

Delft University of Technology

Frankenstein
fast and lightweight call graph generation for software builds
Keshani, Mehdi; Gousios, Georgios; Proksch, Sebastian

DOI
10.1007/s10664-023-10388-7
Publication date
2024
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Keshani, M., Gousios, G., & Proksch, S. (2024). Frankenstein: fast and lightweight call graph generation for
software builds. Empirical Software Engineering, 29(1), Article 1. https://doi.org/10.1007/s10664-023-10388-
7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-023-10388-7
https://doi.org/10.1007/s10664-023-10388-7
https://doi.org/10.1007/s10664-023-10388-7

Empirical Software Engineering (2024) 29:1
https://doi.org/10.1007/s10664-023-10388-7

Frankenstein: fast and lightweight call graph generation
for software builds

Mehdi Keshani1 · Georgios Gousios1,2 · Sebastian Proksch1

Accepted: 30 August 2023
© The Author(s) 2023

Abstract
Call Graphs are a rich data source and form the foundation for advanced static analyses that
can, for example, detect security vulnerabilities or dead code. This information is invalu-
able when it is immediately available, such as in the output of a build system. Call Graph
generation is a whole-program analysis: not just the application, but also all its dependen-
cies are processed together. Recent work has shown that even advanced static analyses can
use summarization techniques to substantially improve runtime; however, existing analyses
focus on soundness, and as such remain very expensive. When executed in the build system,
which typically has limited resources, even powerful servers suffer from slow build times,
rendering these analyses impractical in today’s fast-paced development. In this paper, we
aim to strike a balance between improving static analyses while remaining practical for use
cases that require quick results in low-resource environments. We propose a summarization-
based implementation of a Class-Hierarchy Analysis algorithm for call graph generation of
Java programs. Our approach leverages the fact that dependency sets often do not change
between builds: we can generate call graphs for these dependencies, cache their generation
for subsequent builds, and using a novel stitching algorithm, Frankenstein, merge all partial
results into a complete call graph for the whole program. Our evaluation results show that this
lightweight approach can substantially outperform existing frameworks. In terms of speed
improvements, Frankenstein surpasses the baselines by up to 38%, requiring an average of
just 388 Megabytes of memory. This makes the proposed approach practical for build sys-
tems with limited memory resources. Despite these optimizations, our generated call graphs
maintain a near-identical set of edges when compared to the baselines, achieving an F1 score
of up to 0.98. This summarization-based approach for call graph generation paves the way
for using extended static analyses in build processes.

Keywords Software engineering in practice · Call graph generation · Build systems ·
Software ecosystems

Communicated by: Sigrid Eldh, Davide Falessi and Burak Turhan

This article belongs to the Topical Collection: Special Issue on Software Engineering in Practice.

B Mehdi Keshani
m.keshani@tudelft.nl

Extended author information available on the last page of the article

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10388-7&domain=pdf
http://orcid.org/0000-0002-8647-0067

 1 Page 2 of 31 Empirical Software Engineering (2024) 29:1

1 Introduction

Continuous integration and delivery have revolutionizedmodern software engineering.Many
tools and analyzers are applied in the build pipelines to enhance developers’ productivity
(e.g., improving the handling of pull requests (Vasilescu et al. 2015)). However, this comes
at a price: increased build time, which hinders build servers from providing fast feedback.
Developers have to decide between faster builds ormore helpful analyses. Especially in open-
source software, developers often use shared, resource-limited build services like GitHub or
TravisCI, which require fast and lightweight tools. For instance, Dependabot (Dependabot
2023) conducts relatively basic analysis at the versioned package level to identify vulnera-
ble dependencies, which lags behind more advanced state-of-the-art approaches (Hejderup
et al. 2018; Boldi and Gousios 2021). While this is less accurate, it is still useful and fast, so
developers widely accept the tradeoff. We envision leveraging the vast information on cen-
tralized infrastructures like GitHub for ecosystem-scale analyses to provide better support
for developers, further emphasizing the need for scalable approaches.

Traditionally, program analysis aims at soundness as the key property and is performed
through whole-program analyses, which are more precise but also expensive. Recent results
show that even advanced analyses can use summarization techniques without sacrificing
soundness (Schubert et al. 2021). However, despite substantial performance improvements,
they are still expensive, which hinders their widespread adoption in practice, especially
when high performance is needed. Several thought leaders in the field advocate for relaxed
requirements on soundness and favor trading off soundness to make program analyses more
relevant in practice (Livshits et al. 2015). Previous work has shown that it is possible to
summarize static analyses and pre-compute certain parts of an analysis (Toman andGrossman
2017; Nielsen et al. 2021; Schubert et al. 2021). Recent work even demonstrates that pruning
analysis results, while being highly unsound, can have positive effects for users, as it results
in faster execution and higher precision of two static analyses (Utture et al. 2022).

Many advanced program analyses, such as the detection of vulnerable call chains or
unused code, rely on a call graph (CG), an approximation of all call relations between
different callables (i.e., methods) of a system. CGs are generated through powerful data and
control flow analyses on the whole program, including all of its dependencies. Unfortunately,
generating the CG of an average program can easily take minutes, even when only basic
algorithms are used. The resulting CG will take up several gigabytes of memory for big
programs (e.g., h2o project (2023)), often even more during the generation. This is neither
practical for build systems nor for analyses of large codebases. While the former are limited
by their resources, analyses of the latter are usually restricted to static information (Dyer
et al. 2015) because advanced analyses are beyond existing approaches due to time and
memory requirements. We observe, though, that the largest part of a CG originates from
dependencies, both direct and transitive. Research has shown that 81.5% of programs keep
outdated dependencies (Kula et al. 2018), and it is evident that between the small and frequent
changes of two subsequent builds, the likelihood of dependency change is even lower. We
propose to leverage this and eliminate redundancy to speed up CG generation. The same idea
applies in software ecosystems where a few popular libraries are included in many programs,
so caching and reusing their analysis results pays off (Keshani 2021).

In this paper, we investigate the idea of pre-computing Partial CGs (PCGs) that store
minimal information about isolated dependencies (e.g., their declared types and methods)
and reducing the CG generation to combine these partial results in three distinct steps. 1)
Resolve all (direct and transitive) dependencies of the program at hand. 2) Generate a PCG for

123

Empirical Software Engineering (2024) 29:1 Page 3 of 31 1

each (isolated) dependency and remember the type hierarchies defined in the dependency.
Similar to the caching of dependencies in a build job (to prevent re-downloading), pre-
computed CGs can be cached across builds. They need to be computed once per dependency
and can then be reused whenever this particular dependency is used. 3) Merge the PCGs
using our novel stitching algorithm.

In contrast to previous work on summarization (Schubert et al. 2021), we are willing to
relax soundness guarantees and put a strong focus on investigating the trade-offs necessary
for a practical approach. Schubert et al. (2021) improve the speed of CG generation using
summarization. They evaluate this formally on several projects. However, it is unclear how
effective this approach is in practice when analyzing large projects with many or large depen-
dencies. An example of this trade-off is our decision to pick Class-Hierarchy Analysis (CHA)
for the CG generation. CHA is a very basic algorithm, but it only needs to preserve the type
hierarchy and call site information. This is the least amount of information with which it
is possible to generate a CG. The Reachability Analysis (RA) algorithm requires even less
information, but the usefulness of the resulting CG drastically drops due to high imprecision.
This makes CHA the most applicable approach for our use cases.

Advanced approaches, likeModAlyzer, can generate more accurate results and, through
summarization, decrease CG generation by 90% (they report a reduction from 4h to 25min)
(Schubert et al. 2021). However, this takes too long for our use case. Moreover, it is infeasible
to preserve the required context information for complex algorithms on shared infrastructure,
as the points-to-graph and CG quickly grow to enormous sizes. Existing studies found that
practical static analyses are often not sound (Sui et al. 2018) or that pruning static analysis
results through machine learning (ML) can result in increased usability (Tripp et al. 2014).
While these are fundamentally unsound solutions, they are promising directions to make
static analysis more practical. It is necessary to further investigate the trade-off between
soundness, precision, and speed. In this study, we investigate these trade-offs using real-
world experiments in great detail.

We demonstrate the validity of our approach in an extensive set of experiments that com-
pare our stitched results with the state-of-the-art static analysis frameworksOPAL (Eichberg
et al. 2018; Helm et al. 2020) and WALA (T. j. watson libraries for analysis 2023). We use
them for two tasks: first, we generate PCGs for isolated versioned packages. Second, we run
them on whole programs to generate a baseline for comparing speed and correctness. Based
on our experiments, we have observed that after the cache is filled, our primary use case
of performing subsequent builds experiences a significant improvement in execution speed,
ranging from an average of 15% to 38%. We further demonstrate that the CGs generated by
our approach for the whole program are comparable to those generated by the baselines. A
comparison of the resulting sets of callables in the CGs reveals that our approach achieves a
precision of 0.93 for OPAL and 0.99 for WALA. Furthermore, it attains a recall of 0.97 for
WALA and 0.95 for OPAL. Moreover, we illustrate that, on average, our approach requires
between 388 and 432 Megabytes (Mb) of memory to generate a whole-program CG further
highlighting its efficiency in real-world applications.

Our manual investigation shows that any deviations in precision and recall are not inherent
to our approach and could be fixed with more engineering effort on the partial analysis. We
believe that our approach is promising because the minor reduction in recall allows for
improvements that make it practical for inclusion in CI tools.
Overall, this paper presents the following main contributions:

– Adopting an existing library summarization technique for CG generation through a novel
stitching algorithm

123

 1 Page 4 of 31 Empirical Software Engineering (2024) 29:1

– Revisiting existing evaluationmethodologies with a focus on correctness, scalability, and
memory consumption designed particularly to assess the practicality of our proposed
approach

– Extensive evaluation on a real-world Maven sample

We release our tool, the dataset, and the analysis scripts on the artifact page of this paper
(Repository of the paper 2023).

2 Background

In this section, we first introduce the terminology that is utilized throughout this study.
Subsequently, we provide an overview of existing studies related to our research.

2.1 Terminology

To ensure clarity and precision, we present definitions of the key terms used in this article. It
is important to note that some of these terms may have different and overlapping meanings
in various contexts. Therefore, we aim to establish a shared understanding of these concepts
for the rest of this article. The definitions are as follows:

ProgramA program refers to a piece of code written in any programming language, regard-
less of its size or distribution method.

Artifact An artifact is a program distributed to users, offering features related to a core
idea.Artifactsmay evolve over time, addressing existing issues or adding new functionalities.
In Maven, this is referred to as groupId:artifactId.

Package This term is synonymous with artifact and can be used interchangeably. Package
is also commonly used to denote namespaces within programs. To avoid confusion in this
study, we use the term Java package when referring to namespaces.

Versioned- package A versioned package is a snapshot of an artifact at a specific point in
time. Versioned packages are released on repositories to be used by others. In Maven, this is
referred to as groupId:artifactId:version.

Project A project is a domain containing multiple packages (groupId). While the term
project may also be used to refer to artifacts or versioned packages in other contexts, in this
study, we consistently use the term project to represent the domain holding a groupId and
containing packages.

Dependency A dependency relationship occurs when one versioned package, such as A,
includes another versioned package, likeB, in order to utilize its functionality. In this scenario,
A is considered the dependent program,whileB is the dependency. InMaven, this relationship
is established by adding a dependency tag to the pom.xml file of A.

Library This term is synonymous with a dependency, and the two are used interchangeably.

Whole program A whole program encompasses the entire code required for successful
compilation, including any versioned package listed as a dependency (direct or transitive).

Dependency set A dependency set consists of the versioned packages required for a pro-
gram to compile successfully. The process of determining this set is referred to as dependency
resolution. The concept of a dependency set shares similarities with the whole-program

123

Empirical Software Engineering (2024) 29:1 Page 5 of 31 1

notion, as both involve the collection of all necessary components for successful compila-
tion.

Application An application refers to a program that is the current focus of attention. It
serves as the root of a dependency set and the starting point for analyses, such as dependency
resolution. The application is also included in the dependency set.

2.2 RelatedWork

CG generation algorithms There are various algorithms for constructing CGs, includ-
ing Tip and Palsberg (2000); Shivers (1988); Sundaresan et al. (2000). The most basic
algorithm is a RA which has multiple variants ranging from only considering method names
to also considering the signatures of reachable methods. RA has been used in a variety of
use cases in the literature, with pioneers such as Srivastava (1992) and Goldberg and Robson
(1983).

Although RA is sound and fast, it significantly reduces precision. To address this Dean
et al. (1995) proposed Call Hierarchy Analysis (CHA) as a more precise extension. This
algorithm matches the called method’s signature to subtypes of the receiver type and finds
implementations of the dynamically dispatched target. While CHA is sound and scalable,
it is less precise than other alternatives. It is, however, a good trade-off and the default CG
algorithm for most static analyzers. The next step towards greater precision is Rapid Type
Analysis (RTA), as introduced by Bacon and Sweeney (1996). RTA utilizes a CHA CG and
prunes its edges. Hence, this algorithm has a higher performance overhead compared to CHA.
RTA tracks allocated types and removes unreachable edges from theCHACG tomake theCG
more precise. It is worth noting that we do not propose a new algorithm in this paper. Instead,
we reuse the existing algorithms described here and combine them with other techniques to
make them practical for CI tools.

CG accuracy Several studies have investigated the soundness and precision of CGs.
By definition, a CG is considered sound if it covers all edges that are possible at runtime
and precise if it does not contain edges that cannot be observed at runtime. Sound analysis
is crucial for many use cases, especially security analysis, to avoid missing any positive
cases. However, a low precision may result in many false positive alarms, which can hurt
the usefulness of such an analysis. Increasing precision while maintaining soundness is a
challenging and computationally expensive task.

A dynamic analysis can capture a perfect CG for a program execution by instrumenting
the program and storing all observed invocations. However, this result is only valid for this
particular program execution. In contrast, statically generating a perfect CG is an undecid-
able problem (Landi 1992; Ramalingam 1994; Reps 2000). Furthermore, generating a more
precise graph often requires a slower CG construction process. Users can choose to trade off
precision for soundness and speed. However, some language features, such as reflection, are
difficult to approximate in a static analysis, and generating a sound CG can be challenging
in these cases. Livshits et al. (2015) proposed the term soundy to describe an analysis that
balances soundness, precision, and scalability. Additionally, Sui et al. (2020) investigated
the soundness of state-of-the-art CG constructions by comparing static and dynamic CGs.
They used the term recall instead of soundness because, unlike soundness, it is not a binary
term. Reif et al. (2019) proposed a benchmark and compared the soundness of existing CG
generators in their paper. Their results show that OPAL (Eichberg et al. 2018; Helm et al.
2020) is faster than WALA (T. j. watson libraries for analysis 2023), SOOT (Lam et al.

123

 1 Page 6 of 31 Empirical Software Engineering (2024) 29:1

2011), and DOOP (The doop project 2023), but has lower coverage. They did not study other
frameworks such as SLAM (Ball and Rajamani 2001) and Chord (2023). In this paper, we
do not compare our approach to these studies. However, we are inspired by the concepts of
precision and recall introduced in these studies and adopt them to compare CGs generated
by different approaches.

Improving existing analyses There is a category of studies that instead of proposing
new algorithms focuses on improving the existing ones from different aspects by utilizing
various techniques.

For example, some studies have investigated CG generation of applications versus
libraries (Ali and Lhoták 2012, 2013). Ali (2014) extensively investigated the effects of
the absent parts of a program during analysis. Reif et al. (2016) explain how different entry
point calculation can affect the results of library CG construction and suggest different con-
figurations for within-application and library CGs.

Other studies investigate incremental static analysis. Souter and Pollock (2001) created
the incremental Cartesian Product Algorithm (CPA). Tip and Palsberg (2000) improved the
scalability of CG generation for large programs. Alexandru et al. (2019) incrementally ana-
lyzed the historical representation of multi-revisioned software artifacts source code. Their
proposed approach removes redundant computation for similar parts of different versions of
an artifact. The approach only updates the changed parts of new versions in the CG.

Toman andGrossman (2017) discuss the challenges of static analysis and provide possible
solutions to deal with them together with some example articles. Their paper suggests solving
scalability through the pre-computation of library summary, which is very relevant to the idea
of our paper. However, they do not provide any implemented solution and only discuss ideas
that might solve concrete analysis problems. Unfortunately, CG generation goes beyond a
simple merge of summaries and is not trivial. Arzt and Bodden (2016) utilize a similar idea
for the data flow analysis of Android applications.

Nielsen et al. (2021) proposed an approach for combining precomputed modules to com-
pute a full CG. This study is highly relevant to our paper and emphasizes the importance of
modular CG construction. However, the focus is on JavaScript, which has vastly different
challenges than Java. Multiple studies have investigated the summarization techniques in
different domains such as data flow analysis and heap analysis (Reps et al. 1995; Sharir et al.
1978;Whaley and Rinard 1999). Gopan and Reps (2007) propose an approach for generating
summary information for a library function by analyzing its binary. In this study, the authors
do not focus on any particular use case such as CG generation.

Rountev et al. (2006, 2008) summarize the libraries and use them to do Interprocedural
Dataflow Analysis on a main program source code. Dillig et al. present a heap analysis
(Dillig et al. 2011) technique based on the summarization of functions. Kulkarni et al. (2016)
investigated the library summarization idea for CGgeneration and points-to analysis, which is
also closely related to ourwork.However, that paper has several shortcomings thatwe address
in our paper, including not comparing to any state-of-the-art CG generator, not studying
memory consumption, and only using a sample of ten programs. The most related work to
this paper has been presented by Schubert et al. (2021). The authors present ModAlyzer,
which uses summarization to generate CGs for C and C++ programs. The paper shows that
the approach does not have to sacrifice soundness while substantially improving the speed of
CG generation. However, the evaluation focuses on correctness and closely inspects results
for a limited selection of programs. One case is a large project, for which a runtime of 25
minutes is reported. While this improvement of 90% over the 4-hour baseline is impressive,
it is still impractical for our intended use cases. In addition to this, qualitative experiments

123

Empirical Software Engineering (2024) 29:1 Page 7 of 31 1

show for several smaller programs that the approach does not compromise correctness when
compared to a whole-program analysis. In our work, we decided to go a different route. First,
we employ a much simplerClass-Hierarchy Analysis that does not require tracking extensive
context information. Second,we decided to trade off soundness for execution speed to achieve
scalability. Finally, we believe it is important to understand the applicability of static analysis
to average programs, so we compile a larger set of real-world versioned packages and their
dependencies to evaluate our work.

While soundness is an important property of static analysis, relaxing this requirement to
achieve faster program analyses has been advocated by thought leaders in the field (Livshits
et al. 2015). Many recent works propose tools that are not sound but useful in practice (Sui
et al. 2020), like the rising area of machine learning that uses ML for increased usability of
static analysis results (Tripp et al. 2014). While these are fundamentally unsound solutions,
they are accepted as promising directions to make static analyses more practical. The most
recent example of this idea has been proposed by Utture et al. (2022). The idea to prune CGs
to make analyses more scalable is highly unsound, but the authors study the effect of the
pruning on two example analyses, type casts, and null pointer detection, and show that the
observed effect is small. Not all cases can be detected anymore, but the positive effect on
performance and actionability that can be achieved through higher precision outweighs the
loss in recall.

We are inspired by the studies that we introduced in this category to improve the exist-
ing frameworks. To the best of our knowledge, there are no existing studies that focus on
the practicality that can be achieved by the summarization of CG generation in real-world
scenarios.

3 Approach

In this paper, we present a novel approach for scalable CG generation of Java programs
that enables fast analyses, even in resource-limited environments. We call our approach
Frankenstein because it is based on the idea of computing partial results that are stitched
together to generate the final result. An overview of the general steps of this approach is
shown in Fig. 1. In the first step, all dependencies need to be resolved to generate the complete
dependency set. For each of these dependencies, a partial analysis result is requested from a
caching component, or created if it does not yet exist in the cache. This partial result consists
of 1) the PCG of the isolated dependency, which includes all static Call Sites (CSs) that
we can find in the bytecode, and 2) all types, their parent type, and their methods that are
being declared in this particular dependency. The subsequent step, the stitching, is the core
contribution of our approach. We first build a global type hierarchy (GTH) and merge all the
individual type information of the partial results. We then perform a basic class hierarchy

Fig. 1 Overview of CG construction for a project

123

 1 Page 8 of 31 Empirical Software Engineering (2024) 29:1

analysis (CHA) and expand the invocation targets found in the bytecode. This is achieved by
adding links to all overriding methods within the matching subtypes that override the original
targets.

While the underlying idea is straightforward, CG construction remains a complex task.
In the remainder of this chapter, we will elaborate on the individual steps and illustrate the
particular challenges and our strategies to overcome them.

3.1 Resolving Dependencies

Togenerate aCG for an application, it is essential to determine the concrete dependency set for
that application through a process known as dependency resolution. In this regard, the widely
used build automation tool Maven includes a built-in dependency resolver, simplifying
the task for developers. Our proposed tool, Frankenstein, relies on the Maven dependency
resolver to accurately compute the dependency set for an application.

It is worth noting that when defining dependencies in Maven, programs can specify
version ranges (Maven version ranges 2023).However, thismeans that dependency resolution
may not always be deterministic. A new release of any dependency, either direct or transitive,
could potentially alter the resolution result from the perspective of a particular package.

Although the set of available packages may remain stable, the resolution results can vary
depending on different contexts. Consider a scenario where a client application P has direct
dependencies on two versioned packages, namely A and B, both of which transitively rely
on a library L . However, each of these versioned packages requires a different version of L ,
leading to a resolution conflict in Maven. To resolve this, a breadth-first search algorithm
is used to select the version of L declared "closest" in the dependency tree of P . This is
because having two versions of the same package in a dependency set simultaneously is
not possible. Therefore, the closest version strategy prioritizes the most relied-upon version.
Thus, depending on whether P depends on A or not, the resolved dependency set might differ
when viewed from the perspective of B.

Overall, there are two challenges that make it unfeasible to simply generate a CG for
an application and its dependencies. Firstly, as previously mentioned, the utilization of a
specific dependency version is contextual. Secondly, the merging of partial results is not a
straightforward task and demands a significant level of interaction between the partial results,
which may even change based on the chosen dependency versions.

In Fig. 2, we present an example dependency set and the interactions among its ver-
sioned packages to illustrate the subsequent steps of our approach. The dependency set
comprises three versioned packages, and the dependency relations are depicted in the figure.
For instance, versions 0 and 1 of dep1 depend on dep2:0. We also demonstrate a time-
sensitive dependency resolution in this example, where app:0 specifies a version range
dependency on com.example:dep1:[0, 1]. This results in a time-sensitive depen-
dency resolution for app:0. For example, if the resolution is performed at time t1 when
the latest released version of dep1 is 0, then dep1:0 would be included in the depen-
dency set. Conversely, if the resolution is done at time t2 after version 1 of dep1 has also
been released, then the result would include 1. This time-sensitive dependency resolution
highlights the contextuality, the first challenge that we mentioned earlier.

The second challenge occurs at amore granular level,whereDep1 invokes thetarget()
method fromDep2. In amore complex scenario,Dep1 extendsDep2 andoverrides them1()
method. In the class App, the object dep is used to call m1(). Depending on the specific
type of variable dep, any overridden m1() from sub-classes of Dep2 could be invoked.

123

Empirical Software Engineering (2024) 29:1 Page 9 of 31 1

Fig. 2 Example of a dependency set

The exact type of dep depends on the time of dependency resolution. For example, if the
dependency resolution occurs in t1, we use dep1:0, and the implemented create()
method in this version returns a Dep1 instance, resulting in a call to Dep1.m1() in the
App class. However, in t2, when version 1 is used, an instance of Dep2 is returned, and
thus the callee of this call would be Dep2.m1(). In this example, the type Dep2 is used
to declare the variable dep, which is referred to as the "receiver type". Determining the
exact type of the receiver object is a challenging problem that different algorithms attempt
to narrow down to varying extents. The CHA algorithm generates a sound CG by including
all potential edges from all subtypes, such as Dep2 and its subtypes, including Dep1.

To generate a whole-program CG from partial results the only information that is fixed
for a versioned package can be stored and it becomes necessary to preserve enough context
information about the versioned package to allow merging the partial results later in the
process. For CG generation this minimal information is the PCG for the isolated dependency
and all its declared types and methods. For simplicity, we refer to this data as a PCG. When-
ever a whole-program CG should be generated, Frankenstein uses Maven for dependency
resolution. The resolved dependency set is then used for the subsequent steps in our approach.

3.2 Requesting or Creating PCGs

The next step in generating a whole-program CG is collecting the PCGs for all direct or
transitive dependencies of the project in question. We have this dependency set from the
previous step and we maintain a basic in-memory key-value store to manage access to the
individual results and act as a cache. The key of each PCG is a Maven coordinate that
is composed of a groupId, artifactId, and a version, which uniquely identifies a
package within the wholeMaven ecosystem. If the desired PCG is cached, it can be directly
returned, which eliminates redundant processing. However, if the PCG is not yet available
in our database, it has to be created first and then added to the cache for future use.

123

 1 Page 10 of 31 Empirical Software Engineering (2024) 29:1

To create the PCGs, we first download the binary (i.e., .jar file) of the dependency in
question from the Maven repository. We then use an existing static analyzer such as OPAL
(Eichberg et al. 2018; Helm et al. 2020) to build a CG for this isolated versioned package
and transform it into a PCG. Different static analyzers may have different configurations and
options that allow users to adjust the coverage, accuracy, etc. OPAL for example is highly
configurable.We have used it to generate PCGs and, for that, we configure it for librarymode,
which uses all publicmethods as entry points in the analysis.OPAL considers that non-private
classes, fields, and methods are accessible from outside, non-final classes are extendable and
non-final methods are overridable. We have also enabled rewriting of invokedynamic
instructions to make them easier to analyze. All other configuration options are left at their
default values. The complete configuration can be found in our open-source repository to
help others reproduce our results.

Using existing frameworks for generating the PCGs has substantial benefits. We do not
need to work directly with bytecode and can rely on existing tools. This also enables users to
use the framework of their choice as the approach is not dependent on any specific framework.
Since existing tools allow for the extraction of the required information for PCG construc-
tion, users can use the static analyzer they already have in their CI without adding another
dependency to their program.

As touched upon before, PCGs contain two different types of information: a snapshot of
the (incomplete) type hierarchy that is declared within the versioned package, including the
declaredmethods, as well as the information about CSwithin the versioned package. Figure 3
shows simplified examples of PCGs for versioned packages in the example dependency set
(resolved in t1).
Type Hierarchy PCGs store the Type Hierarchy (TH) that is defined in a versioned pack-
age. We use a naming convention similar to Java bytecode to identify types. For example, the
type App in the Java package apppackagewould be referred to as /apppackage/App.
We do not store parameters of generic types because due to the type erasure (Bracha et al.
1998) of Java, it is not possible to reason about them. We differentiate between types that

Fig. 3 PCGs of example versioned packages

123

Empirical Software Engineering (2024) 29:1 Page 11 of 31 1

have been declared inside the current versioned package (internal) and those in dependencies
(external).

For every stored type, we preserve the list of declared methods. As Java supports virtual
methods, we can use this later to infer all override relations. We store the method signatures
and preserve their name, list of parameters (including types), and the return type. For exam-
ple, the method signature of the well-known equals method Object.equals(Object)
would be stored as equals(/java.lang/Object)/java.lang/BooleanType.
For conciseness in Fig. 3 we eliminated the /java.lang/VoidType from the methods
with no return type.

Our data model allows for the storage of arbitrary meta-data as key-value pairs to cater
to the needs of future use cases. We use this, for example, to mark abstract methods without
implementation. These arbitrary metadata fields are also removed from the example in Fig. 3
for the sake of brevity.

Call Sites The minimal information that is required from a CG for later reconstruction
is a list of all CS that can be found in the PCG. A CS is an instruction in the bytecode that
results in a method call. For each CS, we identify the surrounding (source) method and the
target method that is being called, and we store this pair as one call relation. For each call
relation, we store the bytecode instruction type, e.g., static invocation.

As Fig. 3 shows, CSs of each source method are indexed by their program counter (pc).
Since pc is unique for each invocation site, we use it as a key. This is helpful for tracing the
results; however, it is not necessary for the approach, and one can use any unique key as an
index for each CS. For instance, in the case of the App class, there are two CS in the main
method. In the first one, dep is declared, and in the second one, it is used to call method
m1(). The receiver type of the first CS is /dep1package/Dep1 and it is used to call the
create()method. In the second CS, /dep2package/Dep2 is the receiver type since it
is the type of the variable dep. The first call uses static invocation while the second one
uses virtual invocation. For each CS, we also store the signature of the target method.
In the previous example, the first call’s signature is create()/dep2package/Dep2
and the second one is m1(). As mentioned before, we use existing tools, more specifically
already implemented CHA algorithms to build the PCGs. We only need static information,
and existing frameworks and algorithms preserve this information and can be used in this
phase. Only receiver type, invocation instruction, and target signature are required, which
are available in the bytecode itself without any additional analysis. One could even read the
bytecode and build the PCGs directly without using any third-party tool. However, this is
beyond the scope of this study. We aim for a lightweight approach that can be easily used on
top of existing tools.

Our database fits in regular machines’ memory, so we can keep it instantiated for our
evaluation. The data model is simple, making it easy to add an efficient, binary disk serializa-
tion. Generating the PCGs is expensive, and it is worthwhile to preserve partial results across
different analysis executions for any actual use case. For instance, build server integration
could preserve partial results from build to build for a substantial speed-up, similar to the
caching of Maven downloads. Alternatively, a central server can host an in-memory storage
of frequently used dependencies across many projects.

3.3 Inferring Global Type Hierarchy

After Frankenstein has acquired all PCGs for the different packages in the resolved depen-
dency set, the next step is to merge the (incomplete) typing information of the individual

123

 1 Page 12 of 31 Empirical Software Engineering (2024) 29:1

Fig. 4 Global Type Hierarchy of example versioned packages

versioned packages into a (complete) global type hierarchy. This creates the full picture of
the type-system that is used when executing the whole program. We call this a Global Type
Hierarchy (GTH).

Assuming that the dependency set is complete, merging the individual type hierarchies
can be reduced to joining the sets of internal types stored in the individual THs. As an exam-
ple, consider the example dependency set in Fig. 2 (resolved in t1). This set is DepSet =
{app:0, dep1:0, dep2:0} hence GT H = T Happ:0 ∪ T Hdep1:0 ∪ T Hdep2:0. All unre-
solved external types contained in the THs will appear as an internal type in one of the
other versioned packages. For convenience and efficient traversal of type hierarchies, we
transform this information into multiple index tables. These index tables are shown in
Fig. 4 for the example versioned packages. Every type is indexed using its full name since
this name should be unique in the classpath of the program otherwise it cannot be com-
piled. We create three different index tables. One table stores the parents of each type
based on the inheritance order. For example, the class /dep1package/Dep1 directly
extends /dep2package/Dep2 therefore the first parent that appears in the parent list
of /dep1package/Dep1 is /dep2package/Dep2. This sequence continues for each
type until we reach the /java.lang/Object class. After the list of all parent classes,
we also append a set of all interfaces that a type or any of its parents implement. This is
because Java always gives precedence to classes. Also, the order of super interfaces that
are appended to the list of parents does not matter because there cannot be two interfaces
with default implementations of the same signature in the parent list of a type. The par-
ent index table is not directly used in the stitching phase. It is used to facilitate creating
the children index and defined methods index. Another index that we create is a list of all
children of a type. We identify all types that extend or implement a given type, including
indirect relationships through inheritance. Indirect relationships occur when a type’s ancestor
extends/implements the given type, such as a grandparent. This set also does not keep any
order. The final index in the GTH is the list of methods that each type defines or inherits.
The signatures of these methods are then used as another index to find in which versioned
package they are implemented in. I.e. if a method is not implemented in the current type
itself we refer to its first parent that implements it. We use the ordered list of parents in
the parent index to retrieve this information efficiently. For example, as shown in Fig. 4
/dep1package/Dep1 inherits method m2() from its dependency dep2:0. Note that
since /dep1package/Dep1 overrides m1() we point to dep1:0 as the defining ver-
sioned package of this signature.

123

Empirical Software Engineering (2024) 29:1 Page 13 of 31 1

Fig. 5 Resolving edges of CSs

3.4 Stitching the Final CG

Once the PCGs are ready and the global type hierarchy has been established for the complete
dependency set, Frankenstein canmove to the most crucial part of the approach, the stitching.
Similar to a compiler that resolves symbols in an abstract syntax tree, we need to connect
the CSs that we found in the bytecode with all potential method implementations that could
be reached by the corresponding invoke instruction.

The algorithm to achieve this is sketched inFig. 5.After creating theGTH (Section 3.3), the
algorithm processes all CSs in all PCGs. The Java virtual machine (JVM) supports five differ-
ent invocation types that require specific handling (invokestatic, invokevirtual,
invokeinterface, invokespecial, and invokedynamic). Depending on the
invocation type, Frankenstein selects the correct resolution strategy for the call when process-
ing the CSs. While different invocation types are handled differently within JVM we treat
them in two categories of dynamic dispatch (invokevirtual, invokeinterface)
and regular dispatch (invokestatic, invokespecial) calls in our algorithm. In the
following, we briefly explain these invocation types and how we handle them.

Invokestatic invokestatic is used for regular static method calls. This case can be
directly resolved by adding an edge from the surrounding method to the static target method
from the instruction. As long as the dependency set is a valid resolution, the target type will
exist in the GTH and it will always have a matching method declaration signature either
implemented in the type itself or one of its parents. A static call T1.m() has to have an
implementation of m inT1 or one of its parents. If this is not the case, the resolved dependency
set is invalid and not executable.

invokespecial The invokespecial instruction is used for calling non-overridable
methods, like private methods, super methods, and constructors. Similar to static invocation,
the target type of the CS is in the GTH and can look up the method with a matching signature

123

 1 Page 14 of 31 Empirical Software Engineering (2024) 29:1

to draw an edge. For example, to resolve the constructor call T2.<init>(), we lookup
T2 and search for a parameterless constructor.

invokevirtual Instructions that require dynamic dispatch during runtime, invokevirtual
and invokeinterface, are the most challenging to resolve. In Java, the corresponding
CSs point to a base type or an interface, but during runtime, the receiving instance could
have any possible subtype of this base type. For example, even if the bytecode contains an
invocation of the Object.hashCode() method, the receiver type might be any type in
the GTH that overrides the hashCodemethod. Similarly, while the bytecode might contain
a reference to T3.hashCode(), T3might not override the method, but inherits it from its
superclass, in which case the correct target of the invocation is the method declared in the
superclass. Frankenstein supports both cases and searches for matching method signatures
in all subtypes of the target and draws edges to those that can be called. In case there is none,
it finds the first supertype that implements this signature.

invokeinterface This invocation is handled in the same way as invokevirtual in
the JVM. Some optimizations are performed by JVM based on which instruction is used
in the bytecode but this does not affect our approach. These optimizations are done on
the virtual method table of JVM which we do not use in our approach. Moreover, for
invokeinterface, it is possible to encounter target methods that are defined outside
of the hierarchy of the target type. For illustration, consider a base type B that implements m
and an interface I that defines m as well. A subtype S implements I and extends B. As m is
inherited, it is not necessary to implement it. For a CG generator, this is a challenging case to
handle, as the invokeinterface instruction points to I, while the correct target is B.m,
despite B having no relation with I. Frankenstein can handle these cases.

Invokedynamic Recent versions of the JVM have introduced the invokedynamic
instruction to support alternate programming languages for the JVM that might use more
advanced invocation logic. Resolving such invocations is the most challenging part of CG
generation tools. Existing frameworks usually have limited support for these invocations since
they require very expensive operation due to their highly dynamic nature. Some frameworks
such as OPAL can rewrite these invocations using other invocation instructions. We do
not have special handling for these invocations in the stitching algorithm. However, if the
framework that we use for PCG construction has the feature to rewrite them we utilize it to
handle them automatically without special reasoning. As an illustrative example, consider
a scenario in which the OPAL framework employs the invokevirtual instruction to
transform a particular CS that was initially an invokedynamic CS. During the bytecode
analysis for PCG creation, we store the modified version of the CS. Subsequently, in the
stitching phase, we utilize the dynamic dispatch handling technique that was previously
explained.

Figure 5 shows how we use CS information and GTH to resolve each CS of the example
dependency set. Consider the second CS of App.main with pc = 2. This invocation
uses virtual instruction; hence, we need to use the dynamic dispatch category of handling
for it. For that, we first query the children index of the GTH to retrieve all children of
dep2package/Dep2. The result of this query is /dep1package/Dep1. Thus we add
this child type to the list of receivers. In the next step we query the definedmethods within the
/dep1package/Dep1 and /dep2package/Dep2 using the defined methods index of
GTH. Having this information we can easily ask for the exact location of the target method.
More specifically we query the result of the previous step for the method signature of m1().

123

Empirical Software Engineering (2024) 29:1 Page 15 of 31 1

This will identify the two places where m1() is defined and are thus potential targets of this
call. One target is the implementation within dep1:0 inside Dep1 class and the other one
is implemented in dep2:0 in the Dep2 class. The next CSs will be also processed similarly
(see Fig. 5). After all, PCGs have been processed, the resulting CG is ready and can be used
for further static analyses.

4 Evaluation

The approach that we discussed in this paper tries to improve the speed of CG generation
for consecutive software builds by removing redundant computations. In this section, we
investigate how successful the proposed approach is in achieving its goal. We also investigate
the effects of the approach on the soundness of CGs and whether it adds any overhead to the
memory requirements of existing static analyzers. In a quantitative evaluation, we compare
Frankenstein with the current state-of-the-art static analysis frameworks. The evaluation
consists of four Research Questions (RQs):

– RQ1: How accurate are Frankenstein’s CGs?
– RQ2: How Fast is Frankenstein?
– RQ3: Is Frankenstein generalizable?
– RQ4: How much memory does Frankenstein require?

4.1 Creating a Representative Dataset

Our evaluation strategy for library summarization drew inspiration from previous work by
Kulkarni et al. (2016). They evaluated their approach using 10 programs. To improve upon
this, we expand the scope of our evaluation by a factor of 5x, using 50 programs in total.

We randomly select 50 packages (i.e., groupId and artifactId) from the Maven

repository and then randomly select one version for each package. We use Shrinkwrap

(Shrinkwrap resolvers 2023) to resolve the complete dependency sets for the selected
versioned packages. Shrinkwrap is a Java library that re-implements Maven’s built-in
dependency resolution. During the dependency resolution process, we face “missing artifact
on Maven” errors in some cases. In some other cases, dependency resolution results in an
empty dependency set, which either means that they were POM projects and do not contain
code, or they do not include any dependencies. When we face such cases, we discard them
and select another random versioned package until we have 50 fully resolved dependency
sets. These dependency sets include a total of 1044 versioned packages (906 unique ver-
sioned packages). More characteristics of these versioned packages are shown in Fig. 6. On
average, the selected versioned packages have 20 dependencies and consist of 113 files (6051
including dependencies).

In the first two RQs of this paper, we compare Frankenstein and OPAL.1 To mimic a rep-
resentative environment, we decided to limit all of our experiments to 7GB ofmemory, which
is the available memory size for Linux build jobs on GitHub.2 To achieve fairness when
comparing two approaches, we remove versioned packages for which one of the approaches
failed due to OutOfMemoryException. All statistics that we report in the research questions

1 In all of our experiments, we use OPAL version 4.0.0-SNAPSHOT which is included in our artifact page.
2 https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-
runners-and-hardware-resources, Accessed: 2022-01-15

123

https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources

 1 Page 16 of 31 Empirical Software Engineering (2024) 29:1

Fig. 6 Selected versioned packages’ Characteristics

are therefore generated for the dependency sets for which both approaches successfully gen-
erated CGs.

4.2 RQ1: How Accurate are Frankenstein’s CGs?

The most important assessment that we need to do is to understand whether or not Franken-
stein affects the quality of the generated CGs. We are interested in a comparison between
the accuracy of CGs generated by Frankenstein and OPAL on its own. Hence, we answer
the question of how Frankenstein affects the accuracy of the CGs in the form of two sub-
questions:

– How does stitching affect the precision of the CGs?
– How does stitching affect the recall of the CGs?

Methodology To investigate the accuracy of the generated CGs by the proposed approach,
we compare the generated CGs with OPAL. We take the CGs that are generated by OPAL

as the ground truth and do not further investigate their correctness. Previous studies (Reif
et al. 2019) have already compared OPAL with other well-known existing frameworks like
Wala (T. j. watson libraries for analysis 2023) or Soot (Lam et al. 2011).

Existing studies (Reif et al. 2019; Sui et al. 2018) measure the soundness of CGs or
compare different frameworks. However, they do not aim to compare the edges of real-world
programs. Additionally, they do not follow our assumption that OPAL’s CGs build the upper
bound for our results. We cannot get more accurate than OPAL, since we use it as a base
framework for generating the PCGs. Ideally, our approach should be as sound and precise
as OPAL. Therefore, we propose an edge-by-edge comparison by calculating the precision
and recall of our CGs compared to OPAL’s results.

To calculate the precision and recall for each dependency set’s CG, we first group all
edges of the CG by their source method for both OPAL and Frankenstein. All resulting sets
can be identified by type and method name, and we can calculate the precision and recall
of Frankenstein CGs compared to OPAL. For the calculation, we construct the intersection
between the two results for each source. Assuming that i is the intersection set, f is the set

123

Empirical Software Engineering (2024) 29:1 Page 17 of 31 1

Fig. 7 Edge comparison of Frankenstein and OPAL

of target methods that Frankenstein found for a particular source, and o is the set of target
methods identified by OPAL, we calculate precision and recall as follows:

precision = |i |
| f | recall = |i |

|o|
For example, let’s assume that for the sourcemethod A.src(),OPAL finds three targets:

B.t1(), C.t2(), and D.t3(), while Frankenstein only finds two targets: B.t1() and
X.x(). The intersection set for A.src() only contains B.t1(); hence, the precision is
1
2 and the recall is 1

3 .

Results To investigate the soundness and precision of Frankenstein, we first compare the
number of edges generated by OPAL and stitching. For 50 dependency sets, OPAL found
a total of 25M edges, while Frankenstein found 36M. Figure 7 shows the violin plot of the
number of edges. The numbers in this plot are logarithmic. However, these numbers only
provide an initial comparison, and it is necessary to further investigate the overlap between the
generated edges. We consider two edges identical if the source methods and target methods
are identical. We then calculate precision and recall for the targets of each source method as
discussed in Section 4.2. A perfect precision of 1.0 means that all stitched targets found for
a source are also present in OPAL’s CG, while a perfect recall of 1.0 means that all targets
in OPAL’s CG have also been identified by Frankenstein.

The precision and recall of all source methods in 50 dependency sets are shown in Table 1.
In termsof precision,we achieve an average precision of 92.7%usingFrankenstein, indicating
that most stitched edges can also be found in OPAL’s CGs. In terms of recall, there are some
cases with a recall of less than 100%, resulting in an average of recall 94.7%. However, the
median of precision and recall is still 100%.

Table 1 Precision and recall of
Frankenstein

Mean Std. Deviation Median

Precision 92.7% 24.2% 100%

Recall 94.7% 21.4% 100%

123

 1 Page 18 of 31 Empirical Software Engineering (2024) 29:1

These decreases in the recall can be explained by missing CSs in PCGs, which are caused
by OPAL not supporting all corner cases in partial analysis or having low coverage. For
language features that are not very common, OPAL may not produce complete information
in the partial analysis.

To further investigate these problematic corner cases of partial analysis, we manually
compared the CGs generated by OPAL and Frankenstein for a benchmark that has been
proposed in previous work (Reif et al. 2019). This benchmark consists of a set of annotated
test cases that cover numerous possible ways of calling a function in Java. The annotations
in these test cases are written by several experts in the field to indicate the expected edges
that a sound CG must include. After comparing the two resulting CGs edge by edge, we
categorized the CGs of the test cases into four categories:

– �OF : both OPAL and Frankenstein can generate a sound CG for the test case.
– �O : only OPAL can generate a sound CG for the test case.
– �: neither OPAL nor Frankenstein can generate a sound CG for the test case.
– �: none of the two approaches was able to generate a CG for the test case.

Table 2 shows the results of our manual analysis for the various test cases. The abbreviations
refer to different language features, and we refer to the original work for details (Reif et al.
2019). Some language features have multiple test cases to test different ways of calling with
that particular Java language feature. In the table, we reported the number of test cases that

Table 2 The results of manual
analysis of Stitched CGs

LF # Cases �OF � � �O

CFNE 4 2 0 0 2

CL 1 0 1 0 0

CSR 4 0 1 3 0

DP 1 0 1 0 0

ExtSer 3 3 0 0 0

J8DIM 6 0 0 6 0

J8SIM 1 0 0 1 0

JVMC 5 1 4 0 0

Lambda 4 4 0 0 0

LIB 5 1 1 2 1

LRR 3 0 0 3 0

MR 7 7 0 0 0

NVC 5 1 0 3 1

Ser 9 2 4 3 0

Serlam 2 0 2 0 0

SI 8 3 0 0 5

SPM 7 0 0 7 0

TC 6 0 0 6 0

TMR 8 0 0 8 0

TR 9 0 1 6 2

Unsafe 7 0 0 0 7

VC 4 0 0 4 0

Sum 109 24 15 52 18

123

Empirical Software Engineering (2024) 29:1 Page 19 of 31 1

we analyzed per language feature in the first column. For example, out of the five test cases
that cover the language feature JVM Calls (JVMC), four are �, and one is �OF .

In the table, the overall number of test cases in which �OF approaches generated sound
CGs is 24. We also have 52 test cases that � of the approaches could generate CGs for. This
is because we use the library mode of OPAL without providing specific entry points for it
due to the nature of our analysis, hence some of these small test cases are not suitable for
library analysis because of functions not being reachable from the outside. 15 out of 109 test
cases are � meaning that none of the approaches could generate a sound CG. Since our PCG
generation is dependent onOPAL, it is inevitable not to be sound in cases whereOPAL itself
cannot be sound. The most important cases for our study, however, are the �O test cases
because they can reveal the reason for the reported 94.7% recall. We further investigate the
root cause of these cases to understand whether it is a shortcoming of the approach or not. We
have 18 test cases that only OPAL generated sound CGs for. These test cases are distributed
among five different language features. The common reason for all missing edges in these
test cases is that in the PCG generation phase OPAL does not provide us with all possible
CS. This also means that for all CSs that we could extract in the PCG creation phase, we
generated the correct edges. Listing 1 shows an example of a reflective call for which OPAL
generates a sound CG. This occurs when the whole program is present during the analysis i.e.
the Target class is included in the analysis. However, in this example, during partial analysis,
the Target class is not present, and OPAL does not provide us with enough information about
the target.target() CS in the PCG. Since we use OPAL for our partial analysis, this affects
the soundness of our approach. Similar to other successful cases, if OPAL had provided the
CS information in the PCG, we have could stitched it to the Target class. That is, we could
not find any cases where the proposed approach inherently causes any unsoundness in these
test cases. Nevertheless, the missing CS problem can be fixed with engineering efforts, either
on OPAL or by additional handling in the PCG creation phase. We have documented these
cases and discussed them with the OPAL developers for future improvements of both tools.

Listing 1 Reflective method call

1 public static void main(String[] args) throws Exception {
2 Demo demo = new Demo();
3 demo.field = new CallTarget();
4
5 Field field = Demo.class.getDeclaredField("field");
6 Target target = (Target) field.get(demo);
7 target.target();
8 }

4.3 RQ2: How Fast is Frankenstein?

The main benefit of summarization of CG generation is the speedup it provides due to less
computation. We need to evaluate whether removing redundant library generation from the
process affects the speed of CG generation. It is also important to investigate the extent of
any improvements, if any.

Methodology We design and implement a tool that creates the CG Cache for randomly
selected dependency sets. Therefore, we will be able to test the performance of our approach
and compare it with the baseline (OPAL).

For this experiment, we need to simulate consecutive builds in software programs.Maven

hosts a large number of packages with different versions. We select random versioned pack-

123

 1 Page 20 of 31 Empirical Software Engineering (2024) 29:1

ages from Maven to build their CGs. Hence, we need to resolve the dependency sets of
selected versionedpackages.Weuse a dependency resolver library calledShrinkwrapbecause
it is open source and works well with Maven coordinates. In some cases, this tool may not
be perfect and could result in missing dependencies in the resolved sets. However, we still
use it to ease the dependency resolution process, as it is not the main focus of our paper. We
ensure that this does not cause any unfairness by always using the same set of dependencies
for our approach and baselines.

After selecting the dependency sets, we perform the following steps on each dependency
set D:

1. Generate full CGs using Frankenstein:

– For each versioned package in D, we generate a CG using OPAL and parse it into a
PCG.

– We create the CG Cache using the PCGs.
– For each versioned package in D, we fetch PCGs from the CG Cache and then stitch
them.

2. We generate a full CG for D using OPAL.
3. Finally, we measure time information and CG statistics of the previous steps to find out

how much speed Frankenstein can add in the consecutive generation of the CGs.

Results As shown in Table 3, for these 50 dependency sets on average OPAL takes 6s to
generate a CG for each dependency set, whereas Frankenstein takes 5s. The average time
for the first round of Frankenstein generation is 18.1s (as shown in Frankensteinini tial). This
round includes PCG generation and caching for the entire set of dependencies, as well as the
stitching process. However, subsequent rounds benefit from a significant speed improvement.
Note that Frankensteincached represents subsequent rounds of generation after caching and
includes the time for generating the PCG of the current version of the application but not the
rest of the dependency set. This is because the application’s logic usually changes between
CI builds, requiring a rebuild of its PCG. All three rows of this table show large standard
deviations. This is due to the variety of CG sizes. The fact that multiple dependency sets in
the selected sets are considerably larger than others causes longer generation times and hence
bigger standard deviations. Generating a PCG for a dependency versioned package is a one-
time process that needs to be done once and only once. After that, the cached dependencies
can be used in different builds. For the first time, Frankenstein may take longer than OPAL

due to the combination of caching PCGs and stitching. However, in consecutive software
builds, Frankenstein saves a lot of time by pre-computing the common parts. Over time, the
enhanced speed results in significant time savings, which accumulate with repeated use and
translate into considerable overall efficiency gains.

Figure 8 shows the violin plot of the generation time for OPAL, Frankenstein initial
generation, and Frankensteinwith cached dependencies for 50 dependency sets. The numbers
are logarithmic for the sake of better presentation, and median lines are visible for all plots.

Table 3 Time of CG generation
different phases (in seconds)

Mean Std. Deviation Median

Frankensteinini tial 18.1 21.2 10.2

Frankensteincached 5.0 7.4 2.2

OPAL 6.0 6.6 3.2

123

Empirical Software Engineering (2024) 29:1 Page 21 of 31 1

Fig. 8 Time comparison of Frankenstein and OPAL

Frankenstein with a median of 2.2s outperformsOPALwith 3.2s. It is worth mentioning that
Frankenstein’s first round of generation with a median of 20.2s is slower than OPAL. This
slowdown is because we use OPAL for PCG generation and on top of that we extract the
necessary information for PCGs. However, because it is a one-time process the generation
time will improve from the second CG generation onwards.

4.4 RQ3: Is Frankenstein Generalizable?

In the previous sections, we presented the benefits of Frankenstein in terms of the speed of CG
generation. We also investigated its effects on the accuracy of the CGs. However, since the
proposed Frankenstein aims to make CG generation practical for software builds, it is vital
to consider the limitations that build servers have to validate the practicality of Frankenstein.
On the one hand, Frankenstein requires memory to cache partial results. On the other hand,
build servers often have limited memory available. Therefore, we need to investigate how
much memory Frankenstein requires.

Methodology To investigate whether Frankenstein is generalizable, we slightly adapt
our setup and use WALA as the static analysis backend for generating CGs. Apart from
this adjustment, we use the same methodology as in RQ1 and RQ2 to compare the speed
and accuracy of the generated CGs. Overall, we compare the CGs generated by WALA

and Frankenstein for 50 randomly selected versioned packages. We useWALA both for the
whole-program analysis and the PCG generation, configured to run the CHA algorithm, and
using all methods of all classes as entry points. To measure the accuracy of the stitched CGs,
we use the precision and recall metrics defined in Section 4.2.

Results Similar to the evaluation on OPAL, the goal of this experiment is to understand
the speed and accuracy of Frankenstein compared to a plain WALA approach. Table 4
shows the results for precision and recall of the generated CGs. The results confirm the
same effects for WALA CGs that we have seen before in Table 1. On average, Frankenstein
achieves 99% precision, meaning that virtually all identified edges also exist in the WALA

123

 1 Page 22 of 31 Empirical Software Engineering (2024) 29:1

Table 4 Precision and recall of
Frankenstein when generating
with WALA

Mean Std. Deviation Median

Precision 98.9% 0.07% 100%

Recall 97.5% 11.0% 100%

CGs. Similar to the OPAL experiment, Frankenstein also misses some edges in comparison
to WALA, resulting in a recall of 97.5%. When we investigated these cases manually, we
found some corner cases that require special handling during CG generation. For example,
WALA contains hard-coded information about Java-related classes (such as Object) and
functions (such as Object.hashcode()), resulting in additional edges that Frankenstein does
not have. Since we did not provide any additional information to Frankenstein about Java-
related classes, it is not surprising that it cannot reproduce these edges. These limitations can
be addressed in the future by adding special handling for said Java classes or by providing
such classes in the dependency set. A second explanation that we found for missing edges is
that existing static analyzers are not perfect and might create incorrect edges. In our manual
analysis, we also found a case in which classes were copied from a dependency and were
then modified locally. When ignoring the origin of a class file, the name of the class is the
same locally and in the dependency. As a result, WALA cannot distinguish the classes and
adds additional nodes and edges to the dependency class. Since the including .jar file is
part of Frankenstein’s fully-qualified names, we can avoid these edges. Across the manually
inspected cases, we could not find any differences indicating any conceptual limitations,
and all deviations could be addressed through more engineering effort. Most importantly, all
limitations come at our own cost, and we believe that the results present a fair comparison.
Overall, Frankenstein achieves 98.2% F1 compared to WALA.

Regarding our performance investigation of Frankenstein, we observed similar improve-
ments for WALA (Table 5) and OPAL (Table 3). Both tables show substantial speed
improvement once the PCGs are cached. On average, WALA generates a CG in 16.6s,
and Frankenstein generates it in 10.2s. This means that caching the PCGs speeds up the
process by 38% on average. The caching mechanism applies only to dependencies, not to
the application itself. This means that the PCG generation time for the application versioned
package is included in the Frankenstein cached . It is important to realize that the first round of
generation is slower due to additional analysis to create the PCGs (119.8 seconds). However,
this slowdown pays off in the next rounds of CG generation by saving a lot of time and
resources. Compared to the OPAL results, the numbers are generally a bit higher, which
can be mostly explained by WALA generating a larger CG that has more nodes and edges.
However, the relative comparison and performance increments are comparable.

Overall, our results show that Frankenstein is a generic solution. Users can choose a static
analysis framework that fulfills their needs, such as OPAL or WALA. Using Frankenstein
then allows for substantial speedup of CG generation through pre-computing and caching
PCGs with minimal side effects on accuracy.

Table 5 Time of CG generation
different phases (in seconds) with
WALA

Mean Std. Deviation Median

Frankenstein ini tial 119.8 147.8 65.0

Frankenstein cached 10.2 3.3 9.8

WALA 16.6 11.4 12.7

123

Empirical Software Engineering (2024) 29:1 Page 23 of 31 1

4.5 RQ4: HowMuchMemory Does Frankenstein Require?

In the previous sections, we presented the benefits of Frankenstein in terms of the speed of CG
generation. We also investigated its effects on the accuracy of the CGs. However, since the
proposed Frankenstein aims to make CG generation practical for software builds, it is vital
to consider the limitations that build servers have to validate the practicality of Frankenstein.

Methodology To answer the third research question we investigated memory usage from
two perspectives.

First, we imposed memory constraints on all of our experiments. In the CG generation
steps detailed in Section 4.3 (specifically the first and second steps), we restricted thememory
available to the JVM. This meant that both our baselines and the CGs generated by Franken-
stein for the chosen versioned packages (as described in Section 4.1) operated within a
limited-resource environment, simulating a build server. Following the generation steps, we
compared their success rates and the frequency of OutOfMemoryException. This allowed
us to examine the impact of memory limitations in real-world scenarios on our proposed
method.

Second, we employed the open JDK profiling tool JOL (Jol 2023) to measure the space
occupied by Frankenstein within the JVM heap. Specifically, we determined the sizes of the
PCGs and index tables (refer to Section 3.3) utilized in the stitching process.

Results After running the experiment, we realized that out of 50 dependency sets, both
OPAL-based Frankenstein and OPAL encountered memory errors for 3 versioned packages.
The fact that they had the same number of memory exceptions indicates that Frankenstein
does not introduce any additional memory requirements or add memory overhead to the
base frameworkOPAL.When generatingwithWALA, however,WALA-based Frankenstein
faced fewermemory exceptions compared toWALA itself.WALA failed in 8 instances,while
Frankenstein failed in 4 cases due to OutOfMemoryException. This lower memory demand
may be attributed to Frankenstein holding just enough information about each versioned
package to perform a basic CHA algorithm, whereas WALA, as a general static analysis
framework, needs to capture a more comprehensive view of the entire dependency set’s
bytecode.

To assess the memory requirements of Frankenstein for generating a complete program
CG, we examined all data necessary for the stitching process. For each dependency set,
Frankenstein initially caches all dependency PCGs, followed by the creation of GTH each
time stitching is executed. Table 6 displays the memory usage in megabytes for these Data
Structures (DSs) in both OPAL-based and WALA-based implementations of Frankenstein.
The PCGs row is determined by summing the sizes of all PCGs for each dependency set. We
then calculated the mean, median, and standard deviations for the selected 50 dependency
sets, as shown in the table. Likewise, the GTH row is based on the 50 stitching operations
performed on the selected dependency sets, with the mean, median, and standard deviations
reported. In summary, on average, OPAL-based Frankenstein necessitates a total of 432 Mb

Table 6 Memory required by
Frankenstein (in Mb) to stitch a
whole program

DS Mean Std. Deviation Median

OPAL-based PCGs 285 299 159

GTH 152 146 93

WALA-based PCGs 272 301 173

GTH 116 102 88

123

 1 Page 24 of 31 Empirical Software Engineering (2024) 29:1

Fig. 9 Distribution of Data Structure sizes (in Mb) required by Frankenstein

of memory, while WALA-based Frankenstein demands 388 Mb of memory to generate a
whole-program CG. Figure 9 further illustrates the distribution of this data.

An interesting observation from this table is that both WALA-based and OPAL-based
figures are within the same order of magnitude. This outcome is somewhat expected since
the general approach is similar. However, differences may arise from two factors. One reason
is the variation in successfully generated dependency sets. As previously mentioned, some
dependency sets did not have a CG generated due tomemory exceptions. This implies that the
sets of projects successfully generated for WALA-based and OPAL-based Frankenstein are
not identical. Another reason for the discrepancies is that the outputs of different frameworks
are not identical, even for the same operations. For instance, as we discussed in previous
sections the CGs generated by WALA are generally larger than those generated by OPAL

due to the different coverages of these tools. This may result from numerous differences in
the implementations of the various frameworks.

5 Discussion

As manual inspection has revealed that the lack of recall is mainly due to missing CS infor-
mation during PCG construction or the internal handling of special cases within WALA or
OPAL such as built-in handling of Java-related classes. Nevertheless, we are confident that
this limitation can be fixed through engineering work. We strongly believe that the proposed
approach has the potential to be adopted by engineers, software companies, and researchers
to implement fast and lightweight CG-based analyses that are practical for software devel-
opment pipelines such as CI tools. Moreover, our proof of concept Frankenstein shows that
summarization works in practice. Thus we highly recommend that developers of existing
static analysis frameworks adopt the summarization technique that we propose. These tools
can benefit from the speed up while reusing their handling of special cases. This potentially
can remove or mitigate the accuracy penalties that we reported in this paper.

Our results confirm previous findings in the field. First, as pointed out by Toman and
Grossman (2017), library pre-computation can effectively solve the scalability problems of
the analysis. Our study validates this idea, particularly for CG generation. However, applying

123

Empirical Software Engineering (2024) 29:1 Page 25 of 31 1

this technique to different static analysis tasks can have similar positive effects as examined
by Arzt and Bodden (2016) for data flow analysis.

We believe that the concept of summarization will strongly impact the design of future
static analysis tools. Although configurability and modularity are essential requirements for
static analyzers it is important to consider them not only for program design but also for data
flow design. Currently, these tools can be highly configurable and different modules can be
combined in a pipeline based on specific requirements. For a given configuration, this flexible
pipeline of modules is created and executed on top of a single input data, producing a single
output. We propose that by modularizing the intermediate data, analysis modules can save
the current state at specific points and restart the task from the point of interruption. This
approach would make the summarization of different static analysis tasks straightforward.
We believe that this will make static analysis more practical for daily usage such as in CI
tools.

In this paper, we acknowledge the tradeoff between memory, speed, and cache utilization
when using Frankenstein. The caching mechanism significantly improves speed by reusing
precomputed PCGs but requiresmemory for cached PCGs.Our experimental results illustrate
these tradeoffs, providing a practical evaluation of Frankenstein’s real-world performance
improvements and its memory usage. This information will help developers make informed
decisions based on the benefits and costs of the tool.

6 Threats to Validity

Internal validity WALA and specially OPAL offer a plethora of configuration options,
all of which may affect our results. To mitigate this we attempted to utilize the maximum
coverage that these frameworks provide, such as using the most comprehensive entry point
strategies or the assumption of library openness (Reif et al. 2016). Additionally, we provide
public access to our code including an aggregated configuration file on our artifact page to
ensure a fixed and transparent configuration throughout the study.

Our approach supports all Java invocations except invokedynamic. We use OPAL’s
invokedynamic rewrite feature, which rewrites this type of method invocation in the form
of other invocations. However, some frameworks may not support the invokedynamic
rewrite feature, requiring the implementation of heuristics to support invokedynamic
when adopting our approach. Nonetheless, this and other corner cases that we reported earlier
in this paper result in minor accuracy penalties that can be mitigated if developers of existing
frameworks adopt the Frankenstein solution within their frameworks. They can reuse the
same treatment that they already have in their toolbox for these cases while benefiting from
the advantages of Frankenstein.

Since we have implemented multiple tools and conducted various experiments for this
study any hidden bug in our implementation can affect our results. To mitigate this threat,
we ran our tools on a large data set of real-world versioned packages, addressing bugs as
we discovered them. Additionally, we implemented an extensive test suite for our tools and
programs.

External validity In this study, we rely on theWALA and OPAL static analysis frame-
works. We chose these tools because they are widely used, actively maintained, and we could
contact their maintainers. However, this choice may result in inheriting their potential flaws.
To mitigate this, we support more than one framework in our approach and designed our
intermediate representation (PCGs) in a generic way. Thus, they can be extracted from the

123

 1 Page 26 of 31 Empirical Software Engineering (2024) 29:1

output of other frameworks as well. The information required in PCGs is present in the byte-
code and does not require further analysis. Therefore, one could even construct them directly
from the bytecode.

7 FutureWork

This paper has introduced a summarization-based algorithm for CG generation. In this study,
we usedWALA and OPAL as the basis of our approach and as a baseline. During this study,
we observed that the difference between different frameworks is significant in practice, to
the extent that even for the most basic algorithm their outputs differ significantly. Therefore,
we believe that it is valuable to investigate these differences and their effects on Frankenstein
as future work. For example, we can explore the size of the difference between OPAL and
WALA, and how the stitched version of these two differs.

The improvements in the scalability of CG generation also affect downstream tasks. In this
study, we found evidence of imperfections in existing frameworks themselves. One direction
for future work is to evaluate Frankenstein by comparing the effects of CGs generated by
Frankenstein and existing frameworks on downstream tasks. For example, we could inves-
tigate whether the vulnerable call chains that Frankenstein can find differ from those found
by WALA. Using Frankenstein it is also possible to perform more extensive analyses that
require CGs. Hence as a next step, we plan to use this approach to generate a large number
of CGs and conduct an ecosystem-wide analysis. It is valuable to understand the current
state of vulnerability propagation or change impact inMaven Central. Another direction
for future work is to study other languages and investigate whether our proposed approach
can be applied to them. We plan to explore the differences and specific challenges that other
languages may present for summarization.

8 Summary

GeneratingCGs is essential formany advanced program analyses. The inherent complexity of
CG generation and the highmemory requirements challenge scalability, making certain static
analysis tasks impractical in resource-limited environments such as hosted build servers. In
this paper, we propose a summarization-based approach Frankenstein that makes CG con-
struction fast and lightweight. Instead of performing a whole-program analysis, we introduce
a summarization-based algorithm that precomputes PCGs for all dependencies of an appli-
cation and caches the results. For whole program CG generation, an algorithm stitches all
PCGs on demand. In our extensive evaluation, we investigate the impact of Frankenstein on
accuracy, speed, and memory usage. Our results are very promising when compared to the
state-of-the-art approaches. Our results demonstrate that Frankenstein has a minimal impact
on the soundness of the generated CGs and can achieve an F1 score of up to 98%. Addition-
ally, we show a significant improvement in performance, with up to 38% lower execution
time on average and memory usage of only 388 megabytes for the whole program analysis.
We believe that the proposed approach in this paper addresses the current key challenges that
limit the practicality of static analyzers. Our results show that pre-computing partial static
analysis results has a high potential to improve CG generation.We propose a novel algorithm
that is the first step towards scalable static analysis in CI tools.

123

Empirical Software Engineering (2024) 29:1 Page 27 of 31 1

Acknowledgements Gousios’s work was performed while at TU Delft. We would also like to express our
gratitude to Dr. Maliheh Izadi for her priceless input on this study.

Funding This study is funded by a European H2020 project, FASTEN (825328).

Data Availability We have released our tool, the dataset, and the analysis scripts on the artifact page of this
paper (Repository of the paper 2023).

Declarations

Conflicts of interests The authors have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alexandru CV, Panichella S, Proksch S, Gall HC (2019) Redundancy-free analysis of multi-revision software
artifacts. Empir Softw Eng 24(1):332–380. https://doi.org/10.1007/s10664-018-9630-9

Ali K (2014) The Separate Compilation Assumption. Ph.D. thesis. University of Waterloo, Ontario, Canada.
https://hdl.handle.net/10012/8835

Ali K, Lhoták O (2012) Application-Only Call Graph Construction. In: Noble J (ed) In the proceedings of the
26th European Conference on Object-Oriented Programming, ECOOP, Beijing, China. Lecture Notes in
Computer Science, vol 7313. Springer, pp 688–712. https://doi.org/10.1007/978-3-642-31057-7_30

Ali K, Lhoták O (2013) Averroes: Whole-Program Analysis without the Whole Program. In: Castagna G
(ed) In the proceedings of the 27th European Conference on Object-Oriented Programming, ECOOP,
Montpellier, France. Lecture Notes in Computer Science, vol 7920. Springer, pp 378–400. https://doi.
org/10.1007/978-3-642-39038-8_16

Arzt S, Bodden E (2016) StubDroid: automatic inference of precise data-flow summaries for the android
framework. In: Dillon LK, Visser W, Williams LA (eds) In the proceedings of the 38th International
Conference on Software Engineering, ICSE, Austin, TX, USA. ACM, pp 725–735. https://doi.org/10.
1145/2884781.2884816

Bacon DF, Sweeney PF (1996) Fast Static Analysis of C++ Virtual Function Calls. In: Anderson L, Coplien
J (eds) In the proceedings of the 1996 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications, OOPSLA, San Jose, California, USA. ACM, pp 324–341. https://
doi.org/10.1145/236337.236371

Ball T, Rajamani SK (2001) Bebop: a path-sensitive interprocedural dataflow engine. In: Field J, Snelting G
(eds) In the proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Soft-
ware Tools and Engineering, PASTE, Snowbird, Utah, USA. ACM, pp 97–103. https://doi.org/10.1145/
379605.379690

Boldi P, Gousios G (2021) Fine-Grained Network Analysis for Modern Software Ecosystems. ACM Trans
Internet Technol 21(1):1:1-1:14. https://doi.org/10.1145/3418209

Bracha G, OderskyM, Stoutamire D, Wadler P (1998) Making the Future Safe for the Past: Adding Genericity
to the Java Programming Language. In: Freeman-Benson BN, Chambers C (eds) In the proceedings of
the ACM SIGPLANConference on Object-Oriented Programming Systems, Languages & Applications,
OOPSLA, Vancouver, British Columbia, Canada. ACM, pp 183–200. https://doi.org/10.1145/286936.
286957

Chord (2023) A program analysis platform for java. https://www.seas.upenn.edu/~mhnaik/chord/user_guide/
index.html. Accessed 15 Jan 2022

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10664-018-9630-9
https://hdl.handle.net/10012/8835
https://doi.org/10.1007/978-3-642-31057-7_30
https://doi.org/10.1007/978-3-642-39038-8_16
https://doi.org/10.1007/978-3-642-39038-8_16
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1145/236337.236371
https://doi.org/10.1145/236337.236371
https://doi.org/10.1145/379605.379690
https://doi.org/10.1145/379605.379690
https://doi.org/10.1145/3418209
https://doi.org/10.1145/286936.286957
https://doi.org/10.1145/286936.286957
https://www.seas.upenn.edu/~mhnaik/chord/user_guide/index.html
https://www.seas.upenn.edu/~mhnaik/chord/user_guide/index.html

 1 Page 28 of 31 Empirical Software Engineering (2024) 29:1

Dean J, Grove D, Chambers C (1995) Optimization of Object-Oriented Programs Using Static Class Hierarchy
Analysis. In: Olthoff WG (ed) In the poroceedings of the 9th European Conference on Object-Oriented
Programming, ECOOP, Århus, Denmark, Lecture Notes in Computer Science, vol 952. Springer, pp
77–101. https://doi.org/10.1007/3-540-49538-X_5

Dependabot. (2023) https://github.com/dependabot. Accessed 15 Jan 2022
Dillig I, Dillig T, Aiken A, Sagiv M (2011) Precise and compact modular procedure summaries for heap

manipulating programs. In: Hall MW, Padua DA (eds) Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA. ACM,
pp 567–577. https://doi.org/10.1145/1993498.1993565

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2015) Boa: Ultra-Large-Scale Software Repository and Source-
Code Mining. ACM Trans Softw Eng Methodol 25(1):7:1-7:34. https://doi.org/10.1145/2803171

EichbergM, Kübler F, HelmD, ReifM, Salvaneschi G,MeziniM (2018) Lattice basedmodularization of static
analyses. In:Dolby J,HalfondWGJ,MishraA (eds) In the companion proceedings for the ISSTA/ECOOP
Workshops, Amsterdam, Netherlands. ACM, pp 113–118. https://doi.org/10.1145/3236454.3236509

Goldberg A, Robson D (1983) Smalltalk-80: The Language and Its Implementation. Addison-Wesley
Gopan D, Reps TW (2007) Low-Level Library Analysis and Summarization. In: DammW, Hermanns H (eds)

In the proceedings of the 19th International Conference on Computer Aided Verification, CAV, Germany,
Lecture Notes in Computer Science, vol 4590. Springer, pp 68–81. https://doi.org/10.1007/978-3-540-
73368-3_10

h2o project (2023) https://mvnrepository.com/artifact/ai.h2o/sparkling-water-package_2.11/3.26.8-2.4.
Accessed 21 Oct 2022

Hejderup J, van Deursen A, Gousios G (2018) Software ecosystem call graph for dependencymanagement. In:
ZismanA, Apel S (eds) In the proceedings of the 40th International Conference on Software Engineering:
New Ideas and Emerging Results, ICSE (NIER), Gothenburg, Sweden. ACM, pp 101–104. https://doi.
org/10.1145/3183399.3183417

HelmD,Kübler F, ReifM, EichbergM,MeziniM (2020)Modular collaborative program analysis in OPAL. In:
Devanbu P, Cohen MB, Zimmermann T (eds) In the proceedings of the 28th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE,
Virtual Event, USA. ACM, pp 184–196. https://doi.org/10.1145/3368089.3409765

T. j. watson libraries for analysis. (2023) http://wala.sf.net/. Accessed 15 Jan 2022
Jol (2023) https://openjdk.org/projects/code-tools/jol/. Accessed 06 May 2023
Keshani M (2021) Scalable Call Graph Constructor for Maven. In: In the companion proceedings of the 43rd

IEEE/ACM International Conference on Software Engineering, ICSE Companion, Madrid, Spain. IEEE,
pp 99–101. https://doi.org/10.1109/ICSE-Companion52605.2021.00046

Kula RG, Germán DM, Ouni A, Ishio T, Inoue K (2018) Do developers update their library dependencies? - An
empirical study on the impact of security advisories on library migration. Empir Softw Eng 23(1):384–
417. https://doi.org/10.1007/s10664-017-9521-5

Kulkarni S, Mangal R, Zhang X, Naik M (2016) Accelerating program analyses by cross-program training.
In: Visser E, Smaragdakis Y (eds) In the proceedings of the ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA, part of SPLASH,
Amsterdam, The Netherland. ACM, pp 359–377. https://doi.org/10.1145/2983990.2984023

Lam P, Bodden E, Lhoták O, Hendren L (2011) The Soot framework for Java program analysis: a retrospective.
In: Cetus Users and Compiler Infrastructure Workshop CETUS, vol 15

Landi W (1992) Undecidability of Static Analysis. LOPLAS 1(4):323–337. https://doi.org/10.1145/161494.
161501

Livshits B, Sridharan M, Smaragdakis Y, Lhoták O, Amaral JN, Chang BE, Guyer SZ, Khedker UP, Møller
A, Vardoulakis D (2015) In defense of soundiness: a manifesto. Commun ACM 58(2):44–46. https://doi.
org/10.1145/2644805

Maven version ranges. (2023) https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html.
Accessed 21 Oct 2022

Nielsen BB, Torp MT, Møller A (2021) Modular call graph construction for security scanning of Node.js
applications. In: Cadar C, Zhang X (eds) In the Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA, Virtual Event, Denmark. ACM, pp 29–41. https://
doi.org/10.1145/3460319.3464836

Ramalingam G (1994) The Undecidability of Aliasing. ACM Trans Program Lang Syst 16(5):1467–1471.
https://doi.org/10.1145/186025.186041

Reif M, Eichberg M, Hermann B, Lerch J, Mezini M (2016) Call graph construction for Java libraries. In:
Zimmermann T, Cleland-Huang J, Su Z (eds) In the proceedings of the 24thACMSIGSOFT International
SymposiumonFoundations of SoftwareEngineering, FSE, Seattle,WA,USA.ACM, pp 474–486. https://
doi.org/10.1145/2950290.2950312

123

https://doi.org/10.1007/3-540-49538-X_5
https://github.com/dependabot
https://doi.org/10.1145/1993498.1993565
https://doi.org/10.1145/2803171
https://doi.org/10.1145/3236454.3236509
https://doi.org/10.1007/978-3-540-73368-3_10
https://doi.org/10.1007/978-3-540-73368-3_10
https://mvnrepository.com/artifact/ai.h2o/sparkling-water-package_2.11/3.26.8-2.4
https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1145/3183399.3183417
https://doi.org/10.1145/3368089.3409765
http://wala.sf.net/
https://openjdk.org/projects/code-tools/jol/
https://doi.org/10.1109/ICSE-Companion52605.2021.00046
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/2983990.2984023
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/2644805
https://doi.org/10.1145/2644805
https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/186025.186041
https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/2950290.2950312

Empirical Software Engineering (2024) 29:1 Page 29 of 31 1

Reif M, Kübler F, Eichberg M, Helm D, Mezini M (2019) Judge: identifying, understanding, and evaluating
sources of unsoundness in call graphs. In: Zhang D, Møller A (eds) In the proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA, Beijing, China. ACM,
pp 251–261. https://doi.org/10.1145/3293882.3330555

Repository of the paper. (2023) https://github.com/ashkboos/LightWeightCGs/tree/main
Reps TW, Horwitz S, Sagiv S (1995) Precise Interprocedural Dataflow Analysis via Graph Reachability. In:

Cytron RK, Lee P (eds) Conference Record of POPL: 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Francisco, California, USA. ACM Press, pp 49–61. https://
doi.org/10.1145/199448.199462

Reps T (2000) Undecidability of context-sensitive data-dependence analysis. ACM Trans Program Lang Syst,
TOPLAS 22(1):162–186

RountevA, Kagan S,Marlowe TJ (2006) Interprocedural DataflowAnalysis in the Presence of Large Libraries.
In: Mycroft A, Zeller A (eds) In the proceedings of the 15th International Conference on Compiler
Construction, CC, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS, Vienna, Austria, Lecture Notes in Computer Science, vol 3923. Springer, pp 2–16. https://doi.
org/10.1007/11688839_2

Rountev A, SharpM, Xu G (2008) IDE Dataflow Analysis in the Presence of Large Object-Oriented Libraries.
In: Hendren LJ (ed) In the proceedings of the 17th International Conference on Compiler Construction,
CC, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS,
Budapest, Hungary, Lecture Notes in Computer Science, vol 4959. Springer, pp 53–68. https://doi.org/
10.1007/978-3-540-78791-4_4

Schubert PD, Hermann B, Bodden E (2021) Lossless, Persisted Summarization of Static Callgraph, Points-
To and Data-Flow Analysis. In: Møller A, Sridharan M (eds) In the proceedings of the 35th European
Conference on Object-Oriented Programming, ECOOP, Aarhus, Denmark (Virtual Conference), LIPIcs,
vol 194. SchlossDagstuhl - Leibniz-Zentrum für Informatik, pp 2:1–2:31. https://doi.org/10.4230/LIPIcs.
ECOOP.2021.2

Sharir M, Pnueli A et al (1978) Two approaches to interprocedural data flow analysis. In: NewYork University.
Courant Institute of Mathematical Sciences

Shivers O (1988) Control-Flow Analysis in Scheme. In: Wexelblat RL (ed) In the proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI, Atlanta, Georgia,
USA. ACM, pp 164–174. https://doi.org/10.1145/53990.54007

Shrinkwrap resolvers. (2023) https://github.com/shrinkwrap/resolver. Accessed 15 Jan 2022
Souter AL, Pollock LL (2001) Incremental Call Graph Reanalysis for Object-Oriented Software Maintenance.

In: In the proceedings of the International Conference on Software Maintenance, ICSM, Florence, Italy.
IEEE Computer Society, pp 682–691. https://doi.org/10.1109/ICSM.2001.972787

Srivastava A (1992) Unreachable Procedures in Object-Oriented Programming. LOPLAS 1(4):355–364.
https://doi.org/10.1145/161494.161517

Sui L, Dietrich J, Emery M, Rasheed S, Tahir A (2018) On the Soundness of Call Graph Construction in the
Presence of Dynamic Language Features - A Benchmark and Tool Evaluation. In: Ryu S (ed) In the pro-
ceedings of the 16th Asian Symposium on Programming Languages and Systems, APLAS, Wellington,
New Zealand, Lecture Notes in Computer Science, vol 11275. Springer, pp 69–88. https://doi.org/10.
1007/978-3-030-02768-1_4

Sui L, Dietrich J, Tahir A, Fourtounis G (2020) On the recall of static call graph construction in practice.
In: Rothermel G, Bae D (eds) In the proceedings of the 42nd International Conference on Software
Engineering, ICSE, Seoul, SouthKorea.ACM, pp 1049–1060. https://doi.org/10.1145/3377811.3380441

Sundaresan V, Hendren LJ, Razafimahefa C, Vallée-Rai R, Lam P, Gagnon E, Godin C (2000) Practical
virtual method call resolution for Java. In: Rosson MB, Lea D (eds) In the proceedings of the ACM
SIGPLANConference onObject-OrientedProgrammingSystems,Languages&Applications,OOPSLA,
Minneapolis, Minnesota, USA. ACM, pp 264–280. https://doi.org/10.1145/353171.353189

The doop project. (2023) http://doop.program-analysis.org/. Accessed 15 Jan 2022
Tip F, Palsberg J (2000) Scalable propagation-based call graph construction algorithms. In: RossonMB, Lea D

(eds) In the proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages & Applications OOPSLA, Minneapolis, Minnesota, USA. ACM, pp 281–293. https://doi.
org/10.1145/353171.353190

Toman J, Grossman D (2017) Taming the Static Analysis Beast. In: Lerner BS, Bodík R, Krishnamurthi S
(eds) 2nd Summit on Advances in Programming Languages, SNAPL, Asilomar, CA, USA, LIPIcs, vol
71. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp 18:1–18:14. https://doi.org/10.4230/LIPIcs.
SNAPL.2017.18

Tripp O, Guarnieri S, Pistoia M, Aravkin AY (2014) ALETHEIA: Improving the Usability of Static Security
Analysis. In: Ahn G, Yung M, Li N (eds) In the proceedings of the ACM SIGSAC Conference on

123

https://doi.org/10.1145/3293882.3330555
https://github.com/ashkboos/LightWeightCGs/tree/main
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1007/11688839_2
https://doi.org/10.1007/11688839_2
https://doi.org/10.1007/978-3-540-78791-4_4
https://doi.org/10.1007/978-3-540-78791-4_4
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://doi.org/10.4230/LIPIcs.ECOOP.2021.2
https://doi.org/10.1145/53990.54007
https://github.com/shrinkwrap/resolver
https://doi.org/10.1109/ICSM.2001.972787
https://doi.org/10.1145/161494.161517
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/353171.353189
http://doop.program-analysis.org/
https://doi.org/10.1145/353171.353190
https://doi.org/10.1145/353171.353190
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18

 1 Page 30 of 31 Empirical Software Engineering (2024) 29:1

Computer and Communications Security, Scottsdale, AZ, USA. ACM, pp 762–774. https://doi.org/10.
1145/2660267.2660339

Utture A, Liu S, Kalhauge CG, Palsberg J (2022) Striking a Balance: Pruning False-Positives from Static Call
Graphs. In: In the proceedings of the 44th IEEE/ACM International Conference on Software Engineering,
ICSE, Pittsburgh, PA, USA. ACM, pp 2043–2055. https://doi.org/10.1145/3510003.3510166

Vasilescu B, Yu Y, Wang H, Devanbu PT, Filkov V (2015) Quality and productivity outcomes relating to
continuous integration in GitHub. In: Nitto ED, Harman M, Heymans P (eds) In the proceedings of the
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE, Bergamo, Italy. ACM , pp
805–816. https://doi.org/10.1145/2786805.2786850

Whaley J, Rinard MC (1999) Compositional Pointer and Escape Analysis for Java Programs. In: Hailpern
B, Northrop LM, Berman AM (eds) In the proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems. Languages & Applications, OOPSLA, Denver, Colorado, USA. ACM,
pp 187–206. https://doi.org/10.1145/320384.320400

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Mehdi Keshani is currently a Ph.D. candidate in the Software Engi-
neering Research Group, at Delft University of Technology, Nether-
lands. His research interests include program analysis and software
ecosystems. His current project revolves around dependency manage-
ment systems and how to make them more intelligent. He was also a
key member of a European project called FASTEN. FASTEN aims at
bringing method-level analyses such as call-graph-based impact anal-
yses to the hands of ecosystem developers.

Georgios Gousios is the head of research at Endor Labs, where he
is helping to make software supply chains more secure. He is also
part-time associate professor of software engineering at the Software
Engineering Research Group, Delft University of Technology. Before
that, he was a researcher at Facebook. He researches in the broader
fields of Software Analytics, Machine Learning for Software Engi-
neering and Dependency Management.

123

https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1145/3510003.3510166
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/320384.320400

Empirical Software Engineering (2024) 29:1 Page 31 of 31 1

Sebastian Proksch is a researcher interested in demystifying the soft-
ware development process, both from the perspective of individuals
and of teams. He studies the impact of novel technologies and envi-
sions new tools to support software engineers in their day to day tasks.
His most recent works in the CI/CD area have created tools that facili-
tate the adoption of CI/CD and help developers to spot anti-patterns in
their build pipelines. Sebastian Proksch is an Assistant Professor in the
Software Engineering Research Group at Delft University of Technol-
ogy (Netherlands) and was the scientific coordinator of the FASTEN
project.

Authors and Affiliations

Mehdi Keshani1 · Georgios Gousios1,2 · Sebastian Proksch1

Georgios Gousios
g.gousios@tudelft.nl

Sebastian Proksch
s.proksch@tudelft.nl

1 Delft University of Technology, Delft, Netherlands
2 Endor Labs, Palo Alto, CA, USA

123

http://orcid.org/0000-0002-8647-0067

	Frankenstein: fast and lightweight call graph generation for software builds
	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Related Work

	3 Approach
	3.1 Resolving Dependencies
	3.2 Requesting or Creating PCGs
	3.3 Inferring Global Type Hierarchy
	3.4 Stitching the Final CG

	4 Evaluation
	4.1 Creating a Representative Dataset
	4.2 RQ1: How Accurate are Frankenstein's CGs?
	4.3 RQ2: How Fast is Frankenstein?
	4.4 RQ3: Is Frankenstein Generalizable?
	4.5 RQ4: How Much Memory Does Frankenstein Require?

	5 Discussion
	6 Threats to Validity
	7 Future Work
	8 Summary
	Acknowledgements
	References

