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Abstract
List coloring is an influential and classic topic in graph

theory. We initiate the study of a natural strengthening of

this problem, where instead of one list-coloring, we seek

many in parallel. Our explorations have uncovered a poten-

tially rich seam of interesting problems spanning chromatic

graph theory. Given a k-list-assignment L of a graph G,

which is the assignment of a list L(v) of k colors to each ver-

tex v ∈ V(G), we study the existence of k pairwise-disjoint

proper colorings of G using colors from these lists. We may

refer to this as a list-packing. Using a mix of combinato-

rial and probabilistic methods, we set out some basic upper

bounds on the smallest k for which such a list-packing is

always guaranteed, in terms of the number of vertices, the

degeneracy, the maximum degree, or the (list) chromatic

number of G. (The reader might already find it interesting

that such a minimal k is well defined.) We also pursue a

more focused study of the case when G is a bipartite graph.

Our results do not yet rule out the tantalising prospect that

the minimal k above is not too much larger than the list

chromatic number. Our study has taken inspiration from

study of the strong chromatic number, and we also explore

generalizations of the problem above in the same spirit.
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1 INTRODUCTION

Some resource allocation problems may be framed in terms of graph coloring, for example if resources

are colors to be allocated to vertices of a graph such that vertices which cannot make simultaneous use

of any resource are connected by edges. In such a situation, conceivably one might desire not just one

coloring, but several in parallel. One might even want that collectively they cover all possible resource

usage. What general conditions guarantee this? It is this strengthened graph coloring problem that we

systematically study in this work.

A particularly natural way to frame this is with respect to list coloring [19, 41]. Given a graph

G, a list-assignment L of G is a mapping such that L(v) is a subset of natural numbers (list of colors)

associated to the vertex v ∈ V(G). By considering the colors as resources, one can interpret each list

as reflecting the specific availability of resources at some site based on some external restrictions.

Given a positive integer k, a k-list-assignment is a list-assignment for which each list has cardinality k.

A proper L-coloring is a mapping c ∶ V(G) → N such that c(v) ∈ L(v) for any v ∈ V(G) and such

that whenever uv is an edge of G, c(u) ≠ c(v). That is, c encodes a proper coloring of the vertices of

G such that each vertex is colored by a color of its list. The list chromatic number (or choosability)

𝜒𝓁(G) is the least k such that G admits a proper L-coloring for any k-list-assignment L of G. Note that

𝜒𝓁(G) is always at least the chromatic number 𝜒(G), as one of the list-assignments one must consider

gives the same list to every vertex.

We formulate the main question above concretely within the framework of list coloring. Given a

list-assignment L of G, an L-packing of G of size k is a collection of k mutually disjoint L-colorings

c1, … , ck of G, that is, ci(v) ≠ cj(v) for any i ≠ j and any v ∈ V(G). We say that an L-packing is

proper if each of the disjoint L-colorings is proper. We define the list (chromatic) packing number
𝜒
⋆

𝓁 (G) of G as the least k such that G admits a proper L-packing of size k for any k-list-assignment

L of G. Note that 𝜒
⋆

𝓁 (G) is necessarily at least 𝜒𝓁(G). The latter implies monotonicity: for every

k > 𝜒
⋆

𝓁 (G) and any k-list-assignment L of G, iteratively one can find k − 𝜒⋆𝓁 (G) disjoint L-colorings

and finally a proper L-packing of G by adding 𝜒
⋆

𝓁 (G) disjoint L-colorings.

It might not be immediately obvious that the parameter 𝜒
⋆

𝓁 is always well-defined, but we provide

a number of different proofs of this fact in the course of our work. It was Alon, Fellows and Hare [7]

who first suggested the study of 𝜒
⋆

𝓁 right at the end of their paper, but ours is the first work to embrace

this suggestion.

Upon encountering the definition of list packing number, a natural course of action is to pursue

list packing analogues of the most basic and important results on list coloring. This indeed is our

programme, and we present several results in this vein. Our programme would be partly redundant if

we were able to prove the following conjecture.

Conjecture 1. There exists C > 0 such that 𝜒⋆𝓁 (G) ⩽ C ⋅ 𝜒𝓁(G) for any graph G.

It could even be the case, moreover, that, for each 𝜀 > 0 there is some 𝜒0 such that 𝜒
⋆

𝓁 (G) ⩽
(1 + 𝜀) ⋅ 𝜒𝓁(G) for all G with 𝜒𝓁(G) ⩾ 𝜒0. A resolution of Conjecture 1 or its asymptotically stronger

variant, either affirmatively or negatively, would be very interesting.

So far we only know that 𝜒
⋆

𝓁 (G) is upper bounded by some exponential function of 𝜒𝓁(G); see

Theorem 3 below. Let us observe that 𝜒
⋆

𝓁 (G) can indeed be strictly larger than 𝜒𝓁(G) for some G. This

is the case when G is an even cycle. For example, consider the cycle of length 4 and lists {1, 2}, {1, 2},
{1, 3}, {2, 3}, listed in cyclic order. Incidentally, this implies that the constant C in Conjecture 1, if it

exists, may not be smaller than 3∕2.

Our main contribution is to present a collection of bounds on 𝜒
⋆

𝓁 within a few basic graph coloring

settings. Please consult Subsection 1.1 for definitions of any unfamiliar or ambiguous graph theoretic
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64 CAMBIE ET AL.

terminology. Due to the depth and breadth of chromatic graph theory, there remains a plethora of fur-

ther possibilities. We summarize what we consider to be the most tempting ones at the end of the paper.

Perhaps the simplest upper bound on the chromatic number of a graph is the number of vertices, and

this bound easily carries over to list chromatic number too. In Section 2, we show using an unexpectedly

delicate inductive argument that the analogous statement for list packing number also holds.

Theorem 2. 𝜒⋆𝓁 (G) ⩽ n for any graph G on n vertices. Equality holds if and only if G is
Kn, the complete graph on n vertices.

Usually, one considers the bound 𝜒𝓁(G) ⩽ n as a corollary of a more refined statement about

greedy coloring. The degeneracy 𝛿
⋆(G) of a graph G is the least k such that there is an ordering of

the vertices of G such that each vertex has at most k neighbors preceding it in the order. A greedy

algorithm that colors vertices in this order cannot stall if each list has size 1+ 𝛿⋆(G), as at the time of

coloring a vertex v at most 𝛿
⋆(G) colors have been used previously on neighbors of v. The degeneracy

of a graph G is at most the maximum degree Δ(G), and this is at most one less than the number of

vertices, giving the well-known bounds 𝜒𝓁(G) ⩽ 1 + 𝛿⋆(G) ⩽ 1 + Δ(G) ⩽ n for an n-vertex graph G.

In Sections 3 and 4, using what are essentially greedy arguments, we show the following two upper

bounds on list packing number in terms of the degeneracy and maximum degree, respectively.

Theorem 3. 𝜒⋆𝓁 (G) ⩽ 2𝛿
⋆(G) for any graph G.

Theorem 4. 𝜒⋆𝓁 (G) ⩽ 1 + Δ(G) + 𝜒𝓁(G) for any graph G.

Although neither implies Theorem 2, these two results have a number of interesting consequences.

Both imply that 𝜒
⋆

𝓁 (G) is always at most around 2Δ(G), a bound which is sharp up to the factor 2.

They imply that for Conjecture 1, one may restrict attention to graphs having list chromatic number

much smaller than the degeneracy or maximum degree. Together with the result proved by Alon [5]

that for some constant C > 0 𝜒𝓁(G) ⩾ C log 𝛿
⋆(G) for all G, note that Theorem 3 implies that 𝜒

⋆

𝓁 (G)
is bounded by an exponential function of 𝜒𝓁(G), which serves as modest support for Conjecture 1.

Theorem 3 together with Euler’s formula further implies that 𝜒
⋆

𝓁 (G) ⩽ 10 for any planar graph G. It

is worth noting that the bound in Theorem 3 cannot be improved to 1 + 𝛿⋆(G), see Theorem 25.

Another important way to bound the list chromatic number is to estimate it in terms of the chromatic

number. A basic but well-known result of Alon [4] asserts that 𝜒𝓁(G) is within a factor log n of the

chromatic number 𝜒(G), where n denotes the order of the graph G. We show the following two list

packing versions of this in Section 6. Here 𝜒f (G) denotes the fractional chromatic number of G, while

𝜌(G) denotes the Hall ratio of G.

Theorem 5. 𝜒⋆𝓁 (G) ⩽
(5+o(1)) log n

log(𝜒f (G)∕(𝜒f (G)−1))
⩽ (5 + o(1))𝜒f (G) log n for any graph G with at

least one edge and with n vertices, as n → ∞. If 𝜒f (G) is bounded as n → ∞ then the
leading constant can be improved to 1.

Theorem 6. 𝜒⋆𝓁 (G) ⩽ (5 + o(1))𝜌(G)(log n)2 for any graph G on n vertices, as n → ∞.

Our proofs of these results rely on good estimates for the probability of zero permanent in a random

binary matrix (Theorem 27). In the case that 𝜒f (G) is bounded, Theorem 5 is asymptotically sharp for

the complete multipartite graphs (see [19]). And since 𝜒f (G) ⩽ 𝜒(G) and since 1∕ log(x∕(x− 1)) ⩽ x,

Theorem 5 is a stronger form of the last-mentioned result of Alon. Since 𝜒𝓁(G) ⩽ 𝜒
⋆

𝓁 (G), Theorem 5

strengthens a recent result in [15], while Theorem 6 partially strengthens another recent result in [34]. It

could well be that the extra factor log n in Theorem 6 is unnecessary, in which case, since 𝜌(G) ⩽ 𝜒f (G)
and since 1∕ log(x∕(x − 1)) ∼ x as x → ∞, we would then essentially have a common strengthening

of Theorems 5 and 6.
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CAMBIE ET AL. 65

Note that in the special case of a bipartite graph G on n vertices, Theorem 5 (or see also Theorem 29

below) implies that 𝜒𝓁(G) ⩽ (1 + o(1)) log
2

n as n → ∞. Alon and Krivelevich [8] conjectured

something more refined in terms of maximum degree, in particular, that for some C > 0 we have

𝜒𝓁(G) ⩽ C logΔ(G) for any bipartite G. Since its formulation there has been surprisingly little progress

on this essential problem. Already then, it was known that for some C > 0 𝜒𝓁(G) ⩽ CΔ∕ logΔ(G) for

any bipartite G, a statement which is a corollary of the seminal result of Johansson for triangle-free

graphs [27]. Recent related efforts have only affected the asymptotic leading constant C, bringing it

down to 1; see [6, 14, 33]. Our work matches these recent efforts, but for qualitatively a much stronger

structural parameter.

Theorem 7. 𝜒⋆𝓁 (G) ⩽ (1 + o(1))Δ∕ logΔ for any bipartite graph G with Δ(G) ⩽ Δ, as
Δ → ∞.

Combining Conjecture 1 and the Alon–Krivelevich conjecture mentioned above, one could already

aspire to a much better bound. (Or to put it in another way, the bipartite case might be where it is most

natural to seek counterexamples to Conjecture 1.) On the other hand, meeting the ‘Shearer barrier’ [38]

here is difficult enough. Our proof of Theorem 7 is rather involved. We draw on the ‘coupon collector

intuition’, which we know can be neatly combined with the Lovász local lemma to obtain the anal-

ogous list chromatic number bound (see [6, 14]). Unfortunately, this approach does not immediately

apply here for Theorem 7 as it is impossible to extend the requisite negative correlation property for

packing; however, we managed to circumvent this obstacle for a suitable result on transversals in ran-

dom matrices (Lemma 36) by using significant further probability estimates. It seems challenging to

establish the bound of Theorem 7 for all triangle-free G, even at the expense of the asymptotic leading

constant. Already a bound strictly smaller than Δ would be welcome progress.

Although we have presented our results so far purely in terms of the list packing number, many of

them can be shown in some natural stronger or more general settings. If one interprets list-colorings

as independent transversals of some suitably vertex-partitioned auxiliary graph, then one can similarly

reinterpret list-packings. By considering generalizations of that auxiliary graph, we obtain a natural

range of parameters/settings that expands from list packing towards the classic notion of strong color-

ings [3, 21]. We introduce and discuss these in Subsection 1.2. Thereafter we ‘resume’ the introduction

to this paper, by also stating and discussing the strengthened or more general versions of our results.

Before that, we set out some of our more basic notation, for clarity and completeness.

1.1 Basic terminology

For the convenience of the reader, here we indicate some of the standard notational conven-

tions/definitions we assume throughout this work. Let G be a graph. The order of G is |G| = |V(G)|.
For v ∈ V(G), the neighborhood of v is N(v) = {u ∈ V(G) ∶ uv ∈ E} and the degree of v is

deg(v) = |N(v)|.
The minimum degree of G is 𝛿(G) = min{deg(v) ∶ v ∈ V(G)} and the maximum degree of G

is Δ(G) = max{deg(v) ∶ v ∈ V(G)}. The degeneracy of G is 𝛿
⋆(G) = maxH⊆G 𝛿(H), where the

maximum is taken over all subgraphs H of G, and this is equivalent to the definition given above in

terms of neighbors preceding vertices in some order. A clique in a graph G is a set of vertices X ⊆ V(G)
such that every pair in X forms an edge of G, and an independent set in G is a set Y such that no pair in Y
forms an edge of G. The clique number 𝜔(G) of G is size of a largest clique in G and the independence
number 𝛼(G) of G is size of a largest independent set in G.

The Hall ratio of G is 𝜌(G) = maxH⊆G |H|∕𝛼(H), where the maximum is taken over subgraphs H
of G containing at least one vertex. The fractional chromatic number 𝜒f (G) of G is the least k such
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66 CAMBIE ET AL.

that there exists a probability distribution over the independent sets of G such that P(v ∈ S) ⩾ 1∕k for

each v ∈ V(G) and S a random independent set drawn according to the distribution. The chromatic
number 𝜒(G) of G is the least k such that there is a partition of V(G) into k independent sets. We will

usually use n to denote the number of vertices of a graph G.

It is worth keeping in mind that the following simple inequalities always hold:

𝜔(G) ⩽ 𝜌(G) ⩽ 𝜒f (G) ⩽ 𝜒(G) ⩽ 𝜒𝓁(G) ⩽ 1 + 𝛿⋆(G) ⩽ 1 + Δ(G) ⩽ n.

Given a matrix A, we denote its entries with Ai,j and with AI×J we denote the submatrix formed from

rows I and columns J. A binary matrix is a matrix with entries in {0, 1}. A zero matrix is a matrix

with every entry equal to 0. A binary k × k matrix is said to have a 1-transversal (resp. 0-transversal)
if it contains k elements that are each of value 1 (resp. each of value 0), such that no two elements are

in the same column and no two are in the same row. The permanent of a k × k matrix A is defined as

Per(A) =
∑
𝜎

∏n
i=1

Ai,𝜎(i), where the sum ranges over all permutations 𝜎 of [k] = {1, … , k}. For our

applications, it is important to note that a binary matrix A has no 1-transversal if and only if Per(A) = 0.

1.2 From list packing to strong coloring

As mentioned, although we have chosen to introduce our results in terms of the parameter 𝜒
⋆

𝓁 , many of

our results can be established (and otherwise pursued) in stronger or more general settings. We define

and discuss these now.

Let G and H be graphs. We say that H is a cover of G with respect to a mapping L ∶ V(G)→ 2
V(H)

if L induces a partition of V(H) and the subgraph induced between L(v) and L(v′) is empty whenever

vv′ ∉ E(G). Under various basic conditions on G, H and L, we are interested in the existence of an

independent transversal of H with respect to the partition, which is a vertex subset with exactly one

vertex chosen from each part that simultaneously forms an independent set. Moreover, we say that a

cover H of G with respect to L is k-fold if |L(v)| = k for all v ∈ V(G). In this case, we will also be

interested in the existence of some (k-fold) IT packing of H with respect to L, that is, a collection of

k mutually disjoint independent transversals of H with respect to L. These settings are motivated in a

light-hearted way in a well-known survey paper of Haxell [26].

To illustrate, we first reformulate list coloring and list packing in this terminology. From a

list-assignment L of G, we derive the list-cover H𝓁(G,L) for G via L as follows. For every v ∈ V(G),
we let L𝓁(v) = {(v, c)}c∈L(v) and define V(H𝓁) = ∪v∈V(G)L𝓁(v). We define E(H𝓁) by including

(v, c)(v′, c′) ∈ E(H𝓁) if and only if vv′ ∈ E(G) and c = c′ ∈ L(v) ∩ L(v′). Note that H𝓁 is a cover of

G with respect to L𝓁 , and that H𝓁 is k-fold if L is a k-list-assignment of G. The independent transver-

sals of H𝓁 with respect to L𝓁 are in one-to-one correspondence with the proper L-colorings of G. If

L is a k-list-assignment of G, then the k-fold IT packings of H𝓁 with respect to L𝓁 are in one-to-one

correspondence with the proper L-packings of G of size k. Thus 𝜒𝓁(G) and 𝜒
⋆

𝓁 (G) can equivalently be

defined in terms of list-covers.

We can somewhat relax the setting as follows. A correspondence-assignment for G via L is a cover

H for G via L such that for each edge vv′ ∈ E(G), the subgraph induced between L(v) and L(v′) is

a matching. We call such an H a correspondence-cover for G with respect to L. A correspondence
L-coloring of H is an independent transversal of H with respect to L. The correspondence chromatic
number (or DP-chromatic number) 𝜒c(G) is the least k such that any k-fold correspondence-cover H
of G via L admits a correspondence L-coloring [17]. Given a k-fold correspondence-cover, a (k-fold)
correspondence L-packing of H is a k-fold IT packing of H with respect to L. We define the correspon-
dence (chromatic) packing number 𝜒⋆c (G) of G as the least k such that any k-fold correspondence-cover

 10982418, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21181 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [04/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CAMBIE ET AL. 67

H of G via L admits a k-fold correspondence L-packing. Every list-cover is a correspondence-cover,

and moreover, for any list-cover H of G via L, the correspondence L-colorings of H are in one-to-one

correspondence with the proper L-colorings of G. In this sense correspondence coloring (or packing)

is a relaxation of list coloring (or packing, respectively). Note that 𝜒c(G) is necessarily at least 𝜒𝓁(G),
𝜒
⋆
c (G) is necessarily at least 𝜒

⋆

𝓁 (G), and 𝜒
⋆
c (G) is necessarily at least 𝜒c(G). It is easily observed that

𝜒c(G) ⩽ 1 + 𝛿⋆(G) always.

In the study of 𝜒𝓁(G) and 𝜒c(G) (and indeed also of 𝜒
⋆

𝓁 (G) and 𝜒
⋆
c (G)), it is natural to explicitly

take into account structural properties of the graph G, and this in fact is a large and ever-expanding

subfield of graph theory; however, given how we may define the parameters as in this subsection, it is

also valid and interesting to incorporate the properties of the cover graph H instead, without any explicit

assumptions on G. With respect to list-covers, correspondence-covers, or general covers, the existence

of independent transversals in these terms has already attracted quite some interest, particularly under

the condition that the cover graph has bounded maximum degree.

For general covers, such a problem was investigated by Bollobás, Erdős and Szemerédi [13] in

the mid 1970s. For each D, they essentially asked for the least integer Λ(D) for which the following

holds: for any Λ(D)-fold cover H of some graph G via L such that Δ(H) ⩽ D, there is an independent

transversal of H with respect to L. Using topological methods, Haxell [24] proved that Λ(D) ⩽ 2D, a

result which is sharp for every D [40].

For list-covers, such a problem was proposed by Reed [36]. For each D, he essentially asked for

the least integer Λ𝓁(D) for which the following holds: for any Λ𝓁(D)-fold list-cover H of some graph

G via L such that Δ(H) ⩽ D, there is an independent transversal of H with respect to L. In fact, he

conjectured that Λ𝓁(D) = D + 1. This was disproved by Bohman and Holzman [12]; however, with

nibble methodology Reed and Sudakov [37] proved that Λ𝓁(D) ⩽ D + o(D) as D →∞.

For correspondence-covers, such a problem was proposed by Aharoni and Holzman, see [30].

For each D, they essentially asked for the least integer Λc(D) for which the following holds: for any

Λc(D)-fold correspondence-cover H of some graph G via L such that Δ(H) ⩽ D, there is an indepen-

dent transversal of H with respect to L. Again with nibble methods, Loh and Sudakov [30] proved

that Λc(D) ⩽ D + o(D) as D → ∞. We note that very recently two independent works [22, 28]

showed a substantial strengthening of this last result in terms of a part-averaged degree condition for

the correspondence-cover.

For each of the three parameters Λ, Λ𝓁 , Λc, one can define the analogous packing variants. That

is, for each D, what is the least integer Λ⋆(D) (or Λ⋆𝓁 (D) or Λ⋆c (D)) for which the following holds:

for any Λ⋆(D)-fold cover (or Λ⋆𝓁 (D)-fold list-cover or Λ⋆c (D)-fold correspondence-cover, respectively)

H of some graph G via L such that Δ(H) ⩽ D, there is an IT packing of H with respect to L.

Indeed, under the guise of strong coloring,Λ⋆(D) has already (long) been investigated: independently,

Alon [3] and Fellows [21] first considered this parameter, and in particular Alon showed using the

Lóvasz local lemma that Λ⋆(D) = O(D). Haxell [25] proved that Λ⋆(D) ⩽ 2.75D + o(D) as D → ∞,

which is the best known bound to date. The folkloric strong coloring conjecture (see [1]) asserts that

Λ⋆(D) ⩽ 2D for all D. Note that this longstanding conjecture has a hint of (and indeed inspired) our

Conjecture 1.

1.3 Introduction continued

In Subsection 1.2, we have presented essentially three additional problem settings ‘between’ list

packing and strong coloring. Equipped with these notions, we can further discuss our results and

trajectory in this context.
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68 CAMBIE ET AL.

Let us resume the introduction by first considering how the results on the list packing number

extend (or not) to the correspondence packing number, and contrast the respective behaviors. Note

that, in this realm, we can maintain our view on the ‘covered’ graph G, and so the panoply of results

and problems in graph coloring can still guide our explorations for correspondence packing. We note

that, just as before, these explorations would be made partly redundant if we were able to prove the

following conjecture.

Conjecture 8. There exists C > 0 such that 𝜒⋆c (G) ⩽ C ⋅ 𝜒c(G) for any graph G.

We will see later for this assertion both that it is true up to a logarithmic factor and that it cannot

be true with C taken smaller than 2.

In terms of the number of vertices, the problem of correspondence packing has recently been high-

lighted (in different terminology) by Yuster [42]. Casting it as a specialization of earlier conjectures

related to the Hajnal–Szemerédi theorem, he stated the conjecture, rephrased in our terminology, that

𝜒
⋆
c (Kn) = n if n is even and 𝜒

⋆
c (Kn) = n + 1 if n is odd. This assertion would be best possible if

true, due to a construction of Catlin [16]. Note that Catlin’s construction also (barely) precludes a

direct correspondence packing analogue of Theorem 2. Yuster used semirandom methods to prove that

𝜒
⋆
c (Kn) ⩽ 1.78n for all sufficiently large n.

In terms of degree parameters, we indeed have the following generalizations of Theorems 3 and 4

for correspondence packing.

Theorem 9. 𝜒⋆c (G) ⩽ 2𝛿
⋆(G) for any graph G.

Theorem 10. 𝜒⋆c (G) ⩽ 1 + Δ(G) + 𝜒c(G) for any graph G.

Note first that since 𝜒
⋆

𝓁 (G) ⩽ 𝜒
⋆
c (G), Theorem 9 implies Theorem 3. Theorem 10 does not

immediately imply Theorem 4, but their proofs are almost identical. Again, both results imply that

𝜒
⋆
c (G) is always at most around 2Δ(G), a bound which is sharp up to the factor 2. Together with a

result noticed independently by Bernshteyn [11] and Kráľ, Pangrác and Voss [29] that for some con-

stant C > 0 𝜒c(G) ⩾ C𝛿⋆(G)∕ log 𝛿
⋆(G) for all G, note that Theorem 9 implies that 𝜒

⋆
c (G) is at

most a logarithmic factor larger than 𝜒c(G), in support of Conjecture 8. Theorem 9 together with

Euler’s formula further implies that 𝜒
⋆
c (G) ⩽ 10 for any planar graph G. In Section 3, we exhibit

an example (see Proposition 24 below) to show that the bound in Theorem 9 is best possible. Since

𝜒c(G) ⩽ 1 + 𝛿⋆(G) always, this example also shows that C in Conjecture 8 (if true) cannot be taken

smaller than 2.

In terms of direct extensions of Theorems 5 and 6 (in terms of fractional chromatic number and Hall

ratio) to correspondence packing, the just-mentioned result in [11] and [29] proves it impossible, as

the corresponding statements already fail for complete bipartite graphs. To be sure, complete bipartite

graphs are where the difference between list packing and correspondence packing is clearest. We are

able to establish the correspondence packing strengthening of Theorem 7.

Theorem 11. 𝜒⋆c (G) ⩽ (1 + o(1))Δ∕ logΔ for any bipartite graph G with Δ(G) ⩽ Δ, as
Δ → ∞.

However, the complete bipartite graph KΔ,Δ certifies this statement to be sharp up to an asymptotic

multiple of 2, due to the observation from [11] and [29]. This gives a sharp contrast with Theorem 5.

This contrast might appear to follow mainly from the known difference in behavior between list and

correspondence chromatic numbers. On the other hand, we also demonstrate that there are complete

bipartite graphs having list chromatic, list packing and correspondence chromatic numbers all equal,

but correspondence packing number almost twice as large (Corollary 34).
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CAMBIE ET AL. 69

Just as for list packing, we suspect that a more general result holds, namely that Theorem 11 could

be extended to all triangle-free G.

Conjecture 12. 𝜒⋆c (G) ⩽ (1 + o(1))Δ∕ logΔ for any triangle-free graph G with Δ(G) ⩽
Δ, as Δ →∞.

If true, this conjecture would be a striking finding following in a long and acclaimed sequence of

results, including the work of Johansson [27] and Molloy [33], among others.

As we alluded to in Subsection 1.2, our trajectory tends naturally towards a couple of problem set-

tings interpolating between list/correspondence packing and strong coloring. For example, analogously

to the strong coloring conjecture, it would be interesting to investigate the following possibilities for

the two packing parameters introduced at the end of Subsection 1.2.

Conjecture 13. Λ⋆𝓁 (D) ⩽ D + o(D) and Λ⋆c (D) ⩽ D + o(D) as D →∞.

Note that this conjecture implies the following conjectural statements for list and correspon-

dence packing number: for each 𝜀 > 0 there is some Δ0 such that 𝜒
⋆

𝓁 (G) ⩽ (1 + 𝜀)Δ (respectively,

𝜒
⋆
c (G) ⩽ (1 + 𝜀)Δ) for all G with Δ(G) ⩾ Δ0. We also note that the argument outlined in Section 4

for Theorems 4 and 10 also shows that Λ⋆𝓁 (D) ⩽ Λ⋆c (D) ⩽ 2D + o(D) as D → ∞; see both Section 4

and a remark in [30].

In considering problems such as Conjecture 13, it is also sensible to explore what holds under some

basic structural conditions on the cover graph. Along these lines, we would like to emphasize the pos-

sibilities related to Theorems 7 and 11 and Conjecture 12 in particular. Let us reformulate Theorem 11:

there is some k = k(Δ) satisfying k ⩽ (1+o(1))Δ∕ logΔ asΔ →∞ such that for any bipartite graph G
with Δ(G) ⩽ Δ, it holds that any k-fold correspondence-cover H of G via L admits a correspondence

L-packing. In a conservative manner, we could propose the following stronger statement.

Conjecture 14. There is some k = k(Δ) satisfying k ⩽ (1 + o(1))Δ∕ logΔ as Δ → ∞
such that the following holds. Suppose that G and H are bipartite graphs such that H is
a k-fold correspondence-cover of G via some L, and that Δ(H) ⩽ Δ. Then H admits a
correspondence L-packing.

If true, this would constitute a correspondence packing analogue of a recent result due to two of

the authors [14]. Beyond a common strengthening of Conjectures 12 and 14, one could more boldly

speculate the following.

Conjecture 15. For every r ⩾ 3, there is some Cr > 0 such that the following
holds for k = CrΔ∕ logΔ. Suppose that G and H are graphs such that H is a k-fold
correspondence-cover of G via some L, H contains no copy of Kr, and Δ(H) ⩽ Δ. Then
H admits a correspondence L-packing.

If true, this would imply a recent conjecture of Anderson, Bernshteyn and Dhawan [10], which

in turn would imply a conjecture of Alon, Krivelevich and Sudakov [9], which in turn would imply

a conjecture of Ajtai, Erdős, Komlós and Szemerédi [2]. Due to the connections with these last two

central and longstanding conjectures, even partial progress on Conjecture 15, in either direction, would

be intriguing.

1.4 Outline of the paper

See Tables 1 and 2 for an overview of our results that refers to where we state and prove them in the

paper. In Section 2 we prove Theorem 2 by showing that 𝜒
⋆

𝓁 (Kn) = n and 𝜒
⋆

𝓁 (K−
n ) = n − 1, where K−

n
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70 CAMBIE ET AL.

TABLE 1 An overview of our results on the list packing number 𝜒
⋆

𝓁 (G) and the correspondence packing number 𝜒
⋆

c (G) of

a graph G.

Result Reference

𝜒
⋆

𝓁 (G) ⩽ n with equality if and only if G is the complete graph Kn. Theorem 2; Section 2

𝜒
⋆
c (G) ⩽ 2𝑑 if G is 𝑑-degenerate. Theorem 9, Proposition 24

For all 𝑑, there is a 𝑑-degenerate G with 𝜒
⋆
c (G) = 2𝑑. Theorem 25; Section 3

For all 𝑑, there is a 𝑑-degenerate G with 𝜒
⋆

𝓁 (G) ⩾ 𝑑 + 2.

𝜒
⋆

𝓁 (G) ⩽ 1 + Δ + 𝜒𝓁(G) Theorems 4 and 10

𝜒
⋆
c (G) ⩽ 1 + Δ + 𝜒c(G) Section 4

𝜒
⋆

𝓁 (G) ⩽ (5 + o(1)) ⋅ 𝜒f (G) ⋅ log n. Theorems 5, 29, 30

𝜒
⋆

𝓁 (G) ⩽ (1 + o(1)) ⋅ 𝜒f (G) ⋅ log n, if 𝜒f (G) is bounded. Section 6

𝜒
⋆

𝓁 (G) ⩽ (1 + o(1)) log
2

n, if G is bipartite.

𝜒
⋆

𝓁 (G) ⩽ min(ΔA,ΔB) + 1 Lemma 33; Section 7

if G = (A ∪ B,E) is bipartite with maximum degrees ΔA,ΔB.

𝜒
⋆

𝓁 (Ka,b) = b + 1 and 𝜒
⋆
c (Ka,b) = 2b for all b and a = a(b) large enough. Corollary 34; Section 7

𝜒
⋆
c (G) ⩽ (1 + o(1))Δ∕ logΔ if G is bipartite. Theorem 11; Section 7

Note: Here n denotes the number of vertices and Δ is the maximum degree of G. Recall that 𝜒
⋆

𝓁 (G) ⩽ 𝜒
⋆
c (G) for every graph G.

TABLE 2 Two of our auxiliary results on random matrices, perhaps of independent interest.

Result Reference

A random k × k binary matrix with independent Bernoulli(1 − p) distributed entries has

no 1-transversal with probability 2kpk(1 + o(1)), as k →∞ provided k5pk → 0.

Theorem 27; Section 5

If k ⩾ ⌈(1+𝜖)n∕ log n⌉, then a sum of n independent uniformly random k×k permutation

matrices has a 0-transversal with probability at least 1 − 3k2 ⋅ exp(−n𝜖∕3).
Lemma 36; Section 7

equals Kn minus one edge. In Section 3 we prove Theorem 3 by doing this for the correspondence ver-

sion, Theorem 9, through an application of Hall’s marriage theorem. In Section 4 we prove Theorem 10

by showing that a partial coloring that does not use colors from every list is not a maximum partial

coloring. Theorem 4 is proved with exactly the same method. In Section 5 we generalize a theorem of

Everett and Stein [20] on the permanent of random k × k matrices. This essentially says that (under

certain conditions) the probability that a random binary matrix A has a permanent equal to zero is

approximately the probability that it contains a row or column of zeros. This is applied in Section 6 to

prove Theorems 5 and 6. Here we construct some matrices for every M⋆(v) for every vertex v in which

a 1-transversal corresponds with an ordering of the colors in the list, resulting in different L-colorings.

In Section 7 we prove that the list packing number of a bipartite graph with parts having maximum

degrees ΔA and ΔB is at most min{ΔA,ΔB} + 1. We show sharpness of this result and prove that

there are complete bipartite graphs for which the correspondence packing number is nearly twice the

correspondence chromatic number. At the end, we prove Theorem 11, and thus also Theorem 7.

1.5 Further preliminaries

In this subsection, we collect some basic results we require for the proofs. We will use the following

formulation of Hall’s marriage theorem.
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CAMBIE ET AL. 71

Theorem 16 ([23]). Given a family  of finite subsets of some ground set X, where the
subsets are counted with multiplicity, suppose  satisfies the marriage condition, that is
that for each subfamily  ′ ⊆ 

| ′| ⩽
|
|
|
|
|

⋃

A∈ ′
A
|
|
|
|
|

.

Then there is an injective function f ∶  → X such that f (A) is an element of the set A for
every A ∈  , that is, the image f ( ) is a system of distinct representatives of  .

The following elementary criterion, also known as the Frobenius–König theorem, allows us to

efficiently count the matrices that do not have a 1-transversal. It is a consequence of Hall’s theorem,

but we include a proof for completeness.

Lemma 17 (see [32]). Let A = (Ai,j), i ∈ I, j ∈ J be a k × k binary matrix. Then A has
no 1-transversal if and only if there exist S ⊆ I and T ⊆ J with |S|+ |T| > k such that the
submatrix AS×T is a zero matrix.

Proof. For each column j ∈ J, let Rj ⊆ I denote the set of rows i such that Aij = 1.

Observe that A has no 1-transversal if and only if {R1, … ,R|J|} has no system of distinct

representatives. Furthermore, by Hall’s marriage theorem, this is true if and only if there

exists T ⊆ J such that |
⋃

j∈T Rj| < |T|.
Assuming the existence of such a set T , let S ∶= I ⧵

⋃
j∈T Rj, which is the set of rows

that do not contain any 1 on any column of T . Then AS×T is a zero matrix. Furthermore,

|S| + |T| > |I| − |T| + |T| = k, as desired. Conversely, if AS×T is a zero submatrix with

|S| + |T| > k, then |
⋃

j∈T Rj| ⩽ |I ⧵ S| = k − |S| < |T|, as required. ▪

Given a probability space, the {0, 1}-valued random variables X1, … ,Xn are negatively correlated
if for each subset S of {1, … , n},

P (Xi = 1,∀i ∈ S) ⩽
∏

i∈S
P(Xi = 1).

Correspondingly, we say that a collection of events is negatively correlated if the random variables

given by their indicator functions are negatively correlated. We will use the following Chernoff bound.

Theorem 18 (see [35]). Let X1, … ,Xn be {0, 1}-valued random variables, and let X =
∑n

i=1
Xi. If the variables X1, … ,Xn are negatively correlated, then

∀𝛿 ∈ [0, 1], P (X ⩾ (1 + 𝛿)EX) ⩽ e−𝛿2EX∕3
.

If the variables 1 − X1, … , 1 − Xn are negatively correlated, then

∀𝜂 ∈ [0, 1], P (X ⩽ (1 − 𝜂)EX) ⩽ e−𝜂2EX∕2
.

In our applications of Theorem 18, we will sometimes use the following simple lemma.

Lemma 19. Let X1, … ,Xn be {0, 1}-valued random variables such that
P(Xi = Xj = 1) = 0 for all distinct i, j ∈ {1, … , n}. Then X1, … ,Xn are negatively
correlated and 1 − X1, … , 1 − Xn are negatively correlated.
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72 CAMBIE ET AL.

Proof. It is immediate that X1, … ,Xn are negatively correlated, so we only show that

1−X1, … , 1−Xn are negatively correlated. Let S be a subset of {1, … , n}. Then for any

subset T ⊆ S of size at least two, E
(∏

i∈T Xi
)
= P (Xi = 1,∀i ∈ T) = 0. Therefore

P (1 − Xi = 1,∀i ∈ S) = E

[
∏

i∈S
(1 − Xi)

]

= 1 −
∑

i∈S
EXi +

∑

i<j∈S
E
[
XiXj

]
− … + (−1)|S| ⋅ E

[
∏

i∈S
Xi

]

= 1 −
∑

i∈S
EXi.

As E(Xi) ∈ [0, 1] for all i, the right-hand side is a lower bound on
∏

i∈S (1 − EXi), which

is easily proved by induction as in the simpler case of Bernoulli’s inequality. We conclude

that 1 − X1, … , 1 − Xn are negatively correlated because 1 − EXi = P (1 − Xi = 1). ▪

We will use the following symmetric form of the Lovász local lemma due to Shearer.

Theorem 20 ([18, 39]). Consider a set  of (bad) events such that for each A ∈ 

1 P(A) ⩽ p < 1, and
2 A is mutually independent of a set of all but at most 𝑑 of the other events.

If ep𝑑 ⩽ 1, then with positive probability none of the events in  occur.

2 ORDER

In this section we prove Theorem 2. We first prove a lemma that implies 𝜒
⋆

𝓁 (Kn) = n.

Lemma 21. Given 1 ⩽ k ⩽ n, if L is a k-list-assignment of Kn such that every color
belongs to at most k lists, then there is a proper L-packing.

Proof of Lemma 21. We proceed by induction on k. The statement is trivially true in the

base case k = 1. Assume k > 1 and that the statement holds with k replaced by k − 1.

Let V be the vertex set of Kn. Let us call a color rich if it belongs to exactly k lists,

and write R for the set of rich colors. If there is a proper L-coloring c of Kn that uses all

the rich colors then we are done, as then the (k − 1)-fold list-cover L′ such that L′(v) =
L(v) ⧵ {c(v)} for all v ∈ V has the property that every color is used on at most k − 1 lists.

By induction, there is a proper L′-packing of Kn, which we may combine with c to form a

proper L-packing. So it suffices to construct the desired coloring c.

We start by showing first that some proper L-coloring c′ of Kn exists. Such a coloring

is precisely a system of distinct representatives for the family  = {L(v) ∶ v ∈ V}, and

hence it suffices to show that the marriage condition holds. This entails showing that

|V ′| ⩽ |
|
⋃

v∈V ′ L(v)|| for every V ′
⊆ V . This holds by a simple counting argument: every list

has size k, and so counting colors with multiplicity on lists of v ∈ V ′
gives precisely k|V ′|.

But every color appears on at most k lists by assumption, so appears with multiplicity at

most k, and hence the total number of colors counted without multiplicity is at least |V ′|,

as required to guarantee the desired c′ by Hall’s theorem.
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CAMBIE ET AL. 73

If c′ uses all the rich colors already then we are done, but if not we swap colors in c′ to

ensure this property. First, note that there is a partial proper L-coloring which uses every

rich color by the following argument. For a rich color r ∈ R, let Vr = {v ∈ V ∶ r ∈ L(v)},
and let  ′ = {Vr ∶ r ∈ R}. Now every set in  ′ has size k by the definition of R, and

each L(v) has size k. The marriage condition holds for  ′ by the same counting argument

as above: given a subset R′ ⊆ R, with multiplicity we count at least k|R′| vertices whose

lists contain colors in R′, but the multiplicities are at most the list size k. Hall’s theorem

thus guarantees that there is an injective function f ∶ R → V such that r ∈ L(f (r)) for

each r ∈ R.

The desired coloring c is now obtained by doing the following. Initialize c = c′. Then

set c(f (r)) = r for every unused rich color r ∈ R⧵c(V). In doing so we removed the original

color from f (r), so this modification may lead to a new (and disjoint) set of unused rich

colors. Therefore we repeat the process as long as necessary. That is, while there is a rich

color r unused by c, we modify c by setting c(f (r)) = r. When this process terminates, c
is a proper L-coloring of Kn which uses all the rich colors, as desired. ▪

For our next result, recall that K−
n is the graph formed from Kn by removing an arbitrary edge.

Proof of Theorem 2. First observe that 𝜒
⋆

𝓁 is monotone under edge-deletion. That is, if

G′
is a subgraph of G, then 𝜒

⋆

𝓁 (G′) ⩽ 𝜒
⋆

𝓁 (G). Thus, for the bound it suffices to prove that

𝜒
⋆

𝓁 (Kn) ⩽ n. In turn, this follows from Lemma 21 with k = n. For the equality statement,

it suffices to show that 𝜒
⋆

𝓁 (K−
n ) ⩽ n − 1, where n ⩾ 3.

Let V denote the vertex set of K−
n and let u1 and u2 denote the two nonadjacent ver-

tices in V . Let L be an (n − 1)-list-assignment of K−
n . If L(u1) = L(u2), then we can

treat u1 and u2 as the same vertex (since they may take the same color), and conclude by

Lemma 21 for Kn−1. If there is no color that belongs to all n lists, then we are also done

by Lemma 21.

Let there be exactly i colors belonging to all n lists. Without loss of generality,

we may assume these are [i], that is, [i] ⊆ L(v) for all v ∈ V . We seek to define an

i-list-assignment L1 of K−
n satisfying L1(v) ⊆ L(v) for all v ∈ V such that the following

properties hold: L1(u1) = L1(u2) = [i]; every color in [i] belongs to at most i+1 lists L1(v)
where v ∈ V; every color not in [i] belongs to at most i lists L1(v) where v ∈ V; and the

(n−i−1)-list-assignment L⧵L1 of K−
n satisfies the hypothesis of Lemma 21 for k = n−i−1.

If we can do this, then by treating u1 and u2 as the same vertex, we are guaranteed an

L1-packing of K−
n by Lemma 21. We are also guaranteed a disjoint L⧵L1-packing of K−

n by

Lemma 21. Then these packings combine to form an L-packing of K−
n , which completes

the proof.

We prove that such an L1 exists with two claims. First, we explain some additional

terminology. We call a color j ∉ [i] rich if it belongs to more than n − i − 1 lists L(v)
where v ∈ V . We write 𝛼(j) for the number of lists to which a color j belongs, and we call

s(j) = max{0, 𝛼(j) − (n − i − 1)} the surplus of j. We write R for the set of rich colors,

which by definition are the colors with positive surplus.

Claim 22. We have
∑

j∈R s(j) ⩽ i(n − i − 1).

Proof. Note that for j ∈ R we have s(j) ⩽ n − 1 − (n − i − 1) = i, as by assumption every

j ∉ [i] belongs to fewer than n lists. So if |R| ⩽ n − i − 1 the claim is immediate.
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74 CAMBIE ET AL.

In any case, a simple color-counting argument gives

∑

j∈R
𝛼(j) ⩽

∑

j∉[i]
𝛼(j) = n(n − 1) −

∑

j∈[i]
𝛼(j) = n(n − i − 1),

because [i] ⊂ L(v) for all v ∈ V . So in the case |R| ⩾ n − i, we have

∑

j∈R
s(j) =

∑

j∈R
𝛼(j) − |R|(n − i − 1) ⩽ n(n − i − 1) − (n − i)(n − i − 1) = i(n − i − 1),

completing the proof of the claim. ▪

Note that in order for L ⧵ L1 to fulfil the condition of Lemma 21 for k = n − i − 1,

we need that the color j belongs to at least s(j) lists of L1 for every rich color j. Thus the

following claim proves the existence of the desired L1.

Claim 23. For every v ∈ V , we can select a subset L1(v) ⊆ L(v) of size i in such a way
that L1(u1) = L1(u2) = [i], every color in [i] belongs to i + 1 lists, every color not in [i]
belongs to at most i lists, and every j ∈ R belongs to at least s(j) lists L1(v) where v ∈ V .

Proof. The main part of this proof is to make a partial selection for L1 from the colors not

in [i]. In particular, we will make a total of i(n − i − 1) selections of colors not in [i] from

the lists L(v) where v ∈ V ⧵ {u1, u2}, such that no color is selected more than i times, no

vertex has more than i selected colors, and every j ∈ R is selected at least s(j) times. Once

we have done this, since [i] ⊆ L(v) for all v ∈ V , the remaining selection for L1 of the

colors in [i] is straightforward: we take L(u1) = L(u2) = [i], and for the remaining vertices

we greedily/arbitrarily add colors of [i] to the selection until |L1(v)| = i for all v ∈ V and

every color of [i] has been added precisely i − 1 times. The resulting selection satisfies

the desired conclusion. This means that it suffices to make such a selection for L1 of the

colors not in [i]. For this, we consider two cases.

First, suppose that i ⩾ n − i − 1. We make a somewhat arbitrary partial selection and

then modify it. We start by taking an arbitary set A of i vertices in V ⧵ {u1, u2}, letting

L1(v) = L(v) ⧵ [i] for v ∈ A, and letting L1(v) = ∅ for all v ∈ V ⧵ {u1, u2} ⧵ A. Note that

i(n− i−1) selections have been made, no color has been selected more than i times, and no

vertex has more than i selected colors thus far. While there is a color j ∈ R that belongs to

fewer than s(j) lists of L1, we can select j for some v ∈ V⧵{u1, u2}⧵A and deselect for some

v ∈ A some unnecessary color, that is, some selected color j′ such that either j′ ∈ R and j′
already appears more than s(j′) times or j′ ∉ R. Note that at each step of this process, the

total number of selections is preserved, the selected color j is still selected at most s(j) ⩽ i
times in total, and still each vertex has at most |L(v) ⧵ [i]| = n − 1 − i ⩽ i selected colors.

Moreover, Claim 22 ensures that this process will terminate, at which point we have the

desired partial selection for L1.

Second, suppose that i < n − i − 1. Here we make a more careful selection before

modifying it. We start by taking some set A of n − i − 1 vertices in V ⧵ {u1, u2} and

consider the (n − i − 1)-list-assignment L′ of the complete graph on vertex set A that is

defined by L′(v) = L(v) ⧵ [i] for all v ∈ A. By Lemma 21, there is a proper L′-packing

of the complete graph on A. Define a partial selection for L1 by arbitrarily taking i of the

proper L′-colorings from this L′-packing and taking their union. Again i(n − i − 1) color
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CAMBIE ET AL. 75

selections have been made, no vertex has more than i selected colors and, since we have

taken i disjoint proper L′-colorings of a complete graph, no color has been selected more

than i times so far.

In what follows, we will modify the partial selection L1 iteratively, by selecting and

deselecting some vertices, while at each step maintaining the above three constraints on

the number of selections. The goal is of course to make sure that L1 in the end also satisfies

the fourth constraint, that every j ∈ R is selected at least s(j) times.

At each step, we distinguish between colors in L1 that are merely selected for their

vertex, and colors that are also fixed. If a color has been fixed for a vertex, we do not allow

it to be deselected from that vertex later in the process. Throughout the process, we will

only fix rich colors, and each rich color j ∈ R will be fixed at most s(j) times, thus ensuring

that the total number of times we fix a color does not exceed
∑

j∈R s(j).
For the first round of modifications, we first focus our attention on the set R1 of rich

colors that belong to at most n − i − 2 lists L(v) where v ∈ V ⧵ {u1, u2}. A color j only

belongs to R1 when 𝛼(j) = n − i (so s(j) = 1) and j ∈ L(u1) ∩ L(u2). Since L(u1) ≠ L(u2),
|R1| ⩽ n − i − 2. But since all of these colors in fact belong to exactly n − i − 2 lists L(v)
for v ∈ V ⧵ {u1, u2}, there exists some injective function w ∶ R1 → V ⧵ {u1, u2} such

that L(w(j)) ∋ j for all j ∈ R1. We now use the function w to iteratively modify L1 so that

every color in R1 is selected (at least) once. More fully, let us consider every j ∈ R1 and

do the following in order, where we write j ∈ L1 if the color j has been selected under (the

current) L1 for at least one vertex.

1. For all j ∈ R1 such that w(j) ∈ A and j ∈ L1(w(j)), we fix color j for L1(w(j)).
2. Iteratively, for all j ∈ R1 such that w(j) ∈ A, but j ∉ L1, we select and fix j for w(j),

and deselect an arbitrary color from L1(w(j)).
3. For each remaining j ∈ R1 such that w(j) ∈ A we have that j ∈ L1 but not j ∈ L1(w(j)).

We fix j for one arbitrary selection under L1.

4. Each remaining j ∈ R1 satisfies w(j) ∉ A. We (select and) fix color j for vertex w(j).
If as a result of this, there are now more than i vertices for which color j has been

selected, we deselect j for one of them (for which j is not fixed). Otherwise we deselect

an arbitrary nonfixed color.

After this first round of modifications, every color in R1 has exactly one fixed selection

under L1. Note that the four modification steps above are rather delicate because we need

to preserve the total number of selections, and the properties that no vertex has more than

i selected colors and that no color has been selected more than i times.

Now we consider the set R ⧵R1 of rich colors that belong to at least n− i− 1 lists L(v)
where v ∈ V ⧵ {u1, u2}. We repeat the following until we can no longer do so. Take some

j ∈ R ⧵ R1 that currently has been selected by L1 for fewer than s(j) vertices. Let us fix all

of its current selections. Let w′(j) ∈ V ⧵{u1, u2} be some vertex such that L(w′(j)) ∋ j and

w′(j) does not have i selected colors fixed. The existence of w′(j) is guaranteed by the fact

that j belongs to at least n − i − 1 lists and Claim 22.

(Indeed, suppose such w′(j) does not exist. Then there must be at least n− i−1 vertices

w ∈ V ⧵ {u1, u2} with j ∈ L(w) and with at least i colors fixed for w. So there are at least

i(n− i− 1) fixed colors in total. On the other hand, by assumption fewer than s(j) vertices

have been fixed for j, so in total we have fixed at most −1 +
∑

h∈R s(h) colors, which is

strictly less than i(n − i − 1) by Claim 22, a contradiction.)
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76 CAMBIE ET AL.

As before, we select j for w′(j), fixing this choice, and deselect some other (nonfixed)

color, possibly within the list of w′(j) (if we need to ensure that w′(j) has no more than i
selected colors). This procedure will terminate due to Claim 22, at which point we will

have the desired partial selection for L1. ▪

This completes the proof that there exists such an L1, thus guaranteeing the desired

L-packing. ▪

3 DEGENERACY

In this section we give the argument for Theorem 9, which also yields Theorem 3. This greedy approach

with Hall’s theorem is given by MacKeigan [31] and discussed by Yuster [42] as a way of proving that

𝜒
⋆
c (Kn) ⩽ 2(n − 1). Although Yuster proved that the leading constant ‘2’ there is not tight, we show

with Proposition 24 that when the method is refined and stated in terms of degeneracy it is indeed

tight. We also give an example showing that the bound in Theorem 3 cannot be improved to 𝛿
⋆(G)+1.

Proof of Theorem 9. Let G be a graph with degeneracy 𝛿
⋆(G) = 𝑑, and order the ver-

tices V(G) as v1, … , vn such that no vertex has more than 𝑑 neighbors preceding it in the

order. That is, in each of the induced subgraphs Gi ∶= G[{v1, … , vi}], the degree of vi
is at most 𝑑. Let (L,H) be a k-fold correspondence-cover of G, where k = 2𝑑. We prove

by induction and Hall’s theorem that G admits a proper L-packing. Write Hi and Li for

the correspondence-cover and associated correspondence-assignment induced on Gi by H
and L, respectively. Note that trivially G1 admits a correspondence L1-packing. So for the

induction let i > 1 and assume that Gi−1 admits a correspondence Li−1-packing. This pack-

ing is equivalent to an ordered list (c1, … , ck) of pairwise-disjoint proper Li−1-colorings

of Gi−1. We want to extend each of these colorings to the vertex vi so that they remain

disjoint and are proper Li-colorings of Gi. Since vi has degree at most 𝑑 in Gi, each color

x ∈ L(vi) is a possible valid extension for at least |L(vi)| − 𝑑 = 𝑑 of the colorings

c1, … , ck to the vertex vi. For each x ∈ L(vi), let Ξ(x) be the set of such colorings (so

|Ξ(x)| ⩾ 𝑑 for all x). Conversely, for each 1 ⩽ j ⩽ k there are also at least 𝑑 colors in

L(vi) that can be used to extend the coloring cj, so |Ξ−1(cj)| ⩾ 𝑑 for all j. Consider the

family  = {Ξ(x) | x ∈ L(vi)}. Using the facts that |Ξ(x)| ⩾ 𝑑 for all x and |Ξ−1(cj)| ⩾ 𝑑

for all j, one can verify that the marriage condition holds. Let f be the injective func-

tion guaranteed by Hall’s theorem. This gives a one-to-one correspondence between

the colorings c1, … , ck and colors in L(vi) that may extend them to the vertex vi. We

obtain the claimed correspondence Li-packing of Gi, as desired. In particular, this holds

for i = n. ▪

Proposition 24. For every 𝑑 ⩾ 2, there exists some graph G satisfying 𝛿⋆(G) = 𝑑 and
𝜒
⋆
c (G) = 2𝑑. In particular, this is true for the complete bipartite graph K𝑑,((2𝑑−1)!)𝑑−1 .

Proof. Let G be K𝑑,((2𝑑−1)!)𝑑−1 , with parts A and B of size 𝑑 and ((2𝑑 − 1)!)𝑑−1
, respectively.

This graph has degeneracy 𝑑, so by Theorem 9 we need to show that it satisfies 𝜒
⋆
c (G) ⩾

2𝑑. We form a (2𝑑 − 1)-fold correspondence-cover of G with respect to L by including

every possible combination of 𝑑 matchings running between 𝑑 copies of [2𝑑 − 1] and a

single copy of [2𝑑 − 1]. Then, whatever the partial L-packing of size 2𝑑 − 1 induced on

A, there is guaranteed to be a vertex b ∈ B and 𝑑 of the proper L-colorings such that
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CAMBIE ET AL. 77

𝑑 of the colors of L(b) are each matched to 𝑑 colors of ∪a∈AL(a) that belong to each of

the 𝑑 proper L-colorings. And thus to extend the partial L-packing induced on A, those 𝑑

colors of L(b)may only be used to extend 𝑑−1 of the proper L-colorings, which is clearly

impossible. ▪

Having established this tight characterization of 𝜒
⋆
c in terms of degeneracy, it is natural to wonder

what the right bound for list packing could be. We conclude this section with a modest lower bound

on the extremal list packing number in terms of degeneracy. In light of Proposition 24, we note on

the other hand that (complete) bipartite graphs cannot certify a better lower bound for 𝜒
⋆

𝓁 (G), see

Lemma 33 below.

Theorem 25. For every 𝑑 ⩾ 2, there exists a graph G with 𝛿⋆(G) = 𝑑 and 𝜒⋆𝓁 (G) ⩾ 𝑑+2.

Proof. We will iteratively construct a graph G with 𝛿
⋆(G) = 𝑑 and a (𝑑 + 1)-list-

assignment L such that G does not admit a proper L-packing. We will do so by construct-

ing a sequence of subgraphs G1,G2, … ,G such that V(G1) ⊂ V(G2) ⊂ … ⊂ V(G).
We will start with a list-assignment and arbitrary list-packing of G1 (see below for more

details). Next, for each Gj+1 apart from the final graph G, we consider the list-packing

C ∶= (ci)1⩽i⩽𝑑+1 of Gj and we choose the lists of V(Gj+1) ⧵ V(Gj) such that there is a

unique extension of C to Gj+1. For the final graph G, we choose the remaining lists such

that C cannot be extended.

We start with choosing G1 = (V1,E1) = K𝑑+1 and the associated lists being equal

to [𝑑 + 1] for all its vertices. Note that for every v ∈ G1, the vector of colors C(v) =
(ci(v))1⩽i⩽𝑑+1 is a permutation of [𝑑 + 1]. We now construct G2 by adding a copy v′ for

every v ∈ V1 that is connected to all vertices in V1 ⧵ v. Let V2 = V(G2) ⧵ V1. We let

L(v′) = [𝑑 + 1] ⧵ {1} ∪ {𝑑 + 2}. Note that when extending the L-packing, the vector C(v′)
will be equal to C(v) where 1 is replaced by 𝑑 + 2, as every color 2 ⩽ j ⩽ 𝑑 + 1 can only

be used for one of the L-colorings ci.

We will repeat this procedure. In step m, we add copies v′ for every v ∈ Vm and con-

nect it to all vertices in Vm ⧵ v. we call the set of added vertices Vm+1. For v′ ∈ Vm+1,

we let L(v′) = sij(L(v)) = L(v) ⧵ {i} ∪ {j} for some i, j ∈ [𝑑 + 2], that is, an

(i, j)-shift is applied to the lists. Here we set Vm = {vm
1
, … , vm

𝑑+1
}, where vm+1

i denotes the

copy of vm
i .

By choosing the shifts to be s1,𝑑+2, s2,1, s𝑑+2,2 in the first three steps, we see that in the

L-packing, the permutations C(v1

i ) and C(v4

i ) are equal up to an interchange of 2 and 1,

that is, the permutation (12) has been applied to them. We can repeat this procedure and

form the permutation (123 … 𝑑) as it is equal to (12), (13), … , (1𝑑), a sequence of 𝑑 − 1

transpositions. So in the L-packing, C(v1

i ) and C(v3(𝑑−1)+1

i ) are two permutations that are

equal up to performing the cyclic permutation (123 … 𝑑).
Now continue doing this another 𝑑 − 2 times. Now C(v3p(𝑑−1)+1

i ) for 0 ⩽ p ⩽ 𝑑 − 1

are all permutations of [𝑑 + 1] and every color in [𝑑] has been used at all spots except one

(where 𝑑 + 1 is placed every time). Now add a final vertex x and connect it to v3p(𝑑−1)+1

1

for every 0 ⩽ p ⩽ 𝑑 − 1, and let L(x) = [𝑑 + 1] as well. A proper L-packing of this final

graph is impossible.

In all steps, we connected new vertices to exactly 𝑑 existing vertices and so the

degeneracy of the construction satisfies 𝛿
⋆(G) = 𝑑. ▪
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78 CAMBIE ET AL.

4 MAXIMUM DEGREE

In this section, we give the argument that proves Theorems 4 and 10. The proof closely follows an argu-

ment of Aharoni, Berger and Ziv for a result on strong coloring [1]; see also the survey of Haxell [26].

We only give the argument for correspondence packing as the proof for list packing is essentially the

same. We note that Loh and Sudakov [30] outlined this same argument in a slightly more general

context, namely, in showing that Λ⋆c (D) ⩽ 2D + o(D) as D →∞.

Proof of Theorem 10. Let k ∶= 1+Δ(G)+𝜒c(G). Let H be a k-fold correspondence-cover

of G, via some correspondence-assignment L ∶ V(G) → 2
V(H)

. Recall that this means

that the vertices of H are partitioned into parts (L(v))v∈V(G) such that |L(v)| = k for all

v ∈ V(G), and if vw ∈ E(G) there is a (possibly empty) matching between L(v) and L(w),
and for every vw ∉ E(G) there is no edge between L(v) and L(w).

We need to show that G admits a correspondence L-packing. Equivalently, we need

to find a proper k-coloring of H such that for every v ∈ V(G), no two vertices of H in

the same part L(v) receive the same color (recall that each color class of such a k-coloring

corresponds to a single L-coloring in the desired correspondence L-packing). To this end,

let 𝛼 be a maximum partial coloring of H, that is, a proper k-coloring of the vertices of H
using as many vertices of H as possible. If 𝛼 assigns a color to every vertex of H then we

are done. So suppose for contradiction that 𝛼 does not assign a color to some vertex x of H
in some part L(v1). Then some color in {1, … , k} is missing from L(v1); let us call it red.

Let v1, … , vn denote the vertices of G. For each 2 ⩽ i ⩽ n, let ri denote the red vertex

in L(vi) if it exists, and define L′(vi) ∶= L(vi) ⧵ {y ∶ 𝛼(y) = 𝛼(z) for some z ∈ NH(ri)}.
Thus, L′(vi) consists of those vertices of L(vi)whose color could be reassigned to ri without

creating a conflict. Also let L′(v1) = L(v1). Then |L′(vi)| ⩾ 𝜒c(G) + 1 for every i.
Next let L′′(vi) = L′(vi) ⧵ NH(x). Since x has at most one neighbor in each L(vi), it

follows that |L′′(vi)| ⩾ 𝜒c(G) for each 1 ⩽ i ⩽ n, and thus by definition of correspondence

coloring, (L′′(vi))1⩽i⩽n has an independent transversal T ′′. By replacing the representative

of T ′′ in L′′(v1) with x, this in turn yields an independent transversal T ′ of (L′(vi))1⩽i⩽n

which contains x. Next, we modify 𝛼 by giving color red to every vertex of T ′, and for

each i for which ri exists and ri ∉ T ′ we give ri the color of the element ti of T ′ in L(vi).
By definition of L′(vi), this does not create any conflict, so we obtain a valid k-coloring 𝛽.

Moreover, 𝛽 colors x as well as all the vertices that were colored by 𝛼, contradicting the

maximality of 𝛼. ▪

5 ON THE PERMANENT OF RANDOM BINARY MATRICES

In this section, we describe and derive auxiliary results on transversals and permenants of random

binary matrices. These are our key tools for the proofs of Theorems 5 and 6. Related ideas are also

useful for Theorem 7, which we elaborate upon in Section 7.

Our starting point is a theorem of Everett and Stein [20] from 1973. For the benefit of the reader,

we will use this below in a warm-up to prove the special case for Theorem 5 of list packing bipartite

graphs with n vertices (Theorem 29).

Theorem 26 ([20]). The fraction of binary k × k matrices A with Per(A) = 0 is (1 +
o(1))k2

1−k
, as k →∞.
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CAMBIE ET AL. 79

Theorem 26 can be interpreted probabilistically: a uniformly random binary matrix has permanent

0 with probability (1 + o(1))k2
1−k

as k → ∞. For the proofs of Theorems 5 and 6, we will need a

more general result that allows for an asymmetric treatment of the ones and zeroes. The following is a

generalization of Theorem 26.

Theorem 27. Let 0 ⩽ p < 1 be a real number. Let A be a random binary k× k-matrix for
which each entry independently equals 0 with probability p, and 1 with probability 1− p.

Then

Per(A) = 0 with probability 2kpk(1 + o(1)) as k → ∞.

Moreover, the same conclusion holds if p is allowed to depend on k, provided k5pk → 0

as k →∞. In particular this holds if p ⩽ 1 − 5 log k+𝜔(1)
k

as k →∞.

In the proof of Theorem 27, we will use the following technical lemma.

Lemma 28. Let 0 ⩽ p < 1 be such that k5pk → 0 as k →∞. Then as k → ∞,

max
s,t∈N such that

2⩽s⩽t⩽k and

s+t⩾k

{(k
s

)(k
t

)

pst
}

= o
(

1

k
pk
)

.

Proof. Let 2 ⩽ s ⩽ t ⩽ k be such that s + t ⩾ k.

If s ⩾ k
2
, we have

(k
s

)(k
t

)

pst
< 4

kpk2∕4 = o
(

1

k
pk
)

.

If 2 ⩽ s < k
2
, then

k
pk

(k
s

)(k
t

)

pst ⩽ k
pk

(k
s

)( k
k − s

)

ps(k−s)

⩽ k2s+1p(s−1)k−s2

=
(
k5pk)

2s+1

5 ⋅ p
3k(s−2)

5
−s2

⩽ k5pk ⋅ p
3(2s+1)(s−2)

5
−s2

⩽ k5pk−6 = o(1)

as k → ∞. ▪

Proof of Theorem 27. By Lemma 17, if Per(A) = 0 then there are sets S and T with s and

t elements respectively for which s + t > k and the submatrix B = AS×T only contains

zeros. In particular, we have such a submatrix B with s + t = k + 1. Let us call such B a

t-bad submatrix.

Given s and t, there are

(
k
s

)(
k
t

)

choices for the sets S,T . The probability that Ai,j = 0

for all i ∈ S, j ∈ T equals pst
. So the probability that there is a t-bad submatrix is upper

bounded by

(
k

k+1−t

)(
k
t

)

p(k+1−t)t
.
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80 CAMBIE ET AL.

We now take the union bound over all 1 ⩽ t ⩽ k. The cases t = 1 and t = k
each contribute kpk

, while each 2 ⩽ t ⩽ k − 1 contributes o
(

1

k
pk
)

by Lemma 28.

Hence the probability that there exists a t-bad submatrix for some 1 ⩽ t ⩽ k is at most

2kpk + (k − 2) ⋅ o
(

1

k
pk
)

= (1 + o(1))2kpk
, as desired.

On the other hand, we know that any matrix with a row or column with only zeros has

permanent equal to 0. Using a truncated version of the principle of inclusion–exclusion,

that is, subtracting the probabilities that are counted twice, we note that the probability

that this happens is at least 2kpk − (2
(

k
2

)

p2k + k2p2k−1) = (1 − o(1))2kpk
, as desired. ▪

Remark. In Theorem 27, the opposite random variables 1 − Ai,j are independent

and Bernoulli(p) distributed. We note that the upper bound 2kpk(1 + o(1)) in

Theorem 27 remains true with the same proof if instead of independence, we only

require that the random variables 1 − Ai,j are negatively correlated. Indeed, in this

case we still have for each subset of rows S and columns T of A that the probabil-

ity that Ai,j = 0 for all i ∈ S, j ∈ T is at most (rather than equal to) pst
, which is

sufficient.

6 FRACTIONAL CHROMATIC NUMBER AND HALL RATIO

In this section we prove Theorems 5 and 6, using the results on random binary matrices from Section 5.

As a warm-up using the classic result of Everett and Stein, we first derive the special case of Theorem 5

for bipartite graphs.

Theorem 29. Let G be a bipartite graph on n vertices. Then as n →∞,

𝜒
⋆

𝓁 (G) ⩽ (1 + o(1)) log
2

n.

Proof. Let 𝜀 > 0 and set k to be an integer that is at least (1+𝜀) log
2

n. Let L be an arbitrary

k-list-assignment for G.

We consider the union of all lists,  =
⋃

v∈V(G) L(v), and color each list element

𝓁 ∈  independently with a uniformly random vector x𝓁 ∈ {0, 1}k
. We use these vectors

to associate a random binary matrix with each vertex of G, as follows. For each v ∈ V(G),
let M(v) be a k × k matrix formed by concatenating the vectors (x𝓁)𝓁∈L(v) in some

arbitrary way.

Let V0,V1 ⊆ V(G) denote the two parts of the bipartition of G. Now, for each vertex

v ∈ V(G) we define a bad event (v) as follows: if v ∈ V0, then (v) is the event that

M(v) has no 0-transversal, and similarly if v ∈ V1, then (v) is the event that M(v) has no

1-transversal.

If there are no bad events, then for each v ∈ V0 we can choose a 0-transversal of

M(v), and for each v ∈ V1 we can choose a 1-transversal of M(v). These transversals

then determine the desired k disjoint L-colorings c1, c2, … , ck as follows: for 1 ⩽ i ⩽ k
and v ∈ V(G), we set ci(v) to be the element of L(v) that corresponds to the i-th element

of the transversal of M(v). Since we choose the colors of v according to a transversal of

M(v), we have ci(v) ≠ cj(v) for any i ≠ j, so the colorings c1, … , ck are indeed disjoint.

Furthermore, for each i the coloring ci is proper because the color sets on V0 and V1 are
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CAMBIE ET AL. 81

disjoint; indeed, any vertex v ∈ V0 (resp. v ∈ V1) is colored by an element l ∈  such that

the i-th element of xl is 0 (resp. 1).

Thus, it suffices to find a coloring without bad events. For v ∈ V1, the probability of

(v) equals the probability that a uniformly random binary matrix has no 1-transversal.

By Theorem 26, the number of binary k × k matrices that have no 1-transversal is at most

(1 + o(1))k2
k2−k+1

as n → ∞. Hence, P((v)) ⩽ (1 + o(1)) ⋅ k⋅2k2−k+1

2
k2 = (2 + o(1))k2

−k
.

By symmetry, the same bound holds for every v ∈ V0. Therefore, by a union bound, the

probability that at least one bad event holds is at most n ⋅ (2 + o(1))k2
−k

, and for n large

enough this is strictly smaller than 1. Thus, there exists a coloring of without bad events

and hence the desired L-packing. ▪

We now proceed to prove Theorems 5 and 6, thus extending the result on bipartite graphs

(Theorem 29) to graphs with bounded fractional chromatic number or bounded Hall ratio. This includes

the special case of multipartite graphs and generalizes bounds on 𝜒𝓁 from [15] and [4].

Theorem 30. The graphs G with n vertices and at least one edge satisfy as n → ∞

𝜒
⋆

𝓁 (G) ⩽ (5 + o(1)) log n
log(𝜒f (G)∕(𝜒f (G) − 1))

⩽ (5 + o(1)) ⋅ 𝜒f (G) log n.

Moreover, for every fixed rational number m, the graphs G with 𝜒f (G) = m and n vertices
and at least one edge satisfy as n → ∞

𝜒
⋆

𝓁 (G) ⩽ (1 + o(1)) ⋅ log n
log(m∕(m − 1))

⩽ (1 + o(1)) ⋅ m log n.

Proof. We give the proof for the first bound (where 𝜒f (G) is allowed to grow with n), and

at the end we detail why almost the same proof also yields the second bound (for 𝜒f (G)
bounded by a constant independent of n).

We write m ∶= 𝜒f (G). Since the clique number is a lower bound for fractional

chromatic number and G has at least one edge, we have m ⩾ 2.

Let 𝜀 > 0 and consider a k-list-assignment L with k = ⌊
5+𝜀

log(m∕(m−1))
⋅ log n⌋. We may

assume that k < n, since otherwise there is an L-packing due to Theorem 2. We also note

that k → ∞ if and only if n → ∞; this is where we use that m ⩾ 2.

Let  =
⋃

u∈V(G) L(u) be the set of all colors. For a positive integer a, recall that [a] is

the set {1, … , a}. Let c be a proper (a, b)-coloring of G with
a
b
= m. By definition, this

means that c ∶ V(G)→ [a]b is a function such that c(u) ∩ c(v) = ∅ for every two adjacent

vertices u and v. For every 𝓁 ∈ , let x𝓁 be a uniformly random vector in [a]k. For each

v ∈ V(G), let M(v) be a k × k matrix formed by concatenating the vectors (x𝓁)𝓁∈L(v) in

some arbitrary way.

For every vertex v ∈ V(G), we define the bad event (v) as the event that the

[a]-valued k × k matrix M(v) has no transversal with only elements from c(v). Consider

the binary matrix M∗(v) obtained from M(v) by replacing every element that belongs to

c(v) with a 1, and every other element with a 0.

Note that M∗(v) is a random binary k×k matrix for which each element independently

equals 0 with probability p = a−b
a
= m−1

m
. Therefore, we wish to apply Theorem 27 to
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82 CAMBIE ET AL.

M∗(v) with p = m−1

m
. For that, we first need to verify the condition that k5pk = o(1) as

k → ∞. This is satisfied because

k5 ⋅ pk
< n5 ⋅

(m − 1

m

) (5+𝜀) log n
log(m∕(m−1)) −1

⩽ n5 ⋅ exp

(
(5 + 𝜀) log n

log(m∕(m − 1))
⋅ log

(m − 1

m

))

⋅ 2

= n5 ⋅ n−(5+𝜀) ⋅ 2

goes to 0 as n →∞.

So we may indeed apply Theorem 27 to M∗(v), which yields that M∗
has no

1-transversal with probability 2kpk(1 + o(1)). Therefore the probability that (v) occurs

is 2kpk(1 + o(1)), as k → ∞.

By a union bound, the probability that at least one bad event occurs is at most

n ⋅ 2k
(m − 1

m

)k
(1 + o(1)) < 2n2 ⋅

(m − 1

m

) (5+𝜀) log(n)
log(m∕(m−1)) −1

⋅ (1 + o(1))

⩽ 4n2 ⋅ exp

(
(5 + 𝜀) log(n)

log(m∕(m − 1))
⋅ log

(m − 1

m

))

⋅ (1 + o(1))

⩽ 4

e ⋅ n3
⋅ (1 + o(1)).

For n large enough (and hence for k large enough), this is smaller than 1. So with

positive probability, every M(v) has a transversal with only elements from c(v).
These transversals then determine the desired k disjoint L-colorings c1, c2, … , ck

as follows: for 1 ⩽ i ⩽ k and v ∈ V(G), we set ci(v) to be the element of L(v) that

corresponds to the i-th element of the transversal of M(v). Since we choose the colors of

v according to a transversal of M(v), we have ci(v) ≠ cj(v) for any i ≠ j, so the colorings

c1, … , ck are indeed disjoint. Furthermore, for each i the coloring ci is proper because

for any two neighbors u, v ∈ V(G), they are colored by elements 𝓁u,𝓁v ∈  such that the

i-th element of x𝓁u , x𝓁v belongs to c(u) and c(v) respectively, which are disjoint since c is

a proper (a, b)-coloring.

This concludes our proof that 𝜒
⋆

𝓁 (G) ⩽ (5+o(1))⋅ log n
log(𝜒f (G)∕(𝜒f (G)−1))

. We remark that the

condition of Theorem 27 is the main obstruction for finding a better constant; if it were not

for that part of the argument, we could have improved the factor 5+o(1) to 2+o(1). To con-

firm that 5+o(1) can be improved to 1+o(1) in the special case that𝜒f (G) = m is a constant

independent of n, we need to check that our two asymptotic estimates survive if we instead

choose list size k = ⌊
(1+𝜀) log n

log(m∕(m−1))
⌋: the condition of Theorem 27 indeed still holds because

k5 ⋅ pk ⩽
(

(1 + 𝜀) log n
log(m∕(m − 1))

)5

⋅ n−(1+𝜀) ⋅ 2 → 0

as n →∞, and so the probability that a bad event occurs is bounded from above by

n ⋅ 2k ⋅
(m − 1

m

)k
(1 + o(1)) ⩽ 4n ⋅ (1 + 𝜀) log n

log(m∕(m − 1))
⋅ n−(1+𝜀)(1 + o(1)) → 0

as n →∞. ▪
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CAMBIE ET AL. 83

As an almost immediate corollary, we can derive the following bound, which is reminiscent of a

similar result for 𝜒𝓁 instead of 𝜒
⋆

𝓁 in [34].

Corollary 31. Let G be a graph with order n and Hall ratio 𝜌. Then

𝜒
⋆

𝓁 (G) ⩽ (5 + o(1)) ⋅ 𝜌log
2n.

Proof. Iteratively, one can select an independent set of size at least 1∕𝜌 times the order

of the remaining graph. Since n
(

1 − 1

𝜌

)𝜌 log n
< 1, we have 𝜒(G) ⩽ 𝜌 log n. Hence by

Theorem 30, we can conclude as 𝜒
⋆

𝓁 (G) ⩽ (5 + o(1)) ⋅ 𝜒(G) log n. ▪

As a corollary of Theorem 1.3 in [15] and Theorem 30, we immediately get the following

Ramsey-type result.

Corollary 32. There exists a constant C > 0 such that 𝜒⋆𝓁 (G) ⩽ C ⋅min{
√

n log n, n log n
𝑑
}

for every triangle-free graph G with n vertices and minimum degree 𝑑.

7 BIPARTITE GRAPHS

This section is devoted mainly to the proof of Theorem 11, which in turn implies Theorem 7. Before

that though, we start with a simple bound on the list packing number of a bipartite graph that resembles

the greedy bound (for not-necessarily-bipartite graphs) on list chromatic number but has a somewhat

more intricate proof.

Lemma 33. Let G = (A∪B,E) be a bipartite graph with parts A and B having maximum
degrees ΔA and ΔB, respectively, with ΔA ⩽ ΔB. Then 𝜒⋆𝓁 (G) ⩽ ΔA + 1.

Proof. Let k = ΔA + 1, and let L be any k-list-assignment of G. To construct a proper

L-packing of G, we first choose the colors of vertices in B for every coloring in the packing.

To do this, consider the lists of vertices in B in their numerical orderings and let ci(b) be

the i-th color in the list L(b) for each 1 ⩽ i ⩽ k and each b ∈ B. This is the unique proper

L-packing of G[B] such that the colorings ci for 1 ⩽ i ⩽ k satisfy for all vertices b in B,

c1(b) < c2(b) < · · · < ck(b).
Next, we prove that we can extend this partial L-packing to A by applying Hall’s mar-

riage theorem. Let a be an arbitrary vertex in A. For every color j ∈ L(a), let Ij be the

set of indices 1 ⩽ i ⩽ k such that setting ci(a) = j retains the property that ci is a proper

L-coloring (i.e., no neighbor b of a has ci(b) = j). Consider the family = {Ij ∶ j ∈ L(a)}.
A system f ( ) of distinct representatives for  is precisely an extension of the partial

L-packing to a, as we can set cf (Ij)(a) = j for all j ∈ L(a). For the marriage condition, it

suffices to prove that for every a ∈ A and any subset J ⊆ L(a), we have ||∪j∈JIj|| ⩾ |J|. Sup-

pose for a contradiction that this is not the case. Then there is some J with ||∪j∈JIj|| ⩽ |J|−1,

and hence there is a set Z of k − (|J| − 1) indices i for which ci(a) cannot be set equal to

any color in J. Let z⋆ be the largest index in Z and j⋆ be the largest color in J. There are at

least k− (|J|− 1) neighbors b of a which have cz(b) = j⋆ for some z ∈ Z. Furthermore, by

the choice of the colorings ci these are different from the |J| − 1 neighbors b that satisfy

cz⋆ (b) = j for j ∈ J ⧵ {j⋆}.
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84 CAMBIE ET AL.

To see that they are indeed different, suppose for a contradiction that there exists b ∈ B
such that both cz(b) = j⋆ and cz⋆(b) = j, for some z ∈ Z and j ∈ J ⧵ {j⋆}. As j < j⋆ we

must have z ≠ z⋆, so by the choice of the colorings ci it would follow that cz(b) < cz⋆(b) =
j < j⋆ = cz(b), a contradiction.

We conclude that a has at least k > ΔA neighbors in B, which is a contradiction. As

we can perform this extension for all a ∈ A independently, this completes the proof. ▪

Corollary 34. When a is sufficiently large in terms of b, we have 𝜒⋆𝓁 (Ka,b) = b+1, while
𝜒
⋆
c (Ka,b) = 2b.

Proof. This follows from Theorem 9, Proposition 24 and Lemma 33, together with the

classic fact that 𝜒𝓁(Kbb,b) ⩾ b + 1 for every b. To see the latter: assign b disjoint lists

L1, … ,Lb of size b to the vertices in the smaller part of the bipartition of Kbb,b, and then

assign each of the bb
distinct b-tuples in L1 × … × Lb as a list to some vertex in the larger

part of the bipartition. This list-assignment does not admit a proper list-coloring. ▪

In very broad terms, the proof of Theorem 11 is similar to the proof of Lemma 33, except that

instead of Hall’s theorem, we use the Lovász local lemma to complete the extension of a (random)

partial (correspondence) packing of G[B]. We will establish the result in the following slightly more

refined form.

Theorem 35. For every 𝜀 > 0 fixed, there is Δ0 > 0 such that the following holds. Let
G = (A ∪ B,E) be a bipartite graph with parts A and B having maximum degrees ΔA and
ΔB, respectively, with Δ0 ⩽ ΔA ⩽ ΔB. Suppose that k =

⌈

(1 + 𝜀) ΔA
logΔA

⌉

satisfies that

3eΔA(ΔB − 1) ⋅ k2
exp

(

−Δ𝜀∕3

A

)

< 1.

Then 𝜒⋆c (G) ⩽ k.

Note that Theorem 11 follows easily from this result by checking that the condition holds for ΔA =
ΔB = Δ taken large enough. The argument to prove Theorem 35 is inspired by a similar method used

in [6, 14] and a technical extension of the results in Section 5. Just like in our derivations of Theorems 5

and 6, we prove Theorem 35 with the aid of a suitably strong bound on the probability that some

random matrix has no 0-transversal.

Lemma 36. Fix 𝜀 > 0 and let k = ⌈(1 + 𝜀) n
log n

⌉ for n sufficiently large. Let M be a
k × k-matrix which is the sum of n independent uniformly random k × k permutation
matrices. Then the probability that there is no transversal in M containing only zeros is
smaller than 3k2

exp
(
−n𝜀∕3

)
.

Let us first show how this probability bound is sufficient to derive the main result through a

straightforward application of the Lovász local lemma.

Proof of Theorem 35. We may assume that every vertex in A has degree ΔA as we

can embed G in such a graph. Let H be a k-fold correspondence-cover of G, via some

correspondence-assignment L ∶ V(G)→ 2
V(H)

. We may assume that for every uv ∈ E(G),
the matching in H between L(u) and L(v) is a perfect matching. To construct a correspon-

dence L-packing of H, we first define a random partial L-packing restricted to the vertices

in B. To do this, take a uniform total ordering of L(b) independently at random for each
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CAMBIE ET AL. 85

b ∈ B, and let ci(b) be the i-th element in L(b) for each 1 ⩽ i ⩽ k. Note that ci(B)
for each i is a uniformly random maximum independent set in H[L(B)]. We now prove

that the probability that the random L-packing cannot be extended in a fixed vertex a is

very small.

We define a bad event (a) for a ∈ A as occurring if it is impossible to order

the elements of L(a) in such a way that for all i, the ith element of L(a) has no neigh-

bor in ci(B). Let Ti,c(a) be the event that c ∈ L(a) is adjacent in H to a vertex in

ci(B). Let M(a) be a k × k matrix such that the entry (i, c) equals 1 if Ti,c(a) occurs

and equals 0 otherwise. Then a good ordering of the elements of L(a) exists precisely

when there is a transversal only containing zeros in M(a). By applying Lemma 36 with

n = ΔA, we conclude that q ∶= P((a)) < 3k2
exp

(

−Δ𝜀∕3

A

)

provided Δ0 is chosen large

enough.

Note also that each event (a) is mutually independent of all other events (a′) apart

from those corresponding to vertices a′ ∈ A that have a common neighbor with a in

G. There are at most 𝑑 ∶= ΔA(ΔB − 1) such vertices a′ other than a. With the above

choices of q and 𝑑, we have by assumption that eq𝑑 < 1, so that the Lovász local lemma

guarantees that with positive probability none of the events(a) occur. And thus the partial

correspondence L-packing on L(B) can be extended to all of H, as desired. ▪

It only remains to prove Lemma 36. Hypothetically this lemma would follow easily from a certain

negative correlation property, and so we first discuss some somewhat surprising situations where this

property fails.

Let R be the k × k-matrix which records for each of its elements whether it appears in at least one

of n independent uniformly random k× k permutation matrices P1
, … ,Pn

, that is, Ri,j = 1 if and only

if there is some 1 ⩽ r ⩽ n for which Pr
i,j = 1 and Ri,j = 0 otherwise. Equivalently, one can consider the

sum M of the n permutations matrices, and then replace every nonzero element with a 1 to obtain R. By

Lemma 17, we would like to estimate the probability that a fixed s× t submatrix of R contains no zero,

and in fact we would want to aim for pst
as an upper bound, where p is the probability that one entry

is nonzero. This would be immediate if all entries of R were independent or negatively correlated, but

it turns out this is not the case.

Note that within one row of R, the values of its entries are negatively correlated, so the desired

upper bound pst
indeed holds in the special case s = 1, t = k. Intuitively, one might expect this negative

correlation to survive in a s × t submatrix for other values of s and t. Unfortunately, it is already false

for s = t = k = n = 2.

More surprising is the fact that the probability that the entries in R[2]×[2] are all nonzero can be

larger than P(R1,1 ≠ 0)4 for larger values of k and n as well, for example, when (k, n) = (4, 32). This

has been computed for certain values with Maple
1
.

The obstructions discussed above could help the reader understand how our computations ended

up being a bit more complicated than we might have hoped.

We now state the main technical engine in the proof of Theorem 11, in which we compute

an upper bound for the probability that a given submatrix of a sum of random permutation matri-

ces is nowhere zero. In the proof it will be useful to denote by S(M) the sum of all entries in a

matrix M.

1
The relevant maple code can be accessed in the document CounterexamplesNegativeCorrelationSumPermutationMatrices.mw

at https://github.com/StijnCambie/ListPack.
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86 CAMBIE ET AL.

Lemma 37. Let M be a k×k-matrix which is the sum of n independent uniformly random
k× k permutation matrices Pr

, 1 ⩽ r ⩽ n. For a fixed s× t-submatrix of M, with s ⩾ t and
t ⩽ k

4
, the probability that all its elements are nonzero is at most

2t ⋅ exp

(

−𝛿
2

3

sn
k

)

+
[

4 exp

(

− 𝛿
2

12

(

1 − 𝛿

3

) sn
k

)

+ exp

(

−s exp

(

−
(

1 + 𝜀

3

)

(1 + 𝛿)n
k

))]t

for every choice of 𝛿 = 𝛿(n, k) ∈ [0, 1], 𝜀 > 0 and k sufficiently large as a function of 𝜀.

Proof. By symmetry and to ease notation, it is sufficient to prove the case where the

s × t-submatrix is [s] × [t]. First we fix j ∈ [t] and estimate S(M[s]×j), the sum of elements

in the [s] × j-submatrix of M.

Let Tj, 1 ⩽ j ⩽ t, be the event that (1 − 𝛿) sn
k

⩽ S(M[s]×j) ⩽ (1 + 𝛿) sn
k
. Let

T = {T1,T2, … ,Tt} be the event that all of them hold, and similarly we write T ⧵ Tj ={
T1, … ,Tj−1,Tj+1, … ,Tt

}
. With Tj, we denote the event that Tj does not hold. Note that

the random variables Pr
i,j and Pr′

i′,j are independent if r′ ≠ r. Moreover, for fixed r and j, we

have by Lemma 19 that Pr
1,j,Pr

2,j, … ,Pr
k,j are negatively correlated, and that the opposite

random variables 1 − Pr
1,j, 1 − Pr

2,j, … , 1 − Pr
k,j are negatively correlated as well. Thus

S(M[s]×j) =
n∑

r=1

s∑

i=1

Pr
i,j

is a sum of {0, 1}-valued random variables that are negatively correlated and whose

opposite random variables are negatively correlated as well. So we may apply a Chernoff

bound (Theorem 18) to obtain

P

(

S(M[s]×j) ⩽ (1 − 𝛿)
s
k

n
)

⩽ exp

(

−𝛿
2

2

s
k

n
)

;

P

(

S(M[s]×j) ⩾ (1 + 𝛿)
s
k

n
)

⩽ exp

(

−𝛿
2

3

s
k

n
)

.

By a union bound,

P(T) ⩽
t∑

j=1

P(Tj) ⩽ 2t ⋅ exp

(

−𝛿
2

3

s
k

n
)

.

Also consider the event Qj that all elements in M[s]×j are nonzero and let

Q1..j = {Q1,Q2 … ,Qj} be the event that all of them hold. We now prove two claims on

some conditional probabilities.

Claim 38. For every 1 ⩽ j ⩽ t,

P(Qj|T ⧵ Tj,Q1..j−1) ⩽ exp

(

−s exp

(

−
(

1 + 𝜀

3

)

(1 + 𝛿)n
k

))

.

Proof. Fix j between 1 and t. Given a k × k permutation matrix P, let 𝛾(P) be the sub-

matrix of P induced by the columns indexed by [t] ⧵ j. Likewise, given the random n-

tuple  of k × k permutation matrices (P1
, … ,Pn), let 𝛾() be the pointwise restriction
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CAMBIE ET AL. 87

(𝛾(P1), … , 𝛾(Pn)). Let W be the set of all possible tuples 𝛾() that satisfy T ⧵ Tj,Q1..j−1.

Take any such partial realization w ∈ W. From now on we additionally condition

on the event 𝛾() = w. To shorten notation, we will write Pw(⋅) = P(⋅|𝛾() = w).
Our goal is to upper bound Pw(Qj). (At the end of the proof we explain why this is

sufficient.)

For each i ∈ [s], let ai be equal to the sum S(Mi×([t]⧵j)) of the entries in Mi×([t]⧵j). Let a
be the mean of ai over all i ∈ [s], and note that it is at least (1 − 𝛿) (t−1)n

k
because T ⧵ Tj is

satisfied. For every i ∈ [s], let Qi,j be the event that Mi,j ≠ 0.

We first show that the events Q1,j, … ,Qs,j are negatively correlated. For this, we have

to prove that for any I ⊆ [s], it is true that

Pw(∀i ∈ I ∶ Qi,j) ⩽
∏

i∈I
Pw(Qi,j). (1)

We prove (1) by induction on |I|. When |I| ⩽ 1 the statement is trivially true.

Let I ⊆ [s] be a subset for which the statement is true and let i′ ∈ [s]⧵ I.We now prove

the statement for I′ = I ∪ {i′}. We have

Pw(∀i ∈ I ∶ Qi,j) ⩽ Pw(∀i ∈ I ∶ Qi,j|Qi′,j), (2)

because (informally) for every permutation Pr
and every i ∈ I, the probability of Pr

i,j = 1

does not decrease if we add the condition that Pr
i′,j = 0.

One can prove this formally as well, as we will now do. Consider the values of

r for which Pr
i′,j = 1 is possible for an extension of w, that is, all r for which row

i′ in 𝛾(Pr) is a row with only zeros. Let R ⊆ [n] be the subset containing all such

values r.
For any subset R1 ⊆ R, let PP

R
1 be the set of all possible tuples  ′ =

(
Pr
[k]×[t]

)

1⩽r⩽n
that extend w (i.e., with some abuse of notation, this is precisely when 𝛾( ′) = w) and

satisfy Pr
i′,j = 1 if and only if r ∈ R1. The set PP

R
1 helps us to specify the event that

Mi′,j = |R1|.

For a fixed nonempty R1 ⊆ R, consider the map 𝜑 ∶ PP
∅ → PP

R
1 where 𝜑( ′) is

obtained from  ′ by considering, for each r ∈ R1, the matrix Pr
[k]×[t] and replacing its

jth column Pr
[k],j with the unit vector ei′ , that is, setting Pr

i,j = 1{i = i′} for every i ∈ [k].
Note that 𝜑 is surjective and maps (k − t)|R1

|
tuples to 1, that is, for every  ′′ ∈ PP

R
1 ,

|𝜑−1( ′′)| = (k − t)|R1
|
. Moreover, for every  ′′ ∈ PP

R
1 , if  ′′ satisfies Qi,j for all

i ∈ I, then every preimage  ′ ∈ 𝜑
−1( ′′) does. This implies that the probability that

a random partial realization in PP
∅

satisfies Qi,j for all i ∈ I is at least as large as the

probability that a random partial realization in PP
R

1 does. To relate this to the proba-

bilities that we are actually interested in, observe that for each R1 ⊆ R, the probability

that a random partial realization in PP
R

1 satisfies Qi,j for all i ∈ I is exactly equal to

PR
1 ∶= Pw

(
∀i ∈ I ∶ Qi,j|Pr

i′,j = 1 ⇔ r ∈ R1

)
. It follows that P∅ ⩾ PR

1 for all R1 ⊆ R. We

conclude that

Pw
(
∀i ∈ I ∶ Qi,j|Qi′,j

)
= P

∅ ⩾
∑

R
1
⊆R

P
R

1 ⋅ Pw
(
Pr

i′,j = 1 ⇔ r ∈ R1

)
= Pw

(
∀i ∈ I ∶ Qi,j

)
.

This proves (2).
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88 CAMBIE ET AL.

Now note that

Pw
(
∀i ∈ I ∶ Qi,j

)
⩽ Pw

(
∀i ∈ I ∶ Qi,j|Qi′,j

)

⇔ Pw(∀i ∈ I ∶ Qi,j) ⩾ Pw(∀i ∈ I ∶ Qi,j|Qi′,j)
⇔ Pw(∀i ∈ I′ ∶ Qi,j) ⩽ Pw(∀i ∈ I ∶ Qi,j) ⋅ Pw(Qi′,j).

This last expression is at most
∏

i∈I′ Pw(Qi,j) by the induction hypothesis, as desired. This

concludes the proof of (1).

So given w with S(Mi×([t]⧵j)) = ai for all i ∈ [s], the probability Pw(Qj) that none of

the s elements in M[s]×j equals zero is at most
∏s

i=1
Pw(Qi,j). We can compute the latter as

follows:

Pw(Qj) ⩽
s∏

i=1

Pw(Qi,j)

=
s∏

i=1

(
1 − Pw

(
Pr

i,j = 0 for all r ∈ [n]
))

=
s∏

i=1

(

1 −
∏

r∈[n]
Pw
(
Pr

i,j = 0
)
)

=
s∏

i=1

⎛
⎜
⎜
⎜
⎝

1 −
∏

r∈[n] s.t. S
(

Pr
i×([t]⧵j)

)

=0

Pw
(
Pr

i,j = 0
)
⎞
⎟
⎟
⎟
⎠

=
s∏

i=1

(

1 −
(

1 − 1

k − (t − 1)

)n−ai
)

⩽ exp

(

−
s∑

i=1

(

1 − 1

k − (t − 1)

)n−ai
)

⩽ exp

(

−s
(

1 − 1

k − (t − 1)

)n−a
)

⩽ exp

(

−s
(

1 − 1

k − (t − 1)

)(1+𝛿) k−(t−1)
k

n
)

⩽ exp

(

−s exp

(

−
(

1 + 𝜀

3

)

(1 + 𝛿)n
k

))

.

Here we made use of 1− x ⩽ exp(−x) in the sixth line. We applied Jensen’s inequality

to the convex function f (x) =
(

1 − 1

k−(t−1)

)x
in the seventh line. In the eighth line we used

that a ⩾ (1 − 𝛿) (t−1)
k

n and t − 1 ⩽ k
2

to derive n − a ⩽ n − (1 − 𝛿) (t−1)
k

n ⩽ (1 + 𝛿) k−(t−1)
k

n

and in the last line we used that

(

1 − 1

x

)x
⩾ exp

(

−
(

1 + 𝜀

3

))

for x = k − (t − 1) ⩾ k
2
,

which is sufficiently large in terms of 𝜀.

 10982418, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21181 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [04/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CAMBIE ET AL. 89

Since this upper bound is true for any partial realization w ∈ W, we conclude that

P(Qj|T ⧵ Tj,Q1..j−1) =
∑

w∈W
P(𝛾() = w|T ⧵ Tj,Q1..j−1) ⋅ Pw(Qj)

⩽ exp

(

−s exp

(

−
(

1 + 𝜀

3

)

(1 + 𝛿)n
k

))

.

▪

Claim 39. For every 1 ⩽ j ⩽ t,

P(Tj|T ⧵ Tj,Q1..j−1) ⩽ 2 exp

(

− 𝛿
2

12

(

1 − 𝛿

3

) sn
k

)

.

Proof. As in the proof of Claim 38, we fix j and we condition on the event that the random

tuple 𝛾() of permutation matrices restricted to the columns [t] ⧵ j is equal to a certain

tuple w ∈ W, that is, such that T ⧵Tj,Q1..j−1 are satisfied. We again fix such a realization w
and succinctly write Pw(⋅) ∶= P(⋅|𝛾() = w) for the conditional probability distribution.

We will first estimate Pw(Tj). Let fr = S(Pr
[s]×([t]⧵j)) for every r ∈ [n], and note that we

know this value deterministically because Pr
[s]×([t]⧵j) is a submatrix of 𝛾(Pr) and thus fully

determined by w. Furthermore, for each i ∈ [s], we have that Pw(Pr
i,j = 1) equals

1

k−(t−1)
if

S(Pr
i,([t]⧵j)) = 0, and equals 0 otherwise. It follows that Ew(S(Pr

[s]×j)) =
s−fr

k−(t−1)
and hence

Ew(S(M[s]×j)) =
n∑

r=1

Ew(S(Pr
[s]×j)) =

sn −
∑n

r=1
fr

k − (t − 1)
. (3)

Since w satisfies T ⧵ Tj, we know
∑n

r=1
fr = S(M[s]×([t]⧵j)) is between (t − 1)(1 − 𝛿) sn

k
and

(t− 1)(1+ 𝛿) sn
k

. Evaluating these bounds in (3) and using the assumption t ⩽ k
4
, it follows

that

(1 − 𝛿∕3) sn
k

⩽ Ew
[
S(M[s]×j)

]
⩽ (1 + 𝛿∕3) sn

k
.

Viewing
(
Pr
[k]×[t]

)

1⩽r⩽n as a random extension of w, we have that S(Pr
[s]×j) and S(Pr′

[s]×j)
are independent

2
for r ≠ r′, with respect to Pw(⋅). Thus we can apply Theorem 18 to the

{0, 1}-valued random variables S(P1

[s]×j), … , S(Pn
[s]×j) to obtain

Pw

(

S(M[s]×j) ⩽ (1 − 𝛿∕2)(1 − 𝛿∕3) sn
k

)

⩽ exp

(

−𝛿
2

8
(1 − 𝛿∕3) sn

k

)

;

Pw

(

S(M[s]×j) ⩾ (1 + 𝛿∕2)(1 + 𝛿∕3) sn
k

)

⩽ exp

(

− 𝛿
2

12
(1 − 𝛿∕3) sn

k

)

.

Combining these two inequalities, and noting that 1 − 𝛿 ⩽ (1 − 𝛿∕2)(1 − 𝛿∕3) ⩽ (1 +
𝛿∕2)(1 + 𝛿∕3) ⩽ 1 + 𝛿 due to the assumption 𝛿 ∈ [0, 1], we obtain the desired bound:

Pw(Tj) ⩽ 2 exp

(

− 𝛿
2

12
(1 − 𝛿∕3) sn

k

)

.

2
This independence is one of the reasons why we condition on 𝛾() being equal to a fixed realization w, rather than conditioning

on the full event T ⧵ Tj,Q1..j−1.
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90 CAMBIE ET AL.

Finally we can conclude by writing P(Tj|T ⧵ Tj,Q1..j−1) as the linear combination
∑

w∈W P(𝛾() = w|T ⧵ Tj,Q1..j−1) ⋅ Pw(Tj), which is at most maxw∈W Pw(Tj). ▪

We also prove the following claim.

Claim 40. Let Q,A,T be any three events. Then

P(Q|A,T) ⩽ P(Q|A) + 2P(T|A).

Proof. If P(T|A) ⩾ 1∕2, the statement is trivially true. Note that

P(Q|A) = P(Q|A,T)P(T|A) + P(Q|T ,A)P(T|A) ⩾ P(Q|A,T)P(T|A).

Since
1

1−x
⩽ 1 + 2x for any x ⩽ 1

2
, P(T|A) < 0.5 and P(Q|A,T) ⩽ P(Q|A)

1−P(T|A)
imply that

P(Q|A,T) ⩽ P(Q|A) + 2P(Q|A)P(T|A) ⩽ P(Q|A) + 2P(T|A). ▪

Applying Claim 40 with the formulas in Claims 38 and 39 where (Q,A,T) in Claim 40

is chosen to be (Qj, (T ⧵ Tj) ∩ Q1..j−1,Tj), we deduce that for every 1 ⩽ j ⩽ t

P(Qj|T ∩ Q1..j−1) ⩽ 4 exp

(

− 𝛿
2

12

(

1 − 𝛿

3

)

n s
k

)

+ exp

(

−s exp

(

−
(

1 + 𝜀

3

)

(1 + 𝛿)n
k

))

.

Finally note that P(Q1..t|T) = P(Q1|T)P(Q2|Q1,T) · · ·P(Qt|Q1..t−1,T) and so the conclu-

sion follows from P(Q1..t) ⩽ P(Q1..t|T) + P(T). ▪

Remark. The case t = 1 of Lemma 37 is much simpler. In this case the fixed s× t subma-

trix of M has only one column, and within that column the events Q1,1,Q1,2, … ,Qs,1 are

negatively correlated, so P(Q) is at most

(

1 −
(

1 − 1

k

)n)s
. In contrast, for t ⩾ 2 a more

involved argument is required because (as discussed before the proof) even Q1,1,Q1,2,Q2,1

and Q2,2 are not necessarily negatively correlated.

Proof of Lemma 36. By the Frobenius–König theorem (Lemma 17), no such transversal

in M exists if and only there exist s, t with s + t = k + 1 and a s × t-submatrix all of

whose entries are nonzero. For every such choice of s and t there are

(
k
s

)(
k
t

)

possible

s × t-submatrices. The case where s ⩽ t is similar to the case where s ⩾ t, by switching

the two. Note that t ⩽ s and s + t = k + 1 imply s ⩾ k
2
. When

k
4
< t, the probability

that a s × t-submatrix has only nonzero entries is obviously at most the probability that a

s × k
4
-submatrix has only nonzero entries.

We may now use the probability computed in Lemma 37 with the choice 𝛿 =
1∕ 4

√
log n. Noting that

∑
s,t

(
k
t

)(
k
s

)

= 4
k
, the sum of the corresponding first terms is

bounded by 4
kk exp

(

− n
6

√
log n

)

. For the second terms, we first compute that for s ⩾ k
2
,

4 exp

(

− 𝛿
2

12

(

1 − 𝛿

3

)

n s
k

)

+ exp

(

−s exp

(

−
(

1 + 𝜀

3

)

(1 + 𝛿)n
k

))

⩽ exp

(

− k
2

exp

(

− log n
1 + 𝜀∕2

))

+ 4 exp

(

− n
25

√
log n

)
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CAMBIE ET AL. 91

⩽ exp

(

− n
𝜀∕2

1+𝜀∕2

2 log n

)

+ 4 exp

(

− n
25

√
log n

)

⩽ exp

(

− n
𝜀∕2

1+𝜀∕2

2 log n

)(

1 + 4 exp

(

− n
26

√
log n

))

⩽ exp
(
−n𝜀∕3

)
.

Noting that

(
k
t

)(
k

k+1−t

)

⩽ k2t−1
, we have the following upper bound for the sum of

the corresponding second terms from Lemma 37:

2

k∕4∑

t=1

(
k2

exp
(
−n𝜀∕3

))t + 4
k

exp

(

−n𝜀∕3 k
4

)

< 2.5k2
exp

(
−n𝜀∕3

)
.

We conclude by noting that

2.5k2
exp

(
−n𝜀∕3

)
+ 4

kk exp

(

− n
6

√
log n

)

< 3k2
exp

(
−n𝜀∕3

)
.

▪

8 CONCLUDING REMARKS

We have set the stage for this natural fusion between two classic notions in (extremal) graph theory:

packing and coloring. We were generous throughout with problems for further investigation, most

importantly Conjecture 1, which we might audaciously refer to as the List Packing Conjecture. Regard-

less of its truth in general, Conjecture 1 may be specialized to various graph classes for many research

possibilities. We highlight three fundamental classes where it is, in our view, most tempting to push

for further progress.

1 Planar graphs. We do not yet have any constructions to rule out the possibility that 𝜒
⋆

𝓁 (G) ⩽ 5

for all planar G. What is the optimal value?

2 Line graphs. Based on the List Colouring Conjecture, we surmise for every 𝜀 > 0 that 𝜒
⋆

𝓁 (G) ⩽
(1 + 𝜀)𝜔 for every line graph G with clique number 𝜔 ⩾ 𝜔0. Due to its connection to Latin

squares, here even the case where G is the line graph of the complete bipartite graph K𝜔,𝜔 is

enticing to narrow in on.

3 Random graphs. Does it hold that 𝜒
⋆

𝓁 (Gn,1∕2) ⩽ (1 + o(1))n∕(2 log
2

n) a.a.s.? Related to this

question, one might wonder if the log n factor in Theorem 5 could be improved to one of order

log(n∕𝜒f (G)), for this would immediately imply an upper bound for 𝜒
⋆

𝓁 (Gn,1∕2) of order
n log log n

log n
a.a.s.

We also consider it natural to pursue results along the continuum between list packing and strong

coloring as discussed in Subsection 1.3. Here it seems to us that Conjecture 14 is within reach with

the methods of Section 7, but we leave this to future investigation.
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Soc. János Bolyai, Amsterdam, 1975, pp. 609–627.
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