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Summary

Radar-tracking of low-observable targets such as drones su�ers from low detection perfor-
mance. In these type of applications, it is desirable to avoid data thresholding in order to
preserve the weak target signal in the raw sensor data. This thesis considers the Multi-
ple Object Tracking (MOT) problem in the context of radar Track-before-Detect (TrBD)
processing, where the raw radar data is fed into the �ltering process without previous
compression into a �nite set of detection/plots.

Despite its inherent advantages, TrBD processing is in slow development. This is
because most mathematical machinery developed over many decades for traditional Detect-
before-track (DBT) processing cannot be transferred. Some approaches to the TrBD MOT
problem manage to formulate rigorously the Bayesian state estimation problem for un-
known and time varying number of targets. However, these solutions su�er from degraded
estimation performance when considering the closely-spaced target scenarios targeted by
this thesis. This type of degradation is showcased in chapter 2 and can be traced back to
the lack of solutions for characterizing labeling uncertainty in the context of TrBD.

In traditional DBT context, Data Association (DA) techniques solve the pair-matching
problem between plots and labels, which is a problem of probabilistic nature tackled in
a pre-�ltering stage. As plots do not even exist in TrBD, the problem of characterizing
labeling uncertainty considered in this thesis can be described as the TrBD counterpart of
the DA problem.

The labeling problem is tackled in this thesis at di�erent levels. Chapter 3 derives a
method to reduce labeling uncertainty by exploiting interacting target dynamics, which are
commonly observed in closely-spaced target scenarios. In the same chapter, a contribution
to the situational-awareness abstraction level is also provided. In particular, a Bayesian
algorithm capable of inferring anomalous target-interacting behavior in the surveillance
area is provided.

The remainder of the thesis places the focal point on DA-free characterization of
labeling uncertainty. This problem is considered by assuming the worst-case scenario
where the TrBD measurements do not carry any labeling information. This assumption
does not preclude the incorporation of methods for reduction of labeling uncertainty in
practical applications. For instance, micro-Doppler signature-based classi�cation methods,
other methods such as the one provided in chapter 3, or labeling solutions based on third
party systems such as interrogators can be integrated with the proposed solutions in a
Bayesian model-based manner.

Chapter 4 provides a sensible performance evaluation method suited for assessing the
quality of track-formation by an arbitrary DA-free tracking solution. Examples of these
solutions will be proposed in chapters 5, 6 and 7. It is a recurrent focus along these chapters
to deal with the underlying problem of decomposing the Bayes posterior, as it is in this
decomposition where the information about labeling resides. In order to evaluate the
quality of the proposed DA-free decompositions, chapter 4 provides a particle �ltering



x Summary

algorithm able to calculate analytical references for evaluation of labeled tracks and labeling
certainty estimates.

Chapters 5, 6 and 7 aim at inferring DA-free decompositions relevant for labeling
uncertainty characterization. The method presented in chapter 5 derives an implementa-
tion of the Unique Decomposition (UD) theory by Blom and Bloem for non-linear and/or
non-Gaussian (non-LG) systems. This implementation is used to tackle the labeling prob-
lem in TrBD by considering label-permutation-invariance characteristics of the posterior
multitarget density.

The method developed in chapters 6 and 7 uses a novel approach coined as the Cross
Modeling Tracker (CMT). Its novelty lies in decomposing the joint multi-object posterior
density by means of hypothesizing crosses between objects. The notion of cross-between-
objects is �rstly de�ned in the low dimensional case based on physical interpretation, then
an analytical generalization is derived for arbitrarily high dimensional spaces, were the
de�nition of cross-between-objects has no physical interpretation.

Chapter 7 starts by providing numerical results on the estimation performance of
the UD-based vs. the CMT algorithms. Both approaches provide comparable results in
terms of track estimation and labeling uncertainty characterization when the targets are
not extremely close to each other. The advantage of applying the UD-based solution is
that approximation artifacts are prevented by design, allowing stable estimation with less
amount of particles than the CMT.

The CMT outperforms the UD-based algorithm when tracking extremely closely-spaced
targets, especially in cases where the multitarget density becomes unimodal. In spite of
the CMT performing better, chapter 7 proves analytically that the CMT does not provide
exact statistics of interest for track-formation, and illustrates how the CMT approximations
degrade estimation performance for unresolved targets. Chapter 7 provides an optimized
CMT algorithm based on analytically founded observations, which manages to mitigate
the degradation due to the approximations compared to the original CMT algorithm.

The main advantage of the CMT is its wider applicability in arbitrarily high dimensional
cases. This is a current limitation for the UD theory, which has no existent generalization
for joint densities with more than two targets. The CMT can be considered as the �rst step
towards the TrBD counterpart of DBT Multiple Hypotheses Tracking (MHT).
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Samenvatting

Het door middel van radar volgen van slecht observeerbare doelen zoals drones wordt
gehinderd door verminderde kwaliteit van detectie. Ten einde het zwakke signaal in de
ruwe sensor data te behouden, is het in dit soort toepassingen wenselijk om het drempelen
van data te voorkomen. Dit proefschrift behandelt Multiple Object Tracking (MOT) in
de context van radar Track-before-Detect (TrBD), waarbij het �lter proces gevoed wordt
met de ruwe radar data, zonder voorafgaande compressie tot een eindige verzameling van
detecties/plots.

Ondanks alle inherente voordelen, gaat de ontwikkeling van TrBD processing langzaam.
Dat komt, omdat de meeste wiskundige technieken die ontwikkeld zijn gedurende vele
tientallen jaren voor traditionele Detect-before-track (DBT) processing, niet overgenomen
kunnen worden. Voor sommige oplossingsrichtingen voor het TrBD MOT probleem lukt het
om het Bayesiaanse toestandsschattingsprobleem strikt te formuleren voor een onbekend
en variabel aantal doelen. Echter, de schattingskwaliteit van deze oplossingen vermindert
wanneer closely-spaced target scenarios�, waar dit proefschrift zich op richt, in beschouwing
worden genomen. Dit soort degradatie wordt geillustreerd in hoofdstuk 2 en kan herleid
worden naar het ontbreken van oplossingen voor het karakteriseren van de onzekerheid in
de labeling in de TrBD context.

In de traditionele DBT context lossen Data Associatie (DA) technieken het probleem
van het bij elkaar passen van plots met labels op, hetgeen een probleem van kansrekenings-
technische aard is dat afgehandeld wordt in een pre-�ltering stap. Omdat plots niet bestaan
in TrBD, kan het probleem van het karakteriseren van de onzekerheid dat beschouwd wordt
in dit proefschrift, beschreven worden als de TrBD tegenhanger van het DA probleem.

In dit proefschrift wordt het probleem van labeling op meerdere niveaus aangepakt.
Hoofdstuk 3 leidt een methode voor het reduceren van labelingonzekerheid af, door ge-
bruik te maken van onderling samenhangende doelsdynamica, hetgeen vaak voorkomt in
closely-spaced scenarios�. In hetzelfde hoofdstuk wordt een bijdrage geleverd aan het ab-
stractieniveau van situational awareness. In het bijzonder wordt een Bayesiaans algoritme
gepresenteerd dat in staat is om abnormaal onderling doelsgedrag te onderkennen.

Het vervolg van het proefschrift focusseert op de DA-vrije karakterisering van labeling-
onzekerheid. Dit probleem wordt beschouwd onder de aanname van het worst-case sce-
nario, waarbij de TrBD metingen geen enkele informatie ten aanzien van de labeling
bevatten. Deze aanname sluit het gebruik van methoden voor het reduceren van labeling
uncertainty in praktische gevallen niet uit. Zo kunnen bijvoorbeeld op micro-Doppler
signatuur gebaseerde classi�catie methoden, zoals die gegeven in hoofdstuk 3, of labeling
oplossingen gebaseerd op third party systemen, waaronder zogeheten interrogators, op
een Bayesiaanse model gebaseerde wijze geintegreerd worden.

Hoofdstuk 4 verschaft een verstandige evaluatiemethode die geschikt is voor het beoor-
delen van de kwaliteit van track formatie van een willekeurige DA-vrije tracking oplossing.
Voorbeelden van dergelijke oplossingen worden voorgesteld in de hoofdstukken 5, 6 en
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7. De terugkerende focus in deze hoofdstukken is hoe om te gaan met het onderliggende
probleem van de decompositie van de Bayesiaanse a posteriori kansdichtheid, omdat in
deze kansdichtheid de informatie over de labeling aanwezig is. Om de kwaliteit van de
voorgestelde DA-vrije decomposities te beoordelen, verschaft hoofdstuk 4 een particle �l-
tering algoritme dat is staat is om analytische referentie getallen te berekenen ten behoeve
van de evaluatie van de gelabelde tracks en de schattingen van de labelingonzekerheid.

Hofdstukken 5, 6 en 7 richten zich op DA-vrije decomposities die relevant zijn voor het
karakteriseren van labelingonzekerheid. De methode in hoofdstuk 5 leidt een implementatie
af van de Unique Decomposition (UD) theorie van Blom en Bloem voor niet lineaire en/of
niet-Gaussische (non-LG) systemen. Deze implementatie wordt gebruikt om labelling in
TrBD aan te pakken door middel van het beschouwen van label-permutatie-invariante
karakteristieken van de a posteriori multitarget kansdichtheid.

De methode die ontwikkeld wordt in hoofdstukken 6 en 7, gebruikt een nieuwe methode
die de naam Cross Modeling Tracker (CMT) gekregen heeft. De nieuwheidswaarde zit in
de decompositie van de gezamenlijke multi-object a posteriori kansdichtheid door middel
van het veronderstellen van het kruisen van objecten. Het begrip van een kruising tussen
objecten wordt eerst gede�nieerd in een laag dimensionale situatie die gebaseerd is op een
fysische interpretatie, waarna een analytische generalisatie wordt afgeleid voor arbitrair
hoog dimensionale ruimtes, waarbij de de�nitie van een kruising tussen objecten geen
fysische betekenis heeft.

Hoofdstuk 7 begint met het verscha�en van numerieke resultaten van de schattings-
prestatie van het UD-gebaseerde algoritme tegenover het CMT-algoritme. Zolang de doelen
niet extreem dicht bij elkaar zijn, leveren beide oplossingen vergelijkbare resultaten op in
termen van onzekerheden in de doelsschatting en de labeling. Het voordeel van het gebruik
van de UD-gebaseerde oplossing is dat benaderingsfouten door het ontwerp voorkomen
worden, hetgeen een stabiele schatting mogelijk maakt met minder particles dan met CMT.

In het geval van doelen die extreem dicht bij elkaar zitten, presteert de CMT-methode
beter dan het UD-gebaseerde algoritme, vooral in die gevallen waarbij de multitarget
kansdichtheid unimodaal wordt. Desondanks bewijst hoofdstuk 7 analytisch dat de CMT
geen exacte statistieken levert ten aanzien van het formeren van tracks en illustreert
hoe de benaderingen in de CMT de schattingsprestatie voor niet geresolveerde doelen
verminderen. Hoofdstuk 7 verschaft een geoptimaliseerd CMT algoritme, dat is gebaseerd
op analytisch gefundeerde bevindingen, dat er in slaagt om het e�ect van de benaderingen
te verminderen vergeleken met het originele CMT algoritme.

Het belangrijkste voordeel van de CMT is zijn bredere toepassing in willekeurig hoog
dimensionale situaties. Dit is een huidige beperking van de UD-theorie, waarvoor nog geen
generalisatie voor gezamenlijke kansdichtheden voor meer dan twee doelen beschikbaar is.
De CMT kan beschouwd worden als de eerste stap naar de TrDB tegenhanger van de DBT
Multiple Hypotheses Tracking (MHT).
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T he recent rise of Unmanned Aerial Vehicle (UAV) development has enabled new military
strategies. Traditional plot-based tracking algorithms are not optimal for tracking

these low-observable targets. This is because low-observable target signals often do not
exceed the detection threshold and do not produce plots. In these cases, it is desirable to
avoid thresholding so as to preserve the weak signal information in the raw sensor data [2].
Nevertheless, the consideration of point measurements commonly referred to as �plots�, is
still imperative nowadays for the large majority of state-of-art tracking algorithms. This
also applies for the approaches based on the relatively recent application of Finite-Set
Statistics (FISST) to Multiple Object Tracking (MOT) [3].

Track-before-Detect (TrBD) processing tackles the MOT problem by incorporating
non-thresholded data (also called radar video), rather than plots, into the tracking algorithm.
Therefore, TrBD processing of radar data has the potential to enhance the performance
of counter-UAV defense systems when tracking low-observable targets. In the context of
radar systems, non-thresholded data sets are for instance range-Doppler or range-azimuth
maps. Some solutions exist for the speci�c TrBD MOT problem, such as the ones presented
in [4], [5], [6] and more recently in [7]. However, these solutions lack labeling uncertainty
characterization, resulting in degraded performance when tackling closely-spaced targets.

1.1 Motivation

Labeling uncertainty characterization, which is traditionally realized by Data Association
(DA) techniques in Detect-before-track (DBT) approaches, is not trivial in TrBD due to
the absence of detection/plots. The inherent advantages of TrBD tracking for tackling
low-observable target scenarios, motivate this thesis to address DA-free characterization
of labeling uncertainty. This is the major motivation of this thesis and the one producing
most thesis results.

Closely-spaced targets are required to perform coordinated maneuvering in order to
become and remain closely spaced. Most existing techniques for tracking in scenarios
involving closely-spaced targets assume independent motion of the various targets. This is
an additional motivation which triggers the study on interacting motion modeling and its
advantages when incorporated in the tracking algorithms.

In complex surveillance scenarios, the transformation of tracking results into relevant
situational awareness is not trivial for a human operator. For this reason, an additional
level of abstraction is incorporated in advanced software radar architectures. This layer of
abstraction operates at semantic level, providing meaningful interpretation of situational
awareness. Anomaly detection is one example relevant in coastal surveillance, where for
instance, the smuggling of goods is a major concern. This motivates the thesis to study
how estimation of target interactions may aid at detecting such type of malicious target
behavior. The interpretation of situational awareness has the potential to provide early
warnings, which would otherwise escape from visual inspection of the tracks.
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1.2 Historical MOT interest VS relevance of new
MOT problems

MOT is one of the major problems addressed in the Information Fusion community. MOT
refers to the problem of jointly estimating the presence and states or trajectories of objects
based on noisy measurements from sensors such as radar or camera. MOT �nds its
applications in both military and civilian contexts. To name a few societal applications,
MOT solutions are an essential component in radar area surveillance and play a key role
in autonomous navigation.

In the context of MOT for autonomous navigation, optical systems such as LIDAR
and camera have been used due to their ability to produce high quality data under fa-
vorable weather and lighting conditions. However, safety demands in self-driving in-
dustry point to MOT solutions based on radar as a non-replaceable technology due to
its robustness against non-favorable conditions [8]. Self-driving demands encourage the
development of radar-based MOT solutions not only for tracking but also for radar plat-
form self-localization [9]. Lower levels of automation based on radar MOT solutions are
present in standard commercial-o�-the-shelf products. For instance, radar-based Adaptive
Cruise Control (ACC) for assistance to navigation [10] has become increasingly popular in
mass-produced cars over the last decade.

The long lasting interest in radar-based MOT has driven the development of many
MOT Bayesian solutions, most of the solutions model sensor measurements as radar plots.
This modeling already constraints the processing capabilities of the radar system from
a very early stage. Indeed, discarding part of the data-set via thresholding is opposed to
the idea of inferring as much information as possible from the measurement set. One
reason for modeling measurements after thresholding is that traditional computational
resources would not run tracking algorithms in real-time, unless data complexity is reduced
to detection plots.

Aside of plot-based MOT being pushed by high interest in radar applications, the
development of plot-based MOT algorithms is an attractive mathematical problem in
its own right. This dual interest has set a favorable context for engineering successful
plot-based trackers for many decades.

The increasing interest in new tracking problems where sensors do not provide point
measurements, but rather intensity maps type of measurements, requires the consideration
of more complex observation models. An important consequence of not modeling point-
measurements is that none of the traditionally accepted tracking algorithms, such as for
instance Multiple Hypothesis Tracking (MHT) [11], can be utilized.

The relevance of new MOT problems based on intensity map measurements can be
easily justi�ed. For instance, MOT relying on Wireless Sensor Networks (WSN) becomes
relevant for the tracking of objects in mountainous regions, where radar performance
is severely degraded by extensive shadow regions. Ito and Godsill recently studied this
MOT problem using intensity maps data given by Received Strength Signal Indicator (RSSI)
readings [7]. An extensive study of a similar MOT problem can be found in [12].

One does not need to depart from the radar sensor to �nd out that range-Doppler
maps (see Fig. 1.1) or range-azimuth maps are certainly richer measurement sets than the
detections extracted semi-heuristically from these maps (e.g. via Constant False Alarm
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Rate (CFAR) detection). In fact, incorporation of such radar intensity maps inside the
tracker is essential, for instance, in radar MOT problems involving low-observable objects.
Low-observable objects are those delivering measurements for which the sensor responses
have an SNR value lower than 10dB (see Fig. 1.1 b). In these cases, it is desirable to avoid
thresholding so as to preserve the weak signal information in the raw sensor data [2].

Figure 1.1: Range-Doppler maps from two scenarios involving high and low SNR targets. In a) the SNR is high
and it is easy to discern the target as a high peak. In b) the SNR is low and it is not possible to distinguish the
target from the noise.

Figure 1.2: In low SNR target scenarios, the target may not lead to a detection.

1.2.1 Track-before-detect (TrBD) radar tracking
TrBD algorithms provide solutions to the problem of tracking targets avoiding undesired
data thresholding. This is done by means of using multiple frames of the raw sensor data.
Consequently, TrBD algorithms jointly estimate the existence of the target (detection) as
well as track its kinematic state (�ltering). In fact, it is the existence of a track that implicitly
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reports the detection of a target as opposed to what happens in the traditional processing
chain, where the existence of detections may trigger the initiation of tracks (according to
track management system heuristics).

Among all sensor systems (both in centralized and distributed architectures) providing
intensity maps type of measurements, this thesis focuses on the development of tracking
algorithms for radar intensity maps, e.g. the ones in Fig. 1.1. TrBD MOT does not only
prevent loss of potentially relevant information in these maps. Additionally, TrBD MOT
copes with closely-spaced objects tracking in cases where a DBT approach would have to
deal with merged measurements. Therefore, TrBD MOT provides an inherently increased
resolution capability over DBT MOT, which makes it all the more important to address the
characterization of labeling uncertainty in the absence of detections.

1.3 Situational awareness
The level of situational awareness o�ered by radar-based solutions is directly linked to the
operational performance of the radar system. The boundaries of operational performance
are strictly dependent on two main aspects: the quality or the radar measurements and
the quality of the processing algorithms turning radar measurements into user-level data.
Drawing a line between the analog and digital parts in the radar receiving path provides a
reasonable split between these aspects in most radar systems.

A Frequency Modulated Continuous Wave (FMCW) radar can be taken as an example
to introduce the scope of this thesis in the context of a radar system. Firstly, every hardware
design choice along the signal path, from signal generation to sampling of the beat frequency
signal, conditions the quality of the radar measurements. These measurements are the
"in-phase and quadrature-phase" (I/Q) samples in the so-called �data cube�. This is the �rst
input to the processing algorithms. For a particular �data cube�, software design involving
signal and data processing choices, conditions the quality of the user-level data. A higher
level governing the quality of both measurements and user-level data involves the online
tuning of hardware and software parameters. This tuning task has been traditionally
performed by a radar operator to a very limited extend, e.g. by means of switching between
operational pro�les or modes.

Over the last decades, most advanced multi-function radar systems are increasingly
incorporating a level of abstraction referred to as cognitive control [13], [14], [15]. These
cognitive radars assist the (human) operator in the tuning of hundreds of parameters in
real time according to some de�nition of optimality. It can be argued that cognitive radars
introduce a remarkable control processing-load even before the generation of the transmit-
ted signal based on various sensing-control loop closure concepts [16], [17], [18], [19], [20]
and [21]. Ultimately, these concepts contribute to optimize the quality/usability of ex-
pected I/Q samples as well as the tuning of processing parameters so as to enhance overall
operational performance and situational awareness.

1.4 Scope of the thesis
Based on previous de�nitions, the processing software in a generic radar can be separated
in sensing software and control software. A minimalistic decomposition of the sensing
software can be made based on three levels: i) digital signal processing, ii) statistical
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data processing and iii) analysis of situational awareness. Common submodules in i) are:
extraction of range Doppler maps (via double FFT processing), CFAR detection, Angle of
Arrival (AoA) estimation, clustering, plot extraction, clutter removal, ambiguity unfolding,
signature-based classi�cation etc. The major module in level ii) is the MOT algorithm. The
level iii) may vary signi�cantly from one system to another depending on the application.
In the general case, it will be built as a set of post-processing analyzing algorithms.

The scienti�c content in this thesis is inherently within the statistical data processing
level ii). Furthermore, key functionalities in traditional DBT MOT such as detection,
clustering and plot extraction are implicitly tackled given the TrBD approach to the MOT
problem adopted in this thesis. Therefore, a remarkable portion of the functionalities in i)
is covered as well. Finally, a minor part of the results fall under level iii). In particular, by
means of modeling target interactions, a Bayesian method for detecting abnormal target
behavior will be provided. Overall, this thesis provides various contributions on algorithm
design to tackle MOT problems in complicated surveillance scenarios. The type of scenario
complexity considered in this thesis involves low-observable, closely-spaced and potentially
interacting targets.

1.5 Related open problems
The thesis investigates problems associated to the tracking of low-observable, closely-
spaced and/or interacting targets in TrBD context.

1.5.1 The problem of tracking interacting targets
Interacting and even coordinated motion can for instance be found in groups of drones
that intentionally move together in formation (see Fig. 1.3). Coordinated maneuvering is
required for these objects to become and remain closely spaced, coordinated maneuvering
is also required for instance when well-separated objects are executing a joint plan. Moni-
toring some of these scenarios may be the purpose of, for instance, a ground-based counter
UAV radar or a radar-based coastal surveillance system. In both scenarios, targets become
low-observable either due to low RCS in the case of the drones or due to high intensity sea
clutter in the case of the coastal surveillance system (see Fig. 1.4).

Detection of anomalous target behavior
Inference of situational awareness is the most relevant high level application of area surveil-
lance systems. In particular, one important societal application is detecting suspicious
target behavior. In most of such anomalous scenarios, high degree of interaction can be
observed between the targets. For instance, coordinated motion of the targets is inherent in
attack missions involving formations of air-targets or drone swarms. Also, goods smuggling
in coastal areas commonly involves at least two well-separated objects performing coupled
maneuvering way before gathering close to each other.

Discriminating suspicious target behavior from the ones involving regular activities is
vital in safety assessment. By means of detecting spikes in the level of target interaction,
one may detect irregular activities in early stages.
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Figure 1.3: Drones are low-observable. Therefore, TrBD �lters have the potential to outperform traditional
detection-based tracking algorithms when tracking these types of objects. Additionally, drones dynamic behavior
is specially constrained by interactive motion when �ying in formation. Image from�Army RCCTO pursues drone
swarming capability after �rst contract award� by Pvt James Newsome (11th Armored Cavalry Regiment) is in
the Public Domain, CC0

Degraded tracking performance due to underestimation of coordinated
motion modeling

Sensor resolution is a physical limitation a�ecting the quality of labeling decisions in
closely-spaced targets scenarios. Additionally, even when the targets can be resolved in
the measurements; scan update rate limitations may also preclude easy labeling decisions.
Slow measurement update rates in the other of two to six seconds can for instance be found
in mechanically rotating surveillance radars. When targets are too maneuverable for a
particular measurement update rate, the present state of one target may not only correlate
with its own previous state but also with the previous state of another target. This may
introduce uncertainty in the solution of the so-called target labeling problem [22].

Mentioned e�ect due to limited update rate can be mitigated when accounting for real-
istic target maneuverability in the dynamic models. Sometimes, target maneuverability is
complex to model, for instance due to interacting motion between targets. It is then a com-
mon practice to use standard independent motion models such as the �Continuous White
Acceleration� model [23]. When the realistic motion of targets is captured very poorly,
labeling ambiguity (DA ambiguity in traditional DBT MOT) may get even overlooked.
Not considering labeling ambiguity results in severe estimation under-performance as the
MOT method may provide a single (potentially faulty) labeling solution [24]. Disregarding
whether DBT or TrBD techniques are considered, incorporation of interactive motion
modeling in the estimation algorithms is expected to improve tracking performance.
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Figure 1.4: Crowded harbor where objects dynamics are a�ected by the existence and dynamics of other objects.

1.5.2 The labeling problem when tracking closely-spaced ob-
jects in TrBD

The problem of deciding which track state estimate belongs to which physical object over
time is known as the labeling problem. Labels are considered as unique identi�ers assigned
to each physical object in the track initiation stage. In closely-spaced objects tracking,
sensor systems may not provide enough information to uniquely match objects labels and
track-state estimates consistently over time, leading to uncertainty in the labeling [22].

The terms labeling problem and labeling uncertainty might be misleading, hence it is
important to remark that there is no uncertainty in the labels as they have been assigned
(and are therefore fully known) within the tracker. The uncertainty is about the assignment
of tracks to the fully known set of labels [24]. However, due to historical reasons we will
continue referring to this problem and the uncertainty as labeling problem and labeling
uncertainty. As mentioned before, labeling uncertainty can play a role already in sensor
systems even if the objects can be resolved by the sensor. This will occur if maneuverability
of the objects and/or sensor update intervals get large.

Characterization of labeling uncertainty
DA is an essential component in DBT tracking which wraps the �ltering process and
turns it into a tracker by explicitly characterizing labeling uncertainty. This is done by
solving the pair matching problem. In words of Peter Willett regarding one of his recent
talks on Data Association and Target Tracking: �To thread measurements (well, many call
them �hits� or �plots�) of radar, sonar or imaging observations to a credible, smooth and
reportable trajectory requires a �lter. We will discuss those - Kalman, Unscented, particle,
etc. - very brie�y. But one cannot even begin to �lter without knowing which hits come
from which targets, and which hits are complete nonsense (clutter). When wrapped inside
some scheme for such data-association, a �lter becomes a tracker.�
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DA is imperative in DBT, but impossible in TrBD. In other words, due to the absence of
detection points, no kind of DA solution can be formulated in TrBD. However, this does
not mean that labeling uncertainty does not exist or can be overlooked in TrBD context.

Assumptions
The speci�c problem formulations in this thesis will consider two assumptions that will hold
throughout the chapters. Firstly, regarding characterization of labeling uncertainty, this
thesis considers the worst case scenario by assuming that intensity map measurements do
not provide any labeling information. In other words, it is assumed that the likelihood model
for the measurements given the state is invariant under label permutations. Despite this
assumption, and although techniques based on identi�cation through measurements fall
out of the scope of this thesis, the solutions that will be presented allow seamless integration
of classi�cation techniques in order to reduce labeling uncertainty when tracking objects of
di�erent radar signatures. Secondly, this thesis considers the TrBD MOT problem assuming
the number of targets is �xed and known. This assumption aids at isolating the problem of
characterizing labeling uncertainty by disregarding the problem of cardinality estimation.
On the topic of cardinality estimation, some solutions already exits for the TrBD MOT
problem, see [4].

1.6 Selected Challenges for PhD research
The �rst challenge in this thesis is showcasing how tracking performance becomes degraded
as a consequence of overlooking labeling uncertainty estimation, in the context of TrBD.
This will be presented in Chapter 2. The second challenge is studying methods for labeling
uncertainty reduction. In particular, due to the �rst assumption, these methods should not
rely on radar-signature-dependent classi�cation algorithms or third party systems such
as interrogators etc. Instead, labeling uncertainty reduction should be tackled inside the
�ltering process by formulating the challenge from the target dynamics point of view.

The third challenge of this thesis is automatically detecting anomalous target behavior
in the surveillance area. In particular, this thesis focuses on the type of anomalous behaviors
involving some level of coordinated target-maneuvering. Second and third challenges will
be tackled in Chapter 3.

TrBD processing poses di�culties for root-cause identi�cation of underperformance
due to its early stage of development and adoption. However, mentioned �rst challenge-
showcase will illustrate analogies with identi�ed concerns in traditional DBT context. In
particular, the problems of �labeling-confusion� and �track-coalescence� in TrBD processing
will be mapped to well identi�ed problems in the Information Fusion community. In fact,
TrBD �labeling confusion� has the same e�ect as DBT Global Nearest Neighbor (GNN)
�wrong DA�. Additionally, TrBD �track-coalescence� has the same e�ect as DBT Joint
Probabilistic Data Association (JPDA) �track-coalescence�. Identi�cation of the root-causes
producing �labeling confusion� and �track-coalescence� in TrBD will also be part of the
�rst challenge.

Following with analogies in well-developed DBT algorithms, the main challenge in
this thesis is to pave the way for the development of the �MHT counterpart� algorithm
for TrBD trackers. This de�nes the ambitious goal of preventing described estimation
underperformance by extending existent TrBD developments in a similar way as DBT
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MHT was created to overcome the underperformance of DBT GNN and JPDA. To realize
this extension, the TrBD MOT problem (including the subproblem of DA-free labeling
characterization) for known and constant number of closely-spaced objects, is considered
from chapter 4 to the end of the thesis.

1.7 Proposed solutions
This thesis formulates the TrBD MOT problem in the Bayesian framework to tackle the �rst
challenge. Based on such formulation, this thesis proposes the incorporation of interacting
target motion models in order to tackle the second and third challenges. By means of
modeling such interactions, Chapter 3 provides an automatic parameter tuning method
to do on-line learning and exploitation of coupled accelerations between targets. For
the �rst time in literature, the presented method exploits such information to close the
sensing-tuning loop inside the tracker. This automatic tunning method will result in
enhanced tracking performance, including reduction of labeling uncertainty. To solve the
third challenge, this thesis proposes the incorporation of interacting behavior modeling in
a Multiple Model (MM) Bayesian �lter implementation.

Tackling the challenge of DA-free characterization of labeling uncertainty is instru-
mental to prevent degraded tracking performance in TrBD MOT of closely-spaced objects.
In order to tackle this challenge, the thesis presents two methods to infer label-dependent
decompositions of the joint multiobject posterior density. The �rst method derives an
implementation of the Unique Decomposition (UD) by Blom and Bloem [25] for non-linear
Gaussian systems. This implementation is used to tackle the labeling problem by looking
at the label-permutation-invariance characteristics of the posterior density. The second
method is coined as the Cross Modeling Tracker (CMT), its novelty lies in decomposing
the joint multiobject posterior density by means of hypothesizing crosses between objects.

1.8 Structure of the thesis and publication status
Chapter 2 formulates the TrBD MOT problem in the Bayesian framework and showcases
the labeling problem for closely-spaced objects tracking. An extensive literature review on
this problem is provided as well. Chapter 3 looks at the labeling problem from the dynamics
point of view, providing an algorithm able to learn and exploit interacting target motion.
In the same chapter, an application of the algorithm to detect anomalous target behavior
is also illustrated. These results have been published in [26]. Chapter 4 introduces an
evaluation criterion especially suitable for comparison of estimation performance between
di�erent DA-free trackers. This result has been published in [22]. Chapter 5 generalizes
existent implementations of the UD to non linear-Gaussian problems, resulting in a DA-
free Particle Filter (PF) algorithm to solve the TrBD MOT problem. This result has been
submitted for publication in IEEE Transactions on Aerospace and Electronic Systems as
�Implementation of the Unique PDF Decomposition for tracking closely-spaced objects with
Track-Before-Detect radar systems�. Chapter 6 derives the so-called CMT, a new DA-free
Bayesian solution resulting from physical interpretation of the labeling problem in the
low dimensional case. This result has been published in [27]. Chapter 7 compares the PF
solutions presented in chapters 5 and 6 based on the performance evaluation method in
chapter 4. Additionally, the CMT solution is optimized in order to account for the tracking
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of unresolved targets. The manuscript for submitting these contents to the Journal of
Advances in Information Fusion is under preparation.
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2
Track-before-detect MOT

problem and Labeling
subproblem

2.1 Introduction
The TrBD MOT problem introduced in previous chapter encapsulates the labeling sub-
problem. This subproblem is inherent in the estimation of joint multi-target position
uncertainties. In TrBD, the labeling problem should be tackled by probabilistically charac-
terizing the pair-matching mapping between two sets: labels and tracks. Note that this
di�ers from the pair-matching problem formulated to associate the set of detections and
the set of labels in DBT. In fact, the labeling problem in DBT is solved in a pre-�ltering
stage via DA, while the same problem in TrBD needs to be solved in a post-�ltering stage.

Solving the labeling problem is not always required by the radar system. Examples can
be found in autonomous-driving applications based on automotive radar. For instance, in
radar-aided Adaptive Cruise Control (ACC), the relevant information is only extracted from
the track in front of the vehicle. In this case, it is not even relevant whether track labels
have been swapped, for instance due to vehicles in track being temporally closely-spaced.
In fact, using a GNN-based tracking algorithm to process the plots will accomplish the
task. Note that although GNN provides labeled point estimates, these come from hard DA
decisions. Since DA uncertainties are not propagated over time, one cannot keep control
over label confusion. It is in this particular sense that GNN does not solve the labeling
problem, as for instance DBT MHT would do.

In many other radar applications however, solving the labeling problem without relying
on signature-dependent classi�cation is important. This is the case when for instance a
Multi Function Surveillance Radar (MFSR) system attempts to keep �identities� of existent
tracks. Solving the labeling problem becomes relevant in this cases because the use of
classi�cation modes imposes demanding time-on-target and heavy processing. As these
demands need to be taken into account by the scheduler in the radar cognitive-processor,
classi�cation tasks may not monopolize the resources in order to preserve optimal over-
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all functionality. In other words, classi�cation time-budget may be limited in complex
scenarios so as not to compromise tracking performance and searching of new threads.
Additionally, even when used, classi�cation methods may not aid at solving the labeling
problem when tracking targets of similar radar signature as it happens to be case with
drone swarms.

The labeling problem is specially challenging in closely-spaced objects scenarios, and
lacks solutions in TrBD. Labels have been rigorously incorporated in MOT solutions by
two di�erent means. Firstly, by using random vector formulations. In this case, the order
of partitions in the random vector implicitly determines the labels of the tracks. Secondly,
by using Random Finite Sets (RFS) formulations [3] and explicitly introducing labels as
additional components in the (unordered) state variable.

The scope of this thesis is limited to the case of known and constant number of objects in
order to isolate the essence of the labeling problem. Inside this scope, one is not interested
in the built-in cardinality estimation capabilities of RFS formulations. For this reason,
vector formulations are considered su�cient to tackle the labeling problem along this
thesis. Namely, the incorporation of labels in this thesis is given implicitly by the order of
the partitions in the state vector.

2.2 DBT vs TrBD processing architecture
In a traditional MOT setting, the raw radar data is preprocessed through detection, cluster-
ing and extraction stages (see Fig. 2.1 a). Finally, the tracker is fed with the preprocessed
radar data. Unlike traditional MOT settings, integrated processing settings allow the tracker
to make use of the raw radar data with no prior processing nor associated information
losses (see Fig. 2.1 b). The term TrBD is more extended in literature than the term integrated
processing, so TrBD will be used along the rest of the thesis.

Figure 2.1: Block diagrams of traditional (detect-before-track) and integrated (track-before-detect) approaches to
the Multiple Object Tracking problem in �gures a) and b) respectively.

Both traditional and TrBD approaches provide a solution to the MOT problem including
extraction of labeled point estimates (note that several point estimates with the same label



2.2 DBT vs TrBD processing architecture

2

15

de�ne a track). However, this does not mean that both tracking approaches provide a
legitimate solution to the labeling problem. While in a DBT tracker, preprocessing raw
data before �ltering allows to explicitly characterize labeling uncertainty (e.g. MHT does
this), current TrBD trackers do not have control over label confusion in the reported tracks.
Therefore, in vanilla TrBD trackers, labeling confusion may get unnoticed unless captured
by heuristic ad-hoc mechanisms. In this particular sense, this is similar to what happens in
DBT GNN-based trackers. The main di�erence being that GNN does not propagate DA
uncertainties over time deliberately, in TrBD trackers DA does not even take place (see
Fig. 2.1 b)) as the radar image is fed into the �ltering process without previous compression
into a �nite set of points. Examples of this type of data incorporation can be found, for
instance, in Ch. 11 in [28].

2.2.1 Implications of TrBD tracking in processing architec-
ture

Performing MOT based on map data does not only involve the replacement of observation
models in the Bayes recursion. From the processing architecture point of view, structural
changes are also required, leading to the removal of the detector and integration of the
tracker inside the radar processing chain, so that detection and track-con�rmation occur
simultaneously. In practice, the detection algorithm and additional pre-processing is
replaced by a single TrBD algorithm, which also implements the tracking functionality.
For this reason the term TrBD is also known as �integrated processing� in some references.

When shifting from DBT to TrBD systems, changes in the algorithm design should
follow from mentioned changes on architecture and data �ows. In principle, it should
be su�cient with replacing the DBT observation likelihood model by the TrBD one. In
fact, as Bayesian inference provides a generic framework for incorporating data, the
generation of the posterior density of interest should follow from mentioned likelihood
model replacement. However, the mere replacement of the observation likelihoods does
not produce TrBD posterior densities with the labeling structure o�ered by algorithms
such as DBT MHT. The ability to generate this structure is ruled out in vanilla TrBD as
pre-�ltering DA cannot be formulated due the absence of detections.

Common practice in TrBD tracking and associated drawbacks
Existent TrBD tracking solutions do Bayesian �ltering using raw measurement observation
likelihoods and manage to formulate rigorously the Bayesian state estimation problem
for unknown and time varying number of targets, for instance see [4]. In connection to
the discussion in previous subsection, these solutions overlook that the mere replacement
of likelihood models in the Bayes update cannot make up for the pre-�ltering labeling
uncertainty characterization o�ered by, for instance, DBT MHT. Nevertheless, this does
not degrade estimation performance in non-closely-spaced target scenarios. In cases where
the objects move far apart from each other, labeling uncertainty is negligible and a TrBD
tracker such as the one in [4] su�ces to infer the correct pair-matching between labels
and point estimates, leading to proper track estimation. However, when the t objects move
closely-spaced, labeling uncertainty degrades tracking performance and even the optimal
MOT solution is prevented from stating the correct pair-matching (label/point-estimate)
free of uncertainty. Under these complicated conditions, regular TrBD trackers result either
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on overcon�dence of labeling decisions or �track-coalescence�. The former issue raises the
probability of labeling confusion, the later severely degrades the performance of estimation
on target dynamics.

2.3 Problem description
Consider an MOT problem based on raw (TrBD) measurements and a scenario containing
t objects moving in a M-dimensional space (t*MD setting). Additionally, consider that t is
constant and known by the tracker.

According to commented drawbacks in previous subsection, it is precisely due to the
physical limitations for providing uncertainty-free labeling in complicated scenarios, that
estimation of certainty regarding all potential labeling possibilities is a topic of major
importance. For this reason, the labeling problem considered in this thesis is described by
the following two questions:

� What is the list of t@ labeled point estimates for the current dynamic state of the
objects? Here each labeled point estimate hypothesizes the state of the t targets with
indication of the labels.

� What is the certainty corresponding to each labeled point estimate in the list?

2.3.1 Problems with current TrBD MOT solutions
Regular TrBD trackers are known to fail at answering the questions due to the drawbacks
highlighted in previous section. This subsection digs deeper into the root-cause of these
drawbacks by showcasing the degraded tracking performance of regular TrBD algorithms.
Both �labeling overcon�dence� and �track coalescence� will be exempli�ed with numer-
ical simulations. Firstly, �labeling overcon�dence� is due to the fact that particle-based
approximations (required due to the highly non-linear nature of the TrBD measurement
models) cannot approximate multimodal densities for long periods of time [1], leading to
the so-called particle �self-resolving� artifact. Secondly, �track-coalescence� underperfor-
mance [29] is due to extraction of Minimum Mean Square Error (MMSE) point estimates
from a TrBD multimodal posterior density. In regular TrBD implementations, both errors
get unnoticed without heuristic built-in mechanisms.

The particle �self-resolving� artifact is linked to the �particle mixing� phenomenon
observed in [1] and illustrated by particles of di�erent colors being mixed in similar regions
of the state space in Fig. 2.2

When �particle mixing� happens, di�erent particles are represented with permuted
order of partitions in the state vector. This phenomenon is natural and expected when
approximating multimodal densities, which are characteristic in the tracking of closely-
spaced objects. In fact, it is in the multimodality of the multi-object Bayes posterior where
the information about labeling resides [1][30].

The root cause of cloud �self-resolving� is the impoverishment of the particle cloud [31]
observed in implementations with resampling stage such as the Sequential Importance
Resampling (SIR) �lter. Therefore, particle �self-resolving� is an artifact as it destroys
the natural mixing in the particle cloud, concentrating all the particles in one of the
modes and overlooking other areas of high probability mass such as the ones supporting
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Figure 2.2: Illustration of expected �particle mixing� phenomenon when targets are closely-spaced and after
separation. The particle �lter is not �self-resolved� when �particle mixing� can be preserved.

alternative labeling hypotheses. This is the reason why particle �self-resolving� may lead
to unnoticeable labeling confusion as illustrated in Figs. 2.3, 2.4 and 2.5.

Figure 2.3: Results from a TrBD tracking implementation: raw-data on the left hand side, labeled ground truths
and labeled particles for position and velocity dimensions in the center and in the right hand side respectively.
Before the two targets become closely-spaced, the particle �lter assigns labels correctly.

There are some generic solutions to tackle �self-resolving�. In fact, any attempt to
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Figure 2.4: When the targets become closely-spaced �particle mixing� occurs, representing high labeling uncer-
tainty.

Figure 2.5: After the targets split, the PF �self-resolves� eventually due to its inability to approximate multimodal
densities over long periods of time [1], leading to labeling confusion approximately 50% of the time.

mitigate impoverishment of the particle cloud, will reduce �self-resolving�. These attempts
can for instance be found in the Markov Chain Monte Carlo (MCMC) �lters and the particle-
�ow �lters [32]. A speci�c approach for mitigating particle �self-resolving�, relevant in
the context of our problem, is the one by García-FernÆndez et al in [33] based on a PF
implementation with �mirror� particles.
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Later in this thesis, a new alternative method to keep the multimodal character of the
TrBD posterior density will be provided. This will be achieved by means of propagating
the invariant component of the Unique density Decomposition (UD) [25] on isolation from
the rest of the TrBD posterior density. Another way to illustrate successful operation of
the �lter after target separation is by representing the distribution of probability mass in
the joint space as in the right hand side of Fig. 2.6.

Figure 2.6: Symmetric bi-modal approximation of the position density associated to the last scan of the trajectories.
This spread of probability mass represents that �particle mixing� has been preserved after target separation.

This type of symmetric spread of probability mass also represents that the PF implemen-
tation does not su�er �self-resolving�. As opposed to the �self-resolved� particle cloud in
Fig. 2.5, this particle-based approximation constitutes a reliable base-line for the tracker to
take informed track-formation decisions. In fact, the multi-modal character of the density
represents that the �lter �remembers� a previous closely-spaced target situation leading
to strong labeling uncertainty. In this particular case, the two modes hypothesize the
existence of two objects in the same two speci�c locations, but disagree on the assignment
of labels.

Even under the assumption that the �ltering method captures the multimodal character
of the Bayes posterior, naive track extraction leads to tracks nowhere close to the real
trajectories after targets split. This �track-coalescence� undesired e�ect is illustrated in
Fig. 2.7, where tracks are extracted via optimization over the common MSE metric by
partitions in the particle cloud from Fig. 2.2.

Mentioned undesirable e�ects happening in TrBD context can be related to recognized
underperformance in DBT context. In particular �track-coalescence� occurs when DBT
JPDA-based methods operate in scenarios with high DA uncertainties. In DBT, this problem
can be tackled with JPDA* [34], which inserts a simple heuristic in the JPDA algorithm.
The �track-coalescence� problem has been also tackled in literature by extracting tracks
based on Maximum a Posteriori (MAP) or Mean Optimal Subpattern Assignment (MO-
SPA) optimization. In both cases, preventing track-coalescence is achieved at the cost of
disregarding labeling uncertainty, and therefore losing control over labeling confusion.
As this is undesirable in applications where labeling of the objects matters, this thesis
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Figure 2.7: Illustration of degraded track estimation performance known as track-coalescence.

develops the TrBD methods presented in chapters 5, 6 and 7 to provide track extraction
based on the labeled metric MMSE, while preventing �track-coalescence� and keeping
control of labeling uncertainties. This will be done by inferring a particular decomposition
of the Bayes posterior density. This desired decomposition of the Bayes posterior should
be relevant for labeling uncertainty characterization [24], but should not rely on any DA
technique so as to be usable in TrBD. In another analogy to the better understood DBT
context, the desired decomposition could be considered as the TrBD counterpart of the
DBT MHT decomposition for known and constant number of targets.

2.4 Formulation of the labeling problem in TrBD
The formulation of the labeling problem in TrBD, and the link between the DA problem
and the labeling problem in DBT is formulated mathematically in this section based on the
following de�nitions:

� DA de�nes hypotheses matching plots and labels.

� Labeling association de�nes hypotheses matching updated point estimates and labels.

Ambit:

� DA applies before update.

� Labeling association applies after update and point estimates extraction.

Applicability:

� DA is used to generate updated DA-dependent densities, these are the ones resulting
from taking the prior densities and updating them according to the DA hypotheses.
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� Labeling association is used to extend existing tracks, this is done by association of
extracted point estimates to existent tracks. Note that this is equivalent to consider
the �pair matching� problem between extracted point estimates and labels.

The relevant problem from the application point of view is the labeling problem. The
link between the DA and labeling problems can be described in the context of traditional
DBT trackers. In fact, DBT �lters only tackle the DA problem but, once the DA problem is
solved, the solution of the labeling problem follows right away: one only needs to perform
DA-dependent updates and extract (labeled) point estimates, from each DA-dependent
posterior density.

To support the claim that once DA is solved in DBT, the solution of the labeling problem
follows right away, let us take the following assumptions without loss of generality.

� Perfect detectability, no false detections.

� No merged measurements.

� The measurements do not provide any info about label.

Let us de�ne zk as the vector of plots at time step k with explicit indication of correct DA:
zk = [p1;p2; :::; pt]T . In other words, the information in zk is based on �known DA� as the
subscripts are not only used to di�erentiate one plot from another, but they also link the
plots to the labels of the targets which generated the plots, e.g. the plot in the �rst position
of zk has been generated by target 1, being this statement not a hypothesis but a fact.

In practice, the tracker cannot access zk but a version of it with unknown DA, which
we denote as zk = [d1;d2; :::; dt]T . Note that the subscripts here are merely di�erentiating
one plot from another, but they do not represent correct DAs. Let us de�ne the vector
! = [�1;�2; :::;�t@]T , which contains the functions to perform all possible permutations of t
elements in a vector. For instance, ! = [�1.zk/;�2.zk/; :::;�t@.zk/]T represents all possible
permutations of the plot vector zk .

In short, the subscripts in zk provide correct DA while the subscripts in zk provide
di�erentiation between the elements. Although the subscripts in zk happen to coincide
with the particular order in which plots are collocated in the vector, this could have been
di�erent. In fact, as the order is random:

P.zk = �m.zk// = P.zk = �n.zk// ¯^m;n‘ : ^�m;�n‘ ¸ ! (2.1)

Let us consider the state vector sk , where the individual states of t objects are stacked
with explicit indication of labels: sk = [s1k ;s

2
k ; :::; stk]

T . Solving the DA problem requires:
generation of DA hypotheses and evaluation of the DA hypotheses.

Let us use hk to note the set of generated DA hypotheses: hk = ^.a1;a2; :::;at@/‘, where
am = �m.zk/. Note that the subscripts in the vector am are not labels, the labels are implicit
in the order of the elements represented by am. Note that in any case, these labels represent
hypotheses of association not correct associations. am. For illustrative purposes, consider
a simple two objects case and the association hypothesis a1 = [d2;d1]T . According to the
notation, a1 hypothesizes that the detection which came in second position in zk was
produced by target labeled as 1 and the one which came in �rst position was produced by
the target labeled as 2.
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Given the model for the likelihood of the measurements conditioned on the state
l.zk ðsk/, a DA dependent decomposition of p.sk ðZk/ can be formulated as:

p.sk ðZk/ ø
t@
É
m=1

l.�m.zk/ðsk/p.sk ðZk*1/ (2.2)

From Equation (2.2), one can conclude that in DBT an analytical decomposition rel-
evant for labeling characterization follows from solving the DA problem. In fact, each
component in the sum directly relates one DA hypotheses �m.zk/ with its association-
dependent posterior density l.�m.zk/ðsk/p.sk ðZk*1/. Furthermore, extraction of su�cient
statistics from each component in the sum, by minimizing the MMSE, provides a labeled
point estimate. Note that a labeled point estimate explicitly hypothesizes one particular
association between point estimates and labels. According to this labeling association, the
tracks can be extended. This trivial derivation demonstrated in DBT context that, once DA
is solved, the solution of the labeling problem follows right away.

� Remarks:

� The analytical evaluation of labeling association hypotheses has a one-to-
one relation to the evaluation of DA hypotheses. In particular, the certainty
associated to the labeled point estimate extracted from l.�m.zk/ðsk/p.sk ðZk*1/
is:

p.�m.zk/ðZk/ =
� l.�m.zk/ðsk/p.sk ðZk*1/dsk

‡t@
m=1 � l.�m.zk/ðsk/p.sk ðZk*1/dsk

(2.3)

� Under the assumption that p.sk ðZk*1/ can be formulated as one single density
¯k, Equation (2.2) does not run into �combinatorial explosion� over time. As will
be explained in chapter 4, this assumption only holds in implementations using
particle-based approximation of the various DA-dependent updated densities.

� This analytical derivation is the base of the optimal reference derived in chapter
4 and that will be used to evaluate the proposed DA-free methods proposed in
the last chapters of the thesis.

As a conclusion, it is trivial to solve the labeling problem in DBT by tackling the DA
problem. Unfortunately, the same analytic method cannot be applied in TrBD �ltering to
solve the labeling problem due to the absence of detections.

In TrBD context, the raw data noted by zk is de�ned as the power re�ected from the
tracking scenario for each radar cell at time step k. For instance, a 2D range-bearing raw
data-set zk can be modeled as in [4] by Nr �Nb power measurements zijk , where i = 1;2; :::;Nr
and j = 1;2; :::;Nb. The same TrBD measurement model has been used to generate the
raw measurements illustrated in the left hand side of Figs. 2.3, 2.4 and 2.5. The detailed
formulation of this TrBD measurement model will be provided in chapter 3.

The permutation of measurement zk by using the functions in ! cannot be replicated
for the TrBD measurements zk . In fact, �m.zk/ has no physical interpretation, so it cannot
be used to decompose the TrBD posterior density. However, note that the evaluation of
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l.�m.zk/ðsk/ and l.zk ð�m.sk// are equivalent for a given prior density p.sk ðZk*1/. Therefore,
one could interpret that Equation (2.2) does have a TrBD counterpart:

p.sk ðZk/ ×
t@
É
m=1

lT rBD.zk ð�m.sk//p.sk ðZk*1/ (2.4)

where we use p.sk ðZk/ to denote the posterior density, lT rBD.zk ðsk/ to denote the likelihood
model for the raw measurements conditioned on the state and p.sk ðZk*1/ to denote the
predicted density. We consider the worst case scenario, where TrBD measurements do
not incorporate information about objects’ labels (as described by the �rst assumption
in the introductory chapter). Under this assumption, l.zk ðsk/ is invariant with respect to
permutation of partitions in the state vector:

l.zk ð�m.sk// = l.zk ð�n.sk// ¯^m;n‘ : ^�m;�n‘ ¸ ! (2.5)

This is a remarkable di�erence with respect to DBT, where l.zk ðsk/ is permutation variant
(even when the measurements do not provide any information about the labels). Due
to (2.5), Equation (2.4) provides a decomposition in which all components end up being
identical disregarding whether the objects are closely-spaced or not. As this does not
make sense, Equation (2.4) cannot be relevant for labeling characterization in TrBD. In fact,
Equation (2.4) can be simpli�ed as:

p.sk ðZk/ ×
t@
É
m=1

l.zk ð�m.sk//p.sk ðZk*1/ × l.zk ðsk/p.sk ðZk*1/ (2.6)

The simpli�cation in Equation (2.6) illustrates that, although p.sk ðZk/ can be calculated,
an analytical decomposition of p.sk ðZk/ relevant for labeling characterization cannot be
accessed by the TrBD �lter. The inference of relevant label-dependent decompositions of
p.sk ðZk/ in TrBD de�nes the speci�c problem which needs to be tackled to answer the two
questions of interest formulated by the problem description in section 2.3.

2.5 Related literature
A plethora of MOT techniques have been developed over recent decades including Joint
Probabilistic Data Association (JPDA) [35], MHT [11] and Probability Hypothesis Density
(PHD) [36]. These algorithms are designed to work with detections. As the scope of this
thesis is within TrBD MOT, none of these methods are suitable.

Some RFS-based trackers use multitrajectory densities instead of multiobject densi-
ties [37]. A multitrajectory random variable incorporates the states of the entire history for
each trajectory in the set. With this information, track formation is enabled without any
type of label incorporation. [38] describes multitrajectory RFS methods accommodating
standard (point based) measurements. Interestingly, it also mentions that the method
can be applied to TrBD measurement. However, the guideline in [38] regarding TrBD
measurement update is to proceed as in [39], where a multiobejct RFS �lter is used instead
of a multitrajectory RFS. In particular, the method in [39] tackles TrBD measurements by
means of �tting a particle-based multiobject density approximation as a Labeled Multi-
Bernoulli (LMB) RFS density after each �ltering iteration. Nonetheless, this would not
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allow propagation of labeling uncertainty as one would need to use a LMB mixture to do
so.

In [40], a backward simulation method is proposed to recover full trajectory (labeling)
information from unlabeled �ltering mutiobject densities. However, the process (generating
unlabeled �ltering posteriors, recovering trajectory information and marginalizing to obtain
the �ltering density of interest) involves a complexity overhead unfordable by practical
implementations targeted in this thesis. More speci�cally, this complexity is prohibitive
when implementing this solution in TrBD context, where RFS prior conjugacy cannot be
exploited as particle-based approximations are required to accommodate highly nonlinear
TrBD observation models. Additionally, the problem in the scope of this thesis does not
even need to be formulated with RFS as the number of objects is assumed known and
constant.

Aoki et al. provided a mathematical characterization of the labeling uncertainties with
clear physical interpretation in [41]. However, the proposed Multitarget Sequential Monte
Carlo �lter algorithm involves computational complexity of O.N 2

p t@2/, being Np the number
of particles. This computational bottleneck is prohibitive for tracking in scenarios with
more than two objects.

Blom and Bloem [25] introduced a decomposition of the exact Bayes posterior density
into the weighted sum of permutation invariant and permutation strictly variant compo-
nents. The so-called Unique Decomposition (UD) was used by García-FernÆndez in [33]
to provide a particle �ltering solution relevant for our problem description. The main
focus in [33] is on calculating the probability of successful labeling after object separation,
assuming the posterior multiobject density has symmetric nature [42][30]. In particular, the
contribution of García-FernÆndez to the labeling problem is based on linking the so-called
probability of successful labeling to the particular metric and point estimate considered [33].
These contributions were exempli�ed for the tracking of two objects with a Wireless Sensor
Network (WSN).

A generalization of the UD [25] was provided by Croise et al. in [43], where the main
focus is on demonstrating how the UD can be used to approximate MMOSPA estimates.
Although MMOSPA estimates do not provide answers to the questions in the Problem
Description section due to its unlabeled nature, it is important to remark that the con-
sideration of OSPA metric (or its generalization GOSPA) has been reported successful at
preventing track-coalescence. Nevertheless, MMOSPA estimates are very computationally
demanding to calculate and therefore its implementation in dynamic systems has only
been reported under some approximations [44] [45].

The use of MMOSPA estimates has been encouraged by the majority of reviewed
solutions. Only [33] has reported successful results at avoiding track-coalescence using
MMSE estimates. This becomes possible as the speci�c problem formulated in the Problem
Description section is tackled by incorporating characterization of labeling uncertainty in
the �ltering process. Interestingly, this characterization does not rely on DA techniques
and therefore it is usable in TrBD. Unfortunately, although proposed as future work in [33],
the generalization of this solution for more than two objects has not been addressed.
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2.6 Conclusions and connections to upcoming chap-
ters

Does the fact that DA cannot be formulated in TrBD mean that the labeling problem is
inherently solved through Bayesian �ltering? To answer this question, it is important to
note that it is in the multimodality of the Bayes posterior where the information about
labeling resides. In fact, when the multitarget density becomes multimodal, the modes tend
to show up in symmetric regions of the joint state space (when the objects get su�ciently
separated after being closely-spaced) [1][30].

The answer to the question is no, vanilla TrBD tracking algorithms, such as the one
in [4] provide a non-decomposed posterior density, which happens to be multimodal in
scenarios where closely-spaced targets are involved. Unlike in DBT tracking, where DA
decomposes the multimodal posterior density based on labeling uncertainty, one cannot
rely on any existent decomposition method for the TrBD problem. Therefore, the labeling
problem is not solved inherently through plain TrBD Bayesian �ltering.

Connections to the contributions in upcoming chapters can be made on the basis of
the labeling problem. There is a clear distinction between chapter 3 and chapters 5, 6 and
7. In chapter 3, the focus is on labeling uncertainty reduction. Chapters 5, 6 and 7 focus
on labeling uncertainty characterization. Chapter 4 provides a criterion to evaluate the
algorithmic solutions provided in chapters 5, 6 and 7. Chapter 3 illustrates that proper
estimation of targets interacting-dynamics aids at reducing labeling uncertainty so as to
avoid label confusion even in scenarios with closely-spaced targets. Chapters 5, 6 and 7
provide the main contribution of this thesis by considering a more generic TrBD MOT
problem, where labeling uncertainty reduction methods are not implemented or simply
not su�cient to provide uncertainty-free point-estimate-to-label assignment. Resorting
again to analogies with traditional DBT methods, chapters 5, 6 and 7 attempt to derive and
implement the TrBD counterpart of DBT MHT for constant and known number of targets.
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3
Tracking of Interacting

targets

3.1 Introduction
Before delving into the main contribution of this thesis, namely generic TrBD labeling
uncertainty characterization, this chapter illustrates how labeling confusion can be tackled
in particular scenarios where interacting targets are involved. This chapter looks at the
labeling confusion problem from the dynamics point of view, which is especially e�ective
when some structure can be extracted from the coupled motion of the targets. Detection of
anomalous target behaviors is a related higher level challenge, which is also considered in
this chapter. Both challenges are tackled by means of modeling and estimating interacting
targets motion.

Interacting and even coordinated motion can be found in objects that �y in formation,
groups of objects that intentionally move closely together as a group such as drone swarms,
and even well-separated objects that are executing a joint plan. There exist all sorts of
other constraints on movements due to environmental limitations. These could come from
circulation infrastructure or rules and the physical size of objects. Due to these types
of limitations, target dynamics are also a�ected. For example, road vehicles may not be
able overtake each other unless following some particular trajectories. For �ying objects,
some rules apply in controllable scenarios as de�ned in the International Civil Aviation
Organization (ICAO) for Remotely Piloted Aircraft Systems (RPAS) regulation [46]. These
rules determine remain-well-clear and collision-avoidance volumes for maneuvering of
closely-spaced objects according to Fig. 3.1.

In hostile scenarios, regulations in [46] are obviously not taken into account. However,
due to the physical dimensions of targets, closely-spaced trajectories are still constrained
by the collision volumes as objects cannot simply keep on moving through each other.

Unlike in signature-based classi�cation solutions, where labeling information is ex-
tracted via characterization of measurements, this chapter focuses on estimating labeling

The contents provided in this chapter have been published in �Tracking of interacting targets,� C. M. Leon, L.
S. Mihaylova and H. Driessen, in proceedings of the 20th International Conference on Information Fusion, Xi’an
(China), 2017, pp. 1-8.
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Figure 3.1: Thresholds and volumes a�ecting closely spaced object as de�ned by the ICAO RPAS.

information by characterizing coupled target dynamics. Given a previously labeled set
of tracks, if prediction of exact dynamic states of the objects would be possible, there
would not be uncertainty so as to which label corresponds to which track. Although exact
prediction is not possible, this chapter illustrates how on-line learning of dynamic coupling-
parameters aids at producing better prediction models. As a result, labeling confusion can
be reduced even in closely-spaced target scenarios.

Some literature exists on group tracking, which is certainly a particular case of inter-
acting targets tracking. In [47], a framework based on the so called �Evolving Networks� is
proposed to perform targets state estimation and group structure discovery. The method
relies on a graphical network-like representation where each node represents a di�erent
target. When the targets are considered in the same group, the evolution model becomes
coupled along the coordinates of di�erent objects. However, although it is fairly under-
standable that di�erent objects traveling in a group are interacting with each other, the
method does not cover any kind of interactions between targets which are not considered
in the same group. Modeling this type of interactions between non-closely-spaced targets
is relevant for detection of anomalous behavior of targets that are far away from each
other.

In this chapter we present a method for tracking interacting targets disregarding
whether or not the targets are close to each other. The method relies on parametric
modeling of targets interactive motion. The presented �ltering solution incorporates
the parameters of the model in the state vector together with the targets dynamic state.
Moreover, the parameters of these interactive motion models are auto-tunable as they
are modi�ed on-line, exploiting the (Bayes) posterior certainty of estimation results. The
proposed method is applied in a simulated MOT application where target dynamics become
coupled and independent alternatively along the simulation.

Numerical simulations will show that the presented approach results in estimation error
reduction, allows detection of interactive target behaviors and reduces labeling confusion
for closely-spaced targets in TrBD tracking. The bene�ts of modeling interacting target
dynamics also apply in traditional DBT MOT, aiding at reducing DA uncertainties. However,
simulations in this chapter are based on TrBD measurements to align with the research
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direction of the thesis.

3.2 Proposed approach
The method presented in this chapter is motivated by the idea that all possible interacting
behaviors can be modeled relying on two di�erent sources of information. Firstly, the
set of points that the targets get attracted to or repulsed from. Secondly, the models of
interaction between the targets and these points of attraction/repulsion. By these means,
any interacting behavior can be understood as variable accelerations of the targets in
relation with the set of attraction/repulsion points. These unknown points can be variable
in number, �xed, dynamic, or even be another target of interest.

A complete solution would estimate the attraction/repulsion points, the coupling pa-
rameters (modeling interactions between the targets and these points), and the dynamics of
the targets, all together in the joint space. To this end, we model target interactions by using
a very simpli�ed version of the so-called Social Force models applied separately for each
coordinate. Social Force models, introduced by Helbing [48], have been used extensively
in pedestrian tracking. In these applications, social forces are proven to e�ectively reduce
data association errors as in [49]. Several challenges as handling occlusions [50] or tracking
with cameras with no overlapping �elds of view [51] have been tackled by using these
models.

The chapter is organized as follows. In Section 3, the assumptions of the interacting
target motion model are formulated in continuous time and the associated discretized
model is derived. In Section 4, the incorporation of the discretized model in a TrBD
MOT application is discussed. First, the measurement model is de�ned and then, it is put
together with the proposed interacting motion model in the context of recursive Bayesian
estimation. In Section 5, simulation examples are presented. Firstly, preliminary results
showing estimation error reduction are provided. Secondly, detection of suspicious target
interacting-behavior is illustrated based simulation results using a Multiple Model (MM)
�ltering implementation. In the �nal part of section 5, it is shown that labeling confusion
can be prevented by means of inferring coupled target-dynamics. Conclusions are provided
in section 6.

3.3 Interacting Target Motion Modeling
Independent target motion models are oftentimes used for the tracking of any target
disregarding its degree of interaction. This subsection formulates a generic dynamic
system to set the base line. Interacting dynamics modeling will be incorporated to the base
line in the following subsection. For sake of simplicity in the formulation, let us consider
2D objects. For each object, the state vector s.t/ comprises two coordinates (x and y) and
for each coordinate we consider two dimensions: position (x.t/, y.t/) and velocity ( �x.t/,
�y.t/). Then s.t/ = [x.t/ �x.t/ y.t/ �y.t/]T .

A generic continuous-time dynamic model can be represented by a �rst order linear
di�erential stochastic system as in Fig. 3.2.
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�s.t/ = As.t/+Bu.t/+G�v.t/ s.t/u.t/

Figure 3.2: Generic �rst order linear dynamic system

where A is called the system matrix, B is the (continuous-time) input gain, G is the
(continuous-time) noise gain. s.t/ is the state vector, u.t/ is the input vector and �v.t/ is the
(continuous-time) process noise. The Continuous White Noise Acceleration model [23] is
a widely used independent target motion model. It is characterized by having zero input
contribution and matrices,

A = diag.A1;A2; :::;AN / (3.1)

where N is the total number of coordinates,

An =0
0 1
0 01 ;n = 1; :::;N (3.2)

G = diag.G1;G2; :::;GN / (3.3)

Gn =0
0
11 ;n = 1; :::;N (3.4)

being �v.t/ continuous-time Standard White Gaussian.
In some more elaborated models the input contribution is considered. When the input

vector is fully known, it only causes an explicit time dependency in the deterministic part
of the evolution model. However, in MOT applications, the control signals applied on each
target are seldomly modeled (if ever) by the tracking system. Therefore, the control vector
causes also a dependency in the random component �v.t/. As we will see in Subsection 3.3.1,
the unknown control vector will be considered part of the state vector to be estimated by
the tracker.

3.3.1 Assumptions on targets interaction
Interacting targets perform accelerations depending on the dynamics of other objects and
the environment. Therefore, independent target motion modeling is not optimal when
tracking interacting targets as coupled accelerations get overlooked. In this subsection our
parametric model of targets interaction is presented.

In this chapter we consider a toy scenario where two objects (labeled as �b� and �r�)
move in 2D, the state vector can be represented as s.t/ = [sb.t/ sr .t/]T . Furthermore, we
assume that the target labeled as �b� is the only point of attraction/repulsion.

When the motion along the same coordinates is assumed to be coupled for di�erent
targets, obtaining an explicit expression of the model in discrete time is not straightforward.
Special considerations have to be taken into account as the calculation of the discrete
transition matrix and the covariance of the discrete process noise cannot be decomposed
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at coordinate level. Therefore, interacting assumptions need to be de�ned in continuous
time and the discretization of the transition model needs to be worked out. The assumed
structure of the interactive motion is formulated as,

�xr .t/ = k1.xb.t/*xr .t//* k2 �xr .t/ (3.5)
�yr .t/ = k1.yb.t/*yr .t//* k2 �yr .t/ (3.6)

with k1 and k2 assumed constants with units [s*2] and [s*1] respectively.
The model basically represents that the accelerations performed by the object labeled

as �r� are the result of combining two aspects. These are: the intention of target labeled
as �r� to interact with the target labeled as �b� and the maneuvering limitations of the
target labeled as �r� due to inertia. The second aspect is especially dominant in �x wing air
targets. In this particular case only two parameters are needed (k1 and k2). We consider
the state vector ordered in the following manner, s.t/ = [sx.t/ sy.t/]T where,

sx.t/ = [xb.t/ �xb.t/ xr .t/ �xr .t/]

sy.t/ = [yb.t/ �yb.t/ yr .t/ �yr .t/]
Expresions in (3.5) and (3.6) can be directly incorporated as inputs in the generic model

from Fig. 3.2. Choosing to do so allows us to consider the input as a good representation
for the intention of the pilot controlling the �r� object. In this case, matrix B is given by,

B = diag.Bn;Bn/; (3.7)

Bn = .0 0 0 1/T (3.8)
and,

u.t/ = Ks.t/; (3.9)
where,

K = diag.Kn;Kn/; (3.10)
and

Kn = .k1 0 * k1 * k2/ (3.11)
By these means, we have modeled accelerations depending on unknown control decisions
(which ultimately depend on the dynamics of other objects). Now, we can put this model
for the accelerations together with a Continuous White Noise Acceleration model,

�s.t/ = As.t/+BKs.t/+G�v.t/ = .A+BK/s.t/+G�v.t/ (3.12)

resulting in the system,
�s.t/ = Acs.t/+G�v.t/ (3.13)

where,
Ac = diag.Ap ;Ap/; (3.14)

being Ap the matrix,

Ap =
‘
r
r
r
p

0 1 0 0
0 0 0 0
0 0 0 1
k1 0 *k1 *k2

a
s
s
s
q

(3.15)
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3.3.2 Discretization of the continuous time model
We can split the discretization of the system from (3.13) in two equal parts and associate
the separate results (for �x� and �y� directions) with block chunks in the discrete transition
matrix and the covariance matrix of the discrete process noise. The discretization will be
derived for one of the two directions and duplicated for the other. If we select the direction
�x� for discretization,

�sx.t/ = Apsx.t/+G�vx (3.16)

where,

�vx = 4
�vxb
�vxr 5

(3.17)

its discrete version can be represented as,

sx;k+1 = Absx;k + vx;k (3.18)

Moreover, the discretization of the entire system in (3.13) can be expressed as,

sk+1 = Adsk + vk (3.19)

where Ab can be replicated in the discrete system transition matrix Ad as,

Ad = �
Ab 0
0 Ab � (3.20)

the derivation of Ab can be found in Appendix A.1, as well as the de�nition of �¤s, resulting
on:

Ab =

‘
r
r
r
r
p

1 �t 0 0
0 1 0 0

�2.1*e�t �3 /*�3.1*e�t �2 /
�2*�3 Ab.3;2/ �2 e�t �3*�3 e�t �2

�2*�3
e�t �2*e�t �3

�2*�3
�2 �3.e�t �2*e�t �3 /

�2*�3 Ab.4;2/ * �2 �3.e�t �2*e�t �3 /
�2*�3

�2 e�t �2*�3 e�t �3
�2*�3

a
s
s
s
s
q

(3.21)

where
Ab.3;2/ = * k1.e�t �2*e�t �3*�t�2+�t�3/+k2�2.1*e�t �3 /*k2�3.1*e�t �2 /

k1 .�2*�3/
and
Ab.4;2/ = k1.�2*�3*�2 e�t �2+�3 e�t �3 /*k2�2�3.e�t �2*e�t �3 /

k1.�2*�3/ .

Furthermore, vk in (3.19) is the discrete process noise with zero mean, and covariance
matrix given by,

cov[v] = Cd = �
Cb 0
0 Cb � (3.22)

The discrete time random component for direction �x� vx is given by the integral:

vx.k�t/ = �
.k+1/�t

k�t
eAp..k+1/�t*�/G.�/ �vx.�/d� (3.23)
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which represents a four dimensional multivariate Gaussian distribution parameterized by
zero mean and covariance matrix:

Cb = �qx �
�t

0
eAp.�t*�/G[eAp.�t*�/G]T d�: (3.24)

where �qx is the continuous-time process noise intensity in �x� direction.

3.3.3 Consideration of variable targets interacting behavior
Hidden interactions between the objects and the environment may vary and therefore
the unknown parameters k1 and k2 should account for this variability as well. Objects
may even gradually transition from independent motion to interacting motion when, for
instance, targets that are initially far away from each other moving independently �decide�
to gather and travel in group formation for a while.

Incorporation of the knowledge about objects interacting behavior requires an e�ort
of on-line learning k1 and k2. This can be done directly by extending the state vector
with k1 and k2 and their respective change rate. The extended state vector considered
is s.t/ = [s.t/ k1.t/ �k1.t/ k2.t/ �k2.t/]T . Indeed, k1 and k2 are not considered constants any
more. Instead, k1 and k2 are considered variables and are assumed to evolve according to
independent Continuous White Noise Acceleration models.

Then, the model considered for the new state vector can be expressed as,

sk+1 = Aesk + ve;k (3.25)

where,

Ae = �
Ad 0
0 Ak � (3.26)

the blocks of Ae associated to coordinates k1 and k2 are straightforward to calculate as they
are uncoupled from any other coordinate,

Ak = �Au 0
0 Au � ;where Au = � 1 �t0 1 � (3.27)

being,

ve = [v vk1 v �k1 vk2 v �k2]
T (3.28)

which represents a twelve dimensions multivariate Gaussian distribution parameterized by
zero mean and covariance matrix,

cov[ve] = �
Cd 0
0 Ck � (3.29)

Ck = �Cu 0
0 Cu � (3.30)
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again, the blocks Cu associated with coordinates k1 and k2 can be calculated straightfor-
wardly,

Cu =H

�t3
3

�t2
2

�t2
2 �tI

�qk (3.31)

where �qk is the continuous-time process noise intensity of the variables modeling the
interacting motion.

3.4 Integration of Interacting Motion Modeling in
a TrBD Tracking Application

This section contains all necessary aspects to develop a particle �ltering algorithm based
on the formulated model of targets interaction.

Let sk denote the state vector and zk denote the TrBD measurements at time index k.
Zk denotes the set of measurements up to time k, including zk : Zk = ^z1; z2; :::; zk‘. The state
space model can be represented by two conditional probability densities:

sk+1 í p.sk+1ðsk/; (3.32)

zk í p.zk ðsk/; (3.33)

where in our particular case, p.sk+1ðsk/ is the dynamic model presented in previous subsec-
tion (Eq. (3.25)). p.zk ðsk/ is the probability density of the measurements given the state.
This density function is presented in Subsection 3.4.1.

3.4.1 Observation model: radar track-before-detect measure-
ments

For the numerical experiments we consider a radar TrBD measurement model as in [52].
The used measurement model de�nes the power re�ected by the tracking scenario for each
radar cell. One measurement zk is composed of Nr �Nb power measurements zijk , where
k ¸N and Nr and Nb are the number of range and bearing cells.

zijk = ðzijA;k ð
2 = ðA.1/k h.1/ijA +A.2/k h.2/ijA +nI .tk/+ inQ.tk/ð2 (3.34)

where Ack is the complex amplitude of the target labeled as c.

Ack = �A.c/k ei�k ; �k ¸ U .0;2�/ (3.35)

h.c/ijA .sck/ = e
*
.ri*rck /

2

2R *
.bj*bck /

2

2B ; i = 1; :::;Nr ; j = 1; :::;Nb (3.36)

r ck and bck are the range and bearing of the target c. Note that c is used for the target labels,
which could either be 1 or 2 as in Eq. (3.34). For sake of easier visualization of simulation
results, target labels will be associated to colors blue and red in following subsections. R
and B are constants related to the size of the cells. Additionally,

r ck =
u
.xck/2+.y

c
k/2 and bck = arctan.

yck
xck
/ (3.37)
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The noise in Eq. (3.34) is complex Gaussian, where nI .tk/ and nQ.tk/ are independent,
zero-mean white Gaussian with variance �2n accounting for the in-phase and quadrature
phase components respectively. These measurements, conditioned on the state are assumed
to be exponentially distributed [53],

p.zij ðsk/ =
1
�ij0

e
* 1
�ij0

zijk (3.38)

where
�ij0 = . �A

.1/
k /2.h.1/ijA .sk ; tk//2+. �A

.2/
k /2.h.2/ijA .sk ; tk//2+2�2n (3.39)

Assuming that the noise is independent from cell to cell and that the re�ections of
the two targets are independent, the density model of the measurements given the state
becomes:

p.zk ðsk/ =˙
ij
p.zij ðsk/ (3.40)

3.4.2 Algorithm
In the framework of recursive Bayesian estimation the prior density p.sk+1ðZk/ and the
posterior density p.sk+1ðZk+1/ can be obtained, according to the Chapman-Kolmogorov
and Bayes equations, as:

p.sk+1ðZk/ = � p.sk+1ðsk/p.sk ðZk/dsk (3.41)

p.sk+1ðZk+1/ =
p.zk+1ðsk+1/p.sk+1ðZk/

p.zk+1ðZk/
(3.42)

A PF is selected for the implementation due to the non-linearity in the dynamic and
measurement models (see Eqs. (3.25) and (3.34)). The particle cloud representation of
the joint probability density at time k is given by the weighted set of particles ^sik ;w

i
k‘
Np
i=1.

An Importance-Sampling-based �lter algorithm su�ces to show the bene�ts of modeling
target interactions. Algorithm 1 presents the SIR �lter that will be used in the simulations
in Subsection 3.5.1.
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1 k = 0;
2 Draw Np samples sik from p.sk/;
3 k = k+1;
4 Draw Np samples vik from p.vk/;
5 Obtain Np samples sik from p.sik ðs

i
k*1; v

i
k/;

6 Given zk , obtain �wi
k = p.zk ðs

i
k/;

7 Normalize weights wi
k = �wi

k_‡
Np
j=1 �w

j
k ;

8 Resample from �p.sk ðZk/ =‡Np
i=1wi

k�.sk * s
i
k/;

9 Extract point estimates from �p.sk ðZk/, e.g. according to MMSE metric;
10 go to 3
Algorithm 1: Pseudo-code of the SIR �lter. Simulations in next section incorporate the
interacting motion and TrBD measurement models (from Sections 3.3.3 and 3.4.1) in the densities
from lines 5 and 6.

3.5 Simulation examples
This section presents simulation results for di�erent scenarios involving interacting targets.
Based on these simulations, we compare the performance of a traditional �lter based on
independent motion assumptions (using the base-line model presented in the introduction
of Section 3.3) with the proposed method (based on the interacting target motion model in
Subsection 3.3.3).

3.5.1 Preliminary results
The initial set of interacting trajectories simulated could e�ectively depict the movement of
a water-skier being towed by a rope attached to a boat. The trajectories of the water-skier
and the boat are illustrated by the continuous red and blue lines in Fig. 3.3 respectively.
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Figure 3.3: Position estimates of a traditional �lter with independent motion assumptions on the left hand side.
Estimation error of the track of target labeled as red on the right hand side.

The trajectories are generated using the dynamic model in (3.25) with evolution of k1
and k2 as represented by the continuous lines in Fig. 3.4.

Tracking results are shown in Figs. 3.3 and 3.5. Fig. 3.3 shows the estimation per-
formance of a traditional �lter assuming decoupled motion of the two targets. Fig. 3.5
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Figure 3.4: Estimation of the parameters in the interacting motion model.

shows the estimation performance of the formulated extension with inference of targets
interaction.

Although the trajectories are strongly coupled, the traditional �lter manages to keep
the targets in track because the process noise covariance of the model is tuned in relation
to the coupled maneuverability of the objects. Such prior information is not available in
real operation, but has been used here so that the traditional �lter keeps the r target in
track. This is essential to produce a high quality base line for evaluation of the contribution
in this chapter. Nevertheless, the traditional �lter incurs in large estimation errors when
large accelerations take place due to target interactions (in this case produced by physical
tightening of the rope), see Fig. 3.3 right hand side. Fig. 3.5 shows the estimation error
reduction in the position estimates when the information about target interaction is esti-
mated and exploited on-line. Estimates of the coupling parameters k1 and k2 are illustrated
in Fig. 3.4. This estimates can be readily exploited on-line, lowering the uncertainty in the
prediction step.
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Figure 3.5: Position estimates of the proposed �lter encapsulating interacting motion inference on the left hand
side. Estimation error of the track of target labeled as red on the right hand side.
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3.5.2 Final results: prevention of labeling confusion and de-
tection of anomalous target behavior

Detecting certain types of coupled motion is relevant for the system to provide situa-
tional awareness at user level. The purpose of this section is not only improving tracking
performance by exploiting real-time estimation of coupling parameters. We also aim at
detecting changes between interactive/no-interactive targets behavior. A Multiple Mode
(MM) �ltering implementation can be used to integrate both aims. In order to evaluate
the bene�ts of such MM implementation, we compare a traditional �lter with a MM �lter
where the two models used in previous subsection are encapsulated. By these means, the
posterior mode probabilities can be used as a measure of certainty about whether or not
the objects have interacting behaviors. As the MM mechanism gives more importance
to the mode with higher posterior probability, reduction in estimation error is expected
disregarding the degree of target interaction.

Let mk = 1 and mk = 2 denote the non-interacting and interacting modes at time step k
respectively. The posterior probability of each mode can be calculated using the particle-
based approximation as follows,

p.mk = 1ðZk/ ø É
i:mi<k =1

wi<
k ø

}^mi<
k = 1‘
Np (3.43)

p.mk = 2ðZk/ ø
}^mi<

k = 2‘
Np

(3.44)

where wi<
k and mi<

k are used to denote the weight after resampling and the mode after
resampling of particle i at time instant k respectively.

Algorithm 2 summarizes the MM SIR �lter used in the simulation example in this
subsection.

1 k = 0;
2 Draw Np samples sik from p.sk/;
3 Draw Np samples mi

k from p.mk/;
4 k = k+1;
5 Draw Np samples vik from p.vk/;
6 Obtain Np samples sik from p.sik ðs

i
k*1; v

i
k ;m

i
k*1/;

7 Given zk , obtain �wi
k = p.zk ðs

i
k/;

8 Normalize weights wi
k = �wi

k_‡
Np
j=1 �w

j
k ;

9 Resample from �p.sk ðZk/ =‡Np
i=1wi

k�.sk * s
i
k/;

10 Calculate p.mk*1ðZk/ according to Eqs. (3.43) and (3.44);
11 Extract point estimates from �p.sk ðZk/, e.g. according to MMSE metric;
12 Draw Np samples mi

k from p.mk ðmi
k*1/;

13 go to 4
Algorithm 2: Pseudo-code of the MM SIR �lter.

The �nal results show the performance of a MM particle �lter exposed to periodical
switches between interacting and independent target motion. The MM �lter is compared
with a traditional particle �lter were no e�orts are made to model interactions. For a fair
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comparison, we run the traditional particle �lter with the same amount of particles used in
the MM �lter. However, the variance of the process noise in the traditional �lter should
be tuned to a larger magnitude (in relation to targets maneuverability) than in the MM
implementation due to the lack of interacting information. Otherwise, the traditional �lter
will not be able to maintain the targets in track.

In the upcoming simulation experiment the trajectory set is such that the targets
maneuver coordinately every now and then, as represented by the continuous lines in
Fig. 3.6 (left hand side).
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Figure 3.6: Estimated position of the targets by the traditional �lter on the left hand side. Estimation error of
target labeled as red in the right hand side, where each curve is referenced to the axis scale on its same color.
Time scale is also shown over the trajectory.

Such type of on-o� chasing behavior can be replicated with varying coupling parameters
k1 and k2 as represented by the ground truth curves in Fig. 3.7. In the simulation segment
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Figure 3.7: Estimation of the parameters in the interacting motion model.

between 43 and 61 seconds, the targets are moving independently. Over the �rst 42 seconds
and the last 39 seconds, �r� target dynamics are dependent on �b� dynamic state.
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Figs. 3.6 and 3.8 show the point estimates extracted from the traditional and MM
�lters respectively. The MM particle �lter provides more accurate point estimates than
the traditional �ltering solution. In Fig. 3.6 it is also clear that the large uncertainty when
using a traditional �lter compromises labeling with respect to target identity if the targets
get close enough (both in position and velocity space). This �labeling confusion� has been
avoided by the proposed incorporation of interacting motion models in the �ltering process.

-1050 -1000 -950 -900 -850 -800 -750 -700

Position x(m)

-8200

-8150

-8100

-8050

-8000

-7950

-7900

P
os

iti
on

y(
m

)

Real trajectory target labeled as red
Real trajectory target labeled as blue
Estimated trajectory target red
Estimated trajectory target blue

-1050 -1000 -950 -900 -850 -800 -750 -700

Position x(m)

-8300

-8250

-8200

-8150

-8100

-8050

-8000

-7950

-7900

P
os

iti
on

y(
m

)
1

11

21 31

41

51

61

71

81

91Target Red Trajectory

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

10

20

30

40

50

60

70

80

90

R
M

S
E

RMSE

Figure 3.8: Estimated position of the targets by the MM �lter on the left hand side. Estimation error of target
labeled as red in the right hand side, where each curve is referenced to the axis scale on its same color. Time scale
is also shown over the trajectory.

Fig. 3.7 shows the estimation of the coupling variables in the interacting motion model.
Periods of interaction/no-interaction are correctly detected relying on the estimated poste-
rior mode probabilities of the MM �lter (see Fig. 3.9). Thresholding this posterior statistic
allows for detection of anomalous amount of target interaction, which can be re�ected as a
suspicious target-behavior warning at higher system levels.
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Figure 3.9: The posterior mode probability can be used to infer the amount of interaction between the targets.
The interpretation in this case is that the motion of the targets is strongly coupled over the simulation, except
from 50 to 65 seconds, where the targets perform independent motion.
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The �curse� of dimensionality inherent in PF implementations with high-dimensional
state vectors can be observed in the roughness of the estimation of the coupling parameters
(see Fig. 3.7). Despite this, rough estimation of k1 and k2 still provides valuable information
to enhance tracking performance as shown in Fig. 3.8. Since the main contribution in
this chapter is on the modeling of interacting motion, these e�ciency problems of the
implementation (that will appear when considering larger number of targets) fall out of
the scope of the study.

3.6 Conclusions
This chapter has looked at the labeling confusion problem in TrBD MOT from the dynamics
point of view, which is especially e�ective when some structure can be extracted from the
coupled motion of the targets. Detection of anomalous target behaviors is a related higher
level challenge, which has also been considered in this chapter. Both challenges are tackled
by means of modeling and estimating interacting target motion.

In this chapter we have provided a PF solution to estimate and exploit interacting
targets behavior in a TrBD MOT application. The method uses parameters to model coupled
accelerations along coordinates of di�erent targets. The hidden parameters used to model
interactive motion are estimated as part of the state vector and exploited on-line. For the
�rst time in literature, the presented method exploits such information to close the sensing-
tuning loop inside the tracker, resulting in enhanced tracking performance (including
avoidance of labeling confusion). Additionally, this chapter proposes the incorporation of
the interacting motion models in a Multiple Model (MM) Bayesian �ltering implementation.
This enables detection of suspicious target behavior correlated to non-regular degrees of
targets interaction.
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4
Performance evaluation
criterion for TrBD MOT

solutions

4.1 Introduction
In order to estimate the trajectories of the targets, various track-formation strategies can be
adopted. Track-formation is the problem of connecting target state estimates that belong
to the same target to form tracks. In order to take informed track-formation decisions
in TrBD MOT, the labeling problem as de�ned in [27], needs to be solved. To solve the
labeling problem, a method for labeling uncertainty characterization is required.

An optimal solution to the labeling problem is especially important when tracking
closely-spaced objects. TrBD MOT copes with closely-spaced objects in cases where a
traditional plot-based approach would have to deal with merged measurements. Due to
integration over time, TrBD MOT provides an inherently increased resolution capability
over Detect-before-track (DBT) MOT, which makes it all the more important to address
the characterization of labeling uncertainty in the absence of detection plots.

Characterizing labeling uncertainty involves decomposing the multi-object Bayes poste-
rior density. This decomposition has been traditionally done by solving the Data Association
(DA) problem, the Multiple Hypotheses Tracking (MHT) decomposition [11] is an exam-
ple. In TrBD context, association-dependent decompositions cannot be formulated due to
the absence of detections (and plots). Nevertheless, labeling uncertainty still needs to be
characterized. Therefore, a DA-free method to perform a label-dependent decomposition
of the Bayes posterior is required. The contents in chapters 5, 6 and 7 propose various
implementations for such a method.

The remainder of this thesis keeps the focus on the TrBD MOT problem for closely-
spaced objects. This chapter revisits a sensible method for evaluation of TrBD DA-free

The contents provided in this chapter are based on the publication �Evaluation of Labeling Uncertainty in
Multiple Target Tracking with Track-before-detect Radars,� C. M. Leon and H. Driessen, in Proceedings of the
22nd International Conference on Information Fusion, Ottawa, 2019, pp. 1-8.
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solutions. The evaluation method, published by the author of this thesis in [22] and revisited
in [27], calculates the evaluation references relying on a label-dependent decomposition
based on DA. Although this chapter does not provide a new contribution compared to the
published results, it does provide a more compact and simpli�ed formulation.

The method presented in this chapter departs from the current literature trend based
on optimization over the Mean Optimal Sub-Pattern Assignment (MOSPA) metric. Instead,
the presented criterion is based on traditional MSE optimization. In spite of this, the
proposed generation of evaluation references prevents �track coalescence� and �track swap�
underperformance. Additionally, the evaluation criterion does not su�er �combinatorial
explosion� as it would be expected given its DA-based construction. This becomes possible
when implementing the performance evaluation criterion with a PF due to the fact that
several association-dependent PFs with the same particle support can be uni�ed as a single
PF. This di�ers from parametric methods, where the sum of di�erent data association-
dependent densities, for instance a Gaussian mixture, cannot be represented as one uni�ed
parametric density.

The main contribution of this chapter is a PF algorithm implementation providing
optimal statistics relevant for track formation. These statistic are labeled tracks and
corresponding labeling certainties. Additionally, such algorithm is incorporated as part of a
criterion for performance evaluation of DA-free trackers. Despite its DA-based construction,
the evaluation criterion can be used legitimately to evaluate solutions such as the UD-based
and CMT algorithms provided in following chapters.

The chapter is organized as follows. In section 2, we provide the context and outline
the trend in literature for performance evaluation of MOT algorithms. In section 3, the
proposed generation of optimal references is presented. Also, the elaboration on how PF
approximations enable a suitable performance evaluation, departing from optimization
over MMOSPA, is provided. In section 4, the mathematical description of the proposed
approach is formulated and the PF algorithm for practical implementation of the evaluation
method is provided. Finally, numerical results are discussed before extracting conclusions
and closing the chapter.

4.2 Related trends and context
In [54] Svensson et al. show that when targets are closely spaced, traditional tracking
algorithms can be adjusted to perform better under a performance measure that disregards
identity. This performance measure is MOSPA and it has become the standard benchmark
metric for evaluation of tracking performance in the Information Fusion community. In
a nutshell, optimizing over MOSPA in closely-spaced targets scenarios provides better
results than optimizing over MSE or MAP as long as the research question is only �where
are the targets now?� and the question of �which target corresponds to which estimated
location?� does not matter at all or can be answered relying on additional classi�cation
processing or additional systems such as Identi�cation Friend or Foe (IFF).

The main arguments supporting the use of MOSPA metric when labeling of the tracks
does not matter can be traced back to chapter 2. The same arguments can be found in [55],
where it is explained that optimizing over traditional metrics leads to estimation under-
performance known as �track coalescence� (for MMSE) or �track swap� (for MAP) when
considering multimodal PDFs. Such cases become problematic due to the existence of
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multimodalities in the posterior PDF as a result of several association hypothesis holding
non negligible probabilities. One heuristic way used to avoid track-coalescence while
optimizing over traditional MMSE is taking the mean of the most likely hypothesis. How-
ever, this does not take into account the uncertainty of other (potentially non-negligible)
hypotheses.

A theoretically complete solution for the evaluation method when tracking of identities
matter (as it happens to be the case in our problem description from section 2.3) is an
MHT-type of solution [11]. In fact, MHT-based algorithms generate optimal references for
answering the two questions in the overall thesis problem description from section 2.3 (in
DBT context). Firstly, reference labeled tracks can be extracted by optimizing over MMSE
individually for each and every hypothesis. Secondly, not only every mode in the posterior
density would have an unbiased point estimate representative, but also the corresponding
labeling uncertainty would be analytically characterized by the MHT DA probabilities.

Unfortunately, practical implementation of this complete solution would not be feasible
as DA hypotheses grow exponentially from one scan to the next one [11]. Additionally,
left aside �combinatorial explosion� problems, displaying multiple DA-dependent solutions
in the screen of the radar operator is not acceptable [44].

4.3 Proposed approach
The outcome of this chapter is a PF algorithm for the generation of the output Optimal
references in Fig. 4.1. This optimal references are a key component in the complete plot-
based framework for evaluation of DA-free trackers.

Figure 4.1: Plot-based labeled-MOT criterion for evaluation of DA-free decompositions.

The block diagram in Fig. 4.1 receives plots as input and produces two sets of outputs
(represented by the two arrows). Each set of outputs contains several pairs. Being each pair
composed of labeled tracks and corresponding labeling certainty estimate. To be precise,
the arrow Optimal ref erences �contains� as many pairs as the factorial of the number of
targets, matching all possible ways of assigning labels to the tracks for an arbitrary discrete
time-step. The output on the left hand side contains the analytic references calculated by
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the desired evaluation algorithm. The output on the right hand side is formated in the exact
same way, contains the �nal estimates provided by a generic DA-free solution. Examples of
such solution, will be proposed in following chapters. The evaluation criterion quanti�es the
similarity between both sets of outputs, as will be presented in the performance evaluation
of the various algorithms in chapters 5, 6 and 7.

The meaning of the major processes involved in the evaluation criterion are provided
on the right hand side of Fig. 4.1. The description of the block diagram is as follows. The
DA process takes a prior believe and a plot-set as inputs, and it generates an analytic
DA-based decomposition (association-dependent posterior beliefs) as outputs. Optimal
references for the labeled tracks and labeling certainties, are calculated for each independent
component. According to fundamental analytical principles, these optimal references are
calculated based on MMSE estimation and DAP processes and provided as outputs in the
left downwards-pointing arrow.

The described procedure brings nothing new compared to MHT-based theory. In fact,
the well known practical concern of MHT �combinatorial explosion� arises at this point as
propagating all DA-dependent posterior densities is not tractable using parametric density
representations. The novel contribution in the implementation of the evaluation algorithm
resides on how to circumvent the �combinatorial explosion� problem without resorting to
pruning, merging or capping techniques commonly used in MHT-based implementations.
Instead of using these techniques, the problem is tacked by removing the DA structure in
the DA-dependent decomposition through the Uni�cation (U) process in Fig. 4.1. This U
process can only be supported by PF implementations of the evaluation algorithm.

The U process is only supported by PF approximations as it produces the uni�cation
of several DA-dependent particle-based approximations into a single particle cloud. The
reason why the U process is not supported with parametric implementations is because the
uni�cation of several DA-dependent parametric densities cannot result on a single uni�ed
parametric density, but on a mixture.

Choosing to implement the evaluation algorithm with particle-based approximations
does not only circumvent the �combinatorial explosion� problem. Also, the uni�cation
of di�erent DA-dependent particle-based approximations into a single particle cloud is a
process that removes the DA structure. Hence, the outcome of this process resembles the
type of DA-free posterior densities produced in TrBD �ltering.

Overall, choosing a PF to implement the evaluation method provides: approximation
of updated densities with explicit label-dependent structure and the ability to remove
this structure. The �rst aspect enables generation of references for evaluation and the
second aspect enables tractability and generation of inputs for the DA-free algorithms
under evaluation. This way, the algorithm provided as the main contribution in this chapter
gets incorporated into the performance evaluation criterion pictured in Fig. 4.1.

To �nalize the high level description of the evaluation criterion, the functionality
implemented in the bottom right block in Fig. 4.1 needs to be de�ned. This functionality
can be described as the inference of the optimal references produced in the bottom left
block, assuming one has only access to a PF approximation of the posterior density after
uni�cation, i.e. and approximation of the DA-free or non-decomposed posterior density.
This block will be implemented by the DA-free tracking algorithms proposed in chapters 5,
6 and 7.
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Circumventing “combinatorial explosion” in the evaluation algorithm
This subsection provides a deeper description on how the evaluation criterion circumvents
the �combinatorial explosion� concern. Fig. 4.2 illustrates the exponential growth of
components in the posterior density when considering implementations with parametric
densities. The �combinatorial explosion� problem resulting from extending the hypotheses
tree over time is due to the fact that all DA-dependent components cannot be uni�ed as a
single density after each measurement incorporation. For instance, a Gaussian mixture
density cannot be described parametrically as one single parametric density. Therefore,
one needs to propagate each parametric density in the mixture from one recursion to the
next one.

Figure 4.2: Hypotheses tree growth along �rst two scans by exact MHT, assuming two targets, no false alarm and
perfect detection. Dropping these assumptions would result in an even quicker hypotheses growth.

The uni�cation of association dependent densities can be performed when considering
implementations based on particle-based approximations. The proposed evaluation algo-
rithm prevents �combinatorial explosion� by uni�cation of several DA-dependent particle
clouds into a single particle cloud. This is possible provided all association-dependent
clouds share the same particle basis as illustrated in Fig. 4.3. The notation s and w are used
to refer to particles’ states and weights respectively.

Figure 4.3: The use of PFs enables the approximation of the theoretically complete solution without running into
�combinatorial explosion�. The proposed hypotheses growth uni�cation for PF implementations requires that all
DA-dependent PFs share the same particle basis.
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As illustrated in Fig. 4.3, two association-dependent PFs (with same particle support
and di�erent association-dependent weights) can be uni�ed as a single PF taking the same
sample support and adding up (followed by normalizing) the weights.

Association dependent PF approximations, for instance after incorporation of measure-
ments in the second scan, ^si2;w

i;DA1
2 ‘Npi=1 and ^si2;w

i;DA2
2 ‘Npi=1 in Fig. 4.3, are used individually

for extracting labeled tracks and labeling probabilities analytically. Labeled tracks are opti-
mized over MMSE and labeling probabilities are calculated as the association probabilities.
These labeled tracks and labeling probabilities will be considered as references for evalua-
tion. Then the association-dependent PFs are uni�ed as explained in previous paragraph.
At this point the link can be made with the overall block diagram in Fig. 4.1. In fact, the
uni�ed particle cloud is fed as the DA-free density approximation for the algorithms that
will be presented in following chapters.

For sake of fair evaluation, it is explicit in the design of the evaluation criterion that
both the algorithm generating evaluation references and the algorithm under evaluation
need to be executed using the same plot data-set. Although perhaps counterintuitive, the
algorithms to be presented in following chapters, designed for operation in TrBD, need to be
validated in DBT. This is not a contradiction, these DA-free algorithms support estimation of
label tracks and labeling certainties from non-decomposed densities, disregarding whether
the these densities are calculated in TrBD or DBT context.

It is precisely because no analytical solution of the desired decomposition can be derived
analytically in TrBD, that we will be interested on using this criterion in order to compare
the optimality of the solutions in chapters 5, 6 and 7.

4.4 Mathematical description
The essential theory required to build up optimal references for evaluation is directly linked
to the relation between the labeling problem and the DA problem described in section 2.4.
Based on this, the optimal references for the labeled tracks and labeling certainty estimates
can be described mathematically as follows:

� In DBT context

� Generate the analytical decomposition of p.sk ðZk/:

p.sk ðZk/ ×
t@
É
m=1

l.�m.zk/ðsk/p.sk ðZk*1/ (4.1)

� For each DA-dependent component l.�m.zk/ðsk/p.sk ðZk*1/
þ Extract MMSE labeled point estimates:

E[l.�m.zk/ðsk/p.sk ðZk*1/] = �
sk

sk l.�m.zk/ðsk/p.sk ðZk*1/dsk (4.2)

þ Extract labeling certainty associated:

p.�m.zk/ðZk/ =
� l.�m.zk/ðsk/p.sk ðZk*1/dsk

‡t@
m=1 � l.�m.zk/ðsk/p.sk ðZk*1/dsk

(4.3)
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� Unify the decomposition in Equation (4.1) (only possible in PF implementations)

� Start new �ltering iteration

Please note again that the optimal references in Equations (4.2) and (4.3) need to be
derived from the DBT analytical expression in Equation (4.1). Nonetheless, the validation
of the module in the lower right corner in Fig. 4.1 (using plots) guarantees equivalent
inference quality in TrBD.

4.4.1 Algorithm implementation
Alg. 3 is the pseudo-code to generate the PF approximation of the optimal references
described mathematically in section 4.4.

1 k = 0;
2 Draw Np samples sjk from p.sk/;
3 Draw Np samples njk from p.nk/;
4 k = k+1;
5 sjk = f .s

j
k*1;n

j
k*1/;

6 Generate data-association-dependent posterior beliefs;
for i=1 until t!;

7 Given zk , obtain �wi;j
k = p.�i.zk/ðs

j
k/;

8 Normalize weights wi;j
k = �wi;j

k _‡
Np
j=1 �w

i;j
k ;

9 Extract Labeled Point Estimates (LPEs) according to the particle-based
approximation of Equation (4.2);

11 Obtain certainty measures of LPEs according to
particle-based approximation of Equation (4.3);

11 Sum data-association-dependent posteriors in order to
approximate p.sk ðZk/ with a single particle cloud;
for j=1 until Np;

12 w¤jk =‡t@
i=1w

i;j
k ;

13 Normalize weights wj
k = w

¤j
k _‡

Np
j=1w

¤j
k ;

14 Resample Np times from �p.sk ðZk/ =‡Np
j=1w

j
k�.sk * sjk/ to generate

�p.sk ðZk/ = 1
Np ‡

Np
j=1 �.sk * sjk/;

go to 3
Algorithm 3: Pseudo-code for generation of optimal references

4.5 Numerical results
Implementation of Alg. 3 for a closely-spaced MOT scenario leads to the results in Figs. 4.4
and 4.5.
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Figure 4.4: Generation of references (resulting from hypothesis �1) for evaluation of DA-free algorithms.
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Figure 4.5: Generation of references (resulting from hypothesis �2) for evaluation of DA-free algorithms.

The �gures illustrate the two DA-dependent set of references. Not surprisingly, labeled-
track references are very close to the real trajectories. In fact, when target identity is
not of interest, one would simply use the ground-truth trajectories to measure estimation
performance.

Unlike ground-truth trajectories, ground-truth labeling certainties are not known as a
design choice of the simulation. Instead, the ground-truth labeling certainty needs to be
calculated due to its dependency on all modeling aspects. In fact, the calculation of when
and how quickly the ground-truth labeling certainty drops down to 0.5 depends on the
parameters of the simulation. The choice of simulation parameters is shown in Table (4.1).
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Table 4.1: Parameters of the simulation

parameter value
di 1:66 m
dm 0:22 m
�n 0:14 m/s3_2
�v 0:045 m
� 1 s
Np 100000 particles

The evaluation can be reproduced by setting up the trajectories for the objects with
initial and minimum distance as indicated by di and dm in Table (4.1). The evaluation
considers the dynamic and measurement models as nearly constant velocity [23] and
linear-Gaussian. The standard deviations of the process noise and observation noise are
indicated by �n and �v respectively in Table (4.1), where � denotes the revisit time.

4.5.1 Discussion of numerical results
As expected, over the �rst 12 seconds of the simulation only one of the DA hypotheses
holds full certainty. The certainty associated to the alternative DA hypothesis is so low that
the �rst labeled point estimates in Fig. (4.5) can be disregarded. Also expected, the labeling
certainty drops down to around 0.5 as soon as the objects get closely-spaced. This means
that labeling information has been lost and cannot be recovered after the split under the
assumption that the likelihood is permutation invariant (the measurements do not carry
any information of identity).

4.6 Conclusions
This chapter presented a sensible method for evaluation of DA-free MOT solutions. The
main contribution of this chapter is a PF algorithm implementation providing optimal
statistics relevant for track formation. As no analytical form of such statistics exists in
TrBD context, the evaluation algorithm provided in this chapter calculates them in DBT
context, where a Data Association dependent decomposition can be formulated analytically.
This analytical decomposition enables extraction of references both for the labeled tracks
and corresponding labeling certainties.

The presented algorithm will be incorporated as part of a criterion for performance
evaluation of DA-free trackers. Despite its DA-based construction, the evaluation criterion
can be used legitimately to evaluate solutions such as the UD-based and CMT algorithms,
which will be designed for operation in TrBD context in following chapters. This is because
these algorithms will be designed to infer a relevant label-dependent decomposition of any
posterior density, disregarding whether this density has been generated in the context of
DBT or TrBD.

The algorithm presented in this chapter provides evaluation references departing from
current trends based on MOSPA-based estimation. Special attention has been directed to
prevent the problems of �track coalescence� and �track swap� commonly observed when
MOT algorithms do not account for labeling uncertainty characterization.
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The evaluation method prevents �combinatorial explosion� as well, which is expected
in parametric implementations of exact MHT-like algorithms. This practical problem
has been avoided by means of approximating the Bayes recursion with a PF. The conve-
nience of a particle-based implementation of the evaluation method is twofold. Firstly,
association-dependent PFs can be uni�ed after extraction of association-dependent refer-
ences for evaluation. Secondly, the uni�ed PF is the type of input required by the labeling
characterization algorithms to be presented in the last part of the thesis.

This chapter complements the rest of the thesis. It constructs the inputs for the algo-
rithms in the last chapters in the form of a non-decomposed approximation of the posterior
density. Also, it provides the reference outputs (expected from the algorithms in the last
chapters) associated the optimal label-dependent decomposition.

in TrBD MOT by recovering a label-dependent decomposition from a non-decomposed
TrBD posterior density.

Let us consider, for instance, that the measurements in the second scan have been
incorporated and that we only have access to the uni�ed posterior density approximated
by particle cloud ^si2;wi

2‘
Np
i=1. The inference problem is about recovering the tracks and

labeling probabilities extracted from the two association-dependent PF approximations
^si2;w

i;DA1
2 ‘Npi=1 and ^si2;w

i;DA2
2 ‘Npi=1.
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5
DA-Free Tracking:

Generalization of Blom and
Bloem’s Uniqe
Decomposition

5.1 Introduction
This chapter presents a DA-free tracking solution for the TrBD MOT problem based on the
Unique Decomposition (UD) by Blom and Bloem [25]. The UD is a theoretical method to
decompose a two-targets PDF into its Permutation Invariant (PI) and Permutation Strictly
Variant (PSV) components. Although applications, implementations and generalizations
of the UD presented in 2009 have been published [56] [57], none of these results cover
the implementation for non-linear and/or non-Gaussian (non-LG) problems. Without this
implementation, the UD cannot be applied in the TrBD MOT problem due to the highly
non-linear nature of the TrBD radar measurements.

The UD allows interpretation of the labeling problem in generic MOT contexts. This
remains valid even when considering measurement models precluding formulation of DA �
as illustrated in [33] for an MOT problem in the area of Wireless Sensor Networks (WSN).

This chapter derives two solutions to estimate separately the PI and the PSV components
under non-LG conditions. One solution applies the decomposition at each scan in a
single �lter, the other solution tracks the decomposition over time, using a two �lter
implementation. The algorithm for the two-PFs solution will be provided as the preferred
UD implementation due to its ability to tackle particle depletion.

The two algorithms are showcased in simulations, involving low-observable closely-
spaced object scenarios in TrBD context. Simulation results illustrate the potential of the
two-PFs algorithm to perform DA-free labeling uncertainty characterization and to aid at

The contents provided in this chapter have been submitted for publication in IEEE Transactions on Aerospace and
Electronic Systems as �Implementation of the Unique PDF Decomposition for tracking closely-spaced objects with
Track-Before-Detect radar systems,� C. M. Leon, H. Driessen and A. Yarovoy.
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taking informed track-formation decisions. Ultimately, this results in a novel approach to
the TrBD MOT problem.

The chapter is organized as follows. Section 2 presents the related literature. Section
3 presents the estimation framework and modeling assumptions. Section 4 describes
analytically the proposed single �lter solution. Section 5 derives the dual �lter solution
presented as the main contribution of this chapter. Section 6 presents simulation results
and section 7 concludes the chapter.

5.2 Related literature
In 2009, Blom and Bloem presented the existence and characterization of a unique decompo-
sition for two-target densities [25]. Practical implementations under Gaussian assumptions
were presented by the same authors in [56] and [57]. In [25], Blom and Bloem gave an
interpretation of the UD in the context of MOT problems. In particular, Remarks 1 and 2
in [25] state the PDF conditions required to declare total labeling certainty or total labeling
uncertainty.

The UD theory based on the problem described in [25] is indisputable. In fact, the
UD (summarized by the �rst four equations in this chapter) is fully analytical. Despite
theoretical correctness and interpretations in [25], it is not certain whether the UD theory
can be applied for optimal characterization of labeling uncertainty in a TrBD MOT problem.

A sensible application of the UD theory to the labeling problem has been done in [33]
by interpreting the invariance coe�cient of the UD as a measure of labeling ambiguity.
The same authors have illustrated that this interpretation cannot be extended to densities
out of the scope of [25] such as multimodal-non-symmetric densities (see [58, A.17]).

A relevant question would be whether mentioned problematic densities can be re-
produced from practical MOT scenarios. This does not seem to be the case as when the
joint-multitarget density becomes multimodal due to closely-spaced targets, the modes
tend show up in symmetric regions as the objects get su�ciently separated (after being
closely-spaced) [1][30].

In [33], the authors tackle an MOT problem based on (strongly non-linear) signal
intensity measurements from a WSN. As measurements are not modeled by detection
points, labeling uncertainty cannot be characterized via DA probabilities. In order to
characterize labeling uncertainty, [33] estimates the permutation invariance weight of the
posterior PDF. This weight, de�ned in the UD by Blom and Bloem, was mapped into the
probability of successful labeling for a non-LG MOT problem. Although proposed as future
work in [33], the generalization of this solution for more than two objects has not been
addressed.

Despite being based on the UD theory by Blom and Bloem, the contents in [33] do not
derive the non-LG implementation of the UD �per sØ�. In fact, the implementation suggested
in [33] considers a relaxed version of the problem. Due to this relaxation, estimation is only
expected to be accurate if the targets have separated su�ciently after being closely-spaced.
The present chapter aims at deriving a more generic implementation of the UD for non-LG
problems.

The application of the UD expands the estimation of labeling probabilities (referred to
as probability of �track swap� in [56] and [57], and as probability of �successful labeling�
in [33]). Another application of the UD is to ease the optimization of point estimates over
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the Mean Optimal Sub-Pattern Assignment (MOSPA) metric. In fact, some literature results
show that calculation of Minimum-MOSPA (MMOSPA) point estimates can be eased by
�rst doing a transformation of the posterior PDF into its UD. In particular, [43] derives an
exact method to obtain the MMOSPA error estimate inspired by a proof in [59], and shows
that the mean of the strictly permutation variant PDF can be shown to be an approximation
to the MMOSPA estimate.

5.2.1 The Uniqe Decomposition theory
According to [25], any joint PDF p.sk/ of a two target state vector sk = [s1k s

2
k]
T can be

decomposed as a weighted sum of its permutation invariant component pI .sk/ and its
permutation strictly variant component pV .sk/:

p.sk/ = �Ikp
I .sk/+ .1*�Ik/p

V .sk/ (5.1)

where:
�Ik = �

sk
min.p.sk/;p.�sk//dsk (5.2)

pI .sk/ =
min.p.sk/;p.�sk//

�Ik
(5.3)

pV .sk/ =
p.sk/*�Ikp

I .sk/
1*�Ik

(5.4)

where � denotes the permutation matrix. In our case of study, where two scalar targets are
considered (2*1D targets case):

� =0
0 1
1 01 (5.5)

5.3 Estimation framework and modeling assumptions
In recursive Bayesian estimation, the posterior and predictive densities p.sk ðZk/ and
p.sk ðZk*1/, are desired. The general non-linear dynamic system and observation mod-
els can be denoted as f and q respectively:

sk = f .sk*1; qk*1/ (5.6)

zk = q.sk ; vk/; k ¸N (5.7)

where sk , qk , zk and vk represent the state, process noise, the measurement, and the mea-
surement noise respectively.

We tackle the MOT problem in the framework of recursive Bayesian �ltering. The
predicted and posterior densities of interest p.sk ðZk*1/ and p.sk ðZk/ are obtained by iteration
over the Chapman-Kolmogórov and Bayes equations:

p.sk ðZk*1/ = � p.sk ðsk*1/p.sk*1ðZk*1/dsk*1 (5.8)
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p.sk ðZk/ =
p.zk ðsk/p.sk ðZk*1/

p.zk ðZk*1/
(5.9)

in this framework, the models in Equations (5.6) and (5.7) are expressed in the form of
p.sk ðsk*1/ and p.zk ðsk/ respectively.

Due to the non-linear and non-Gaussian character of our TrBD problem, the densities
are not known as an easy parametric function, though rather in a sample-based (particle)
approximation. This poses the di�culty on how to compute the UD for the predictive and
posterior densities (to be more precise how to compute the minimization as formulated in
Equations (5.2) and (5.3)), since in many Particle Filters (PF) the evaluation of the density
per particle is not readily available.

Particle �ltering based on Sequential Importance Resampling (SIR) will be the choice
for approximating the densities of interest. As computational e�ciency is not on the focal
point in this chapter, other �ltering implementations, e.g. the ones based on rejection
sampling or particle �ow �lters etc, are not considered.

This chapter derives and implements algorithms for computing the UD in a running
�lter that can deal with generic, i.e. non-LG problems. The derivations in this chapter
assume that both dynamic and observation models are invariant with respect to label
swapping. This means that there should be no distinction between the dynamic models
used for the various objects, i.e. p.sk ðsk*1/ = p.�sk ðsk*1/, and that the likelihood function
used to model measurements should not change when swapping the labels of the targets, i.e.
p.zk ðsk/ = p.zk ð�sk/. The �rst assumption holds in practical implementations when tracking
similar targets, unless coupled motion is modeled explicitly. The second assumption is
already described in the introductory chapter as it is equivalent to considering measurement
models which do not carry any labeling information. This is the case in the TrBD models
considered throughout this thesis .

Following sections will derive and provide implementations for two decomposition
�lters based on the UD theory. The structural di�erence between both algorithms is how
the �lters start each recursion. The �rst �lter decomposes the predictive density based on
a non-decomposed previous posterior density. The second �lter runs a recursion on the
decomposed density using two �lters.

The �rst proposed �lter can be regarded as a partially decomposed recursive solution
whereas the second �lter can be regarded as a fully decomposed recursive solution. In
both �lters the update step is the same, while the di�erence is in the prediction step. The
description of the steps includes a derivation of the analytical formulas and a description
of the particle-based approximation. For the sake of clarity, derivations are left to the
appendix section A.2.

5.4 Analytic description and algorithm implemen-
tation of the partially decomposed filter

As the update step is the same for both proposed solutions, its description will only be
provided in this section and referred to from next section.
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5.4.1 Update step
This section provides a description of the update step for both the invariant and strictly
variant parts of the predictive density. In particular, we are interested in computing the
densities and weights required by the desired decomposition of the posterior:

p.sk ðZk/ = �Ikðkp
I .sk ðZk/+�Vkðkp

V .sk ðZk/ (5.10)

Assuming the decomposition of p.sk ðZk*1/ is available, i.e. pI .sk ðZk*1/, pV .sk ðZk*1/, �Ikðk*1
and �Vkðk*1 = 1*�

I
kðk*1 are known, the update of the decomposition when receiving a new

measurement for which the likelihood is invariant under permutation, i.e. p.zk ðsk/ =
p.zk ð�sk/ is given by (using X ¸ ^I ;V ‘):

pX .sk ðZk/ =
p.zk ðsk/pX .sk ðZk*1/

pX .zk ðZk*1/
(5.11)

with

�Xkðk =
pX .zk ðZk*1/�Xkðk*1

p.zk ðZk*1/
(5.12)

pX .zk ðZk*1/ = � p.zk ðsk/pX .sk ðZk*1/dsk (5.13)

p.zk ðZk*1/ = pI .zk ðZk*1/�Ikðk*1+p
V .zk ðZk*1/�Vkðk*1 (5.14)

Please refer to the appendix section A.2 for the derivation of Equations (5.11) and (5.12).
This update step comprises two regular update steps for both invariant and variant densities
pX .sk ðZk/ including an update of the weights �Xkðk associated with the invariant and variant
densities.

Particle filtering description
In order to approximate the expression in (5.11), the update step proceeds as the independent
updating of both available particle clouds ^sX;ikðk*1; 

X;i
kðk*1‘

Np
i=1 (with X = ^I ;V ‘):

^sX;ikðk ; 
X;i
kðk ‘

Np
i=1 í p

X .sk ðZk/ (5.15)

with ^sX;ikðk ‘
Np
i=1 = ^s

X;i
kðk*1‘

Np
i=1 and:

X;ikðk =
p.zk ðsX;ikðk*1/

X;i
kðk*1

�pX .zk ðZk*1/
(5.16)

The approximation of (5.13) can be written as

�pX .zk ðZk*1/ =É
i
p.zk ðsX;ikðk*1/

X;i
kðk*1 (5.17)

The updating of the weights from the expression in (5.12) then is done via:

��Xkðk =
�pX .zk ðZk*1/ ��Xkðk*1

�p.zk ðZk*1/
(5.18)

where
�p.zk ðZk*1/ = �pI .zk ðZk*1/ ��Ikðk*1+ �pV .zk ðZk*1/ ��Vkðk*1 (5.19)
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5.4.2 Prediction step
This section provides a description of the prediction step for the partially decomposed PF.
Both the description in this section and the one provided in the following section provide
expressions for calculating the elements in the desired UD of the predictive density:

p.sk ðZk*1/ = �Ikðk*1p
I .sk ðZk*1/+�Vkðk*1p

V .sk ðZk*1/ (5.20)

The di�erentiating feature of the �lter in the current section is that it assumes a running
conventional, i.e. non-decomposed, particle �lter, where the decomposition of the density
in Equation (5.20) is then based upon the previous non-decomposed posterior p.sk*1ðZk*1/.
As opposed to this, the second description provided for the fully decomposed �lter in the
following section relies on the availability of a decomposed previous posterior.

Analytic description using a non-decomposed previous posterior p.sk*1ðZk*1/
The UD of the predictive density p.sk ðZk*1/ immediately follows by applying the de�nition
of the UD:

pI .sk ðZk*1/ =
min.p.sk ðZk*1/;p.�sk ðZk*1//

�Ikðk*1
(5.21)

pV .sk ðZk*1/ =
p.sk ðZk*1/*min.p.sk ðZk*1/;p.�sk ðZk*1//

�Vkðk*1
(5.22)

�Ikðk*1 = �
sk
min.p.sk ðZk*1/;p.�sk ðZk*1//dsk (5.23)

�Vkðk*1 = 1*�
I
kðk*1 (5.24)

Particle �ltering description: In order to approximate Equations (5.21),(5.22) and (5.23),
the ability to evaluate the predictive density p.sk ðZk*1/ for each particle is required. To
ful�ll this requirement (given a PF approximation of p.sk*1_Zk*1/ ^sik*1ðk*1; 

i
k*1ðk*1‘

Np
i=1) one

can use the Chapman-Kolmogórov equation:

p.sk ðZk*1/ = � p.sk ðsk*1/p.sk*1ðZk*1/dsk*1 (5.25)

to analytically produce a continuous approximation of the predictive density:

�p.sk ðZk*1/ =É
i
p.sk ðsik*1ðk*1/

i
k*1ðk*1 (5.26)

Equation (5.23) can be rewritten introducing the importance density q.s/

�Ikðk*1 = �
sk

min.p.sk ðZk*1/;p.�sk ðZk*1//
q.sk/

q.sk/dsk (5.27)

using this importance density to sample particles allows the approximation of Equa-
tion (5.23) as:

��Ikðk*1 =É
i
� I ;ikðk*1 (5.28)
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where

� I ;ikðk*1 =
min. �p.sik ðZk*1/; �p.�s

i
k ðZk*1//

q.sik/
 ikðk*1 (5.29)

with ^sikðk*1; 
i
kðk*1‘

Np
i=1 í q.sk/. Assuming the distribution q.sk/ is the predictive density, i.e.

p.sk ðZk*1/, like in a running SIR �lter, the approximation in Equation (5.29) becomes:

� I ;ikðk*1 = minH
1;

�p.�sikðk*1ðZk*1/
�p.sikðk*1ðZk*1/ I

 ikðk*1 (5.30)

The invariant density from Equation (5.21) can then be represented with the particle
cloud:

^sI ;ikðk*1;0:5
I ;i
kðk*1;�s

I ;i
kðk*1;0:5

I ;i
kðk*1‘

Np
i=1 í p

I .sk ðZk*1/ (5.31)

with ^sI ;ikðk*1‘
Np
i=1 = ^sikðk*1‘

Np
i=1 and ^ I ;ikðk*1‘

Np
i=1 =

^ � I ;ikðk*1‘
Np
i=1

��Ikðk*1
in the above notation, it is implied that both the particle sI ;ikðk*1 and its permuted version con-
tribute to constructing the approximation. This results in a theoretically perfect invariant
approximation, with each individual particle carrying half of the weight.

The variant density from Equation (5.22) can now be approximated by the particle
cloud:

^sV ;ikðk*1; 
V ;i
kðk*1‘

Np
i=1 í p

V .sk ðZk*1/ (5.32)

with ^sV ;ikðk*1‘
Np
i=1 = ^sik*1‘

Np
i=1 and ^V ;ikðk*1‘

Np
i=1 =

^ �V ;ikðk*1‘
Np
i=1

1* ��Ikðk*1
, where

�V ;ikðk*1 =
�p.sik ðZk*1/*min. �p.s

i
k ðZk*1/; �p.�s

i
k ðZk*1//

q.sik/
 ikðk*1 (5.33)

Assuming the distribution q.sk/ is the predictive density, i.e. p.sk ðZk*1/, Equation (5.33)
becomes:

�V ;ikðk*1 =H
1*min

H
1;

�p.�sikðk*1ðZk*1/
�p.sikðk*1ðZk*1/ II

 ikðk*1 = 
i
kðk*1* � I ;ikðk*1 (5.34)

�nally, the approximation of Equation (5.24) is

��Vkðk*1 =É
i
�V ;ikðk*1 = 1* ��Ikðk*1 (5.35)

Notice that the invariant and variant particles in this decomposition are equal, only
the weights are di�erent.

5.5 Analytic description and algorithm implemen-
tation of the fully decomposed filter

The solution proposed in this section comprises an update and prediction steps in both
invariant and variant densities. The update step is identical to the one provided in pre-
vious section. Regarding the prediction step, the algorithm presented in this section
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assumes that the decomposition of the previous posterior density p.sk*1ðZk*1/ is avail-
able, i.e. pI .sk*1ðZk*1/, pV .sk*1ðZk*1/, �Ik*1ðk*1 and �Vk*1ðk*1 = 1*�

I
k*1ðk*1 are known, and

assuming the dynamic models are the same for both targets, i.e. p.sk ðsk*1/ = p.�sk ðsk*1/, a
recursive decomposition of the predictive density is given by a three stages Extrapolation-
Decomposition-Merging (EDM) step.

Extrapolation: The �rst stage amounts to extrapolating the invariant and variant
densities:

pI I .sk ðZk*1/ = � p.sk ðsk*1/pI .sk*1ðZk*1/dsk*1 (5.36)

and
pMV .sk ðZk*1/ = � p.sk ðsk*1/pV .sk*1ðZk*1/dsk*1 (5.37)

Together they describe the predictive density:

p.sk ðZk*1/ = �Ik*1ðk*1p
I I .sk ðZk*1/+�Vk*1ðk*1p

MV .sk ðZk*1/ (5.38)

Assuming permutation invariant target dynamics, the density pI I .sk ðZk*1/ is invariant,
therefore it is referred to with the superscript II. However, the density pMV .sk ðZk*1/ can be
mixed (containing invariant and strictly variant components), therefore it is referred to
with MV. For this density the unique decomposition is used.

Decomposition: The mixed predictive density pMV .sk ðZk*1/ is decomposed into an
invariant density pIV .sk ðZk*1/ and a strictly variant density pVV .sk ðZk*1/ using the UD
de�nition

pMV .sk ðZk*1/ = �IVkðk*1p
IV .sk ðZk*1/+�VVkðk*1p

VV .sk ðZk*1/ (5.39)

with,
�IVkðk*1 = �

sk
min.pMV .sk ðZk*1/;pMV .�sk ðZk*1//dsk (5.40)

pIV .sk ðZk*1/ =
min.pMV .sk ðZk*1/;pMV .�sk ðZk*1//

�IVkðk*1
(5.41)

pVV .sk ðZk*1/ =
pMV .sk ðZk*1/*pIV .sk ðZk*1/

�VVkðk*1
(5.42)

with �VVkðk*1 = 1*�
IV
kðk*1

This decomposition can be evaluated in a running particle �lter using a sample-based
evaluation of pMV .sk ðZk*1/ as was explained for the case with a non-decomposed previous
posterior.

Merging: Finally the elements of the desired decomposition (see Equation (5.20)) can be
written down. The invariant density pI .sk ðZk*1/ and its weight are the result of merging
both invariant densities pI I .sk ðZk*1/ and pIV .sk ðZk*1/

pI .sk ðZk*1/ =
�Ik*1ðk*1p

I I .sk ðZk*1/+�Vk*1ðk*1�
IV
kðk*1p

IV .sk ðZk*1/
�Ikðk*1

(5.43)

�Ikðk*1 = �
I
k*1ðk*1+�

V
k*1ðk*1�

IV
kðk*1 (5.44)
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and the variant density and its weight are

pV .sk ðZk*1/ = pVV .sk ðZk*1/ (5.45)

�Vkðk*1 = �
V
k*1ðk*1�

VV
kðk*1 (5.46)

A sample-based implementation of the merging step for the invariant density suggests
itself. For the variant density only the weight needs to be adjusted.

Particle Filtering description: To approximate the expressions in Equations (5.36) and (5.37)
from the extrapolation step, one needs to describe two particle clouds:

^sI I ;ikðk*1;0:5
I I ;i
kðk*1;�s

I ;i
kðk*1;0:5

I I ;i
kðk*1‘

Np
i=1 í p

I I .sk ðZk*1/ (5.47)

^sMV ;i
kðk*1; 

MV ;i
kðk*1‘

Np
i=1 í p

MV .sk ðZk*1/ (5.48)

Both clouds in Equations (5.47) and (5.48) are trivial to generate as the predicted clouds
of the invariant and strictly variant components of the previous posterior approximation.
The decomposition step needs to be applied to the cloud in Equation (5.48) in order to
approximate Equations (5.40), (5.41) and (5.42). As the PF approximation of the invariant
part of the previous posterior remains invariant under prediction (given the assumption
that dynamic models are the same for all targets), no decomposition is required for the
cloud in Equation (5.47).

The approximation of Equations (5.41) and (5.42) can be represented with the clouds

^sXV ;ikðk*1; 
XV ;i
kðk*1‘

Np
i=1 í p

XV .sk ðZk*1/ (5.49)

where
sXV ;ikðk*1 = s

MV ;i
kðk*1

XV ;ikðk*1 =
�XV ;ikðk*1

��XV ;ikðk*1

� IV ;ikðk*1 = minH
1;

�p.�sMV ;i
kðk*1ðZk*1/

�p.sMV ;i
kðk*1ðZk*1/ I

MV ;i
kðk*1

(5.50)

�VV ;ikðk*1 =H
1*min

H
1;

�p.�sMV ;i
kðk*1ðZk*1/

�p.sMV ;i
kðk*1ðZk*1/ II

MV ;i
kðk*1 (5.51)

��XVkðk*1 =É
i
�XV ;ikðk*1 (5.52)

Now the merging of the two invariant densities will be speci�ed. Computing the individual
weights of the three terms:

��I I = ��Ik*1ðk*1
��IV = .1* ��Ik*1ðk*1/ ��

IV
kðk*1

��V = .1* ��Ik*1ðk*1/.1* ��IVkðk*1/ = 1* ��I I * ��IV
(5.53)
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we have three particle clouds (represented by expressions in Equations (5.47) and (5.49)),
two of which represent invariant densities that need to be merged into one. Let us �rst
compute

��Ikðk*1 = ��I I + ��IV (5.54)

The merging can be done in several ways. We choose to use a two-step procedure, where
we repeatedly randomly select between the invariant-invariant and the invariant-variant
cloud according to their probabilities

��I I

��Ikðk*1
;
��IV

��Ikðk*1
(5.55)

and then take a sample from the selected particle cloud according to the particle weights.
This procedure eventually leads to a single merged invariant particle cloud,

$
sI ;ikðk*1; 

I ;i
kðk*1

%Np

i=1
í pI .sk ðZk*1// (5.56)

with the corresponding ��Ikðk*1.
Due to the merging operation (and/or the following resampling steps) this algorithm

will �nally result in two densities that do not share the same particle basis anymore. The
updating that was described in Section 5.4.1 (which can deal with particle clouds that do
not have the same particle basis) and the prediction step of the two clouds described in
this section, complete the speci�cation of the recursive fully decomposed algorithm.

5.6 Simulation Results
This section provides simulation results for the two algorithms using the particle �ltering
descriptions from previous sections. The targeted clouds and weights for each step of both
algorithms can be found in Table 5.1, si and  i are used to denote the state and weight of
an arbitrary particle out of the Np particles. The superscript X is used to denote both I and
V . For instance, the abbreviation ^sX;ikðk*1; 

X;i
kðk*1‘

Np
i=1, ��Xkðk*1 in Table 5.1 is equivalent to:

^sI ;ikðk*1; 
I ;i
kðk*1‘

Np
i=1, ��Ikðk*1 and ^sV ;ikðk*1; 

V ;i
kðk*1‘

Np
i=1, ��Vkðk*1

Both algorithms are recursive in essence, the main di�erence is that the algorithm in
the left column propagates a non-decomposed posterior from k to k+1, while the one in
the right column propagates a decomposed posterior.

5.6.1 Simulation models and parameters
The simulations in this section consider nearly constant velocity for modeling dynamics [23]
and a lower dimensional version of the TrBD measurement model in [52] for modeling
observations.

The measurement model used de�nes the power re�ected by the tracking scenario for
each radar cell. One measurement zk is composed of Nr power measurements znk , where
k ¸N and Nr is the number of range cells.

znk = ðznA;k ð
2 = ðA.1/k h.1/nA +A.2/k h.2/nA +nI .tk/+ inQ.tk/ð2 (5.57)
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Table 5.1: Two algorithms to realize the non-LG implementation of the Unique Decomposition.

steps partially
decomposed
algorithm:

fully
decomposed
algorithm:

1 ^sik*1ðk*1; 
i
k*1ðk*1‘

Np
i=1 ^sik*1ðk*1; 

i
k*1ðk*1‘

Np
i=1

2 ^sX;ikðk*1; 
X;i
kðk*1‘

Np
i=1, ��Xkðk*1 ^sX;ikðk*1; 

X;i
kðk*1‘

Np
i=1, ��Xkðk*1

3 ^sX;ikðk ; 
X;i
kðk ‘

Np
i=1, ��Xkðk ^sX;ikðk ; 

X;i
kðk ‘

Np
i=1, ��Xkðk

4 ^sikðk ; 
i
kðk‘

Np
i=1 k = k+1

5 k = k+1
go to step 1

^sX;ik*1ðk*1; 
X;i
k*1ðk*1‘

Np
i=1; ��Xk*1ðk*1

go to step 2

where n = 1; :::;Nr , Ack is the complex amplitude of the target labeled as c,

A.c/k = �A.c/k ei�k ; �k ¸ U .0;2�/ (5.58)

and,

h.c/nA .sck/ = e
*
.xnk*x

c
k /
2

2R (5.59)
Note that c is used for the target labels, which could either be 1 or 2 as in Eq. (5.57). For
sake of easier visualization of simulation results, target labels will be associated to colors
blue and red in following subsections. The noise in Eq. (5.57) is complex Gaussian, where
nI .tk/ and nQ.tk/ are independent, zero-mean white Gaussian with variance �2n accounting
for the in-phase and quadrature phase components respectively. These measurements,
conditioned on the state are assumed to be exponentially distributed [53],

p.znðsk/ =
1
�n0
e
* 1
�n0
znk (5.60)

where
�n0 = . �A

.1/
k /2.h.1/nA .sk ; tk//2+. �A.2/k /2.h.2/nA .sk ; tk//2+2�2n (5.61)

Assuming that the noise is independent from cell to cell and that the re�ections of
the two targets are independent, the density model of the measurements given the state
becomes:

p.zk ðsk/ =˙
n
p.znðsk/ (5.62)

The ground truth trajectories are de�ned by the initial dynamics denoted with subscript
o in Table 5.2 . The standard deviations of the process noise (�q ), the SNR of the targets, the
revisit time (�) and the number of particles used in the implementation are also provided
in Table II. Labeled track estimates are calculated relying on traditional MMSE estimation
considering only the permutation strictly variant density approximation. The associated

labeling certainty is calculated as 1*
��Ikðk
2 .
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Table 5.2: Parameters of the simulation

parameter value
x1o 22 m
�x1o 2 m
x2o 12 m
�x2o 2:8 m
�q 1:4142 m/s3_2
SNR 11
� 1 s
Np 1000 particles

5.6.2 Partially decomposed recursive algorithm: simulation
results

Relevant statistics such as labeled track estimates and labeling certainty estimates are
plotted in Fig. 5.1. As expected, estimation of labeled tracks are more accurate when
extracting them after measurement incorporation.
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Figure 5.1: Estimation results of the partially decomposed recursive algorithm from Table 5.1. In the top �gure,
relevant statistics are extracted from the decomposition of the predicted density. In the bottom �gure, relevant
statistics are extracted from the decomposition of the �ltering density.

The partially decomposed recursive algorithm becomes overcon�dent about the right
labeling assignment (according to the Psl curve) after targets separation. This overcon�-
dence signals very poor labeling uncertainty estimation. In fact, the partially decomposed
algorithm does run into labeling confusion very often, as it is the case in the particular
simulation from Fig. 5.1. This happens because the resampling operation, essential to
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prevent particle degeneracy of the cloud ^sikðk ; 
i
kðk‘

Np
i=1, makes the partially decomposed

recursive algorithm vulnerable against particle �self-resolving� artifacts [1].
The term �self-resolving� sounds better than it is, since it does not resolve anything,

it just destroys the potential theoretically correct partially invariant characteristics of a
multi-target particle representation of the posterior density.

Same way as if we would have calculated the UD from the output of a regular SIR
�lter, self-resolving does not only negatively impacts (even potentially destroys) the �lter
operation but also the labeling uncertainty estimation as illustrated in Fig. 5.1.

In order to provide a non-LG implementation of Blom and Bloem’s decomposition,
circumventing the problem of PF �self-resolving�, the two-PFs fully decomposed recursive
algorithm was presented in section V. Its PF recursion is summarized in the right column
of Table 5.1.

5.6.3 Fully-decomposed recursive algorithm: simulation re-
sults
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Figure 5.2: Estimation results of the fully decomposed recursive algorithm. In the top �gure, relevant statistics are
extracted from the decomposition of the predicted density. In the bottom �gure, relevant statistics are extracted
from the decomposition of the �ltering density.

Regarding estimation of labeled tracks, both algorithms provide similar accuracy. The
simulations show that the so-called �track-coalescence� e�ect does not seem to degrade
tracking performance after target separation. As opposed to what happens with naive
point estimates extraction from a multimodal PDF, the presented algorithms prevent �track-
coalescence� by extracting MMSE estimates from the permutation strictly variant density
approximation.
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As expected from theory, Fig. 5.2 shows that the labeling probabilities by the two-PFs
solution do not �self-resolve�, leading to more stable estimation of track labeling uncertainty
(compared to the results in Fig. 5.1). This was expected as in the fully decomposed recursive
algorithm, the invariant component is propagated in isolation from the rest of the density
between consecutive iterations. In fact, �self-resolving� is avoided by design. As a result,
the multi-modalities inherent in the posterior density when tracking closely-spaced targets
can be preserved.

5.7 Conclusions
This chapter derives an implementation of the Unique Decomposition (UD) theory [25] for
non linear and/or non-Gaussian (non-LG) problems. Without this generalization, the UD
cannot be applied in the TrBD MOT problem due to the highly non-linear nature of the
TrBD radar measurements.

The �ltering equations of the decomposition have been derived for two di�erent SIR-
based �ltering implementations. One solution applies the decomposition at each scan
in a single �lter, the other solution tracks the decomposition over time, using a two
�lter implementation. Both algorithms have been simulated using synthetic radar TrBD
measurements from low-observable targets.

Simulation results have shown that relevant statistics for track formation, namely
labeled tracks estimates and respective labeling certainty estimates, can be exacted by
both presented solutions. The algorithms prevent �track coalescence� by extracting track
estimates based on traditional MMSE estimation applied to the permutation strictly variant
component of the density. Regarding labeling uncertainty characterization, the single
�lter implementation is prone to labeling confusion as a result of not capturing existent
labeling uncertainty due to particle �self-resolving� artifacts. Label confusion is prevented
by the fully-decomposed 2-PF solution. This is accomplished by propagating the invariant
component in isolation from the rest of the density.

Overall, application of the UD theory to the TrBD MOT problem for closely-spaced
targets provides stable estimation of labeled tracks and labeling uncertainty. In particular,
the dual-�lter implementation allows to take informed track-formation decisions without
formulating the pair-matching problem between plots and labels. This results in a novel
contribution to the state-of-the-art in TrBD MOT.



6

67

6
DA-free Tracking: the Cross

Modeling Tracker

6.1 Introduction
The track-formation problem needs to be tackled in any MOT solution. To take informed
track-formation decisions, estimation of track point-estimates and characterization of
labeling uncertainty is required. Extracting these estimates and characterization is not
trivial in the context of Track-before-Detect (TrBD), especially when tackling closely-spaced
target scenarios, as the formulation of DA hypotheses is ruled out.

The algorithm presented in previous chapter is especially suited for the TrBD MOT
problem due to its ability to decompose the joint multiobject density without the need of
formulating any DA problem. However, the current limitation of the UD theory is that it
cannot be applied in scenarios with more than two objects.

The aim of next two chapters is to overcome the burden of UD-based algorithms. This
will be done by providing a generic algorithm, with labeling characterization capabilities,
suited for the TrBD MOT problem for an arbitrary number of targets. To this end, the
algorithm coined as the The Cross Modeling Tracker (CMT) will be presented.

The CMT introduces a new decomposition of the Bayes posterior based on hypothesiz-
ing crosses between objects. A de�nition of cross-between-objects is taken here as a tool
for characterizing labeling uncertainty in cases where the DA problem cannot be formu-
lated. Among these cases, TrBD tracking is probably the most important one due to TrBD
inherent capabilities for tracking low-observable objects and for handling closely-spaced
object scenarios (in cases where detection-based trackers would have to deal with merged
measurements).

The CMT results provided in this chapter are evaluated against the performance evalua-
tion method presented in chapter 4. Simulation results involving challenging closely-spaced

The contents provided in this chapter have been published in �E�cient characterization of labeling uncertainty in
closely-spaced targets tracking,� C. M. Leon, H. Driessen and P. K. Mandal, in proceedings of the 19th International
Conference on Information Fusion, Heidelberg, 2016, pp. 449-456. and in �Data-association-free Characterization
of Labeling Uncertainty: the Cross Modeling Tracker,� C. M. Leon, H. Driessen and A. Yarovoy, in Journal of
Advances in Information Fusion, December 2021
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objects scenarios will be provided. The results illustrate that the CMT is usable in the
general t *MD objects case provided that the number of targets t is known and constant
in line with the �rst assumption in the introductory chapter. Therefore, the proposed
solution extends the state-of-the-art of TrBD MOT by providing DA-free characterization
of labeling uncertainty with validated estimation performance, which can be seamlessly
used in generic t *MD targets scenarios.

6.2 Proposed solution
The contents in this chapter are based on the �rst de�nition of cross-between-objects in [24,
Section IV]. Although the decomposition proposed in [24, Section IV] is only usable for the
2*1D objects case, [27] gave analytical generalization to arbitrary t *MD objects cases.
Both [24, Section IV] and [27] are published results by the author of this thesis. In this
chapter, a self contained presentation of these results is provided.

6.2.1 Modeling crosses in the 2*1D objects case
Figure 6.1 illustrates the idea of cross modeling in the most simple scenario where the
labeling problem appears: two one-dimensional objects approach each other, stay closely-
spaced for a while and �nally split.

Figure 6.1: Representation on top hypothesizes that objects have (physically) crossed an even number of times
from k = 0 to k = k¤. Representation at the bottom hypothesizes that objects have (physically) crossed an odd
number of times from k = 0 to k = k¤.

At k = 0, the tracker places a label to each object according to the tracker’s convention:
e.g. blue to the target that is further away and red to the other. At later point in time, for
instance k = k¤, two labeling possibilities are worth considering. One where the furthest
object is blue and the nearest one red (example trajectories on top of the �gure) and the
other with opposite colors, positions being the same (example trajectories at the bottom of
the �gure).

We are using here color labels instead of number labels for sake of printing clarity. In
order to align with the implicit label incorporation inherent in random vector formulations,
one just needs to de�ne the convention for mapping the set ^blue; red‘ to the two partitions
in the stated vector.

Note that the questions in section 2.3 are not concerned with past states but only
current information, for instance at k = k¤. To answer the questions however, it is essential
to estimate whether or not the objects have crossed an even or an odd number of times
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from k = 0 to k = k¤ in order to characterize the two possible labeling solutions. Based
on described estimation of crosses, [24, Section IV] proposed a method to decompose the
association-free TrBD posterior density.

The TrBD posterior density p.sk ðZk/ in Equation (6.1) displays symmetric multimodality
for the closely-spaced target scenario exempli�ed in Fig. 6.2:

p.sk ðZk/ ø l.zk ðsk/p.sk ðZk*1/ (6.1)
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Figure 6.2: Illustration of a closely-spaced targets situation. Ground truth trajectories of two targets moving in a
line (2*1D objects scenario) in the left hand side. Last joint multiobject position density (position components of
p.sk ðZk/) represented in the right hand side.

where l.zk ðsk/ is the likelihood function of the TrBD measurements conditioned on
the state. One label-permutation-dependent decomposition can be formulated as in Equa-
tion (6.2). However, due to the assumption that l.zk ðsk/ is invariant with respect to label
permutations, all components (indexed by m in Equation (6.2)) are identical disregarding
whether the targets are closely-spaced or not. Therefore, the decomposition in Equation (6.2)
cannot be relevant for characterizing labeling uncertainty.

p.sk ðZk/ ×
t@
É
m=1

l.zk ð�m.sk//p.sk ðZk*1/ × l.zk ðsk/p.sk ðZk*1/ (6.2)

One physical interpretation of the multimodality in p.sk ðZk/ (illustrated in Fig. 6.2)
is that the objects may have well crossed each other from one time scan to the next one.
As one can see in Figure 6.2, the probability mass of p.sk ðZk/ concentrates in separated
regions of the joint state space. These regions represent di�erent labeling permutations of
the information of interest.

In [24, Section IV], it is assumed that the state variable is a vector where partitions are
stacked: sk = [xbk �xbk x

r
k �xrk]

T . Positions of each partition are denoted as xk and velocities as
�xk . b and r are the labels for the �rst and second partition respectively (blue and red for

printing clarity). In order to hypothesize crosses between objects, the concept of order at
time step k was de�ned in [24, Section IV] as:

ok = d.sk/ =
<
1 if xbk > x

r
k

2 otherwise (6.3)
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For two objects moving in one dimension, the variable order determines whether the
position of one 1D object is larger or less than the position of another 1D object. Additionally,
it is trivial to interpret a permutation of order in the state vector as a cross of objects between
time steps k*1 and k (see Figure 6.3).

Figure 6.3: No permutation of order (left hand side), permutation of order (right hand side)

This trivial notion of order/cross in 1D, escapes to physical interpretation in higher
dimensional problems. One cannot tell whether the position of one 2D object is larger or
less than the position of another 2D object as the de�nition of �>� and �<� is only valid in
the 1D line. In fact, although one order de�nition was provided in [24, Section V] for the
2*2D objects case, counterexamples were found proving its lack of generality.

6.3 Generalized characterization of Cross Model-
ing

Figure 6.4 illustrates the generic block diagram of a TrBD MOT solution based on cross
modeling. [24, Section IV] provided an algorithm according to this block diagram to solve
the formulated problem in section 2.3 for the 2*1D objects case.

Figure 6.4: The illustrated block diagram describes the operation of the CMT. The block diagram is generic in the
sense that it should be applicable in any arbitrary t *MD objects case. However, the de�nition of ok provided in
Equation (6.3) does not allow its use out of the 2*1D objects case. Hence, the importance of generalizing the
de�nition of ok .

As the de�nition of ok provided in Equation (6.3) does not apply out of the 2 * 1D
objects case, the generalization of ok Equation (6.3) is essential in order to model crosses for
any arbitrary t *MD object problems. The solution based on Equation (6.3) was designed
in [24, Section IV] for particle-based implementations of the Bayesian �lter. In particle
�ltering, �particle mixing� is a characteristic phenomenon inherent in approximations
of multimodal densities [60]. Interestingly in the context of our labeling problem, when
�particle mixing� happens at least two particles are represented with permuted order of
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partitions in the state vector [61]. In order to generalize the de�nition of order/cross in [24,
Section IV] to arbitrarily high dimensional problems, this chapter proposes to analyze and
exploit �particle mixing� e�ects in the particle cloud. Exploitation of such �particle mixing�
analysis is realized by means of clustering the particle cloud.

Clustering the particle cloud will result in a relevant decomposition aiding at extracting
relevant statistics. This decomposition will enable straightforward extraction of labeling
certainty estimates and trouble-free use of computationally e�cient MMSE estimation
(even when p.sk ðZk/ is multimodal).

6.3.1 State space model
The general nonlinear dynamic system and observation models can be denoted as f and q
respectively:

sk = f .sk*1;nk*1/ (6.4)

zk = q.sk ;vk/; k ¸N (6.5)

where sk , nk , zk and vk represent the state, process noise, the measurement and the
measurement noise respectively.

We tackle the MOT problem in the framework of recursive Bayesian �ltering. The pre-
dicted and posterior densities of interest p.sk ðZk*1/ and p.sk ðZk/ are obtained by iteration
over the Chapman-Kolmogórov and Bayes equations:

p.sk ðZk*1/ = � p.sk ðsk*1/p.sk*1ðZk*1/dsk*1 (6.6)

p.sk ðZk/ =
p.zk ðsk/p.sk ðZk*1/

p.zk ðZk*1/
(6.7)

in this framework, the models in Equations (6.4) and (6.5) are expressed in the form of
p.sk ðsk*1/ and p.zk ðsk/ respectively.

Due to the nonlinear nature of TrBD measurement models, the Bayesian recursion
formulated in Equations (6.6) and (6.7) cannot be implemented via (stochastic) parametric
models [28]. For this reason, a PF will be used to approximate the recursion.

6.3.2 A generic decomposition of p.sk ðZk/ in TrBD
As detailed in the subsection 2.4, the underlying concern to answer the questions in
section 2.3 is how to decompose p.sk ðZk/ in TrBD. A generic decomposition of p.sk ðZk/
can be formulated by introducing an auxiliary variable ok :

p.sk ðZk/ =
t@
É
i=1

p.sk ; ok = iðZk/ (6.8)

Please note that the desired de�nition of ok is not the one in Equation (6.3) as we are target-
ing its generalization to the t *MD objects case. The new density of interest p.sk ; ok ðZk/,
can be factorized as:

p.sk ; ok ðZk/ = p.sk ðok ;Zk/P.ok ðZk/ (6.9)
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where p.sk ðok ;Zk/ is the posterior density of the state vector given ok and the measurements,
while P.ok ðZk/ is the posterior probability of ok . Both can be computed using the association-
free (non-decomposed) TrBD �lter output p.sk ðZk/ and a certain probabilistic de�nition of
the auxiliary variable ok :

p.sk ðok ;Zk/ =
P.ok ðsk ;Zk/p.sk ðZk/

P.ok ðZk/
(6.10)

P.ok ðZk/ = �
sk
P.ok ðsk/p.sk ðZk/dsk (6.11)

Assuming that the generalized de�nition of ok is conditionally independent on Zk given
sk (as it is the case in the 2*1D targets case de�nition from Equation (6.3)), Equation (6.10)
can be rewritten as:

p.sk ðok ;Zk/ =
P.ok ðsk/p.sk ðZk/

P.ok ðZk/
(6.12)

The generic decomposition in Equation (6.8) together with the desired de�nition of
P.ok ðsk/ should allow answering the questions of interest for generic t *MD problems.
When MMSE estimation is the choice for extracting point estimates, the desired de�nition
of P.ok ðsk/ should ensure that each component in Equation (6.8) p.sk ðok = m;Zk/ is uni-
modal. Under this condition, the list of t@ label point estimates (question 1 in section 2.3)
can be provided avoiding track-coalescence. Finally, the desired de�nition P.ok ðsk/ should
be such that P.ok = mðZk/ represents the certainty of labeling association m (question 2 in
section 2.3).

Labeled Point Estimates and labeling certainties of the CMT
In a particle-based implementation of the Bayesian recursion, p.sk ðZk/ is represented with
a weighted set of particles ^sik ;w

i
k‘
Np
i=1. According to the decomposition in Equation (6.8),

order-dependent Labeled Point Estimates (LPEs) can be calculated as the expected value of
sk given the order and measurements:

E[sk ðok ;Zk] = �
sk

skp.sk ðok ;Zk/dsk

Eq (6.12)

=
1

P.ok ðZk/ �sk
skP.ok ðsk/p.sk ðZk/dsk

ø
1

P.ok ðZk/
É
i
wi
ks

i
kP.ok ðs

i
k/

(6.13)

Order-dependent labeling certainties are necessarily in the second factor of Equation (6.9)

P.ok ðZk/ = �
sk
P.ok ðsk/p.sk ðZk/dsk øÉ

i
wi
kP.ok ðs

i
k/ (6.14)
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Evaluation of E[sk ðok ;Zk] for each possible realization of ok provides a di�erent vector
of LPEs (answer to question 1 in section 2.3):

E[sk ðok = m;Zk] ø
1

P.ok = mðZk/
É
i
wi
ks

i
kP.ok = mðsik/ ø

1
P.ok = mðZk/

É
iðoik=m

wi
ks

i
k where m ¸ ^1;2; ::; t@‘

(6.15)

In the same way, evaluation of P.ok ðZk/ for each possible realization of ok provides a scalar
with the associated labeling probability (answer to question 2 in section 2.3):

P.ok = mðZk/ øÉ
i
wi
kP.ok = mðsik/ ø É

iðoik=m

wi
k (6.16)

Algorithm implementation
Algorithm 4 is the practical implementation of the functionalities illustrated in Figure 6.4.
Same way as in Figure 6.4, the algorithm is generic given a generic de�nition of �order� (oik
at particle level).

1 k = 0;
2 Draw Np samples sik from p.sk/;
3 Draw Np samples nik from p.nk/;
4 k = k+1;
5 sik = f .s

i
k*1;n

i
k*1/;

6 Calculate oik according to the de�nition of �order� under test;
7 Given zk, obtain �wi

k = p.zk ðs
i
k/;

8 Normalize weights wi
k = �wi

k_‡
Np
j=1 �w

j
k ;

9 Resample from �p.sk ðZk/ =‡Np
i=1wi

k�.sk * sik/:;
10 Extract LPEs according to Equation 6.15;
11 Obtain certainty measures of LPEs

according to Equation 6.16;
go to 3

Algorithm 4: Pseudo-code of the PF algorithm for implementation of the CMT. Exten-
sions over the plain SIR TrBD particle �lter and traditional MMSE estimate extraction
are highlighted in blue color. p.sk/ and p.nk/ denote the initial prior and the process
noise models.

6.3.3 Performance evaluation of the CMT for the 2* 1D ob-
jects case

Before delving into the problem of generalizing the solution in [24, Section IV], it is relevant
to understand the performance evaluation of the low dimensional CMT solution. In fact,
although [24, Section IV] presented numerical results, these were not evaluated against the
references described in chapter 4. Namely, reference labeled tracks and reference labeling
probabilities.
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Table 6.1: Parameters of the simulation

parameter value
di 1:66 m
dm 0:22 m
�n 0:14 m/s3_2
�v 0:045 m
� 1 s
Np 10000 particles

The choice of simulation parameters to evaluate the solution in [24, Section IV] is
shown in Table 6.1. This parametrization generates a high amount of labeling uncertainty
in order to challenge the MOT algorithm. This becomes apparent when considering the
overlapping in between partitions of di�erent colors (labels) of the predicted and posterior
particle cloud in Figure 6.5.

Figure 6.5: Illustration of real trajectories as well as predicted and posterior particle clouds along all simulation
time steps. The particle mixing e�ect can be observed, for instance, in the posterior particle clouds after object
separation. In fact, di�erent particles hypothesize the state of the same physical object with di�erent partitions.

The evaluation can be reproduced by setting up the trajectories for the objects with
initial and minimum distance as indicated by di and dm in Table 6.1. The evaluation considers
the dynamic and measurement models as nearly constant velocity [23] and linear-Gaussian.
The standard deviations of the process noise and observation noise are indicated by �n and
�v respectively in Table 6.1, where � denotes the revisit time. Without loss of generality,
choosing these simple models su�ces to validate Alg. 4 against the evaluation references
calculated by Alg. 3.
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The de�nition of ok in Equation (6.3) can be rewritten in a probabilistic form:

P.ok = 1ðsk/ = 1 if xbk > x
r
k

P.ok = 2ðsk/ = 0 if xbk w xrk
(6.17)

The de�nition in (6.17) can be plugged into Equations (6.12) and (6.11) in order to decompose
p.sk ðZk/ using the CMT (Algorithm 4). By these means, LPEs and associated labeling
certainties can be generated with Algorithm 4 and evaluated with the optimal reference
generated by Algorithm 3. Simulation results illustrated in Figures 6.6 and 6.7 validate the
cross modeling solution for the 2*1D objects case using the evaluation method described
in chapter 4.
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Figure 6.6: Evaluation of estimation performance of the CMT for a 2*1D objects scenario. Cross modeling based
estimates are extracted only from the cluster associated to �order� 1.

Comments on the results
Algorithm 4 decomposes the particle cloud in two (t@) clusters. These clusters explicitly
approximate the DA-free decomposition in Equation (6.8). The cluster associated to �order�
1 supports the hypothesis that the maneuvers of the two labeled objects lead to non-crossed
trajectories with respect to the initialization ¯k. This cluster produces LPEs represented in
Figure 6.6 as �xb;rk .o = 1/. The certainty measure associated (P.o = 1ðZk/ curve) is extracted
from the particle approximation of the joint multiobject posterior in step 11 of Algorithm 4.

Over the �rst 6 seconds of the simulation, the LPE.o = 1/ holds full certainty. No single
particle belongs to the cluster o = 2 and therefore, no representative can be extracted
from there (see Figure 6.7). As expected, P.ok = 1ðZk/ drops down to around 0.5 after the
objects remain closely-spaced for some time. This means that labeling information has
been completely lost. Labeling information cannot be recovered after the split as suggested
by the measure of certainty. The LPE.o = 2/ supports the hypothesis that the maneuvers of
the two labeled objects lead to crossed trajectories with respect to the initialization ¯k.
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Figure 6.7: Evaluation of estimation performance of the CMT for a 2*1D objects scenario. Cross modeling based
estimates are extracted only from the cluster associated to �order� 2.

Estimation results produced by the CMT closely match the ground truths generated
by Algorithm 3. This validates the CM method as a solution to the problem de�ned in the
Section 2.4 for the 2*1D objects scenario.

6.4 First generalization of the definition of cross:
scenarios with arbitrary number t of 1D objects

In a 2* 1D objects setting, given the state of one particle at time step k, Equation (6.3)
provides its order . We will refer to this calculation as an absolute evaluation of order .
Unlike 1-D points, 2-D points cannot be ordered making use of the operators w and >. For
this reason, �nding an absolute evaluation of �order� in 2-D is not a trivial concern.

6.4.1 Absolute versus relative order calculation and the defi-
nition of cross:

An alternative method to obtain the order can be realized by relative evaluation: relying
on the prior order at time step k*1 and detecting whether or not the objects have crossed
from time step k*1 to k,

P.ok = 1ðsk/ = 1 P.ok = 2ðsk/ = 1
P.ok*1 = 1ðsk*1/ = 1 no cross cross
P.ok*1 = 2ðsk*1/ = 1 cross no cross

For 2*1D objects scenarios:
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xrk < x
b
k xrk x xbk

xrk*1 < x
b
k*1 no cross cross

xrk*1 x xbk*1 cross no cross

Hence, to declare a cross, either of the two following conditions must be met:

x1k*1 < x
2
k*1 and x1k x x2k (6.18)

x1k*1 x x2k*1 and x1k < x
2
k (6.19)

The relative order evaluation method shifts the generalization problem from the de�ni-
tion of order to the de�nition of cross. A cross detector for 2*1D objects can be derived
from the absolute de�nition in Equation (6.3). Let us denote s

¤p
k as the position part of the

state vector sk = [xbk �xbk x
r
k �xrk] of particle p at time step k: s

¤p
k = [xp;bk xp;rk ]. Since s

¤p
k and s

¤p
k*1

are vectors in a 2D space (2 objects placed along 1D spacial dimension), one can calculate
the Euclidean distance or l2*norm between them in the joint space as (superscript p is
dropped for notation simplicity):

norm.s¤k * s¤k*1/ =
u
.xrk *x

r
k*1/2+.x

b
k *x

b
k*1/2 (6.20)

=
u
.xrk/2*2.x

r
kx

r
k*1/+ .x

r
k*1/2+.x

b
k /2*2.x

b
kx

b
k*1/+ .x

b
k*1/2 (6.21)

=
u
.xbk *x

r
k*1/2+.x

r
k *x

b
k*1/2+2.x

r
k*1*x

b
k*1/.x

b
k *x

r
k/ (6.22)

Then,

norm2.s¤k * s¤k*1/ = .x
b
k *x

r
k*1/

2+.xrk *x
b
k*1/

2+2.xrk*1*x
b
k*1/.x

b
k *x

r
k/ (6.23)

norm2.s¤k * s¤k*1/ = norm
2.�s¤k * s¤k*1/+K (6.24)

where K = 2.xrk*1*x
b
k*1/.x

b
k *x

r
k/ and � denotes the permutation matrix:

� =0
0 1
1 01 (6.25)

Each of the Equations (6.18) and (6.19) de�ne the conditions to declare a cross. Interestingly,
when any of these equations is applied to the function K , the result is K > 0 as long as
xrk*1, x

b
k*1, x

r
k and xbk take positive values. Variables xrk*1, x

b
k*1, x

r
k and xbk can only take

positive values in our application problem as these are range magnitudes. Therefore,
Inequation (6.26) holds as long as a cross in the state vector of particle p takes place:

norm2.s
¤p
k * s

¤p
k*1/ > norm2.�s

¤p
k * s

¤p
k*1/ (6.26)

Equivalently, the next order switch condition can be used to �nd out whether or not a
cross should be declared for the particle p between time instants k*1 and k.

norm.s
¤p
k * s

¤p
k*1/ > norm.�s

¤p
k * s

¤p
k*1/ (6.27)
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The result in Equation (6.27) can be pictured in a physically meaningful way as in
Figure 6.8.

Figure 6.8: The illustration in the left hand side represents an order switch as the points pk and pk+1 belong in
di�erent sides of the diagonal xr = xb. Indeed, Inequation (6.27) holds in this case. In the right hand side the point
p does not cross the line xr = xb between time instants k and k+1 meaning that the order remains the same in
this case. Indeed, Inequation (6.27) does not hold.

6.4.2 Generalization of cross from 2*1D to t *1D cases
This generalization considering 1D objects makes use of the relative de�nition of �order�
based on Inequation (6.27), applied to all possible pairs of partitions in the state vector. As
the number of possible labeling solutions is t@, only the extension from two to three targets
will be exempli�ed due to space limitations. Nevertheless, there is no loss of generality as
the same technique can be applied to any arbitrary number of targets t.

For a three-object scenario, the three partitions in the state vector can be ordered in six
di�erent ways according to, for instance, the convention in Table 6.2:

1D magnitude
increasing direction
E

o = 1 1st 2nd 3rd

o = 2 1st 3rd 2nd

o = 3 2nd 1st 3rd

o = 4 3rd 1st 2nd

o = 5 2nd 3rd 1st

o = 6 3rd 2nd 1st

Table 6.2: Order convention for the 3 scalar-targets case

The convention in Table 6.2 groups in cluster 1 those particles complying with: position
of the �rst partition is less than the position of the second partition, being the position of
the second partition less than the position of the third partition. For the sake of printing
clarity in forthcoming simulation experiments, the �rst, second and third partitions will be
identi�ed with colors green, red and blue respectively.

Between the time steps k*1 and k, there are eight distinct types of crosses that could
occur. Each cross type is composed of three boolean variables. These are used to codify
whether or not a cross is declared between pairs of partitions. When the boolean variable
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is set to 1, a cross is declared between the corresponding pair of objects. For instance, one
can adopt the following convention:

cross of
partitions
1st *2nd

cross of
partitions
1st *3rd

cross of
partitions
2nd *3rd

C1 0 0 0
C2 0 0 1
C3 1 0 0
C4 0 1 1
C5 1 1 0
C6 1 1 1
C7 1 0 1
C8 0 1 0

These cross-type codes can be used now for relative evaluation of the order at time
step k, given the order at time step k*1:

ok = 1 ok = 2 ok = 3 ok = 4 ok = 5 ok = 6
ok*1 = 1 C1 C2 C3 C4 C5 C6
ok*1 = 2 C2 C1 C7 C8 C6 C5
ok*1 = 3 C3 C7 C1 C6 C8 C4
ok*1 = 4 C4 C8 C6 C1 C7 C3
ok*1 = 5 C5 C6 C8 C7 C1 C2
ok*1 = 6 C6 C5 C4 C3 C2 C1

6.4.3 Simulation results
The estimation performance of the CM method for a 3*1D objects scenario, using Inequa-
tion (6.27) as the �cross detector�, is illustrated in this subsection. Note that the validation
method summarized in chapter 4 is based on evaluation of data association hypotheses.
Therefore, Algorithm 2 can be used right away to generate optimal LPEs and labeling
probabilities in any arbitrary t *MD objects case. Figure 6.9 illustrates the estimation
performance of the CMT.

Discussion of results
The results in Figure 6.9 reveal remarkably accurate estimation performance of the CMT
both in the computation of LPEs and labeling probabilities. This validates the CMT as a
convenient solution to answer the questions in section 2.3 for scenarios where an arbitrary
number of objects move in one dimension.

The choice of the particular ground truth trajectories in Figure 6.9 results in complete
loss of labeling information (1_3@ certainty for all LPEs). Although Figure 6.9 illustrates this
worst case scenario, it is apparent that the CMT accurately estimates labeling uncertainty
also in more favorable scenarios. For instance, scenarios where the objects remain closely-
spaced for a shorter time and labeling certainty is lost only partially.
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Figure 6.9: Evaluation of estimation results provided from the clusters associated to all states of �order� in Table 6.2

Losing labeling information is a physical limitation inherent in closely-spaced object
scenarios. Furthermore, once labeling certainty is lost, it is mathematically not possible
to recover it (assuming that the objects cannot be di�erentiated in measurements/maneu-
verability). In this context, all what can be expected from the tracker is that it captures
the uncertainty produced by the combination scenario/sensor-limitations as accurately as
possible. The best indicator of the DA-free decomposition quality is how good the CMT
can estimate when and how quickly the 100% labeling certainty (in the beginning of the
simulation) drops as the targets get closer to each other. While regular TrBD �lters such
as the one in [52] cannot capture this, the CMT reports successful results for the cases
simulated so far.

6.5 Second generalization of the definition of cross
from t *1D to t *MD objects

Subsection 6.3.2 presented a generic DA-free decomposition of p.sk ðZk/ by introducing the
(not yet de�ned for the generic t *MD case) variable ok . An analytical expression for the
LPEs and labeling probabilities (dependent on the de�nition of ok) was provided in Equa-
tions (6.15) and (6.16). Another analytical derivation provided in Subsection 6.4.1 has proved
that the relative calculation of ok for the 2*1D objects case, based on Inequation (6.27),
leads to identical results than the absolute calculation of ok based on Equation (6.3).

Section 6.4.2 illustrated how the relative calculation of ok (based on Inequation (6.27))
can be extended seamlessly to cope with more than two objects moving in a one-dimensional
space. This section covers the generalization of the relative calculation of ok from 1D to
MD objects. In practice, simulation experiments will be limited to cases where M is 2 and 3
to illustrate that the CMT can be used for tracking of land/sea objects (2D) and air objects
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(3D).
The reader is referred to Appendix A.3 at this point in order to understand the complex-

ity of extending the de�nition of ok in Equation (6.3) to objects moving in 2 and 3 spacial
dimensions.

6.5.1 Generalization of the cross detector to 2 * 2D objects
settings

Inequation (6.27) does not extend straightforwardly from 2*1D to 2*2D objects scenarios
as illustrated in Appendix A.3. However, the reason why Inequation (6.27) works well for the
2*1D case can be found after analyzing the function K derived in Subsection 6.4.1. Given
the 2D points s

¤p
k*1 and s

¤p
k (2 objects in a 1D space), the function K = 2.xrk*1*x

b
k*1/.x

b
k *x

r
k/

complies with a very particular condition:

K.s
¤p
k*1;s

¤p
k / = *K.s

¤p
k*1;�.s

¤p
k // (6.28)

as s
¤p
k and �.s

¤p
k / are crossed with respect to each other, K can be regarded as an odd

function in the �order� of s
¤p
k . In other words, two di�erent evaluations of K , using the

current state of particle p and its permuted version are equal in absolute value but di�erent
in sign:

ðK.s
¤p
k*1;s

¤p
k /ð = ðK.s

¤p
k*1;�.s

¤p
k //ð

sgn.K.s
¤p
k*1;s

¤p
k // = sgn.*K.s

¤p
k*1;�.s

¤p
k ///

(6.29)

Additionally, as we already pointed out in Subsection 6.4.1:

K.s
¤p
k*1;s

¤p
k / > 0 ö s

¤p
k*1;s

¤p
k are crossed (6.30)

The condition K.s
¤p
k*1;s

¤p
k / > 0 and Inequation (6.27) are equivalent �cross detectors� for

the 2*1D case due to Equation (6.24). Our problem formulation can be narrowed down
to the following question: What is the 2*2D counterpart of the K function which can be
applied to the two 4D points s

¤p
k*1 and s

¤p
k ?

Let us consider an equivalent expression of K introducing the norm function, which
we denote as K2*1D:

K2*1D = 2.norm.s
¤r
k*1/*norm.s

¤b
k*1//.norm.s

¤b
k /*norm.s

¤r
k // (6.31)

The desired function K2*2D :R8 E R can be found by considering the counterpart of K2*1D
for the 2*2D case:

K2*2D = 2.norm.s
¤r
k*1/*norm.s

¤b
k*1//.norm.s

¤b
k /*norm.s

¤r
k // (6.32)

where now s
¤p
k = [xp;bk yp;bk xp;rk yp;rk ]T , s

¤p;r
k = [xp;rk yp;rk ]T and s

¤p;b
k = [xp;bk yp;bk ]T . K2*2D

is indeed the odd function (in the �order� of s¤k) which complies with the conditions in
Equations (6.28) and (6.30). Therefore, the extension of the de�nition of �cross� for the
2*2D objects case is:

K2*2D > 0 (6.33)
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Simulations results
The results provided by the CMT for the 2*2D objects case using Inequation (6.33) as the
�cross detector� are shown in Figure 6.10:
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Figure 6.10: Evaluation of estimation performance of the CMT when Inequation (6.33) is used as the �cross
detector�. LPEs and labeling uncertainties are extracted from the clusters �order� 1 and 2, illustrated on top and
middle �gures. Alg. 3 is the performance evaluator algorithm. The �gure at the bottom con�rms that the �order
detector� in Inequation (6.33) is appropriate. In fact, the associated clustering method removes particle mixing
within clusters after objects separation.

Discussion of the results
The results reveal remarkably accurate estimation performance of the CMT both in the
computation of LPEs and labeling probabilities. This validates the CMT as a convenient
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solution to answer the questions in section 2.3 for 2D objects. In fact, LPEs result in
low OSPA errors. This becomes possible even when extracting cost e�cient MMSE (see
Equation (6.15)) point estimates thanks to the clustering method, which separates particles
in di�erent state of �order�. These results support our argument that the design of the
proper �cross detector� should produce a decomposition of p.sk ðZk/where each component
is unimodal. Also, very accurate estimation of labeling uncertainty is provided, which can
be calculated by simply considering the proportion of particles within each order-dependent
cluster (see Equation (6.16)).

6.5.2 Generalization of the cross detector to 2 * 3D objects
settings

The function K2*3D : R12 E R is the counterpart of K2*1D for the 2*3D objects case:

K2*3D = 2.norm.s
¤r
k*1/*norm.s

¤b
k*1//.norm.s

¤b
k /*norm.s

¤r
k // (6.34)

where now s
¤p
k = [xp;bk yp;bk zp;bk xp;rk yp;rk zp;bk ]T . As s

¤p
k and �.s

¤p
k / are in di�erent states

of �order�, K2*3D is also an odd function (in the �order� of s
¤p
k ) which complies with

the conditions in Equations (6.28) and (6.30). The evaluations of the current state and
its permuted version are equal in absolute value but di�erent in sign. Therefore, the
counterpart de�nition for the �cross detector� from K2*1D and K2*2D cases can be used in
the K2*3D case:

K2*3D > 0 (6.35)

Simulations results
The results provided by the CMT for the 2*3D objects case using Inequation (6.35) as the
�cross detector� are shown in Figures 6.11 and 6.12:

Discussion of the results
The results reveal remarkably accurate estimation performance of the CMT both in the
computation of LPEs and labeling probabilities. This validates the CMT as a convenient
solution to answer the questions in section 2.3 also for 3D objects.
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3
3

3

Figure 6.11: Evaluation of estimation performance of the CM method when Inequation (6.35) is used as the �order
switch� detector. Labeled point estimates are extracted from the cluster �order� 1. Alg. 3 is the performance
evaluator algorithm.

3

3
3

Figure 6.12: Evaluation of estimation performance of the CM method when Inequation (6.35) is used as the �cross
detector�. Labeled point estimates are extracted from the cluster �order� 2. Alg. 3 is the performance evaluator
algorithm.
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6.6 Conclusions
The problem of track formation needs to be tackled by any MOT solution. To take informed
track formation decisions, estimation of track point-estimates and characterization of
labeling uncertainty is required. Extracting these estimates and characterization is not
trivial in the context of Track-before-Detect (TrBD), especially when tackling closely-spaced
target scenarios, as the formulation of DA hypotheses is ruled out.

This chapter provides a TrBD MOT algorithm with labeling characterization capabilities
o�ering wider applicability than the non-LG implementation of the UD presented in
previous chapter. The Cross Modeling Tracker (CMT) has been presented in this chapter
as a DA-free solution applicable in arbitrarily high dimensional problems.

Both this and previous chapters solve the underlying problem of decomposing the
multitarget Bayes posterior density in a low dimensional case with two scalar targets.
Unlike the UD-based implementation, where the decomposition is based on the permuta-
tion invariance characteristics of the density, the CMT introduces a novel label-dependent
decomposition by hypothesizing physical crosses between the targets. The main contri-
bution of the paper is the non-trivial generalization of the cross-between-objects concept
from the two scalar targets case, where the concept of cross-between-objects has physical
interpretation, to arbitrary number of vector targets case.

The CMT results provided in this chapter are evaluated against the performance evalua-
tion method presented in chapter 4. Simulation results involving challenging closely-spaced
objects scenarios have been provided. The results illustrate that the CMT is usable in the
general t*MD objects case, provided the number of targets t is known and constant in line
with the �rst assumption in the introductory chapter. Therefore, the proposed solution
extends the state-of-the-art of TrBD MOT by providing DA-free characterization of labeling
uncertainty, with validated estimation performance and e�cient scalability, which can be
seamlessly used in generic t *MD targets scenarios in TrBD MOT context.
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7
Performance comparison of

solutions in chapters 5 and 6
and optimization of the CMT

for unresolved targets

7.1 Introduction
Track formation is an essential task in any MOT solution. In order to take informed track-
formation decisions, the labeling problem needs to be solved. An optimal solution to the
labeling problem is especially important when tracking closely-spaced objects. A solution
to the labeling problem involves estimation of labeled tracks and labeling certainties.
Therefore, a method for labeling uncertainty characterization is required.

Characterizing labeling uncertainty involves decomposing the multi-object Bayes pos-
terior density. This decomposition has been traditionally done by solving the DA problem
(MHT decomposition is an example). In Track-before-detect (TrBD) systems, association-
dependent decompositions cannot be formulated due to the absence of detections. Still,
labeling uncertainty needs to be characterized. Therefore, an association-free method to
perform a label-dependent decomposition of the Bayes posterior is required.

The distinguishing characteristic of the algorithms presented in chapters 5 and 6 is their
DA-free approach to the MOT problem, including the subproblem of estimating labeling
uncertainty. Due to their DA-free nature, both algorithms are suited to solve the TrBD
MOT problem.

This chapter starts by comparing the estimation performance of the algorithms pre-
sented in chapters 5 and 6 against the evaluation method presented in chapter 4. The
algorithm proposed in chapter 5 is an application of the UD theory for non Linear and/or

The contents provided in this chapter are to be submitted for review in JAIF as �Optimization of the Cross
Modeling Tracker for unresolved targets,� C. M. Leon, H. Driessen and A. Yarovoy in Journal of Advances in
Information Fusion, 2023
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non-Gaussian (non-LG) systems, recently submitted for review in TAESS [62]. The algo-
rithm proposed in chapter 6 is the Cross Modeling Tracker (CMT), already published in
JAIF [27].

After showcasing the pros and cons of each algorithm, the focus of this chapter is on
optimizing the CMT algorithm presented in [27]. Aside of pure estimation performance
aspects, the CMT has wider applicability than the non-LG implementation of the UD
presented in [62]. In fact, until now the UD theory has not been extended for more than
two targets.

The CMT provides accurate estimates of labeled tracks and corresponding labeling
certainties for the closely-spaced trajectories simulated in previous chapter. However, this
chapter provides initial results motivating that the CMT in [27] is not an exact solution,
meaning that the CMT statistics do not converge to the evaluation references as the number
of particles tend to in�nity. This is specially noticeable when considering unresolved targets.
Two target are unresolved when they are located in the same resolution cell of range, angle
and velocity [63] [64]. Depending on their SNR, targets can also be unresolved when they
are in neighboring resolution cells. Besides discussing estimation performance comparison
between the two DA-free solutions presented in this thesis, the purpose of this chapter is
twofold. Firstly, we aim at theoretically identifying the approximations taken implicitly by
the CMT algorithm presented in [27]. Secondly, we aim at reducing the impact of such
approximations on estimation performance for scenarios involving unresolved targets,
without degradation on estimation performance for all other scenarios.

In order to identify the approximations taken by the CMT, we bridge the gap between an
exact solution (only accessible in Detect-before-Track (DBT) context) and the expressions
provided by the CMT operating in DBT context. In order to mitigate the impact of the
approximations, we propose the use of a new proposal density at PF implementation level.

The chapter is organized as follows. Section II provides evaluation results comparing
the estimation performance of the CMT and the non-LG implementation of the UD. Section
III derives the approximations implicit in the CMT and illustrates their impact on estimation
performance with numerical simulations. Section IV introduces the optimization of the
CMT algorithm for tracking unresolved targets. Section V provides results of the optimized
CMT algorithm illustrating better estimation performance than the original CMT solution.
Section VI concludes the chapter.

7.2 Estimation performance comparison between the
non-LG UD and CMT algorithms

The main contribution in [27] was giving analytical generalization for the concept of cross-
between-objects, so that the CMT algorithm can be extended to arbitrarily high-dimensional
problems. This extension refers for both the number of targets and the transition from
considering scalar targets to vector targets. The wider applicability of the CMT is a practical
advantage compared to UD-based solution, which cannot deal with more than two-target
densities. Nevertheless, this section starts by comparing the estimation performance of the
non-LG UD and the CMT algorithms in a low dimensional problem, where both approaches
can be applied.

The optimal references for evaluation are calculated analytically according to the
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evaluation criterion presented in the chapter 4. These references (illustrated in Figs. 7.1, 7.2
and 7.3) are provided in the form of statistics of interest. Namely labeled track references and
associated labeling certainty references. Note that such references can only be calculated
in DBT context as explained in chapter 4. For the purpose of evaluating the non-LG UD
and the CMT algorithms, both decomposition algorithms should be run in DBT context.
More speci�cally, the algorithms under evaluation should be fed with the same plot set
used in the generation of the optimal references.

Preliminary numerical results in Fig. 7.1 show estimation performance comparison be-
tween the non-LG implementation of the UD provided in [62] and the CMT presented in [27].
In particular, Fig. 7.1 illustrates labeling uncertainty characterization ability. Although both
algorithms under evaluation produce tracks, these will be evaluated in following �gures
for sake of clarity in the visualization of results.

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Figure 7.1: Visual inspection of labeling uncertainty estimation performance by the non-LG UD and the CMT
trackers. The labeling certainty reference is generated by the Alg. 3 from chapter 4. The CMT labeling certainty
estimates are generated using Alg. 4 in chapter 6 and the non-LG UD labeling certainty estimates are generated
by the so-called fully decomposed algorithm summarized in the right column of Table 5.1. in chapter 5.

The non-LG implementation of the UD provides accurate estimation of the probability
of successful labeling after target separation. However, it seems to underestimate the
existent labeling uncertainty captured by the optimal labeling certainty reference before
that point. As opposed to this, the CMT captures very accurately the drop of labeling
certainty calculated by the reference.

To provide a complete picture, estimation performance by the CMT and the non-LG
implementation of the UD should be assessed also in terms of track estimates. To this
end, Figs. 7.2 and 7.3 provide additional visualizations of estimation error. Firstly, Fig. 7.2
shows the reference trajectories and reference labeling certainties used for evaluation
as a function of di�erent degrees of plots accuracy. Based on these references, Fig. 7.3
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provides a thorough comparison of estimation results for both algorithms under evaluation.
Overall, both algorithms produce degraded estimation performance when targets are very
closely-spaced as compared to when they are not. As expected, this degradation applies to
both labeling certainty estimates and corresponding track estimates.

Despite the illustrated performance degradation, the comparative results show that
estimation performance of the CMT is better than the one of the non L-G implementation
of the UD. In particular, the di�erence in track estimation performance is one order of
magnitude (both in bias and dispersion) for the case with accurate plots. Better performance
of the CMT is consistent (but less accentuated) along tested simulations with poorer plot
accuracy.

The estimation of the probability of successful labeling by the CMT is also better than
the one by the non-LG UD implementation (see �rst row of Fig. 7.3). Once more, the CMT
seems to estimate very accurately the drop of the reference labeling certainty. Although
the non-LG implementation of the UD calculates the invariance characteristics of the Bayes
posterior in a theoretically sound manner, such solution does not outperform the CMT
when targets are too closely-spaced.

The use of the non-LG implementation of the UD is convenient for cases where one
is interested in target labeling information after target separation. Although the CMT
implementation outperforms the non-LG implementation overall, the former solution is
not exact. To be more speci�c, the CMT is very accurate unless the targets are extremely
close to each other, or unresolved.

The remainder of this chapter considers the optimization of the CMT. Firstly, the
approximations implicit in the CMT algorithm need to be analyzed. Then, the impact of
such approximations on estimation performance will be studied. Finally, modi�cations to
the original CMT tracking algorithm will be provided in order to mitigate the degradation
of the CMT approximations on estimation performance.
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7.3 Approximations in the CMT and their impact on
estimation performance

The approximations inherent in the CMT algorithm have not been identi�ed in [27]. In this
chapter, it is argued that the unknown approximations taken by the CMT must be implicit
in the de�nition of cross-between-objects from the low dimensional solution presented
in [24, Section IV], as the generalization in [27] is fully analytical.

In order to identify the approximations taken by the CMT, this chapter bridges the gap
between the exact expressions of the desired decomposition and the ones provided by the
CMT. An exact expression for the decomposition is only accessible in DBT context. In
order to provide a fair comparison of the CMT decomposition with respect to the exact
decomposition, the CMT decomposition needs to be exercised taking as input the posterior
density produced in DBT context. Additionally, for the purpose of isolating the problem of
identifying the approximations, we consider a simple two targets case, assuming perfect
detectability and no false alarm.

7.3.1 The exact density decomposition
The exact decomposition in Equation (7.1) is only accessible in DBT context as it is generated
considering the two possible plot-label DA hypotheses.

p.sk ðZk/ =
p.sk ðZk*1/lDBT .zk ðsk/

L.zk/
P.zk/+

p.sk ðZk*1/lDBT .�.zk/ðsk/
L.�.zk//

P.�.zk// (7.1)

where �.zk/ permutes the order in the measurement vector zk ,

P.zk/ =
L.zk/

L.zk/+L.�.zk//
(7.2)

and
P.�.zk// =

L.�.zk//
L.zk/+L.�.zk//

(7.3)

where
L.zk/ = �

sk
p.sk ðZk*1/lDBT .zk ðsk/dsk (7.4)

and
L.�.zk// = �

sk
p.sk ðZk*1/lDBT .�.zk/ðsk/dsk (7.5)

7.3.2 The approximate density decomposition by the CMT
The decomposition in Equation (7.6) is the CMT approximation of the decomposition
in Equation (7.1). Note that Equation (7.6) incorporates the observation model in DBT
context. This is because although the CMT can be used in TrBD context, the identi�cation
of approximations needs to be done in DBT context (for sake of fair comparison with
the exact expressions which are only accessible in DBT context). It is convenient for this
purpose that the CMT allows to calculate decompositions independently from the context,
i.e. the CMT decomposes the Bayes posterior density disregarding whether this density
has been obtained in DBT or TrBD contexts.
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p.sk ðZk/ =
p.sk ðZk*1/.lDBT .zk ðsk/+ lDBT .�.zk/ðsk//

�sk p.sk ðZk*1/.lDBT .zk ðsk/+ lDBT .�.zk/ðsk//dsk
1sk ðxbkxxrk

+

p.sk ðZk*1/.lDBT .zk ðsk/+ lDBT .�.zk/ðsk//
�sk p.sk ðZk*1/.lDBT .zk ðsk/+ lDBT .�.zk/ðsk//dsk

1sk ðxbk<x
r
k

(7.6)

7.3.3 Approximations by the CMT decomposition at density
level

The approximation of the CMT decomposition in Equation (7.6) given the exact decompo-
sition in Equation (7.1) can be split as:

p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
�sk p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//dsk

1sk ðxbkxxrk
ø

p.sk ðZk*1/l.zk ðsk/
�sk p.sk ðZk*1/l.zk ðsk/dsk

P.zk/ (7.7)

p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
�sk p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//dsk

1sk ðxb1<x
r
k
ø

p.sk ðZk*1/l.�.zk/ðsk/
�sk p.sk ðZk*1/l.�.zk/ðsk/dsk

P.�.zk// (7.8)

where the subindex DBT has been dropped from lDBT for simplicity as it cannot be
confused with lT rBD because the identi�cation of approximations is formulated in DBT
context.

7.3.4 Identification of CMT approximations relevant for track
formation

Estimation performance is quanti�ed at the output of the tracker. The tracker does not
output densities but tracks. Therefore, the approximations formulated in Equations (7.7)
and (7.8) at density level do not provide a clear idea of the impact of the CMT approximations
on the estimation performance. This section aims at studying how the density level
approximations propagate to the output of the tracker. In particular, how they a�ect
track-formation.

A common way to perform track-formation involves the calculation of two statistics of
interest: labeled tracks and corresponding labeling certainty estimates. Along the rest of
this section we study how the density level approximations (introduced by Equations (7.7)
and (7.8)) propagate to the statistics-of-interest level.

Exact solution for the statistics of interest
According to the exact decomposition from Equation (7.1), it is possible to calculate MMSE-
based labeled point estimates and labeling probabilities. The exact solution for the (MMSE)
labeled point estimates is:

Esk ðzk = �
sk
sk
p.sk ðZk*1/l.zk ðsk/

L.zk/
dsk (7.9)

Esk ð�.zk/ = �
sk
sk
p.sk ðZk*1/l.�.zk/ðsk/

L.�.zk//
(7.10)

The exact solution for the labeling probabilities is:

lpsk ðzk = P.zk/ (7.11)
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lpsk ð�.zk/ = P.�.zk// (7.12)

Approximate CMT solution for the statistics of interest
According to the CMT decomposition in Equation (7.6), it is possible to calculate MMSE-
based labeled point estimates and labeling probabilities approximations. In particular, the
CMT approximations for the exact solutions Esk ðzk and Esk ð�.zk/ are:

�Esk ðzk ø
1
�lpsk ðzk

�
sk ðxbkxxrk

sk
p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//

�sk p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//dsk
dsk (7.13)

�Esk ð�.zk/ ø
1

�lpsk ð�.zk/
�
sk ðxbk<x

r
k

sk
p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//

�sk p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//dsk
dsk (7.14)

Equivalently, the CMT approximations for the exact labeling probabilities lpsk ðzk and
lpsk ð�.zk/ are:

�lpsk ðzk ø �
sk ðxbkxxrk

p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
�sk p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//dsk

dsk (7.15)

�lpsk ð�.zk/ ø �
sk ðxbk<x

r
k

p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
�sk p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//dsk

dsk (7.16)

7.3.5 Study of CMT approximations at statistics-of-interest
level

For the sake of simplicity, we �rst study the approximation for the labeling probabilities.
Then, we do the same for the (MMSE) labeled point estimates.

Analytical comparison of exact labeling probabilities and CMT labeling
probabilities
The goal is to bridge the gap between the exact expression in Equation (7.11) and its CMT
approximation in Equation (7.15). Please note that:

L.zk/+L.�.zk// = �
sk
p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//dsk (7.17)

Therefore, we only need to compare the labeling likelihoods (numerators in Equa-
tion (7.2) and (7.15)). Namely L.zk/ and �sk ðxbkxxrk

p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
The exact expression for one of the two labeling likelihoods is:

L.zk/ = �
sk
p.sk ðZk*1/l.zk ðsk/dsk (7.18)
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This can be manipulated to match the region of integration used by the CMT approximation
of the labeling likelihood:

L.zk/ = �
sk
p.sk ðZk*1/l.zk ðsk/dsk

= �
sk
p.sk ðZk*1/l.zk ðsk/1sk ðxbkxxrk

+p.sk ðZk*1/l.zk ðsk/1sk ðxbk<xrkdsk

= �
sk
p.sk ðZk*1/l.zk ðsk/1sk ðxbkxxrk

+�^p.sk ðZk*1/l.zk ðsk/‘1sk ðxbkxxrk
dsk

= �
sk ðxbkxxrk

p.sk ðZk*1/l.zk ðsk/+�^p.sk ðZk*1/l.zk ðsk/‘dsk

(7.19)

Where � transforms any density into its symmetric (with respect to the diagonal xbk = x
r
k)

version. The last expression shows that there exists an exact formulation for L.zk/ when
forcing the integration region to be sk ðxbk x xrk . Based on this exact formulation, one can
analyze the CMT approximation for L.zk/:

�
sk ðxbkxxrk

p.sk ðZk*1/l.zk ðsk/+�^p.sk ðZk*1/l.zk ðsk/‘dsk

ø �
sk ðxbkxxrk

p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
(7.20)

Equation (7.20) should be interpreted as the �rst line being an exact expression and the
second line being its CMT approximation. After removing identical contributions on both
sides of the approximation sign:

�
sk ðxbkxxrk

�^p.sk ðZk*1/l.zk ðsk/‘dsk ø �
sk ðxbkxxrk

p.sk ðZk*1/l.�.zk/ðsk/ (7.21)

An equivalent derivation for lpsk ð�.zk/ and �lpsk ð�.zk/ leads to:

�
sk ðxbk<x

r
k

�^p.sk ðZk*1/l.�.zk/ðsk/‘+p.sk ðZk*1/l.�.zk/ðsk/dsk

ø �
sk ðxbk<x

r
k

p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
(7.22)

Same way as before, the �rst line is an exact expression (of L.�.zk/ in this case) and the
second line is the CMT solution. Since both expressions are not identical, we write an
approximation sign in between. After removing identical contributions on both sides of
the approximation sign:

�
sk ðxbk<x

r
k

�^p.sk ðZk*1/l.�.zk/ðsk/‘dsk ø �
sk ðxbk<x

r
k

p.sk ðZk*1/l.zk ðsk/ (7.23)

How good approximations in Equations (7.21) and (7.23) are will be the focus of
discussions in upcoming sections. For the moment, note that the CMT approximates
�sk ðxbkxxrk

�^p.sk ðZk*1/l.zk ðsk/‘dsk by calculating �sk ðxbkxxrk
p.sk ðZk*1/l.�.zk/ðsk/ in the process

of estimating L.zk/ and similarly for L.�^zk‘/ based on Equation (7.23).
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Analytical comparison of exact labeled point estimates and CMT labeled
point estimates
The exact expression for one of the two labeled point estimates is:

Esk ðzk = �
sk
sk
p.sk ðZk*1/l.zk ðsk/

L.zk/
dsk (7.24)

This expression can be manipulated to match the region of integration used by the CMT
approximation of the labeled point estimate:

Esk ðzk = �
sk
sk
p.sk ðZk*1/l.zk ðsk/

L.zk/
dsk

=
1

L.zk/ �sk
skp.sk ðZk*1/l.zk ðsk/1sk ðxbkxxrk

+ skp.sk ðZk*1/l.zk ðsk/1sk ðxbk<xrkdsk

=
1

L.zk/ �sk
skp.sk ðZk*1/l.zk ðsk/1sk ðxbkxxrk

+�^sk‘�^p.sk ðZk*1/l.zk ðsk/‘1sk ðxbkxxrk
dsk

=
1

L.zk/ �sk ðxbkxxrk
skp.sk ðZk*1/l.zk ðsk/+�^sk‘�^p.sk ðZk*1/l.zk ðsk/‘dsk

(7.25)

The last expression shows that there exists an exact formulation for Esk ðzk when forcing
the integration region to be xbk x xrk . Based on this, Esk ðzk is approximated by �Esk ðzk as:

1
L.zk/ �sk ðxbkxxrk

skp.sk ðZk*1/l.zk ðsk/+�^sk‘�^p.sk ðZk*1/l.zk ðsk/‘dsk

ø
1
�lpsk ðzk

�
sk ðxbkxxrk

sk
p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//

�sk p.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//dsk
dsk

(7.26)

Which can be simpli�ed as:

�
sk ðxbkxxrk

skp.sk ðZk*1/l.zk ðsk/+�^sk‘�^p.sk ðZk*1/l.zk ðsk/‘dsk

ø �
sk ðxbkxxrk

skp.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
(7.27)

and further simpli�ed as:

�
sk ðxbkxxrk

�^sk‘�^p.sk ðZk*1/l.zk ðsk/‘dsk

ø �
sk ðxbkxxrk

skp.sk ðZk*1/l.�.zk/ðsk/
(7.28)

Same way as before, the �rst line is an exact expression, and the second line is its CMT
approximation. Since both expressions are not identical, we write and approximation sign
in between. An equivalent derivation for Esk ð�.zk/ and �Esk ð�.zk/ leads to:

�
sk ðxbk<x

r
k

�^sk‘�^p.sk ðZk*1/l.�.zk/ðsk/‘+ skp.sk ðZk*1/l.�.zk/ðsk/dsk

ø �
sk ðxbk<x

r
k

skp.sk ðZk*1/.l.zk ðsk/+ l.�.zk/ðsk//
(7.29)
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which can be simpli�ed as:

�
sk ðxbk<x

r
k

�^sk‘�^p.sk ðZk*1/l.�.zk/ðsk/‘dsk

ø �
sk ðxbk<x

r
k

skp.sk ðZk*1/l.zk ðsk/
(7.30)

7.3.6 Numerical impact of the CMT approximations
Not many expressions need be remembered to follow the rest of this chapter: only the four
discovered approximations in Equations (7.21), (7.23), (7.28) and (7.30). These formulate
explicitly the (so far unknown) approximations required to bridge the gap between the
exact DBT solution and the CMT solution at statistics-of-interest level. This subsection uses
numerical examples to showcase the estimation errors introduced by these approximations.

We start by revisiting the results in [27] to observe that the estimation errors are indeed
negligible in the case of the problem illustrated in Fig. 7.4. For these particular set of
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Figure 7.4: Illustration of a closely-spaced objects scenario where the objects are close enough to introduce
labeling uncertainty, but can still be resolved.

trajectories, the visualization of the CMT estimation performance is provided in Fig. 7.5
(where the exact solution is implemented by Alg. 3 in chapter 4).

As illustrated in the �rst 10 seconds of the simulation in Fig. 7.5, the CMT approxima-
tions do not a�ect estimation performance in easy scenarios when objects are far apart
from each other. The approximations do not seem to produce underperformance when
labeling certainty is compromised as illustrated in Fig. 7.5 either. This type of labeling
uncertainty is, in practice, generated by scenarios where the objects are closely-spaced
with respect to maneuverability/update-rate of the system, but they can still be resolved in
the measurements.

Following simulation results show that the error introduced by the CMT approximations
is especially noticeable when the objects are so close to each other that the Bayes posterior
becomes unimodal. This happens in practice when the objects get closely-spaced with
respect to sensor resolution (the objects cannot be resolved in the measurements). The
visualization of estimation underperformance of the CMT for the scenario in Fig. 7.6 is
presented in Fig. 7.7
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Figure 7.5: Illustration of a closely-spaced targets situation. Cross Modeling Tracker point estimates perfectly
match the references for evaluation (+ points generated using Alg. 3). Also, the CMT labeling certainty associated
to this particular assignment of labels seems to be very accurate. Note that this is done by the CMT without using
any data-association method.
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Figure 7.6: Illustration of a extremely closely-spaced objects scenario (closer than sensor resolution) where the
joint multiobject posterior density becomes unimodal.

It is in scenarios such as the one in Fig. 7.7 where the approximations introduced by
the CMT result in noticeable estimation error. Especially, along the simulation time steps
where the objects are closer than the sensor resolution. These results are consistent with
the ones observed in Fig. 7.3 with other type closely-spaced target trajectories.
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Figure 7.7: Illustration of extremely closely-spaced targets situation. Cross modeling based point estimates do not
match the references for evaluation (+ points generated using Alg.3). Labeling certainty estimation is also biased.

7.3.7 Relevant analytic remarks
The CMT approximations have been formulated analytically (see Equations (7.21), (7.23), (7.28)
and (7.30)) and their impact has been showcased with numerical simulations (see Figs. 7.5
and 7.7). For practical closely-spaced target scenarios, the joint multitarget density tends to
adopt permutation invariant shapes as illustrated in Figs. 7.4 and 7.6. This observation has
been also reported in [42][30]. This subsection provides analytical remarks to further un-
derstand the e�ects of the approximations in practice. The interpretation of these remarks
will lead the optimization process in the following section.

� Remark 1: Provided p.sk ðZk*1/ is permutation invariant, the approximations in
Equations (7.21) and (7.23) become exact:
assume p.sk ðZk*1/ =p(�.sk/ðZk*1/,
then,

�
sk ðxbkxxrk

�^p.sk ðZk*1/l.zk ðsk/‘dsk = �
sk ðxbkxxrk

p.sk ðZk*1/l.�.zk/ðsk/dsk (7.31)

�
sk ðxbk<x

r
k

�^p.sk ðZk*1/l.�.zk/ðsk/‘dsk = �
sk ðxbk<x

r
k

p.sk ðZk*1/l.zk ðsk/dsk (7.32)

� Remark 2: Provided p.sk ðZk*1/ is permutation invariant, the exact expressions in the
left hand side of Equations (7.28) and (7.30) can be calculated with no error as the
permuted version of the results in the right hand side of Equations (7.28) and (7.30),



7.3 Approximations in the CMT and their impact on estimation performance

7

101

assume p.sk ðZk*1/ =p(�.sk/ðZk*1/,
then,

�
sk ðxbkxxrk

�^sk‘�^p.sk ðZk*1/l.zk ðsk/‘dsk

= �^�
sk ðxbkxxrk

skp.sk ðZk*1/l.�.zk/ðsk/dsk‘
(7.33)

�
sk ðxbk<x

r
k

�^sk‘�^p.sk ðZk*1/l.�.zk/ðsk/‘dsk

= �^�
sk ðxbk<x

r
k

skp.sk ðZk*1/l.zk ðsk/dsk‘
(7.34)

7.3.8 Interpretation of the remarks in the context of the
optimization problem

The �rst remark justi�es that the plain CMT provides very accurate labeling uncertainty
estimation. In fact, under the assumption of permutation invariant p.sk ðZk*1/ densities,
Equations (7.31) and (7.32) prove analytically that the labeling uncertainty estimates become
asymptotically exact as the number of particles grows to in�nity.

Although having permutation invariant p.sk ðZk*1/ is a su�cient condition for the CMT
to provide exact labeling certainty estimates, this is not a necessary condition. In fact,
by considering Equation (7.31) one can also conclude that permutation strictly variant
p.sk ðZk*1/ densities lead to exact CMT labeling certainty estimation. To give an example,
consider a strongly asymmetric p.sk ðZk*1/ such as the one in in Fig. 7.8, the product of
p.sk ðZk*1/ and l.zk ðsk/ (in Equation (7.31)) leads to non-zero probability mass only under
the diagonal (xbk = x

r
k). Note that l.zk ðsk/ is one of the two association likelihoods de�ned by

convention, e.g. let l.zk ðsk/ be the association likelihood hypothesizing that the detection
of the object blue is the one at the larger range.

Taking into account mention asymmetric p.sk ðZk*1/ density and convention, the �rst
integral in Equation (7.31) becomes zero as all the probability mass is swapped above the
diagonal after the operator � is applied. Finally, the second integral is also zero due to the
lack of overlapping between p.sk ðZk*1/ and l.�zk ðsk/. For this reason, the CMT produces
almost exact estimates along the �rst 10 seconds of the simulations in Figs. 7.5 and 7.7.

The second remark proves that the calculation of the labeled tracks by the CMT is
not exact. This theoretical mismatch seems to be negligible in practice when the targets
are far away from each other or relatively closely-spaced (but still resolved). This can be
concluded from the numerical results in Fig. 7.5. The same theoretical mismatch becomes
non-negligible in practice when the targets are extremely closely-spaced, as illustrated by
the arti�cial �track separation� observed in the numerical results from Fig. 7.7.

In order to correct the theoretical mismatch in the labeled point estimates, the result of
the integrals in the right hand side in Equations (7.28) and (7.30) needs to be label-swapped.
Introducing this modi�cation in the process of calculating CMT labeled tracks is not possible
by design. This is because the CMT does not have access to the individual likelihoods
l.zk ðsk/ and l.�.zk/ðsk/. Due to its DA-free nature, the CMT only has access to the sum
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Figure 7.8: Illustration of distanced objects scenario, where the objects are not yet close enough to introduce
labeling uncertainty.

of likelihoods l.zk ðsk/ + l.�.zk/ðsk/. Factorizing l.zk ðsk/ + l.�.zk/ðsk/ is not possible when
calculating the CMT track estimates after introducing the label swap from Equations (7.33)
and (7.34). Therefore, compensating for the bias in the CMT labeled tracks is not a trivial
concern.

7.4 Mitigation of the impact of the CMT approxima-
tions on estimation performance

The previous section has provided theoretical interpretations and practical observations.
As a conclusion, the focal point of the optimization problem should be on the extraction of
CMT labeled point estimates or tracks. In particular, the goal is to mitigate the arti�cial
�track separation� when considering unresolved targets.

The optimization strategy proposed in this section is based on the assumptions that
p.sk ðZk*1/ is permutation invariant and that �.sk/ is a good approximation for sk when the
targets are extremely closely-spaced.

The former assumption seems to be realistic based on the shape of the density observed
in Fig. 7.6. The later assumes that the multitarget state vector remains unaltered under label
permutation, which is a realistic condition when the joint multitarget position estimates
lay on one point of the diagonal. Under these assumptions, the CMT becomes exact also in
the calculation of labeled tracks when tracking extremely closely-spaced targets. Note that
when the second assumption does not hold (for non-closely-spaced targets), the theoretical
mismatch exposed by the second remark has negligible degradation e�ect as commented
in previous section.

7.4.1 Proposed optimization
The fact that the CMT labeled tracks su�er from arti�cial �track separation� when con-
sidering extremely closely spaced targets is a clear indication that the assumptions of
permutation invariant p.sk ðZk*1/ and/or sk ø �.sk/ do not hold to the full extent. Firstly,
the particle-based approximations in the implementation of the CMT algorithm may not
capture the symmetric shape of the p.sk ðZk*1/ density (including the tails) due to particle
depletion, even when the exact density p.sk ðZk*1/ is symmetric. Secondly, although most
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of the probability mass of p.sk ðZk*1/ is spread very close to the diagonal (see Fig. 7.6), the
tails of the density may spread over regions of the joint space where �.sk/ is certainly not
a good approximation for sk (see Fig. 7.6).

In this section we present an optimized CMT algorithm using a new proposal density
prioritizing the quality of the approximation of p.sk ðZk*1/ in the region close to the diagonal
(xbk = x

r
k) and diminishing its sampling on the tails. As a result, the approximation sk ø �.sk/

applied to each particle becomes more accurate. Additionally, the higher concentration of
samples in the region of highest probability mass produces a more symmetric approximation
of p.sk ðZk*1/.

The claim in this section is that the use of a customized proposal density will improve
signi�cantly the estimation performance of the CMT when considering extremely closely-
spaced targets, without producing signi�cant degradation of performance in all other cases.
The optimized particle-based �ltering algorithm is provided in the following subsection.
The modi�cations required for optimization will be derived according to the Importance
Sampling principle. Finally, numerical simulations will be used to evaluate the accuracy of
the claim.

7.4.2 The Optimal CMT algorithm
Alg 4. in chapter 6 describes the original CMT algorithm, only steps 5 and 7 need to
be modi�ed to describe the optimized CMT algorithm. In a recursive Bayesian method
implemented with a PF, the density p.sk ðZk*1/ has an exact formulation given the PF
approximation of the previous posterior p.sk*1ðZk*1/. In fact, p.sk ðZk*1/ is a weighted sum
of known densities:

p.sk ðZk*1/ ø �
sk*1

p.sk ðsk*1/
Np

É
i=1

wi
k*1�.s

i
k*1* sk*1/dsk*1

ø �
sk*1

Np

É
i=1

p.sk ðsik*1/w
i
k*1�.s

i
k*1* sk*1/dsk*1 ø

Np

É
i=1

wi
k*1p.sk ðs

i
k*1/

(7.35)

To approximate each p.sk ðsik*1/, the original CMT algorithm used the following proposal
density in step 5 in Alg.4 from chapter 6:

sik í q.sk/ = p.sk ðs
i
k*1/ (7.36)

The optimization presented in this chapter consists on sampling from the proposal
density:

q.sk/ = p.sk ðsik*1/.p.sk ðs
i
k*1/+p.�.sk/ðs

i
k*1// (7.37)

The use of this proposal density widens the sampling space when the targets are not
close to each other and adaptively sharpens it as the targets are approaching. Therefore,
this proposal density results in a better approximation of p.sk ðZk*1/ in the area close to
the diagonal xbk = x

r
k when the targets are extremely close to each other. By these means,

the approximation sk ø �.sk/ applied at particle level becomes more accurate, bringing the
optimized CMT implementation closer to exactness in terms of track estimates.

Step 7 of Alg 4. needs to be modi�ed according the Importance Sampling principle. In
particular, the new calculation of the particle weight should be done as described in Alg.5:
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1 k = 0;
2 Draw Np samples sik from p.sk/;
3 Draw Np samples nik from p.nk/;
4 k = k+1;
5 Draw Np samples sik from p.sk ðsik*1/.p.sk ðs

i
k*1/+p.�.sk/ðs

i
k*1//;

6 Calculate oik according to the de�nition of �order� under test;
7 Given zk, obtain �wi

k = p.zk ðs
i
k/_.p.s

i
k ðs

i
k/+p.�.s

i
k/ðs

i
k//;

8 Normalize weights wi
k = �wi

k_‡
Np
j=1 �w

j
k ;

9 Resample from �p.sk ðZk/ =‡Np
i=1wi

k�.sk * sik/:;
10 Extract LPEs according to Equation 6.15;
11 Obtain certainty measures of LPEs

according to Equation 6.16;
go to 3

Algorithm 5: Pseudo-code of the PF algorithm for the optimized CMT. Modi�cation
over the original algorithm are in steps 5 and 7.

7.4.3 Discussion on estimation performance: regular CMT Vs
optimized CMT

As illustrated in Figs. 7.9 and 7.10, estimation results are more accurate when using the
optimized CMT algorithm. The use of convenient proposal densities aids at mitigating the
impact of the CMT approximations. In particular, the �track separation� artifact produced
by the regular CMT when the targets are extremely close to each other can be reduced
signi�cantly.
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Figure 7.9: Regular CMT estimation performance for extremely-close targets.
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Figure 7.10: Optimized CMT estimation performance for extremely-close targets.

7.5 Conclusions
Evaluation results of the algorithms in chapters 5 and 6 for data-association-free tracking
have been provided with simulations involving closely-spaced trajectories. These algo-
rithms are the non-linear and/or non-Gaussian (non-LG) implementation of the Unique
Decomposition (UD) derived in chapter 5 and submitted for publication as [62] and the
Cross Modeling Tracker (CMT) derived in chapter 6 and published in [27]. Both algorithms
subject to evaluation provide complete solutions for the Track-before-detect (TrBD) MOT
problem, including characterization of labeling uncertainty without formulating any type
of Data Association (DA) problem.

In spite of the non-LG implementation of the UD providing accurate estimation after
closely-spaced targets have separated su�ciently, the CMT outperforms the non-LG imple-
mentation of the UD overall, especially when targets are in closely-space. Nevertheless,
initial results have shown that the CMT is not an exact solution. This chapter has focused
on optimizing the CMT from the base line solution derived in chapter 6.

To achieve the optimization of the CMT, this chapter has followed a two-steps approach.
Firstly, the CMT approximations have been analytically formulated and the impact of such
approximations has been illustrated with numerical examples. Secondly, the degradation
due to the CMT approximations has been mitigated by using a convenient proposal density
at PF implementation level. Simulation results have shown that the proposed optimized
algorithm outperforms the original CMT algorithm presented in chapter 6 [27].
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8.1 Conclusions
In this thesis the Multiple Object Tracking (MOT) problem involving closely-spaced objects
is treated based on intensity map measurements. Although many sensor systems may
produce these type of measurements, the contributions in this thesis are illustrated on
the basis of raw radar measurements, such as e.g. range-azimuth maps. This particular
problem has been coined in literature as Track-before-Detect (TrBD) MOT. TrBD MOT
solutions have been reported to be especially relevant in the tracking of low SNR objects
and in the tracking of closely-spaced targets, where a traditional detection-based tracker
would have to deal with merged measurements. At a higher level, this thesis also tackles
the problem of detecting anomalous target behavior. Solutions to this problem are relevant
in societal applications such as for instance security assessment.

Despite the existence of many prior solutions for the detection-based MOT problem,
also known as Detect-before-Track (DBT) MOT, the contributions in this thesis do not rely
on any of such results. This is because TrBD MOT problems preclude the formulation of
Data Association (DA), an essential component in traditional DBT context which turns
the �ltering process into a tracker by explicitly characterizing labeling uncertainty. As no
existent characterization of labeling uncertainty can be applied to the TrBD MOT problem
due to the absence of detections, we are left with no solution to the labeling problem when
using raw data to track the targets. This results in degraded tracking performance when
tracking closely-spaced targets, as showcased in the preliminary chapters of the thesis.
The most important conclusion extracted from these preliminary studies is that while DBT
MOT solves the labeling problem in a pre-�ltering stage (via DA), TrBD MOT is forced to
solve it in a post-�ltering stage by inferring a labeling-dependent decomposition of the
Bayes posterior. Therefore, it is a recurrent focus of the thesis to deal with the underlying
problem of decomposing the Bayes posterior density, as it is in this decomposition where
the information about labeling can be found.

Some general considerations hold along the thesis. Firstly, this thesis considers the
worst case scenario assuming that intensity map measurements do not provide any labeling
information. In other words, it is assumed that the likelihood model for the measurements
given the state is invariant under label permutations. Nevertheless, although techniques
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based on identi�cation through measurements fall out of the scope of this thesis, they can
be integrated seamlessly in order to reduce labeling uncertainty when tracking objects of
di�erent radar signatures. Secondly, this thesis considers the TrBD MOT problem assuming
the number of targets is �xed and known, which aids at isolating the problem of DA-free
characterization of labeling uncertainty. Nevertheless, this assumption does not restrict
generality as the proposed approaches can be integrated seamlessly with existent solutions
for the cardinality estimation problem in TrBD MOT.

The �rst novel contribution of the thesis is given in chapter 3, where the incorporation
of interacting target dynamic models is used to solve the problem of detecting anomalous
target behavior. Additionally, an automatic parameter tuning method is incorporated
in the recursive Bayesian framework to estimate coupled accelerations between targets.
The method exploits such information to close the sensing-tuning loop inside the tracker,
resulting in enhanced tracking performance including reduction of labeling uncertainty.
Such an adaptive method for modeling interacting target dynamics is relevant in this thesis
as objects get/remain closely-spaced only by performing coordinated maneuvering. Addi-
tionally, interesting societal applications of this method can be found as many anomalous
target behaviors involve some kind of interaction between the targets. For instance, safety
assessment warnings can be generated when the estimated amount of target interaction
exceeds the threshold of regular activity.

Chapter 4 presents a sensible method for evaluation of DA-free MOT solutions. The
main contribution of chapter 4 is a PF algorithm implementation providing optimal statistics
relevant for track formation. As no analytical form of such statistics exists in TrBD context,
the evaluation algorithm provided calculates them in DBT context, where a Data Association
dependent decomposition can be formulated analytically. This analytical decomposition
enables extraction of references both for the labeled tracks and corresponding labeling
certainties.

The presented algorithm will be incorporated as part of a criterion for performance
evaluation of DA-free trackers. Despite its DA-based construction, the evaluation criterion
can be used legitimately to evaluate solutions such as the UD-based and CMT algorithms,
which are designed for operation in TrBD context. This is because these algorithms
are designed to infer a relevant label-dependent decomposition of any posterior density,
disregarding whether this density has been generated in the context of DBT or TrBD.

Moving on from modeling and evaluation aspects to TrBD MOT algorithm design,
chapters 5, 6 and 7 deal with the almost-unexplored problem of characterizing labeling
uncertainty without relying on DA. In particular, the presented novel solutions tackle the
underlying problem of decomposing the Bayes posterior, trying to mimic the functionality
of inaccessible DA-dependent decompositions, such as e.g. the MHT decomposition.

Chapter 5 considers the Unique Decomposition (UD) by Blom and Bloem as the only
existent theoretical formulation capable of tackling the labeling problem without relying
on any type of DA. The main contribution of Chapter 5 is the application of the UD to the
TrBD MOT problem. This contribution deals with generalizing existent implementations of
the UD to non-linear and non-Gaussian problems. In particular, a two-PF recursive solution
is derived in order to estimate separately the Permutation Invariant and the Permutation
Strictly Variant components of the UD.

While the decomposition of the Bayes posterior targeted in chapter 5 is based on
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permutation invariance characteristics of the multitarget density, the main contribution of
chapters 6 and 7 is decomposing the Bayes posterior by means of hypothesizing crosses
between objects. This concept has physical meaning in the low dimensional case, where
two objects move in a 1D space. However, hypothesizing crosses between objects out of the
2*1D case is certainly not trivial. In order to make the so-called Cross Modeling Tracker
(CMT) usable for the general t *MD targets case, chapter 6 generalizes the concept of
cross-between-objects analytically. The novel CMT algorithm proposed here is validated
using the evaluation method from chapter 4 by simulating t *MD closely-spaced objects
scenarios.

Overall, this thesis provides novel tools to solve the TrBD MOT problem for closely-
spaced targets. In particular, two new methods to infer label-dependent decompositions
of the joint multiobject Bayes posterior density have been derived. The CMT can be
considered as the �rst step towards the TrBD counterpart of DBT Multiple Hypotheses
Tracking (MHT). The non-linear non-Gaussian implementation of the UD and the CMT
have been validated against the evaluation method in chapter 4.

Both approaches provide comparable results in terms of track estimation and labeling
uncertainty characterization. The advantage of applying the UD theory is that particle
self-resolving artifacts are prevented by design, allowing stable estimation with less amount
of particles than the CMT. The CMT outperforms the application of the UD for extremely
closely-spaced targets, especially in cases where the multitarget density becomes unimodal.
Moreover, the main advantage of the CMT is its wider applicability in arbitrarily high
dimensional cases. This is a current limitation of the UD theory, which has no existent
generalization for joint densities with more than 2 targets.

8.2 Future lines
As for future work, the formulation of the CMT within the RFS framework can be investi-
gated in order to add built-in cardinality estimation capabilities. This is required for the
CMT to be declared as a solution for the complete MOT problem, where the assumption of
known and constant number of objects does not hold. Additionally, studying the use of
the CMT in the context of DBT may lead to interesting advantages. This may be specially
the case when comparing with DBT methods in scenarios where DA needs to account for
large number of non-negligible hypotheses.

An interesting extension of the formulation in chapter 5 would be deriving the equiv-
alent algorithm dropping the assumption of invariance with respect to target dynamics.
Finally, a very interesting theoretical problem would be the extension of UD theory to
account for joint densities involving more than two targets.
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A.1 Calculation of Ab
The solution of the di�erential stochastic equation in Fig. (3.2) for �x� direction is,

sx.t/ = eAp.t/t � G.t/ �vx.t/e*Ap.t/tdt (A.1)

The discretization for a revisit time �t results in,

sx..k+1/�t/ = eAp.t/�tsx.k�t/+�
.k+1/�t

k�t
eAp..k+1/�t*�/G.�/ �vx.�/d� (A.2)

Therefore, the block Ab in (3.18) is given by the exponential matrix eAp.t/�t .
From linear algebra theory we know that for any continuous scalar-valued function

f .x/ : C E C and for any square matrix X ¸ Rnxn (or ¸ Cnxn):

f .X�t/ =M0
f .Jk1.�1/�t/ 0

7
0 f .Jkm.�m/�t/1

M*1; (A.3)

where �t is a scalar, M is nonsingular and Jk1.�1/,...,Jkm.�1/ are the so-called Jordan Blocks
associated to eigenvectors �1; :::; �m. Each of them de�ned as an upper triangular matrix
such that Jk.�/ ¸ Ckxk is,

Jk.�/ =0
� 1 0

7 7
� 1

0 �1
(A.4)

f .Jk.�/�t/ is de�ned as,

f .Jk.�/�t/ =

‘
r
r
r
r
p

f .��t/ �tf ¤.��t/ �t2
2@ �tf

¤¤.��t/ ::: �tk*1
.k*1/@ �tf

.k*1/.��t/
7 7 7 :

7 7 �t2
2@ �tf

¤¤.��t/
7 �tf ¤.��t/

0 f .��t/

a
s
s
s
s
q

(A.5)

Given these de�nitions, the matrix J is the Jordan canonical form of the matrix X through
the similarity transformation M , which existence is ensured in linear algebra theory.

J =0
Jk1.�1/ 0

7
0 Jkm.�m/1

=M*1XM (A.6)

X is, in our particular case, the continuous time system function for any of the �x�, �y�
directions,

Ap =0

0 1 0 0
0 0 0 0
0 0 0 1
k1 0 *k1 *k21

The similarity transformation,

M =
H

1 0 0 0
0 1 0 0
1 * k2

k1
1 1

0 1 �2 �3
I
;with �2 =

*k2*
ø
k22*4k1
2 ; �3 =

*k2+
ø
k22*4k1
2 (A.7)

satis�es J =M*1ApM as long as k1 and k2 are non zero and k22 q 4k1. We can neglect these
particular cases as k1 and k2 are considered unknowns (part of the state vector) and a
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particle �lter is considered for the implementation. Because of that, components k1 and
k2 of the particles are a�ected by the process noise in Eq. (3.25), therefore the mentioned
particular cases have probability zero.
Then, Ab can be put in the form of Eq. (A.3) as,

Ab = eAp�t =MH

1 �t 0 0
0 1 0 0
0 0 e�2�t 0
0 0 0 e�3�tI

M*1

which results in,

‘
r
r
r
r
p

1 �t 0 0
0 1 0 0

�2.1*e�t �3 /*�3.1*e�t �2 /
�2*�3 Ab.3;2/ �2 e�t �3*�3 e�t �2

�2*�3
e�t �2*e�t �3

�2*�3
�2 �3.e�t �2*e�t �3 /

�2*�3 Ab.4;2/ * �2 �3.e�t �2*e�t �3 /
�2*�3

�2 e�t �2*�3 e�t �3
�2*�3

a
s
s
s
s
q

(A.8)

where,
Ab.3;2/ = * k1.e�t �2*e�t �3*�t�2+�t�3/+k2�2.1*e�t �3 /*k2�3.1*e�t �2 /

k1 .�2*�3/

Ab.4;2/ = k1.�2*�3*�2 e�t �2+�3 e�t �3 /*k2�2�3.e�t �2*e�t �3 /
k1.�2*�3/
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A.2 Proof of the analytic description of the up-
date step (Eqations (5.11) and (5.12))

According to the de�nition of BB

�Ikðk = �
sk
min.p.sk ðZk/;p.�sk ðZk//dsk (A.9)

pI .sk ðZk/ =
min.p.sk ðZk/;p.�sk ðZk//

�Ikðk
(A.10)

pV .sk ðZk/ =
p.sk ðZk/*�Ikðkp

I .sk ðZk/
1*�Ikðk

(A.11)

Substituting p.sk ðZk/ =
p.zk ðsk/p.sk ðZk*1/

p.zk ðZk*1/
and exploiting p.zk ðsk/ = p.zk ð�sk/ leads to

�Ikðk =
�sk p.zk ðsk/min.p.sk ðZk*1/;p.�sk ðZk*1//dsk

p.zk ðZk*1/
(A.12)

pI .sk ðZk/ =
p.zk ðsk/

p.zk ðZk*1/�Ikðk
min.p.sk ðZk*1/;p.�sk ðZk*1// (A.13)

pV .sk ðZk/ =
p.zk ðsk/

p.zk ðZk*1/�Vkðk
.p.sk ðZk*1/*min.p.sk ðZk*1/;p.�sk ðZk*1/// (A.14)

Then recognizing that the above expressions can be written in terms of the components of
the UD of the predictive density p.sk ðZk*1/

min.p.sk ðZk*1/;p.�sk ðZk*1// = �Ikðk*1p
I .sk ðZk*1/ (A.15)

p.sk ðZk*1/*min.p.sk ðZk*1/;p.�sk ðZk*1// = �Vkðk*1p
V .sk ðZk*1/ (A.16)

and
p.zk ðZk*1/ = � p.zk ðsk/p.sk ðZk*1/dsk

= �Ikðk*1� p.zk ðsk/pI .sk ðZk*1/dsk +�Vkðk*1� p.zk ðsk/pV .sk ðZk*1/dsk

= �Ikðk*1p
I .zk ðZk*1/+�Vkðk*1p

V .zk ðZk*1/

(A.17)

This then leads to the result

�Xkðk =
�Xkðk*1 �sk p.zk ðsk/p

X .sk ðZk*1//dsk
p.zk ðZk*1/

=
pX .zk ðZk*1/�Xkðk*1

p.zk ðZk*1/

(A.18)

pX .sk ðZk/ =
p.zk ðsk/pX .sk ðZk*1/

pX .zk ðZk*1/
(A.19)
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A.3 Naive generalization of ok
A naive extension of the de�nition of �cross� from 2*1D to 2*2D settings will be presented
in this appendix. This is not only to illustrate the complexity of the problem but also to
familiarize the reader with some consistency checks that the correct extension of �cross�
should comply with.

The naive attempt presented in this appendix considers that Inequation (6.27) is the
�cross detector� for the 2*2D objects case. After all, a point can be evaluated by the l2*norm
function disregarding the dimensionality of the point. Only two formal modi�cations need
to be accounted for when extending Inequation (6.27) from 2*1D to 2*2D settings. First,
the l2*norm calculation for the 2*2D objects case becomes:

norm.s¤k * s¤k*1/ =
u
.xrk *x

r
k*1/2+.x

b
k *x

b
k*1/2+.y

r
k *y

r
k*1/2+.y

b
k *y

b
k*1/2 (A.20)

where now s
¤p
k = [xp;bk yp;bk xp;rk yp;rk ]T . Second, the permutation matrix � for the 2* 2D

objects case becomes:

� =
‘
r
r
r
p

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

a
s
s
s
q

(A.21)

Given these modi�cations, the results provided by the CMT for the 2*2D objects case
are shown in Figure A.1.

A.3.1 Discussion of results
The results reveal degraded estimation performance of the CMT both in the computation
of LPEs and labeling probabilities. In fact, LPEs result in high OSPA errors (specially after
objects separation) due to the well known �track coalescence� e�ect. This undesired e�ect
is expected if MMSE point estimates are extracted from multimodal densities when labeling
uncertainty characterization is not appropriately accounted for.

One can conclude that this attempt to generalize the de�nition of �cross� is naive. In fact,
the use of Inequation (6.27) as the �cross detector� does not remove particle mixing inside
each cluster after objects separation. This is illustrated at the bottom part of Figure A.1,
where the particle mixing-ratio after CMT clustering does not drop to zero after target
separation.
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Figure A.1: Evaluation of estimation performance of the CM method using a naive 2*2D �cross� detector. Alg. 2
generates the optimal references.
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