 6.9 illustrates the estimation

performance of the CMT.

Discussion of results
The results in Figure 6.9 reveal remarkably accurate estimation performance of the CMT

both in the computation of LPEs and labeling probabilities. This validates the CMT as a

convenient solution to answer the questions in section 2.3 for scenarios where an arbitrary

number of objects move in one dimension.

The choice of the particular ground truth trajectories in Figure 6.9 results in complete

loss of labeling information (1/3! certainty for all LPEs). Although Figure 6.9 illustrates this

worst case scenario, it is apparent that the CMT accurately estimates labeling uncertainty

also in more favorable scenarios. For instance, scenarios where the objects remain closely-

spaced for a shorter time and labeling certainty is lost only partially.
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Figure 6.9: Evaluation of estimation results provided from the clusters associated to all states of “order” in Table 6.2

Losing labeling information is a physical limitation inherent in closely-spaced object

scenarios. Furthermore, once labeling certainty is lost, it is mathematically not possible

to recover it (assuming that the objects cannot be differentiated in measurements/maneu-

verability). In this context, all what can be expected from the tracker is that it captures

the uncertainty produced by the combination scenario/sensor-limitations as accurately as

possible. The best indicator of the DA-free decomposition quality is how good the CMT

can estimate when and how quickly the 100% labeling certainty (in the beginning of the

simulation) drops as the targets get closer to each other. While regular TrBD filters such

as the one in [52] cannot capture this, the CMT reports successful results for the cases

simulated so far.

6.5 Second generalization of the definition of 𝑐𝑟𝑜𝑠𝑠
from 𝑡 − 1𝐷 to 𝑡 −𝑀𝐷 objects

Subsection 6.3.2 presented a generic DA-free decomposition of 𝑝(𝒔𝑘 |𝐙𝑘) by introducing the

(not yet defined for the generic 𝑡 −𝑀𝐷 case) variable 𝑜𝑘 . An analytical expression for the

LPEs and labeling probabilities (dependent on the definition of 𝑜𝑘) was provided in Equa-

tions (6.15) and (6.16). Another analytical derivation provided in Subsection 6.4.1 has proved

that the relative calculation of 𝑜𝑘 for the 2−1𝐷 objects case, based on Inequation (6.27),

leads to identical results than the absolute calculation of 𝑜𝑘 based on Equation (6.3).

Section 6.4.2 illustrated how the relative calculation of 𝑜𝑘 (based on Inequation (6.27))

can be extended seamlessly to copewithmore than two objectsmoving in a one-dimensional

space. This section covers the generalization of the relative calculation of 𝑜𝑘 from 1D to

MD objects. In practice, simulation experiments will be limited to cases where𝑀 is 2 and 3

to illustrate that the CMT can be used for tracking of land/sea objects (2D) and air objects
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(3D).

The reader is referred to Appendix A.3 at this point in order to understand the complex-

ity of extending the definition of 𝑜𝑘 in Equation (6.3) to objects moving in 2 and 3 spacial

dimensions.

6.5.1 Generalization of the 𝑐𝑟𝑜𝑠𝑠 detector to 2 − 2𝐷 objects
settings

Inequation (6.27) does not extend straightforwardly from 2−1𝐷 to 2−2𝐷 objects scenarios

as illustrated in Appendix A.3. However, the reasonwhy Inequation (6.27) workswell for the

2−1𝐷 case can be found after analyzing the function 𝐾 derived in Subsection 6.4.1. Given

the 2D points 𝒔
′𝑝

𝑘−1
and 𝒔

′𝑝

𝑘
(2 objects in a 1D space), the function 𝐾 = 2(𝑥𝑟

𝑘−1
−𝑥𝑏

𝑘−1
)(𝑥𝑏

𝑘
−𝑥𝑟

𝑘
)

complies with a very particular condition:

𝐾(𝒔
′𝑝

𝑘−1
, 𝒔

′𝑝

𝑘
) = −𝐾(𝒔

′𝑝

𝑘−1
,Π(𝒔

′𝑝

𝑘
)) (6.28)

as 𝒔
′𝑝

𝑘
and Π(𝒔

′𝑝

𝑘
) are crossed with respect to each other, 𝐾 can be regarded as an odd

function in the “order” of 𝒔
′𝑝

𝑘
. In other words, two different evaluations of 𝐾 , using the

current state of particle 𝑝 and its permuted version are equal in absolute value but different

in sign:

|𝐾(𝒔
′𝑝

𝑘−1
, 𝒔

′𝑝

𝑘
)| = |𝐾(𝒔

′𝑝

𝑘−1
,Π(𝒔

′𝑝

𝑘
))|

𝑠𝑔𝑛(𝐾(𝒔
′𝑝

𝑘−1
, 𝒔

′𝑝

𝑘
)) = 𝑠𝑔𝑛(−𝐾(𝒔

′𝑝

𝑘−1
,Π(𝒔

′𝑝

𝑘
)))

(6.29)

Additionally, as we already pointed out in Subsection 6.4.1:

𝐾(𝒔
′𝑝

𝑘−1
, 𝒔

′𝑝

𝑘
) > 0 ⇔ 𝒔

′𝑝

𝑘−1
, 𝒔

′𝑝

𝑘
𝑎𝑟𝑒 𝑐𝑟𝑜𝑠𝑠𝑒𝑑 (6.30)

The condition 𝐾(𝒔
′𝑝

𝑘−1
, 𝒔

′𝑝

𝑘
) > 0 and Inequation (6.27) are equivalent “cross detectors” for

the 2−1𝐷 case due to Equation (6.24). Our problem formulation can be narrowed down

to the following question: What is the 2−2𝐷 counterpart of the 𝐾 function which can be

applied to the two 4D points 𝒔
′𝑝

𝑘−1
and 𝒔

′𝑝

𝑘
?

Let us consider an equivalent expression of 𝐾 introducing the 𝑛𝑜𝑟𝑚 function, which

we denote as 𝐾2−1𝐷:

𝐾2−1𝐷 = 2(𝑛𝑜𝑟𝑚(𝒔
′𝑟
𝑘−1)−𝑛𝑜𝑟𝑚(𝒔

′𝑏
𝑘−1))(𝑛𝑜𝑟𝑚(𝒔

′𝑏
𝑘 )−𝑛𝑜𝑟𝑚(𝒔

′𝑟
𝑘 )) (6.31)

The desired function 𝐾2−2𝐷 ∶ ℝ8 → ℝ can be found by considering the counterpart of 𝐾2−1𝐷

for the 2−2𝐷 case:

𝐾2−2𝐷 = 2(𝑛𝑜𝑟𝑚(𝒔
′𝑟
𝑘−1)−𝑛𝑜𝑟𝑚(𝒔

′𝑏
𝑘−1))(𝑛𝑜𝑟𝑚(𝒔

′𝑏
𝑘 )−𝑛𝑜𝑟𝑚(𝒔

′𝑟
𝑘 )) (6.32)

where now 𝒔
′𝑝

𝑘
= [𝑥

𝑝,𝑏

𝑘
𝑦
𝑝,𝑏

𝑘
𝑥
𝑝,𝑟

𝑘
𝑦
𝑝,𝑟

𝑘
]𝑇 , 𝒔

′𝑝,𝑟

𝑘
= [𝑥

𝑝,𝑟

𝑘
𝑦
𝑝,𝑟

𝑘
]𝑇 and 𝒔

′𝑝,𝑏

𝑘
= [𝑥

𝑝,𝑏

𝑘
𝑦
𝑝,𝑏

𝑘
]𝑇 . 𝐾2−2𝐷

is indeed the odd function (in the “order” of 𝒔′
𝑘
) which complies with the conditions in

Equations (6.28) and (6.30). Therefore, the extension of the definition of “cross” for the

2−2𝐷 objects case is:

𝐾2−2𝐷 > 0 (6.33)
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Simulations results
The results provided by the CMT for the 2−2𝐷 objects case using Inequation (6.33) as the

“cross detector” are shown in Figure 6.10:
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Figure 6.10: Evaluation of estimation performance of the CMT when Inequation (6.33) is used as the “cross

detector”. LPEs and labeling uncertainties are extracted from the clusters “order” 1 and 2, illustrated on top and

middle figures. Alg. 3 is the performance evaluator algorithm. The figure at the bottom confirms that the “order

detector” in Inequation (6.33) is appropriate. In fact, the associated clustering method removes particle mixing

within clusters after objects separation.

Discussion of the results
The results reveal remarkably accurate estimation performance of the CMT both in the

computation of LPEs and labeling probabilities. This validates the CMT as a convenient
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solution to answer the questions in section 2.3 for 2D objects. In fact, LPEs result in

low OSPA errors. This becomes possible even when extracting cost efficient MMSE (see

Equation (6.15)) point estimates thanks to the clustering method, which separates particles

in different state of “order”. These results support our argument that the design of the

proper “cross detector” should produce a decomposition of 𝑝(𝒔𝑘 |𝐙𝑘)where each component

is unimodal. Also, very accurate estimation of labeling uncertainty is provided, which can

be calculated by simply considering the proportion of particles within each order-dependent

cluster (see Equation (6.16)).

6.5.2 Generalization of the 𝑐𝑟𝑜𝑠𝑠 detector to 2 − 3𝐷 objects
settings

The function 𝐾2−3𝐷 ∶ ℝ12 → ℝ is the counterpart of 𝐾2−1𝐷 for the 2−3𝐷 objects case:

𝐾2−3𝐷 = 2(𝑛𝑜𝑟𝑚(𝒔
′𝑟
𝑘−1)−𝑛𝑜𝑟𝑚(𝒔

′𝑏
𝑘−1))(𝑛𝑜𝑟𝑚(𝒔

′𝑏
𝑘 )−𝑛𝑜𝑟𝑚(𝒔

′𝑟
𝑘 )) (6.34)

where now 𝒔
′𝑝

𝑘
= [𝑥

𝑝,𝑏

𝑘
𝑦
𝑝,𝑏

𝑘
𝑧
𝑝,𝑏

𝑘
𝑥
𝑝,𝑟

𝑘
𝑦
𝑝,𝑟

𝑘
𝑧
𝑝,𝑏

𝑘
]𝑇 . As 𝒔

′𝑝

𝑘
and Π(𝒔

′𝑝

𝑘
) are in different states

of “order”, 𝐾2−3𝐷 is also an odd function (in the “order” of 𝒔
′𝑝

𝑘
) which complies with

the conditions in Equations (6.28) and (6.30). The evaluations of the current state and

its permuted version are equal in absolute value but different in sign. Therefore, the

counterpart definition for the “cross detector” from 𝐾2−1𝐷 and 𝐾2−2𝐷 cases can be used in

the 𝐾2−3𝐷 case:

𝐾2−3𝐷 > 0 (6.35)

Simulations results
The results provided by the CMT for the 2−3𝐷 objects case using Inequation (6.35) as the

“cross detector” are shown in Figures 6.11 and 6.12:

Discussion of the results
The results reveal remarkably accurate estimation performance of the CMT both in the

computation of LPEs and labeling probabilities. This validates the CMT as a convenient

solution to answer the questions in section 2.3 also for 3D objects.
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Figure 6.11: Evaluation of estimation performance of the CM method when Inequation (6.35) is used as the “order

switch” detector. Labeled point estimates are extracted from the cluster “order” 1. Alg. 3 is the performance

evaluator algorithm.
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Figure 6.12: Evaluation of estimation performance of the CM method when Inequation (6.35) is used as the “cross

detector”. Labeled point estimates are extracted from the cluster “order” 2. Alg. 3 is the performance evaluator

algorithm.
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6.6 Conclusions
The problem of track formation needs to be tackled by any MOT solution. To take informed

track formation decisions, estimation of track point-estimates and characterization of

labeling uncertainty is required. Extracting these estimates and characterization is not

trivial in the context of Track-before-Detect (TrBD), especially when tackling closely-spaced

target scenarios, as the formulation of DA hypotheses is ruled out.

This chapter provides a TrBDMOT algorithmwith labeling characterization capabilities

offering wider applicability than the non-LG implementation of the UD presented in

previous chapter. The Cross Modeling Tracker (CMT) has been presented in this chapter

as a DA-free solution applicable in arbitrarily high dimensional problems.

Both this and previous chapters solve the underlying problem of decomposing the

multitarget Bayes posterior density in a low dimensional case with two scalar targets.

Unlike the UD-based implementation, where the decomposition is based on the permuta-

tion invariance characteristics of the density, the CMT introduces a novel label-dependent

decomposition by hypothesizing physical crosses between the targets. The main contri-

bution of the paper is the non-trivial generalization of the cross-between-objects concept

from the two scalar targets case, where the concept of cross-between-objects has physical

interpretation, to arbitrary number of vector targets case.

The CMT results provided in this chapter are evaluated against the performance evalua-

tion method presented in chapter 4. Simulation results involving challenging closely-spaced

objects scenarios have been provided. The results illustrate that the CMT is usable in the

general 𝑡 −𝑀𝐷 objects case, provided the number of targets 𝑡 is known and constant in line

with the first assumption in the introductory chapter. Therefore, the proposed solution

extends the state-of-the-art of TrBDMOT by providing DA-free characterization of labeling

uncertainty, with validated estimation performance and efficient scalability, which can be

seamlessly used in generic 𝑡 −𝑀𝐷 targets scenarios in TrBD MOT context.
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7
Performance comparison of

solutions in chapters 5 and 6
and optimization of the CMT

for unresolved targets

7.1 Introduction
Track formation is an essential task in any MOT solution. In order to take informed track-

formation decisions, the labeling problem needs to be solved. An optimal solution to the

labeling problem is especially important when tracking closely-spaced objects. A solution

to the labeling problem involves estimation of labeled tracks and labeling certainties.

Therefore, a method for labeling uncertainty characterization is required.

Characterizing labeling uncertainty involves decomposing the multi-object Bayes pos-

terior density. This decomposition has been traditionally done by solving the DA problem

(MHT decomposition is an example). In Track-before-detect (TrBD) systems, association-

dependent decompositions cannot be formulated due to the absence of detections. Still,

labeling uncertainty needs to be characterized. Therefore, an association-free method to

perform a label-dependent decomposition of the Bayes posterior is required.

The distinguishing characteristic of the algorithms presented in chapters 5 and 6 is their

DA-free approach to the MOT problem, including the subproblem of estimating labeling

uncertainty. Due to their DA-free nature, both algorithms are suited to solve the TrBD

MOT problem.

This chapter starts by comparing the estimation performance of the algorithms pre-

sented in chapters 5 and 6 against the evaluation method presented in chapter 4. The

algorithm proposed in chapter 5 is an application of the UD theory for non Linear and/or

The contents provided in this chapter are to be submitted for review in JAIF as “Optimization of the Cross

Modeling Tracker for unresolved targets,” C. M. Leon, H. Driessen and A. Yarovoy in Journal of Advances in
Information Fusion, 2023
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non-Gaussian (non-LG) systems, recently submitted for review in TAESS [62]. The algo-

rithm proposed in chapter 6 is the Cross Modeling Tracker (CMT), already published in

JAIF [27].

After showcasing the pros and cons of each algorithm, the focus of this chapter is on

optimizing the CMT algorithm presented in [27]. Aside of pure estimation performance

aspects, the CMT has wider applicability than the non-LG implementation of the UD

presented in [62]. In fact, until now the UD theory has not been extended for more than

two targets.

The CMT provides accurate estimates of labeled tracks and corresponding labeling

certainties for the closely-spaced trajectories simulated in previous chapter. However, this

chapter provides initial results motivating that the CMT in [27] is not an exact solution,

meaning that the CMT statistics do not converge to the evaluation references as the number

of particles tend to infinity. This is specially noticeable when considering unresolved targets.

Two target are unresolved when they are located in the same resolution cell of range, angle

and velocity [63] [64]. Depending on their SNR, targets can also be unresolved when they

are in neighboring resolution cells. Besides discussing estimation performance comparison

between the two DA-free solutions presented in this thesis, the purpose of this chapter is

twofold. Firstly, we aim at theoretically identifying the approximations taken implicitly by

the CMT algorithm presented in [27]. Secondly, we aim at reducing the impact of such

approximations on estimation performance for scenarios involving unresolved targets,

without degradation on estimation performance for all other scenarios.

In order to identify the approximations taken by the CMT, we bridge the gap between an

exact solution (only accessible in Detect-before-Track (DBT) context) and the expressions

provided by the CMT operating in DBT context. In order to mitigate the impact of the

approximations, we propose the use of a new proposal density at PF implementation level.

The chapter is organized as follows. Section II provides evaluation results comparing

the estimation performance of the CMT and the non-LG implementation of the UD. Section

III derives the approximations implicit in the CMT and illustrates their impact on estimation

performance with numerical simulations. Section IV introduces the optimization of the

CMT algorithm for tracking unresolved targets. Section V provides results of the optimized

CMT algorithm illustrating better estimation performance than the original CMT solution.

Section VI concludes the chapter.

7.2 Estimationperformance comparisonbetweenthe
non-LG UD and CMT algorithms

The main contribution in [27] was giving analytical generalization for the concept of cross-

between-objects, so that the CMT algorithm can be extended to arbitrarily high-dimensional

problems. This extension refers for both the number of targets and the transition from

considering scalar targets to vector targets. The wider applicability of the CMT is a practical

advantage compared to UD-based solution, which cannot deal with more than two-target

densities. Nevertheless, this section starts by comparing the estimation performance of the

non-LG UD and the CMT algorithms in a low dimensional problem, where both approaches

can be applied.

The optimal references for evaluation are calculated analytically according to the
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evaluation criterion presented in the chapter 4. These references (illustrated in Figs. 7.1, 7.2

and 7.3) are provided in the form of statistics of interest. Namely labeled track references and

associated labeling certainty references. Note that such references can only be calculated

in DBT context as explained in chapter 4. For the purpose of evaluating the non-LG UD

and the CMT algorithms, both decomposition algorithms should be run in DBT context.

More specifically, the algorithms under evaluation should be fed with the same plot set

used in the generation of the optimal references.

Preliminary numerical results in Fig. 7.1 show estimation performance comparison be-

tween the non-LG implementation of the UD provided in [62] and the CMT presented in [27].

In particular, Fig. 7.1 illustrates labeling uncertainty characterization ability. Although both

algorithms under evaluation produce tracks, these will be evaluated in following figures

for sake of clarity in the visualization of results.

2 4 6 8 10 12 14 16 18 20
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0.6

0.8

1

Figure 7.1: Visual inspection of labeling uncertainty estimation performance by the non-LG UD and the CMT

trackers. The labeling certainty reference is generated by the Alg. 3 from chapter 4. The CMT labeling certainty

estimates are generated using Alg. 4 in chapter 6 and the non-LG UD labeling certainty estimates are generated

by the so-called fully decomposed algorithm summarized in the right column of Table 5.1. in chapter 5.

The non-LG implementation of the UD provides accurate estimation of the probability

of successful labeling after target separation. However, it seems to underestimate the

existent labeling uncertainty captured by the optimal labeling certainty reference before

that point. As opposed to this, the CMT captures very accurately the drop of labeling

certainty calculated by the reference.

To provide a complete picture, estimation performance by the CMT and the non-LG

implementation of the UD should be assessed also in terms of track estimates. To this

end, Figs. 7.2 and 7.3 provide additional visualizations of estimation error. Firstly, Fig. 7.2

shows the reference trajectories and reference labeling certainties used for evaluation

as a function of different degrees of plots accuracy. Based on these references, Fig. 7.3
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provides a thorough comparison of estimation results for both algorithms under evaluation.

Overall, both algorithms produce degraded estimation performance when targets are very

closely-spaced as compared to when they are not. As expected, this degradation applies to

both labeling certainty estimates and corresponding track estimates.

Despite the illustrated performance degradation, the comparative results show that

estimation performance of the CMT is better than the one of the non L-G implementation

of the UD. In particular, the difference in track estimation performance is one order of

magnitude (both in bias and dispersion) for the case with accurate plots. Better performance

of the CMT is consistent (but less accentuated) along tested simulations with poorer plot

accuracy.

The estimation of the probability of successful labeling by the CMT is also better than

the one by the non-LG UD implementation (see first row of Fig. 7.3). Once more, the CMT

seems to estimate very accurately the drop of the reference labeling certainty. Although

the non-LG implementation of the UD calculates the invariance characteristics of the Bayes

posterior in a theoretically sound manner, such solution does not outperform the CMT

when targets are too closely-spaced.

The use of the non-LG implementation of the UD is convenient for cases where one

is interested in target labeling information after target separation. Although the CMT

implementation outperforms the non-LG implementation overall, the former solution is

not exact. To be more specific, the CMT is very accurate unless the targets are extremely

close to each other, or unresolved.

The remainder of this chapter considers the optimization of the CMT. Firstly, the

approximations implicit in the CMT algorithm need to be analyzed. Then, the impact of

such approximations on estimation performance will be studied. Finally, modifications to

the original CMT tracking algorithm will be provided in order to mitigate the degradation

of the CMT approximations on estimation performance.
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7.3 Approximations in the CMT and their impact on
estimation performance

The approximations inherent in the CMT algorithm have not been identified in [27]. In this

chapter, it is argued that the unknown approximations taken by the CMT must be implicit

in the definition of cross-between-objects from the low dimensional solution presented

in [24, Section IV], as the generalization in [27] is fully analytical.

In order to identify the approximations taken by the CMT, this chapter bridges the gap

between the exact expressions of the desired decomposition and the ones provided by the

CMT. An exact expression for the decomposition is only accessible in DBT context. In

order to provide a fair comparison of the CMT decomposition with respect to the exact

decomposition, the CMT decomposition needs to be exercised taking as input the posterior

density produced in DBT context. Additionally, for the purpose of isolating the problem of

identifying the approximations, we consider a simple two targets case, assuming perfect

detectability and no false alarm.

7.3.1 The exact density decomposition
The exact decomposition in Equation (7.1) is only accessible in DBT context as it is generated

considering the two possible plot-label DA hypotheses.

𝑝(𝑠𝑘 |𝑍𝑘) =
𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙𝐷𝐵𝑇 (𝑧𝑘 |𝑠𝑘)

𝐿(𝑧𝑘)
𝑃(𝑧𝑘)+

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙𝐷𝐵𝑇 (𝜋(𝑧𝑘)|𝑠𝑘)

𝐿(𝜋(𝑧𝑘))
𝑃(𝜋(𝑧𝑘)) (7.1)

where 𝜋(𝑧𝑘) permutes the order in the measurement vector 𝑧𝑘 ,

𝑃(𝑧𝑘) =
𝐿(𝑧𝑘)

𝐿(𝑧𝑘)+𝐿(𝜋(𝑧𝑘))
(7.2)

and

𝑃(𝜋(𝑧𝑘)) =
𝐿(𝜋(𝑧𝑘))

𝐿(𝑧𝑘)+𝐿(𝜋(𝑧𝑘))
(7.3)

where

𝐿(𝑧𝑘) = ∫
𝑠𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙𝐷𝐵𝑇 (𝑧𝑘 |𝑠𝑘)𝑑𝑠𝑘 (7.4)

and

𝐿(𝜋(𝑧𝑘)) = ∫
𝑠𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙𝐷𝐵𝑇 (𝜋(𝑧𝑘)|𝑠𝑘)𝑑𝑠𝑘 (7.5)

7.3.2 The approximate density decomposition by the CMT
The decomposition in Equation (7.6) is the CMT approximation of the decomposition

in Equation (7.1). Note that Equation (7.6) incorporates the observation model in DBT

context. This is because although the CMT can be used in TrBD context, the identification

of approximations needs to be done in DBT context (for sake of fair comparison with

the exact expressions which are only accessible in DBT context). It is convenient for this

purpose that the CMT allows to calculate decompositions independently from the context,

i.e. the CMT decomposes the Bayes posterior density disregarding whether this density

has been obtained in DBT or TrBD contexts.
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𝑝(𝑠𝑘 |𝑍𝑘) =
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙𝐷𝐵𝑇 (𝑧𝑘 |𝑠𝑘)+ 𝑙𝐷𝐵𝑇 (𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙𝐷𝐵𝑇 (𝑧𝑘 |𝑠𝑘)+ 𝑙𝐷𝐵𝑇 (𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

1
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘
+

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙𝐷𝐵𝑇 (𝑧𝑘 |𝑠𝑘)+ 𝑙𝐷𝐵𝑇 (𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙𝐷𝐵𝑇 (𝑧𝑘 |𝑠𝑘)+ 𝑙𝐷𝐵𝑇 (𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

1
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

(7.6)

7.3.3 Approximations by the CMT decomposition at density
level

The approximation of the CMT decomposition in Equation (7.6) given the exact decompo-

sition in Equation (7.1) can be split as:

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

1
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘
≈

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)𝑑𝑠𝑘

𝑃(𝑧𝑘) (7.7)

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

1
𝑠𝑘 |𝑥

𝑏
1<𝑥

𝑟
𝑘
≈

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)𝑑𝑠𝑘

𝑃(𝜋(𝑧𝑘)) (7.8)

where the subindex 𝐷𝐵𝑇 has been dropped from 𝑙𝐷𝐵𝑇 for simplicity as it cannot be

confused with 𝑙𝑇 𝑟𝐵𝐷 because the identification of approximations is formulated in DBT

context.

7.3.4 IdentificationofCMTapproximations relevant fortrack
formation

Estimation performance is quantified at the output of the tracker. The tracker does not

output densities but tracks. Therefore, the approximations formulated in Equations (7.7)

and (7.8) at density level do not provide a clear idea of the impact of the CMT approximations

on the estimation performance. This section aims at studying how the density level

approximations propagate to the output of the tracker. In particular, how they affect

track-formation.

A common way to perform track-formation involves the calculation of two statistics of

interest: labeled tracks and corresponding labeling certainty estimates. Along the rest of

this section we study how the density level approximations (introduced by Equations (7.7)

and (7.8)) propagate to the statistics-of-interest level.

Exact solution for the statistics of interest
According to the exact decomposition from Equation (7.1), it is possible to calculate MMSE-

based labeled point estimates and labeling probabilities. The exact solution for the (MMSE)

labeled point estimates is:

𝐸𝑠𝑘 |𝑧𝑘 = ∫
𝑠𝑘

𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)

𝐿(𝑧𝑘)
𝑑𝑠𝑘 (7.9)

𝐸𝑠𝑘 |𝜋(𝑧𝑘) = ∫
𝑠𝑘

𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)

𝐿(𝜋(𝑧𝑘))
(7.10)

The exact solution for the labeling probabilities is:

𝑙𝑝𝑠𝑘 |𝑧𝑘 = 𝑃(𝑧𝑘) (7.11)
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𝑙𝑝𝑠𝑘 |𝜋(𝑧𝑘) = 𝑃(𝜋(𝑧𝑘)) (7.12)

Approximate CMT solution for the statistics of interest
According to the CMT decomposition in Equation (7.6), it is possible to calculate MMSE-

based labeled point estimates and labeling probabilities approximations. In particular, the

CMT approximations for the exact solutions 𝐸𝑠𝑘 |𝑧𝑘 and 𝐸𝑠𝑘 |𝜋(𝑧𝑘) are:

𝐸̂𝑠𝑘 |𝑧𝑘 ≈
1

̂𝑙𝑝𝑠𝑘 |𝑧𝑘
∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

𝑑𝑠𝑘 (7.13)

𝐸̂𝑠𝑘 |𝜋(𝑧𝑘) ≈
1

̂𝑙𝑝𝑠𝑘 |𝜋(𝑧𝑘)
∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

𝑑𝑠𝑘 (7.14)

Equivalently, the CMT approximations for the exact labeling probabilities 𝑙𝑝𝑠𝑘 |𝑧𝑘
and

𝑙𝑝𝑠𝑘 |𝜋(𝑧𝑘)
are:

̂𝑙𝑝𝑠𝑘 |𝑧𝑘
≈ ∫

𝑠𝑘 |𝑥
𝑏
𝑘
≥𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

𝑑𝑠𝑘 (7.15)

̂𝑙𝑝𝑠𝑘 |𝜋(𝑧𝑘)
≈ ∫

𝑠𝑘 |𝑥
𝑏
𝑘
<𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

𝑑𝑠𝑘 (7.16)

7.3.5 Study of CMT approximations at statistics-of-interest
level

For the sake of simplicity, we first study the approximation for the labeling probabilities.

Then, we do the same for the (MMSE) labeled point estimates.

Analytical comparison of exact labeling probabilities and CMT labeling
probabilities
The goal is to bridge the gap between the exact expression in Equation (7.11) and its CMT

approximation in Equation (7.15). Please note that:

𝐿(𝑧𝑘)+𝐿(𝜋(𝑧𝑘)) = ∫
𝑠𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘 (7.17)

Therefore, we only need to compare the labeling likelihoods (numerators in Equa-

tion (7.2) and (7.15)). Namely 𝐿(𝑧𝑘) and ∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

The exact expression for one of the two labeling likelihoods is:

𝐿(𝑧𝑘) = ∫
𝑠𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)𝑑𝑠𝑘 (7.18)
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This can be manipulated to match the region of integration used by the CMT approximation

of the labeling likelihood:

𝐿(𝑧𝑘) = ∫
𝑠𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)𝑑𝑠𝑘

= ∫
𝑠𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)1𝑠𝑘 |𝑥
𝑏
𝑘
≥𝑥𝑟

𝑘
+𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)1𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘
𝑑𝑠𝑘

= ∫
𝑠𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)1𝑠𝑘 |𝑥
𝑏
𝑘
≥𝑥𝑟

𝑘
+𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}1𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘
𝑑𝑠𝑘

= ∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)+𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘

(7.19)

Where 𝜋 transforms any density into its symmetric (with respect to the diagonal 𝑥𝑏
𝑘
= 𝑥𝑟

𝑘
)

version. The last expression shows that there exists an exact formulation for 𝐿(𝑧𝑘) when

forcing the integration region to be 𝑠𝑘 |𝑥
𝑏
𝑘
≥ 𝑥𝑟

𝑘
. Based on this exact formulation, one can

analyze the CMT approximation for 𝐿(𝑧𝑘):

∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)+𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘

≈ ∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

(7.20)

Equation (7.20) should be interpreted as the first line being an exact expression and the

second line being its CMT approximation. After removing identical contributions on both

sides of the approximation sign:

∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘 ≈ ∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘) (7.21)

An equivalent derivation for 𝑙𝑝𝑠𝑘 |𝜋(𝑧𝑘) and
̂𝑙𝑝𝑠𝑘 |𝜋(𝑧𝑘)

leads to:

∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)}+𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)𝑑𝑠𝑘

≈ ∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

(7.22)

Same way as before, the first line is an exact expression (of 𝐿(𝜋(𝑧𝑘) in this case) and the

second line is the CMT solution. Since both expressions are not identical, we write an

approximation sign in between. After removing identical contributions on both sides of

the approximation sign:

∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)}𝑑𝑠𝑘 ≈ ∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘) (7.23)

How good approximations in Equations (7.21) and (7.23) are will be the focus of

discussions in upcoming sections. For the moment, note that the CMT approximates

∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘 by calculating ∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘) in the process

of estimating 𝐿(𝑧𝑘) and similarly for 𝐿(𝜋{𝑧𝑘}) based on Equation (7.23).
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Analytical comparison of exact labeled point estimates and CMT labeled
point estimates
The exact expression for one of the two labeled point estimates is:

𝐸𝑠𝑘 |𝑧𝑘 = ∫
𝑠𝑘

𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)

𝐿(𝑧𝑘)
𝑑𝑠𝑘 (7.24)

This expression can be manipulated to match the region of integration used by the CMT

approximation of the labeled point estimate:

𝐸𝑠𝑘 |𝑧𝑘 = ∫
𝑠𝑘

𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)

𝐿(𝑧𝑘)
𝑑𝑠𝑘

=
1

𝐿(𝑧𝑘)
∫
𝑠𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)1𝑠𝑘 |𝑥
𝑏
𝑘
≥𝑥𝑟

𝑘
+𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)1𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘
𝑑𝑠𝑘

=
1

𝐿(𝑧𝑘)
∫
𝑠𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)1𝑠𝑘 |𝑥
𝑏
𝑘
≥𝑥𝑟

𝑘
+𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}1𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘
𝑑𝑠𝑘

=
1

𝐿(𝑧𝑘)
∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)+𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘

(7.25)

The last expression shows that there exists an exact formulation for 𝐸𝑠𝑘 |𝑧𝑘 when forcing

the integration region to be 𝑥𝑏
𝑘
≥ 𝑥𝑟

𝑘
. Based on this, 𝐸𝑠𝑘 |𝑧𝑘 is approximated by 𝐸̂𝑠𝑘 |𝑧𝑘 as:

1

𝐿(𝑧𝑘)
∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)+𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘

≈
1

̂𝑙𝑝𝑠𝑘 |𝑧𝑘
∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

∫
𝑠𝑘
𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))𝑑𝑠𝑘

𝑑𝑠𝑘

(7.26)

Which can be simplified as:

∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)+𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘

≈ ∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

(7.27)

and further simplified as:

∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘

≈ ∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)

(7.28)

Same way as before, the first line is an exact expression, and the second line is its CMT

approximation. Since both expressions are not identical, we write and approximation sign

in between. An equivalent derivation for 𝐸𝑠𝑘 |𝜋(𝑧𝑘) and 𝐸̂𝑠𝑘 |𝜋(𝑧𝑘) leads to:

∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)}+ 𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)𝑑𝑠𝑘

≈ ∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)(𝑙(𝑧𝑘 |𝑠𝑘)+ 𝑙(𝜋(𝑧𝑘)|𝑠𝑘))

(7.29)
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which can be simplified as:

∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)}𝑑𝑠𝑘

≈ ∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)

(7.30)

7.3.6 Numerical impact of the CMT approximations
Not many expressions need be remembered to follow the rest of this chapter: only the four

discovered approximations in Equations (7.21), (7.23), (7.28) and (7.30). These formulate

explicitly the (so far unknown) approximations required to bridge the gap between the

exact DBT solution and the CMT solution at statistics-of-interest level. This subsection uses

numerical examples to showcase the estimation errors introduced by these approximations.

We start by revisiting the results in [27] to observe that the estimation errors are indeed

negligible in the case of the problem illustrated in Fig. 7.4. For these particular set of
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Figure 7.4: Illustration of a closely-spaced objects scenario where the objects are close enough to introduce

labeling uncertainty, but can still be resolved.

trajectories, the visualization of the CMT estimation performance is provided in Fig. 7.5

(where the exact solution is implemented by Alg. 3 in chapter 4).

As illustrated in the first 10 seconds of the simulation in Fig. 7.5, the CMT approxima-

tions do not affect estimation performance in easy scenarios when objects are far apart

from each other. The approximations do not seem to produce underperformance when

labeling certainty is compromised as illustrated in Fig. 7.5 either. This type of labeling

uncertainty is, in practice, generated by scenarios where the objects are closely-spaced

with respect to maneuverability/update-rate of the system, but they can still be resolved in

the measurements.

Following simulation results show that the error introduced by the CMT approximations

is especially noticeable when the objects are so close to each other that the Bayes posterior

becomes unimodal. This happens in practice when the objects get closely-spaced with

respect to sensor resolution (the objects cannot be resolved in the measurements). The

visualization of estimation underperformance of the CMT for the scenario in Fig. 7.6 is

presented in Fig. 7.7
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Figure 7.5: Illustration of a closely-spaced targets situation. Cross Modeling Tracker point estimates perfectly

match the references for evaluation (+ points generated using Alg. 3). Also, the CMT labeling certainty associated

to this particular assignment of labels seems to be very accurate. Note that this is done by the CMT without using

any data-association method.
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Figure 7.6: Illustration of a extremely closely-spaced objects scenario (closer than sensor resolution) where the

joint multiobject posterior density becomes unimodal.

It is in scenarios such as the one in Fig. 7.7 where the approximations introduced by

the CMT result in noticeable estimation error. Especially, along the simulation time steps

where the objects are closer than the sensor resolution. These results are consistent with

the ones observed in Fig. 7.3 with other type closely-spaced target trajectories.
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Figure 7.7: Illustration of extremely closely-spaced targets situation. Cross modeling based point estimates do not

match the references for evaluation (+ points generated using Alg.3). Labeling certainty estimation is also biased.

7.3.7 Relevant analytic remarks
TheCMT approximations have been formulated analytically (see Equations (7.21), (7.23), (7.28)

and (7.30)) and their impact has been showcased with numerical simulations (see Figs. 7.5

and 7.7). For practical closely-spaced target scenarios, the joint multitarget density tends to

adopt permutation invariant shapes as illustrated in Figs. 7.4 and 7.6. This observation has

been also reported in [42][30]. This subsection provides analytical remarks to further un-

derstand the effects of the approximations in practice. The interpretation of these remarks

will lead the optimization process in the following section.

• Remark 1: Provided 𝑝(𝑠𝑘 |𝑍𝑘−1) is permutation invariant, the approximations in

Equations (7.21) and (7.23) become exact:

assume 𝑝(𝑠𝑘 |𝑍𝑘−1) =p(𝜋(𝑠𝑘)|𝑍𝑘−1),

then,

∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘 = ∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)𝑑𝑠𝑘 (7.31)

∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)}𝑑𝑠𝑘 = ∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)𝑑𝑠𝑘 (7.32)

• Remark 2: Provided 𝑝(𝑠𝑘 |𝑍𝑘−1) is permutation invariant, the exact expressions in the

left hand side of Equations (7.28) and (7.30) can be calculated with no error as the

permuted version of the results in the right hand side of Equations (7.28) and (7.30),
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assume 𝑝(𝑠𝑘 |𝑍𝑘−1) =p(𝜋(𝑠𝑘)|𝑍𝑘−1),

then,

∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)}𝑑𝑠𝑘

= 𝜋{∫
𝑠𝑘 |𝑥

𝑏
𝑘
≥𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)𝑑𝑠𝑘}

(7.33)

∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝜋{𝑠𝑘}𝜋{𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝜋(𝑧𝑘)|𝑠𝑘)}𝑑𝑠𝑘

= 𝜋{∫
𝑠𝑘 |𝑥

𝑏
𝑘
<𝑥𝑟

𝑘

𝑠𝑘𝑝(𝑠𝑘 |𝑍𝑘−1)𝑙(𝑧𝑘 |𝑠𝑘)𝑑𝑠𝑘}

(7.34)

7.3.8 Interpretation of the remarks in the context of the
optimization problem

The first remark justifies that the plain CMT provides very accurate labeling uncertainty

estimation. In fact, under the assumption of permutation invariant 𝑝(𝑠𝑘 |𝑍𝑘−1) densities,

Equations (7.31) and (7.32) prove analytically that the labeling uncertainty estimates become

asymptotically exact as the number of particles grows to infinity.

Although having permutation invariant 𝑝(𝑠𝑘 |𝑍𝑘−1) is a sufficient condition for the CMT

to provide exact labeling certainty estimates, this is not a necessary condition. In fact,

by considering Equation (7.31) one can also conclude that permutation strictly variant

𝑝(𝑠𝑘 |𝑍𝑘−1) densities lead to exact CMT labeling certainty estimation. To give an example,

consider a strongly asymmetric 𝑝(𝑠𝑘 |𝑍𝑘−1) such as the one in in Fig. 7.8, the product of

𝑝(𝑠𝑘 |𝑍𝑘−1) and 𝑙(𝑧𝑘 |𝑠𝑘) (in Equation (7.31)) leads to non-zero probability mass only under

the diagonal (𝑥𝑏
𝑘
= 𝑥𝑟

𝑘
). Note that 𝑙(𝑧𝑘 |𝑠𝑘) is one of the two association likelihoods defined by

convention, e.g. let 𝑙(𝑧𝑘 |𝑠𝑘) be the association likelihood hypothesizing that the detection

of the object blue is the one at the larger range.

Taking into account mention asymmetric 𝑝(𝑠𝑘 |𝑍𝑘−1) density and convention, the first

integral in Equation (7.31) becomes zero as all the probability mass is swapped above the

diagonal after the operator 𝜋 is applied. Finally, the second integral is also zero due to the

lack of overlapping between 𝑝(𝑠𝑘 |𝑍𝑘−1) and 𝑙(𝜋𝑧𝑘 |𝑠𝑘). For this reason, the CMT produces

almost exact estimates along the first 10 seconds of the simulations in Figs. 7.5 and 7.7.

The second remark proves that the calculation of the labeled tracks by the CMT is

not exact. This theoretical mismatch seems to be negligible in practice when the targets

are far away from each other or relatively closely-spaced (but still resolved). This can be

concluded from the numerical results in Fig. 7.5. The same theoretical mismatch becomes

non-negligible in practice when the targets are extremely closely-spaced, as illustrated by

the artificial “track separation” observed in the numerical results from Fig. 7.7.

In order to correct the theoretical mismatch in the labeled point estimates, the result of

the integrals in the right hand side in Equations (7.28) and (7.30) needs to be label-swapped.

Introducing this modification in the process of calculating CMT labeled tracks is not possible

by design. This is because the CMT does not have access to the individual likelihoods

𝑙(𝑧𝑘 |𝑠𝑘) and 𝑙(𝜋(𝑧𝑘)|𝑠𝑘). Due to its DA-free nature, the CMT only has access to the sum
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Figure 7.8: Illustration of distanced objects scenario, where the objects are not yet close enough to introduce

labeling uncertainty.

of likelihoods 𝑙(𝑧𝑘 |𝑠𝑘) + 𝑙(𝜋(𝑧𝑘)|𝑠𝑘). Factorizing 𝑙(𝑧𝑘 |𝑠𝑘) + 𝑙(𝜋(𝑧𝑘)|𝑠𝑘) is not possible when

calculating the CMT track estimates after introducing the label swap from Equations (7.33)

and (7.34). Therefore, compensating for the bias in the CMT labeled tracks is not a trivial

concern.

7.4 Mitigation of the impact of the CMT approxima-
tions on estimation performance

The previous section has provided theoretical interpretations and practical observations.

As a conclusion, the focal point of the optimization problem should be on the extraction of

CMT labeled point estimates or tracks. In particular, the goal is to mitigate the artificial

“track separation” when considering unresolved targets.

The optimization strategy proposed in this section is based on the assumptions that

𝑝(𝑠𝑘 |𝑍𝑘−1) is permutation invariant and that 𝜋(𝑠𝑘) is a good approximation for 𝑠𝑘 when the

targets are extremely closely-spaced.

The former assumption seems to be realistic based on the shape of the density observed

in Fig. 7.6. The later assumes that the multitarget state vector remains unaltered under label

permutation, which is a realistic condition when the joint multitarget position estimates

lay on one point of the diagonal. Under these assumptions, the CMT becomes exact also in

the calculation of labeled tracks when tracking extremely closely-spaced targets. Note that

when the second assumption does not hold (for non-closely-spaced targets), the theoretical

mismatch exposed by the second remark has negligible degradation effect as commented

in previous section.

7.4.1 Proposed optimization
The fact that the CMT labeled tracks suffer from artificial “track separation” when con-

sidering extremely closely spaced targets is a clear indication that the assumptions of

permutation invariant 𝑝(𝑠𝑘 |𝑍𝑘−1) and/or 𝑠𝑘 ≈ 𝜋(𝑠𝑘) do not hold to the full extent. Firstly,

the particle-based approximations in the implementation of the CMT algorithm may not

capture the symmetric shape of the 𝑝(𝑠𝑘 |𝑍𝑘−1) density (including the tails) due to particle

depletion, even when the exact density 𝑝(𝑠𝑘 |𝑍𝑘−1) is symmetric. Secondly, although most
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of the probability mass of 𝑝(𝑠𝑘 |𝑍𝑘−1) is spread very close to the diagonal (see Fig. 7.6), the

tails of the density may spread over regions of the joint space where 𝜋(𝑠𝑘) is certainly not

a good approximation for 𝑠𝑘 (see Fig. 7.6).

In this section we present an optimized CMT algorithm using a new proposal density

prioritizing the quality of the approximation of 𝑝(𝑠𝑘 |𝑍𝑘−1) in the region close to the diagonal

(𝑥𝑏
𝑘
= 𝑥𝑟

𝑘
) and diminishing its sampling on the tails. As a result, the approximation 𝑠𝑘 ≈ 𝜋(𝑠𝑘)

applied to each particle becomes more accurate. Additionally, the higher concentration of

samples in the region of highest probabilitymass produces amore symmetric approximation

of 𝑝(𝑠𝑘 |𝑍𝑘−1).

The claim in this section is that the use of a customized proposal density will improve

significantly the estimation performance of the CMT when considering extremely closely-

spaced targets, without producing significant degradation of performance in all other cases.

The optimized particle-based filtering algorithm is provided in the following subsection.

The modifications required for optimization will be derived according to the Importance

Sampling principle. Finally, numerical simulations will be used to evaluate the accuracy of

the claim.

7.4.2 The Optimal CMT algorithm
Alg 4. in chapter 6 describes the original CMT algorithm, only steps 5 and 7 need to

be modified to describe the optimized CMT algorithm. In a recursive Bayesian method

implemented with a PF, the density 𝑝(𝑠𝑘 |𝑍𝑘−1) has an exact formulation given the PF

approximation of the previous posterior 𝑝(𝑠𝑘−1|𝑍𝑘−1). In fact, 𝑝(𝑠𝑘 |𝑍𝑘−1) is a weighted sum

of known densities:

𝑝(𝑠𝑘 |𝑍𝑘−1) ≈ ∫
𝑠𝑘−1

𝑝(𝑠𝑘 |𝑠𝑘−1)

𝑁𝑝

∑

𝑖=1

𝑤
𝑖
𝑘−1𝛿(𝑠

𝑖
𝑘−1−𝑠𝑘−1)𝑑𝑠𝑘−1

≈ ∫
𝑠𝑘−1

𝑁𝑝

∑

𝑖=1

𝑝(𝑠𝑘 |𝑠
𝑖
𝑘−1)𝑤

𝑖
𝑘−1𝛿(𝑠

𝑖
𝑘−1−𝑠𝑘−1)𝑑𝑠𝑘−1 ≈

𝑁𝑝

∑

𝑖=1

𝑤
𝑖
𝑘−1𝑝(𝑠𝑘 |𝑠

𝑖
𝑘−1)

(7.35)

To approximate each 𝑝(𝑠𝑘 |𝑠
𝑖
𝑘−1

), the original CMT algorithm used the following proposal

density in step 5 in Alg.4 from chapter 6:

𝑠
𝑖
𝑘 ∼ 𝑞(𝑠𝑘) = 𝑝(𝑠𝑘 |𝑠

𝑖
𝑘−1) (7.36)

The optimization presented in this chapter consists on sampling from the proposal

density:

𝑞(𝑠𝑘) = 𝑝(𝑠𝑘 |𝑠
𝑖
𝑘−1)(𝑝(𝑠𝑘 |𝑠

𝑖
𝑘−1)+𝑝(𝜋(𝑠𝑘)|𝑠

𝑖
𝑘−1)) (7.37)

The use of this proposal density widens the sampling space when the targets are not

close to each other and adaptively sharpens it as the targets are approaching. Therefore,

this proposal density results in a better approximation of 𝑝(𝑠𝑘 |𝑍𝑘−1) in the area close to

the diagonal 𝑥𝑏
𝑘
= 𝑥𝑟

𝑘
when the targets are extremely close to each other. By these means,

the approximation 𝑠𝑘 ≈ 𝜋(𝑠𝑘) applied at particle level becomes more accurate, bringing the

optimized CMT implementation closer to exactness in terms of track estimates.

Step 7 of Alg 4. needs to be modified according the Importance Sampling principle. In

particular, the new calculation of the particle weight should be done as described in Alg.5:
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1 𝑘 = 0;

2 Draw 𝑁𝑝 samples 𝒔𝑖
𝑘
from 𝑝(𝒔𝑘);

3 Draw 𝑁𝑝 samples 𝒏𝑖
𝑘
from 𝑝(𝒏𝑘);

4 𝑘 = 𝑘+1;

5 Draw 𝑁𝑝 samples 𝒔𝑖
𝑘
from 𝑝(𝑠𝑘 |𝑠

𝑖
𝑘−1

)(𝑝(𝑠𝑘 |𝑠
𝑖
𝑘−1

)+𝑝(𝜋(𝑠𝑘)|𝑠
𝑖
𝑘−1

));

6 Calculate 𝑜𝑖
𝑘
according to the definition of “order” under test;

7 Given 𝐳𝐤, obtain 𝑤̃𝑖
𝑘
= 𝑝(𝐳𝑘 |𝑠

𝑖
𝑘
)/(𝑝(𝐬𝑖

𝑘
|𝑠𝑖
𝑘
)+𝑝(𝜋(𝐬𝑖

𝑘
)|𝑠𝑖

𝑘
));

8 Normalize weights 𝑤𝑖
𝑘
= 𝑤̃𝑖

𝑘
/∑

𝑁𝑝

𝑗=1 𝑤̃
𝑗

𝑘
;

9 Resample from 𝑝̂(𝒔𝑘 |𝐙𝑘) = ∑
𝑁𝑝

𝑖=1𝑤
𝑖
𝑘
𝛿(𝒔𝑘 −𝒔𝑖

𝑘
):;

10 Extract LPEs according to Equation 6.15;

11 Obtain certainty measures of LPEs

according to Equation 6.16;

go to 3

Algorithm 5: Pseudo-code of the PF algorithm for the optimized CMT. Modification

over the original algorithm are in steps 5 and 7.

7.4.3 Discussion on estimation performance: regular CMT Vs
optimized CMT

As illustrated in Figs. 7.9 and 7.10, estimation results are more accurate when using the

optimized CMT algorithm. The use of convenient proposal densities aids at mitigating the

impact of the CMT approximations. In particular, the “track separation” artifact produced

by the regular CMT when the targets are extremely close to each other can be reduced

significantly.
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Figure 7.9: Regular CMT estimation performance for extremely-close targets.
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Figure 7.10: Optimized CMT estimation performance for extremely-close targets.

7.5 Conclusions
Evaluation results of the algorithms in chapters 5 and 6 for data-association-free tracking

have been provided with simulations involving closely-spaced trajectories. These algo-

rithms are the non-linear and/or non-Gaussian (non-LG) implementation of the Unique

Decomposition (UD) derived in chapter 5 and submitted for publication as [62] and the

Cross Modeling Tracker (CMT) derived in chapter 6 and published in [27]. Both algorithms

subject to evaluation provide complete solutions for the Track-before-detect (TrBD) MOT

problem, including characterization of labeling uncertainty without formulating any type

of Data Association (DA) problem.

In spite of the non-LG implementation of the UD providing accurate estimation after

closely-spaced targets have separated sufficiently, the CMT outperforms the non-LG imple-

mentation of the UD overall, especially when targets are in closely-space. Nevertheless,

initial results have shown that the CMT is not an exact solution. This chapter has focused

on optimizing the CMT from the base line solution derived in chapter 6.

To achieve the optimization of the CMT, this chapter has followed a two-steps approach.

Firstly, the CMT approximations have been analytically formulated and the impact of such

approximations has been illustrated with numerical examples. Secondly, the degradation

due to the CMT approximations has been mitigated by using a convenient proposal density

at PF implementation level. Simulation results have shown that the proposed optimized

algorithm outperforms the original CMT algorithm presented in chapter 6 [27].
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8.1 Conclusions
In this thesis the Multiple Object Tracking (MOT) problem involving closely-spaced objects

is treated based on intensity map measurements. Although many sensor systems may

produce these type of measurements, the contributions in this thesis are illustrated on

the basis of raw radar measurements, such as e.g. range-azimuth maps. This particular

problem has been coined in literature as Track-before-Detect (TrBD) MOT. TrBD MOT

solutions have been reported to be especially relevant in the tracking of low SNR objects

and in the tracking of closely-spaced targets, where a traditional detection-based tracker

would have to deal with merged measurements. At a higher level, this thesis also tackles

the problem of detecting anomalous target behavior. Solutions to this problem are relevant

in societal applications such as for instance security assessment.

Despite the existence of many prior solutions for the detection-based MOT problem,

also known as Detect-before-Track (DBT) MOT, the contributions in this thesis do not rely

on any of such results. This is because TrBD MOT problems preclude the formulation of

Data Association (DA), an essential component in traditional DBT context which turns

the filtering process into a tracker by explicitly characterizing labeling uncertainty. As no

existent characterization of labeling uncertainty can be applied to the TrBD MOT problem

due to the absence of detections, we are left with no solution to the labeling problem when

using raw data to track the targets. This results in degraded tracking performance when

tracking closely-spaced targets, as showcased in the preliminary chapters of the thesis.

The most important conclusion extracted from these preliminary studies is that while DBT

MOT solves the labeling problem in a pre-filtering stage (via DA), TrBD MOT is forced to

solve it in a post-filtering stage by inferring a labeling-dependent decomposition of the

Bayes posterior. Therefore, it is a recurrent focus of the thesis to deal with the underlying

problem of decomposing the Bayes posterior density, as it is in this decomposition where

the information about labeling can be found.

Some general considerations hold along the thesis. Firstly, this thesis considers the

worst case scenario assuming that intensity map measurements do not provide any labeling

information. In other words, it is assumed that the likelihood model for the measurements

given the state is invariant under label permutations. Nevertheless, although techniques
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based on identification through measurements fall out of the scope of this thesis, they can

be integrated seamlessly in order to reduce labeling uncertainty when tracking objects of

different radar signatures. Secondly, this thesis considers the TrBDMOT problem assuming

the number of targets is fixed and known, which aids at isolating the problem of DA-free

characterization of labeling uncertainty. Nevertheless, this assumption does not restrict

generality as the proposed approaches can be integrated seamlessly with existent solutions

for the cardinality estimation problem in TrBD MOT.

The first novel contribution of the thesis is given in chapter 3, where the incorporation

of interacting target dynamic models is used to solve the problem of detecting anomalous

target behavior. Additionally, an automatic parameter tuning method is incorporated

in the recursive Bayesian framework to estimate coupled accelerations between targets.

The method exploits such information to close the sensing-tuning loop inside the tracker,

resulting in enhanced tracking performance including reduction of labeling uncertainty.

Such an adaptive method for modeling interacting target dynamics is relevant in this thesis

as objects get/remain closely-spaced only by performing coordinated maneuvering. Addi-

tionally, interesting societal applications of this method can be found as many anomalous

target behaviors involve some kind of interaction between the targets. For instance, safety

assessment warnings can be generated when the estimated amount of target interaction

exceeds the threshold of regular activity.

Chapter 4 presents a sensible method for evaluation of DA-free MOT solutions. The

main contribution of chapter 4 is a PF algorithm implementation providing optimal statistics

relevant for track formation. As no analytical form of such statistics exists in TrBD context,

the evaluation algorithm provided calculates them inDBT context, where aData Association

dependent decomposition can be formulated analytically. This analytical decomposition

enables extraction of references both for the labeled tracks and corresponding labeling

certainties.

The presented algorithm will be incorporated as part of a criterion for performance

evaluation of DA-free trackers. Despite its DA-based construction, the evaluation criterion

can be used legitimately to evaluate solutions such as the UD-based and CMT algorithms,

which are designed for operation in TrBD context. This is because these algorithms

are designed to infer a relevant label-dependent decomposition of any posterior density,

disregarding whether this density has been generated in the context of DBT or TrBD.

Moving on from modeling and evaluation aspects to TrBD MOT algorithm design,

chapters 5, 6 and 7 deal with the almost-unexplored problem of characterizing labeling

uncertainty without relying on DA. In particular, the presented novel solutions tackle the

underlying problem of decomposing the Bayes posterior, trying to mimic the functionality

of inaccessible DA-dependent decompositions, such as e.g. the MHT decomposition.

Chapter 5 considers the Unique Decomposition (UD) by Blom and Bloem as the only

existent theoretical formulation capable of tackling the labeling problem without relying

on any type of DA. The main contribution of Chapter 5 is the application of the UD to the

TrBD MOT problem. This contribution deals with generalizing existent implementations of

the UD to non-linear and non-Gaussian problems. In particular, a two-PF recursive solution

is derived in order to estimate separately the Permutation Invariant and the Permutation

Strictly Variant components of the UD.

While the decomposition of the Bayes posterior targeted in chapter 5 is based on
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permutation invariance characteristics of the multitarget density, the main contribution of

chapters 6 and 7 is decomposing the Bayes posterior by means of hypothesizing crosses

between objects. This concept has physical meaning in the low dimensional case, where

two objects move in a 1𝐷 space. However, hypothesizing crosses between objects out of the

2−1𝐷 case is certainly not trivial. In order to make the so-called Cross Modeling Tracker

(CMT) usable for the general 𝑡 −𝑀𝐷 targets case, chapter 6 generalizes the concept of

cross-between-objects analytically. The novel CMT algorithm proposed here is validated

using the evaluation method from chapter 4 by simulating 𝑡 −𝑀𝐷 closely-spaced objects

scenarios.

Overall, this thesis provides novel tools to solve the TrBD MOT problem for closely-

spaced targets. In particular, two new methods to infer label-dependent decompositions

of the joint multiobject Bayes posterior density have been derived. The CMT can be

considered as the first step towards the TrBD counterpart of DBT Multiple Hypotheses

Tracking (MHT). The non-linear non-Gaussian implementation of the UD and the CMT

have been validated against the evaluation method in chapter 4.

Both approaches provide comparable results in terms of track estimation and labeling

uncertainty characterization. The advantage of applying the UD theory is that particle

self-resolving artifacts are prevented by design, allowing stable estimation with less amount

of particles than the CMT. The CMT outperforms the application of the UD for extremely

closely-spaced targets, especially in cases where the multitarget density becomes unimodal.

Moreover, the main advantage of the CMT is its wider applicability in arbitrarily high

dimensional cases. This is a current limitation of the UD theory, which has no existent

generalization for joint densities with more than 2 targets.

8.2 Future lines
As for future work, the formulation of the CMT within the RFS framework can be investi-

gated in order to add built-in cardinality estimation capabilities. This is required for the

CMT to be declared as a solution for the complete MOT problem, where the assumption of

known and constant number of objects does not hold. Additionally, studying the use of

the CMT in the context of DBT may lead to interesting advantages. This may be specially

the case when comparing with DBT methods in scenarios where DA needs to account for

large number of non-negligible hypotheses.

An interesting extension of the formulation in chapter 5 would be deriving the equiv-

alent algorithm dropping the assumption of invariance with respect to target dynamics.

Finally, a very interesting theoretical problem would be the extension of UD theory to

account for joint densities involving more than two targets.
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A.1 Calculation of 𝐴𝑏
The solution of the differential stochastic equation in Fig. (3.2) for “x” direction is,

𝑠𝑥(𝑡) = 𝑒
𝐴𝑝(𝑡)𝑡

∫ 𝐺(𝑡)𝑣̃𝑥(𝑡)𝑒
−𝐴𝑝(𝑡)𝑡𝑑𝑡 (A.1)

The discretization for a revisit time 𝛿𝑡 results in,

𝑠𝑥((𝑘 +1)𝛿𝑡) = 𝑒
𝐴𝑝(𝑡)𝛿𝑡𝑠𝑥(𝑘𝛿𝑡)+∫

(𝑘+1)𝛿𝑡

𝑘𝛿𝑡

𝑒
𝐴𝑝((𝑘+1)𝛿𝑡−𝜏)𝐺(𝜏)𝑣̃𝑥(𝜏)𝑑𝜏 (A.2)

Therefore, the block 𝐴𝑏 in (3.18) is given by the exponential matrix 𝑒𝐴𝑝(𝑡)𝛿𝑡
.

From linear algebra theory we know that for any continuous scalar-valued function

𝑓 (𝑥) ∶ ℂ → ℂ and for any square matrix 𝑋 ∈ ℝ𝑛𝑥𝑛
(or ∈ ℂ𝑛𝑥𝑛

):

𝑓 (𝑋𝛿𝑡) = 𝑀
(

𝑓 (𝐽𝑘1(𝜆1)𝛿𝑡) 0
⋱

0 𝑓 (𝐽𝑘𝑚(𝜆𝑚)𝛿𝑡))
𝑀

−1
, (A.3)

where 𝛿𝑡 is a scalar, 𝑀 is nonsingular and 𝐽𝑘1(𝜆1),...,𝐽𝑘𝑚(𝜆1) are the so-called Jordan Blocks

associated to eigenvectors 𝜆1, ..., 𝜆𝑚. Each of them defined as an upper triangular matrix

such that 𝐽𝑘(𝜆) ∈ ℂ
𝑘𝑥𝑘

is,

𝐽𝑘(𝜆) =
(

𝜆 1 0
⋱ ⋱

𝜆 1
0 𝜆

)
(A.4)

𝑓 (𝐽𝑘(𝜆)𝛿𝑡) is defined as,

𝑓 (𝐽𝑘(𝜆)𝛿𝑡) =

⎛
⎜
⎜
⎜
⎜
⎝

𝑓 (𝜆𝛿𝑡) 𝛿𝑡𝑓 ′(𝜆𝛿𝑡) 𝛿𝑡2

2!
𝛿𝑡𝑓 ′′(𝜆𝛿𝑡) ... 𝛿𝑡𝑘−1

(𝑘−1)!
𝛿𝑡𝑓 (𝑘−1)(𝜆𝛿𝑡)

⋱ ⋱ ⋱ ∶

⋱ ⋱ 𝛿𝑡2

2!
𝛿𝑡𝑓 ′′(𝜆𝛿𝑡)

⋱ 𝛿𝑡𝑓 ′(𝜆𝛿𝑡)

0 𝑓 (𝜆𝛿𝑡)

⎞
⎟
⎟
⎟
⎟
⎠

(A.5)

Given these definitions, the matrix 𝐽 is the Jordan canonical form of the matrix 𝑋 through

the similarity transformation 𝑀 , which existence is ensured in linear algebra theory.

𝐽 =
(

𝐽𝑘1(𝜆1) 0
⋱

0 𝐽𝑘𝑚(𝜆𝑚))
=𝑀

−1
𝑋𝑀 (A.6)

𝑋 is, in our particular case, the continuous time system function for any of the “x”, “y”

directions,

𝐴𝑝 =
(

0 1 0 0
0 0 0 0
0 0 0 1
𝑘1 0 −𝑘1 −𝑘2

)

The similarity transformation,

𝑀 =
(

1 0 0 0
0 1 0 0

1 −
𝑘2
𝑘1

1 1

0 1 𝜆2 𝜆3
)
,𝑤𝑖𝑡ℎ 𝜆2 =

−𝑘2−
√

𝑘22−4𝑘1

2
, 𝜆3 =

−𝑘2+
√

𝑘22−4𝑘1

2
(A.7)

satisfies 𝐽 = 𝑀−1𝐴𝑝𝑀 as long as 𝑘1 and 𝑘2 are non zero and 𝑘22 ≠ 4𝑘1. We can neglect these

particular cases as 𝑘1 and 𝑘2 are considered unknowns (part of the state vector) and a
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particle filter is considered for the implementation. Because of that, components 𝑘1 and

𝑘2 of the particles are affected by the process noise in Eq. (3.25), therefore the mentioned

particular cases have probability zero.

Then, 𝐴𝑏 can be put in the form of Eq. (A.3) as,

𝐴𝑏 = 𝑒
𝐴𝑝𝛿𝑡 = 𝑀

(

1 𝛿𝑡 0 0
0 1 0 0

0 0 𝑒𝜆2𝛿𝑡 0

0 0 0 𝑒𝜆3𝛿𝑡
)
𝑀

−1

which results in,

⎛
⎜
⎜
⎜
⎜
⎝

1 𝛿𝑡 0 0

0 1 0 0

𝜆2(1−e
𝛿𝑡 𝜆3 )−𝜆3(1−e

𝛿𝑡 𝜆2 )

𝜆2−𝜆3
𝐴𝑏(3,2)

𝜆2 e
𝛿𝑡 𝜆3−𝜆3 e

𝛿𝑡 𝜆2

𝜆2−𝜆3

e𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3

𝜆2−𝜆3
𝜆2 𝜆3(e

𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3 )

𝜆2−𝜆3
𝐴𝑏(4,2) −

𝜆2 𝜆3(e
𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3 )

𝜆2−𝜆3

𝜆2 e
𝛿𝑡 𝜆2−𝜆3 e

𝛿𝑡 𝜆3

𝜆2−𝜆3

⎞
⎟
⎟
⎟
⎟
⎠

(A.8)

where,

𝐴𝑏(3,2) = −
𝑘1(e

𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3−𝛿𝑡𝜆2+𝛿𝑡𝜆3)+𝑘2𝜆2(1−e
𝛿𝑡 𝜆3 )−𝑘2𝜆3(1−e

𝛿𝑡 𝜆2 )

𝑘1 (𝜆2−𝜆3)

𝐴𝑏(4,2) =
𝑘1(𝜆2−𝜆3−𝜆2 e

𝛿𝑡 𝜆2+𝜆3 e
𝛿𝑡 𝜆3 )−𝑘2𝜆2𝜆3(e

𝛿𝑡 𝜆2−e𝛿𝑡 𝜆3 )

𝑘1(𝜆2−𝜆3)
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A.2 Proof of the analytic description of the up-
date step (Eqations (5.11) and (5.12))

According to the definition of BB

𝛼
𝐼
𝑘|𝑘 = ∫

𝑠𝑘

𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘),𝑝(𝜋𝑠𝑘 |𝑍𝑘))𝑑𝑠𝑘 (A.9)

𝑝
𝐼
(𝑠𝑘 |𝑍𝑘) =

𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘),𝑝(𝜋𝑠𝑘 |𝑍𝑘))

𝛼𝐼
𝑘|𝑘

(A.10)

𝑝
𝑉
(𝑠𝑘 |𝑍𝑘) =

𝑝(𝑠𝑘 |𝑍𝑘)−𝛼𝐼
𝑘|𝑘
𝑝𝐼 (𝑠𝑘 |𝑍𝑘)

1−𝛼𝐼
𝑘|𝑘

(A.11)

Substituting 𝑝(𝑠𝑘 |𝑍𝑘) =
𝑝(𝑧𝑘 |𝑠𝑘)𝑝(𝑠𝑘 |𝑍𝑘−1)

𝑝(𝑧𝑘 |𝑍𝑘−1)
and exploiting 𝑝(𝑧𝑘 |𝑠𝑘) = 𝑝(𝑧𝑘 |𝜋𝑠𝑘) leads to

𝛼
𝐼
𝑘|𝑘 =

∫
𝑠𝑘
𝑝(𝑧𝑘 |𝑠𝑘)𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1))𝑑𝑠𝑘

𝑝(𝑧𝑘 |𝑍𝑘−1)
(A.12)

𝑝
𝐼
(𝑠𝑘 |𝑍𝑘) =

𝑝(𝑧𝑘 |𝑠𝑘)

𝑝(𝑧𝑘 |𝑍𝑘−1)𝛼
𝐼
𝑘|𝑘

𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1)) (A.13)

𝑝
𝑉
(𝑠𝑘 |𝑍𝑘) =

𝑝(𝑧𝑘 |𝑠𝑘)

𝑝(𝑧𝑘 |𝑍𝑘−1)𝛼
𝑉
𝑘|𝑘

(𝑝(𝑠𝑘 |𝑍𝑘−1)−𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1))) (A.14)

Then recognizing that the above expressions can be written in terms of the components of

the UD of the predictive density 𝑝(𝑠𝑘 |𝑍𝑘−1)

𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1)) = 𝛼
𝐼
𝑘|𝑘−1𝑝

𝐼
(𝑠𝑘 |𝑍𝑘−1) (A.15)

𝑝(𝑠𝑘 |𝑍𝑘−1)−𝑚𝑖𝑛(𝑝(𝑠𝑘 |𝑍𝑘−1),𝑝(𝜋𝑠𝑘 |𝑍𝑘−1)) = 𝛼
𝑉
𝑘|𝑘−1𝑝

𝑉
(𝑠𝑘 |𝑍𝑘−1) (A.16)

and

𝑝(𝑧𝑘 |𝑍𝑘−1) = ∫ 𝑝(𝑧𝑘 |𝑠𝑘)𝑝(𝑠𝑘 |𝑍𝑘−1)𝑑𝑠𝑘

= 𝛼
𝐼
𝑘|𝑘−1∫ 𝑝(𝑧𝑘 |𝑠𝑘)𝑝

𝐼
(𝑠𝑘 |𝑍𝑘−1)𝑑𝑠𝑘 +𝛼

𝑉
𝑘|𝑘−1∫ 𝑝(𝑧𝑘 |𝑠𝑘)𝑝

𝑉
(𝑠𝑘 |𝑍𝑘−1)𝑑𝑠𝑘

= 𝛼
𝐼
𝑘|𝑘−1𝑝

𝐼
(𝑧𝑘 |𝑍𝑘−1)+𝛼

𝑉
𝑘|𝑘−1𝑝

𝑉
(𝑧𝑘 |𝑍𝑘−1)

(A.17)

This then leads to the result

𝛼
𝑋
𝑘|𝑘 =

𝛼𝑋
𝑘|𝑘−1

∫
𝑠𝑘
𝑝(𝑧𝑘 |𝑠𝑘)𝑝

𝑋 (𝑠𝑘 |𝑍𝑘−1))𝑑𝑠𝑘

𝑝(𝑧𝑘 |𝑍𝑘−1)

=
𝑝𝑋 (𝑧𝑘 |𝑍𝑘−1)𝛼

𝑋
𝑘|𝑘−1

𝑝(𝑧𝑘 |𝑍𝑘−1)

(A.18)

𝑝
𝑋
(𝑠𝑘 |𝑍𝑘) =

𝑝(𝑧𝑘 |𝑠𝑘)𝑝
𝑋 (𝑠𝑘 |𝑍𝑘−1)

𝑝𝑋 (𝑧𝑘 |𝑍𝑘−1)
(A.19)
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A.3 Naive generalization of 𝑜𝑘
A naive extension of the definition of “cross” from 2−1𝐷 to 2−2𝐷 settings will be presented

in this appendix. This is not only to illustrate the complexity of the problem but also to

familiarize the reader with some consistency checks that the correct extension of “cross”

should comply with.

The naive attempt presented in this appendix considers that Inequation (6.27) is the

“cross detector” for the 2−2𝐷 objects case. After all, a point can be evaluated by the 𝑙2−𝑛𝑜𝑟𝑚

function disregarding the dimensionality of the point. Only two formal modifications need

to be accounted for when extending Inequation (6.27) from 2−1𝐷 to 2−2𝐷 settings. First,

the 𝑙2−𝑛𝑜𝑟𝑚 calculation for the 2−2𝐷 objects case becomes:

𝑛𝑜𝑟𝑚(𝒔′
𝑘
−𝒔′

𝑘−1
) =

√

(𝑥𝑟
𝑘
−𝑥𝑟

𝑘−1
)2+(𝑥𝑏

𝑘
−𝑥𝑏

𝑘−1
)2+(𝑦𝑟

𝑘
−𝑦𝑟

𝑘−1
)2+(𝑦𝑏

𝑘
−𝑦𝑏

𝑘−1
)2 (A.20)

where now 𝒔
′𝑝

𝑘
= [𝑥

𝑝,𝑏

𝑘
𝑦
𝑝,𝑏

𝑘
𝑥
𝑝,𝑟

𝑘
𝑦
𝑝,𝑟

𝑘
]𝑇 . Second, the permutation matrix Π for the 2− 2𝐷

objects case becomes:

Π =

⎛
⎜
⎜
⎜
⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟
⎟
⎟
⎠

(A.21)

Given these modifications, the results provided by the CMT for the 2−2𝐷 objects case

are shown in Figure A.1.

A.3.1 Discussion of results
The results reveal degraded estimation performance of the CMT both in the computation

of LPEs and labeling probabilities. In fact, LPEs result in high OSPA errors (specially after

objects separation) due to the well known “track coalescence” effect. This undesired effect

is expected if MMSE point estimates are extracted from multimodal densities when labeling

uncertainty characterization is not appropriately accounted for.

One can conclude that this attempt to generalize the definition of “cross” is naive. In fact,

the use of Inequation (6.27) as the “cross detector” does not remove particle mixing inside

each cluster after objects separation. This is illustrated at the bottom part of Figure A.1,

where the particle mixing-ratio after CMT clustering does not drop to zero after target

separation.
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Figure A.1: Evaluation of estimation performance of the CM method using a naive 2−2𝐷 “cross” detector. Alg. 2

generates the optimal references.
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