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Abstract

Considerable scientific work involves locating, analyzing, systematizing, and synthesizing

other publications, often with the help of online scientific publication databases and search

engines. However, use of online sources suffers from a lack of repeatability and transpar-

ency, as well as from technical restrictions. Alexandria3k is a Python software package and

an associated command-line tool that can populate embedded relational databases with

slices from the complete set of several open publication metadata sets. These can then be

employed for reproducible processing and analysis through versatile and performant que-

ries. We demonstrate the software’s utility by visualizing the evolution of publications in

diverse scientific fields and relationships among them, by outlining scientometric facts asso-

ciated with COVID-19 research, and by replicating commonly-used bibliometric measures

and findings regarding scientific productivity, impact, and disruption.

Introduction

Research synthesis is becoming an increasingly important [1] and popular scientific method.

A major data source for research synthesis studies are online specialized and general purpose

bibliographic and article databases [2], such as Dimensions [3], ERIC [4], Google Scholar [5],

Inspec, OpenAlex [6], Scopus [7], and Web of Science [8]. These databases can be used

through their online interfaces [2] or via diverse (historic or actively maintained) visualization

and analysis software packages and tools that can import their data [9, 10], such as bibliometrix

[11], CitNetExplorer [12], CorTexT Manager [13], HistCite [14], pySciSci [15], Sci2 [16], and

VOSviewer [17].

Performing systematic studies on published literature through the available online systems

or proprietary datasets can be problematic [18]. First, their constantly updated contents, bub-

ble effects [19], location– and license-dependent results [20], and periodic changes to their

internal workings compromise reproducibility [21, 22]. Even when the search strategy is well-

documented to aid reproducibility by following recommended reporting guidelines such as

PRISMA [23], which is often not the case [24, 25], it is difficult to repeat a query to an online

service, and obtain the same results as those that have been published [18]. In addition, the

reproducibility of such studies is hampered in the short term by the fees required for accessing
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many online services, and in the long term by the commercial survival of the corresponding

companies [26]. Service access costs on their own can restrict institutions with limited funding

from conducting systematic literature studies. Another associated problem is the lack of trans-

parency [27]. Most online services work with proprietary data collections and algorithms,

making it difficult to understand and explain the obtained results. As an example, Clarivate’s

journal impact factor calculation depends on an opaque collection of journals [28] and list of

“citable items” [29] tagged so by its vendor. Finally, there are technical limitations. Some ser-

vices lack a way to access them programmatically (an application programming interface—

API) [18], forcing researchers to resort to tricky and unreliable contortions, such as screen

scrapping. Both APIs and offered query languages are not standardized [30], and often restrict

the allowed operations [18]. For instance, the network-based APIs suffer from corresponding

latency [31], and often from rate and ceiling limits to the number of allowed invocations [32,

33]. These restrictions hinder studies requiring a large number or complex queries.

The outlined problems can be addressed thanks to sustained exponential advances in com-

puting power [34], drops in associated costs, and Open Science initiatives [35]. The Alexan-

dria3k system presented here is an open-source software library and command-line tool that

builds on these advances to allow the conduct of sophisticated systematic research of published

literature, (e.g. literature reviews, meta-analyses, bibliometric and scientometric studies) in a

transparent, repeatable, reproducible [36], and efficient manner. Alexandria3k allows

researchers to process on a personal computer publications’ metadata (including citations)

from most major international academic publishers as well as corresponding author, funder,

organization, and journal details. Specifically, Alexandria3k works on data snapshots offered

periodically by initiatives, such as Crossref (publication metadata, journal names, funder

names) [37], ORCID (author details) [38], ROR (research organization registry) [39], and oth-

ers. Using Alexandria3k researchers can query and process these data through SQL queries

launched by means of command-line tool invocations or Python scripts. Researchers can

ensure the transparency, reproducibility, and exact repeatability of their methods by docu-

menting or publishing (when permitted) the version of the data used and the employed com-

mands [35]. All examples provided in this paper are made available online in this manner.

The architecture and features of Alexandria3k allow most tasks to be executed on a modern

personal computer. Specifically, Alexandria3k offers facilities for running relational database

queries on compressed JSON data partitions, for sampling records on-the-fly, and for populat-

ing a relational database with a subset of a large dataset’s records or fields. At no point are the

voluminous primary data decompressed or loaded into main memory in their entirety.

Consequently, in contrast to most other related software systems, Alexandria3k requires

only modest computing resources. Regarding secondary (disk) storage, the primary data sets

can be stored and processed locally, because they amount to a few hundred gigabytes in their

compressed format (157 GB for Crossref, 25 GB for ORCID data; the downloading of the

Crossref data is facilitated by its availability through the BitTorrent protocol [40]). The data

are decompressed in small chunks thus curbing both main and secondary memory require-

ments. (Keeping the data decompressed or populating a relational or graph database with all of

it would require more than 1.5 TB of storage space.) From an execution time perspective, on a

populated and suitably indexed database with millions of records, many queries finish in min-

utes. Queries or database population tasks involving a full scan of the entire Crossref publica-

tion data set complete in about five hours. From a main memory (RAM) perspective, the

database population and query tasks require less than a GB of RAM. (Full performance details

are provided in the Methods section.) In contrast, pySciSci [15], which shares goals, data, and

features with Alexandria3k, but is designed around Python data frames, requires amounts of

main memory (RAM) that are not typically found on personal devices. As an example, we
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and Python scripts used for the statistical analysis

and charting of the reported example studies is

also available on Zenodo doi: 10.5281/zenodo.

8273279. Current versions of Alexandria3k are

made available for installation through PyPi https://

pypi.org/project/alexandria3k/ and for

contributions, feature requests, and issue reporting

on GitHub https://github.com/dspinellis/

alexandria3k. The data used in the example studies

are available as follows. Crossref Apr. 2022 Public

Data File: doi:10.13003/83b2gq ORCID Public Data

File 2022 v. 4: doi:10.23640/07243.21220892.v4

ROR Data v1.17.1: doi:10.5281/zenodo.7448410

Open access journals: https://doaj.org/csv doi:10.

5281/zenodo.8265889 Funders: https://doi.

crossref.org/funderNames?mode=list doi:10.5281/

zenodo.8265889 Journals: http://ftp.crossref.org/

titlelist/titleFile.csv doi:10.5281/zenodo.8265889

The calculated CD5 index of works published in the

period 1945-2016 dataset is available on Zenodo

doi: 10.5281/zenodo.7679112. The 2021 Journal

Impact Factor data used for assessing the numbers

obtained by Alexandria3k are available from

Clarivate through the InCites Journal Citation

Reports service https://jcr.clarivate.com/.
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calculated that preprocessing with pySciSci the publications and references of the OpenAlex

[6] database (equivalent to Alexandria3k’s use of the Crossref data set) would require more

than 81 GB of RAM only for the works.

Contents, structure, and use

In total, Alexandria3k offers relational query access to 2.6 billion records. These are organized

in a relational schema illustrated in S1–S4 Figs.

Most records are publication metadata obtained from the Crossref Public Data File [37].

These contain publication details (DOI, title, abstract, date, venue, type, pages, volume, . . .), a

publication’s references to other publications (DOI, title, author, page, ISSN, ISBN, year, . . .)

[41], and other data associated with each publication’s authors and their affiliations, funders

and funder awards, updates (e.g. retractions), subjects, licenses, and hyperlinks for text mining

of the publication’s full text [37]. Details about the data available through Crossref are listed in

Table 1. Note that coverage is incomplete; for example, 39% of the publications have a refer-

ence list associated with them, 70% of funders are uniquely identified with a DOI, while only

11% of the publications have an abstract. For most types of records coverage is generally

increasing over time (see Fig 1).

Alexandria3k can unambiguously link Crossref records to imported author metadata

through ORCID (Open Researcher and Contributor ID): a non-proprietary system developed

to identify authors in scholarly communication [38]. ORCID tables that Alexandria3k sup-

ports include those detailing an author’s URLs, countries, keywords, external identifiers, dis-

tinctions, education, employment, invited positions, memberships, qualifications, services,

fundings, peer reviews, used research resources, and published works. Most of these tables

Table 1. Number and properties of Crossref records.

Entity Records

Total records 2 531 227 295

Works (publications) 134 048 223

Works with a text mining link 96 294 821

Works with subject 81 210 089

Works with references 52 907 361

Works with affiliation 16 833 863

Works with an abstract 15 367 820

Works with funders 7 519 462

Author records (linked to works) 359 556 891

Author records with ORCID 16 745 506

Distinct authors with ORCID 4 525 906

Author affiliation records 76 768 648

Distinct affiliation names 19 453 360

Work subject records 182 858 177

Distinct subject names 340

Work funders 15 491 915

Funder records with DOI 10 811 496

Distinct funder DOIs 29 610

Funder awards 14 090 597

References 1 748 421 617

References with DOI 1 255 033 889

Distinct reference DOIs 59 127 679

https://doi.org/10.1371/journal.pone.0294946.t001
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contain details of the associated organization (name, department, city, region, country), the

role title, and the starting and end date. The currently available ORCID data set contains about

78 million records associated with 14 million authors. The completeness of the ORCID records

is low and uneven (see Table 2), which means that research based on it must be carefully

designed.

Fig 1. Availability of Crossref data elements over the period 1900–2021. Text link availability refers to full-text mining links. Availability of author

ORCID and affiliations is evaluated over all of each year’s individual author records appearing alongside publications. Similarly, availability of funder

DOI and award data is evaluated over all of each year’s individual funder records appearing alongside publications. This means e.g. that if an author

appears in one publication with an ORCID and in another without, the reported ORCID availability for the corresponding year will be 50%. Availability

of funder, text link, references, authors, affiliation, and awards refers to the existence of at least one such record associated with the parent entity. DOI

availability in references and funders is evaluated for each individual record of the many associated with one publication.

https://doi.org/10.1371/journal.pone.0294946.g001

Table 2. Number of ORCID records.

Table Records Persons with Such Records

Personal data 14 811 567 14 811 567

URLs 1 325 399 892 528

Countries 2 141 021 2 021 218

Keywords 2 230 569 838 796

External identifiers 2 287 063 1 653 995

Distinctions 345 967 159 113

Educations 5 610 051 3 087 381

Employments 5 932 529 3 472 114

Invited positions 263 315 147 497

Memberships 660 304 357 799

Qualifications 940 400 585 298

Services 221 860 108 288

Fundings 1 170 432 328 958

Peer reviews 6 270 131 751 404

Research resources 3 012 1 779

Person’s works 34 237 877 3 224 068

Total 78 451 497

https://doi.org/10.1371/journal.pone.0294946.t002
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Alexandria3k can also import the Research Organization Registry data [39] containing

details of 104 402 organizations, as well as related acronyms (43 862 records) and aliases (25

119 records). Through the provided ROR identifier it can link unambiguously elements from a

person’s employment and education ORCID records to the corresponding organization. Cur-

rently ORCID contains such identifiers for 130 033 employment records and 133 066 educa-

tion records. Because only 4.6% of work author records have an ORCID and only 23% of

ORCID records contain employment information, Alexandria3k also provides a performant

facility to match the textual affiliation information listed in works and link it to ROR

identifiers.

Finally, Alexandria3k can import and link three reference tables: the names of journals

associated with ISSNs (currently 109 971 records), the Research Organization Registry (ROR)

containing funder names associated with funder DOIs (32 198 records), and the Directory of

Open Access Journals (DOAJ; 18 717 records) [42]. Alexandria3k further disaggregates journal

ISSNs according to their type (electronic, print, or alternative—158 580 records).

The data used by Alexandria3k is openly distributed [43–46] by diverse third parties in tex-

tual tree or flat format files: JSON for Crossref and ROR, XML for ORCID, and CSV for the

rest. Alexandria3k structures the data it offers in a relational schema of 45 tables linked

through 47 relations. Stored in a relational database and combined with suitable indexes, this

allows performing sophisticated analyses via SQL (structured query language) queries in an

efficient manner. Records between diverse data sets are linked through standardized globally

unique identifiers: DOIs for published works and funders, ISSNs for journals, ORCIDs for

authors, and RORs for research organizations.

Alexandria3k is distributed as open source software in the form of a Python package, which

can be easily installed through the PyPI repository. It can be used either as a command-line

tool, where its operation (e.g. query to run) is specified through command-line arguments, or

as a Python library, which can be used interactively (e.g. by developing a Jupyter Notebook

[47]) or through scripts. The performance of both interfaces is similar, because in both cases

the heavy lifting is done by the same Python library code.

The 2022 version of the Crossref data reported in this study is distributed as 26 thousand

compressed container files, each containing details about 5 000 works. A complete import of

the Crossref data would amount to a 520 GB database. Given the large amount of Crossref

data, the population of a database with it can be controlled in three ways. First, only a horizon-

tal subset of records can be imported, by specifying an SQL expression that will select a publi-

cation record only when it evaluates to TRUE (e.g. published_year BETWEEN 2017
AND 2021). To facilitate the selection of records selected through other means, the expression

can also refer to tables of external databases. Second, only a subset of the Crossref 26 810 data

containers can be processed for import, by specifying a Python function that will import a con-

tainer when it evaluates to True. This is mostly useful for random sampling, e.g. using

random.random() < 0.01 to sample approximately 1% of the containers. (A fixed seed

value is used internally for initializing the pseudo-random number generator to allow deter-

ministic and therefore repeatable sampling.) Third, the populated tables or columns of the

Crossref data set can be vertically restricted by using the table-name.column-name or

table-name.* SQL notation. The population of a database with ORCID data can be also

horizontally restricted to records associated with existing Crossref authors or published works

(probably selected in a previous population step) and vertically restricted to include only spe-

cific tables or columns, as in the case of Crossref. Given their small volume, no population con-

trols are supported for the other data sets.

The analysis of the extracted data can be performed either directly with SQL queries and ad
hoc code, as shown in the next section, or by utilizing specialized software. For example, once
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Alexandria3k has populated a database, its data can processed in R [48] using the bibliometrix
tool for science mapping analysis [11]. This can be done by creating R data frames or tibbles

(enhanced data frames provided by the tidyverse package) from data brought into R through

its DBI and RSQLite packages.

Application examples

The following paragraphs outline some simple proof-of-concept applications of Alexandria3k,

which demonstrate its use and motivate its adoption. All are exactly replicable through SQL

queries and relational online analytical processing (ROLAP) Makefiles [49–51] provided in the

accompanying materials.

Evolution of scientific publishing

Bibliometric indicators are often used to measure scientific progress, evolution, and research

[52, 53]. Fig 2 showcases the use of Alexandria3k to chart a view of scientific publishing evolu-

tion in the post-WW2 period. It shows an exponential rise in the number of published works

(CAGR—compound annual growth rate = 5.4%; R2 = 0.99) and in the number of journals

(CAGR = 5.1%; R2 = 0.99), in line with what is reported by the trade association study [54,

p. 27]. Despite this rise, publications are becoming ever more connected by citing each other.

This can be seen in the rises of the references each work contains, the citations works receive,

the phenomenal proportion of all works ever published that are cited at least once every year

(20%), and corresponding rises to the 2-year and even 20-year global impact factor. Authors

appear to be collaborating more and on longer papers with only a slight decrease in the mean

number that they publish each year. Papers published in journals that are open access at publi-

cation time have risen exponentially (CAGR from 1990 = 0.23%; R2 = 0.99) to reach 22% of all

journal papers, a ratio that is also mirrored by a published figure [54, p. 8]. The fall in the con-

solidation/destabilization (CD) index is in line with recently published research reporting that

Fig 2. Evolution of scientific publishing metrics in the post-WW2 period.

https://doi.org/10.1371/journal.pone.0294946.g002
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papers are becoming less disruptive over time [55]. There is significant correlation (Spearman

rank-order correlation coefficient 0.95; P< 0.001) between the CD5 index yearly averages

obtained using Alexandria3k with those available in the previously published dataset, which

was obtained from data that are not openly available. The sharp inflections in the

Figure probably stem from artifacts of the underlying data set, and indicate that in some cases

obtaining scientifically robust results might require deeper analysis of the data.

A trend related to this work is the rising number of research synthesis studies. We found

about 437 thousand scientific studies published from 1846—the year of the first one we found

[56]—onward based on the analysis of previously published primary studies. The number of

synthesis studies published each year has risen considerably over the past two decades, particu-

larly for systematic literature reviews (see Fig 3). These were typically identified by their titles

through terms such as: “systematic review”, “systematic literature review”, or “systematic map-

ping study” (secondary studies using methods that help make their findings unbiased and

repeatable—251 850 titles); “secondary study”, “literature survey”, or “literature review” (a not

necessarily systematic study reviewing primary studies—77 037 titles); “tertiary study” or

“umbrella review” [57] (a study reviewing secondary studies—4 039 titles); “meta-analysis”

[58] (a systematic secondary study employing statistical methods—92 363 titles); as well as

(systematic by definition) “scientometric” (employing quantitative methods to study scientific

research—2 769 titles), “bibliometric” (using statistical methods to study written communica-

tions—12 361 titles), and broader Science of Science (SciSci—studies of scientific processes

based on large data sets) [59] studies [58].

The size of scientific fields can affect canonical progress [60] while the corresponding size

dynamics can be associated with a field’s evolutionary stages [61]. Associating publications

with the general scientific field of the journal they were published (according to the Scopus All

Science Journal Classification Codes—ASJCs) allows Alexandria3k to generate a view of the

Fig 3. Number of research synthesis studies published each year in the period 1971–2021.

https://doi.org/10.1371/journal.pone.0294946.g003
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evolution of the ASJC 27 fields over the years. Fig 4 shows the ten fields amounting to more

than 2% of publications in 2021 that had the largest change in their publication number in the

period 1945–2021. Clearly visible is the expected rise in Computer Science, Materials Science,

and Physics and Astronomy, as well as the fall of Arts and Humanities and Social Sciences

publications. Owing to the exponential rise of published works (tallied on the Figure’s right-

hand axis) the falls are only in relative terms: 2021 saw the publication of 291 366 Arts and

Humanities articles against 19 873 in 1945.

COVID-19 research

The bibliometric study of a specific scientific topic, such as COVID-19 [62], can aid progress

by providing details and insights on the state of the art and the community working on it [63,

64]. To showcase how Alexandria3k could help study research related to COVID-19 [65] we

used Alexandria3k to create and study a data set of publications containing COVID in their

title or abstract. Our findings are in broad agreement with studies using different research

methods [66, 67].

We counted 491 945 publications from about 1.5 million authors. These covered 331 differ-

ent topics demonstrating the many disciplines associated with the research. Some noteworthy

topics and work numbers among those with more than one thousand publications include

General Medicine (rank 1—70 609 works), Psychiatry and Mental health (rank 4—10 404

works), Education (rank 5—9 590 works), Computer Science Applications (rank 18—6 013

works), General Engineering (rank 20—5 942 works), Strategy and Management (rank 42—3

208 works), Law (rank 57—2 557 works), History (rank 62—2 329 works), Cultural Studies

(rank 76—1 893 works), Pollution (rank 97—1 549 works), and Anthropology (rank 130—1

032 works). Looking at listed funders, we saw that the top three in terms of associated publica-

tions were the National Natural Science Foundation of China (3 506 works), followed by the

(US) National Institutes of Health (2 316), the (US) National Science Foundation (1 022), the

Fig 4. Evolution of subject coverage and publications 1945–2021.

https://doi.org/10.1371/journal.pone.0294946.g004
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Wellcome Trust (914), and the (UK) National Institute for Health Research (661). We also

examined the affiliations of COVID study authors, propagating them to the highest parent

organization (e.g. a university hospital to its university). Through this measure the top five

entities were the Government of the United States of America (1 465 works), the University of

California System (925), University of Toronto (910), University of London (824), and Univer-

sity of Oxford (660).

We also looked how long it took for COVID articles to start citing each other, building, as it

where, “on shoulders of giants”. As can be seen in Fig 5 a citation network ramped up relatively

quickly, surpassing ten thousand citations to COVID research by April 2020, and reaching 118

thousand citations on March 2022. The large number of works published in January 2020

appears to be due to journals publishing later in the year volumes with that date. This was, for

example, the case with an overview article on COVID-19 and cerebrovascular diseases [68]

and an eight month retrospective [69]. (The same phenomenon may also explain the January

2021 rise.) Notably, this backdating practice can distort the establishment of priority over sci-

entific advances based on a journal’s publication date.

Finally, we examined the heightened role of preprints in COVID-19 publications [70]. In

the COVID data set from the 491 945 published works, 48 211 (9.8%) were identified as pre-

prints. Contrast this with all the works published in the same period, where from the 16 369

968 published works, 572 200 (3.5%) were identified as preprints.

Impact and productivity metrics

We replicated diverse impact and productivity metrics typically calculated in a proprietary

fashion by commercial bibliometric data providers.

Fig 5. Citations from COVID research to COVID research over time.

https://doi.org/10.1371/journal.pone.0294946.g005
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The Journal Impact Factor (JIF) and Hirsh’s h-index are often used as (imperfect) citation-

based metrics of a venue’s quality and impact [71, 72]. We calculated the 2021 JIF, and com-

pared the 600 journals with the highest JIF available through Clarivate with 581 we matched

through their ISSNs, obtaining a Spearman rank-order correlation coefficient of 0.72 with

P< 0.001. We also calculated the journal h5-index, and compared the values of the 100 “Top

publications” venues listed in Google Scholar [73] against those of Alexandria3k by hand-

matching the venue titles. The comparison of the 91 matched elements gave a Spearman rank-

order correlation coefficient of 0.75 with P< 0.001. Examining the same metric in a field

where considerable work is published in conferences, we compared the h5-index of the 13

common venues between the 20 Google Scholar reports in the “Software Systems” category

[74] against a curated list of 32 software engineering venues [75], and obtained a Spearman

rank-order correlation coefficient of 0.83 with P< 0.001.

Through the same data we also obtained the most cited articles published in the corre-

sponding period (predictably, the top-one, with 21 426 citations, was on COVID-19) [76] and

overall (the top one was a 1996 article on the generalized gradient approximation method [77],

which received 39 715 citations from a surprising diversity of fields). A Clarivate Web of Sci-

ence query performed on May 20 2023 found the same articles ranked 5th and 4th correspond-

ingly in terms of citation numbers.

A widely-cited study has reported a citation advantage of open access articles [78], though

followup studies drew a more nuanced picture [79]. We looked at the corresponding advan-

tage of articles published in open access journals. A comparison of the population of citation

numbers to articles published from 2011 onward in open access journals and corresponding

ones to articles that were not gives a negligible effect size (Cliff’s d = 0.02; Cohen’s d = −0.035),

and also indicates that publications in non open access journals are cited more (mean 8.6)

than the ones that are published in open access ones (mean 7.1). This finding is in line with the

one reported by a longitudinal study that found citations associated with journals funded by

article processing charges to have reached the same level as subscription journals, but to be

lower for journals funded by other means [80]. On the other hand, a later study examining the

relative influence of a journal’s impact factor reports open access journal publications to have

significantly more citations overall compared to the rest [81], so clearly more research is

needed on this front.

Hirsh’s h-index was originally proposed as a metric to quantify an individual’s scientific

research output [82]. We demonstrated this use of Alexandria3k by obtaining the h5-index on

authors identified through ORCID. A noteworthy observation was the number of authors with

a high metric: the top-ranked author has an h5-index of 76, twelve authors have an h5-index

larger than 60, and 100 larger than 38. These achievements appear to be even more difficult to

explain than earlier observations of hyperprolific authors [83]. We explored the phenomenal

productivity and impact exhibited by the authors at the top of the distribution by examining the

clustering coefficient of the graph induced by incoming and outgoing citations of distance 2 for

a given work. The clustering coefficients of a random sample of 50 works from authors with an

h5-index larger than 50 (median coefficient 0.05) appear to be significantly different from a ran-

dom sample of other works of the same size with the same number of citations for each one

(median 0.03). Specifically, comparing the two populations we obtained a Mann-Whitney U

statistic measure of 781 for the coefficients of the top-ranked authors’ works with P< 0.001.

Discussion

Alexandria3k builds on a rich and evolving ecosystem of publicly available data and sophisti-

cated open source software libraries coupled with exponential advances in computing power,
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enabling scientists to perform reproducible bibliometric, scientometric, and research synthesis

studies in a transparent and repeatable manner on a personal computer. In our use of Alexan-

dria3k we found that over time its features and interface, as well as the methods we used to

conduct the proof-of-concept studies, crystallized into a form we employed for distributing

the code of all the proof-of-concept studies. Other researchers can readily build upon these

examples to conduct their own studies.

Alexandria3k is not a panacea for the issues we identified in the introduction. Crossref’s

coverage of citation links is lacking compared to commercial alternatives [84]. The linkage of

publications to their authors through ORCID is thin, and ORCID author metadata are also

sparse. The string-based matching used to link textual author affiliations to RORs can result in

mismatches. The subjects associated with works are derived from the categorization of whole

journals by Scopus, and they are therefore incomplete and potentially inaccurate. The absolute

values of derived bibliometric measures do not match the proprietary ones, which employ dif-

ferent methods for data collection (web crawling for Google Scholar) and for processing

(hand-curation for Clarivate). In general, many of the supported data elements can be used for

making statistical observations, but the validity of any findings needs to be verified, e.g.

through sensitivity analysis based on the manual examination of a sample. Finally, one should

also take into account the epistemological shortcoming of structured approaches that use pub-

lication databases [85].

Nevertheless, Alexandria3k opens many possibilities to conduct research that goes beyond

what can be easily done through the query and API-based approaches offered by existing pro-

prietary [2] and open [6] databases. Examples include the study: of collaboration patterns

between organizations and disciplines, of citation cliques and organizational inbreeding, of

funder, publisher, and organizational performance, of open access availability and its effects,

of pre-print servers as alternatives to peer-reviewed publications, of interdisciplinary connec-

tions, and of structural publication differences between organizations or scientific fields.

Apart from making Alexandria3k available as open-source software we also structured it

and intend to run it as an open-source project, accepting and integrating contributions of

additional open-data sources (e.g. MEDLINE/PubMed, patent metadata, OpenAlex [6]), algo-

rithms (e.g. publication topic classification; author name and affiliations disambiguation; cita-

tion matching), and example studies. Some of the data sources, such as PubMed and

OpenAlex, overlap with Crossref, but can be useful for the additional metadata they provide,

such as the MEDLINE medical subject headings (MeSH) and the OpenAlex concepts. A prac-

tical approach for integrating such data may be to create data sources that only import the

metadata and link them with the works table using the DOI.

As part of this extension effort, Alexandria3k is participating in the 2023 Google Summer

of Code initiative—a global program promoting open-source software contributions by stu-

dent developers—through the Greek Open Technology Alliance—an non-profit organization

with 37 Greek universities and research centers as members. We hope that running Alexan-

dria3k as an open source project will allow it to grow organically serving ever more needs of

research synthesis and analysis studies.

Methods

The paragraphs below describe key elements behind the implementation of Alexandria3k and

the reported proof-of-concept studies. The complete implementation and all the proof-of-con-

cept studies are made available as open source software [86], and can be further examined or

run on the openly available data that Alexandria3k uses [43–46] and the associated replication

package [87] to obtain additional details.
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Implementation

Alexandria3k is designed around modules that handle the Crossref, ORCID, ROR, and flat file

(journal names, funders, open access journals) data sources. Each module defines the data

source’s schema in terms of tables and their columns. The schema’s SQL DDL implementation

is used to define the corresponding tables in a populated database. The schema is also used for

analyzing and satisfying vertical slicing requests when populating databases with Crossref and

ORCID data, and for running Crossref queries without populating a database. Where possible,

data are on-the-fly decompressed, extracted from an archive (with a tar or zip structure), and

parsed in chunks, thus avoiding the storage cost of the entire decompressed data set (1 TB for

Crossref and 467 GB for ORCID).

In its simplest form Alexandria3k can evaluate an SQL query directly on the Crossref data-

set, often to perform exploratory data analysis. Results can be saved as a CSV (comma-sepa-

rated values) file or iterated over through Python code for further processing. Both of these

modes have limitations in terms of performance, aggregation of query results, and combina-

tion of data from multiple sources.

In most cases Alexandria3k is used to populate an SQLite database [88]. Multiple alterna-

tives were considered for the data back-end. The native Crossref tree format would suggest a

JSON-style NoSQL database. Redis [89] would be an efficient back-end, but would limit the

amount of data to that that could be processed in memory. MongoGB [90] would address the

capacity limitation, at the cost of a more complex installation process due to licensing issues. A

client-server relational database system could also be used to offer improved integrity con-

straints and more advanced query optimization facilities. However, these options require the

installation, configuration, connection, and maintenance of a separate database process, which

is not a trivial task, especially for researchers outside the computing field. Consequently, the

adopted approach uses the SQLite database, which is embedded into Alexandria3k, directly

available in Python, easily installable as a command-line tool in all popular computing plat-

forms, and accessible through APIs for diverse programming languages and environments.

Transferring a database between computers only involves copying the corresponding file. Con-

sequently, there is no need to setup, configure, and maintain a complex client-server relational

or NoSQL database management system. Despite its -Lite suffix, SQLite supports large parts of

standard SQL [91] (including window functions and recursive queries), and employs sophisti-

cated query optimization methods; these feature made it ideal for use in Alexandria3k.

SQLite’s main downsides—lack of multi-user and client-server support—are not relevant to

common Alexandria3k use cases.

Direct queries on the Crossref data set (without populating a database) are implemented by

defining SQLite virtual tables that correspond to the offered schema through the Python apsw
module. Crossref data are distributed in the form of about 26 thousand compressed containers.

Running a query on them is trivial when the query accesses a single table: the Alexandria3k virtual

table implementation moves from one container to the next as the table is scanned sequentially.

Direct Crossref queries involving multiple tables are handled differently. First, a dummy

query execution is traced to determine the tables and fields it requires. Then, in-memory tem-

porary tables are populated with the required data from each container, and the query is exe-

cuted repeatedly on the instantiated tables. This approach works for all cases where relational

joins happen within a Crossref container (e.g. works with their authors or references). More

complex cases, such as relational joins between works or aggregations, require the population

of an external database.

The database population design uses two techniques to improve its performance. First, rec-

ords are bulk-inserted in batches by attaching directly the virtual tables to the database to be
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populated, and by having the database engine perform the insert operations with a single inter-

nal command for each batch. This avoids a round-trip cost of obtaining the data in Alexan-

dria3k and then storing them back in the database. Second, database indices over the

containers in which the data are split are implemented and used so as to access each container

file in turn for populating all required tables. The correspondingly improved locality of refer-

ence [92] is then utilized by caching the decompressed and parsed file contents. Unfortunately,

multithreading cannot be easily used to further improve performance because both Python

and SQLite make it difficult to obtain the required concurrency.

The performant matching of author affiliations with RORs is based on multiple applications

of the Aho-Corasick string-matching algorithm [93]. First, an Aho-Corasick automaton is cre-

ated with all unique organization names, aliases, and acronyms. Second, the automaton is used

to find entries in it that also match other entries (e.g. “ai”, the acronym of the “AI Corpora-

tion”, also matches the organization name “Ministry of Foreign Affairs”), and mark them for

removal to avoid ambiguous matches. Finally, a new automaton, constructed from the

cleaned-up entries, is used to find the longest match associated with each author affiliation

string. This is stored in the database as the affiliation’s organization identifier. When the Alex-

andria3k user specifies that affiliations should match the ultimate parent organization, a recur-

sive SQL query adds a “generation” number to each matched organization, an SQL window

(analytic) function [94] orders results by generation, and a final selection query obtains the

ROR identifier associated with the most senior generation.

Proof-of-concept studies framework

We structured most proof-of-concept studies we presented as a series of queries that build on

each other. This aids comprehensibility, testability, analysability, and recoverability. We speci-

fied the corresponding workflow using Makefiles [49] based on the simple-rolap system, which

manages relational online analytical processing tasks [50, 51]. The simple-rolap system estab-

lishes the dependencies between queries and executes them in the required order. Most studies

start with a population phase, which fills a database with the required horizontal and vertical

data slices. In many cases, we used the rdbunit SQL unit-testing framework to test SQL queries

[51]. We employed a shared Makefile with rules and configurations that satisfy dependencies

required by more than one study.

In total the proof-of-concept studies distributed as examples with Alexandria3k comprise

107 SQL query files amounting to 1 876 (commented) lines of code. The query operations are

organized by 18 Makefiles (511 lines), which populate the databases and execute the queries in

the required order. The queries create 42 intermediate tables and facilitate their efficient opera-

tion through the creation of 48 table indices. The charts, tables, and numbers in this report are

based on data produced by SQL queries that obtain their results from intermediate tables,

from populated databases, or directly from the Crossref data set.

We created a vertical slice of the complete Crossref database, which we used for a number

of purposes. The slice contains mainly the primary and foreign keys (including DOIs, and

ORCIDs) of all entities, plus the publication year, author affiliation names, and work subjects,

which are not normalized. We also ran Alexandria3k to populate the database with the Scopus

All Science Journal Classification Codes (ASJCs) [95] and RORs, and linked work subjects to

ASJCs and author affiliations to RORs.

We used the graph database to extract most of the database contents metrics provided in

the main text and in Tables 1 and 2. This was done through simple SELECT Count(*)
FROM table or SELECT Count(DISTINCT id) FROM table SQL queries.
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Scientific publishing evolution

In common with other studies [55, 96] we limited our examination to works published after

World War II, in order to avoid misleading comparisons with the markedly different scientific

and publication environment that preceded it. We calculated most numbers used for plotting

Fig 2 from the populated Crossref graph database. We obtained the number of published works

and journals through SQL Count aggregations of the underlying data grouped by year. We

obtained the ratios of authors per work and references per work by counting the corresponding

elements of the associated detail tables and then obtaining SQL Avg aggregations grouped by

year. We joined papers with their citations using the document’s DOI as a key and used this to

calculate the two-year impact factor, the received citations per work, the twenty-year impact

factor, and the proportion of all published works cited at least once each year. a twenty-year

rolling sum over the number of works published each year. (To facilitate the required case-

insensitive DOI matching, Alexandria3k converts internally all DOIs into lowercase.)

We calculated the number of pages per work by populating a database with the required

work and author details, and by extracting the starting and ending page number from Crossref

works that contain a dash in their pages field. This process excludes single-page works

reported only with a single page number (rather than as a range with the same starting and

ending page). We excluded from the data records with a starting page lower or equal to the

ending page or those having more than 1000 pages, because the latter (164387 records) were

often derived from data-entry mistakes, such as repeated page digits (e.g. 234–2366), as well

as unusable data formats, such as 1744–8069–5–32.

We calculated a measure that can be used to track author productivity (works per author)

despite clashes in author names, by taking advantage of the fact that we display productivity in

relative terms (adjusting it to be 1 in 1950). In absolute terms authors with same names increase

the productivity’s absolute value. (An author named Smith, Kim, or Zhu would appear extremely

prolific.) However, assuming that the ratio of clashing names in the population does not change,

the effect of duplicate names on the relative productivity measurements is cancelled out.

Note that an actual study of author productivity would need to test and control for the

assumption we made, because the population’s composition might change over the years to

include authors from ethnic backgrounds with more or fewer common name clashes, (for

example, about 80% of China’s population shares the 100 most common Chinese surnames

[97]) making the phenomenon more frequent or less frequent over time. Using Alexandria3k

we obtained frequently-occurring names at the two ends of the examined period and found

that in 1950 the three most frequent names were W. Beinhoff (161 works—0.10% of the total

names), E. Rosenberg (149—0.09%), and F. De Quervain (115—0.07%); whereas in 2021 they

were Y. Wang (63363—0.23%), Y. Zhang (57414—0.21%), and Y. Li (51792—0.19%). The dif-

ferent percentages at the two periods’ ends indicate that further controls for this change would

be required, e.g. by measuring name clashes through ORCIDs while also considering varia-

tions in their adoption [98].

We calculated the CD5 index [99] of Crossref publications by populating a database with

their publication date and DOI, as well as the DOIs of the corresponding references. Given the

available data, we were able to calculate the CD5 index for six additional years (until 2016)

compared to previous results [55], using the remaining five complete years we had at out dis-

posal (2017–2021) to obtain the required citations’ window.

The CD5 calculation proved to be computationally challenging. The processing for the

already-published 1945–2010 range, taking into account even publications lacking reference

data, required more than five days of computing and about 40 GB of RAM. Surprisingly,

extending the range to 2016 increased the required time to 45 days. To address this we
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enhanced the original CD calculation algorithm implementation converting it to C++ [100],

so at to use more efficient data structures and algorithms as well as multithreading. This

allowed us to perform the CD5 index calculation in 33 hours of elapsed time using 40 hours of

CPU time and 49 GB of main memory.

To help other researchers build on this data without incurring the associated high computa-

tional cost, we have made the resulting data set containing the DOI and the CD5 index for 50

937 400 publications in the range 1945–2016 openly available [101]. This improves upon previ-

ously available data [102], which extends to 2010 and only provides the time-stamp of each

publication, without other uniquely distinguishing publication identifiers.

We calculated the evolution in the number of publications across scientific fields (Fig 4) by

propagating the specific fields associated with each work in the Crossref graph database to the

more general containing field. For that we used as general fields the Scopus ASJCs that ended in

“00”, and as their sub-fields those that started with the same numeric prefix. For example, we

allocated publications under the subject of “Catalysis” (1503) to “General Chemical Engineering”

(1500). We then calculated total publications in 1945 and 2021, changes in the percentages of a

field’s publications in terms of the total at the two time points, and included in the Figure the ten

fields with the largest change whose publications amounted to more than 2% of the 2021 total.

We calculated the numbers associated with research synthesis studies by processing the out-

put of Alexandria3k run on the Crossref data with an SQL query that matches specific words in

publication titles. The query’s terms are structured to give precedence to the characterization of

titles indicating a systematic review as such, classifying the rest as (unspecified) secondary stud-

ies. In Fig 3 we combined the plotting of bibliometric (BM) and scientometric (SM) studies,

and did not plot figures for mapping reviews (MR), umbrella reviews (UR), and tertiary studies

(S3)—6061 publications in total. We also did not plot the 400 identified studies published

before 1971 as well as studies published after 2021, as only part of the year 2022 data were avail-

able. Note that works containing “bibliometric” or “scientometric” in their title may either

employ these methods [103] or refer to them [104]. We used another query with the same

terms to list the 30 studies published before 1950 and obtain the earliest one [56] among them.

COVID-19 metrics

To study COVID-19 publications we populated a database with a full horizontal slice of the

Crossref data by specifying as the row selection criterion works containing the string

“COVID” in their title or abstract (“covid” is not part of any English word). We also linked

works to their subjects and author affiliations to the corresponding RORs. We obtained orga-

nizations publishing COVID-19 research by assigning author affiliations to works, and by

counting both ROR-matched affiliations and unmatched affiliations as simple text.

We calculated the approximate number of researchers who worked on all COVID-19 stud-

ies by starting with the number of unique (author given-name, author surname) pairs in the

set of all COVID study authors Nan. The number of true authors could be higher if many

authors share the same name or lower if the same author appears differently (e.g. through the

use of initials) in some publications. We address this by obtaining from the set of authors with

an ORCID the number of distinct ORCIDs No, which is the true number of authors in that set,

and the number of distinct names Non, which approximates any bias also found in Nan. We

then consider the true number of authors as

Nan
No

Non
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Note that the employed method’s accuracy is still vulnerable to ghost and empty ORCIDs

that seem to be created by paper mills [105].

Journal impact factor

We calculated the 2021 Journal Impact Factor [71] by populating a database with the keys,

ISSNs, publications years, and pages of works and their references published between 2019

and 2021. We then created a table associating works with journal ISSNs. From this table we

obtained citations published in 2021 to works published in 2019–2020 (the impact factor’s

numerator). We further filtered works to identify “citable” items, which Clarivate defines as

those that make a substantial contribution to science and therefore do not include elements

such as editorials and letters. For this we used as a rough heuristic works longer than two

pages. (We also included works lacking a page range.) From the count of citable items per

journal we obtained the number of publications published in the 2019–2020 period (the

denominator). Finally, to compare our results with the numbers published by Clarivate we

associated each impact factor metric with all ISSNs known for a journal (electronic, print,

alternative), excluding the “alternative” ISSNs of one journal used as primary for another

journal.

Open access publications

We calculated the yearly evolution of open access journal articles and their ratio to all journal

articles by using the Directory of Open Access Journals (DOAJ) provided through Alexan-

dria3k. We joined the Crossref works with DOAJ based on each journal’s ISSN to create a

database table containing works published in open access journals after each journal’s open

access start date. We then joined the open access papers with their Crossref metadata and

grouped them by year to obtain the yearly evolution shown in Fig 2. We used the set difference

between all journal papers and the previously obtained joined table of the ones published in

open access journals to obtain the corresponding ratio. We did not employ the Mann-Whitney

U statistic for comparing the two populations, because the Shapiro-Wilk test on them indi-

cated that the citation numbers are not normally distributed (W = 0.115, P< 0.001).

Productivity metrics

We obtained the h5-index [82] productivity metrics by populating databases with data sliced

vertically to include the keys of works and references and horizontally to include items pub-

lished in the period 2017–2021. For the software engineering venue metrics we selected the

examined conferences based on the DOI prefix assigned to the conference publications each

year.

To study the citation graph of top-ranked authors we obtained a) a random sample of 50

works written by top-ranked authors, and b) a random sample of 50 works from all other pub-

lications, paired with the ones selected from the top-ranked authors to have the same number

of citations as them. For each publication in the two samples, we created a separate graph con-

taining the work w, the set S of the works w cites and the works that cite w, and then again the

set S0 of the works w0 that cite or are cited by w 2 S. The graph’s edges are citations from one

work to another. We created each citation-induced graph with a Python program querying the

populated database and employed the NetworkX [106] Python package to calculate the graph’s

average clustering.
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Performance and map of available code

Performance details of the tasks reported here are summarized in Table 3. The reported figures

are associated with two parts of each analysis. First, the population of an SQLite database with

a horizontal and vertical slice of Crossref (and other) data. The size of this database (together

with any indexes created in it) is reported as Spop and the corresponding time required to pop-

ulate the database as Tpop. Second, the execution of ROLAP SQL queries to obtain the required

results. In many cases the queries generate secondary tables, which are stored in a separate

ROLAP (analysis) database. The size of the ROLAP database is reported as SROLAP and the

time required to run the queries as TQtot, TQmean, and TQmax. The query run time includes time

for creating indexes, intermediate tables, and final reports. For tasks where no population fig-

ures are listed, the queries are run directly on the Crossref containers. For tasks where no

ROLAP size is listed, the queries generate the results directly from the populated database,

without creating any intermediate tables. All reported times are elapsed (wall clock) times

shown in hours:minutes:seconds format.

The numbers shown on the table involve executions on idle or lightly loaded hosts with

processes taking up a single core. The memory use (maximum resident set size—RSS) of popu-

lation and query tasks averaged 1.2 GiB (minimum 4 MiB, maximum 49 GiB, median 35 MiB,

σ = 5 GiB).

In addition to the SQL query times reported in the table, Python programs were used for

analyzing the author graph (0:08:38 elapsed time, 55 MiB RSS) and the open source journal

impact (0:01:19 elapsed time, 3.5 GiB RSS). Furthermore, a multithreading C++ program was

used to calculate the CD5 (9:24:20 elapsed time on 8 cores, 66:48:37 CPU time, 49 GiB RSS).

The task names in Table 3 mirror the contents of the Alexandria3k source code distribution

examples directory. They are associated with what is reported in this work as follows. The

author-productivity and yearly-numpages tasks were used to derive the corresponding yearly

Table 3. Performance summary.

Task H Spop Tpop SROLAP # Q TQtot TQmean TQmax

author-productivity R 18 GiB 4:23:09 12 KiB 4 0:24:49 0:06:12 0:22:11

cdindex S 90 GiB 10:59:08 3 GiB 3 2:24:09 0:48:03 2:23:44

covid R 3 GiB 7:53:45 — 8 3:21:12 0:25:09 3:20:23

crossref-standalone T — — — 3 11:50:21 3:56:47 3:58:36

graph R 189 GiB 6:35:53 283 MiB 37 19:18:29 0:31:18 11:57:56

impact-factor-2021 T 30 GiB 7:11:05 2 GiB 12 0:38:54 0:03:14 0:22:11

journal-h5 S 33 GiB 20:41:03 5 GiB 4 0:43:04 0:10:46 0:34:13

open-access R 95 GiB 9:35:37 555 MiB 3 0:01:59 0:00:39 0:00:58

orcid T 6 GiB 3:49:02 — 1 0:00:02 0:00:02 0:00:02

person-h5 T 50 GiB 8:31:05 5 GiB 7 0:44:12 0:06:18 0:29:15

research-synthesis S — — — 1 7:01:52 7:01:52 7:01:52

soft-eng-h5 T 137 MiB 9:45:14 7 MiB 5 0:00:01 0:00:00 0:00:01

yearly-numpages T 4 GiB 4:08:07 2 GiB 6 0:08:52 0:01:28 0:03:44

H(ost) R: Intel i7–10700 CPU @ 2.90 GHz, 16 MiB cache, 32 GiB DDR4 RAM, SSD storage;

H(ost) S: Intel E5–1410 CPU @ 2.80 GHz, 10 MiB cache, 72 GiB DDR3 RAM, magnetic disk;

H(ost) T: Intel i7–7700 CPU @ 3.60 GHz, 8 MiB cache, 16 GiB DDR4 RAM, magnetic disk;

Spop: Populated database size; Tpop Time to populate database;

SROLAP: Relational analytical processing database size; # Q: number of queries run;

TQtot: total query time; TQmean: average (arithmetic) query time; TQmax: maximum query time

https://doi.org/10.1371/journal.pone.0294946.t003
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evolution lines shown in Fig 2. The crossref-standalone task derived the evolution in the num-

ber of journals (Fig 2), the yearly availability of abstracts (Fig 1), and the types of works avail-

able in Crossref. The open-access task derived the evolution in the number of papers published

in open access journals (Fig 2), the reported ratio, and the statistical analysis regarding cita-

tions to publications in open access journals. The graph task was used to derive the remaining

yearly evolution and yearly availability metrics, the Crossref record metrics (Table 1), and the

evolution of publications in scientific fields (Fig 4). The orcid task derived the ORCID metrics

shown in Table 2. The research-synthesis task derived the evolution in systematic literature

reviews (Fig 3). Finally, cdindex derived the CD5 index, covid the COVID-19 figures, impact-
factor-2021 the 2021 journal impact factor, journal-h5 the journal h5-index, person-h5 the per-

son h5-index, and soft-eng-h5 the h5-index of software engineering venues.

Statistical analysis

For reporting the correlation between the metrics obtained by Alexandria3k and existing ones

and for comparing the graph clustering coefficients between two populations we used the

functions spearmanr and mannwhitneyu from the Python package scipy.stats. All calculations

were performed with “two-sided” as the alternative hypothesis (the default). No other options

were provided to the function calls. We calculated CAGR with LinearRegression function of

the sklearn.linear_model package. For the analysis and charting we used Python 3.9.10 with the

packages cliffs-delta 1.0.0, matplotlib 3.3.4, numpy 1.20.1, pandas 1.2.4, scikit-learn 0.24.1,

pySankey 0.0.1, and scipy 1.6.2.

Supporting information

S1 Fig. Relational schema of Crossref tables in a fully-populated database.

(PDF)

S2 Fig. Relational schema of ORCID tables in a fully-populated database.

(PDF)

S3 Fig. Relational schema of ROR tables in a fully-populated database.

(PDF)

S4 Fig. Relational schema of other tables and Alexandria3k-generated links in a fully-pop-

ulated database.

(PDF)
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