

Delft University of Technology

Exploring Active Inference and Model Predictive Path Integral Control
A Journey from Low-Level Commands to Task and Motion Planning
Pezzato, C.

DOI
10.4233/uuid:4fa3a292-477c-4ff0-b01a-e7d90b66ec2a
Publication date
2024
Document Version
Final published version
Citation (APA)
Pezzato, C. (2024). Exploring Active Inference and Model Predictive Path Integral Control: A Journey from
Low-Level Commands to Task and Motion Planning. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:4fa3a292-477c-4ff0-b01a-e7d90b66ec2a

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:4fa3a292-477c-4ff0-b01a-e7d90b66ec2a
https://doi.org/10.4233/uuid:4fa3a292-477c-4ff0-b01a-e7d90b66ec2a

Corrado Pezzato

Exploring Active Inference and Model
Predictive Path Integral Control

A Journey from Low-Level Commands to
Task and Motion Planning

E
xp

lo
rin

g
 A

c
tive

 In
fe

re
n

c
e

 a
n

d
 M

o
d

e
l P

re
d

ic
tive

 P
ath

 In
te

g
ra

l C
o

n
tro

l - C
o

rra
d

o
 P

e
zzato

Exploring Active Inference and Model

Predictive Path Integral Control

A Journey from Low-Level Commands to
Task and Motion Planning

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus Prof. dr. ir. T. H. J. J. van der Hagen;
Chair of the board of Doctorates

to be defended publicly on
Tuesday the 9th of January 2024, at 10:00 o’clock

by

Corrado PEZZATO

Master of Science in Systems and Control
Delft University of Technology, The Netherlands

born in Mirano, Italy

ii

This dissertation has been approved by the promotors.

Composition of the doctoral committee:
Rector Magnificus, chairperson
Prof.dr.ir. M. Wisse, Delft University of Technology, promotor
Dr.ir. C. Hernández Corbato, Delft University of Technology, copromotor

Independent members:
Prof.dr. M.M. de Weerdt, Delft University of Technology
Prof.dr.hc. M. Beetz, University of Bremen
Prof.dr. C.L. Buckley, University of Sussex
Prof.dr. A. Wπsowski, IT University of Copenhagen
Dr. C. Della Santina, Delft University of Technology
Prof.dr.ir. J. Hellendoorn, Delft University of Technology, reserve member.

This research was supported by Ahold Delhaize. All content represents the opinion
of the author(s), which is not necessarily shared or endorsed by their respective
employers and/or sponsors.

Keywords: Free-energy, active inference, adaptive control, fault-tolerant con-
trol, task planning, behavior trees, model predictive path integral
control, task and motion planning

Printed by: Ridderprint, The Netherlands

Front & Back: Corrado Pezzato using AI-generated art

Copyright © 2023 by C. Pezzato

ISBN 978-94-6384-523-6

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording or by any information storage and retrieval system,
without written permission of the author.

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To the collective knowledge of humanity ...

Contents

Summary ix

Samenvatting xiii

1 Introduction 1
1.1 Motivations . 2

1.1.1 Overview of the problem . 2
1.1.2 Research roadmap . 3

1.2 Summary of contributions . 5
1.3 Structure of the document . 7

2 Background 9
2.1 Active Inference. 10

2.1.1 Continuous Active Inference 10
2.1.2 Discrete Active Inference . 14

2.2 Model Predictive Path Integral Control 16
2.3 Fault-tolerant control . 22

3 Fault-tolerant Control of Robot Manipulators with Sensory Faults
using Unbiased Active Inference 25
3.1 Abstract . 26
3.2 Introduction. 26
3.3 Preliminaries . 27

3.3.1 Active inference controller (standard AIC) 27
3.3.2 Limitations of fault-tolerant control with standard AIC 29

3.4 Unbiased Active Inference . 30
3.4.1 Derivation of the u-AIC . 31
3.4.2 Definition of the observation model 32
3.4.3 Estimation and control using the u-AIC. 32
3.4.4 Key di�erences between AIC and u-AIC 33

3.5 Fault detection, isolation, and recovery 33
3.5.1 Residual generation. 34
3.5.2 Threshold for fault detection. 35
3.5.3 Fault isolation. 36
3.5.4 Fault recovery. 36

3.6 Simulation study . 36
3.7 Conclusions . 38

v

vi

4 Unbiased Active Inference for Classical Control 41
4.1 Abstract . 42
4.2 Introduction. 42

4.2.1 Related work . 43
4.2.2 Structure of the paper . 44

4.3 Preliminaries . 44
4.3.1 The generative model. 44
4.3.2 Free-energy . 45
4.3.3 State estimation . 45
4.3.4 Control . 45

4.4 Limitations of the AIC . 46
4.4.1 Limitation #1: biased state estimation 46
4.4.2 Limitation #2: implicit modelling of actions 49

4.5 Unbiased Active Inference controller. 49
4.5.1 Derivation of the u-AIC . 49
4.5.2 Proof of convergence . 51
4.5.3 Extensions of the u-AIC for control 51

4.6 Relationship between the AIC and u-AIC. 52
4.6.1 Convergence of beliefs . 52
4.6.2 Control law . 53
4.6.3 General architecture . 53

4.7 Experimental evaluation . 54
4.7.1 Simulation. 54
4.7.2 7-DOF Panda arm . 55

4.8 Conclusion . 56

5 Active Inference and Behavior Trees for Reactive Action Plan-
ning and Execution in Robotics 59
5.1 Abstract . 60
5.2 Introduction. 60

5.2.1 Related Work . 61
5.2.2 Contributions . 63
5.2.3 Paper structure . 63

5.3 Background on Active Inference and BTs 63
5.3.1 Background on Active Inference 63
5.3.2 Background on BTs. 70

5.4 Active Inference and BTs for Reactive Action Planning and Execution 72
5.4.1 Definition of the models for Active Inference 72
5.4.2 BTs integration: planning preferences, not actions 75
5.4.3 Action preconditions and conflicts 77
5.4.4 Complete control scheme . 79

5.5 Theoretical analysis. 79
5.5.1 Analysis of convergence . 79
5.5.2 Analysis of robustness . 83

Contents vii

5.6 Experimental evaluation . 83
5.6.1 Experimental scenarios . 83
5.6.2 Implementation . 85
5.6.3 Robustness: Dynamic regions of attraction 87
5.6.4 Resolving run-time conflicts 88
5.6.5 Safety . 90
5.6.6 Comparison and design principles 91

5.7 Discussion . 93
5.7.1 Active Inference as a planning node in a BT 93
5.7.2 Why choose BTs . 94
5.7.3 Why choose Active Inference. 94

5.8 Conclusions . 95

6 Sampling-based Model Predictive Control Leveraging Paralleliz-
able Physics Simulations 97
6.1 Abstract . 98
6.2 Introduction. 98

6.2.1 Related work . 99
6.2.2 Contributions . 100

6.3 Sampling-based MPC via parallelizable physics simulations 101
6.3.1 Background theory on MPPI. 101
6.3.2 Proposed algorithm. 101
6.3.3 Exploiting the physics simulator features 103

6.4 Experiments. 104
6.4.1 Motion planning and collision avoidance 104
6.4.2 Prehensile manipulation with whole-body control 106
6.4.3 Non-prehensile manipulation 107
6.4.4 Real-world experiments. 111

6.5 Discussion . 112
6.6 Conclusions . 113

7 Multi-Modal MPPI and Active Inference for Reactive Task and
Motion Planning 115
7.1 Abstract . 116
7.2 Introduction. 116

7.2.1 Related work . 117
7.2.2 Contributions . 118

7.3 Background . 118
7.3.1 Active Inference Planner . 118
7.3.2 Model Predictive Path Integral Control 119

7.4 Methodology . 120
7.4.1 Overview . 120
7.4.2 Action planner - Active Inference 121
7.4.3 Motion planner - Multi-Modal MPPI (M3P2I) 122
7.4.4 Plan interface . 125

viii

7.5 Experiments. 125
7.5.1 Push-pull scenario . 125
7.5.2 Object stacking scenario . 129

7.6 Conclusions . 131

8 Conclusion and discussion 133
8.1 Conclusions . 134
8.2 Discussion . 135

8.2.1 Active Inference or MPPI? Choices and insights 136
8.2.2 Challenges and future work 137

Bibliography 159

A Appendix 161
A.1 Generative models . 161
A.2 Variational Free-energy. 162
A.3 State estimation . 164
A.4 Expected Free-energy. 164
A.5 Updating plan distribution . 165

Acknowledgements 167

Curriculum Vitæ 169

List of Publications 171

Summary

I n an ever-evolving society, the demand for autonomous robots equipped with
human-level capabilities is becoming increasingly imperative. Various factors,

such as an aging population and a shortage of labor for repetitive and physically
demanding tasks, have underscored the need for capable autonomous robots to as-
sist us in our daily activities. However, despite the recent advancements in robotics,
the field still faces significant challenges in delivering on its promises of developing
general-purpose robots with human-level capabilities for everyday tasks. This the-
sis aims to develop control algorithms at di�erent levels of abstraction to achieve
more robust, adaptive, and reactive robot behavior for long-term tasks in dynamic
environments.

Since our ultimate goal is to achieve human-level performance, a natural starting
point is to investigate theories of human intelligence and how they can be applied
to real robots, such as mobile manipulators. In this regard, one prominent theory is
Active Inference, a popular and influential concept that can explain a wide range of
cognitive functions, from motor control to high-level decision-making. Active Infer-
ence was developed based on the free-energy principle providing an explanation for
embodied perception-action loops. While the free-energy principle and Active In-
ference have garnered significant attention among neuroscientists, their application
to robotics remains largely unexplored, presenting an exciting avenue for research
in this thesis. At the same time, it is also important to recognize that we should
not confine ourselves solely to theories of human intelligence and their inherent lim-
itations. Machines and humans are built upon fundamentally di�erent structures,
which opens up possibilities for alternative approaches. Consequently, this thesis
also investigates the use of Model Predictive Path Integral Control (MPPI), which
stems from a di�erent formulation of free-energy that is not bound to biological
assumptions. By exploring the application of Active Inference to low-level robot
control and task planning, as well as the utilization of MPPI for motion planning,
this thesis provides advancements in robot control at di�erent levels of abstraction.

More concretely, this thesis contributes to the following four areas: 1) Low-
level adaptive and fault-tolerant control, 2) Reactive high-level decision making,
3) Contact-rich motion planning, and 4) Reactive task and motion planning (TAMP).

Low-level control The research that resulted in this dissertation started with
the exploration of Active Inference for low-level control of robot manipulators. In
this initial phase, we proposed the first applications of this neuroscientific theory
for adaptive [109] and fault-tolerant control [107]. These initial works highlighted
the advantages and limitations of Active Inference for classical control. One of the
core ideas in Active Inference is to bias the current belief toward a desired goal in
the generative model, implicitly modeling actions. While this results in an elegant

ix

x

control law that couples state estimation and control, it also leads to a biased state
estimate that can cause false positives in fault-tolerant control. To overcome this
we introduced the key idea of explicitly modeling control actions in the generative
model. This led to the unbiased Active Inference scheme for classical and fault-
tolerant control [6, 10] described in Chapters 3 and 4.

Reactive high-level decision making Active Inference literature proposes both
a continuous and a discrete version of the framework, for low-level control and high-
level decision making respectively. The discrete version was proposed in the neu-
roscientific community as a unified framework to solve the exploitation-exploration
dilemma by acting to minimize the free-energy. Probabilistic beliefs about the state
of the world are built through Bayesian inference, and a finite horizon plan is se-
lected to maximize the evidence for a model that is biased toward the agent’s pref-
erences. However, the use of this formulation was limited to simplified simulation
scenarios with fixed preferences and relied on fundamental assumptions such as in-
stantaneous actions without preconditions. To bring discrete Active Inference to
real-world robotics, we introduced the key idea of planning desired states to per-
form a task through a Behavior Tree [96], to guide the online action selection process
with Active Inference. This combination of o�ine and online planning led to a com-
putationally tractable algorithm for the online synthesis of reactive robot behavior,
as explained in Chapter 5.

Contact-rich motion planning Robots operating in real environments and in-
teracting with the surroundings necessarily need to take into account physical inter-
action with objects. The Active Inference approaches developed in Chapters 3 and 4
did not allow for straightforward integration of contact models for low-level behavior,
while Chapter 5 considered pre-defined routines when interacting with the world.
Thus, we shifted our focus to Model Predictive Path Integral Control, as a method
to gracefully handle discontinuous dynamic models. However, the problem of defin-
ing a model for robot interaction still remained. Thus, Chapter 6 introduced the
key idea of using a GPU-parallelizable physics simulator as the dynamical model
for MPPI. This led to a new way of performing sampling-based model predictive
control where no explicit dynamic model is required from a user [110]. This en-
abled us to e�ortlessly solve complex tasks such as non-prehensile manipulation and
whole-body prehensile manipulation with high degrees-of-freedom (DOFs) robots.

Reactive task and motion planning This dissertation concludes with a final
contributing chapter combining the advances of the methods explained above. The
key idea is to schedule costs to be minimized by MPPI through Active Inference.
Active Inference is extended to plan alternative action plans, to be sampled in par-
allel by MPPI. By doing so, we obtained a system that can blend together di�erent
strategies to achieve the same goal, without requiring user-defined switching heuris-
tics. E�ectively merging various robot capabilities led to switching-free behaviors,
at the same time allowing a robot to deal with contact-rich tasks and adjust online

Summary xi

the high-level plans. As explained in Chapter 7, this idea results in a reactive task
and motion planning framework with a high degree of autonomy [147].

The algorithms presented in this thesis have been evaluated both from a theoret-
ical and empirical perspective, performing in-depth mathematical analysis as well
as simulations and real experiments. Through the ideas presented in this disserta-
tion, we hope to propel the field of robotics forward and pave the way for the new
generation of researchers working toward the widespread adoption of autonomous
robots in our society.

Samenvatting

I n een voortdurend veranderende samenleving groeit de vraag naar autonome ro-
bots met menselijke capaciteiten gestaag. Diverse factoren, zoals de vergrijzing

van de bevolking en een tekort aan arbeidskrachten voor herhalende en fysiek veel-
eisende taken, benadrukken de noodzaak van bekwame autonome robots die ons
kunnen bijstaan in onze dagelijkse bezigheden. Ondanks de voortgang in de robo-
tica, wordt het veld nog steeds geconfronteerd met aanzienlijke uitdagingen bij het
vervullen van de belofte om robots te ontwikkelen die algemene taken met mense-
lijke capaciteiten kunnen uitvoeren. Dit proefschrift is gefocused op het ontwikkelen
van besturingsalgoritmen op verschillende abstractieniveaus, met als doel robuuster,
aanpasbaarder en responsiever gedrag van robots te bereiken voor langetermijntaken
in dynamische omgevingen.

Aangezien ons ultieme doel is om prestaties op menselijk niveau te bereiken, is
het natuurlijk om te beginnen met het onderzoeken van theorieën over menselijke
intelligentie en hoe deze kunnen worden toegepast op praktische robots, zoals mo-
biele manipulatoren. In dit opzicht is Active Inference een prominente theorie, het
is een populair en invloedrijk concept dat een breed scala aan cognitieve functies
kan verklaren, van motorische controle tot besluitvorming op hoog niveau. Actieve
Inferentie is ontwikkeld op basis van het free-energy principle en biedt een verkla-
ring voor de interacties tussen waarneming en actie binnen een lichaam. Hoewel het
free-energy principle en de Active Inference veel aandacht hebben gekregen onder
neurowetenschappers, blijft hun toepassing op robotica grotendeels onontgonnen,
wat een opwindende onderzoeksrichting in dit proefschrift oplevert. Tegelijkertijd is
het ook belangrijk om te erkennen dat we ons niet uitsluitend moeten beperken tot
theorieën over menselijke intelligentie en hun inherente beperkingen. Machines en
mensen zijn gebouwd op fundamenteel verschillende structuren, wat mogelijkheden
opent voor alternatieve benaderingen. Daarom onderzoekt dit proefschrift ook het
gebruik van Model Predictive Path Integral Control (MPPI), dat voortkomt uit een
andere formulering van free-energy die niet gebonden is aan biologische aannames.
Door diepgaand in te gaan op de toepassing van Actieve Inferentie in robotbesturing
en laag-niveau taakplanning, en door het gebruik van MPPI voor bewegingsplan-
ning te verkennen, draagt dit proefschrift bij aan de vooruitgang in robotbesturing
op verschillende abstractieniveaus.

Meer concreet draagt dit proefschrift bij aan de volgende vier gebieden: 1) Adap-
tieve en fouttolerante controle op laag niveau, 2) Reactieve besluitvorming op hoog
niveau, 3) Contactrijke bewegingsplanning, en 4) Reactieve taak en bewegingsplan-
ning (TAMP).

Controle op laag Het onderzoek dat heeft geleid tot dit proefschrift begon met
de verkenning van Active Inference voor de besturing op laag niveau van robotma-

xiii

xiv

nipulatoren. In deze eerste fase hebben we de eerste toepassingen van deze neuro-
wetenschappelijke theorie voorgesteld voor adaptieve [109] en fouttolerante controle
[107]. Deze eerste werken benadrukten de voordelen maar ook de beperkingen van
Active Inference voor klassieke controlemethoden. Een van de kernideeën van Active
Inference is om de huidige overtuiging in de richting van een gewenst doel in het
generatieve model te sturen, waarbij impliciet acties worden gemodelleerd. Hoewel
dit resulteert in een elegante controlewet die de schatting van de huidige status en
de controle hiervan combineert, leidt het ook tot een vertekende schatting die kan
leiden tot valse positieven in fouttolerante controle. Om dit aan te pakken, hebben
we het essentiële idee geïntroduceerd om de controleacties expliciet te modelleren
in het genratieve model. Dit leidde tot het onbevooroordeelde Active Inference-
schema voor klassieke en fouttolerante controle [6, 10], beschreven in Chapters 3
and 4.

Reactieve besluitvorming op hoog niveau Binnen de Active Inference litera-
tuur wordt zowel een continue als een discrete versie van het raamwerk voorgesteld,
respectievelijk voor controle op laag niveau en besluitvorming op hoog niveau. De
discrete versie werd in de neurowetenschappelijke gemeenschap voorgesteld als een
verenigd raamwerk om het dilemma van exploitatie en exploratie op te lossen door
de free-energy te minimaliseren. Probabilistische overtuigingen over de toestand
van de wereld worden opgebouwd via Bayesiaanse redernering, en er wordt een plan
met een eindige horizon geselecteerd om het bewijs voor een model dat de voorkeu-
ren van de actor weerspiegelt, te maximaliseren. Het gebruik van deze formulering
was echter beperkt tot vereenvoudigde simulatiescenario’s met vaste voorkeuren en
berustte op fundamentele aannames zoals onmiddellijke acties zonder voorafgaande
voorwaarden. Om discrete Active Inference te introduceren in de echte wereld van
robotica, hebben we het essentiële idee geïntroduceerd om gewenste toestanden
te plannen voor de uitvoering van een taak via een gedragsboom [96], om zo het
proces van online actieselectie te verbinden met Active Inference. Deze combinatie
van o�ine en online planning leidde tot een computationeel hanteerbaar algoritme
voor de online synthese van reactief robotgedrag, zoals uitgelegd in Chapter 5.

Contactrijke bewegingsplanning Robots die in echte omgevingen opereren en
interactie hebben met de omgeving, moeten noodzakelijkerwijs rekening houden met
fysieke interactie met objecten. De benaderingen gebaseerd op Active Inference, ont-
wikkeld in Chapters 3 and 4, lieten geen naadloze integratie van contactmodellen toe
voor laag-niveau gedrag, terwijl Chapter 5 vooraf gedefinieerde routines in overwe-
ging nam tijdens de interactie met de wereld. Daarom hebben we onze focus verlegd
naar Model Predictive Path Integral Control, als een methode om op elegante wijze
met discontinue dynamische modellen om te gaan. Het probleem van het definiëren
van een model voor robotinteractie bleef echter bestaan. Zo introduceerde Chapter 6
het essentiële idee van het gebruik van een GPU-paralleliseerbare fysica-simulator
als het dynamische model voor MPPI. Dit leidde tot een nieuwe manier om op steek-
proeven gebaseerde voorspellende controle van modellen uit te voeren, waarbij geen
expliciet dynamisch model vereist is van een gebruiker [110]. Dit stelde ons in

Samenvatting xv

staat om moeiteloos complexe taken op te lossen, zoals niet-grijpende manipulatie
en grijpmanipulatie van het hele lichaam met robots met een hoge vrijheidsgraad
(DOF).

Reactieve taak- en bewegingsplanning Dit proefschrift sluit af met een laat-
ste hoofdstuk dat de voortgang van de eerder uiteengezette methoden combineert.
Het essentiële idee is om te plannen op een manier waarbij de kosten worden
geminimaliseerd door middel van Model Predictive Path Integral Control (MPPI),
geïntegreerd met Active Inference. Active Inference wordt uitgebreid om alterna-
tieve actieplannen te genereren, die parallel worden bemonsterd door MPPI. Door
dit te doen, hebben we een systeem verkregen dat verschillende strategieën kan com-
bineren om hetzelfde doel te bereiken, zonder dat door de gebruiker gedefinieerde
schakelheuristieken nodig zijn. Deze e�ectieve combinatie van diverse robotcapaci-
teiten resulteert in naadloos en schakelvrij gedrag, waardoor de robot contactrijke
taken kan uitvoeren en tegelijkertijd online hoog-niveau plannen kan aanpassen.
Zoals uitgelegd in Chapter 7 resulteert dit idee in een algemeen reactief raamwerk
voor taak- en bewegingsplanning met een hoge mate van autonomie [147].

De algoritmen die in dit proefschrift worden gepresenteerd zijn zowel vanuit een
theoretisch als empirisch perspectief geëvalueerd, waarbij diepgaande wiskundige
analyses zijn uitgevoerd, evenals simulaties en echte experimenten. Met de ideeën
die in dit proefschrift worden gepresenteerd hopen we het veld van de robotica
vooruit te helpen en de weg vrij te maken voor de nieuwe generatie onderzoekers
die werken aan de brede acceptatie van autonome robots in onze samenleving.

1
Introduction

T his chapter serves as an introductory overview of the thesis, providing insights
into the motivations and challenges behind this work. Particularly, in the fol-

lowing we outline the roadmap that guided the development of the main chapters,
emphasizing the core contributions made. Additionally, we present an overview of
the document’s structure, facilitating readers in navigating through the research pre-
sented.

The hallmark of a good scientist
is asking questions that no one has asked before

Karl J. Friston

1

1

2

1.1. Motivations

The integration of autonomous robots into human environments that are capable of
performing human-level tasks has emerged as a significant area of research, holding
tremendous potential for transformative impact. In this thesis, we aim to advance
the capabilities of such robots in terms of adaptive motor control and high-level
decision-making. These aspects are essential for successfully navigating and inter-
acting within environments designed for humans.

Humans possess remarkable cognitive and physical abilities that enable them
to interact e�ortlessly with their surroundings, exhibiting complex behaviors and
achieving goals e�ciently. Understanding how humans accomplish various tasks
is a fundamental question that has intrigued researchers for decades. Exploring
the intricacies of human behavior not only contributes to our understanding of
ourselves but also o�ers valuable insights for developing autonomous robots with
similar abilities.

One conceptual framework that tries to shed light on human behavior is the
theory of Active Inference, which is based on the notion of biological free-energy.
According to the free-energy principle, biological systems like humans have to min-
imize free-energy to survive and behave adaptively in their environments. Derived
from this idea, Active Inference has been proposed to explain and describe action,
perception, and learning in humans. Investigating this concept allows us to delve
deeper into the underlying principles governing human behavior and to seek parallels
between biological systems and artificial systems, such as robots.

While the study of biological theories such as Active Inference provides valuable
insights for mimicking human behavior, it is crucial to keep in mind that robots are
built fundamentally di�erently than humans. Since robots do not possess biological
constraints, it is important also to explore non-biologically plausible theories for au-
tonomous behavior. During the development of this thesis, we came across a theory
called Model Predictive Path Integral Control (MPPI). Interestingly, there exists an
information-theoretic definition of MPPI that makes use of a non-biological formula-
tion of free-energy for optimal control. By studying, adapting, and blending Active
Inference and MPPI, this thesis aims to investigate novel robot control strategies at
di�erent levels of abstraction. Driven by curiosity, we leverage the benefits and ad-
dress some of the limitations of both Active Inference and MPPI, aiming to achieve
human-level capabilities in autonomous robots.

1.1.1. Overview of the problem

This thesis focuses on the operation of robots in environments primarily designed for
humans, specifically within retail scenarios. Our goal is to deploy robots for various
general activities in everyday supermarkets, such as stocking shelves or retrieving
online orders. In Figure 1.1, an example image showcases one of the robots employed
in this thesis, situated within a testing supermarket environment.

Retail stores present unique challenges compared to traditional robotics indus-
trial settings, primarily due to the need for robots to coexist within the same
workspace as employees and customers. This poses significant challenges across
various levels of a robot’s control architecture. Regarding low-level control, the

1.1. Motivations

1

3

Figure 1.1: Meet Albert, the mobile manipulator in our mock-up store. This robot, among
others, will be utilized throughout this dissertation to showcase the novel algorithms proposed.

robot must navigate the environment safely, potentially incorporating compliant
control modes and fault-tolerant strategies to recover or fail-safe. Moreover, colli-
sion avoidance becomes more complex as it involves not only static obstacles like
shelves but also humans whose behavior may be hard to predict.

To reliably retrieve a wide variety of products from tightly packed shelves, au-
tonomous robots should perform contact-rich motion planning. Object manip-
ulation while considering contact behaviors and interactions between objects in a
retail scenario is a challenging problem that often requires specialized control algo-
rithms. Additionally, as tasks extend over time, such as stocking a shelf or fulfilling
an online order, numerous issues can arise during execution within these dynamic
environments. The robot must automatically recover and seamlessly resume task
execution through adaptive high-level decision-making and possibly reactive
task and motion planning (TAMP).

Finally, fast control loops are required to enable the robot to swiftly adapt to
the ever-changing retail environment while performing a task. With this context in
mind, the following section provides an overview of the approaches and key concepts
developed in this thesis to address the aforementioned challenges. In particular, we
describe the roadmap that led to this thesis, from low-level control to task and
motion planning.

1.1.2. Research roadmap

Low-level control
Motivated by the necessity for adaptive, compliant, and fault-tolerant low-level con-
trol in robot manipulators, the initial phase of this PhD research sought solutions
in the theory of Active Inference. At the time of writing, Active Inference appeared
promising in addressing these challenges, capturing our attention. We then ven-
tured to apply this theoretical neuroscientific idea to a real robot, introducing the
Active Inference controller (AIC) for the first time [109]. Through this endeavor, we
discovered both the potential and limitations of Active Inference in adaptive control

1

4

for manipulators with unknown dynamics and fault tolerance [107]. Consequently,
subsequent research, presented comprehensively in Chapter 3 and Chapter 4, fo-
cused on addressing false positives in fault-tolerant control with Active Inference
and overcoming theoretical limitations of standard Active Inference in classical con-
trol. These e�orts culminated in the development of an unbiased adaptive scheme
known as the unbiased Active Inference controller (u-AIC), which eliminated state
estimation biases and implicit modeling of control actions found in classical AIC.

High-level decision making
After achieving compliant and adaptive low-level control with u-AIC to drive a
robot manipulator to a specific configuration, the question arose: How can a mobile
manipulator e�ectively utilize this skill within a retail store? To attain robot auton-
omy, high-level decision-making capabilities became paramount. Our focus turned
to advancing high-level reactive action selection to address runtime variability in
retail environments. In this context, Behavior Trees (BTs) recently emerged as an
intuitive framework for robustly and reactively executing o�ine action plans [96,
32]. However, their reactivity is constrained by the contingencies considered during
o�ine planning. In unpredictable retail environments, encoding every possible re-
covery action for a task failure became impractical. A desirable high-level planning
algorithm, in this context, should contain runtime planning capabilities. However,
in long-term tasks, online long-horizon planning might be computationally costly.
Additionally, re-planning the whole task continuously might be a waste of resources.
For this reason, we proposed a di�erent approach that combines o�ine and online
planning. Specifically, we proposed to plan o�ine a sequence of states instead of
actions in a BT, and subsequently utilize an online planner to transition from the
current state to the next, thereby reducing computational complexity. By doing so,
one can obtain a robot capable of following predefined routines, while at the same
time adapting locally to unforeseen events through online planning. This concept
forms the core idea presented in Chapter 5, where BTs are seamlessly blended with
Active Inference. By encoding the desired state sequence within the BTs and relying
on Active Inference for state estimation and action selection, we achieve a tractable
and real-time online planning approach.

Contact-rich motion planning
While the approach described earlier provided significant adaptation capabilities
at a high level, it still relied on pre-defined skills scheduled by Active Inference.
This results in behaviors reminiscent of switching systems and requires numerous
heuristics. For instance, for a simple pick action, one would need to pre-define
object-specific pre and post-grasp poses that might depend on the object’s location
in a supermarket or define handcrafted strategies for retrieving products from the
shelves. This made us focus on leveraging object geometries and physical prop-
erties more e�ectively to achieve smoother behaviors without relying on extensive
heuristics. To do so, the research shifted to contact-rich motion planning. To tackle
this problem, we utilized the theory of Model Predictive Path Integral Control [142,
143], which, like Active Inference, draws from the concept of free-energy but under

1.2. Summary of contributions

1

5

di�erent assumptions, as explained in Chapter 2. MPPI is a method for sampling-
based model predictive control capable of handling complex dynamical models with
contact-induced discontinuities. Instead of relying on specialized models for plan-
ning in MPPI, we proposed using a general-purpose parallelizable physics engine,
IsaacGym [85], as the dynamical model. This allowed us to achieve real-time plan-
ning capabilities over a short time horizon while considering the physical properties
of objects and a reduced number of heuristics. This approach o�ers a powerful means
of defining robot behavior in terms of cost functions. This is advantageous because
one has to encode only the desired end goal as a cost to be minimized, instead of
specifying (possibly many) hard-coded routines to achieve that goal. However, it is
important to note that the time horizon remains limited; thus the robot is not able
to tackle long-horizon tasks. A detailed explanation of this approach is provided in
Chapter 6.

Reactive Task and motion planning
To be able to use the approach in Chapter 6 throughout a long-term task, we
combined high-level planning with Active Inference and BTs together with MPPI.
Instead of scheduling atomic skills at the high level with Active Inference, we pro-
posed to schedule skill-specific cost functions. This seemingly simple change brought
about remarkable implications for robot behavior. With this approach, we can
achieve smooth transitions and seamless blending of di�erent skills thanks to par-
allel sampling. In addition, we can leverage a deeper physical understanding of the
world instead of relying on pre-programmed heuristics. This idea is presented in the
final contributing chapter of this thesis, Chapter 7, where we tackled the combined
problem of task and motion planning.

1.2. Summary of contributions

In the following, we formally summarize the main contributions resulting from the
roadmap presented above. We highlight the scientific advancements in the areas of
low-level control, high-level decision-making, contact-rich motion planning, and task
and motion planning. In particular, this thesis contributes:

• A new scheme for classical control with Active Inference (low-level
control): Initially, we presented a first application of Active Inference that
showed remarkable capabilities for robot arm control with unknown dynamics
[109]. Additionally, we performed an initial study for fault-tolerant control
with AIC [107]. Despite the interesting results, some of the problems in stan-
dard AIC are biased state estimation for classical control and false positives
for fault-tolerant control. In this thesis, we formally investigate the limitations
of the AIC through theoretical analysis and empirical demonstrations. Then,
we mathematically formalize the unbiased Active Inference controller, u-AIC,
as an improved alternative [10]. The key idea in the u-AIC is to explicitly
model control actions in AIC in order to eliminate state bias and false posi-
tives in fault-tolerant settings [9]. We validate the e�ectiveness of the u-AIC
through simulation and experiments on a robot manipulator. This marks the
first application of the u-AIC on a real robot.

1

6

• A new scheme for online decision-making based on discrete Active
Inference and behavior trees (high-level decision making): We propose
a novel combination of Active Inference and BTs for reactive action planning
and execution in dynamic environments [108]. This showcases how robotic
tasks can be e�ectively formulated as a free-energy minimization problem.
The key idea here is to use BTs to plan desired states for Active Inference
instead of encoding actions as commonly done. This change enables continu-
ous online planning with Active Inference, allowing the handling of partially
observable initial states and enhancing the robustness of classical BTs when
facing unforeseen contingencies. The e�cacy of our approach is validated
through experiments conducted on two distinct real mobile manipulators, fur-
ther reinforcing the validity and practicality of our findings. Importantly, our
work pioneers the application of discrete Active Inference on a real robot,
marking a significant milestone in this field.

• A new way of performing MPPI leveraging a physics simulator (con-
tact-rich motion planning): We introduce a novel approach for solving
finite horizon optimal control problems with MPPI where the key idea is
using a GPU-parallelizable physics simulator as the dynamical model [110].
In particular, we make use of the general-purpose simulator IsaacGym. The
proposed method eliminates the need for explicit encoding of robot dynam-
ics and object interactions, enabling e�ortless solving of intricate navigation
and contact-rich tasks. This allows one to accommodate various objects and
robots easily. Through extensive simulations, including mobile navigation with
collision avoidance, non-prehensile manipulation, and whole-body control of
high degrees of freedom (DOF) systems, we showcase the e�ectiveness of this
method. Results are validated in the real world for non-prehensile manipula-
tion with both a mobile base and a 7-DOF robotic manipulator.

• A control architecture for reactive task and motion planning com-
bining Active Inference and MPPI (task and motion planning): We
propose a reactive task and motion planning scheme by combining Active
Inference and BTs with MPPI [147]. This scheme enables real-time adapta-
tion of both high-level behavior and low-level robot motions while considering
the physical interaction with objects. The key idea behind our approach
is the transition from scheduling symbolic actions using Active Inference, to
scheduling costs to be minimized. Since the system is now controlled by MPPI
throughout the whole long-term tasks, we can sample di�erent alternatives in
parallel for achieving the current goal, blending them into one coherent behav-
ior. By e�ectively merging various robot capabilities, we obtain a system that
is free from abrupt switching. Results are validated both in simulation and in
the real world in task and motion planning scenarios. These include pushing
and pulling of objects to target goals, and stacking of cubes in the presence of
dynamic obstacles with disruptive human intervention during execution.

1.3. Structure of the document

1

7

Overall, this thesis advances the understanding of the use of Active Inference
and MPPI for robot control, and it discusses the benefits and limitations of the
proposed approaches toward autonomous robots.

1.3. Structure of the document

This document follows a structured progression, reflecting the evolution of the au-
thor’s ideas during the doctorate1. A graphical representation of this structure can
be seen below in Figure 1.2.

Fault-tolerant Control Unbiased
Active Inference

Active Inference &
Behavior Trees

Introduction
Chapter 1

Background
Chapter 2

Chapter 3 Chapter 5

Conclusions
Chapter 8

Chapter 4
Active Inference

MPPI with
Physics Simulator Reactive TAMP

Chapter 7Chapter 6

Hybrid approachMPPI

Figure 1.2: Structure of this document.

Specifically, Chapter 2 contains the background knowledge for Active Inference,
MPPI, and fault-tolerant control. Subsequently, Chapter 3 presents the fault-
tolerant scheme based on Active Inference, while Chapter 4 introduces the math-
ematical formulation of u-AIC for classical control. In Chapter 5, discrete Active
Inference and behavior trees are combined for reactive action planning and execu-
tion. Moving forward, Chapter 6 explores the use of MPPI with a physics simulator
for contact-rich tasks. The final contributing chapter, Chapter 7, proposes a hybrid
combination of Active Inference and MPPI for reactive task and motion planning.
The thesis concludes in Chapter 8, providing a summary and discussion of the meth-
ods used, along with potential future research directions.

1Parts of this document have been polished using tools such as Grammarly and ChatGPT. These
tools have not been used to produce original text, but to merely improve the grammatical cor-
rectness and clarity of certain paragraphs written by the author.

2
Background

T his chapter serves as a background on the core concepts explored in this disser-
tation. Its main objective is to give readers a general understanding of Active

Inference, Model Predictive Path Integral Control, and fault-tolerant control. These
concepts are evolved and blended in the subsequent contributing chapters.

Parts of this chapter have previously appeared in the following publications:

• � Corrado Pezzato, Riccardo Ferrari, and Carlos Hernández Corbato. "A novel adaptive
controller for robot manipulators based on active inference." IEEE Robotics and Automa-
tion Letters (2020).

• � Corrado Pezzato, Mohamed Baioumy, Carlos Hernández Corbato, Nick Hawes, Martijn
Wisse, and Riccardo Ferrari. "Active inference for fault tolerant control of robot manip-
ulators with sensory faults." In First International Workshop on Active Inference, IWAI
(2020).

• � Pablo Lanillos, Cristian Meo, Corrado Pezzato, Ajith Anil Meera, Mohamed Baioumy,
Wataru Ohata, Alexander Tschantz, Beren Millidge, Martijn Wisse, Christopher L. Buckley,
and Jun Tani. "Active inference in robotics and artificial agents: Survey and challenges."
arXiv preprint arXiv:2112.01871 (2021).

9

2

10

2.1. Active Inference

The concept of Active Inference is rooted in the idea that the brain’s cognitive
functions and motor control can be understood through the lens of free-energy min-
imization. The notion of free-energy in Active Inference draws inspiration from living
organisms’ natural tendency to resist disorder, and the term itself was coined due
to similarities with the thermodynamics free-energy. According to the free-energy
principle, organisms ensure their survival by minimizing the surprise associated with
unexpected events, quantified as "surprisal". Mathematically, surprisal is defined as
the negative logarithm of the probability of certain sensory data, i.e. ≠ ln p(y).
This captures the atypicality of sensory data y in the environment; the greater the
improbability of an event the higher the surprisal. In this context, free-energy is
a weighted sum of sensory prediction errors that serves as an upper bound on the
extent of sensory data atypicality. In essence, minimizing free-energy indirectly min-
imizes sensory surprisal, allowing organisms to adapt and survive in unpredictable
and dynamic environments. Active Inference proposes to minimize free-energy by
simultaneously 1) inferring the causes of sensory data and 2) acting in the world to
align perceived sensations with desired sensations. The theory of Active Inference
can be applied to both continuous control tasks and discrete decision-making, as
explained next.

2.1.1. Continuous Active Inference

Active Inference has been applied for low-level control in robotics in several past
works [109, 107, 98, 5]. Example applications are reaching tasks for which Active
Inference computes low-level joint torques to reach a goal, see Figure 2.1. We now
report the main ideas and derivations behind continuous Active Inference based on
the free-energy principle, but we refer a reader to previous publications for more
detailed explanations [109, 21].

Minimize free-energy: Joint pos. & vel.

Control
State estimation

Joint torques

Continuous Active Inference Goal

Figure 2.1: Illustrative idea of continuous Active Inference for low-level control. Given sensory
information y about joint positions and velocities, continuous Active Inference estimates the

current state µ and computes control inputs u as joint torques by minimizing free-energy.

2.1. Active Inference

2

11

Free-energy principle
The free-energy principle is formulated in terms of Bayesian inference [83]. In fact,
body perception for state estimation is framed using the Bayes rule:

p(x|y) = p(y|x)p(x)
p(y) (2.1)

where p(x|y) is the probability of being in the n-dimensional state x given the
current m-dimensional sensory input y. Instead of exactly inferring the posterior,
which often involves intractable integrals, an auxiliary probability distribution Q(x)
is introduced. By minimizing the Kullback-Leibler divergence (DKL) between the
true posterior p(x|y) and Q(x), the most probable state given a sensory input is
inferred [21]. DKL is defined as:

DKL(Q(x)||p(x|y)) =
⁄

Q(x) ln Q(x)
p(x|y)dx = F + ln p(y) Ø 0. (2.2)

In the equation above, the scalar F is the so-called free-energy. By minimizing F ,
DKL is also minimized, and the Q(x) approaches the true posterior. According to
the Laplace approximation, the controller only parametrizes the su�cient statistics
(e.g. mean and variance) of Q(x) [49]. Furthermore, Q(x) is assumed Gaussian
and sharply peaked at its mean value µ. This approximation allows to simplify the
expression for F which results:

F ¥ ≠ ln p(µ, y). (2.3)

The mean µ is the internal belief about the true states x. Minimizing F , the
controller is continuously adapting the internal belief µ about the states x based
on the current sensory input y. Equation (2.3) is still general and must be further
specified to numerically evaluate F . To do so, the joint probability p(µ, y) has
to be defined. This is done by introducing two generative models, one to predict
the sensory data y, according to the current belief µ, and another to describe the
dynamics of the evolution of the belief µ.

Generative model of the sensory data The sensory data is modeled using the
following expression [21]:

y = g(µ) + z (2.4)
where g(µ) represents the non-linear mapping between sensory data and states of
the environment, and z is Gaussian noise z ≥ (0, �y). The covariance matrix �y

also represents the controller’s confidence about each sensory input.

Generative model of the state dynamics In the presence of time-varying
states x, the controller has to encode a dynamic generative model of the evolution
µÕ of the belief µ. This generative model is defined as [21]:

dµ

dt
= µÕ = f(µ) + w (2.5)

where f is a generative function dependent on the belief about the states µ and w
is Gaussian noise w ≥ (0, �µ).

2

12

Generalised motions To describe the dynamics of the states, or better the be-
lief about these dynamics, we have to introduce the concept of generalised motions
[52]. Generalised motions are used to represent the states of a dynamical system,
using increasingly higher-order derivatives of the states of the system itself. They
apply to sensory inputs as well, meaning that the generalised motions of a position
measurement, for example, correspond to its higher-order temporal derivatives (ve-
locity, acceleration, and so on). Using generalised motions allows a more accurate
description of the system’s states. More precisely, the generalised motions µ̃ of the
belief under local linearity assumptions [49] are, up to the second order:

µÕ = µ(1) = f(µ) + w,

µÕÕ = µ(2) = ˆf

ˆµ
µÕ + wÕ. (2.6)

In general, we indicate the generalised motions of the states up to order nd
1 as

µ̃ = [µ, µÕ, µÕÕ, µÕÕÕ, ..., µ(nd)]. Similarly, the generalised motions of the sensory
input are:

y = y(0) = g(µ) + z,

yÕ = y(1) = ˆg

ˆµ
µÕ + zÕ. (2.7)

We indicate the generalised motions of the sensory input up to order nd as ỹ =
[y, yÕ, yÕÕ, yÕÕÕ, ..., y(nd)].

General free-energy expression With the extra theoretical knowledge about
the generalised motions, we can define an expression for the free-energy for a mul-
tivariate case in a dynamically changing environment:

F = ≠ ln p(µ̃, ỹ). (2.8)
The joint probability p(µ̃, ỹ) has to be specified. Note that the noise at each dy-
namical order is considered uncorrelated [21]. Then, according to the generalised
sensory input, the sensory data in a particular order relates only to the states in
the same dynamical order. Similarly, for the state dynamics, the state at a certain
dynamical order is related only to those which are one order below. Then, using the
chain rule, it results:

p(µ̃, ỹ) =
nd≠1Ÿ

i=0
p(y(i)

|µ(i))p(µ(i+1)
|µ(i)). (2.9)

Using the Laplace assumption, and thus considering Gaussian distributed probabil-
ity densities, we can write:

p(µ(i+1)
|µ(i)) = 1

|�
µ(i) | nÔ2fi

exp
Ó

≠
1
2 Á(i)€

µ �≠1
µ(i)Á

(i)
µ

Ô

p(y(i)
|µ(i)) = 1

|�
y(i) | nÔ2fi

exp
Ó

≠
1
2 Á(i)€

y �≠1
y(i)Á

(i)
y

Ô
(2.10)

1Generalised motions can extend up to infinite order but high orders are dominated by noise, thus
we can limit the chosen order to nd [44].

2.1. Active Inference

2

13

where Á(i)
y = (y(i)

≠g(i)(µ)) and Á(i)
µ = (µ(i+1)

≠f (i)(µ)) are respectively the sensory
and state model prediction errors. Furthermore, it holds:

g(i) = ˆg

ˆµ
µ(i), f (i) = ˆf

ˆµ
µ(i), g(0) = g, f (0) = f . (2.11)

Substituting (2.9) in (2.8) leads to:

F = ≠

nd≠1ÿ

i=0

Ë
ln p(y(i)

|µ(i)) + ln p(µ(i+1)
|µ(i))

È
. (2.12)

Finally, according to (2.10), F can be expressed up to a constant as a weighted sum
of squared prediction errors:

F = 1
2

nd≠1ÿ

i=0

Ë
Á(i)€

y
�≠1

y(i)Á
(i)
y

+ Á(i)€
µ

�≠1
µ(i)Á

(i)
µ

È
+ K. (2.13)

where nd is the number of generalized motions chosen and K is a constant term
resulting from the substitution. The minimization of this expression can be done by
refining the internal belief, thus performing state estimation, but also computing the
control actions to fulfill the prior expectations and achieve a desired motion. The
constant term K is neglected in the sequel since it plays no role in the minimization
problem. Next, we describe the core idea of Active Inference: minimizing F , using
gradient descent [45, 53].

Active Inference
Belief update for state estimation The belief update law for state estimation
is determined from the gradient of the free-energy, with respect to each generalized
motion [21, 52]:

˙̃µ = d

dt
µ̃ ≠ Ÿµ

ˆF

ˆµ̃
. (2.14)

The learning rate Ÿµ, can be seen from a control perspective as a tuning parameter
for the state update.

Control actions In the free-energy principle, the control actions play a funda-
mental role in the minimization process. In fact, the control input u allows to steer
the system to a desired state while minimizing the prediction errors in F . This is
done using gradient descent. Since the free-energy is not a function of the control
actions directly, but the actions u can influence F by modifying the sensory input,
we can write [21]:

ˆF(µ̃, ỹ(u))
ˆu

= ˆỹ(u)
ˆu

ˆF(µ̃, y(u))
ˆỹ(u) . (2.15)

Dropping the dependencies for a more compact notation, the dynamics of the control
actions can be written as:

u̇ = ≠Ÿa

ˆỹ

ˆu

ˆF

ˆỹ
(2.16)

2

14

where Ÿa is the tuning parameter to be chosen. We proposed to approximate the
partial derivatives of the sensory input with respect to the control input with an
identity mapping [109]. This led to a scheme that does not require precise dynamical
information about a controlled system, but it presents some limitations that are
detailed and addressed in Chapter 4.

2.1.2. Discrete Active Inference

In previous sections, we considered Active Inference in the context of continuous-
time systems, where it has been cast as a gradient descent on free-energy. In this
section, we briefly introduce how Active Inference can be used to explicitly model
future discrete states and observations, thereby enabling high-level planning, see
Figure 2.1 for an overview of the settings. Discrete action planning is crucial for
many tasks and environments where actions have delayed consequences; thus, simply
doing what is best in the current moment is not necessarily what is best in the long
run. This section is kept at a higher level than the previous one since the full
derivations of discrete Active Inference are treated in detail in Chapter 5.

Minimize Expected
free-energy:

Plan symbolic actions
State estimation

Discrete Active Inference

Symbolic actions

Symbolic
observations

Figure 2.2: Illustrative idea of discrete Active Inference for high-level decision making. An
example application could be to put all the products in the box given some pick and place skills.

Given symbolic observations o· about the environment, discrete Active Inference estimates the
current symbolic state s· and computes a plan fi as a sequence of atomic actions that minimize

expected free-energy over a horizon T . Then the first atomic action of the sequence a· is applied.

Models in discrete Active Inference
Modeling states and observations using generalized coordinates as described before
does allow the system to incorporate knowledge of the future since generalized co-
ordinates are a Taylor expansion in time around some given time point. In practice,
to use generalized coordinates, it is necessary to truncate them at some small or-
der, meaning they can only model smooth and local changes over time. Therefore,
for reasons of mathematical tractability and computational e�ciency, discrete Ac-
tive Inference is introduced. It is assumed that the relationship between states,
observations, and time are described by a Partially Observable Markov Decision

2.1. Active Inference

2

15

Process (POMDP) [69]. Intuitively, a POMDP assumes that there are discrete-time
sequences of observations ō = o1:T and hidden states s̄ = s1:T up to some time
horizon T . Now, states and observations do not represent continuous joint values as
for the low-level control case. Instead, they represent discrete variables like holding
an object or being in a specific room. This opens up the possibility of using Active
Inference for high-level planning.

To do so, we need to define a model and its associated assumptions more con-
cretely. At some given instant point · , observations o· depend only on the hidden
state s· . Similarly, it is assumed that the hidden states at the current time depend
only on the hidden states at the previous time-step s·≠1 (Markov assumption) and
the action at the previous time-step a·≠1. Thus, analogously to the continuous-time
approach described in the previous sections, only current observation and previous
state are needed to infer states and actions, instead of the entire history of states
and observations. Mathematically, we consider a Markov process as the generative
model P of the form:

P (ō, s̄, fi) = P (fi)
TŸ

·=1
P (s· |s·≠1, fi)P (o· |s·). (2.17)

where fi = [a· , a·+1 . . . aT] is a plan.

Expected free-energy
The model just introduced is used to derive a new concept to be able to plan for
the future, namely expected free-energy [50, 104, 91]. The expected free-energy
quantifies the average free-energy of a plan-conditioned trajectory of states and
observations, rather than the instantaneous free-energy. Like in the continuous
counterpart, discrete Active Inference agents are then mandated to minimize this
quantity through both perception and action. An important terminological note
concerns the word “plan" and its relation to the word policy. A plan is a sequence
of actions fi = [a· , a·+1 . . . aT]. This di�ers from the policy used in reinforcement
learning which refers to a parameterized action distribution conditioned on the cur-
rent state.

The expected free-energy provides a measure quantifying the notion of the free-
energy expected over future trajectories. In e�ect, it represents the average free-
energy of a trajectory, taking into account the fact that because future observations
are unknown they must be considered as random variables to be inferred, given a
specific plan fi. In the continuous-time formulation, goals are encoded as set points
which, when compared against the current state estimates, form a prediction error
that is minimized by action. In the POMDP formalism of discrete Active Inference,
the goals or ‘preferences‘ of the agent are encoded into the generative model to form
a biased generative model.

Finding the optimal plan
One advantage of the expected free-energy is that it allows the derivation of an ex-
pression for the optimal plan over a trajectory in terms of the sum of the expected

2

16

free-energy for each time step. Discrete Active Inference addresses action and per-
ception by assuming that actions fulfill predictions based on inferred states of the
world from observations.

The generative model includes beliefs about future states and action plans, where
plans leading to preferred observations are more probable. Perception and action
are achieved by optimizing two complementary objective functions: the variational
free-energy F and the expected free-energy G. These optimization objectives are
derived from the generative model, as explained in detail in Chapter 5.

F quantifies the fit between the generative model and past/current sensory ob-
servations, while G evaluates potential future courses of action based on prior pref-
erences and predicted observations. By optimizing these quantities, discrete Active
Inference e�ectively balances action and perception, guiding the robot’s behavior to
achieve its goals while accounting for uncertainty and prediction accuracy.

Discrete Active Inference has been extensively studied for goal-directed and
infor-mation-seeking behaviors [50, 47]. The resulting behaviors of discrete Ac-
tive Inference agents have been related to human notions of curiosity and intrinsic
motivation that produce exploratory behaviors. Artificial curiosity [119], intrinsic
motivation [102] and goal-directed exploration [120] are crucial for learning and
planning. We will explore the potential of Active Inference in Chapters 5 and 7 for
reactive action planning and task and motion planning respectively.

2.2. Model Predictive Path Integral Control

This section presents the necessary background theory on Model Predictive Path In-
tegral Control to understand the contributions of this thesis. MPPI was introduced
in previous work [140, 141, 142, 143] as a solution for optimizing non-convex, non-
linear dynamics, for possibly high-dimensional systems. MPPI was initially based
on a stochastic optimal control framework [141] and was addressed through path
integral control theory [73]. Yet, this approach remained limited to control-a�ne
systems. To broaden its applicability to a broader range of stochastic systems, the
concept of information-theoretic MPPI [142, 143] emerged, eliminating the necessity
for assuming control-a�ne systems. The background theory presented here is based
on this formulation; for additional details, we refer the reader to the original paper
[142]. A general idea of MPPI is visualized in Figure 2.3.

Preliminaries
Let’s consider a stochastic dynamical system of the form

xt+1 = f(xt, vt)
vt ≥ N (ut, �),

(2.18)

where f is the nonlinear state transition function of a system, while xt œ Rn and
vt œ Rm are the state and input at time t. We assumed that the actual input applied
to the system vt is a�ected by white noise and that we only have control over its mean
ut. Additionally, we assume a finite time horizon T such that t œ {0, 1, . . . , T ≠ 1}.

2.2. Model Predictive Path Integral Control

2

17

Importance sampling

MPPI

Joint vel.

Current state

Goal

Compute rollouts' costs

Compute control input

samples, horizon

Sample inputs

Figure 2.3: Illustrative idea of Model Predictive Path Integral Control, for instance, to push the
can to a goal. MPPI takes the current state of the system x and computes a control input u

ú
0 to

minimize a cost Sk. To do so, a number of control input sequences V are sampled and forward
simulated up to a horizon T given a dynamic model. The resulting trajectory rollouts are then

evaluated against the given cost function C and weighted through an importance sampling
scheme. The result is one approximation of the optimal control input sequence. The first input of

the sequence is then applied to the system and the process is repeated in a receding horizon
fashion.

Thus, we define a sequence of inputs over the horizon as:

V = (v0, v1, . . . , vT ≠1) œ Rm◊T

U = (u0, u1, . . . , uT ≠1) œ Rm◊T .
(2.19)

We can then define the probability density function2 for V as:

q(V |U, �) =
T ≠1Ÿ

t=0

1
((2fi)m|�|)

1
2

exp
3

≠
1
2(vt ≠ ut)€�≠1(vt ≠ ut)

4
. (2.20)

Given an input sequence V , the state trajectory can be obtained by recursively
applying the state-transition function f from some initial conditions x0. Thus,
there exists a mapping from inputs V to trajectories Gx0 : �V æ �· where �· µ

Rn
◊{0, . . . , T ≠1} represents the space of all possible trajectories. Given a running

cost function L(xt, ut) and a terminal cost „(xT), the discrete-time optimal control
problem can be written as:

Uú = min
UœU

EQU,�

C
„(xT) +

T ≠1ÿ

t=0
L(xt, ut)

D
. (2.21)

Assuming that the running cost can be split into a state-dependent running cost,
and a control cost, we define:

L(xt, ut) = c(xt) + —

2
!
u€

t
�≠1ut + ’€

t
ut

"
. (2.22)

2For these derivations we will denote probability density functions with lowercase letters. The
corresponding probability distributions are denoted by the same letter in uppercase blackboard
bold. For example, the density q(V |U, �) corresponds to the distribution QU,�.

2

18

Now, considering only the part of the cost that depends on the state we define the
following cost

C(x0, x1, . . . , xT) = „xT +
T ≠1ÿ

t=0
c(xt). (2.23)

Finally, given initial conditions x0 and input sequence V , we can define a cost
function S(V) : �V æ R

+ as

S(x0, V) = C ¶ Gx0 . (2.24)

For notation convenience, in the remainder of these derivations, we drop the initial
conditions x0 from the cost function definition unless explicitly required for clarity.

Information-theoretic framework
In Equation (2.21) we defined the form of the optimal control problem. The goal
now is to determine an expression for an optimal control sequence. To achieve this,
we will initially demonstrate the presence of a lower bound to the optimal control
problem, which coincides with the free-energy of the system. Subsequently, we
illustrate how this lower bound can be attained through a strategic selection of the
optimal control distribution. This results in an information-theoretic framework for
sampling-based model predictive control that will be used in Chapters 6 and 7.

Consider the following base distribution P with probability density function

p(V) =
T ≠1Ÿ

t=0

1
((2fi)m|�|)

1
2

exp
3

≠
1
2v€

t
�≠1vt

4
. (2.25)

Note that this is defined as the uncontrolled system dynamics, that is P = Q0,�.
Next, the free-energy3 of the system from information theory is defined as [142]:

F(S,P, x0, —) = ≠— log
3
EP

5
exp

3
≠

1
—

S(V)
464

, (2.26)

where — œ R+ is called inverse temperature. At this point, we can rewrite the
expression of the free-energy above in terms of the controlled distribution QU,� by
multiplying by 1 = q(V |U,�)

q(V |U,�) , and then applying Jensen’s inequality:

3Note that, in contrast to the free-energy used in Active Inference, here the free-energy refers to a
mathematical quantity of a controlled system that takes the same form of Helmholtz free-energy.
In the information-theoretic MPPI framework, this quantity is the starting point to define a lower
bound on the optimal control problem. On the other hand, in Active Inference, the free-energy
expression results from minimizing the surprisal of sensory inputs in order to survive. Although
they are both called free-energy because of their similarities with thermodynamics, they are
di�erent and rely on di�erent assumptions. It is not in the scope of this chapter, nor in this
thesis, to discuss in detail the di�erences and similarities between the two formulations. The
interested reader can find more details on the connection between path integral and information
theory in previous publications [132, 131].

2.2. Model Predictive Path Integral Control

2

19

F(S,P, x0, —) = ≠— log
3
EQU,�

5
exp

3
≠

1
—

S(V)
4

p(V)
q(V |U, �)

64

Æ ≠—EQU,�

5
log

3
exp

3
≠

1
—

S(V)
4

p(V)
q(V |U, �)

46

= EQU,� [S(V)] + —EQU,�

5
log

3
q(V |U, �)

p(V)

46

= EQU,� [S(V)] + —DKL(QU,�||P).

(2.27)

Thus, we achieved the following relationship:

F(S,P, x0, —) Æ EQU,� [S(V)] + —DKL(QU,�||P). (2.28)

The right-hand side of Equation (2.28) contains the state cost for an optimal control
problem and the KL-divergence between the base and controlled distributions. It
can be seen how the free-energy serves as a lower bound on the sum of these two
terms. Consider now the KL-divergence term. This can be simplified by considering
the specific form of the probability density functions p and q from Equations (2.20)
and (2.25). It holds that DKL(QU,�||P) is equal to

EQU,�

C
log

A
T ≠1Ÿ

t=0
exp

3
≠

1
2(vt ≠ ut)€�≠1(vt ≠ ut) + 1

2v€
t

�≠1vt

4BD

=EQU,�

C
T ≠1ÿ

t=0

3
≠

1
2u€

t
�≠1ut + 1

2u€
t

�≠1vt + 1
2v€

t
�≠1ut

4D
.

(2.29)

Substituting into Equation (2.28), and recalling that � is symmetric and positive
semi-definite, we can write:

F(S,P, x0, —) Æ EQU,� [S(V)] + —EQU,�

C
T ≠1ÿ

t=0

3
1
2u€

t
�≠1ut + v€

t
�≠1ut

4D

= EQU,�

C
S(V) +

T ≠1ÿ

t=0

—

2
!
u€

t
�≠1ut + 2v€

t
�≠1ut

"
D

.

(2.30)

Now, by expanding S(V), and by naming ’€
t

= 2v€
t

�≠1 the following inequality
holds:

F(S,P, x0, —) Æ EQU,�

C
„(xT) +

T ≠1ÿ

t=0

3
c(xt) + —

2
!
u€

t
�≠1ut + ’€

t
ut

"4D
(2.31)

Note that we just showed that the free-energy is a lower bound for the objective
of our optimal control problem since the right-hand side is precisely as in Equa-
tion (2.21).

2

20

Form of the optimal distribution
We just saw how the system’s free-energy acts as a lower bound for the cost of an
optimal control problem. We now show how, by choosing an appropriate distribution
for control, we can achieve this lower bound. Take the optimal control density
function Qú as

qú(V) = 1
÷

exp
3

≠
1
—

S(V)
4

p(V), (2.32)

where

÷ = EP

5
exp

3
≠

1
—

S(V)
46

=
⁄

exp
3

≠
1
—

S(V)
4

p(V)dV. (2.33)

We can now compute the KL-divergence between the base measure and controlled
distribution as:

DKL(Qú
||P) = EQú

S

Ulog
1
÷

exp
1

≠
1
—

S(V)
2

p(V)
p(V)

T

V = ≠
1
—
EQú [S(V)] ≠ log(÷).

(2.34)
By substituting into Equation (2.28), and considering Equation (2.33), it results:

F Æ EQú [S(V)] ≠EQú [S(V)] ≠ — log(÷) = ≠— log
3
EP

5
exp

3
≠

1
—

S(V)
464

¸ ˚˙ ˝
F(S,P,x0,—)

. (2.35)

The right-hand side is precisely the free-energy. Thus, inequality is reduced to equal-
ity, and the optimal distribution chosen achieves the lower bound. Thus, instead
of minimizing Equation (2.21), we can push the controlled distribution QU,� close
to Qú. If the former is close to the latter, then sampling from QU,� will result in
low-cost trajectories.

Aligning the controlled distribution to the optimal one
We can align the controlled distribution to the optimal distribution by minimizing
the following KL-divergence:

Uú = min
UœU

[DKL (Qú
||QU,�)] . (2.36)

Because the optimal distribution is invariant to the particular control input, we can
rewrite the problem above as:

Uú = min
UœU

EQú

5
log

3
qú(V)

q(V |U, �)

46

= min
UœU

[EQú [log (qú(V))] ≠ EQú [log (q(V |U, �))]]

= max
UœU

EQú [log (q(V |U, �))] .

(2.37)

2.2. Model Predictive Path Integral Control

2

21

Now we can substitute the definition of q(V |U, �) from Equation (2.20). This leads
to:

Uú = max
UœU

EQú

C
≠ log

1
((2fi)m

|�|)
1
2
2

≠
1
2

T ≠1ÿ

t=0
(vt ≠ ut)€�≠1(vt ≠ ut)

D

= min
UœU

EQú

C
T ≠1ÿ

t=0

3
1
2u€

t
�≠1ut ≠ u€

t
�≠1vt

4D

= min
UœU

C
T ≠1ÿ

t=0

1
2u€

t
�≠1ut ≠

T ≠1ÿ

t=0
u€

t
�≠1EQú [vt]

D

(2.38)

In the unconstrained case, that is U = Rm, the objective above is concave and we
can find the optimal solution by taking the gradient with respect to ut and setting
it to zero:

�≠1uú
t

≠ �≠1EQú [vt] = 0, therefore

uú
t

= EQú [vt] =
⁄

qú(V)vtdV,

’t œ {0, 1, . . . , T ≠ 1}.

(2.39)

From the equation above, we can see that the optimal sequence is the expected
value of control trajectories sampled from the optimal distribution. However, we
cannot directly sample from the optimal distribution, and we need to introduce an
approximation through importance sampling.

Importance sampling
Given an initial control input sequence U , we can write

uú
t

=
⁄

qú(V)vtdV =
⁄

qú(V)
q(V |U, �)¸ ˚˙ ˝

Ê(V)

q(V |U, �)vtdV = EQU,� [Ê(V)vt] ,
(2.40)

where the term Ê(V) is the importance sampling weight. Thanks to this term,
we can compute the expectation with respect to Qú by sampling trajectories from
Q(V |U, �). We can further express the importance sampling weights as:

Ê(V) = qú(V)
p(V)

p(V)
q(V |U, �) = 1

÷
exp

3
≠

1
—

S(V)
4

p(V)
q(V |U, �) . (2.41)

By substituting the terms p(V) and q(V |U, �) and performing a change of variable
vt = ut + Át we get:

Ê(V) = 1
÷

exp
A

≠
1
—

A
S(V) + —

2

T ≠1ÿ

t=0

!
u€

t
�≠1ut + 2‘€

t
�≠1ut

"
BB

uú
t

= EQU,� [Ê(V)vt] .

(2.42)

2

22

The equation above describes the optimal information-theoretic control law for a
given base distribution, even though in practice the expectation is evaluated through
Monte-Carlo approximation. The presented theory can be used to define a sampling-
based model predictive controller in a receding horizon fashion [142]. This is used
in this thesis in Chapters 6 and 7 for robot control. Very briefly, the procedure
initiates by observing the present state. Then, K trajectory samples are generated
by evaluating randomized control sequences using forward dynamics. Then, the
corresponding trajectory costs are computed. After that, the costs are used to
compute the importance sampling weights and approximate the optimal control
input sequence. The first input of the sequence is applied and the process is repeated.
The next iteration of the control loop starts with the (shifted) previously computed
input.

2.3. Fault-tolerant control

In the real world, technology is susceptible to faults and failures, making it cru-
cial to design robust control systems capable of managing critical situations. A
fault refers to a modification in a component’s characteristics, leading to undesired
changes in its performance or mode of operation. A failure denotes the system’s or
component’s inability to fulfill its function, and once it occurs, it becomes irrecov-
erable. For a fault-tolerant controller, the primary goal is to prevent component
faults from causing catastrophic failures. Developing fault-tolerant control schemes
is of vital importance to bring robots outside controlled laboratories. The area of
fault-tolerant control has become increasingly important in recent years, and several
methods have been developed in di�erent fields. Extensive bibliographical reviews
and classifications of fault-tolerant methods can be found in the literature [146, 2].
In general, the design of a fault-tolerant controls scheme is comprised of two parts
a) fault diagnosis: that is detection and isolation of a fault, and b) fault recovery:
the adaptation of the controller parameters or structure to cope with the faulty
situation. A general scheme is depicted in Figure 2.4.

Controller System

Fault
Diagnosis

Alarm

Execution
Level

Supervision
Level

Fault
Recovery

Fault

Figure 2.4: General structure of a fault-tolerant scheme [17] where a fault enters the controlled
system.

Several approaches to fault-tolerant control are available. We consider here the

2.3. Fault-tolerant control

2

23

class of model-based techniques [29]. For fault detection, they rely on mathematical
models to generate residual signals to be compared to a threshold. Fault recovery is
then often performed by switching among di�erent available fault-specific controllers
[94]. The two main challenges to designing fault-tolerant schemes are the definition
of residuals and thresholds, and the design of a fault-specific recovery strategy.

As can be seen in Figure 2.4, additional components must be integrated into the
overall system to carry out fault detection, isolation, and controller adaptation for
new situations. The diagnosis block specifically requires implementing a dynamic
model that accounts for system behavior under faulty conditions. While some adap-
tive schemes can mitigate the need for external components, they are often limited
in their applicability to specific fault types or gradual changes in process dynamics.
We showed [107] how one can leverage the signals and parameters already present
in an Active Inference controller to perform fault detection and recovery against
sensory faults in robot manipulators. We proposed to use sensory prediction errors
to build residuals for fault detection. Additionally, we used the sensory redundancy
and precision matrices (or inverse covariance matrices) in the Active Inference con-
troller for fault recovery. An overview of the main idea is depicted in Figure 2.5.
The desired set-point µd is provided to the Active Inference controller, which then

AIC Filter Compute

YesNo
Faultless

Threshold
Precision faulty
sensorRobot +

Camera

Recovery

Figure 2.5: Fault-tolerant scheme using Active Inference [107]. Sensory prediction errors are
compared to a computed threshold Âm from available data. When the threshold is exceeded, the
precision (i.e. inverse covariance) Pfm = �≠1

fm
of a faulty sensor is set to zero to exclude it from

the control loop.

computes a suitable control action u. This is applied to a robot arm with sensory
redundancy, namely encoders for the joint position and velocity and a camera for
the end-e�ector. A threshold Âm is computed considering filtered joints’ position
and velocity. The sensory prediction errors are then compared to this threshold. If
the threshold is exceeded, the associated precision Pfm of the faulty sensor is set
to zero, to exclude the sensor from the control loop. For more details, we refer the
interested reader to the full publication around this idea [107].

This Active Inference-based fault-tolerant scheme brings the advantages of sim-
plified residual generation and fault recovery but is subject to false positives in
case of rapidly changing set-points or collisions. These challenges are explained and
addressed in Chapter 3.

3
Fault-tolerant Control of

Robot Manipulators with

Sensory Faults using

Unbiased Active Inference

I n this chapter, we explore the use of Active Inference for low-level fault-tolerant
control. Building upon our previous results on active Inference [107], we conduct

an investigation into the limitations of past works and we propose a potential solution
to address them. By doing so, we lay the foundations for the concept of unbiased
Active Inference, which is further formalized in Chapter 4.

This chapter is a verbatim copy of the peer-reviewed paper [9]:

• � Mohamed Baioumyú, Corrado Pezzatoú, Riccardo Ferrari, Carlos Hernández Corbato,
and Nick Hawes. "Fault-tolerant control of robot manipulators with sensory faults using
unbiased active inference." In European Control Conference, ECC (2021).

Statement of contributions: Corrado and Mohamed equally contributed to drafting the idea of
using unbiased Active Inference for fault-tolerant control. Corrado focused on the limitations
of classical Active Inference, as well as the fault detection, isolation, and recovery strategies.
Mohamed focused on the unbiased Active Inference formulation. Riccardo provided input and
guidance on the fault-tolerant strategy. Riccardo, Carlos, and Nick provided discussions on the
ideas and feedback, as well as editing of the manuscript.

* Indicates equal contribution in alphabetical order

25

3

26

3.1. Abstract

This work presents a novel fault-tolerant control scheme based on Active Inference.
Specifically, a new formulation of Active Inference which, unlike previous solutions,
provides unbiased state estimation and simplifies the definition of probabilistically
robust thresholds for fault-tolerant control of robotic systems using the free-energy.
The proposed solution makes use of the sensory prediction errors in the free-energy
for the generation of residuals and thresholds for fault detection and isolation of
sensory faults, and it does not require additional controllers for fault recovery. Re-
sults validating the benefits in a simulated 2-DOF manipulator are presented, and
future directions to improve the current fault recovery approach are discussed.

3.2. Introduction

Fault-tolerant (FT) control is of vital importance for many applications such as
robots working in production lines [75]. In order to guarantee high standards of
reliability and security, the area of FT control of robot manipulators increasingly
gathered importance in recent years [139]. Many approaches have been developed
for faults in actuators and sensors [37, 68, 105, 136, 24]. Model-based fault-tolerant
techniques are amongst the most advanced approaches to tackling the problem of
fault detection and isolation (FDI) for dynamical systems [29]. These methods rely
on monitoring system outputs using mathematical models to generate residual sig-
nals, which are compared to a threshold. Faults are detected if the threshold is
exceeded, while the actions for fault recovery are usually performed through con-
troller re-design or by switching to a di�erent controller [94].

Regarding FT control for robot manipulators, Van and coauthors [136] perform
fault diagnosis in image-based visual servoing. The residual signal is defined as the
root mean squared estimation error (RMSE) of a Kalman filter, which predicts the
values of a number of features in the camera image. The residual is compared against
a user-defined static threshold and fault isolation is achieved via a decision table.
The controller reconfiguration is not designed in the paper, and it would require an
additional element on top of the FDI scheme. Visual information from a camera
can also be used to compensate for a lack of observability in case of sensory faults.
Capisani and coauthors [24] propose the use of three di�erent second-order sliding
mode observers for generating residuals using independent measurements from cam-
era images. The detection thresholds were selected to minimize the probability of
false or missed alarms on the basis of simulation and experimental data. However,
the visual subsystem is assumed faultless.

FDI through static thresholds can be e�ective, but stochastic decision theory
has been shown to outperform these methods. The actual distributions of residuals
can be estimated such that a user can define thresholds based on their acceptable
probability of false positives [40, 41, 114, 116]. The work of Blas and Blanke [18]
showed fault-tolerant steering control of an agricultural vehicle for bailing, detect-
ing sensory faults and artifacts in images through statistical learning. The sensor
configuration for control was then decided at run-time.

Generally speaking, model-based fault-tolerant control schemes rely on addi-

3.3. Preliminaries

3

27

tional supervision blocks that increase system complexity. FDI and fault recovery
present two main challenges: a) The definition of robust yet sensitive pairs of resid-
uals and thresholds; b) The design of specific additional supervisory systems to
accommodate large faults.

The work presented in this paper extends the Active Inference controller (AIC)
recently developed by the authors [109, 6]. Active inference relies on approximate
Bayesian inference [45, 21] for prediction error minimization, and it allows state
estimation and control using a single cost function. This scheme showed remarkable
capabilities while dealing with missing sensory information or large unmodeled dy-
namics [77, 109] respectively. We initially presented a fault-tolerant control scheme
with an AIC that showed great promise [107]. However, this presented a few fun-
damental limitations which will be thoroughly discussed in Section 3.3.2. Most
importantly, FDI can be a�ected by false positives when the target state changes,
and it relies on a static threshold which might be over-conservative. In this work, we:
improve the state estimation of a standard AIC; develop an unbiased AIC (u-AIC);
reduce the probability of false positives, and allow to easily define a probabilistically
robust threshold for fault detection.

The paper is organized as follows: Section 3.3 presents the background on Ac-
tive Inference for fault-tolerant control highlighting the limitations of past work.
Section 3.4 presents a new formulation of the AIC with unbiased state estimation,
while Section 3.5 explains how fault-tolerant control is achieved with this new for-
mulation. Results for a simulated 2-DOF robot arm are presented in Section 3.6
while Section 3.7 reports a summary and future challenges.

3.3. Preliminaries

This section presents the background knowledge on Active Inference for robot control
[109, 107] required to understand and justify the need for an unbiased AIC.

3.3.1. Active inference controller (standard AIC)

The AIC [109, 107] is defined for torque control in the joint space of a generic robot
manipulator (Figure 3.1). The robot arm is equipped with encoders and velocity
sensors with relative sensory readings yq, yq̇. In addition, the end-e�ector Cartesian
position yv is made available through a camera. The system’s output is represented
by y = [yq, yq̇, yv] œ Rd. The proprioceptive sensors and the camera are a�ected
by zero mean Gaussian noise ÷ = [÷q, ÷q̇, ÷v]. The camera is a�ected by barrel
distortion. The AIC can be used to control the robot arm to a desired configuration
µd, providing the control input u œ Rm as torques to the single joints. To this end,
the control input is computed based on the so-called free-energy and the generalised
motions µ̃ [107].

The free-energy principle relies on Bayesian inference [83] for state estimation.
The goal is to find the posterior over states given observations, p(x|yv, yq, yq̇). This
computation is in general intractable using Bayes’ rule and in practice the true
posterior distribution is approximated with a variational distribution Q(x) [42].
The most probable state is computed by minimizing the Kullback-Leibler divergence

3

28

RobotControlAct.StateEst.

Camera
AIC

Figure 3.1: General AIC control scheme for joint space torque control.

(DKL) between p(x|y) and Q(x) [21]:

DKL(Q(x)||p(x|y)) =
⁄

Q(x) ln Q(x)
p(x|y)dx

=F + ln p(y) (3.1)

where F represents the free-energy. By minimizing F , Q(x) approaches the true
posterior p(x|y). The probabilistic model p(x, yv, yq, yq̇) is factorized as:

p(x, yv, yq, yq̇) = p(yv|x)p(yq|x)p(yq̇|x)
¸ ˚˙ ˝

observation model

p(x)¸˚˙˝
prior

(3.2)

If Q(x) is a Gaussian with mean µ and the Laplace approximation is utilized
[49], then F reduces to

F = ≠ ln p(µ, yv, yq, yq̇) + K , (3.3)

where K is a constant. Higher order derivatives of the state x œ Rn are combined
in the term µ̃ (i.e. µ̃ = [µ, µÕ, µÕÕ]). This is referred to as generalized motions [21,
48]. The number of generalised motions considered will a�ect the update laws for
state estimation and control.

In order to characterize the free-energy and compute it, one has to define two
generative models, one for the state dynamics, and one for the observations. The
latter is modeled as [21] y = g(µ) + z, where g(µ) = [gq, gq̇, gv] : Rd

‘æ Rd repre-
sents the non-linear mapping between sensory data and states of the environment,
and z is Gaussian noise z ≥ (0, �y). The generative model of the state dynamics is
defined as [21]:

dµ

dt
= µÕ = f(µ) + w (3.4)

where f(µ) : Rn
‘æ Rn is a generative function dependent on the belief about the

states µ and w is Gaussian noise w ≥ (0, �µ). As in previous work [6], we define
f(·) such that the robot will be steered to a desired joint configuration µd following
the dynamics of a first-order linear system with time constant · .

f(µ) = (µd ≠ µ)·≠1 (3.5)

From equation (3.5) we can see that the desired state is encoded in the prior.
The time constant · influences the generative model of the state dynamics f(·).

3.3. Preliminaries

3

29

As explained in past work [6], the AIC has two extremes depending on the value
of ·≠1. If ·≠1

æ 0, the AIC only performs filtering and no control. On the other
hand, if ·≠1

æ Œ the AIC is equivalent to a PID controller [6, 12]. For any value
in between, there is a compromise between estimation and control. The estimation
and control are thus ‘coupled’ and state-estimation with the standard AIC results in
a bias towards the desired target, see (3.7). If all distributions in equation (3.2) are
assumed Gaussian, the expression for free-energy simplifies to (complete derivations
can be found in past work [109]):

F = 1
2

ÿ

i

!
Á€

i
PiÁi ≠ ln |Pi|

"
+ K, (3.6)

where i œ {yq, yq̇, yv, µ, µÕ
}, and Pi defines a precision (or inverse covariance)

matrix. Note that we set · = 1 as in past work [98, 109]. The terms Ái with
i œ {yq, yq̇, yv} are the Sensory Prediction Errors (SPE), representing the di�erence
between observed sensory input and expected one. In general, the SPE for a sensor
s are defined as (ys ≠ gs(µ)). The model prediction errors are instead defined
considering the desired state dynamics as Áµ = (µÕ

≠ f(µ)) and ÁµÕ = (µÕÕ
≠

ˆf(µ)/ˆµµÕ). In particular, for the robot arm used in this paper, Áyq = (yq ≠ µ),
Áyq̇ = (yq̇ ≠ µÕ), Áv = (yv ≠ gv(µ)), and Áµ = (µÕ + µ ≠ µd), ÁµÕ = (µÕÕ + µÕ). For
more details on the derivation of equation (3.6), refer to previous publications [109,
6, 21].

To achieve state estimation a gradient descent on the free-energy is used. The
variable µ̃ is updated as:

˙̃µ = Dµ̃ ≠ Ÿµ

ˆF

ˆµ̃
, (3.7)

where Ÿµ is the gradient descent step size, and D is a shifting operator with ones on
the upper diagonal. This form of gradient descent is needed due to using generalized
motions as mentioned earlier [45]. The control actions are also computed through
gradient descent; however, the expression for F does not include any actions explic-
itly. The chain rule is then used, assuming an implicit dependency between actions
and sensory input.

u̇ = ≠Ÿu

ˆF

ˆu
= ≠Ÿu

ˆF

ˆy

ˆy

ˆu
, (3.8)

where Ÿu is the gradient descent’s step size. The term ˆy
ˆu is often approximated as

linear [109, 98].

3.3.2. Limitations of fault-tolerant control with standard AIC

The AIC was previously used for fault-tolerant control [107]. In this subsection,
we aim to highlight the main limitations of the AIC, which are addressed in Sec-
tion 3.4 through the proposed unbiased Active Inference scheme. The main idea of
AIC for fault-tolerant control was that the SPE in the free-energy could be used
as residuals for fault detection, removing the need for more advanced residual gen-
erators. Besides, the precision matrices in the free-energy could be used for fault
accommodation, since they represent the trust associated with sensory readings.

3

30

For a faulty sensor, the relative precision was decreased to zero to perform fault
recovery. Specifically, the residuals are generated by considering the quadratic form
of the SPE [107] Á€

s
PysÁs, where Ás = ys ≠ gs(µ) with s œ {q, q̇, v}. A static fault

detection threshold Âs was chosen as an upper bound on the quadratic terms.
The SPE depends on the belief µ, which is biased towards a given goal. This

means that the SPE in standard AIC can increase for causes that are not necessarily
related to a fault, i.e. the robot is stuck due to a collision or there is an abrupt
change in the goal µd, for example, in a pick-and-place application. The residuals
are thus dependent on the goal, which is problematic. This was not an issue in
past work [107] because of the over-conservative threshold used for fault detection,
but it becomes apparent when the SPEs are closely analyzed. Figure 3.2 reports
the absolute value of the SPE for the joint of a robot arm controlled using an AIC,
during a point-to-point motion with three via-points µd1 , µd2 , µd3 .

Figure 3.2: E�ect of abrupt change in goal on the SPE in standard AIC. The SPE increases
sharply without the presence of any sensory faults.

Using a tighter threshold to detect faults of small entities by using past work
[107] would lead to many false positives. In this work, we tackle the problem of
biased sensory prediction errors and we define an unbiased AIC where the SPEs
are independent of the input, providing more accurate state estimation. With the
u-AIC is also possible to use the sensory prediction error directly for fault detection
using a probabilistically robust threshold instead of a static one as in the previous
approach [107].

3.4. Unbiased Active Inference

To tackle the problems discussed in the previous section, the unbiased AIC is de-
veloped (u-AIC).

3.4. Unbiased Active Inference

3

31

3.4.1. Derivation of the u-AIC

Consider a probabilistic model with explicit actions p(x, u, yv, yq, yq̇), where unlike
the AIC, x = [q q̇]€. The distribution factorizes as:

p(x, u, yv, yq, yq̇) = p(u|x)¸ ˚˙ ˝
control

p(yv|x)p(yq|x)p(yq̇|x)
¸ ˚˙ ˝

observation model

p(x)¸˚˙˝
prior

(3.9)

Given the sensory data, we then aim to find the posterior over states and ac-
tions p(x, u|yv, yq). We approximate the posterior with a variational distribution
Q(x, u). We utilize the mean-field assumption (Q(x, u) = Q(x)Q(u)) and the
Laplace approximation. The posterior over the state x is assumed Gaussian with
mean µx. The posterior over actions u is also assumed Gaussian with mean µu.
This results in the following expression for variational free-energy:

F = ≠ ln p(µu, µx, yv, yq, yq̇) + C (3.10)

This expression can be factorized as in equation (3.9). Assuming Gaussian model
F can be expanded to:

F = 1
2(Á€

yq
Pyq Áyq + Á€

yq̇
Pyq̇ Áyq̇ + Á€

yv
Pyv Áyv

+ Á€
x

PxÁx + Á€
u

PuÁu ≠ ln |PuPyq Pyq̇ Pyv Px|) + C,
(3.11)

where Áyq , Áyq̇ , Áyv are the sensory prediction errors of position encoder, velocity en-
coder, and the visual sensor respectively. Furthermore, Áx and Áu are the prediction
errors for the prior on the state and the control action respectively.

The prediction error on the state prior Áx is computed considering a prediction
of the state x̂ at the current time-step, which is a deterministic value. It follows
that Áx = (µx ≠x̂). The prediction x̂ = [q̂ ˆ̇q]€ can be computed in the same fashion
as the prediction step of, for instance, a Kalman filter or of a Luenberger observer.
While in such cases the prediction computation would require the knowledge of an
accurate dynamic model, in this paper we assume we do not have access to that.
Instead, we will propagate forward in time the current state belief using the following
simplified discrete time model:

x̂k+1 =
5
I I�t
0 I

6
µx,k (3.12)

where I represents a unitary matrix of suitable size. This form assumes that the
velocities of the joints will remain roughly constant, and the position of each joint is
thus computed as the discrete-time integral of the velocity, using a first-order Euler
scheme. As mentioned, if one has access to a better dynamic model, that can be
used instead.

Finally, the state prior now does not encode information about the target µd

(unlike in the standard AIC). The information about the target is encoded in the
distribution p(u|x). We choose this distribution to be Gaussian as well with a
mean of fú(µx, µd), which is a function that steers the systems toward the target.

3

32

This then results in Áu = (µu ≠ fú(µx, µd)). The function fú(µx, µd) can be any
controller, for instance a P controller: fú(µx, µd)) = P (µd ≠ µx). In this paper, we
choose the function such that it converges to a PID controller; however, other choices
can be made without loss of generality. For state and action updates, first-order
Euler integration is used to obtain discrete time equations.

3.4.2. Definition of the observation model

The sensory prediction errors are as in the AIC, that is Áq = (yq ≠µ), Áq̇ = (yq̇ ≠µÕ)
and Áv = (yv ≠ gv(µ)) but µ is not biased anymore towards the target µd. The
relation between µ and y is expressed through the generative model of the sensory
input g = [gq, gq̇, gv]. Position and velocity encoders directly measure the state.
Thus gq and gq̇ are linear mappings between µ and y.

To define gv(µ), instead, we use a Gaussian Process Regression (GPR) as in past
work [77]. This is particularly useful because we can model the noisy and distorted
sensory input from the camera, and at the same time, we can compute a closed form
for the derivative of the process with respect to the beliefs µ, required for the state
update laws. The training data is composed of a set of observations of the (planar)
camera output [ȳvx , ȳvz]€ in several robot configurations ȳq. We use a squared
exponential kernel k of the form:

k(yqi , yqj) = ‡2
f

exp
!
≠

1
2 (yqi ≠ yqj)€�(yqi ≠ yqj)

"

+‡2
n
dij (3.13)

where yqi , yqj œ ȳq, and dij is the Kronecker delta function. � is a diagonal matrix
of hyperparameters that are fit according to the training data to obtain accurate
predictions. The hyperparameters are optimized in order to maximize the marginal
likelihood [112]. The predictions are then [77]:

gv(yqú) =
5
k(yqú , ȳq)K≠1ȳvx

k(yqú , ȳq)K≠1ȳvz

6

gv(yqú)Õ =
5
≠�≠1(yqú ≠ ȳq)€[k(yqú , ȳq)€

· –x]
≠�≠1(yqú ≠ ȳq)€[k(yqú , ȳq)€

· –z]

6 (3.14)

where · means element-wise multiplication, K is the covariance matrix, –x =
K≠1ȳvx and –z = K≠1ȳvz .

3.4.3. Estimation and control using the u-AIC

Similar to the AIC, performing both state estimation and control can be achieved
using gradient descent on F . This is simpler in the case of the u-AIC since there is
no need to use the chain rule when computing the control actions (see eq. (3.8)) or
to consider generalized motion (3.7):

µ̇u = ≠Ÿu

ˆF

ˆµu
, µ̇x = ≠Ÿµ

ˆF

ˆµx
, (3.15)

where Ÿu and Ÿµ are the gradient descent step sizes. The gradient on control can

3.5. Fault detection, isolation, and recovery

3

33

be computed as:
ˆF

ˆµu

= Pu(µu ≠ fú(µx, µd)) (3.16)

Setting this to zero results in the control action being equal to fú(µx, µd). If this
function is chosen similarly to a PID controller, then the control law of our system
will converge towards that. This can be extended to richer control by modifying
the probabilistic model in eq. (3.9). The only term depending on the control action
now is p(u|x); however, a prior p(u) can also be added. In that case, the generative
model would be:

1
–

p(u)p(u|x)p(yv|x)p(yq|x)p(yq̇|x)p(x) (3.17)

where – is a normalization constant. This prior can then encode a feed-forward
signal (open-loop control law). When computing the u that minimizes F in that
case, it would be a combination of the feed-forward signal and fú(µx, µd) depending
on the value of �u. This is employed by Baioumy and coauthors [5].

Since µu converges to fú(µx, µd), we can achieve unbiased state estimation. In
fact, this would result in Áu = 0, and thus the current target would not a�ect the
the beliefs about the states. In u-AIC, the belief about the states is only a�ected
by the predicted values and the observations from various sensors, exactly as in a
Kalman filter [88].

3.4.4. Key di�erences between AIC and u-AIC

The AIC considers the relationship between states and observations without explic-
itly modeling the control actions. The prior over state p(x) in equation (3.2) thus
encodes the target/goals state. In filters, such as the Kalman filter, the prior comes
from a prediction step that relies on the previous state and action. In the case of the
AIC, the beliefs update law is essentially a filter where the prediction step is biased
towards the goals state i.e. the agent normally predicts to move linearly towards
the target (see eq. (3.5)).

In the u-AIC, actions are explicitly modeled and the target state is encoded in
the term p(u|x). This has two implications. First, the state is not biased towards
the target since its prior p(x) is not. A prior encoding of a prediction step will also
improve the overall state estimation accuracy. Secondly, explicit actions allow us to
directly perform gradient descent on F with respect to u. This is not ppossible in
the general AIC case and the chain rule had to be utilized (see eq. (3.8)).

Finally, the u-AIC has guarantees regarding the stability of the controller, while
the AIC does not. This is out of the scope of this paper and will be discussed in
future work.

3.5. Fault detection, isolation, and recovery

In this section, we describe how the SPE from the u-AIC can be used as residual
signals, and how to perform FDI. Without loss of generality, for these derivations,
we will consider only the proprioceptive sensors and we discretize the continuous
dynamics with first-order Euler integration. According to the approximated system’s

3

34

dynamics in (3.12), and expanding the second term in (3.15) where F is computed
as in (3.11), the state estimation law can be rewritten as:

µk+1 = “(µk, uk) + �(g(µk) ≠ yk) (3.18)

Equation (3.18) represents the dynamics of an estimator where stability results
from the value that we obtain for diagonal matrix �. Anil Meera and Wisse [88]
showed how the free-energy principle can be used to derive stable state observers,
for a linear case with colored noise. It is important to note that “ and � are known
expressions resulting from the partial derivatives of F . The term (yk ≠ g(µk))
represents the sensory prediction errors. In the u-AIC, the states of the system are
steered towards the desired goal following the dynamics imposed by the controller.
Therefore, the resulting system’s dynamics can be represented in general as:

I
xk+1 = “(xk, uk) + „(xk, uk, flk)
yk = xk + zk

(3.19)

where xk œ Rn and uk œ Rm are the state and input variables, while “(xk, uk) :
Rn

◊Rm
‘æ Rn represents the dynamics of the system in healthy conditions. yk œ Rn

is the measurement of the full state which is a�ected by the presence of measurement
noise zk œ Rn. The expressions obtained so far for the system dynamics will allow us
to cast a model-based fault diagnosis approach easily in the current framework, even
if the knowledge of an a priori model is not needed. The real system can be a�ected
by faults which are represented by the fault function „(xk, uk, flk) : Rn

◊Rm
◊Rl

‘æ

Rn. The unknown parameter flk determines the fault amplitude and shall be such
that „(xk, uk, 0) = 0.

3.5.1. Residual generation

We rely on two assumptions that can be found as well in past works [114, 115]:

Assumption 1. No fault acts on the system before the fault time kf , thus flk = 0
for 0 Æ k < kf . In addition, before and and after the occurrence of a fault, the
variables xk and uk remain bounded, that is ÷ S = S

x
◊ S

u
µ Rn

◊ Rm such that
(xk, uk) œ S ’k.

Assumption 2. zk is a random variable defined on some probability spaces (Z, B,
PZ), where Z ™ Rn. B(·) indicates a Borel ‡-algebra, and PZ is the probability
measures defined over Z. Furthermore, it is not correlated and is independent of
xk, uk and flk ’k.

We define the residuals for fault detection as the sensory prediction errors rk =
yk ≠ g(µk). Thus, according to (3.19), (3.18), the residuals dynamics will be given
by [114, 115]:

rk+1 = �rk + ”k + „(xk, uk, flk) (3.20)

”k = “(yk ≠ zk, uk) ≠ “(µk, uk) + zk+1 (3.21)

3.5. Fault detection, isolation, and recovery

3

35

The stochastic process ”k, is the random total uncertainty that a�ects the residuals
generation. It follows that ”k is in the probability space (�k, B(�k), P”k) where
�k is obtained by letting zk and zk+1 vary over Z. Apart from simple cases, it is
not possible to obtain a closed form for this set. Thus numerical approximations
are used instead. The residual rk+1 can be seen as a random variable in the same
probability space of ”k [114].

Figure 3.3: Healthy residual set at time k + 1 as image obtained from the output of (3.20).

The residual set Rk+1 at the next time step k + 1 can be seen as the image
obtained by computing the output of (3.20), where the total uncertainty ”k varies
over its domain �k (Figure 3.3). Note that the healthy residuals can be characterized
by setting flk = 0.

Remark 1. While the system dynamics “ and the fault function „ have been intro-
duced for analysis purposes, they do not correspond to known models of healthy and
faulty behaviors. In particular, “ is obtained via algebraic manipulations from the
current free-energy framework’s update equations. In particular, the residual r for
implementing the detection and isolation logic described next can be directly com-
puted from the current belief and measurement. Indeed, the proposed fault diagnosis
approach based on the u-AIC is completely model-free.

3.5.2. Threshold for fault detection

As proposed by Rostampour and coauthors [115], we consider a probabilistically
robust detection logic of the form:

dM (rk+1) Æ
n

–
, dM (3.22)

where dM is the detection threshold, n is the dimension of the residuals, – is a
tuning parameter, and dM (·) indicates the Mahalanobis distance of the residuals.
In general:

dM (r) =
Ò

(r ≠ r̄)€C≠1
r (r ≠ r̄) (3.23)

where r̄ , E[r] œ Rn and Cr , Cov[r] œ Rn◊n are the expected value and covariance
matrix of the residuals. According to the Multivariate Chebyshev Inequality [30]:

Pr[dM (rk) Ø
n

–
] Æ –, ’– œ [0, 1] (3.24)

This means that, in healthy conditions, the probability of a false alarm, that is dM

exceeding the threshold d̄M , is upper bounded by –. The value – can be tuned to

3

36

achieve the desired probabilistic robustness of the threshold. The present detection
logic is equivalent to checking if the residual at time step k + 1 belongs to a time-
varying ellipsoid with mean r̄k+1 and covariance Crk+1 . In the general nonlinear
case, these moments can be approximated by their sampled counterparts obtained
in healthy conditions.

3.5.3. Fault isolation

The detection policy in (3.22) results e�ective to label the system as healthy or
faulty. However, it is not possible to use the same SPE generated through equation
(3.11) for fault isolation. In fact, the free-energy is computed as a weighted sum
of the squared prediction errors fusing di�erent sensory sources. This means that
when a fault occurs, its e�ects will propagate to all the SPE in equation (3.11).
We define two additional free-energies and state estimation processes that rely on
di�erent sensory sources (i.e. either proprioceptive or visual).

Fp = 1
2(Á€

yq
Pyq Áyq + Á€

yq̇
Pyq̇ Áyq̇ + Á€

x PxÁx

≠ ln |Pyq Pyq̇ Px|),
(3.25)

Fv = 1
2(Á€

yv
Pyv Áyv + Á€

x PxÁx ≠ ln |Pyv Px|) (3.26)

By doing so, we can isolate encoder and camera faults since state estimation is
now done using two independent measurement sources. Fp and Fv are only used for
fault isolation and not control. The thresholds for the SPE from (3.25) and (3.26)
are then computed as in Section 3.5.2.

3.5.4. Fault recovery

Fault recovery can be performed as in previous work [107]. Once a fault is de-
tected and isolated, fault recovery is triggered. If a sensor is marked as faulty, its
corresponding precision matrix is set to zero. The controller can thus exploit the
sensory redundancy to a) have a better a posteriori approximation of the states,
and b) compensate for missing or wrong sensory data. Once a fault is detected and
isolated, the precision matrix of the faulty sensor Pfs is reduced to zero:

Pfs = 0 (3.27)

Interestingly, the Active Inference framework also allows hyper-parameters (pre-
cision) learning [6, 19]. The bias in the standard AIC hindered hyper-parameter
learning for fault recovery purposes, but learning meaningful precision matrices as-
sociated with sensory readings with u-AIC is now possible and will be investigated
in future work.

3.6. Simulation study

In this section, we illustrate the fault detection, isolation, and recovery strategy on
a Matlab simulation using a 2-DOF robotic manipulator. The dynamical model

3.6. Simulation study

3

37

of the robot is defined as [124]:

u = M(q)q̈ + C(q, q̇)q̇ + Dq̇ + G(q) (3.28)

where q = [q1, q2]€, u(t) = [u1, u2]€, D is the friction coe�cient matrix, M is the
inertia matrix, C is the Coriolis matrix, and G models the e�ects of gravity. The
dynamic model is only used to simulate the response to the commanded torques since
the u-AIC provides a control law agnostic to the dynamical model. Thus, the link’s
masses, friction coe�cients, and other dynamical parameters are not part of the
controller. The noisy sensory readings have zero-mean Gaussian noise. The standard
deviation of the noise for encoders and velocity sensors is set to ‡q = ‡q̇ = 0.001,
while the one for the camera to ‡v = 0.01.

The simulation consists of controlling the robot arm for a double point-to-point
motion from the starting configuration q = [≠fi/2, 0] (rad) to µd1 = [≠0.2, 0.5] (rad),
and then µd2 = [≠0.6, 0.2] (rad). A fault occurs during the trajectory from µd1
to µd2, i.e. we set kf = 8s. The fault can a�ect either the encoders or the cam-
era. The encoder fault is such that the output related to the first joint freezes so
yq(k) = [q1(kf), q2(k)]€ for k Ø kf . The fault detection and recovery of such a fault,
as well as the system’s response, are reported below in Figure 3.4 and Figure 3.5:

Figure 3.4: Normalised dM in case of encoder fault. Detection occurs when the normalized value
exceeds 1.

As can be seen from Figure 3.5, the system is not able to reach the set-point
after the occurrence of the fault in case of no recovery. The robot arm reaches a
di�erent configuration to minimize the free-energy, which is built fusing the sensory
information from the (faulty) encoders and the (healthy) camera. Recovery happens
after 60 (ms), and after that, the faulty reading is discarded by setting zero precision.
The robot arm is then able to reach the final configuration.

The other situation that we consider in this work is a camera fault. This fault is
supposed to be a misalignment, due for instance to a collision. This is simulated by
injecting a bias i.e. yv(k) = yv(k)+0.04 for k Ø kf . Note that the entity of this fault
is small and comparable with the camera noise, i.e. the zero mean Gaussian noise
with ‡v = 0.01 (m). The fault detection is reported in Figure 3.6. The system’s
response with and without recovery is similar to Figure 3.5.

The simulation results will be extended to real experiments, leveraging the scal-
ability and adaptability of the Active Inference controller [109]. The steady-state
errors (ess) and the RMSE between beliefs and actual joint positions for the sim-
ulations are reported in Table 3.1.

3

38

Figure 3.5: System’s response in case of encoder fault without recovery (fixed precision matrices)
and with recovery (setting Pyq = 0 after detection). The fault occurs after 8s.

Figure 3.6: Normalised dM in case of camera fault.

Table 3.1: Summary of the results using u-AIC

Metrics Encoder Fault Camera Fault
Recovery No recovery Recovery No recovery

ess, q1 ≠2.7e≠3 0.1674 ≠2.1e≠4 0.0173
ess, q2 ≠1.5e≠3

≠0.1176 ≠2.5e≠4 7.0e≠3

RMSEq1 3.0e≠3 0.0896 5.7e≠4 0.0112
RMSEq2 2.5e≠3 0.0636 3.5e≠4 2.1e≠3

3.7. Conclusions

In this paper, we presented a new formulation of an Active Inference controller where
the free-energy depends explicitly on the control actions. This formulation brings
two general advantages. First, it allows us to remove the bias from state estimation,
which a�ected the standard Active Inference controller, leading to more accurate
state estimation. Second, it simplifies the definition of the control actions since it

3.7. Conclusions

3

39

removes the need to compute partial derivatives of the free-energy. Next, we showed
how the new formulation simplifies the use of established fault detection techniques
with probabilistic robustness, which would have caused many false positives using
standard Active Inference. The e�ectiveness of the approach is showcased in a
simulated 2-DOF arm subject to sensory faults. Future work will investigate fault-
tolerant control with stochastic decision boundaries, a formal stability proof, and
experiments on a real robot manipulator.

4
Unbiased Active Inference

for Classical Control

I n this chapter, we present a formalization of the concept of unbiased Active Infer-
ence, which was initially introduced in Chapter 3. Taking a mathematical stand-

point, we establish a comprehensive framework that extends beyond its application
in fault-tolerant control. In fact, we examine the limitations of the AIC not only
in case of faults but also in reference tracking and collision scenarios. To validate
our findings, we conduct experiments on a real 7-DOF robot arm, marking the first
implementation of unbiased Active Inference on an actual robot.

This chapter is a verbatim copy of the peer-reviewed paper [10]

• � Mohamed Baioumyú, Corrado Pezzatoú, Riccardo Ferrari, and Nick Hawes. "Unbiased
Active Inference for Classical Control." In IEEE International Conference on Intelligent
Robots and Systems, IROS (2022).

Statement of contributions: Corrado contributed to the mathematical background and the
limitations of classical Active Inference control, carried out the implementation of the u-AIC, and
designed and performed the experiments. Mohamed contributed to the mathematical formulation
of the u-AIC, its possible extensions, and the parallel with classical AIC. Corrado and Mohamed
contributed equally to the writing of this work. Riccardo and Nick provided discussions on the
ideas and feedback, as well as editing of the manuscript.

* Indicates equal contribution in alphabetical order

41

4

42

Figure 4.1: Manipulation of delicate items in a human-shared store environment.

4.1. Abstract

Active inference is a mathematical framework that originated in computational neu-
roscience. Recently, it has been demonstrated as a promising approach for con-
structing goal-driven behavior in robotics. Specifically, the Active Inference con-
troller (AIC) has been successful on several continuous control and state-estimation
tasks. Despite its relative success, some established design choices lead to a num-
ber of practical limitations for robot control. These include having a biased es-
timate of the state, and only an implicit model of control actions. In this pa-
per, we highlight these limitations and propose an extended version of the unbi-
ased Active Inference controller (u-AIC). The u-AIC maintains all the compelling
benefits of the AIC and removes its limitations. Simulation results on a 2-DOF
arm and experiments on a real 7-DOF manipulator show the improved perfor-
mance of the u-AIC with respect to the standard AIC. The code can be found
at https://github.com/cpezzato/unbiased_aic.

4.2. Introduction

Active inference is a mathematical framework prominent in computational neuro-
science [47]. It aims to explain decision-making in biological agents using free-energy
minimization. Recent work has led to many schemes based on this framework; for
an overview, see the review paper from Lanillos and coauthors [78]. Nevertheless,
Active Inference for robot control is still a relatively new field. It is thus of particu-
lar importance to understand the limits of such methods. In this paper, we analyze
the drawbacks associated with specific design choices within the Active Inference
controller (AIC). Additionally, we propose an extended and improved unbiased AIC
(u-AIC), which we initially presented in a previous publication [9] solely for fault-
tolerant control. The e�ort to understand the limits of the AIC for robot control
started with our previous work [9], where we specifically analyzed the e�ect of joint

https://github.com/cpezzato/unbiased_aic

4.2. Introduction

4

43

state estimation and control for fault tolerance. The current paper provides an in-
depth analysis of the performance and limits of the AIC more generally (not just
fault-tolerant control). Additionally, we formalize the u-AIC. This includes 1) a
derivation of the new control architecture and possible extensions, 2) a proof of
convergence for both the state estimation and the controlled system, and 3) the
application of the u-AIC to a real 7-DOF robot manipulator, which was previously
only performed in simulation.

In this paper, we identify the drawbacks of the AIC and connect them to two
root causes. First, in the AIC the estimated state (or belief) is biased toward
the current goal/target state through a goal prior. This leads to reduced quality
in state-estimation [6] but also influences precision learning (learning the preci-
sion/covariance of the sensory model), making the model parameters converge to
a biased value [6, 11]. A range of issues also arises in fault diagnosis and fault-
tolerant control as a result of the goal prior, such as false-positive fault detection
[107, 9]. Second, the control action is not explicitly modeled as a random variable
in the generative model of the AIC. This causes a range of issues on the control
side. In real-world control applications, the integral control law typical of the AIC
can cause saturation problems for the actuators when the agent fails to reach a tar-
get. This can happen, for instance, because of a collision. Other limitations from a
control perspective are that the AIC does not naturally allow for the incorporation
of feed-forward control signals [9], which could improve the overall performance of
the system. Finally, the motion can be jerky in practice.

Interestingly, all these limitations are present in the AIC but are not intrinsically
part of Active Inference as a general framework. One can design di�erent controllers
that stay true to the principles of Active Inference while mitigating the limitations.
To this end, we present the u-AIC, previously introduced in our previous paper
[9]. We demonstrate the properties of the u-AIC in Section 4.5, as well as the
convergence of both the state estimation and control, which is still missing for the
AIC [109].

The contributions of this paper are twofold: 1) we concretely demonstrate the
limitations of the AIC using both theoretical results and empirical demonstrations.
2) We formalize the u-AIC and show how it overcomes such limitations, providing
proof of convergence and extensions to the controller. We believe that understanding
the properties and the boundaries of the AIC is important for researchers who want
to apply it for robot control, such that better and safer systems can be built using
this framework.

4.2.1. Related work

Active inference has been proposed in neuroscience as a general theory of the brain
[45] and was later concisely reported using a notation and language closer to engi-
neering and control [21]. We refer to the controller in this notation as AIC. From
this, the first real-world applications for robot control [109, 98] were derived. Re-
cently, Active Inference has been applied for robot control in a broader variety of
settings and tasks. This includes work on robust state-estimation [77, 88], adaptive
control [109, 6], fault-tolerant control [9, 8], reinforcement learning [135], planning

4

44

under uncertainty [35, 7], human-robot interaction [28, 97] and more. A recent
survey [78] provides a detailed overview of Active Inference for robot control to
date.

Particularly interesting in the context of this paper, is that several recent ap-
proaches in robotics have taken inspiration from the free-energy principle and ap-
plied it to continuous control and state estimation. Recent works focused on chance-
constrained Active Inference [137], LQG control [76], and model-predictive control
[5]. However, while the area of application of Active Inference in engineering set-
tings is continuously growing, works on in-depth analysis of the AIC from a control
theoretic perspective are limited. Previous work [12, 6] has shown the relationship
between the AIC and PID controllers, while the relationship between the AIC, LQR
control, and Kalman filters is discussed in other publications [13, 76]. Finally, we
discussed some limitations of the AIC in the context of fault-tolerant control [107,
9]. This motivated the introduction of the u-AIC [9]. This work focuses on a thor-
ough analysis of the limits of the AIC from a control point of view and proposes an
extended version of the u-AIC to address them.

4.2.2. Structure of the paper

The remainder of this paper is organized as follows. After providing the necessary
mathematical background in Section 4.3, Section 4.4 details the limitations of the
AIC when applied to robot control. Section 4.5 presents the u-AIC scheme to
overcome these limitations. In Section 4.6, the properties of the u-AIC and its
relation with the AIC are highlighted. In Section 4.7, the theoretical claims are
validated in simulation and on a real 7-DOF Franka Emika Panda manipulator.
Finally, we draw conclusions in Section 4.8.

4.3. Preliminaries

In this section, we concisely report the AIC formulation as used in previous work
[109, 6, 89, 98], which specified the AIC for robot control according to the theory [21].
In this section, we only report the crucial equations to understand the limitations
of the AIC in Section 4.4; an interested reader is referred to past work for all the
details [109].

4.3.1. The generative model

Active Inference considers an agent in a dynamic environment that receives obser-
vations y about states x at every time-step t. The generative model of the agent
can then be expressed as:

p(x, y) = p(y|x)¸ ˚˙ ˝
observation model

p(x).¸ ˚˙ ˝
prior

(4.1)

A visual representation of this model is presented in fig. 4.2 (right). The prob-
ability distribution p(y|x) has a mean g(x), which is a mapping from state to
observation. The prior p(x) has a mean f(x), which is a function that encodes the
goal state µg. The agent aims to infer the posterior p(x|y) given a model of the

4.3. Preliminaries

4

45

agent’s world. This means finding the belief µ over the state x given the observa-
tions. This can be achieved by minimizing the so-called variational free-energy. If
all distributions in eq. (4.1) are Gaussian, the free-energy becomes a sum of least
square terms [109].

4.3.2. Free-energy

The AIC performs joint state estimation and control by minimizing the free-energy
F through a gradient descent scheme. F is defined as [109]:

F(y, µ) = 1
2

nd≠1ÿ

i=0

Ë
Á(i)€

y
�≠1

y(i)Á
(i)
y

+ Á(i)€
µ

�≠1
µ(i)Á

(i)
µ

È
+ K. (4.2)

The free-energy is a weighted sum of prediction errors up to a constant K resulting
from the derivations [21]. The terms �≠1

y(i) and �≠1
µ(i) are precision matrices repre-

senting the confidence about sensory input and internal beliefs. These can be seen
as tuning parameters. The term nd represents the number of derivatives considered
in the control problem. If we assume, as in most cases [109, 98, 9] that nd = 2, then
state estimation and control are performed on position and velocity. These quanti-
ties are internally represented as the beliefs µ(0) = µ for positions, and µ(1) = µÕ

for velocities. The terms Á(i)
µ = (µ(i+1)

≠ f (i)(µ)) and Á(i)
y = (y(i)

≠ g(i)(µ)) are
respectively the state and sensory prediction errors.

The function g(µ) represents the mapping between states and sensory observa-
tions. In the case of robot control with position and velocity sensors, this is the
identity mapping, so g(µ) = µ. The function f(µ) = µg ≠ µ specifies the desired
evolution of the dynamics of the system. In this case, [109], the AIC will make the
system behave like a first-order linear system with the desired goal position µg. By
definition [21, 109], it holds:

g(i) = ˆg

ˆµ
µ(i), f (i) = ˆf

ˆµ
µ(i), g(0) = g, f (0) = f . (4.3)

Finally, the terms �µ(i) and �y(i) are diagonal covariance matrices. In the scalar
case, these are represented as the variances ‡µ and ‡y.

4.3.3. State estimation

State estimation in the AIC is achieved by gradient descent on the free-energy [21,
52, 109] with the update rule:

˙̃µ = d

dt
µ̃ ≠ Ÿµ

ˆF

ˆµ̃
, (4.4)

where µ̃ = [µ, µÕ], and t refers to time. The term Ÿµ is a tunable learning rate.

4.3.4. Control

In the AIC, the control input u is also computed through gradient descent on F .
As can be seen by eq. (4.2), however, F does not depend on u explicitly. On the

4

46

other hand, the actions indirectly influence F by making the state evolve over time
and thus changing the sensory output. We can compute the actions using the chain
rule as [21, 109]:

u̇ = ≠Ÿa

ˆỹ

ˆu

ˆF

ˆỹ
(4.5)

where ỹ = [y, yÕ], and Ÿa is the tuning parameter. The term ˆỹ
ˆu , requires a

forward dynamic model and is generally hard to compute in closed-form for non-
linear systems. In most previous work [109, 98, 9, 6], such need has been obviated
by introducing a linear approximation. The expression can alternatively be written
as a sum for every sensor y in ỹ. This relationship shows how the control action
is directly related to the sensory inputs and the number of sensors, as seen in the
following expression:

u̇ ¥ ≠Ÿa

ˆF

ˆỹ
= ≠Ÿa

ÿ

y

ˆF

ˆy
. (4.6)

As an example, for a system with a position sensor yq, and velocity sensor yq̇

this control law would be:

u̇ = ≠Ÿa

#
�≠1

yq
(yq ≠ µ) + �≠1

yq̇
(yq̇ ≠ µÕ)

$
. (4.7)

4.4. Limitations of the AIC

In this section, we discuss the limitations of the AIC for robot control. We note
that these limitations are not inherent in the Active Inference framework but rather
in how the AIC is constructed. In Section 4.4.1 we address Limitation #1 : in AIC
the belief over the current state is biased toward the target the agent aims to reach
by means of goal prior. This means that the agent’s belief is never accurate, except
when the target is reached. In Section 4.4.2 we address Limitation #2 : the control
action is not explicit in the generative model. This means, that one cannot minimize
the free-energy with respect to the actions directly and instead use the chain rule as
in eq. (4.5), making assumptions about the linearity of the system. This can cause a
saturation problem and does not allow for the incorporation of feed-forward control
signals to improve performance.

4.4.1. Limitation #1: biased state estimation

Before formally analyzing the controller, we provide a visual explanation using factor
graphs. In fig. 4.2, the generative model of the AIC in eq. (4.1) is depicted. Each
random variable is represented by a circle, and each probability distribution by a
black square. By inspecting this graph, we see that the state x is connected to two
distributions. The distribution p(y|x) moves the belief closer to the observed value
y. This distribution is represented in the free-energy F by the term Á€

y
�≠1

y
Áy where

Áy = (y ≠ µ). This is considering, as commonly done, g(·) as the identity mapping,
The second distribution is the prior p(x). This distribution is Gaussian with the

function f(µ) = µg ≠ µ as its mean. The function encodes the goal state µg. This
term moves the belief µ towards the goal state. The belief of the AIC is thus always

4.4. Limitations of the AIC

4

47

biased towards the goal state. This is by design. The benefit of this is that we can
now compute a control action that moves the agent to the goal (using eq. (4.6)).
However, the drawback is that state estimation is inaccurate.

Figure 4.2: Illustration of the u-AIC (left) and the AIC (right) for a one-dimensional problem.
Circles indicate random variables. Black boxes indicate probability distributions.

Convergence to a biased belief
We will now analyze the convergence of the beliefs in the AIC. Let us consider a
generic form of the free-energy, as in eq. (4.2). For the simplest linear and scalar
case with nd = 1 (i.e. one sensor and one actuator, with observable state), this
expression can be reduced to:

F = 1
2

5
(y ≠ g(µ))2

‡y

+ (µÕ
≠ f(µ))2

‡µ

6
+ K (4.8)

Let us consider the generative model of the state dynamics as a first-order linear sys-
tem with unitary time constant, so f(µ) = µg ≠ µ, and since the state is observable,
so g(µ) = µ [109]. At a steady state, it holds that

ˆF

ˆµ
= ≠

(y ≠ µ)
‡y

+ (µÕ
≠ µg + µ)

‡µ

= 0. (4.9)

Additionally, when solving for µ we can show that

µ = ‡µy + ‡yµg≠‡yµÕ

‡µ + ‡y

. (4.10)

From eq. (4.10), one can notice that the belief µ is a weighted sum of the sensory
measurement and the goal state. The belief is thus always biased towards the goal.
We demonstrate incorrect state estimation in simulation (section 4.7.1), which is
particularly evident when collisions happen with the environment. The bias in the
state estimation leads to two other issues. These are apparent when one tries to
optimize model parameters through precision learning (or inverse covariance learn-
ing), and when applying the AIC for fault-tolerant control. We expand upon these
claims in the following sections.

4

48

Biased precision learning
Past work on robot control [109, 98] assumed that the precision ‡≠1

y
of the observa-

tion model is known. Intuitively, this quantifies the confidence about how noisy the
sensor is and can be determined before the deployment of the controller. However,
for certain applications where sensory noise is uncertain, one might need to estimate
the precision of the sensor online. This is the case in many robotics applications
[138, 111].

There exists a body of work related to Active Inference that explores precision
learning., e.g. methods such as Dynamic Expectation Maximization and generalized
filtering [43, 52]. However, these methods do not perform control. When precision
learning is done in conjunction with the Active Inference controller, we cannot es-
timate the true precision of the sensor. Previous works [11, 6] show how precision
learning in the AIC can be used to find the optimal gains of the controller. In this
context, however, the obtained precision of the sensor loses its physical meaning.

As explained earlier, the belief over the current state is biased, and this propa-
gates to the precision of the system. Consider again the simplest linear and scalar
case of the free-energy in eq. (4.8). The constant K can be expanded to include the
variances as [21]:

K = 1
2 ln ‡y‡µ.

Considering these terms time-varying, we can take the gradient with respect to the
variances as:

ˆF

ˆ‡y

= ≠
(y ≠ µ)2

2‡2
y

+ 1
2‡y

. (4.11)

Setting this expression to zero, we obtain:

‡y = (y ≠ µ)2. (4.12)

The updated variance depends on µ, which we showed is biased. Thus the
precision will also be biased. This is because the agent is estimating the precision
as the average square distance between the mean µ and every measurement y. If
µ is biased, then the agent is estimating the variance around a value that is not
the true mean. A special case is when the agent already starts at the goal. In that
setting, µ would represent the true mean, and the precision would be estimated
around the true mean resulting in an accurate precision estimate. Finally, learning
the precision of the observation model can be used in the context of control, but the
obtained precision no longer represents the noise level of the sensor. Instead, it is a
combination of the noise level, and how aggressive the controller will act, as shown
in previous work [5].

Limitation in fault-tolerant control
In previous work, we used the AIC for fault-tolerant control [107] where the main
idea was that the sensory prediction errors in the free-energy could be used as resid-
uals for fault detection, removing the need for more advanced residual generators.
Despite the simplicity of the method for detecting and recovering from broken sen-
sors, the use of prediction errors with biased state estimation can cause several false

4.5. Unbiased Active Inference controller

4

49

positives. This is explained in detail in previous work [9], where a first version of
the u-AIC has been proposed.

4.4.2. Limitation #2: implicit modelling of actions

The control law for the AIC is computed using gradient descent on F , as in eq. (4.5).
Since the action is not explicitly modeled, one resorts to the chain rule. This in-
troduces additional complexity. The term dy/dµ is generally hard to compute, and
researchers approximated it by the identity matrix [11, 109]. Despite the promising
results, linearizing the forward dynamics necessarily limits the performance in the
presence of non-linear dynamics. Additionally, the control law is driven by sen-
sory prediction errors weighted by the precision, see eq. (4.7), and it is de-facto an
integrator. This causes three issues in practice.

First, the control law in the AIC is directly dependent on the observation.
Eq. (4.6) shows that the control law is a sum of sensory prediction errors. This
means that, if a system is not observable, it is not controllable. More specifically,
past works [6, 11] detail how, under certain assumptions, the Active Inference con-
troller is equivalent to a PI Controller i.e. PID with D = 0, a P gain of Ÿu�≠1

yÕ

and an I gain of Ÿu�≠1
y

. This assume that the function f(µ) = (µg ≠ µ)·≠1 has a
· æ 0. In that case, the belief will approach the goal state µ æ µg. In eq. (4.6), we
see that the control law of the AIC is the sum of sensory prediction errors. Every
term, in this case, is responsible for an error term in the PID control law. A position
sensor is responsible for the I gain, a velocity sensor will result in a P gain, and an
acceleration sensor will result in a D gain.

Second, integral control has a few general drawbacks. For instance, if the goal
cannot be reached due to a collision, the magnitude of the control action u will
monotonically increase until saturation. This is shown in section 4.7 for both simu-
lated and real robots, where we point out that a vanilla implementation of the AIC
leads to integrator windup.

Third, the control action cannot be naturally supplemented with a feed-forward
signal. If one has information about the system, designing a feed-forward signal to
supplement the feedback controller consistently improves performance.

4.5. Unbiased Active Inference controller

A first version of the u-AIC has been introduced in previous work [9] in the con-
text of fault-tolerant control. In this section, we generalize, extend, and formally
analyze the previously proposed u-AIC for generic control settings, and show how
it overcomes the limitations of the AIC.

4.5.1. Derivation of the u-AIC

In this section, we describe the u-AIC as introduced in past work [9], to which
an interested reader is referred for more details on the derivations of the following
equations. Let us consider x = [q, q̇]€ and let us define a probabilistic model where

4

50

actions are modeled explicitly:

p(x, u, y) = p(u|x)¸ ˚˙ ˝
control

p(y|x)¸ ˚˙ ˝
observation model

p(x)¸˚˙˝
prior

(4.13)

A visual representation of the u-AIC can be seen in fig. 4.2 (left). Note that
with the u-AIC the information about the desired goal to be reached is encoded in
the distribution p(u|x). This fundamentally removed the bias of the current state,
as will be shown. In this paper, as in past work [6], we assume that an accurate
dynamic model of the system is not available to keep the solution system agnostic
and to highlight once again the adaptability of the controller.

The u-AIC aims at finding the posterior over states as well as the posterior over
actions p(x, u|y). Since the posteriors can be di�cult to compute exactly, they
are approximated using a variational distribution Q(x, u). We can make use of the
mean-field assumption (Q(x, u) = Q(x)Q(u)) and the Laplace approximation, and
assume the posterior over the state x is Gaussian with mean µx [49]. Similarly,
for the actions, the posterior u is assumed Gaussian with mean µu. By defining
the Kullback-Leibler divergence between the variational distribution and the true
posterior, one can derive an expression for the free-energy F as [9]:

F = ≠ ln p(µu, µx, y) + C (4.14)

Considering eq. (4.13) and assuming Gaussian distributions, F becomes:

F = 1
2(Á€

y
�≠1

y
Áy + Á€

x
�≠1

x
Áx

+ Á€
u

�≠1
u

Áu + ln |�u�y�x|) + C,
(4.15)

The terms Áyq = yq ≠ µ, Áyq̇ = yq̇ ≠ µÕ are the sensory prediction errors respec-
tively for position and velocity sensory inputs. The controller represents the states
internally as µx = [µ, µÕ]€. The relation between internal state and observation
is expressed through the generative model of the sensory input g = [gq, gq̇]. Po-
sition and velocity encoders directly measure the state, thus, gq and gq̇ are linear
(identity) mappings.

Additionally, Áu is the prediction error on the control action, while Áx is the
prediction error on the state. The latter is computed considering a prediction of
the state x̂ at the current time-step such that Áx = (µx ≠ x̂). The prediction is a
deterministic value x̂ = [q̂, ˆ̇q]€ which can be computed in the same fashion as the
prediction step of, for instance, a Kalman filter. The prediction is approximated by
propagating forward in time the current state belief using the following simplified
discrete time model:

x̂k+1 =
5
I I�t
0 I

6
µx,k (4.16)

where I represents a unitary matrix of suitable size. This form assumes that the
position of each joint is thus computed as the discrete-time integral of the velocity,
using a first-order Euler scheme. This approximation can be avoided if a better

4.5. Unbiased Active Inference controller

4

51

dynamic model of the system is available, and in that case, predictions can be made
using the model itself. Finally, by choosing the distribution p(u|x) to be Gaussian
with mean fú(µx, µg), we can steer the system towards the target µg without
biasing the state estimation. This results in Áu = (µu ≠ fú(µx, µg)).

In the u-AIC state estimation and control are achieved using gradient descent
along the free-energy. This leads to:

µ̇u = ≠Ÿu

ˆF

ˆµu
, µ̇x = ≠Ÿµ

ˆF

ˆµx
, (4.17)

where Ÿu and Ÿµ are the gradient descent step sizes. The gradient on control can
be computed as:

ˆF

ˆµu

= �≠1
u

(µu ≠ fú(µx, µg)) (4.18)

4.5.2. Proof of convergence

For the simple 1-dimensional case, the expression of the free-energy for the u-AIC
can be reduced to:

F = 1
2

5
(y ≠ µx)2

‡y

+ (µu ≠ fú(·))2

‡u

+ (µx ≠ x̂)2

‡x

6
+ K (4.19)

The belief over the state µx and over the control action µu will converge when:

ˆF

ˆµu

= 0,
ˆF

ˆµx

= 0, (4.20)

At steady state, it holds that µu = fú(µx, µg). Considering this result, one can
show that µx converges to

µx = ‡xy + ‡yx̂

‡x + ‡y

. (4.21)

We can thus see that the control action converges to the function fú, which can be
chosen, for instance, as a PID controller. We can also show that belief over the state
is a weighted average of the sensory measurement y and the prediction x̂. Unlike
the AIC, this prediction does not depend on the goal, see eq. (4.10).

4.5.3. Extensions of the u-AIC for control

The u-AIC can be extended for richer control by modifying the probabilistic model
in eq. (4.13). This is because the control action u is explicitly modeled as a random
variable, and thus we can add prior probability distributions to it. This can be done
in multiple ways to achieve di�erent objectives.

Adding a feed-forward controller (open-loop)
So far, the only term depending on the control action now is p(u|x); however, a
prior p(u) can also be added. In that case, the generative model would be:

1
–

p(u)p(u|x)p(y|x)p(x) (4.22)

4

52

where – is a normalization constant. Note that, this denominator does not need
to be computed explicitly. To achieve state estimation and control, we need to
minimize the free-energy (which maximizes the likelihood of the model). We do not
need to compute the free-energy or the likelihood exactly.

This prior can encode a feed-forward signal (open-loop control law). Assuming
the prior to be Gaussian with mean fol(x) and variance ‡ol (‘ol’ stands for open-
loop), we can show that the control law will converge to:

µu = fol(µx)‡u + fú(µg, µx)‡ol

‡ol + ‡u

. (4.23)

This is the weighted sum of the PID control law (after applying a filter) and the
open-loop control law. Note previously, the value of ‡u did not matter. Now the
ratio between ‡u and ‡ol does contribute. Additionally, the expression for F , would
contain a quadratic term for the open-loop control law.

Adding control costs
Alternative to adding a feed-forward control law, we might add a control cost. This
can be achieved by adding the control prior pcc(u) with a mean of 0 and variance
of ‡cc. This creates a quadratic term in F of (µu ≠ 0)2/‡cc. This is equivalent to a
quadratic control cost, as seen in classical LQR controllers.

Smoothing the control action
The AIC often exhibits jerky motion. This can be mitigated in the u-AIC by
adding a smoothing prior. Let u be a random variable referring to the current
control action being executed. We then define up as the control action executed at
the time previous time-step. A distribution p(u|up) can be added to the generative
model. This will add a control cost of (µu ≠up)2/‡p to F . Minimizing this quantity
nudges the control action u toward the value of the last control action up, creating
a smoothing e�ect. This quadratic loss is similar to approaches in Model-predictive
control (MPC) [99].

A comparison of the standard AIC and u-AIC against MPC and impedance
control can be found in the literature [89]. Future work could address the comparison
of the proposed extensions of the u-AIC against other classical controllers.

4.6. Relationship between the AIC and u-AIC

4.6.1. Convergence of beliefs

The AIC considers the relationship between states and observations without explic-
itly modeling the control actions. In classical filters, such as the Kalman filter, the
prior comes from a prediction step that relies on the previous state and action. In
the case of the AIC, the prior essentially predicts the agent will move towards the
target. This results in a biased state estimate as seen in eq. (4.10). In contrast,
the u-AIC has an unbiased belief over the state as seen in eq. (4.21). Note that
both expressions are almost identical. The AIC converges to the weighted average
between the sensory measurement and the goal. The u-AIC, on the other hand, con-
verges to a weighted average between the sensory measurement and the predicted

4.6. Relationship between the AIC and u-AIC

4

53

state (using a model or Euler integration). Note that, in the AIC, the goal state
is encoded in the prior over the state p(x), while in the u-AIC it is encoded in a
separate distribution p(u|x) (see fig. 4.2).

4.6.2. Control law

In the u-AIC, actions are explicitly modeled and the target state is encoded in
the term p(u|x). Explicit actions allow us to directly perform gradient descent on
F with respect to u. This is not possible in the general AIC case and the chain
rule had to be utilized (see eq. (4.5)). The eventual control law of the AIC is also
directly dependent on the measurement and the number of measurements eq. (4.6).
Thus if part of the system is unobserved, it can not be controlled. The u-AIC on
the contrary has a control law irrespective of the number of sensors eq. (4.21) and
allows us to encode control costs, smoothing e�ects, and feed-forward control signals
(see eq. (4.23)).

4.6.3. General architecture

The general architecture (for state estimation and control) for the AIC and u-AIC is
also di�erent. In the case of the AIC, state estimation is dependent on the goal state.
The goal is encoded in the prior, which biases the state estimation. The controller,
on the other hand, is dependent on the (biased) belief and measurements. This is
unusual in classical control, see fig. 4.3. A discussion on the role of modularity in
AIC and the general control architecture can be found in the work from Baltieri
and Buckley [14]. The u-AIC on the other hand has a more traditional flow of

Figure 4.3: Control diagram of the AIC

information. State estimation requires the measurements y. Then the (unbiased)
belief µx and the goal µg are fed into the controller which produces the control
action. This is illustrated in fig. 4.4.

Figure 4.4: Control diagram of the u-AIC.

4

54

Figure 4.5: Scenarios considered to illustrate the incorrect state estimation due to the bias
towards the target (red dot). In (b) an obstacle occludes the way and blocks the arm.

4.7. Experimental evaluation

We now showcase the limitations of the AIC explained in Section 4.4 and compare
the performance with the u-AIC, both in simulation and in the real world.

4.7.1. Simulation

The simulation scenario is depicted in fig. 4.5. The robot has to reach a target in
configuration space. During motion, we suppose that at a certain time, a collision
occurs which prevents the robot from moving further. We assume the collision
persists for tc = 3s, then the robot is free to proceed. This allows us to show the
incorrect state estimation and the overshoot due to the integral control law of the
AIC. In the u-AIC, we observe none of these while maintaining similar performance.
The 2-DOF robot arm is equipped with position and velocity sensors yq, yq̇ œ R2

for the two joints a�ected by zero mean Gaussian noise, as in fig. 4.5. We define y =
[yq, yq̇]€. The states x to be controlled are set as the joint positions q = [q1, q2]€
of the robot arm. The simulation results for AIC and u-AIC are reported in fig. 4.6.
The collision scenario in fig. 4.5 highlights a few limitations:

Incorrect state estimation
Let us consider the first row of the plots in fig. 4.6. When the AIC cannot reach
the desired target due to a collision blocking the path, the belief µ does not follow
the trend of the real state x. The belief converges to a value between the sensory
reading and the desired goal. For instance, at time t = 4s the sensory reading
is ≠0.355 [rad]. Given the current µg = ≠0.2 [rad] as goal for the first joint,
‡y = ‡µ = 1, and µÕ = 0.053 [rad/s] the belief converges to ≠0.304 [rad], which is
in accordance with eq. (4.10). On the other hand, the u-AIC converges to the true
state. For statistical significance, we ran 100 reaching tasks for each controller, with
random blocking collisions of duration between 1 and 3 [s] at a time between 0 and
3 [s]. Table 4.1 reports steady-state error (ess), settling time (ts) after removing the
collision, overshoot (os), and RMSE between beliefs and joint positions in case of
blocking the arm temporarily, averaged over the 100 trials. As can be seen, while the
AIC presents the lowest ess due to the prominent integration scheme, the RMSE
for state estimation is two orders of magnitude higher than for the u-AIC. Incorrect
state estimation can also cause several false positives [9]. The sensory prediction

4.7. Experimental evaluation

4

55

Figure 4.6: Simulation results of a 2-DOF robot arm collision (orange area) for tc = 3s. For
readability, we only report the first joint since the behavior is similar to the second one.

errors for the AIC can, in fact, increase due to collisions with the environment (see
the last row of plots in fig. 4.6). The u-AIC is instead insensitive.

Scenarios ess [rad] ts [s] os [%] RMSE [rad]

AIC 2.82e-05 3.70 0.12 0.042
u-AIC 0.0058 5.15 8.44 4.43e-4

AIC + coll. 6.07e-05 5.04 43.90 0.1695
u-AIC + coll 0.0053 5.86 11.65 4.92e-04

Table 4.1: Simulation results of AIC and u-AIC without and with a random collision of random
duration, averaged over 100 randomized reaching tasks.

Monotonic increase of control input
The second row of the plots in fig. 4.6 displays the control action of one joint.
During a collision, the control input computed by the AIC keeps increasing due to
the integral nature of the control law employed (see eq. (4.7)). After the collision
is removed, the controller necessarily overshoots. In the u-AIC, one can saturate
only the integral term and not the entire control law. On average, the AIC has four
times the overshoot after a collision with a comparable settling time to the u-AIC.

4.7.2. 7-DOF Panda arm

On the real Panda arm, we compared 1) the reference tracking in configuration
space, and 2) the collision behavior in terms of overshoot and commanded control

4

56

actions resulting from holding the robot arm away from its desired set point. The
behaviors of the controllers are best appreciated in the accompanying video1.

Reference tracking
The performance in terms of reference tracking of a sinusoidal wave is reported in
fig. 4.7. The AIC never converges to the reference trajectory, and this is independent
of the initial conditions. We highlight this by plotting the response of the two
controllers after running them for 4 seconds.

Figure 4.7: Experiments with real Panda arm on reference tracking. For readability, we only
report the first joint.

The AIC performs poorly in terms of tracking errors. This is due to three
main reasons: 1) the AIC [21, 109] only allows for position reference through its
generative model, while the u-AIC can perform position and velocity tracking; 2) a
more aggressive tuning of the AIC would result in high overshoots in case of collision,
compromising safety.

Collision behavior
The collision behavior is reported in fig. 4.8. The robot is commanded to keep an
initial position while a person is pushing, pulling, and holding the robot.

The AIC shows high overshoot which might be dangerous or damage delicate
products such as fruits and vegetables in our setting. The u-AIC is instead well-
behaved during interaction (see the attached video for a visualization of the results).
The same behavior is observed when the robot is disturbed while performing a
complicated trajectory.

4.8. Conclusion

In this paper, we discussed the fundamental limitations of the AIC for robot control
and how the u-AIC overcomes them. These limitations arise from the fact that
the state estimation is biased towards the goal and that the control action is not
explicitly modeled in the generative model. These cause degraded state estimation
1https://www.youtube.com/watch?v=jI-zX8XvfgI

https://www.youtube.com/watch?v=jI-zX8XvfgI

4.8. Conclusion

4

57

Figure 4.8: Experiments with real Panda arm during unwanted interaction (orange area). For
readability we only report the third joint, being the most a�ected one. Faster convergence to zero

steady-state error for the u-AIC can be achieved by tuning the integral action.

and can lead to large overshoots during human-robot interaction. We thoroughly
discussed and extended the u-AIC providing a missing proof of convergence. We
theoretically demonstrated the limitations of the AIC and provided experimental
evidence of how the u-AIC overcomes them, both in simulation and the real world
with a 7-DOF robot manipulator.

5
Active Inference and

Behavior Trees for Reactive

Action Planning and

Execution in Robotics

I n the previous two chapters, the focus was primarily on the adaptive and fault-
tolerant aspects of Active Inference for low-level control. However, the resulting

behaviors were constrained to point-to-point motions of the arm. In this chapter,
we shift our attention toward utilizing the discrete formulation of Active Inference
for high-level symbolic reasoning and action planning. We combine Active Inference
and behavior trees to blend o�ine planning with online decision-making, obtaining
a fast and reactive scheme for long-term tasks. Unlike conventional approaches
that plan actions to execute, we employ behavior trees to plan desired states to be
accomplished. This serves as a skeleton for guiding the online search for an action
sequence using Active Inference. Significantly, this work pioneers the application of
discrete Active Inference on a real robot.

This chapter is a verbatim copy of the peer-reviewed paper [108]:

• � Corrado Pezzato, Carlos Hernández Corbato, Stefan Bonhof, and Martijn Wisse. "Ac-
tive Inference and Behavior Trees for Reactive Action Planning and Execution in Robotics."
IEEE Transactions on Robotics (2023).

Statement of contributions: Corrado contributed to the idea of blending Active Inference and
behavior trees, derived the theory, performed the experiments, and wrote the manuscript. Stefan
provided the simulation environment, while Carlos and Martijn provided discussions on the ideas
and feedback, as well as editing of the manuscript.

59

5

60

5.1. Abstract

We propose a hybrid combination of Active Inference and behavior trees (BTs)
for reactive action planning and execution in dynamic environments, showing how
robotic tasks can be formulated as a free-energy minimization problem. The pro-
posed approach allows handling partially observable initial states and improves the
robustness of classical BTs against unexpected contingencies while at the same time
reducing the number of nodes in a tree. In this work, we specify the nominal behav-
ior o�ine, through BTs. However, in contrast to previous approaches, we introduce
a new type of leaf node to specify the desired state to be achieved rather than an
action to execute. The decision of which action to execute to reach the desired state
is performed online through Active Inference. This results in continual online plan-
ning and hierarchical deliberation. By doing so, an agent can follow a predefined
o�ine plan while still being able to locally adapt and take autonomous decisions
at runtime, respecting safety constraints. We provide proof of convergence and ro-
bustness analysis, and we validate our method in two di�erent mobile manipulators
performing similar tasks, both in a simulated and real retail environment. The re-
sults showed improved runtime adaptability with a fraction of the hand-coded nodes
compared to classical BTs.

5.2. Introduction

Deliberation and reasoning capabilities for acting are crucial parts of online robot
control, especially when operating in dynamic environments to complete long-term
tasks. Over the years, researchers developed many task planners with various de-
grees of optimality, but little attention has been paid to actors [59, 95], i.e. algo-
rithms endowed with reasoning and deliberation tools during plan execution. Pre-
vious literature [59, 95] advocates for a change in focus, explaining why this lack of
actors could be one of the main causes of the limited spread of automated planning
applications. Colledanchise and coauthors [32, 31, 117] proposed the use of BTs as
graphical models for more reactive task execution, showing promising results. Other
authors also tried to answer the call for actors [106, 57], but there are still open chal-
lenges to be addressed. These challenges have been identified and highlighted by
many researchers, and can be summarized in two properties that an actor should
possess [59, 31]:

• Hierarchical deliberation: each action in a plan may be a task that an actor
may need to further refine online.

• Continual online planning and reasoning: an actor should monitor, refine,
extend, update, change, and repair its plans throughout the acting process,
generating activities dynamically at run-time.

Actors should not be mere action executors then, but they should be capable of
intelligently making decisions. This is particularly useful for challenging problems
such as mobile manipulation in dynamic environments, where actions planned o�ine
are prone to fail. In this paper, we consider mobile manipulation tasks in a retail
environment with a partially observable initial state. We propose an actor based on

5.2. Introduction

5

61

Active Inference. Such an actor is capable of following a task planned o�ine while
still being able to make autonomous decisions at run-time to resolve unexpected
situations.

Active Inference is a neuroscientific theory that has recently shown its poten-
tial in control engineering and robotics [88, 6, 107, 9], particularly in real-world
experiments for low-level adaptive control [109, 98]. Active Inference describes a
biologically plausible algorithm for perception, action, planning, and learning. This
theory has been initially developed for continuous processes [48, 21, 19] where the
main idea is that the brain’s cognition and motor control functions could be de-
scribed in terms of free-energy minimization [48]. In other words, we, as humans,
take actions in order to fulfill prior expectations about a desired prior sensation [54].
Active Inference has also been extended to Markov decision processes for discrete
decision making [51], recently gathering more and more interest [47, 118, 120, 72].
In this formulation, Active Inference is proposed as a unified framework to solve the
exploitation-exploration dilemma by acting to minimize the free-energy. Agents can
solve complicated problems once provided a context sensitive prior about prefer-
ences. Probabilistic beliefs about the state of the world are built through Bayesian
inference, and a finite horizon plan is selected in order to maximize the evidence
for a model that is biased toward the agent’s preferences. At the time of writing,
the use of discrete Active Inference for symbolic action planning is limited to low
dimensional and simplified simulations [120, 72]. In addition, current solutions rely
on fundamental assumptions such as instantaneous actions without preconditions,
which do not hold in real robotic situations.

To tackle these limitations of Active Inference and to address the two main open
challenges of hierarchical deliberation and continual planning, we propose a hybrid
combination of Active Inference and BTs. We then apply this new idea to mobile
manipulation in a dynamic retail environment.

5.2.1. Related Work

In this section, we mainly focus on related work on reactive action planning and ex-
ecution, a class of methods that exploits reactive plans, which are stored structures
that contain the behavior of an agent. To begin with, BTs [32, 96] gathered increas-
ing popularity in robotics to specify reactive behaviors. BTs are de-facto replacing
finite state machines (FSM) in several state-of-the-art systems, for instance in the
successor of the ROS Navigation Stack, Nav2 [84]. BTs are graphical representations
for action execution. The general advantage of BTs is that they are modular and can
be composed into more complex higher-level behaviors, without the need to specify
how di�erent BTs relate to each other. They are also an intuitive representation
that modularizes other architectures such as FSM and decision trees, with proven
robustness and safety properties [32]. These advantages and the structure of BTs
make them particularly suitable for the class of dynamic problems we are considering
in this work, as explained later on in Section 5.3. However, in classical formulations
of BTs, the plan reactivity still comes from hard-coded recovery behaviors. This
means that highly reactive BTs are usually big and complex and that adding new
robotic skills would require revising a large tree. To partially cope with these prob-

5

62

lems, Colledanchise and coauthors [31] proposed a blended reactive task and action
planner that dynamically expands a BT at runtime through back-chaining. The
solution can compensate for unanticipated scenarios, but cannot handle partially
observable environments and uncertain action outcomes. Conflicts due to contin-
gencies are handled by prioritizing (shifting) sub-trees. Safronov and coauthors
[117] extended this and showed how to handle uncertainty in the BT formulation as
well as planning with non-deterministic outcomes for actions and conditions. Other
researchers combined the advantages of BTs with the theoretical guarantees on the
performance of planning with the Planning Domain Definition Language (PDDL)
by representing robot task plans as robust logical-dynamical systems (RLDS) [106].
RLDS results in a more concise problem description with respect to using BTs only,
but online reactivity is again limited to the scenarios planned o�ine. For unforeseen
contingencies, re-planning would be necessary, which is more resource-demanding
than reacting [106]. The output of RLDS is equivalent to a BT, yet BTs remain more
intuitive to compose and have more support from the community with open-source
libraries and design tools.

Goal-Oriented Action Planning (GOAP) [67], instead, focuses on online action
planning. This technique is used for non-player-characters (NPC) in video games
[100]. Goals in GOAP do not contain predetermined plans. Instead, GOAP consid-
ers atomic behaviors which contain preconditions and e�ects. The general behavior
of an agent can then be specified through very simple Finite State Machines (FSMs)
because the transition logic is separated from the states themselves. GOAP gener-
ates a plan at run-time by searching in the space of available actions for a sequence
that will bring the agent from the starting state to the goal state. However, GOAP
requires hand-designed heuristics that are scenario-specific and it is computationally
expensive for long-term tasks.

Hierarchical task Planning in the Now (HPN) [70] is an alternate plan and ex-
ecution algorithm where a plan is generated backward starting from the desired
goal, using A*. HPN recursively executes actions and re-plans. To cope with the
stochasticity of the real world, HPN has been extended to belief HPN (BHPN)
[71]. A follow-up work [80] focused on the reduction of the computational burden
by implementing selective re-planning to repair local poor choices or exploit new
opportunities without the need to re-compute the whole plan which is very costly
since the search process is exponential in the length of the plan.

A di�erent method for generating plans in a top-down manner is the Hierarchical
Task Network (HTN) [38]. At each step, a high-level task is refined into lower-level
tasks. In practice [58], the planner exploits a set of standard operating procedures
for accomplishing a given task. The planner decomposes the given task by choosing
among the available ones until the chosen primitive is directly applicable to the
current state. Tasks are then iteratively replaced with new task networks. An
important remark is that reactions to failures, time-outs, and external events are
still a challenge for HTN planners. HTN requires the designer to write and debug
potentially complex domain-specific recipes and, in very dynamic situations, re-
planning might occur too often.

Finally, Active Inference is a normative principle underwriting perception, ac-

5.3. Background on Active Inference and BTs

5

63

tion, planning, decision-making, and learning in biological or artificial agents. Ac-
tive Inference on discrete state spaces [34] is a promising approach to solving the
exploitation-exploration dilemma and empowers agents with continuous deliberation
capabilities. The application of this theory, however, is still in an early stage for
discrete decision-making where current works only focus on simplified simulations as
proof of concept [47, 72, 118, 120]. Kaplan and Friston [72], for instance, simulated
an artificial agent that had to learn and solve a maze given a set of simple possible
actions to move (up, down, left, right, stay). Actions were assumed instantaneous
and always executable. In general, current discrete Active Inference solutions lack
a systematic and task-independent way of specifying prior preferences, which is
fundamental to achieving a meaningful behavior, and they never consider action
preconditions that are crucial in real-world robotics. As a consequence, plans with
conflicting actions that might arise in dynamic environments are never addressed in
the current state-of-the-art.

5.2.2. Contributions

In this work, we propose the hybrid combination of BTs and Active Inference to
obtain more reactive actors with hierarchical deliberation and continual online plan-
ning capabilities. We introduce a method to include action preconditions and con-
flict resolution in Active Inference, as well as a systematic way of providing prior
preferences through BTs. The proposed hybrid scheme leverages the advantages of
online action selection with Active Inference and it removes the need for complex
predefined fallback behaviors while providing convergence guarantees. In addition,
we provide extensive mathematical derivations, examples, and code, to understand,
test, and reproduce our findings.

5.2.3. Paper structure

The remainder of the paper is organized as follows. In Section 5.3 we provide an
extensive background on Active Inference and BTs. Our novel hybrid approach
is presented in Section 5.4, and its properties in terms of robustness and stability
are analyzed in Section 5.5. In Section 5.6 we report the experimental evaluation,
showing how our solution can be used with di�erent mobile manipulators for di�erent
tasks in a retail environment. Finally, Section 5.7 contains the discussion, and
Section 5.8 the conclusions.

5.3. Background on Active Inference and BTs

5.3.1. Background on Active Inference

Active Inference provides a unifying theory for perception, action, decision-making,
and learning in biological or artificial agents [34]. Our Active Inference agent rests
on the tuple (O, S, A, P, Q). This is composed of: a finite set of observations O,
a finite set of states S, a finite set of actions A, a generative model P and an
approximate posterior Q.

Active Inference proposes a solution for action and perception by assuming that
actions will fulfill predictions that are based on inferred states of the world, given

5

64

some observations. The generative model contains beliefs about future states and
action plans, where plans that lead to preferred observations are more likely. Per-
ception and action are achieved through the optimization of two complementary
objective functions, the variational free-energy F , and the expected free-energy G.
These quantities to optimize are derived based on the generative model and the
approximate posterior, as detailed later. Variational free-energy measures the fit
between the generative model and past and current sensory observations, while
expected free-energy scores future possible courses of action according to prior pref-
erences and predicted observations. Fig. 5.1 depicts the general high-level idea. For
a first-time reader of Active Inference, we advise consulting previous neuroscientific
publications for a more extensive introduction [47].

Figure 5.1: High-level visualization of an Active Inference agent. The generative process
describes the true causes of the agent’s observations o. An agent can apply actions to change the

state of the world and to get observations that are aligned with its internal preferences.

In the following, we explain the form of the generative model and how the model
parameters relate to states, actions, and observations. Based on this model, we
present the expressions for the free-energy and expected free-energy that are used
to derive the equations for perception and decision-making. We complement the
theory with pen-and-paper examples and associated Python code1. All the other
necessary mathematical derivations are added in the appendices.

Generative model
In Active Inference [47], the generative model P is chosen to be a Markov process
that allows us to infer the states of the environment and to predict the e�ects
of actions as well as future observations. This is expressed as a joint probability
distribution P (ō, s̄, ÷, fi), where ō is a sequence of observations, s̄ is a sequence of
states, ÷ represents model parameters, and fi is a plan. In particular, once given
fixed model parameters ÷ for a task2, we can write:

P (ō, s̄, fi) = P (fi)
TŸ

·=1
P (s· |s·≠1, fi)P (o· |s·) (5.1)

1https://github.com/cpezzato/discrete_active_inference/blob/main/discrete_ai/scripts/
paper_examples.py

2Note that, in the general case, model parameters are not fixed and can be updated as well through
Active Inference [47].

https://github.com/cpezzato/discrete_active_inference/blob/main/discrete_ai/scripts/paper_examples.py
https://github.com/cpezzato/discrete_active_inference/blob/main/discrete_ai/scripts/paper_examples.py

5.3. Background on Active Inference and BTs

5

65

The full derivation of the generative model in eq. (5.1), the assumptions under its
factorization, and how this joint probability is used to define the free-energy F can
be found in Appendix A.1. The probability distributions in eq. (5.1) are represented
internally by an Active Inference agent through the following parameters:

• A œ [0, 1]r,m is a matrix representation of the conditional probability P (o· |s·),
where r is the number of possible observations and m the number of possible
states. A is also called the likelihood matrix, and it indicates the probability
of observations given a specific state. Each column of A is a categorical
distribution. It holds that P (o· |s· , A) = Cat(As·). For a generic entry
Aij = P (o· = i|s· = j).

• B œ [0, 1]m,m represents a transition matrix. In particular P (s·+1|s· , a·) =
Cat(Ba· s·). For a symbolic action a· in a plan fi, Ba· represents the prob-
ability of state s·+1 while applying action a· from state s· . The columns of
Ba· are categorical distributions.

• fi is a sequence of actions over a time horizon T . fi is the posterior distribution,
a vector holding the probability of di�erent plans. These probabilities depend
on the expected free-energy in future time steps under plans given the current
belief: P (fi) = ‡(≠G(fi)). Here, ‡ indicates the softmax function used to
normalize probabilities.

An Active Inference agents contains also a model D œ [0, 1]m that represents
the belief about the initial state at · = 1. So P (s0) = Cat(D). Additionally, an
agent also represents prior preferences about desired observations for goal-directed
behavior in C œ Rr, such that P (o·) = C.

In the context of this paper, we do not consider additional generative model pa-
rameters such as the E vector to encode priors over plans used to represent habits
[126, 62]. The parameter E could be used to include common sense knowledge in
the decision-making process, but this will be addressed in future work. Table 5.1
summarises the notation adopted in this paper. The top part contains quantities
computed by Active Inference, while the bottom part the domain parameters re-
quired. As explained next, these internal models will be used by an Active Inference
agent to compute the free-energy and the expected free-energy.

Variational Free-energy
Given the generative model as before, one can derive an expression for the variational
free-energy. By minimizing F , an agent can determine the most likely hidden states
given sensory information. The expression for F is given by:

F (fi) =
Tÿ

·=1
sfi€

·

5
ln sfi

·
≠ ln (Ba·≠1sfi

·≠1) ≠ ln (A€o·)
6

(5.2)

where F (fi) is a plan specific free-energy. The logarithm is considered element-wise.
For the derivations please refer to Appendix A.2.

5

66

Table 5.1: Notation for Active Inference

Symbol Description

s· œ {0, 1}
m

One-hot encoding of the hidden state at time · , where
m is the number of mutually exclusive states in the

discrete state space.

sfi
·

œ [0, 1]m Posterior distribution over the state under a plan fi,
where the elements sum up to one.

o· œ {0, 1}
r Observation at time · that can have r mutually

exclusive possible values.
ofi

·
œ [0, 1]r Posterior distribution of observations under a plan.

fi
Plan specifying a sequence of symbolic actions

fi = [a· , a·+1, ..., aT]€, where T is the time horizon.

fi œ [0, 1]p Posterior distribution over plans, where p is the number
of di�erent plans.

F (fi) œ R Plan specific variational free-energy.

Ffi œ Rp Ffi = (F (fi1), F (fi2), ...)€ is a column vector containing
the free-energy for every plan.

G(fi, ·) œ R Expected free-energy for a plan at time · .

Gfi œ Rp Gfi = (G(fi1), G(fi2), ...)€ is a column vector containing
the expected free-energy for every plan.

A œ [0, 1]r◊m Likelihood matrix, mapping from hidden states to
observations P (o· |s· , A) = Cat(As·).

Ba· œ

[0, 1]m◊m Transition matrix, P (s·+1|s· , a·) = Cat(Ba· s·).

C œ Rr Prior preferences over observations P (o·) = C.
D œ [0, 1]m Prior over initial states P (s0) = Cat(D).

‡ Softmax function.

Perception
According to Active Inference, both perception and decision-making are based on
the minimization of free-energy. In particular, for state estimation, we take partial
derivatives of F with respect to the states and set the gradient to zero. The posterior
distribution of the state, conditioned by a plan, is given by:

sfi

·=1 = ‡(ln D + ln (B€
a·

sfi

·+1) + ln (A€o·)) (5.3a)
sfi

1<·<T
= ‡(ln (Ba·≠1sfi

·≠1) + ln (B€
a·

sfi

·+1) + ln (A€o·)) (5.3b)
sfi

·=T
= ‡(ln (Ba·≠1sfi

·≠1) + ln (A€o·)) (5.3c)

where ‡ is the softmax function. The column of B€
a·

are normalized. For the
complete derivation, please refer to Appendix A.3. Note that when · = 1 it holds
ln (Ba·≠1sfi

·≠1) = ln D. We provide below an example of state update and highlight
the e�ect of uncertain action outcomes in the state estimation process.

Example 1. State estimation: An Active Inference agent lives in a simple world

5.3. Background on Active Inference and BTs

5

67

composed of one state which can have two possible values. The only action the agent
can do is to stay still (Bidle), so fi = a· ’· with a· = idle. However, there are
some chances that unwanted transitions between states can occur. The agent can
only predict one step ahead (T = 2) and it receives an observation o·=1 at the start,
that is related to the state through A. The agent has no prior information about the
initial state or future observations, thus D is uniform as well as the initial guess
about the posterior distributions of the state. This is modeled as follows:

A =
5
0.9 0.1
0.1 0.9

6
, Bidle =

5
0.8 0.2
0.2 0.8

6
, D =

5
0.5
0.5

6

o·=1 =
5
1
0

6
, o·=2 =

5
0
0

6
, sfi

·=1 = sfi

·=2 =
5
0.5
0.5

6

The update of the posterior distribution for state estimation is, according to (5.3):

sfi

·=1 = ‡

3
ln

5
.5
.5

6
+ ln

35
.8 .2
.2 .8

6 5
.5
.5

64

+ ln
35

.9 .1

.1 .9

6 5
1
0

644
=

5
.9
.1

6

sfi

·=2 = ‡

3
ln

35
.8 .2
.2 .8

6 5
.9
.1

64
+ ln

35
.9 .1
.1 .9

6 5
0
0

644

=
5
.74
.26

6

As commonly done in Active Inference literature, a small number (for instance e≠16

[126]) is added when computing the logarithms. This prevents numerical errors in
the case of ln(0). Note that, if there would be no uncertainty on the actions the
agent can take, i.e. Bidle is the identity in this case, then the estimated hidden state
at · = 2 would be sfi

·=2 = [0.9, 0.1]€. The agent would then be more confident under
this action.

Expected Free-energy
Active Inference unifies action selection and perception by assuming that actions
fulfill predictions based on inferred states. Since the internal model can be biased
toward preferred states or observations (prior desires), Active Inference induces
actions that will bring the current beliefs toward the preferred states. An agent
builds beliefs about future states which are then used to compute the expected free-
energy. The latter is necessary to evaluate alternative plans. Plans that lead to
preferred observations are more likely. Preferred observations are specified in the
model parameter C. This enables action to realize the next (proximal) observation
predicted by the plan that leads to (distal) goals. The expected free-energy for a
plan fi at time · is given by:

G(fi, ·) = ofi€
·

[ln ofi

·
≠ ln C]¸ ˚˙ ˝

Reward seeking

≠diag(A€ ln A)€sfi

·¸ ˚˙ ˝
Information seeking

(5.4)

5

68

The diag() function simply takes the diagonal elements of a matrix and puts them in
a column vector. This is just a method to extract the correct matrix entries in order
to compute the expected free-energy [126]. By minimizing expected free-energy the
agent balances reward and information seeking (see Appendix A.4 for derivations).
Reward and information-seeking behaviors that arise from the formulation of the
expected free-energy are illustrated respectively in Examples 2 and 3. To keep the
examples reasonably simple to be computed by hand, we consider that the posterior
over states according to di�erent plans have already been computed following (5.3),
and are given.
Example 2. Reward seeking: Consider an agent has computed the posterior dis-
tribution of the states sfi1

·
, sfi2

·
under two di�erent plans fi1 and fi2. The agent has

a preference for a particular value of the state encoded in C. The model for this
example is the following:

A =
5
0.9 0.1
0.1 0.9

6
, C =

5
1
0

6
, sfi1

·
=

5
0.95
0.05

6
, sfi2

·
=

5
0.05
0.95

6

Let us consider the reward-seeking term in (5.4) (note that the information-seeking
term is equal in both plans for this example). The observations expected under the
two di�erent plans are:

ofi1
·

= Asfi1
·

=
5
0.86
0.14

6
, ofi2

·
= Asfi2

·
=

5
0.14
0.86

6

Intuitively, according to C, the first plan is preferable and it should have the lowest
expected free-energy because it leads to preferred observations with higher probability.
Numerically:

ofi1€
·

[ln ofi1
·

≠ ln C] =
5
0.86
0.14

6€ 5
ln

5
0.86
0.14

6
≠ ln

5
1
0

66
¥ 1.84

Similarly for fi2, ofi2€
·

[ln ofi2
·

≠ ln C] ¥ 13.35. As can be noticed, the plan that
brings the posterior state closest to the preference specified in C leads to the lowest
reward-seeking term.
Example 3. Information seeking: Let us consider a variation of Example 2.
The agent is not given any preference for a specific state, and the likelihood matrix
A encodes now the fact that observations are expected to provide more precise in-
formation when the agent is in the second state (second column of A). This results
in the following models:

A =
5
0.7 0.1
0.3 0.9

6
, C =

5
0
0

6
, sfi1

·
=

5
0.9
0.1

6
, sfi2

·
=

5
0.1
0.9

6

We expect that the plan that leads to a state with less ambiguous information has
the lowest information-seeking term. For the first plan:

≠ diag(A€ ln A)€sfi1
·

=

≠ diag

35
0.7 0.3
0.1 0.9

6
ln

5
0.7 0.1
0.3 0.9

64€ 5
0.9
0.1

6
¥ 0.58

5.3. Background on Active Inference and BTs

5

69

For the second plan, the information-seeking term is instead ¥ 0.35. The state
achieved with the second plan generates less ambiguous observations. Plans that lead
to the lowest ambiguity in sensory information, and thus minimize G, are preferred.

In more complex examples, minimizing G leads to a balance in reward and
information seeking. For a fully-fledged exploration-exploitation problem, we refer
the reader to a recently released Python library for Active Inference [61] which
contains an interactive and visual example3 of the emergent behavior of a rat in a
grid world which has to collect cues to disclose the location of the reward.

Planning and decision making Taking the gradient of F with respect to plans,
and recalling that the generative model specifies the approximate posterior over
plans as a softmax function of the expected free-energy [34] it holds that:

fi = ‡(≠Gfi ≠ Ffi) (5.5)

where the vector fi encodes the posterior distribution over plans reflecting the pre-
dicted value of each plan. Ffi = (F (fi1), F (fi2), ...)€ and Gfi = (G(fi1), G(fi2), ...)€.
See Appendix A.5 for the details.

Plan independent state-estimation Given the probability over p possible plans,
and the plan dependent states sfi

·
, we can compute the overall probability distribu-

tion for the states over time through the Bayesian Model Average:

s· =
ÿ

i

sfii
·

fii, where i œ {1, ..., p} (5.6)

were sfii
·

is the probability of a state at time · under plan i and fii is the probability
of plan i. This is the average prediction for the state at a certain time, so s· ,
according to the probability of each plan. In other words, this is a weighted average
over di�erent models. Models with high probability receive more weight, while
models with lower probabilities are discounted.

Action selection The action for the agent to be executed is the first action of
the most likely plan:

⁄ = max([fi1, fi2, ..., fip]
¸ ˚˙ ˝

fi€

), a· = fi⁄(· = 1) (5.7)

where ⁄ is the index of the most likely plan.

Example 4. Plan and action selection: By computing the expected free-energy
of Example 2 using (5.4) and including the information seeking term, we obtain
Gfi = [G(fi1), G(fi2)]€ ¥ [2.16, 13.68]€. For the sake of this example, let us assume
3https://heins_pymdp_2022-rtd.readthedocs.io/en/latest/notebooks/cue_chaining_demo.
html

https://heins_pymdp_2022-rtd.readthedocs.io/en/latest/notebooks/cue_chaining_demo.html
https://heins_pymdp_2022-rtd.readthedocs.io/en/latest/notebooks/cue_chaining_demo.html

5

70

the free-energy is equal for both plans, that is Ffi = [F (fi1), F (fi2)]€ ¥ [1.83, 1.83]€.
The posterior distribution over plans is then:

fi = ‡

3
≠

5
2.16
13.68

6
≠

5
1.83
1.83

64
¥

5
0.99
0.01

6

As can be seen, the most likely plan is the first one, in accordance with the con-
clusions of Example 2. The action to be applied by the agent is the first action of
fi1.

The Active Inference algorithm is summarised in pseudo-code in Algorithm 1.

Algorithm 1: Action selection with Active Inference

1: Set C Û Prior preferences
2: for · = 1 : T do
3: If not specified, get state from D if · == 1
4: If not specified, get observation from A
5: Compute F for each plan Û Equation (5.2)
6: Update posterior state sfi

·
Û Equation (5.3)

7: Compute G for each plan Û Equation (5.4)
8: Bayesian model averaging Û Equation (5.6)
9: Action selection Û Equation (5.7)

10: end for
11: Return a Û Preferred action

Multiple sets of states and observations
The Active Inference model introduced in this section can also handle multiple sets
of independent states and observations [126]. A famous example in the Active In-
ference literature covers a rat in a T-maze [47]. The rat is seeking a reward (cheese)
but the location of the cheese is only known after receiving a cue. In this case, one
set of states encodes the location of the rat, while another set encodes the initially
unknown location of the cheese. Each independent set of states is called a state
factor. In the same way, there can be multiple sets of observations coming from
di�erent sensors. Each set is a di�erent observation modality. The literature con-
tains step-by-step tutorials on Active Inference with fully worked-out toy examples
including multiple factors and modalities [126, 62]. We provide explicit models for
our robotic case with multiple state factors and observations in Sec. 5.4.1.

5.3.2. Background on BTs

We now describe the high-level concepts on the basis of BTs according to previous
work [96, 32]. These concepts will be useful for understanding the novel hybrid
scheme proposed in the next section. A BT is a directed tree composed of nodes
and edges that can be seen as a graphical modeling language. It provides a struc-
tured representation for the execution of actions that are based on conditions and

5.3. Background on Active Inference and BTs

5

71

Figure 5.2: Example of BT. The tick traverses the tree starting from the Root. If Condition is
true Action1 is executed. Then, if Action1 returns success, the Root returns success, otherwise

Action2 is executed.

observations in a system. The nodes in a BT follow the classical definition of par-
ents and children. The root node is the only node without a parent, while the leaf
nodes are all the nodes without children. In a BT, the nodes can be divided into
control flow nodes (Fallback, Sequence, Parallel, or Decorator), and into execution
nodes (Action or Condition) which are the leaf nodes of the tree. When executing a
given BT in a control loop, the root node sends a tick to its child. A tick is nothing
more than a signal that allows the execution of a child. The tick propagates in the
tree following the rules dictated by each control node. A node returns a status to
the parent, which can be running if its execution has not finished yet, success if the
goal is achieved, or failure in the other cases. At this point, the return status is
propagated back up the tree, which is traversed again following the same rules. The
most important control nodes are:

Fallback nodes A fallback node ticks its children from left to right. It returns
success (or running) as soon as one of the children returns success (or running).
When a child returns success or running, the fallback does not tick the next child,
if present. If all the children return failure, the fallback returns failure. This node
is graphically identified by a gray box with a question mark "?";

Sequence nodes The sequence node ticks its children from left to right. It returns
running (or failure) as soon as a child returns running (or failure). The sequence
returns success only if all the children return success. If a child returns running or
failure, the sequence does not tick the next child, if present. In the library, we used
to implement our BTs [39] the sequence node, indicated with [æ], keeps ticking a
running child, and it restarts only if a child fails. Faconti and Colledanchise [39]
provide also reactive sequences [æR] where every time a sequence is ticked, the
entire sequence is restarted from the first child.

The execution nodes are Actions and Conditions:

5

72

Action nodes An Action node performs an action in the environment. While
an action is being executed, this node returns running. If the action is completed
correctly it returns success, while if the action cannot be completed it returns failure.
Actions are represented as red rectangles;

Condition nodes A Condition node determines if a condition is met or not,
returning success or failure accordingly. Conditions never return running and do
not change any states or variables. They are represented as orange ovals;

An example BT is given in Fig. 5.2.

5.4. Active Inference and BTs for Reactive Action

Planning and Execution

In this section, we introduce our novel approach using BTs and Active Inference.
Even though Active Inference is a very promising theory, from a computational
perspective computing the expected free-energy for each possible plan that a robot
might take is cost-prohibitive. This curse of dimensionality is due to the combina-
torial explosion when looking deep into the future [34]. To solve this problem, we
propose to replace deep plans with shallow trees that are hierarchically composable.
This will allow us to simplify our o�ine plans, exploit opportunities, and act in-
telligently to resolve local unforeseen contingencies. Our idea consists of two main
intuitions:

• To avoid combinatorial explosion while planning and acting with Active Infer-
ence for long-term tasks we specify the nominal behavior of an agent through
a BT, used as a prior. In doing so, BTs provide global reactivity to foreseen
situations

• To avoid coding every possible contingency in the BT, we program only desired
states o�ine, and we leave action selection to the online Active Inference
scheme. Active Inference provides then local reactivity to unforeseen situations.

To achieve such a hybrid integration, and to be able to deploy this architecture
on real robotic platforms, we addressed the following three fundamental problems:
1) how to define the generative models for Active Inference in robotics, 2) how to
use BTs to provide priors as desired states to Active Inference, 3) how to handle
action preconditions in Active Inference and possible conflicts which might arise at
run-time in a dynamic environment.

5.4.1. Definition of the models for Active Inference

The world in which a robot operates needs to be abstracted such that the Active
Inference agent can perform its reasoning processes. In this work, we operate in a
continuous environment with the ability to sense and act through symbolic decision-
making. In the general case, the decision-making problem will include multiple sets
of states, observations, and actions. Each independent set of states is a factor,

5.4. Active Inference and BTs for Reactive Action Planning and
Execution

5

73

for a total of nf factors. For a generic factor fj where j œ J = {1, ..., nf }, the
corresponding state factor is:

s(fj) =
Ë
s(fj ,1), s(fj ,2), ..., s(fj ,m

(fj))
È€

,

S =
)

s(fj)
|j œ J

*
(5.8)

where m(fj) is the number of mutually exclusive symbolic values that a state factor
can have. Each entry of s(fj) is a real value between 0 and 1, and the sum of the
entries is 1. This represents the current belief state. Then, we define x œ X as the
continuous states of the world and the internal states of the robot are accessible
through the symbolic perception system. The role of this perception system is to
compute the symbolic observations based on the continuous state x, such that they
can be manipulated by the discrete Active Inference agent. Observations o are
used to build a probabilistic belief about the current state. Assuming one set of
observations per state factor with r(fj) possible values, it holds:

o(fj) =
Ë
o(fj ,1), o(fj ,2), ..., o(fj ,r

(fj))
È€

,

O =
)

o(fj)
|j œ J

*
(5.9)

Additionally, the robot has a set of symbolic skills to modify the corresponding state
factor:

a· œ –(fj) =
)

a(fj ,1), a(fj ,2), ..., a(fj ,k
(fj))*,

A =
)

–(fj)
|j œ J

*
(5.10)

where k(fj) is the number of actions that can a�ect a specific state factor fj . Each
generic action a(fj ,·) has associated a symbolic name, parameters, pre- and postcon-
ditions:

Action a(fj ,·) Preconditions Postconditions
action_name(par) prec

a
(fj ,·) post

a
(fj ,·)

where prec
a

(fj ,·) and post
a

(fj ,·) are first-order logic predicates that can be eval-
uated at run-time. A logical predicate is a boolean-valued function P : X æ {true,
false}.

Finally, we define the logical state l(fj) as a one-hot encoding of s(fj). We indicate
as Lc(·) =

)
l(fj)

|j œ J
*

the (time varying) current logical state of the world.
Defining a logic state based on the probabilistic belief s built with Active Inference,
instead of directly using the observation of the states o, increases robustness against
noisy sensor readings, as we will explain in Example 12. Given the model of the
world just introduced, we can now define for each factor fj the likelihood matrix
A(fj), the k(fj) transition matrices B

a
(fj ,·)
·

and the prior preferences C(fj). When an
observation is available, A(fj) provides information about the corresponding value of
a state factor s(fj). For a particular state, the probability of a state observation pair

5

74

o
(fj)
· , s

(fj)
· is given by A(fj)

œ Rr
(fj)◊m

(fj)
. In case a state factor is observable with

full certainty, each state maps into the corresponding observation thus the likelihood
matrix is the identity of size m(fj), I

m
(fj) . Note that knowing the mapping between

observations and states does not necessarily mean that we can observe all the states
at all times. Observations can be present or not, and when they are the likelihood
matrix indicates the relation between that observation and the state. This relation
can be more complex and incorporate uncertainty in the mapping as well. To define
the transition matrices, we need to encode in a matrix form the e�ects of each action
on the relevant state factors. The probability of a ending up in a state s

(fj)
·+1, given

s
(fj)
· and action a

(fj ,·)
· is given by:

P (s(fj)
·+1|s(fj)

·
, a(fj ,·)

·
) = Cat(B

a
(fj ,·)
·

s(fj)
·

),

B
a

(fj ,·)
·

œ Rm
(fj)◊m

(fj)
(5.11)

In other words, we define B
a

(fj ,·)
·

as a square matrix encoding the post-conditions of

action a
(fj ,·)
· . The prior preferences over observations (or states) need to be encoded,

for each factor, in C(fj)
œ Rm

(fj)
, with C =

)
C(fj)

|j œ J
*

. The higher the value of a
preference, the more preferred a particular state is, and vice-versa. Priors are formed
according to specific desires and they will be used to interface Active Inference and
BTs. Finally, one also has to define the vector encoding the initial belief about
the probability distribution of the states, that is D(fj)

œ Rm
(fj)

. This vector is
normalized, and when no prior information is available, each entry will be 1/m(fj).
In this work, we assume the model parameters such as likelihood and transition
matrices to be known. However, one could use the free-energy minimization to
learn them [46].

Example 5. Consider a mobile manipulator in a retail environment. We want the
robot to be able to decide when to navigate to a certain goal location. To achieve
so we need one state factor s(loc), one observation o(loc), and one symbolic action
a(loc,1) = moveTo(goal). The robot can also decide not to do anything, so a(loc,2) =
idle.

Actions Preconditions Postconditions
moveTo(goal) - l(loc) = [1 0]€
idle - -

The current position in space of the robot is a continuous value x œ X . However,
during execution, the robot is given an observation o(loc) which indicates simply if
the goal has been reached or not. In this case A(loc) = I2. The agent is then
constantly building a probabilistic belief s(loc) encoding the chances of being at the
goal. In case the robot has not yet reached the goal, a possible configuration at time
· is the following:

o(loc) =
5

isAt(goal)
!isAt(goal)

6
=

5
0
1

6
, s(loc) =

5
0.08
0.92

6
, (5.12)

5.4. Active Inference and BTs for Reactive Action Planning and
Execution

5

75

l(loc) =
5
0
1

6
, BmoveT o =

5
0.95 0.9
0.05 0.1

6
, Bidle =

5
1 0
0 1

6

The preference over a state to be reached is given through C(loc). A robot wanting
to reach a location will have, for instance, a preference C(loc) = [1, 0]€.

The transition matrix BmoveT o encodes the probability of reaching a goal loca-
tion through the action moveTo(goal), which might fail with a certain probability.
We also encode an Idle action, which does not modify any state, but it provides
information on the outcome of the action selection process as we will see in the next
subsections. In this simple case, the world state is just a single state factor s(loc).
On the other hand, in later more complicated examples, the world state will contain
all the di�erent aspects of the world, for which a probabilistic representation of their
value is built and updated.

Using the proposed problem formulation for the Active Inference models, we can
abstract redundant information that is unnecessary to make high-level decisions.
For instance, in the example above, we are not interested in building a probabilistic
belief of the current robot position. To decide if to use the action moveTo(goal) or
not, it is su�cient to encode if the goal has been reached or not.

5.4.2. BTs integration: planning preferences, not actions

To achieve a meaningful behavior in the environment through Active Inference, we
need to encode specific desires into the agent’s brain through C =

)
C(fj)

|j œ J
*

.

A prior as BT We propose to extend the available BT nodes in order to be able
to specify desired states to be achieved as leaf nodes. We introduce a new type of
leaf node called prior nodes, indicated with a green hexagon. These nodes can be
seen as standard action nodes but instead of commanding an action, they simply set
the desired value of a state in C and they run Active Inference for action selection.
The prior node is then just a leaf node in the BT which returns: Success if a state
is achieved, Running while trying to achieve it, or Failure if for some reason it is
not possible to reach the desired state. The return statuses are according to the
outcome of our reactive action selection process as explained in Section 5.4.4.

Sub-goals through BTs To reach a distal goal state, we plan achievable sub-
goals in the form of desired logical states l, according to the available actions that
a robot possesses. This idea of using sub-goals was already used in past work [72],
but in our solution with BTs, we provide a task-independent way to define sub-goals
which is only based on the set of available skills of the robot, such that we can make
sure that it can complete the task. At planning time, we define the ideal sequence
of states and actions to complete a task such that subsequent sub-goals (or logical
desired states) are achievable by means of one action. This can be done manually or
through automated planning. At run-time, however, we only provide the sequence
of states to the algorithm, as in Fig. 5.3.

5

76

Figure 5.3: The path among states is planned o�ine using the available set of actions but only
the sequence of states is provided at run-time. Actions are chosen online from the available set

with Active Inference.

Example 6. To program the behavior of the robot in Example 5 to visit a certain
goal location, the BT will set the prior over s(loc) to C(loc) = [1, 0]€ meaning that
the robot would like to sense to be at goal.

A classical BT and a BT for Active Inference with prior nodes are reported in
Fig. 5.4. Note that the action is left out in the BT for Active Inference because
these are selected at runtime. In this particular case, the condition isAt(goal) can
be seen as the desired observation to obtain.

Figure 5.4: BT to navigate to a location using a classical BT and a BT for Active Inference. One
action moveTo(goal) is available and one condition isAt(goal) provides information if the

current location is at the goal. The prior node for Active Inference (green hexagon) sets the
desired prior and runs the action selection process.

Note that the amount of knowledge (i.e. number of states and actions) that is
necessary to code a classical BT or our Active Inference version in Example 6 is
the same. However, we abstract the fallback by planning in the state space and
not in the action space. Instead of programming the action moveTo(goal) we only
set a prior preference over the state isAt(goal) since the important information
is retained in the state to be achieved rather than in the sequence of actions to

5.4. Active Inference and BTs for Reactive Action Planning and
Execution

5

77

Figure 5.5: Overview of the control architecture for reactive action planning and execution using
Active Inference. Adaptive action selection is performed according to Algorithm 2. The symbolic

perception module computes the symbolic observations based on the continuous state. In this
work, we assume this mapping is known and encode it through simple rules based on

measurements from the robot’s sensors. However, learning methods to define this relationship
from data could be employed as well.

do so. Action selection through Active Inference will then select the appropriate
skills to match the current state of the world with the desired one, minimizing this
discrepancy through free-energy minimization.

Example 7. Consider the scenario in Example 5 with the prior as in Example 6.
The prior is specifying a preference over being at the desired goal location, but the
mobile manipulator is not. The plan generated at runtime with Alg. 1 (see Examples
2 and 4) would be to perform the action moveTo(goal), since this increases the
probability of getting an observation isAt(goal).

As we will thoroughly explain in Sec. 5.5.1, our algorithm creates online a stable
region of attraction from the current state to the goal state instead of planning it
o�ine through fallbacks. See Example 11 for a concrete case.

5.4.3. Action preconditions and conflicts

Past work on Active Inference [72] was based on the assumption that actions were
always executable and non-conflicting, but these do not hold in more realistic sce-
narios.

Action preconditions in Active Inference We propose to encode action pre-
conditions as desired logical states that need to hold to be able to execute a particular
action. This is illustrated in the next example.

Example 8. We add one more action to the set of skills of our mobile manipula-
tor: pick(obj) and the relative transition matrix Bpick. The action templates are
extended as follows:

Actions Preconditions Postconditions
moveTo(goal) - l(loc) = [1 0]€

l(reach) = [1 0]€
pick(obj) isReachable(obj) l(hold) = [1 0]€

5

78

o(hold) =
5

isHolding(obj)
!isHolding(obj)

6
, Bpick =

5
0.95 0.9
0.05 0.1

6

o(reach) =
5

isReachable(obj)
!isReachable(obj)

6
(5.13)

where we added a new logical state l(hold), the relative belief s(hold) and obser-
vation o(hold), which indicates if the robot is holding the object obj. In the simplest
case, we suppose that the only precondition for successful grasping is that obj is
reachable. We then add a logical state l(reach), as well as s(reach) and o(reach), to
provide Active Inference with information about this precondition. o(reach) can be
built for instance trying to compute a grasping pose for a given object. The robot
can act on the state l(hold) through pick, and it can act on l(reach) through moveTo.

Conflicts resolution in Active Inference Conflict resolution due to dynamic
changes in the environment and online decision-making is handled through modifi-
cation of the prior preferences in C. The BT designed o�ine specifies at runtime
the desired state to be achieved. This is done by populating the prior preference
over a state with the value of one. Note that if there is no goal, the preferences
over states are set to zero everywhere so there is no incentive to act to achieve a
di�erent state. Given some preferences over states, the online decision-making al-
gorithm with Active Inference selects an action, and checks if the preconditions are
holding according to the current belief state. If so, the action is executed, if not,
the missing preconditions are added to the current preferred state with a higher
preference (i.e. > 1), in our case with value 2. This can lead to conflicts with
the original BT [31], that is the robot might want to simultaneously achieve two
conflicting states. However, the state relative to a missing precondition has higher
priority (i.e. > 1) by construction. As explained in Algorithm 2, if preconditions
are missing at runtime, action selection is performed again with the updated prior
C, such that actions that will satisfy them are more likely. With our method, there
is no need to explicitly detect a conflict and re-ordering a BT then, as was done in
past work on the dynamic expansion of BTs [31]. In fact, since the decision-making
with Active Inference happens continuously during task execution, once a missing
precondition is met this is removed from the current desired state. Thus, the only
remaining preference is the one imposed by the BT, which can now be resumed.
This leads to a natural conflict resolution and plan resuming without ad-hoc recov-
ery mechanisms. The advantage of Active Inference is that we can represent which
state is important but also when with di�erent values of preference. Since missing
preconditions are added to the current prior with a higher preference with respect
to the o�ine plan, this will induce a behavior that can initially go against the initial
BT because the new desire is more appealing to be satisfied. Conflict resolution is
then achieved by locally updating prior desires about a state, giving them higher
preference. The convergence analysis of this approach is reported in Section 5.5,
and a concrete example of conflict resolution in a robotic scenario is presented in
Sec. 5.6.4, Example 13.

5.5. Theoretical analysis

5

79

5.4.4. Complete control scheme

Our solution is summarised in Algorithm 2 and Fig. 5.5. Every time a BT is ticked,
given a certain frequency, Algorithm 2 is run. The symbolic perception layer takes
the sensory readings and translates these continuous quantities into logical observa-
tions. This can be achieved through user-defined models according to the specific
environment and sensors available. The logical observations are used to perform
belief updating to keep a probabilistic representation of the world in S. Then, the
logical state Lc(·) is formed. Every time a prior node in the BT is ticked, the
corresponding priors in C are set.

For both missing preconditions and conflicts, high-priority priors are removed
from the preferences C whenever the preconditions are satisfied or the conflicts re-
solved (lines 6-10), allowing to resume the nominal flow of the BT. Active Inference
from Algorithm 1 is then run for action selection. If no action is required since the
logical state corresponds to the prior, the algorithm returns Success. Otherwise,
the selected action’s preconditions are checked and eventually pushed with higher
priority. Then, action selection is performed with the updated prior. This proce-
dure is repeated until either an executable action is found, returning Running, or
no action can be executed, returning Failure. The case of Failure is handled
through the global reactivity provided by the BT. This creates dynamic and stable
regions of attraction as explained in Section 5.5.1, by means of sequential controller
composition [23] (lines 17-31 of Algorithm 2).

Crucially, in this work, we propose the new idea of using dynamic priors. For a
factor fj , C(fj) is not fixed a priori as in past Active Inference works, but instead,
it can change over time according to the BT for a task. This allows preconditions
checking and conflict resolution within Active Inference. A robot can follow a long
programmed routine while autonomously taking decisions to locally compensate for
unexpected events. This considerably reduces the need for hard-coded fallbacks,
allowing to compress the BT to a minimal number of nodes.

5.5. Theoretical analysis

5.5.1. Analysis of convergence

We provide a theoretical analysis of the proposed control architecture. There are
two possible scenarios that might occur at run-time. Specifically, the environment
might or might not di�er from what has been planned o�ine through BTs. These
two cases are analyzed in the following to study the convergence to the desired goal
of our proposed solution.

The dynamic environment IS as planned
In a nominal execution, where the environment in which a robot is operating is
the same as the one at planning time, there is a one-to-one equivalence between
our approach and a classical BT formulation. This follows directly by the fact that
the BT is defined according to Section 5.4.2, so each subsequent state is achievable
by means of one single action. At any point of the task, the robot finds itself in
the planned state and has only one preference over the next state given by the
BT through C. The only action which can minimize the expected free-energy is

5

80

Algorithm 2: Pseudo-code for Adaptive Action Selection

1: /* Get desired prior and parameters from BT */
2: C, param Ω BT Û With priority 1
3: /* Set current observations, beliefs, and logical state */
4: Set O, S, Lc(·)
5: /* Remove preferences with high-priority (i.e. > 1) if satisfied */
6: for all priors C(fj) with preference Ø 1 do
7: if l

(fj)
c holds then

8: Remove pushed preference for l
(fj)
c ;

9: end if
10: end for
11: /* Run Active Inference given O, S and C */
12: a· Ω Action_selection(O, S, C) Û Alg. 1
13: Update Lc(·)
14: if a· == Idle then
15: return Success; Û No action required
16: else
17: /* Check action preconditions */
18: while a· !=Idle do
19: if preca· œ Lc(·) OR preca· = ÿ then
20: Execute(a·);
21: break, return Running; Û Executing a·

22: else
23: /* Push missing preconditions in C */
24: C Ω preca· ; Û With priority 2
25: /* Exclude a· and re-run Alg. 1 */
26: Remove(a·);
27: a· Ω Action_selection(O, S, C)
28: if a· == Idle then
29: return Failure; Û No solution
30: end if
31: end if
32: end while
33: end if

5.5. Theoretical analysis

5

81

the one used during o�ine planning. In a nominal case, then, we maintain all the
properties of BTs, which are well explained in previous literature [32]. In particular,
the behavior will be Finite-Time Successful (FTS) [32] if the atomic actions are
assumed to return success after a finite time. Note that so far we did not consider
actions with the same postconditions. However, in this case, Algorithm 2 would
sequentially try all the alternatives following the given order at design time. This
can be improved for instance by making use of semantic knowledge at runtime to
inform the action selection process about preferences over actions to achieve the
same outcome. This information can be stored for instance in a knowledge base and
can be used to parametrize the generative model for Active Inference.

The dynamic environment IS NOT as planned
The most interesting case is when a subsequent desired state is not reachable as
initially planned. As explained before, in such a case we push the missing precon-
ditions of the selected action into the current prior C to locally and temporarily
modify the goal. We analyze this idea in terms of sequential controllers (or actions)
composition [23], and we show how Algorithm 2 generates a plan that will even-
tually converge to the initial goal. First of all, we provide some assumptions and
definitions that will be useful for the analysis.

Assumption 1 The action templates with pre- and postconditions provided to
the agent are correct;

Assumption 2 A given desired goal is achievable by at least one atomic action;

Definition 1 The domain of attraction of an action ai is defined as the set of its
preconditions. This domain for ai is indicated as D(ai);

Definition 2 We say that an action a1 prepares action a2 if the postconditions Pc

of a2 lie within the domain of attraction of a1, so Pc(a2) ™ D(a1);

Note For the derivations in this section we consider, without lack of generality,
one single factor such that we can drop the superscripts, i.e. C(fj) = C.

Following Algorithm 2 each time a prior leaf node is ticked in the BT, Active
Inference is used to define a sequence of actions to bring the current state towards
the goal. It is su�cient to show, then, that the asymptotically stable equilibrium of
a generic generated sequence is the initial given goal.

Lemma 1. Let Lc(·) be the current logic state of the world and A the set of available
actions. An action ai œ A can only be executed within its domain of attraction, so
when Lc(·) œ D(ai). Let us assume that the goal encoded in C is a postcondition
of an action a1 such that Pc(a1) = C, and that Lc(·) ”= C. If Lc(·) ”œ D(a1),
Algorithm 2 generates a plan fi = {a1, . . . , aN } with domain of attraction D(fi)
according to the steps below.

5

82

1. Let the initial sequence contain a1 œ A, fi(1) = {a1}, D(fi) = D(a1), set
N = 1

2. Remove aN from the available actions, and add the unmet preconditions D(aN)
to the prior C with higher priority, such that C = C fi D(aN)

3. Select aN+1 through Active Inference (Algorithm 1). Then, aN+1 prepares aN

by construction, fi(N +1) = fi(N)fi{aN }, DN+1(fi) = DN (fi)fiD(aN+1), and
N = N + 1

4. Repeat 2, 3 until Lc(·) œ D(aN) OR aN == Idle

If Lc(·) œ D(aN), the sequential composition fi with region of attraction D(fi) =t
ai

D(ai) for i = 1, ..., N stabilizes the system at the given desired state C. If ai œ A

are FTS, then fi is FTS.

Proof. Since Lc(·) œ D(aN) and Pc(aN) ™ D(aN≠1), it follows that Lc(·) is moving
towards C. Moreover, by construction D(a1) ™

t
ai

Pc(ai) for i = 2, ..., N . After
completing action a1, it results Lc(·) © C since by definition Pc(a1) = C.

Note that if Lc(·) œ D(aN) does not hold after sampling all available actions,
it means that the algorithm is unable to find a set of actions that can satisfy the
preconditions of the initially planned action. This situation is a major failure that
needs to be handled by the overall BT. Lemma 1 is a direct consequence of the
sequential behavior composition of FTS actions where each action has e�ects within
the domain of attraction of the action below. The asymptotically stable equilibrium
of each controller is either the goal C, or it is within the region of attraction of
another action earlier in the sequence [32, 23, 93]. One can visualize the idea of
sequential composition in Fig. 5.6.

Figure 5.6: Schematic visualization of the domain of attraction D(·) of di�erent controllers
around the current logical state Lc(·), as well as their postconditions within the domain of

attraction of the controller below.

5.6. Experimental evaluation

5

83

5.5.2. Analysis of robustness

It is not easy to find a common and objective definition of robustness to analyze
the characteristics of algorithms for task execution. One possible way is to describe
robustness in terms of domains or regions of attraction [23, 32]. When considering
task planning and execution with classical BTs, often these regions of attraction are
defined o�ine leading to a complex and extensive analysis of the possible contingen-
cies that might eventually happen [32], and these are specific to each di�erent task.
Alternatively, adapting the region of attraction requires either re-planning [106] or
dynamic BT expansion [31]. Robustness can be measured according to the size of
this region, such that a robot can achieve the desired goal from a plurality of initial
conditions. With Algorithm 2 we achieve robust behavior by dynamically generating
a suitable region of attraction according to the minimization of free-energy. This
region brings the current state towards the desired goal. We then cover only the
necessary region in order to be able to steer the current state to the desired goal,
changing prior preferences at run-time.

Corollary 1. When an executable action aN is found during task execution through
Algorithm 2 such that fi = {a1, . . . , aN }, the plan has a domain of attraction towards
a given goal that includes the current state Lc(·). If D(a1) ™

t
ai

Pc(ai) for i =
2, ..., N the plan is asymptotically stable.

Proof. The corollary follows simply from Lemma 1.

Example 9. Let us assume that Algorithm 2 produced a plan fi = {a1, a2}, a set of
FTS actions, where a2 is executable so Lc(·) œ D(a2), and its e�ects are such that
Pc(a2) © D(a1). Since a2 is FTS, after a certain running time Lc(·) œ Pc(a2). The
next tick after the e�ects of a2 took place, fi = {a1} where this time a1 is executable
since Lc(·) œ D(a1) and Pc(a1) = C. The overall goal is then achieved in a finite
time.

Instead of looking for globally asymptotically stable plans from each initial state
to each possible goal, which can be unfeasible or at least very hard [23], we define
smaller regions of attractions dynamically, according to the current state and goal.

5.6. Experimental evaluation

In this section, we evaluate our algorithm in terms of robustness, safety, and conflict
resolution in two validation scenarios with two di�erent mobile manipulators and
tasks. We also provide a theoretical comparison with classical and dynamically
expanded BTs.

5.6.1. Experimental scenarios

Scenario 1
The task is to pick one object from a crate and place it on top of a table. This object
might or might not be reachable from the initial robot configuration, and the placing
location might or might not be occupied by another movable box. Crucially, the state
of the table cannot be observed until the table is reached. This results in a partially

5

84

observable initial state at the start of the mission where the place location has a
50% chance of being either free or occupied. Additionally, we suppose that other
external events, or agents, can interfere with the execution of the task, resulting
in either helping or adversarial behavior. The robot used for the first validation
scenario is a mobile manipulator consisting of a Clearpath Boxer mobile base, in
combination with a Franka Emika Panda arm. The experiment for this scenario
was conducted in a Gazebo simulation in a simplified version of a real retail store,
see Fig. 5.7.

Figure 5.7: Simulation of the mobile manipulation task.

Scenario 2
The task is to fetch a product in a mockup retail store and stock it on a shelf using
the real mobile manipulator TIAGo, as in Fig. 5.8.

Importantly, the BT for completing the task in the real store with TIAGo is
the same one used for simulation with the Panda arm and the mobile base, just
parametrized with a di�erent object and place location. The code developed for the
experiments and theoretical examples is publicly available4.

Figure 5.8: Experiments with TIAGo, stocking a product on the shelf.

4https://github.com/cpezzato/discrete_active_inference

https://github.com/cpezzato/discrete_active_inference

5.6. Experimental evaluation

5

85

5.6.2. Implementation

Models for Scenarios 1 and 2
In order to program the tasks for Scenarios 1 and 2, we extended the robot skills de-
fined in our theoretical Example 8. We added then two extra states and their relative
observations: isPlacedAt(loc, obj) called s(place), and isLocationFree(loc)
called s(free). The state s(place) indicates whether or not obj is at loc, with associ-
ated probability, while s(free) indicates whether loc is occupied by another object.
Then, we also had to add three more actions, which are 1) place(obj, loc), 2)
push(obj) to free a placing location, and 3) placeOnPlate(obj), to place the ob-
ject held by the gripper on the robot’s plate. We summarise states and skills for the
mobile manipulator in Table 5.2.

Table 5.2: Notation for states and actions

State, Boolean State Description

s(loc), l(loc) Belief about being at the goal
location

s(hold), l(hold) Belief about holding an object
s(reach), l(reach) Belief about reachability of an object

s(place), l(place) Belief about an object being placed
at a location

s(free), l(free) Belief about a location being free

Actions Preconditions Postconditions
moveTo(goal) - l(loc) = [1 0]€

l(reach) = [1 0]€
pick(obj) isReachable(obj) l(hold) = [1 0]€

!isHolding
place(obj,loc) isLocationFree(loc) l(place) = [1 0]€
push() !isHolding l(free) = [1 0]€
placeOnPlate() - l(hold) = [0 1]€

The likelihood matrices are just the identity, while the transition matrices simply
map the postconditions of actions, similarly to Example 8. Note that the design
of actions and states is not unique, and other combinations are possible. One can
make atomic actions increasingly more complex, or add more preconditions. The
plan, specified in a BT, contains the desired sequence of states to complete the
task, leaving out from the o�ine planning other complex fallbacks to cope with
contingencies associated with the dynamic nature of the environment. The BT for
performing the tasks in both Scenario 1 and Scenario 2 is reported in Fig. 5.9. Note
that the fallback for the action moveTo could be substituted by another prior node
as in Fig. 5.4. However, we chose this alternative solution to highlight the hybrid
combination of classical BTs and Active Inference. Design principles to choose when
to use prior nodes and when normal fallbacks are reported in Sec.5.6.6.

5

86

Figure 5.9: BT with prior nodes to complete the mobile manipulation task in the retail store,
Scenario 1 and 2. locs, locp are respectively the location in front of the shelf in the store and the

desired place location of an item

Execution of Algorithm 2
We provide a full execution of Algorithm 2 in Example 10. We consider Scenario 1,
for which the initial configuration of the robot is depicted in Fig. 5.7, and the BT
for the task is the one if Fig. 5.9.

Example 10. Let us consider Algorithm 2 and Scenario 1. At the start of the task,
the first node isHolding(obj) in the BT is ticked, and the corresponding prior
preference is set, C(hold) = [1, 0]€ (line 2 Alg. 2). Since the robot is not holding
the desired obj and it is not reachable, o(hold) = o(reach) = [0, 1]€. At the start,
the initial states are a uniform distribution s(hold) = s(reach) = [0.5, 0.5]€ (line
4). Since the task just started, the only prior preference is the one set by the BT,
so there are no high-priority priors (lines 6-10). Algorithm 1 is then run (line 12),
updating the states s(hold), s(reach) according to the given observations, and selecting
an action a· . In this example, the updated most probable logical state (line 13) will
be l(hold)

c = l(reach)
c = [0, 1]€ and a· will be pick(obj) since there is a mismatch

between the C(hold) and l(hold)
c . The preconditions of pick(obj) are checked (line

19). This action requires the object to be reachable, so this missing precondition
is added to the preferences with high priority, that is C(reach) = [2, 0]€. Active
Inference is run again with the updated prior (line 27). This process (lines 17-32)
is repeated until either an executable action is found (lines 19-21) or the selected
action is idle (lines 28-30). In the first case, a· is executed and the algorithm
returns running. In the second case, a failure is returned indicating that no action
can be performed to satisfy prior preferences. In this example, re-running Active
Inference (line 27) with C(hold) = [1, 0]€ and C(reach) = [2, 0]€ would return the
action moveTo. There are no preconditions for this action, thus it can be executed
(lines 20-21). The BT keeps being ticked at a certain frequency, and until the object
becomes reachable, the same steps as just described will be repeated. As soon as
the robot can reach the object, so l(reach)

c = [1, 0]€, the preference for C(reach)

is removed (lines 6-10) and set to [0, 0]€. This time, when the action pick is
selected, its preconditions are satisfied and thus it can be executed. After holding the

5.6. Experimental evaluation

5

87

object, when the BT is ticked no action is needed since the prior is already satisfied.
Algorithm 2 returns success (lines 14-16) and the task can proceed with the next
node in the BT.

Note that the BT designed for Scenario 1 was entirely reused in Scenario 2, with
the only adaptation of the desired object and locations in the BT. In Sec. 5.6.3 and
Sec. 5.6.4, robustness and run-time conflicts resolution are analyzed for Scenario 1,
but similar considerations can be derived for scenario 2.

5.6.3. Robustness: Dynamic regions of attraction

With our approach, we improve robustness compared to classical BTs in two di�erent
ways: 1) in terms of task execution, and 2) against noisy sensory readings. We
elaborate on the following:

Robustness of task execution
With our algorithm we can generate complex regions of attraction dynamically at
runtime, alleviating the burden of programming every fallback beforehand in a BT,
which is prone to fail in edge cases that haven’t been considered at design time.
We illustrate this in the example below. Consider Example 10. According to the
current world’s state, Algorithm 2 selects di�erent actions to generate a suitable
domain of attraction:

Example 11. The initial conditions are such that the object is unreachable. Let
s(hold) be the probabilistic belief of holding an object, and s(reach) be the probabilistic
belief of its reachability. The domain of attraction generated by Algorithm 2 at
runtime is depicted in Fig. 5.10 using phase portraits [32]. Actions, when performed,
increase the probability of their postconditions.

Figure 5.10: Dynamic domain of attraction generated by Algorithm 2 for Example 11. (a) relates
to the action pick(obj), and (b) is the composition of moveTo(loc) and pick(obj) after

automatically updating the prior preferences

From Fig. 5.10, we can see that the goal of the Active Inference agent is to hold
obj so C(hold) = [1 0]€. The first selected action is then pick(obj). However, since

5

88

the current logical state is not contained in the domain of attraction of the action,
the prior preferences are updated with the missing (higher priority) precondition ac-
cording to the action template provided, that is isReachable so C(reach) = [2, 0]€.
This results in a sequential composition of controllers with a stable equilibrium cor-
responding to the postconditions of pick(obj). On the other hand, to achieve the
same domain of attraction with a classical BT, one would require several additional
nodes, as explained in Sec. 5.6.6 and visualized in Fig. 5.14. Instead of extensively
programming fallback behaviors, Algorithm 2 endows our actor with deliberation ca-
pabilities and allows the agent to reason about the current state of the environment,
the desired state, and the available action templates.

Robustness against noisy sensory readings
BTs are purely reactive which means that every action, or sub-behavior, is executed
in response to an event or a condition determined at the current time step · . If an
instantaneous observation is erroneous, wrong transitions could be triggered because
in classical BTs there is no notion and representation of a “state" that is maintained
and updated over time. This might be a problem in the presence of noise in the
observations.

Example 12. Consider a generic fallback based on a condition check in a BT, as
in Fig. 5.11. The perception system, on which the condition check is based produced
at time · an erroneous observation, for instance, due to poor lighting conditions in
an object detection algorithm. If the condition is checked at time · , a purely reactive
system would produce a wrong transition because the condition returns failure, and
the fallback would tick the action.

Figure 5.11: Erroneous transition in a purely reactive BT due to a noisy observation at time · .
F , S, and R mean respectively, Failure, Success and Running.

In Active Inference, the probabilistic representation of a state helps filter out this
kind of spurious sensory input. For instance, a wrong observation like the one above
would have caused the robot to be just slightly less confident about that state, with
no erroneous transition.

5.6.4. Resolving run-time conflicts

Unexpected events a�ecting the system during action selection can lead to conflicts
with the initial o�ine plan. This is the case in one execution of the mobile manipu-
lation task as in Fig. 5.12 where after picking the object and moving in front of the
table, the robot senses that the place location is not free. In this situation, a conflict

5.6. Experimental evaluation

5

89

with the o�ine plan arises, where there is a preference for two mutually exclusive
states, namely holding the red cube but also having the gripper free in order to
empty the place location. We describe this situation more formally in Example 13,
and we then explain how such a conflict is resolved.

Example 13. For solving the situation in Fig. 5.12 using the BT in Fig. 5.9,
the robot should 1) hold the object, 2) be at the desired place location, and 3) have
the object placed. The preferences are planned o�ine and the BT populates the
relative priors with a unitary preference at runtime (eq. (5.14a)). At this point of
the execution, there is a mismatch between the current logical belief about the state
l(place) and the desired one, in fact C(place) di�ers from l(place) (eq. (5.14b)) because
the object is not placed at the desired location.

C(hold) =
5
1
0

6
, C(place) =

5
1
0

6
(5.14a)

l(hold) =
5
1
0

6
, l(place) =

5
0
1

6
(5.14b)

The selected action with Active Inference in this situation is place(obj,loc). The
missing precondition on the place location to be free is added to the prior (see C(free)

in eq. (5.15)) and the action selection is performed again. The only action that can
minimize free-energy further is now push. Then, the missing precondition for this
action (i.e. !isHolding) is added in the current prior with higher priority in C(hold)

(line 24 in Algorithm 2).

C(free) =
5
2
0

6
, C(hold) =

5
1
2

6
(5.15)

The required push action to proceed with the task has a conflicting precondition
with the o�ine plan, see C(hold) in eq. (5.15).

Figure 5.12: Example of conflict during mobile manipulation using the BT from Fig. 5.9. The BT
is defining a preference of 1 over holding the red cube, but the runtime situation requires a free

gripper to safely push away an unexpected object. Active Inference is then required to achieve an
unmet precondition with higher preference.

Even though the desired state specified in the BT is isHolding(obj), at this
particular moment there is a higher preference for having the gripper free due to a

5

90

missing precondition to proceed with the plan. Algorithm 2 selects then the action
that best matches the current prior desires, or equivalently that minimizes expected
free-energy the most, that is placeOnPlate to obtain l(hold) = [0, 1]€. This allows,
then, to perform the action push. Once the place location is free after pushing, the
high-priority preference on having the location free is removed from the prior. As a
consequence, there are also no more preferences pushed with high priority over the
state l(hold) which is only set by the BT as C(hold) = [1, 0]€. The red cube is then
picked again and placed on the table since no more conflicts are present.

Videos of the simulations and experiments can be found online5. The BTs to
encode priors for Active Inference are implemented using a standard library [39].

5.6.5. Safety

When designing adaptive behaviors for autonomous robots, attention should be paid
to safety. The proposed algorithm allows to retain control over the general behavior
of the robot and to force a specific routine in case something goes wrong leveraging
the structure of BTs. In fact, we are able to include adaptation through Active
Inference only in the parts of the task that require it, keeping all the properties
of BTs intact. Safety guarantees for the whole task can easily be added by using
a sequence node where the leftmost part is the safety criteria to be satisfied [32]
by the right part of the behavior, as shown in Fig. 5.13. In this example, the BT

Figure 5.13: BT with safety guarantees while allowing runtime adaptation.

allows avoiding battery drops below a safety-critical value while performing a task.
The sub-tree on the right can be any other BT, for instance, the one used to solve
Scenario 1 and Scenario 2 from Fig. 5.9.

Since, by construction, a BT is executed from left to right, one can ensure that
the robot is guaranteed to satisfy the leftmost condition first before proceeding with
the rest of the behavior. In our specific case, this allows us to easily override the
online decision-making process with Active Inference where needed, in favor of safety

5https://youtu.be/dEjXu-sD1SI

https://youtu.be/dEjXu-sD1SI

5.6. Experimental evaluation

5

91

Figure 5.14: Possible standard BT to perform Scenario 1 and Scenario 2 without prior nodes for
Active Inference. Parts of the behavior that require several fallbacks can be substituted by prior

nodes for online adaptation instead.

routines. Note that safety guarantees can also be provided in specific parts of the
three only, and not necessarily for the whole tree. For example in Fig. 5.9, one
might ensure navigation at a low speed only while transporting an object to a place
location.

5.6.6. Comparison and design principles

Comparison with other BT approaches
The hybrid scheme of Active Inference and BTs aims to provide a framework for
reactive action planning and execution in robotic systems. For this reason, we com-
pare the properties of our approach with standard BTs [32] and with BTs generated
through expansion from goal conditions [31]. Scenario 1 and Scenario 2 can be
tackled, for instance, by explicitly planning every fallback behavior with classical
BTs, as in Fig. 5.14. Even if this provides the same reactive behavior as the one
generated by Fig. 5.9, far more (planning) e�ort is needed: to solve the same task
one would require 12 control nodes, 8 condition nodes, and 7 actions, for a total of
27 nodes compared to the 6 needed in our approach that is an ≥ 88% compression.

Importantly, the development e�ort of a prior node in a BT is the same as
a standard action node. It is true that Active Inference requires specifying the
likelihood and transition matrices encoding actions pre- and postconditions, but
this has to be done only once while defining the available skills of a robot, and it is
independent of the task to be solved. Thus, a designer is not concerned with this
when adding a prior node in a BT.

Instead of planning several fallbacks o�ine, BTs can dynamically be expanded
from a single goal condition, through back-chaining, to blend planning and acting
online [31]. To solve Scenario 1 and Scenario 2 with this approach, one needs to
define a goal condition isPlacedAt(obj, loc) similarly to our solution, and define
the preconditions of the action place(obj, loc) such that they contain the fact
that the robot is holding the object, that the place location is reachable, and it
is free. Then, to solve Scenarios 1 and 2 one needs to define only the final goal
condition and run the algorithm proposed by Colledanchise and coauthors [31]. Even

5

92

though this allows to complete tasks similar to what we propose, this strategy [31]
comes with a fundamental theoretical limitation: adaptation cannot be selectively
added only to specific parts of the tree. The whole behavior is indeed determined at
runtime based on preconditions and e�ects of actions starting from a goal condition.
The addition of safety guarantees can only happen for the whole task, and not in
selected parts of the tree derived online.

To conclude, the hybrid combination of Active Inference and BTs allows for com-
bining the advantages of both o�ine design of BTs and online dynamic expansion.
In particular: it drastically reduces the number of necessary nodes planned o�ine
in a BT, it can handle partial observability of the initial state, and it allows to
selectively add adaptation and safety guarantees in specific parts of the tree.

Another important di�erence between our approach and other BTs solutions is
that we introduced the concept of state in a BT through the prior node for which a
probabilistic belief is built, updated, and used for action planning at runtime with
uncertain action outcomes.

Table 5.3 reports a summary of the comparison with standard BTs and BT with
dynamic expansion for Scenarios 1 and 2.

Table 5.3: Summary of comparison

Approach
Hand-
crafted
nodes

Unforeseen
contingen.

Selective
adaptation

Adaptive
safety

guarantees
Standard

BT 27 7 7 3

Dynamic
BT [31] 1 3 7

Only for the
task as a

whole
Ours 6 3 3 3

Comparison with ROSPlan
One may argue that other solutions such as ROSPlan [26] could also be used for
planning and execution in robotics in dynamic environments. ROSPlan leverages
automated planning with PDDL2.1, but it is not designed for fast reaction in case
of dynamic changes in the environment caused by external events, and would not
work in case of a partially observable initial state. Consider Scenario 1. At the
start of the task, the robot can sense that the gripper is empty and it has access
to its current base location. However, it has no information about the state of the
table (occupied or free) on which the red cube needs to be placed. At the start of
the mission, the table has then 50% chance of being occupied and a 50% chance
of being free, since it cannot be observed. Yet, the whole task can be planned at
a high level, as in Fig. 5.9, and be executed. Once the robot reaches the placing
location, observations regarding the state of the table become available and the
internal beliefs can be updated until enough evidence is collected and a decision can
be taken. Without knowing the full state at the start, a solution with ROSPlan

5.7. Discussion

5

93

would require making assumptions on the value of the unknown states, and either
planning for the worst-case scenario, which might not even be needed, or failing
during execution and re-plan.

Design principles
We position our work in between two extremes, namely fully o�ine planning and
fully online dynamic expansion of BTs. In our method, a designer can decide if to
lean towards a fully o�ine approach or a fully online synthesis. The choice depends
on the task at hand and the modeling of the actions pre- and postconditions. Even
though the design of behaviors is still an art, we give some design principles that can
be useful in the development of robotic applications using this hybrid BTs and Active
Inference method. Take for instance Fig. 5.14 and Fig. 5.9. Prior nodes for local
adaptation can be included in the behavior when there are several contingencies
to consider or action preconditions to be satisfied in order to achieve a sub-goal.
A designer can: 1) plan o�ine where the task is certain or equivalently where a
small number of things can go wrong; 2) use prior nodes implemented with Active
Inference to decide at runtime the actions to be executed whenever the task is
uncertain. This is a compromise between a fully defined plan where the behavior of
the robot is predefined in every part of the state space and a fully dynamic expansion
of BTs which can result in a sub-optimal action sequence [31]. This is illustrated in
Fig.5.9, where the actions for holding and placing an object are chosen online due
to various possible unexpected contingencies, whereas the moveTo action is planned.
Prior nodes should be used whenever capturing the variability of a part of a certain
task would require much e�ort during o�ine planning.

5.7. Discussion

In this work, we considered a mobile manipulator in a retail store domain with a
particular focus on plan execution. In this scope, o�ine planning is arguably better
suited to o�oad computations at runtime for the parts of the task that do not change
frequently. In our case, this was the sequence of states to stock a product that was
encoded in a BT. On the other hand, at the cost of additional online computations,
local online planning is better suited for execution in uncertain environments such
as a busy supermarket, because one can avoid planning beforehand for every contin-
gency. We achieved this through Active Inference. With the proposed method we
can leverage the complementary advantages of both o�ine and online planning, and
in the following, we discuss in detail the choice of using BTs and Active Inference
specifically.

5.7.1. Active Inference as a planning node in a BT

We opted for the use of Active Inference with action preconditions as a planning
node in the BT because this allows achieving online PDDL-style planning with noisy
observations and partially observable probabilistic states. An alternative solution
to our approach could be to use a simple PDDL planner in conjunction with a
filtering scheme. By re-planning for a small sub-task at the same frequency used
for the Active Inference node, one can achieve similar reactiveness to our approach.

5

94

However, by means of Active Inference, one can make use of the full probabilistic
information on the states, and one does not require full knowledge of the symbolic
initial state.

5.7.2. Why choose BTs

An experienced roboticist could also wonder why we opted for BTs in the first place,
instead of other PDDL-style planning approaches to encode the solution to a task.
First of all, the focus of this paper is on the runtime adaptability and reactivity
in dynamic environments with partially observable initial state, and not on the
generation of complex o�ine plans.

In this context, BTs are advantageous because they are designed to dispatch and
monitor actions execution at runtime. This allows to quickly react to changes in the
environment that are not necessarily a consequence of the robot’s own actions. A
plan that is generated through PDDL planning and executed bypassing BTs cannot
provide this type of reactivity unless one defines specific re-planning strategies to
mimic BTs’ reactiveness.

However, we see potential extensions of this work by combining it with other
PDDL planning methods. For instance, PDDL can be used to automatically gener-
ate plans for which their execution is optimized through BTs [87]. This allows for
instance to take advantage of parallel action execution and would remove the need
to hand-design a BT. Additionally, an action at runtime can be executed as soon
as its requirements are available instead of waiting for what is established o�ine by
the planner.

5.7.3. Why choose Active Inference

Active Inference could potentially be substituted by other valid POMDP approaches.
We see two possible ways of doing so, that is either using an o�ine or an online
POMDP solver.

First, one could solve a policy o�ine and then use it for online decision-making.
This approach can be more e�ective than Active Inference once the transition ma-
trices, the reward, and the task are fixed. However, the addition of new symbolic
actions (so new skills as transitions), or a substantial change in the task while using
the same skills, would require re-computing the policy. In addition, planning o�ine
for all possible states and action combinations is a much larger problem than com-
puting a plan online for the current state only. As concluded in other works [7], for
the parts of a task subject to frequent unpredictable changes, computing locally an
online plan as we do with Active Inference is preferable to o�ine policies.

Second, one could perform online decision making without o�ine computations
and achieve similar performance [103, 144]. Compared to both o�ine and online
POMDPs, however, Active Inference exposes extra model parameters to bridge ab-
stract common sense knowledge with discrete decision-making. These extra model
parameters can be updated with runtime information to adapt plans on the fly. Take
for instance the prior over plans p(fi) = Cat(E). The E vector can be updated at
runtime to steer the decision-making while computing the posterior distribution
fi = ‡(ln E ≠ Gfi ≠ Ffi) [126]. This vector can be used to encode common sense and

5.8. Conclusions

5

95

habits [126, 62], but can also be used to adapt the plans online due for instance to
runtime component failure. This opens up many possibilities for extensions, to be
explored in future work. We are particularly interested in Active Inference because
it is a flexible and unified framework that connects di�erent branches of control the-
ory at di�erent abstraction levels. Active Inference can unify (i) abstract decision-
making with guarantees, as in this paper, (ii) adaptive [109] and fault-tolerant [107,
9, 8] torque control, as well as (iii) state estimation and learning.

5.8. Conclusions

In this work, we tackled the problem of action planning and execution in real-world
robotics. We addressed two open challenges, namely hierarchical deliberation, and
continual online planning, by combining BTs and Active Inference. The proposed
algorithm and its core idea are general and independent of the particular robot
platform and task. Our solution provides local reactivity to unforeseen situations
while keeping the initial plan intact. In addition, it is possible to easily add safety
guarantees to override the online decision-making process thanks to the properties
of BTs. We showed how robotic tasks can be described in terms of free-energy
minimization, and we introduced action preconditions and conflict resolution for
Active Inference by means of dynamic priors. This means that a robot can locally
set its own sub-goals to resolve a local inconsistency, and then return to the initial
plan specified in the BT. We performed a theoretical analysis of the convergence and
robustness of the algorithm, and the e�ectiveness of the approach is demonstrated
on two di�erent mobile manipulators and di�erent tasks, both in simulation and
real experiments.

6
Sampling-based Model

Predictive Control

Leveraging Parallelizable

Physics Simulations

T he previous chapter tackled the problem of reactive symbolic action planning,
but it still relied on hard-coded strategies for the single skills. This chapter

proposes a more versatile approach for performing contact-rich skills with limited
modeling e�ort. We achieve this by using a physics simulator as the dynamical
model for Model Predictive Path Integral Control. We showcase the performance of
this method in complex non-prehensile manipulation tasks and whole-body prehensile
manipulation. This chapter also serves as the foundation for Chapter 7, where we
combine MPPI and discrete Active Inference for task and motion planning.

This chapter is a verbatim copy of the submitted paper [110]:

• � Corrado Pezzatoú, Chadi Salmiú, Max Spahnú, Elia Trevisanú, Javier Alonso Mora,
and Carlos Hernández Corbato. "Sampling-based Model Predictive Control Leveraging Par-
allelizable Physics Simulations". Submitted to IEEE Robotics and Automation Letters
(2023).

Statement of contributions: Corrado and Elia contributed to the initial idea of using a physics
simulator as a dynamic model for MPPI. Elia contributed to the theory of MPPI while Corrado
contributed to the connection of MPPI with the physics simulator, designing and implementing
the non-prehensile manipulation and whole-body control tasks. Chadi contributed to the software
development of this method, and Max designed and performed the experiments for motion
planning. Corrado, Elia, and Chadi performed the experiments on the real robot. Javier and
Carlos provided discussions on the ideas and feedback, as well as editing of the manuscript.

* Indicates equal contribution

97

6

98

6.1. Abstract

We present a method for sampling-based model predictive control that makes use
of a generic physics simulator as the dynamical model. In particular, we propose a
Model Predictive Path Integral controller (MPPI), that uses the GPU-parallelizable
IsaacGym simulator to compute the forward dynamics of a problem. By doing so,
we eliminate the need for explicit encoding of robot dynamics and contacts with
objects for MPPI. Since no explicit dynamic modeling is required, our method is
easily extendable to di�erent objects and robots and allows one to solve complex
navigation and contact-rich tasks. We demonstrate the e�ectiveness of this method
in several simulated and real-world settings, among which mobile navigation with
collision avoidance, non-prehensile manipulation, and whole-body control for high-
dimensional configuration spaces. This method is a powerful and accessible open-
source tool to solve a large variety of contact-rich motion planning tasks.

Code and videos available at: https://sites.google.com/view/mppi-isaac/

6.2. Introduction

As robots become increasingly integrated into our daily lives, their ability to navigate
and interact with the environment is becoming more important than ever. From
collision avoidance to moving obstacles out of the way to pick up some objects,
robots must be able to plan their motions while accounting for contact with their
surroundings. At the same time, robotic platforms are becoming more and more
complex, and include many Degrees Of Freedom (DOF) in order to achieve agile
and dexterous movements. All this poses many challenging problems to motion
planners, such as collision-free navigation in complex and dynamic environments,
high DOF mobile manipulation, contact-rich tasks such as picking and pushing, and
in-hand manipulation.

Solutions to these challenges exist but are often specialized and not easily trans-
ferable to di�erent scenarios. Learning-based approaches, for example, can leverage
physics simulators to train policies for complex tasks but require extensive training
and resources. For instance, the in-hand manipulation of a cube [3] took years to
develop and required 6144 CPU cores and 50 hours of training to learn a policy. On
the other hand, model-based approaches like Model Predictive Control (MPC) can
solve challenging tasks [121]. However, MPC often relies on constrained optimiza-
tion, requiring constraint simplifications, precise modeling, and ad-hoc solutions to
handle discontinuous dynamics in contact-rich tasks [64, 92]. While utilizing mo-
tion memory for warm-starting optimization can enhance performance [86, 79], the
above limitations still persist.

In recent literature, Model Predictive Path Integral (MPPI) control [140] and
its information-theoretic counterpart [142] addressed optimal control problems via
importance sampling, mitigating challenges tied to constrained optimization algo-
rithms dealing with non-convex constraints and discontinuous dynamics. However,
substantial modeling remains necessary. In this paper, we propose a training-free
model-based framework for real-time control of complex systems, where one designs

https://sites.google.com/view/mppi-isaac/

6.2. Introduction

6

99

Figure 6.1: Scheme of the proposed method using IsaacGym as the dynamic model for MPPI. At
each time step, IsaacGym is reset to the current world’s state x, and random input sequences V

are applied for the horizon T , to every environment. The resulting rolled-out trajectories are used
by MPPI to approximate the optimal control u

ú
0 given a cost function C.

only a task cost function, not the problem’s dynamics and contact models. We
introduce the idea of using a general GPU-parallelizable physics simulator, Isaac-
Gym [85], as the dynamic model for MPPI. By doing so, we create a robust frame-
work that can generalize to various tasks. An overview is given in Figure 6.1.

6.2.1. Related work

This section provides an overview of selected works focusing on motion planning and
contact-rich tasks in robotics. Motion planning pipelines are categorized as global
and local motion planning [125]. Local motion planning encompasses approaches like
operational space control, geometric methods such as Riemannian Motion Policies
[81] and Optimization Fabrics [113, 130], and receding-horizon optimization for-
mulations like Model Predictive Control (MPC) [22] that may incorporate learned
components [63]. Most MPC algorithms rely on constrained optimization and as-
sume smooth dynamics. However, contact-rich tasks pose challenges due to their
non-smooth and hybrid nature, involving sticking and sliding frictions or entering
contacts, requiring extensive modeling and ad-hoc solutions for pushing tasks [64,
92].

In contrast, Model Predictive Path Integral (MPPI) control [140, 142] is an
approach for sampling-based MPC that approximates optimal control via parallel
sampling of input sequences. MPPI is gradient-free and well-suited for systems
with non-linear, non-convex, discontinuous dynamics and cost functions. It has
successfully controlled high-degree-of-freedom manipulators in real-time [16], using
collision-checking functions and a neural network for self-collision avoidance [36].
However, these approaches have limited interaction with the environment. Abraham
and coauthors [1] proposed an ensemble MPPI, a variation that handles complex
tasks and adapts to parameter uncertainty, but the task modeling remains unclear,

6

100

and no open-source implementation is available.
To alleviate the problem of explicit modeling, some studies have addressed the

use of physics simulators for sampling-based MPC. For instance, Carius and coau-
thors [25] use the RaiSim simulator to sample waypoints for foot placement of a
quadruped. Moreover, Howell et al. [65] proposed a sampling-based MPC method
that employs MuJoCo [133] as a dynamic model for rolling out sampled input se-
quences. This o�oads modeling e�orts to the physics engine, simplifying controller
design. However, MuJoCo’s parallelization capabilities are constrained by the num-
ber of CPU threads, limiting real-time performance when many samples are required
to solve a task. Moreover, results are presented only in simulation.

A high number of samples is particularly crucial in tasks such as non-prehensile
manipulation with robot manipulators. Traditional approaches often involve sam-
pling end-e�ector trajectories on a plane, relying on additional controllers for robot
actuation and learned models for predictions [4, 33]. For instance, Arruda et al.
[4] use a forward-learned model trained on 326 real robot pushes. This model is
employed by an MPPI controller to plan push manipulations as end-e�ector trajec-
tories. Cong et al. [33] train a Long Short-Term Memory-based model to capture
push dynamics using a dataset of 300 randomized objects. End-e�ector trajectories
are sampled within a rectangular 2D workspace. Both methods require a sepa-
rate controller to convert cartesian motions into joint commands, and both perform
push manipulation through a sequence of pushes, resulting in discontinuous mo-
tion. These methods are not easily transferable to other robots, particularly for
non-holonomic mobile pushing.

6.2.2. Contributions

In this paper, we present a novel combination of Model Predictive Path Integral
(MPPI) control with the GPU-parallelizable simulator IsaacGym to tackle a vari-
ety of contact-rich motion planning problems. While our method utilizes existing
techniques, it originally integrates them. The two key contributions of this work
are:

• The integration of the MPPI controller with IsaacGym, distinguishing our
approach from prior works that used explicit dynamic models in MPPI. Our
method facilitates collision checking and contact-rich manipulation tasks with-
out requiring explicit modeling or learning of rigid body interactions. Our
solution allows smooth real-time control of real-world high-degrees of freedom
systems e�ciently computing hundreds of rollouts in parallel.

• A method that can address various motion planning challenges, including col-
lision avoidance, prehensile and non-prehensile manipulation, and whole-body
control with diverse robots. We provide an open-source implementation that
can be reused and extended for various robotic tasks.

We demonstrate our method in several contact-rich problems with di�erent robotic
platforms and real-world experiments, as well as comparisons against specialized
baselines.

6.3. Sampling-based MPC via parallelizable physics simulations

6

101

6.3. Sampling-based MPC via parallelizable physics

simulations

In this section we describe the integration of MPPI with IsaacGym, which enables
real-time control of complex contact-rich robotic systems with minimal modeling.

6.3.1. Background theory on MPPI

In this section, we give an overview of the background theory of MPPI. For more
theoretical insights, please refer to the original publications [140, 142]. MPPI is
a method to solve stochastic optimal control problems for discrete-time dynamical
systems such as

xt+1 = f(xt, vt), vt ≥ N (ut, �), (6.1)

where the nonlinear state-transition function f describes how the state x evolves
over time t with a control input vt. MPPI samples K noisy input sequences Vk.
These sequences are then applied to the system to simulate K state trajectories Qk,
k œ [1, K], over a time horizon T :

Qk = [x0, f(x0, v0), . . . , f(xT ≠1, vT ≠1)]. (6.2)

Given the state trajectories Qk and a designed cost function C to be minimized,
the total state-cost Sk of an input sequence Vk is computed by functional composi-
tion Sk = C(Qk). Then, each rollout is weighted by importance sampling weights
wk, computed via an inverse exponential of Sk with tuning parameter —, normalized
by ÷. The minimum sampled cost fl = mink Sk is subtracted for numerical stability,
leading to:

wk = 1
÷

exp
3

≠
1
—

(Sk ≠ fl)
4

,
Kÿ

k=1
wk = 1 (6.3)

The parameter — is also known as inverse temperature. The weights are then used
to compute the approximate optimal control input sequence Uú:

Uú =
Kÿ

k=1
wkVk (6.4)

Equation (6.3) and Equation (6.4) demonstrate the approach taken to approximate
the optimal control. Equation (6.4) represents a weighted average of sampled con-
trol inputs, while Equation (6.3) assigns exponentially higher weights to less costly
inputs. The first input uú

0 of the sequence Uú is applied to the system. Then the
process is repeated.

6.3.2. Proposed algorithm

We now describe how we use MPPI with IsaacGym, summarized in Algorithm 3.
We initialize an input sequence Uinit as a vector of zeroes with a length of T , where
T is the time horizon in steps. We then sample K sequences of additive input noise
Ek for exploring the input space around Uinit. The key concept is that, instead of

6

102

explicitly defining a nonlinear transition function f , we use IsaacGym to compute
the next state xt+1 given xt and control input vt. This is done by reading the
current state of the environment, resetting the state of the simulator to the observed
values, and then applying the noisy control input sequence to simulate the state
trajectories in IsaacGym. Note that these K state trajectories can be computed
independently of each other. We make use of this property to forward simulate
all the rollouts in parallel leveraging the parallelization capabilities of IsaacGym.
Instead of sampling from a Gaussian distribution, we follow the strategy of a recent
paper [16] that proposes to sample Halton Splines instead for better exploration and
smoother trajectories. Similar to the approach of Bhardwaj and coauthors [16], we
calculate knot points as a Halton sequence. Given the knots, we fit a smooth spline
approximation using standard Python modules and then we evaluate the spline at
regular intervals to determine Ek. Unlike Bhardwaj et al., we do not update the
variance of the sampling distribution. Instead, we keep it as a tuning parameter,
constant during execution. Updating the variance as in Bhardwaj et al. can lead
to better convergence to a goal, but it also leads to stagnation of the control over
time, which is harmful in the contact-rich tasks considered in this paper. Once the
task begins, we reset our K simulation environments on IsaacGym to the current
observed world state x. In parallel, we can now roll out the sampled input sequences
Vk into state trajectories Qk using K simulation environments on IsaacGym and
compute their corresponding cost Sk using the designed cost function C. The cost
is discounted over the planning horizon T by a factor “ [16]:

Sk =
T ≠1ÿ

t=0
“tC(xt,k, vt,k) (6.5)

Next, we can compute the importance sampling weights wk as in Equation (6.3).
Note that the normalization factor ÷ is a useful metric to monitor, as it indicates the
number of samples assigned significant weights. We use this insight to automatically
tune the parameter — to maintain ÷ within an upper and lower bound:

—t+1 =

Y
_]

_[

0.9— if ÷ > ÷max

1.2— if ÷ < ÷min

— otherwise
(6.6)

Empirically, we observed in all performed tasks that setting 5 < ÷ < 10 is a good
balance for smooth behavior. Finally, an approximation of the optimal control
sequence Uú can now be computed via a weighted average of the sampled in-
puts Equation (6.4). Uinit is now updated with Uú, time-shifted backward of one
timestep so that it can be used as a warm-start for the next iteration, Uinit =
[Uú

1 , ..., Uú
T ≠1, Uú

T ≠1] œ RT . The second last input in the shifted sequence is prop-
agated to the last input as well. From the sequence Uú, only the first input uú

0 is
applied to the system, and the next iteration starts.

6.3. Sampling-based MPC via parallelizable physics simulations

6

103

Algorithm 3: Proposed Approach

1: Initialize:
Uinit = [0, . . . , 0] {Uinit œ RT }
Ek Ω sampleHaltonSplines() {k = 1...K}

2: while taskNotDone do
3: x Ω observeEnvironment()
4: resetSimulations(x)
5: for k = 1 . . . K do {in parallel}
6: Vk = Uinit + Ek

7: [Qk, Sk] Ω computeRolloutCost(Vk, “)
8: wk Ω importanceSampling Û eq. (6.3)
9: end for

10: — Ω updateBeta(—, ÷) Û eq. (6.6)
11: Uú =

q
K

k=1 wkVk

12: Uinit Ω timeShift(Uú)
13: applyInput(uú

0)
14: end while

6.3.3. Exploiting the physics simulator features

IsaacGym provides useful information and general models that are particularly use-
ful for robot control in contact-rich tasks. Besides being useful to simulate the
physical interaction of rigid bodies, we leverage IsaacGym for collision checking and
tackling model uncertainty with domain randomization.

Collision checking
Collision checking in robotics can be challenging for a number of reasons, one of
them being computational complexity. This is particularly true if the task requires
continuous collision checking as the robot moves in dense environments with complex
object shapes. To overcome this problem, approximations are often introduced with
the convexification of the space. However, this requires several heuristics and can
hinder robot motions in complex scenes.

Instead, we propose to tackle the problem of collision checking by using the
already available contact forces tensor from IsaacGym, which is available for each
simulation step. To avoid collisions, we then define a cost function proportional to
the contact forces for the MPPI:

Ccoll = Êc

ÿ
Fobst, (6.7)

where Fobst are the contact forces exerted on the di�erent obstacles. This allows us
to perform continuous collision checking at each time step over the horizon T , with
arbitrary complex shapes. By heavily penalizing contacts with obstacles, the robot
will avoid collisions. On the other hand, by relaxing the weight Êc one can allow for
certain contacts required for the task, such as rolling a ball against a wall (Section
6.4.3).

6

104

Tackling model uncertainty
IsaacGym is designed to easily support domain randomization. We use this feature
to randomize the object properties in each environment in case of contact-rich tasks,
such that uncertainty is incorporated in every rollout for the MPPI. E�ectively, this
allows to account for uncertainty in environment perception. Specifically, starting
from nominal physics properties, in every rollout objects are spawned with uncer-
tainty on mass and friction nominal values, sampled from a uniform distribution.
Additionally, the object size is also randomized with additive Gaussian noise, see
Section 6.4 for experiment-specific details. Therefore, every simulation is di�erent
from the others, and all simulations are di�erent from the world such that we can
account for model mismatch. In a sense, we perform a sort of domain randomization
in real time to address the challenge of model uncertainty and imperfect perception.
In the next section, we evaluate the performance of our method in di�erent scenarios.

6.4. Experiments

We perform several experiments in three di�erent categories: 1) motion planning
and collision avoidance, 2) whole-body control of high DOF systems in contact-
rich settings, and 3) non-prehensile manipulation. Experiments and simulations
are carried out on an Alienware Laptop with Nvidia 3070 Ti graphics card. The
software implementation consists of our open-source Python package that can easily
be installed, tested, and extended to new robots and tasks. For the real-world tests,
we used a Robot Operating System (ROS) wrapper to connect the robot to the
planner, and we used a motion capture setup to determine the pose of manipulated
objects.

6.4.1. Motion planning and collision avoidance

We compare the performance of the proposed method in a pure local motion plan-
ning setting, i.e. no interaction with the environment. This aims to showcase the
fact that our method is comparable to state-of-the-art techniques when no contact
is involved. The main focus is the quantitative analysis of the method compared to
two baselines, specifically optimization fabrics [113, 130] and a simple MPC formu-
lation solved with ForcesPro [145]. We use an already available benchmark setup,
the localPlannerBench[129]. We present results for two cases, namely a holonomic
robot, and a robotic arm (Franka Emika Panda). For all experiments, we random-
ize five obstacles and the goal positions in N = 100 runs, see Figure 6.2 for some
examples. Solutions by the three methods are assessed using four metrics, e.g. time
to reach the goal, path length, solver time, and minimum clearance.

The compared methods show minimal di�erences in path length clearance for
both examples (Figure 6.3). However, our method consistently achieves faster con-
vergence to the goal (Figures 6.3 and 6.4, and Table 6.1). This is attributed to the
perfect representation of the robot’s collision shapes used in our method, compared
to the enclosing spheres in the ForcesPro MPC and optimization fabrics. It should
be noted that our approach incurs higher computational times (Table 6.1) due to
the physics simulations performed by IsaacGym.

https://sites.google.com/view/mppi-isaac/

6.4. Experiments

6

105

Figure 6.2: Examples for pure motion planning benchmark setups. Left: point robot with 3
DOF. Right: manipulator with 7 DOF.

(a) Comparison with Fabrics

(b) Comparison with ForcesPro MPC

Figure 6.3: Results in pure motion planning problems for point robot with 3 DOF.

(a) Comparison with Fabrics

(b) Comparison with ForcesPro MPC

Figure 6.4: Results in pure motion planning problems for a robot manipulator with 7 DOF.

Despite this, our method remains competitive in motion planning applications
and o�ers significant advantages in contact-rich tasks, as demonstrated in the fol-
lowing sections.

6

106

Table 6.1: Summary of motion planning experiments

Metric Robot Fabric ForcesPro
MPC MPPI

Average Point 1.0ms 2.5ms 55ms
Solver Time Panda 1.4ms 51ms 63ms

Average Point 7.4s 6.1s 2.7s
Time to Goal Panda 9.6s 4.2s 0.8s

6.4.2. Prehensile manipulation with whole-body control

Our approach scales well with the complexity of the robot. In Figure 6.5, the task is
to relocate an object from a table to an [x, y, z] location using a mobile manipulator
with 12 DOF.

Figure 6.5: Whole-body motion of a mobile manipulator moving a cube from initial to desired
location. Êt = 8, ÊOp = 2, Êee = 1, Êc = 0.1, T = 6, dt = 0.04, K = 500.

Although this is arguably a complex task for a robot, which usually requires
manual engineering of a sequence of movements, such as navigation to a specific
base goal, and pre-post grasps, the solution is rather simple with our method. In
fact, we specify the following cost function for the task:

Cpick = Cdist + Cee + Ccoll, (6.8)

where we only consider the Euclidean distance of the end-e�ector to the object, and
the object to the goal:

Cdist = Êt||pEE ≠ pO|| + ÊOp ||pG ≠ pO||,

and we give the incentive to keep the end-e�ector pointing downwards, using pitch
◊ and roll „, with Cee = Êee||[„, ◊] ≠ [0, 0]||. By sampling all the DOF at once,
including the base and the gripper, we achieve a fluid motion from start to end
with no added heuristics for pick positions. We performed 5 pick-and-deliver tasks,
and the time taken was 8.19 ± 1.51s. Mass and friction are randomized with 30%
uncertainty sampled uniformly. Object size is randomized with additive Gaussian
noise with a standard deviation of 1mm.

6.4. Experiments

6

107

For smooth whole-body motions of high DOF systems, like this one, one requires
a high number of samples (i.e. a few hundred). Empirically, when the number of
samples is greater than 50, a GPU pipeline is computationally cheaper than a CPU
and scales better. By using IsaacGym, we can compute all the 500 samples required
for mobile manipulation in parallel, computing the next control input online at
25Hz.

6.4.3. Non-prehensile manipulation

One advantage of using a physics simulator is that one can leverage generic physics
rules for contacts, thus eliminating the need for learning or engineering specialized
contact models. We demonstrate this in non-prehensile manipulation tasks involving
a 7-DOF arm (Figure 6.6) and two di�erent mobile robots (Figures 6.7, 6.8 and 6.9).
In Section 6.4.3, we apply our method to the two di�erent tasks tackled in Arruda
et al. [4] and Cong et al. [33] and we compare with their final results. Additionally,
in Section 6.4.3, we demonstrate the ease of transferring our approach to di�erent
robots, including di�erential-drive.

Comparison with baselines for pushing with a robot arm

Figure 6.6: Example of non-prehensile push task with a 7-DOF robot arm using an object from
Cong et al. [33].

We consider two baselines for non-prehensile pushing. In the first one, Arruda
and coauthors [4] tackle the problem of pushing a relatively small object to a target
pose with either 0 (Pose 1) or 90 deg (Pose 2). They also consider sequences of push
actions starting far from the object. In the second baseline, Cong and coauthors
[33] consider 5 relatively big objects and assume the robot’s end e�ector is close to
the object during execution. Since we do not have access to the same hardware, and
the authors of the considered baselines do not provide their models and data, we
only compare against their final results. Whenever their data cannot be retrieved
for a certain result, we indicate this as n/a. We set up our simulation to match
as close as possible the tasks in the baseline using the available information from
the papers. Finally, we tune our method for the two tasks separately for a fair
comparison with the individual baselines. The approach of Arruda et al. [4] uti-
lizes an MPPI in combination with a learned model for predicting pushing e�ects
on an object. The authors sample 2D end-e�ector trajectories and then rely on in-
verse kinematic solvers, achieving push manipulation as a sequence of disconnected

6

108

pushes. In contrast, we use MPPI to sample the control input directly as joint
velocities in IsaacGym. By doing so, we achieve smooth continuous pushes where
end-e�ector repositioning emerges naturally, and learning is not required. The cost
function to be minimized for the task is:

Cpush = Cdist + Cpush align + Cee align. (6.9)

Cdist contains the weighted distance robot-object, and object-goal:

Cdist = Êt||pR ≠ pO|| + ÊOp ||pG ≠ pO|| + ÊOr ||ÂO ≠ ÂG||,

where pG and ÂG are the goal’s position and orientation, while pR and pO denote
the end-e�ector tip and block positions, respectively. The cost function Cpush align

promotes keeping the object between the robot and the goal. It is computed as
cos(–) + 1, where – is the angle between the robot-object (pR ≠ pO) and goal-object
(pG ≠ pO) vectors:

Cpush align = Êa

! (pR ≠ pO) · (pG ≠ pO)
||pR ≠ pO||||pG ≠ pO||¸ ˚˙ ˝

cos(–)

+1
"
. (6.10)

We promote the end-e�ector to maintain a downward orientation at height dh using
pitch ◊ and roll „:

Cee align = Êeer ||[„, ◊] ≠ [0, 0]|| + Êeeh ||pRz ≠ dh||.

The cost is minimized when the end-e�ector is close to the block at a certain height
and orientation, and the block is between the end-e�ector and the goal at the desired
goal pose1.

We perform the same task as in Arruda et al. [4] and compare the final results of
pushing a squared object on a table surface to two poses (Pose 1 and 2) with a robot
arm equipped with a stick. In Table 6.2 we report our findings, showing how our
method can complete the task in a fraction of the time and with double the accuracy.
We used the same evaluation metric of Arruda et al. for the final cost which is a
weighted average of position and orientation errors: 1.5(|pRx ≠pOx |+ |pRy ≠pOy |)+
0.01|ÂO ≠ ÂG|. For every run, the manipulated object is also randomized in the
same way as the rollouts. See the accompanying video to appreciate the actual
behavior. We further compare our approach with Cong an coauthors [33] in terms
of the success rate of non-prehensile manipulation. Particularly, we consider the
same task settings, that is pushing 5 di�erent objects to 3 di�erent goal poses. To
do so we simply change the objects in the simulation and slightly re-tune the MPPI2.

Since the trained models from Cong et al. [33] are not provided, we only compare
the final results, reported in Table 6.3. We performed 10 pushes per object, totaling
150 pushes. For the non-prehensile manipulation task with the robot arm, the mass
and friction of manipulated objects have 30% uncertainty, and table friction has
90% uncertainty on the nominal value, sampled uniformly. Size is randomized with
zero-mean additive Gaussian noise with a 2 mm standard deviation.
1Tuning: Êt = 1, ÊOp = 16, ÊOr = 2, Êeeh = 8, Êeer = 0.5, Êa = 0.8, dt = 0.04, T = 8, K = 500.
2Tuning: Êt = 5, ÊOp = 25, ÊOr = 21, Êeeh = 30, Êeer = 0.3, Êa = 45, dt = 0.04, T = 8,
K = 500.

https://sites.google.com/view/mppi-isaac/

6.4. Experiments

6

109

Table 6.2: Summary of comparison with Arruda et al. [4]

Approach Start
pose Final cost Time [s]

Baseline [4] Pose 1 0.057 ≥ 240
Pose 2 0.079 n/a

Ours (sim) Pose 1 0.029 ±0.09 7.65 ±2.62
Pose 2 0.03 ±0.12 8.38 ±2.56

Table 6.3: Summary of comparison with Cong et al. [33]

Object
Approach Metric A B C D E

Baseline [33] Success [%] 93.5 90.9 93.9 91.6 89.5
Time [s] n/a ≥ 24 ≥ 24 ≥ 24 ≥ 24

Ours (sim) Success [%] 100 93.3 96.7 100 66.7

Time [s] 3.17
±1.81

3.52
±1.84

2.62
±1.03

2.46
±0.47

2.68
±1.51

By using our method, we outperformed both baselines in terms of time to com-
pletion, accuracy, and success rate, except for one manipulated object. We achieve
so without limiting the sampling to 2D end-e�ector trajectories, without the need
for learned models, and without requiring inverse kinematics solvers.

Extension to di�erent robots
Our method is also easily extensible to di�erent robot platforms and objects be-
cause it does not require specialized models or controllers that are robot-specific, as
opposed to the baselines considered. We chose to use an omnidirectional base, and
a di�erential drive robot, to push a box or a sphere to a goal from di�erent initial
configurations. To do so, we only need to change the environment and robot URDF
in IsaacGym, and re-tune the cost function for pushing due to di�erent hardware.

Omnidirectional push of a box The first task is the non-prehensile pushing
of a box with an omnidirectional base, see Figure 6.7. Success is defined when the
box is placed at the goal within 5cm in the x ≠ y direction and within 0.17 radians
in rotation. The robot cannot touch obstacles. The cost function for the MPPI is
the same as in Equation (6.9), re-tuned without considering end e�ector height and
orientation since we now operate on a plane. We add an explicit term for collision
avoidance Ccoll = Êc

q
Fobst:

Cpush = Cdist + Cpush align + Ccoll, (6.11)

Omnidirectional push of a sphere One can easily extend the example above to
di�erent objects with very di�erent dynamics. We chose a sphere instead of a box,

6

110

Figure 6.7: Non-prehensile task using an omnidirectional base. Êt = 0.2, ÊOp = 2, ÊOr = 3,
Êa = 0.6, Êc = 10, T = 8, dt = 0.04, K = 300.

and we simply changed the object spawned in the simulation. For this task, we want
to put the ball in between the two walls, Figure 6.8. We considered multiple runs
from two di�erent starting poses, A and B. Results are summarized in Table 6.4
and the execution can be seen in the accompanying video.

Figure 6.8: Rolling ball non-prehensile pushing. Goal: Ball placement between two obstacles.
Êt = 0.2, ÊOp = 0.1, ÊOr = 0, Êa = 0.1, Êc = 0.001, T = 8, dt = 0.04, K = 300.

Table 6.4: Results with omnidirectional base

Object Env. Runs Time [s]

Box Pose A 5 9.66 ± 0.84
Pose B 5 12.84 ± 0.564

Sphere Pose A 5 8.76 ± 0.38
Pose B 5 7.45 ± 0.59

Di�erential drive non-prehensile pushing We perform di�erential drive non-
prehensile pushing, see Figure 6.9, with the same cost function as before (see Equa-
tion (6.11)) but re-tuned. One can indeed change the robot for the task by simply
changing the URDF, neglecting all the additional contact modeling that would be
required in a classical model-based MPC.

https://sites.google.com/view/mppi-isaac/

6.4. Experiments

6

111

Figure 6.9: Non-prehensile di�erential drive pushing. Same task as the omnidirectional base.
Êt = 0.1, ÊOp = 2, ÊOr = 3, Êa = 0.6, Êc = 100, T = 12, dt = 0.04, K = 400.

(a) Pushing straight to the goal on the right.

(b) Pushing to the goal on the left with 90¶ rotation.

Figure 6.10: Pushing to two di�erent goals with a 7 DOF manipulator directly controlling all
joint velocities. Our method allows the re-positioning of the end-e�ector around the object

without specifying any particular desired contact point.

The time taken to push the box to the goal was 18.31s. In the mobile non-
prehensile pushing experiments, objects to manipulate are spawned with 30% un-
certainty on mass and friction sampled uniformly, while object size is randomized
with Gaussian noise with a standard deviation of 5mm.

6.4.4. Real-world experiments

To demonstrate the applicability of our approach, we transfer to the real world a
subset of the non-prehensile manipulation tasks previously presented in Section 6.4.3
with both the robot manipulator and the omnidirectional base. In particular, in Fig-
ure 6.10, we show the results of the 7 DOF manipulator pushing a product to two
di�erent goals, similar to the simulations corresponding to Table 6.2. As presented
in Figure 6.1, the samples are rolled out in K = 500 simulated environments in
IsaacGym which, at each timestep, are initialized to the state of the real world.
Based on this, the optimal control is estimated and applied to the real system.

6

112

When transferring to the real world, compared to the experiments in Section 6.4.3,
only the weights of the cost function were re-tuned. The horizon, control frequency,
number of samples, structure of the cost function, and randomization of the sam-
pled environments remained unchanged. From the experimental evaluation on the
real robot, we observe that the time to complete the di�erent pushing tasks and the
final position error are comparable to the results in the simulation from Table 6.2.
Importantly, these results are achieved without taking assumptions about specific
contact points. Thus, the robot can naturally re-position itself and change contact
location autonomously. Additionally, our method allows sampling joint velocities
directly thus we do not restrict the sampling to 2D end-e�ector trajectories to be
tracked by another controller as often seen in other approaches. Lastly, to demon-
strate robustness, we disturb the execution of pushing tasks with the manipulator
and the omnidirectional base by hand. Since we do not assume the robot to be
behind the object to be pushed for successful execution, and since the planning and
execution happen in real-time at 25Hz, we can largely perturb the task and let the
robot compensate.

Figure 6.11: Qualitative real-world experiments with disturbances. The behavior of the
controlled system can be best appreciated in the accompanying video.

6.5. Discussion

In this section, we discuss key aspects and potential future work related to our so-
lution. First, the computational demands of planning and control with our method
can be high when extending the time horizon to several seconds. To keep the
time horizon limited for real-time control while preventing being trapped in local
minima, future work should incorporate global planning techniques such as A*,
RRT, and Probabilistic Roadmaps (PRM) [74] to guide the local planner. Simi-
larly to warm starting predictive controllers [86, 79], one could make use of motion
libraries of previous executions or learned policies along with random rollouts, to
improve the sampling e�ciency and exploration. Second, in real-world scenarios,
uncertainties and discrepancies between simulated and actual environments could
present challenges for achieving precise movements and manipulation. We utilized
randomization of object properties in the rollouts to address some uncertainties.
However, online system identification to converge to the true model parameters is
not performed. Enhancing the robustness of the MPPI algorithm itself by reducing

https://sites.google.com/view/mppi-isaac/

6.6. Conclusions

6

113

model uncertainty, as demonstrated by Abraham and coauthors [1], could further
improve performance. Third, tuning control algorithms for optimal performance is
time-consuming. However, implementing autotuning techniques can automate the
process and reduce manual e�ort. Finally, incorporating additional sensor support
such as lidars and signed distance fields could be highly beneficial. This would
enable, for instance, collision avoidance without the need for complex simulated
worlds.

6.6. Conclusions

We presented a way to perform Model Predictive Path Integral controller (MPPI)
that uses a physics simulator as the dynamic model. By leveraging the GPU-
parallelizable IsaacGym simulator for parallel sampling of forward trajectories, we
have eliminated the need to explicitly encode robot dynamics, contacts, and rigid-
body interactions for MPPI. This makes our method easily adaptable to di�erent
objects and robots for various contact-rich motion-planning tasks. Through a series
of simulations and real-world experiments, we have demonstrated the e�ectiveness
of this approach in various scenarios, including motion planning with collision avoid-
ance, non-prehensile manipulation, and whole-body control. We showed how our
method can compete with state-of-the-art motion planners in case of no interactions,
and how it outperforms by a margin other approaches for contact-rich tasks. In ad-
dition, we provided an open-source implementation that can be used to reproduce
the presented results, and that can be adapted to new tasks and robots.

7
Multi-Modal MPPI and

Active Inference for Reactive

Task and Motion Planning

T his chapter builds upon Chapter 5 and Chapter 6, blending the high-level reactive
behavior obtained through Active Inference, with the powerful motion planning

capabilities of MPPI for contact-rich tasks. The key idea is that Active Inference is
now scheduling costs to be minimized instead of symbolic actions, allowing the use of
MPPI for long-term tasks. This leads to a scheme capable of performing long-term
missions in a reactive manner. Thanks to the use of parallel sampling with MPPI,
we can evaluate and blend di�erent strategies planned by Active Inference into one
coherent and smooth behavior. We demonstrate the potential of this idea both in
simulation and in the real world.

This chapter is a verbatim copy of the paper [147] (in preparation for submission):

• Yuezhe Zhang, Corrado Pezzato, Elia Trevisan, Chadi Salmi, Carlos Hernández Corbato,
and Javier Alonso-Mora. Multi-Modal MPPI and Active Inference for Reactive Task and
Motion Planning. In preparation for submission at IEEE Robotics and Automation Letters
(2023).

Statement of contributions: Corrado contributed to the initial idea of using Active Inference for
planning and scheduling parallel costs for MPPI, to achieve a reactive task and motion planning
framework. Under his and Elia’s guidance, Yuezhe designed the interface between the task and
motion planner and formalized the Multi-modal MPPI and experiments. Corrado, Yuezhe, and
Elia contributed to the writing and the experiments. Javier and Carlos provided discussions on
the ideas and feedback, as well as editing of the manuscript.

115

7

116

7.1. Abstract

Task and Motion Planning (TAMP) has made strides in complex manipulation tasks,
yet the execution robustness of the planned solutions remains overlooked. In this
work, we propose a method for reactive TAMP to cope with runtime uncertain-
ties and disturbances. We combine an Active Inference planner (AIP) for adaptive
high-level action selection and a novel Multi-Modal Model Predictive Path Integral
controller (M3P2I) for low-level control. This results in a scheme that simulta-
neously adapts both high-level actions and low-level motions. The AIP generates
alternative symbolic plans, each linked to a cost function for M3P2I. The latter
employs a physics simulator for diverse trajectory rollouts, deriving optimal control
by weighing the di�erent samples according to their cost. This idea enables blend-
ing di�erent robot skills for fluid and reactive plan execution, accommodating plan
adjustments at both the high and low levels to cope, for instance, with dynamic
obstacles or disturbances that invalidate the current plan. We have tested our ap-
proach in simulations and real-world scenarios. Experiments’ videos are available
here.

7.2. Introduction

Task and motion planning is a powerful class of methods for solving complex long-
term manipulation problems where logic and geometric variables influence each
other. TAMP [55] has been successfully applied to domains such as table rear-
rangement, stacking blocks, or solving the Hanoi tower. Despite impressive recent
results [101], the environments in which TAMP is executed are usually not dynamic,
and the plan is executed in open-loop [56]. Recent works [134, 90, 82] recognized the
importance of robustifying the execution of TAMP plans to be able to carry them
out in the real world reliably. However, they either rely only on the adaptation
of the action sequence in a plan [108, 27, 31, 82] or only on the motion planning
problem in a dynamic environment given a fixed plan [134, 90]. This paper aims to
achieve reactive execution by simultaneously adapting high-level actions and low-
level motions.

A key challenge in reactive TAMP is handling geometric constraints that might
not be known at planning time. For instance, moving a block to a desired location
may necessitate pulling rather than pushing if the block is situated in a corner. Plan-
ning at the high level for these contingencies is hard especially when not assuming
full knowledge of the scene at planning time. Another challenging scenario could be
a pick-and-place task with dynamic obstacles and human disturbances. Di�erent
grasping poses are necessary for diverse locations of the objects and obstacles. Thus,
a TAMP algorithm should be able to adapt to these configurations on the fly.

We address these challenges by proposing a control scheme that jointly achieves
reactive action selection and robust low-level motion planning during execution. We
propose a high-level planner capable of providing alternative actions to achieve a
goal. These actions are translated to di�erent cost functions for our new Multi-
Modal Model Predictive Path Integral controller for motion planning. This motion
planner leverages a physics simulator to sample parallel motion plans that minimize

https://sites.google.com/view/m3p2i-aip

7.2. Introduction

7

117

the given costs and computes one coherent control input that e�ectively blends
di�erent strategies. To achieve this, we build upon two of our recent works: 1) an
Active Inference planner (AIP) [108] for symbolic action selection, and 2) a Model
Predictive Path Integral (MPPI) controller [110] for motion planning. We extend the
previous AIP to plan possible alternative plans, and we propose a new Multi-Modal
Model Predictive Path Integral controller (M3P2I) that can sample in parallel these
alternatives and smoothly blend them.

7.2.1. Related work

To robustly operate in dynamic environments, reactive motion planners are neces-
sary. Toussaint and coauthors [134] provide a reactive MPC strategy to execute a
TAMP plan as a given linear sequence of constraints. Instead of composing primi-
tive skills, they derive the control law from a composition of constraints for MPC.
The reactive nature of the approach allows coping with disturbances and dynamic
collision avoidance during the execution of a TAMP plan. The work of Migimatsu
and Bohg [90] formulates a TAMP plan in object-centric Cartesian coordinates,
showing how this allows coping with perturbations such as moving a target loca-
tion. However, the two works above [134, 90] do not consider adaptation at the
symbolic action level if a perturbation invalidates the current plan.

Several papers focused on adapting and repairing high-level action sequences
during execution. Paxton et al. [106] propose representing robot task plans as ro-
bust logical-dynamical systems. The method can e�ectively adapt the logic plan
to deal with external human disturbances. Similarly, Harris et al. [60] presented a
method to coordinate control chains and achieve robust plan execution through plan
switching and controller selection. A recent paper [66] proposes to use Monte Carlo
Tree Search in combination with Isaac Gym to speed up task planning for multi-step
object retrieval from clutter, where complex physical interaction is required. This
is a promising direction, but the method only allows for high-level reasoning while
executing pre-defined motions in an open loop. Works from Zhou et al. [148] and
Li et al. [82] combined behavior trees and linear temporal logic to adapt the high-
level plan to cope with cooperative or adversarial human operators, environment
changes, or failures. In our previous work [108], Active Inference and behavior trees
were combined to provide reactive action selection in long-term tasks in partially
observable and dynamic environments. This method achieved hierarchical delibera-
tion and continual online planning, making it particularly appealing for the problem
of reactive TAMP at hand. In this paper, we extend our previous method [108] by
bridging the gap to low-level reactive control by planning cost functions instead of
symbolic actions.

At the lower level, Model Predictive Control (MPC) is a widely used approach
[15, 123, 128]. However, most MPC methods rely on convexifying constraints and
cost functions. Notably, manipulation tasks often involve discontinuous contacts
that are hard to di�erentiate.

Sampling-based MPCs o�er a promising alternative, such as MPPI [143, 16].
These algorithms can handle non-linearities, non-convexities, or discontinuities of
the dynamics and costs. MPPI relies on sampling control input sequences and for-

7

118

ward system dynamics simulation. The resulting trajectories are weighted according
to their cost to approximate an optimal control input. Abraham and coauthors [1]
propose an ensemble MPPI to cope with model parameters uncertainty. Sampling-
based MPCs are generally applied for single-skill execution, such as pushing or
reaching a target point. Howell and coauthors [65] pointed out for future work that
one could use a high-level agent to set the cost functions for the sampling-based
MPC for long-horizon cognitive tasks. We follow this line of thought and propose
a method to compose cost functions for long-horizon tasks reactively. Moreover,
classical MPPI approaches can only keep track of one cost function at a time. This
means the task planner should propose a single plan to solve the task. However,
some tasks might present geometric ambiguities for which multiple plans could be ef-
fective, and selecting what strategy to pursue can only be determined by the motion
planner based on the geometry of the problem.

7.2.2. Contributions

The contribution is a reactive task and motion planning algorithm based on:

• A new Multi-Modal MPPI (M3P2I) capable of sampling in parallel plan alter-
natives to achieve a goal, evaluating them against di�erent costs. This enables
the smooth blending of alternative solutions into a coherent behavior instead
of switching based on heuristics.

• An enhanced Active Inference planner capable of generating alternative cost
functions for M3P2I.

7.3. Background

In this section, we present the background knowledge about the Active Inference
planner and Model Predictive Path Integral Control to understand the contributions
of this paper. We refer the interested reader to the original articles [108, 140, 142]
for a more in-depth understanding of the single techniques.

7.3.1. Active Inference Planner

The AIP is a high-level decision-making algorithm that relies on symbolic states,
observations, and actions [108]. Each independent set of states in AIP is a factor,
and the planner contains a total of nf factors. For a generic factor fj where j œ

J = {1, ..., nf }, it holds:

s(fj) =
Ë
s(fj ,1), s(fj ,2), ..., s(fj ,m

(fj))
È€

,

S =
)

s(fj)
|j œ J

*
(7.1)

where m(fj) is the number of mutually exclusive symbolic values a state factor can
have, each entry of s(fj) is a real value between 0 and 1, and the sum of the entries
is 1. This represents the current belief state.

The continuous state of the world x œ X is discretized through a symbolic ob-
server such that the AIP can use it. Discretized observations o are used to build a

7.3. Background

7

119

probabilistic belief about the symbolic current state. Assuming one set of observa-
tions per state factor with r(fj) possible values:

o(fj) =
Ë
o(fj ,1), o(fj ,2), ..., o(fj ,r

(fj))
È€

,

O =
)

o(fj)
|j œ J

*
(7.2)

The robot has a set of symbolic actions that can act then their corresponding state
factor:

a· œ –(fj) =
)

a(fj ,1), a(fj ,2), ..., a(fj ,k
(fj))*,

A =
)

–(fj)
|j œ J

*
(7.3)

where k(fj) is the number of actions that can a�ect a specific state factor fj . Each
generic action a(fj ,·) has associated a symbolic name, parameters, pre- and postcon-
ditions:

Action a(fj ,·) Preconditions Postconditions
action_name(par) prec

a
(fj ,·) post

a
(fj ,·)

where prec
a

(fj ,·) and post
a

(fj ,·) are first-order logic predicates that can be evaluated
at run-time. A logical predicate is a boolean-valued function B : X æ {true,
false}. Finally, we define the logical state l(fj) as a one-hot encoding of s(fj).
The AIP computes the posterior distribution over p plans fi through free-energy
minimization [108]. The symbolic action to be executed by a robot in the next time
step is the first action of the most likely plan, denoted with fi’,0:

’ = max([fi1, fi2, ..., fip]
¸ ˚˙ ˝

fi€

), a·=0 = fi’,0. (7.4)

7.3.2. Model Predictive Path Integral Control

MPPI is a method for solving optimal stochastic problems in a sampling-based
fashion [140, 142]. Let us consider the following discrete-time systems:

xt+1 = f(xt, vt), vt ≥ N (ut, �), (7.5)

where f , a nonlinear state-transition function, describes how the state x evolves
over time t with a control input vt. ut and � are the commanded input and the
variance, respectively. K noisy input sequences Vk are sampled and then applied to
the system to forward simulate K state trajectories Qk, k œ [0, K ≠ 1], over a time
horizon T . Given the state trajectories Qk and a designed cost function C to be
minimized, the total state-cost Sk of an input sequence Vk is computed by evaluating
Sk = C(Qk). Finally, each rollout is weighted by the importance sampling weights
wk. These are computed through an inverse exponential of the cost Sk with tuning
parameter — and normalized by ÷. For numerical stability, the minimum sampled

7

120

cost fl = mink Sk is subtracted, leading to:

wk = 1
÷

exp
3

≠
1
—

(Sk ≠ fl)
4

,
Kÿ

k=1
wk = 1 (7.6)

The parameter — is called inverse temperature. The importance sampling weights
are finally used to approximate the optimal control input sequence Uú:

Uú =
Kÿ

k=1
wkVk (7.7)

The first input uú
0 of the sequence Uú is applied to the system, and the process is

repeated. At the next iteration, Uú is used as a warm-start, time-shifted backward
of one timestep. Specifically, the second last input in the shifted sequence is also
propagated to the last input. In this work, we build on top of our previous MPPI
approach [110], where we employed IsaacGym as a dynamic model of the system to
forward simulate trajectory rollouts.

7.4. Methodology

The proposed method is depicted in Figure 7.1. After a general overview, we dis-
cuss the three main parts of the scheme: action planner, motion planner, and plan
interface.

Hard-coded knowledge
Planning algorithms

Utilities
IsaacGym

Low frequency
High frequency

Active
Inference

Action planner
Behavior
Tree Symbolic

Observer

System
Motion planner

M3P2I

Plan interface

Cost
Selector

Set of costs

symbolic plans

Figure 7.1: Proposed control scheme. Given symbolic observations o of the environment, the
action planner computes N di�erent plan alternatives that are linked to individual cost functions

Ci for M3P2I. The latter samples control input sequences and uses an importance sampling
scheme to approximate the optimal control u

ú
0.

7.4.1. Overview

The proposed scheme works as follows. First, the symbolic observers translates
continuous states x into discretized symbolic observations o. These are passed to a

7.4. Methodology

7

121

BT and Active Inference. The BT encodes the skeleton solution of a task in terms
of desired states instead of actions as previous work [108]. The running node in a
BT sets the current desired state sd for Active Inference. The latter computes N
alternative symbolic plans based on the current symbolic state and the available
symbolic actions. The symbolic actions are encoded as action templates with pre-
post conditions that Active Inference uses to construct action sequences to achieve
the desired state. After the plans are generated, the plan interface links the first
action a0,i, i = 0...N ≠ 1 of each plan to a cost function Ci. The cost functions are
sent to M3P2I, which samples N · K di�erent control input sequences. The input
sequences are forward simulated using IsaacGym, which encodes the dynamics of
the problem [110]. The resulting trajectories are evaluated against their respective
costs. Finally, an importance sampling scheme calculates the approximate optimal
control uú

0. All processes are running continuously during execution at di�erent
frequencies. The action planner runs, for instance, at 1Hz while the motion planner
runs at 25Hz. An overview can be found in Algorithm 4.

Algorithm 4: Overview of the method

1: while Task not completed do
2: o Ω GetSymbolicObservation
3: /* Get current desired state from BT */
4: AIP.sd Ω BT
5: /* Get current action plans from Active Inference */
6: P Ω AIP.parell_act_sel(o) Û Algorithm 5
7: /* Translate action plan to cost function */
8: C Ω Interface(P)
9: /* Compute motion commands */

10: M3P2I.command(C) Û Algorithm 7
11: end while

7.4.2. Action planner - Active Inference

The action planner we propose is a modified version of our previous method [108] to
allow Active Inference to plan alternative action sequences to achieve a desired state.
In contrast to our previous work [108] where only one action a· for the next time
step is computed, we modify the AIP to generate action alternatives. In particular,
instead of stopping the search for a plan when a valid executable action a· is found,
we repeat the search while removing that same a· from the available action set A.
This simple change is e�ective because we are looking for alternative actions to be
applied at the next step, and the AIP builds plans backward from the desired state
[108]. The pseudocode is reported in Algorithm 5. The algorithm will cease when
no new actions are found, returning a list of possible plans P. This planner is later
integrated with the parallel motion planner M3P2I to evaluate di�erent alternatives
in real time. This increases the robot’s autonomy and performance, at the same
time reducing the number of heuristics to be encoded in the action planner.

7

122

Algorithm 5: Generate alternative plans using Active Inference

1: a· Ω AIP.act_sel(o) Û from our past work [108]
2: Set P Ω ÿ

3: /* Look for alternatives */
4: while a· ! = none do
5: P.append(a·)
6: A = A\{a· }

7: a· Ω AIP.act_sel(o) Û from our past work [108]
8: end while
9: Return P

7.4.3. Motion planner - Multi-Modal MPPI (M3P2I)

We propose a Multi-Modal MPPI capable of sampling di�erent plan alternatives
from the AIP. Traditional MPPI approaches consider one cost function and one
sampling distribution. In this work, we propose keeping track of N separate con-
trol input sequences corresponding to N di�erent plan alternatives/costs. This is
advantageous because it o�ers a general approach to exploring di�erent strategies
in parallel. We perform N separate sets of importance weights, one for each alter-
native, and only ultimately, we combine the weighted control inputs in one coherent
control. This allows the smooth blending of di�erent strategies. Assume we consider
N alternative plans, a total of N · K samples. Assume the cost of plan i, i œ [0, N)
to be formulated as:

Si(Vk) =
T ≠1ÿ

t=0
“tCi(xt,k, vt,k) (7.8)

’k œ Ÿ(i) where Ÿ(i) is the integer set of indexes ranging from i · K to (i + 1) ·

K ≠ 1. State xt,k and control input vt,k are indexed based on the time t and
trajectory k. The random control sequence Vk = [v0,k, v1,k, . . . , vT ≠1,k] defines the
control inputs for trajectory k over a time horizon T . The trajectory Qi(Vk) =
[x0,k, x1,k, . . . , xT ≠1,k] is determined by the control sequence Vk and the initial state
x0,k. Ci is the cost function for plan i. Finally, “ œ [0, 1] is a discount factor
that evaluates the importance of accumulated future costs. As in classical MPPI
approaches, given the costs Si(Vk), we can compute the importance sampling weights
associated with each alternative as:

Êi(Vk) = 1
÷i

exp
3

≠
1
—i

(Si(Vk) ≠ fli)
4

, ’k œ Ÿ(i) (7.9)

÷i =
ÿ

kœŸ(i)
exp

3
≠

1
—i

(Si(Vk) ≠ fli)
4

(7.10)

fli = min
kœŸ(i)

Si(Vk) (7.11)

We use the insight from our past work [110] to 1) sample Halton splines instead of
Gaussian noise for smoother behavior, 2) automatically tune the inverse temperature

7.4. Methodology

7

123

—i to maintain the normalization factor ÷i within certain bounds. The latter is
helpful since ÷i indicates the number of samples to which significant weights are
assigned. If ÷i is close to the number of samples K, an unweighted average of
sampled trajectories will be taken. If ÷i is close to 1, then the best trajectory
sample will be taken. We observed that keeping ÷i between 5% and 10% of K
generates smooth trajectories. As opposed to our previous method [110], we update
÷ within a rollout to stay within bounds instead of updating it once per iteration, see
Algorithm 6. We use µi to denote the action sequence of plan i over a time horizon

Algorithm 6: Update inverse temperature —i

1: while ÷i /œ [÷l, ÷u] do
2: fli Ω minkœŸ(i) Si(Vk); Û Equation (7.11)
3: ÷i Ω

q
kœŸ(i) exp(≠ Si(Vk)≠fli

—i
); Û Equation (7.10)

4: if ÷i > ÷u then Û bigger than upper bound
5: —i = 0.9 ú —i

6: else if ÷i < ÷l then Û smaller than lower bound
7: —i = 1.2 ú —i

8: end if
9: end while

10: Return fli, ÷i, —i

µi = [µi,0, µi,1, . . . , µi,T ≠1]. Each sequence is weighted by the corresponding weights
leading to:

µi =
ÿ

kœŸ(i)
Êi(Vk)Vk (7.12)

At every iteration, we add to µi the sampled noise from Halton splines [16]. Then,
we forward simulate the state trajectories Qi(Vk) using IsaacGym as we previously
did [110]. Finally, given the state trajectories corresponding to the plan alternatives,
we need to compute the weights and mean for the overall control sequence. To do
so, we concatenate the N state-costs Si(Vk), i œ [0, N) and represent it as S̃(V).
Therefore, we calculate the weights for the whole control sequence as [16]:

Ễ(V) = 1
÷

exp
3

≠
1
—

!
S̃(V) ≠ fl

"4
(7.13)

Similarly, ÷, fl are computed as in Equations (7.10) and (7.11) but considering
S̃(V) instead. The overall mean action over time horizon T is denoted as u =
[u0, u1, . . . , uT ≠1]. For each timestep t:

ut = (1 ≠ –u)ut≠1 + –u

N ·K≠1ÿ

k=0
Ễk(V)vt,k (7.14)

7

124

where –u is the step size that regularizes the current solution to be close to the
previous ut≠1. The optimal control is set to uú

0 = u0. Note that through Equa-
tion (7.13), we can smoothly fuse di�erent strategies to achieve a goal in a general
way.

Algorithm 7: Multi-Modal Model Predictive Path Integral Control (M3P2I)

1: Parameters: N, K, T ;
2: Initialize: µi = 0, u = 0, œ RT

’i œ [0, N)
3: while task not completed do
4: x Ω GetStateEstimate();
5: InitIsaacGym(x)
6: /* Begin parallel sampling of alternatives */
7: for i = 0 to N ≠ 1 do
8: for k œ Ÿ(i) do
9: Si(Vk) Ω 0;

10: Sample noise Ek Ω SampleHaltonSplines();
11: µi Ω BackShift(µi);
12: for t = 0 to T ≠ 1 do
13: Qi(Vk) Ω ComputeTrajIsaacGym(µi + Ek)
14: Si(Vk) Ω UpdateCost(Qi(Vk)); Û Equation (7.8)
15: end for
16: end for
17: end for
18: /* Begin computing trajectory weights */
19: for i = 0 to N ≠ 1 do
20: fli, ÷i, —i Ω UpdateInvTemp(i); Û Algorithm 6
21: Êi(k) Ω

1
÷i

exp(≠ 1
—i

(Si(Vk) ≠ fli)), ’k; Û Equation (7.9)
22: µi =

q
kœŸ(i) Êi(Vk)Vk Û Equation (7.12)

23: end for
24: /* Begin control update */
25: Ễ(V) = 1

÷
exp

1
≠

1
—

!
S̃(V) ≠ fl

"2
Û Equation (7.13)

26: for t = 0 to T ≠ 1 do
27: ut = (1 ≠ –u)ut≠1 + –u

q
N ·K≠1
j=0 Ễkvt,k Û Equation (7.14)

28: end for
29: ExecuteCommand(uú

0 = u0)
30: u = BackShift(u)
31: end while

The pseudocode is summarized in Algorithm 7. After the initialization, we
sample Halton splines and forward simulate the plan alternatives using IsaacGym
to compute the costs (Lines 7-17). The costs are then used to update the weights
for each plan and update their means (Lines 19-23). Finally, the mean of the overall
action sequence is updated (Line 27), and the first action from the mean is executed.

7.5. Experiments

7

125

7.4.4. Plan interface

The plan interface is a component that takes the possible alternative symbolic ac-
tions in P and links them to their corresponding cost functions, forwarding the
latter to M3P2I. For every symbolic action a robot can perform, we store a cost
function in a database that we can query at runtime, bridging the output of the
action planner to the motion planner.

7.5. Experiments

We evaluate the performance of our method in two di�erent scenarios. The first
is a pull-push scenario for non-prehensile manipulation of an object with an om-
nidirectional robot capable of both pulling and pushing. The second is the object
stacking scenario with a 7-DOF manipulator with dynamic obstacles and external
disturbances at runtime.

7.5.1. Push-pull scenario

This scenario is depicted in Figure 7.2. One object has to be placed to a goal,
situated in one of the corners of an arena. The object to be pushed can have
di�erent initial locations, for instance, in the middle of the arena or on one of the
corners. There are also static and dynamic obstacles, and the robot can push or
pull the object. We define the following action templates for the AIP and the cost
functions for M3P2I.

Goal

Object to push

Push-pull scenario

RobotWalls

Dyn. Obst.

Fix. Obst.

Movable Obj.

Figure 7.2: Push-pull scenarios. The dark purple object has to be placed on the green area. The
robot can pull or push the object while avoiding dynamic and fixed obstacles. The objects and

goals can have di�erent initial positions.

Action templates for AIP
The AIP for this task requires one state s(goal) and a relative symbolic observation
o(goal) that indicates when an object is at the goal. This is defined as:

s(goal) =
5

isAt(goal)
!isAt(goal)

6
, o(goal)) =

I
0, ||pG ≠ pO|| Æ ”

1, ||pG ≠ pO|| > ”
(7.15)

7

126

Actions Preconditions Postconditions
push(obj,goal) - l(goal) = [1 0]€
pull(obj,goal) - l(goal) = [1 0]€

where pG, pO represent the positions of the goal and the object in a 3D coordinate
system. ” is a constant threshold determined by the user. The mobile robot can
either push, pull, or move. These skills are encoded in the action planner as follows:

The post-condition of the action push(obj,goal) is that the object is at the
goal, similarly for the pull action. Note that we do not add complex heuristics to
encode the geometric relations in the task planner to determine when to push or
pull; instead, we will exploit parallel sampling in the motion planner later. The
BT for this task sets sd as a preference for l(goal) = [1 0]€. The BT would contain
more desired states for pushing or pulling several blocks. Our approach can be
extended to multiple objects in di�erent locations, for instance, and accommodate
more involved pre-post conditions and fallbacks since it has the same properties as
our past method [108].

Cost functions for MPPI
We need to specify a cost for each symbolic action. The cost function for pushing
object O to the goal G is defined as:

Cpush(R, O, G) = Cdist(R, O) + Cdist(O, G) + Cori(O, G)
+ Calign_push(R, O, G)

(7.16)

where minimizing Cdist(O, G) = Êdist · ||pG ≠ pO|| makes the object O close to the
goal G. Cori(O, G) = Êori · „(�O, �G) defines the orientation cost between the
object O and goal G. We define „ for symmetric objects as:

„(�u, �v) = min
i,jœ{1,2,3}

(2 ≠ ||ų1 · v̨i|| ≠ ||ų2 · v̨j ||) (7.17)

where �u = {ų1, ų2, ų3}, �v = {v̨1, v̨2, v̨3} form the orthogonal bases of two coordi-
nates systems. Minimizing this cost makes two axes in the coordinate systems of
the object and goal coincide.

The align cost Calign_push(R, O, G) is defined as:

Calign_push(R, O, G) = Êalign_push · h(cos(◊)), (7.18)

cos(◊) = (pR ≠ pO) · (pG ≠ pO)
||pR ≠ pO|| · ||pG ≠ pO)|| , (7.19)

h(cos(◊)) =
I

0, cos(◊) Æ 0
cos(◊), cos(◊) > 0

(7.20)

This makes the object O lie at the center of robot R and goal G so that the
robot can push it, as illustrated in Figure 7.3.

Similarly, the cost function of making the robot R pull object O to the goal G
can be formulated as:

7.5. Experiments

7

127

General case
Object

Goal

Push configuration Pull configuration

Figure 7.3: Push and pull ideal configurations. The robot R has to push or pull the object O to
the goal G.

Cpull(R, O, G) = Cdist(R, O) + Cdist(O, G) + Cori(O, G)
+ Calign_pull(R, O, G) + Cact_pull(R, O, G)

(7.21)

where the align cost Calign_pull(R, O, G) makes the robot R lie between the object O
and goal G, see Figure 7.3. While pulling, we simulate a suction force in IsaacGym,
and we are only allowed to sample control inputs that move away from the object.
We enforce this through Cact_pull(R, O, G). Mathematically:

Calign_pull(R, O, G) = Êalign_pull · h(≠cos(◊)) (7.22)

Cact_pull(R, O, G) = Êact_pull · h((pO ≠ pR) · ų

||pO ≠ pR|| · ||ų||
) (7.23)

An example execution of push and pull can be seen in Figure 7.4. Finally,
we consider an additional cost Cdyn_obs(R, D) to avoid collisions with (dynamic)
obstacles while operating. We use a constant velocity model to predict the position
of the dynamic obstacle D in the coming horizon and try to maximize the distance
between the latter and the robot:

Cdyn_obs(R, D) = Êdyn_obs · e≠||pR≠pDpred
|| (7.24)

where pDpred is the predicted position of dynamic obstacle.

Results
We test the performance of our multi-modal MPPI approach in two configurations
of the arena: a) The object is in the middle of the arena, and the goal is to one
corner, and b) both the object and the goals are in di�erent corners. For each arena
configuration, we test three cases: the robot can either only push, only pull, or
combine the two through our M3P2I. At the beginning of the task, the AIP plans
for the two alternatives, pushing and pulling, and forwards the solution to the plan

7

128

Goal

Object

Pulling example Pushing example

Robot

Rollouts

Wall

Dyn. Obst.

Figure 7.4: Illustrative example of pulling and pushing a block to a goal. The strategy di�ers
according to the object, goal location, and dynamic obstacle position. What action to perform is

decided at runtime through multi-modal sampling.

interface. Then, the M3P2I starts minimizing the costs until the AIP observes the
completion of the task. We performed 20 trials per case, per arena configuration,
for a total of 120 simulations. By only pulling an object, the robot cannot tightly
place it on top of the goal in the corner; on the other hand, by only pushing, the
robot cannot retrieve the object from the corner. By blending the push and pull
actions, we can complete the task in every tested configuration. Table 7.1 shows
that the multi-modal case outperforms push and pull in both arena configurations.
It presents lower position and orientation errors and a shorter completion time. The
behavior is best appreciated in the accompanying video.

Table 7.1: Simulation Results for Push and Pull scenario

Case Skill Mean(std)
pos error

Mean(std)
ori error

Mean(std)
time

Push 0.1061
(0.0212)

0.0198
(0.0217)

6.2058
(6.8084)

Middle-
corner Pull 0.1898

(0.0836)
0.0777

(0.1294)
25.1032

(13.7952)
Multi-
modal

0.1052
(0.0310)

0.0041
(0.0045)

3.7768
(0.8239)

Push 7.2679
(3.2987)

0.0311
(0.0929) time-out

Corner-
corner Pull 0.3065

(0.1778)
0.1925

(0.2050)
32.8838
(7.9240)

Multi-
modal

0.1375
(0.0091)

0.0209
(0.0227)

9.9473
(3.4591)

https://sites.google.com/view/m3p2i-aip

7.5. Experiments

7

129

7.5.2. Object stacking scenario

We now illustrate how we integrated the features of M3P2I with AIP’s reactivity,
enabling adjustments in both low-level motions and high-level actions. We address
the challenge of stacking objects (Figure 7.5) with external task disruptions, ne-
cessitating adaptive actions like re-grasping with di�erent pick configurations (e.g.,
top or side picking). We showcase the robot’s ability to rectify plans by repeating
actions or compensating for unplanned occurrences, such as unexpected obstacles
obstructing the path. We benchmark our approach’s performance against the cube-
stacking task outlined by Makoviychuk and coauthors [85]. Our experiments employ
a 7-DOF manipulator and include both simulation and real-world settings.

Pick from table Pick from shelf

Cube to pick

Place on top of

Figure 7.5: Pick-place scenarios. The red cube has to be placed on top of the green cube. The
red cube can be either on the table or a constrained shelf, requiring di�erent pick strategies from

the top or the side, respectively.

Action templates for AIP
For this task, we define the following states s(reach), s(hold), s(preplace), s(placed), and
their corresponding symbolic observations. The robot has four symbolic actions,
summarized in Table 7.2. The symbolic observers to estimate the states are defined

Table 7.2: Actions with their Pre and Post conditions

Actions Preconditions Postconditions
reach(obj) - l(reach) = [1 0]€
pick(obj) reachable(obj) l(hold) = [1 0]€
prePlace(obj) holding(obj) l(preplace) = [1 0]€
place(obj) atPreplace(obj) l(placed) = [1 0]€

as follows. To estimate whether the gripper is close enough to the cube, we define the
relative observation o(reach). We set o(reach) = 0 if ”r Æ 0.012, where ”r = ||pee≠pO||

measures the distance between the end e�ector ee and the object O. o(reach) = 1
otherwise. To estimate whether the robot is holding the cube, we define:

o(hold) =
I

0, ”f < 0.065 and ”f > 0.058
1, ”f Ø 0.065 or ”f Æ 0.058

(7.25)

7

130

where ”f = ||pee_l ≠pee_r|| measures the distance between the two gripper’s fingers.
To estimate whether the cube reaches the pre-place location, we define:

o(preplace) =
I

0, Cdist(O, P) < 0.01 and Cori(O, P) < 0.01
1, Cdist(O, P) Ø 0.01 or Cori(O, P) Ø 0.01

(7.26)

where Cdist(O, P) and Cori(O, P) measure the distance and the orientation between
the object O and the pre-place location P as in Equation (7.16). The pre-place
location is a few centimeters higher than the target cube location, directly on top
of the green cube. We use the same logic as Equation (7.26) for o(placed) where the
place location is directly on top of the cube location. The BT for this task sets the
desired state to be sd æ s(placed) = [1 0]T , meaning the cube is correctly placed on
top of the other. Note that in more complex scenarios, such as rearranging many
cubes, the BT can guide the AIP as we demonstrated in past work [108].

Cost functions for M3P2I
At the motion planning level, the cost functions for the four actions are:

Creach(ee, O, Â) = Êreach · ||pee ≠ pO||

+ Êtilt ·

3
||z̨ee · z̨O||

||z̨ee|| · ||z̨O||
≠ Â)

4 (7.27)

Cpick(ee) = Êgripper · lgripper (7.28)
Cpreplace(O, P) = Cdist(O, P) + Cori(O, P) (7.29)
Cplace(O, P) = Êgripper · (1 ≠ lgripper) (7.30)

where Creach(ee, O, Â) makes the end e�ector get close to the object with a grasping
tilt constraint Â. When Â is close to 1, the gripper will be perpendicular to the
object; when Â is close to 0, the gripper will be parallel to the plane that the object
stands.

Results - reactive pick and place
We first consider the pick-and-place under disturbances. We model disturbances by
changing the position of the cubes at any time. We compare the performance of
our method with the o�-the-shelf RL method [85]. This is a readily available Actor-
Critic RL example from IsaacGym, which considers the same tabletop configuration
and robot arm. We compare the methods in a vanilla task without disturbances and
a reactive task with disturbances. It should be noticed that the cube-stacking task
from Makoviychuk et al. [85] only considers moving the cube on top of the other
cube while neglecting the action of opening the gripper and releasing the cube. In
contrast, our method exhibits fluent transitions between pick and place and shows
robustness to interferences during the long-horizon task execution. The results can
be found in Table 7.3.

We performed 50 trials per case. Even though the RL agent presents a slightly
lower position error in the vanilla case, our method outperforms it in the reactive
task.

7.6. Conclusions

7

131

Table 7.3: Simulation Results of Reactive Pick and Place

Task Method Training
Epochs

Mean(std)
pos error

Vanilla Ours 0 0.0075 (0.0036)
RL 1500 0.0042 (0.0019)

Reactive Ours 0 0.0117 (0.0166)
RL 1500 0.0246 (0.0960)

Results: multi-modal grasping
In this case, we consider grasping the object with di�erent grasping poses by sam-
pling two alternatives in parallel. That is, pick from the top or the side to cover the
cases when the object is on the table or on the constrained shelf with an obstacle
above. To do so, we use the proposed M3P2I and incorporate the cost functions of
Creach(ee, O, Â = 0) and Creach(ee, O, Â = 1) as shown in Equation (7.27). This
allows for a smooth transition between op and side grasp according to the geometry
of the problem, see Figure 7.6.

Top Pick from table Side Pick from shelf

Dyn. Obstacle

Shelf

Figure 7.6: Example of di�erent picking strategies computed by our multi-modal MPPI. The
obstacle on top of the shelf can be moved, simulating a dynamic obstacle. See the accompanying

video for the actual execution.

Results - Real-world experiments
We validate our method in the real world for reactive pick-and-place as shown in
Figure 7.7. We consider dynamic obstacles with a stick to be avoided and other hu-
man disturbances such as moving, rotating, and stealing the cube from the gripper.
M3P2I enables smooth execution and recovery while being able to grasp the cube
in di�erent configurations.

7.6. Conclusions

In this paper, to address the runtime geometric uncertainties and disturbances, we
proposed a method to combine the adaptability of an Active Inference planner for
high-level action selection with a novel Multi-Modal Model Predictive Path Integral
Controller (M3P2I) for low-level control. We modified Active Inference to generate

https://sites.google.com/view/m3p2i-aip

7

132

Top Pick from table

Side Pick from shelf

Dynamic Obstacle

Displacing target Stealing the cube

Figure 7.7: Real-world experiments of picking a cube from the table or the shelf while avoiding
dynamic obstacles and recovering from task disturbances. See the accompanying video for the

actual execution.

plan alternatives that are linked to costs for M3P2I. The motion planner can sample
the plan alternatives in parallel, and it computes the control input for the robot by
smoothly blending di�erent strategies. In a push-pull task, we demonstrated how
our proposed framework can blend both push and pull actions, allowing it to deal
with corner cases where approaches only using a single plan fail. With a simu-
lated manipulator, we showed our method outperforming a reinforcement learning
baseline when the environment is disturbed while requiring no training. Simulated
and real-world experiments demonstrated how our approach solves reactive object
stacking tasks with a manipulator subject to severe disturbances and various scene
configurations that require di�erent grasp strategies.

https://sites.google.com/view/m3p2i-aip

8
Conclusion and discussion

T his concluding chapter summarises the contributions of this thesis and provides
an extensive discussion of the findings, pointing out fundamental questions and

future directions to be explored.

There is no real ending.
It’s just the place where you stop the story.

Frank Herbert

133

8

134

8.1. Conclusions

In this work, we have contributed new control algorithms and ideas towards adap-
tive and reactive robots at various levels of abstraction. Specifically, we explored the
application of Active Inference for low-level robot control and task planning and the
utilization of MPPI for contact-rich motion planning. Through the analysis, exten-
sion, modification, and combination of Active Inference and MPPI, this thesis has
advanced the state-of-the-art in terms of low-level adaptive and fault-tolerant con-
trol, reactive high-level action planning, and contact-rich task and motion planning.
The proposed theories have been mathematically formalized and verified through
extensive simulations and experiments on real robots. In the following, we provide
a more detailed summary of the content of each contributing chapter, highlighting
the specific contributions and advancements made in each area.

1. Low-level adaptive and fault-tolerant control with unbiased Active
Inference: Chapters 3 and 4 presented a modified version of Active Inference
that explicitly incorporates control actions into the free-energy computation.
This formulation o�ered two key advantages. Firstly, it eliminated the bias
from state estimation that was present in the standard Active Inference con-
troller. Secondly, it simplified the definition of control actions by removing the
need for computing partial derivatives of free-energy. The advantages of the
u-AIC have been combined with established fault detection techniques with
probabilistic robustness in Chapter 3. This e�ectively reduced false positives
compared to standard Active Inference in a simulated 2-DOF arm subject to
sensory faults. This work served as the basis for Chapter 4, where the concept
of unbiased Active Inference has been mathematically formalized and tested in
real-world settings. This chapter established a comprehensive framework that
extended beyond its application in fault-tolerant control and touched upon
reference tracking and collision behaviors. The theoretical findings have been
validated through experiments on a real 7-DOF robot arm, marking the first
implementation of the u-AIC on an actual robot. Chapter 4 also marked the
end of the exploration of low-level control during this thesis.

2. Reactive high-level decision making: Chapter 5 was centered around re-
active high-level action planning and task execution, shifting the focus to
discrete decision-making problems. The chapter presented a novel combina-
tion of the discrete formulation of Active Inference with behavior trees. This
integration has enabled the merging of o�ine planning with online decision-
making, resulting in a fast and reactive scheme suitable for long-term tasks.
In contrast to traditional approaches that plan actions to be executed, this ap-
proach utilized behavior trees to encode desired states to be achieved. These
desired states serve as a guide for the online search of an action sequence using
Active Inference. Notably, this work represented a pioneering application of
discrete Active Inference on a real robot. Particularly, it has been applied for
retail store tasks such as stocking shelves or collecting orders. This chapter
provided high-level adaptive behavior but assumed a set of atomic skills to be
given. These skills were pre-programmed routines that made limited use of

8.2. Discussion

8

135

geometric and physical information about the environment. These turned out
to be crucial for enhanced robot autonomy with less hard-coded engineering
e�ort, as explained in the subsequent Chapter 6.

3. Contact-rich motion planning: Chapter 6 leveraged object geometries
and generic physics to achieve smoother execution of atomic skills without
relying on extensive heuristics. This chapter explored the use of Model Pre-
dictive Path Integral Control to leverage general physics for motion planning
in contact-rich scenarios. In particular, it presented the combination of MPPI
with a physics simulator, IsaacGym, to be used as the dynamic model for
planning. This allowed parallel sampling of forward trajectories using the
simulator, eliminating the need for explicit modeling of complex robot dy-
namics, object interactions, and collision checking. The proposed method
demonstrated applicability to various tasks, including motion planning with
collision avoidance, non-prehensile manipulation, and prehensile whole-body
control. Experimental results showcased competitive performance with state-
of-the-art motion planners in non-interacting scenarios while outperforming
other approaches in contact-rich tasks. Of particular interest is the emergence
of smooth pick behaviors with mobile manipulators without manually encod-
ing any pre or post-grasp constraints. This chapter laid the foundations for
the work presented in the subsequent Chapter 7.

4. Reactive task and motion planning: Chapter 7 combined the advance-
ments of Chapter 5 and Chapter 6 into a control architecture for reactive task
and motion planning. This architecture combined the Active Inference planner
with model predictive path integral control. The main idea was to use Ac-
tive Inference to plan cost functions instead of symbolic actions. Additionally,
Active Inference has been modified to plan di�erent (parallel) alternatives to
achieve a goal. Then, the chapter proposed a Multi-Modal MPPI, the M3P2I,
capable of sampling in parallel these alternatives, weighing them against their
relative cost to compute one coherent optimal control input. By doing so, a
robot can blend di�erent skills without needing articulated heuristics at the
task planning level. This method allowed us to achieve reactive high-level
and low-level behavior, resulting in a reactive TAMP framework. The simu-
lation results and the real-world experiments demonstrated the benefit of this
method, especially in tasks that can only be solved if di�erent skills are sam-
pled and blended together. This chapter is the last contribution of this thesis
but opens up many possibilities for the future development of autonomous
robots capable of intelligently interacting with their surroundings.

8.2. Discussion

This dissertation embarked on a journey to explore robotic algorithms aiming at
achieving human-level capabilities for long-term tasks in dynamic environments.
While we have introduced numerous advancements in robot autonomy across vari-
ous abstraction levels, we acknowledge that we have not yet unlocked human-level
intelligence or dexterity. This section provides a thorough exploration, examining

8

136

both the successes and challenges faced. It o�ers insights into the techniques utilized
and explains the reasoning behind the choices made in the contributing chapters.
Finally, we outline possible directions for future work that could be addressed with
the theories presented in this thesis.

8.2.1. Active Inference or MPPI? Choices and insights

At its core, this thesis aims to investigate the theories of Active Inference and
MPPI for robot control. In Chapter 2, we provided the theoretical background for
these two theories from a mathematical perspective. In this sub-section, instead,
we will critically assess the strengths and limitations of these two approaches in
relation to each other, explaining why the selection of either one or the other was
appropriate for di�erent abstraction levels within a robot control architecture. It
is crucial to recognize that while Active Inference and MPPI are both connected
to the idea of free-energy, the definition of the free-energy itself di�ers in these
two theories, and is based on substantially di�erent assumptions. Active Inference
is rooted in biological assumptions, asserting that organisms seek to minimize the
surprise of sensory information to ensure survival. In contrast, MPPI adopts a
di�erent form of free-energy, which refers to a mathematical quantity of a controlled
system that takes the same form of Helmholtz free-energy. This disregards biological
plausibility and focuses solely on deriving an optimal control strategy. These distinct
assumptions have notable implications at each level of abstraction in the robot
control architecture.

Low-level control and motion planning
In the context of low-level control, Active Inference demonstrated its e�cacy in
Chapters 3 and 4, o�ering an overall control law that does not necessitate a detailed
model of the controlled system. This follows from the biological assumptions be-
hind Active Inference, which forces the evolution of a dynamic system to follow a
desired behavior, for instance, the one of a first-order linear system [107, 109]. This
is advantageous when dealing with uncertain robot dynamics, enabling compliant
control and accurate point-to-point motions in generic manipulators. In contexts
where a model is not readily available, MPPI’s requirement for a well-defined system
description could be a limitation. Conversely, incorporating collision avoidance or
discontinuous contacts within the Active Inference formulation proved challenging.
This is because defining a general di�erentiable generative model for these cases
becomes very complex rather quickly. These complexities motivated the adoption
of MPPI for motion planning in contact-rich scenarios, which excels in dealing with
discontinuous dynamics and arbitrary cost functions. For the sort of tasks consid-
ered in Chapter 6, such as non-prehensile manipulation, accurate models of object
interactions are required. Instead of analytically defining such models or learning
specialized networks to approximate contact behaviors, we proposed using a physics
simulator for planning. The simple idea of leveraging the simulator itself for model-
ing contact dynamics opened doors to solving various contact-rich tasks that would
have been challenging under the biological assumptions of Active Inference.

Importantly, it should be emphasized that Active Inference and MPPI can be

8.2. Discussion

8

137

combined for low-level control as well. In some of our practical real-world experi-
ments for contact-rich motion planning with collision avoidance, we used MPPI to
provide joint velocity references to the unbiased Active Inference to achieve com-
pliant low-level motions. Employing a fast low-level controller that abstracted the
system’s dynamics like u-AIC, along with a more advanced motion planner for ref-
erence generation like MPPI, led to e�ective and compliant robot motions.

High-level decision making
Moving on to the higher levels of the control hierarchy, the discrete formulation of
Active Inference provided a nice framework for adaptive decision-making. This is
because of the intuitive idea behind it, that is, a system seeks to observe the pre-
scribed desired states. This led to our intuition of encoding desired states in a BT
to guide the high-level action selection process with Active Inference, which would
have been more complex with MPPI. The nature of abstract reasoning required for
task planning is captured well with categorical distributions, directly aligning with
Active Inference’s capabilities. Classical MPPI theory, instead, only considers Gaus-
sian distributions. Ultimately, we opted to connect Active Inference with behavior
trees and MPPI through cost function scheduling, combining their complementary
strengths. By doing so, we achieved a high degree of autonomy in mobile manip-
ulators, enabling adaptive task planning, and geometric and physical reasoning for
contact-rich tasks. However, our exploration is not exhaustive, and robotics still
presents numerous challenges. While we addressed several hurdles in this work, ar-
eas remain open for future exploration and advancements. The field of robotics, in
fact, continues to pose exciting challenges, encouraging us to continue our pursuit
of creating truly human-level capable machines.

8.2.2. Challenges and future work

Why does my robot fail in such a straightforward task? This resonating question has
often crossed the mind of the author during the course of this thesis, and arguably
the mind of every roboticist at least once. The simple answer could be that we often
demand too much from our robots while providing them with inadequate resources.
In robotics, we aspire to achieve human-level autonomy in complex and unstructured
environments, yet we typically equip our robots with limited sensing, reasoning, and
motor skills. Below, we report what we consider important challenges and directions
for future work in di�erent areas.

Perception
Throughout this work, we focused primarily on aspects other than perception, con-
sidering it as a given. However, especially in the conducted real-world experiments,
the significance of fast and accurate perception systems cannot be overlooked.
This is particularly crucial in the case of contact-rich tasks, where future work
could focus on integrating multimodal perception pipelines that incorporate visual
and tactile feedback for better state estimation. To obviate the need to have ac-
curate 3D representation in a simulator for collision avoidance with MPPI, future
work could integrate methods such as signed distance fields directly in the cost

8

138

function. Additionally, online system identification could be included to enhance
model accuracy. By integrating these advancements into the methodologies pre-
sented in Chapters 6 and 7, one could better bridge the reality gap and facilitate
smoother transferability from simulation to real-world applications. Additionally,
recent trends in robotics consider the problem of active perception. We believe this
is an exciting direction for future exploration that can enhance the autonomy of
robots in environments that are hard to perceive accurately.

Controllers fusion
During the development of the work in Chapter 6 [110], we briefly experimented
with the addition of prior controllers, such as PID or dynamic fabrics [130], along
with random samples. Although we did not include this in the thesis, this idea
can potentially improve sample e�ciency by providing informative samples based
on designed controllers. Thus, one can extend our MPPI approach [110] to roll out
in parallel classical controllers or learned policies, together with random samples to
improve the overall performance of the MPPI motion planner. This would de-facto
enable controller fusion, blending di�erent strategies into one coherent optimal
control input. MPPI could take suggestions from such controllers, steering the
commanded input towards the one that works best in the current scenario while
avoiding high-cost trajectories. By doing so one could again smoothly transition
between di�erent policies without the need for specific heuristics. The task and
motion planning scheme in Chapter 7 could be bootstrapped to plan both costs
and a set of possible prior controllers that can minimize that cost. Thus, one could
have an ever-growing and more capable system where the controller sets can be
augmented over time. Ultimately, as the system remains controlled solely by the
output of MPPI, this setup appears scalable and readily capable of continuously
incorporating advancements in learning-based skills. By combining task-specific
costs with "barrier costs", one could safely deploy learned policies while preserving
certain safety measures such as collision or joint limit avoidance.

Goals and costs definition
The approach of planning cost functions to be minimized, as demonstrated in Chap-
ter 7, showcased its e�ectiveness for tasks where a distance measure can represent
the objective. However, challenges arise when defining a cost function for more com-
plex tasks, such as tying someone’s shoe. In the realm of future research, exploring
alternative methods of specifying cost functions and goals holds a vast po-
tential. One avenue of exploration could involve representing goals as images [20],
where planning sub-images becomes a crucial process. This approach may be par-
ticularly relevant for tasks that lack a straightforward analytical description. More-
over, taking a step further, leveraging neural networks as cost functions for MPPI
can open up new possibilities to tackle tasks that are hard to describe analytically.
Finally, there are also great opportunities for conditioning the cost function based
on formal methods and reasoning. One could integrate common sense knowledge
to smoothly steer the behavior of a robot to guarantee certain quality and safety
attributes. Thus, one could change not only what a robot has to perform, but also
how.

8.2. Discussion

8

139

Long-term vision: towards machines with feelings
To enhance robustness in decision-making at a high level, future research could ex-
plore the concept of robots experiencing frustration or annoyance when repeatedly
failing, similar to humans. Currently, robots lack the capacity for such emotional
responses, which can lead to getting stuck in repetitive, ine�ective behaviors. To
address this, the work in Chapter 5 with behavior trees and Active Inference could
incorporate principled methods to adjust model parameters dynamically,
allowing the robot to experiment with di�erent strategies when faced with failures.
Introducing a sense of frustration could prompt the robot to explore alternative
approaches, and ideally learn from its mistakes. In the same way, robots’ physical
constraints such as finite battery capacity, could influence their behavior. By reg-
ulating their actions to move slower when "feeling" tired due to low battery, robots
could demonstrate a level of self-awareness and adaptive behavior.

The notion of feelings may be intimately connected to the core business of
consciousness, as explored in the book "The Hidden Spring" by Mark Solms [127].
This raises intriguing questions about whether machines with feelings could be the
ultimate path toward achieving general artificial intelligence. However, should we
even embark on the journey to develop machines with feelings? This contemplation
places both a weighty responsibility and a rewarding opportunity on researchers as
it could open up new frontiers in the realms of artificial intelligence, paving the road
to an exciting future of autonomous machines.

Bibliography

[1] Ian Abraham, Ankur Handa, Nathan Ratli�, Kendall Lowrey, Todd D. Mur-
phey, and Dieter Fox. “Model-Based Generalization Under Parameter Un-
certainty Using Path Integral Control”. In: IEEE Robotics and Automation
Letters 5.2 (Apr. 2020), pp. 2864–2871. issn: 2377-3766, 2377-3774. doi:
10.1109/LRA.2020.2972836. (Visited on 06/19/2023).

[2] Arslan Ahmed Amin and Khalid Mahmood Hasan. “A review of Fault Toler-
ant Control Systems: Advancements and applications”. en. In: Measurement
143 (Sept. 2019), pp. 58–68. issn: 02632241. doi: 10.1016/j.measurement.
2019.04.083. url: https://linkinghub.elsevier.com/retrieve/pii/
S0263224119304099 (visited on 08/09/2023).

[3] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józe-
fowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert,
Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Pe-
ter Welinder, Lilian Weng, and Wojciech Zaremba. “Learning dexterous in-
hand manipulation”. en. In: The International Journal of Robotics Research
39.1 (Jan. 2020), pp. 3–20. issn: 0278-3649, 1741-3176. doi: 10 . 1177 /
0278364919887447. url: http://journals.sagepub.com/doi/10.1177/
0278364919887447 (visited on 06/19/2023).

[4] Ermano Arruda, Michael J. Mathew, Marek Kopicki, Michael Mistry, Morteza
Azad, and Jeremy L. Wyatt. “Uncertainty averse pushing with model pre-
dictive path integral control”. In: 2017 IEEE-RAS 17th International Con-
ference on Humanoid Robotics (Humanoids) (2017). url: https://www.
academia.edu/35477194/Uncertainty_Averse_Pushing_with_Model_
Predictive_Path_Integral_Control (visited on 06/19/2023).

[5] M. Baioumy, M. Mattamala, and N. Hawes. “Variational inference for pre-
dictive and reactive controllers”. English. In: (2020). url: https://ora.ox.
ac.uk/objects/uuid:b869c8e6-ee88-494c-b4d4-df5f3c5c2c2e (visited
on 06/16/2023).

[6] Mohamed Baioumy, Paul Duckworth, Bruno Lacerda, and Nick Hawes. “Ac-
tive Inference for Integrated State-Estimation, Control, and Learning”. In:
2021 IEEE International Conference on Robotics and Automation (ICRA).
ISSN: 2577-087X. May 2021, pp. 4665–4671. doi: 10 . 1109 / ICRA48506 .
2021.9562009.

141

https://doi.org/10.1109/LRA.2020.2972836
https://doi.org/10.1016/j.measurement.2019.04.083
https://doi.org/10.1016/j.measurement.2019.04.083
https://linkinghub.elsevier.com/retrieve/pii/S0263224119304099
https://linkinghub.elsevier.com/retrieve/pii/S0263224119304099
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
http://journals.sagepub.com/doi/10.1177/0278364919887447
http://journals.sagepub.com/doi/10.1177/0278364919887447
https://www.academia.edu/35477194/Uncertainty_Averse_Pushing_with_Model_Predictive_Path_Integral_Control
https://www.academia.edu/35477194/Uncertainty_Averse_Pushing_with_Model_Predictive_Path_Integral_Control
https://www.academia.edu/35477194/Uncertainty_Averse_Pushing_with_Model_Predictive_Path_Integral_Control
https://ora.ox.ac.uk/objects/uuid:b869c8e6-ee88-494c-b4d4-df5f3c5c2c2e
https://ora.ox.ac.uk/objects/uuid:b869c8e6-ee88-494c-b4d4-df5f3c5c2c2e
https://doi.org/10.1109/ICRA48506.2021.9562009
https://doi.org/10.1109/ICRA48506.2021.9562009

8

142

[7] Mohamed Baioumy, Bruno Lacerda, Paul Duckworth, and Nick Hawes. “On
Solving a Stochastic Shortest-Path Markov Decision Process as Probabilistic
Inference”. en. In: Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases. Communications in Computer and Information
Science. Cham: Springer International Publishing, 2021, pp. 819–829. isbn:
978-3-030-93736-2. doi: 10.1007/978-3-030-93736-2_58.

[8] Mohamed Baioumy, Corrado Pezzato, Carlos Hernández Corbato, Nick Hawes,
and Riccardo Ferrari. “Towards Stochastic Fault-Tolerant Control Using Pre-
cision Learning and Active Inference”. en. In: Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases. Communications in
Computer and Information Science. Cham: Springer International Publish-
ing, 2021, pp. 681–691. isbn: 978-3-030-93736-2. doi: 10.1007/978-3-030-
93736-2_48.

[9] Mohamed Baioumy, Corrado Pezzato, Riccardo Ferrari, Carlos Hernández
Corbato, and Nick Hawes. “Fault-tolerant Control of Robot Manipulators
with Sensory Faults using Unbiased Active Inference”. In: 2021 European
Control Conference (ECC). June 2021, pp. 1119–1125. doi: 10 . 23919 /
ECC54610.2021.9654913.

[10] Mohamed Baioumy, Corrado Pezzato, Riccardo Ferrari, and Nick Hawes.
“Unbiased Active Inference for Classical Control”. In: 2022 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). ISSN: 2153-
0866. Oct. 2022, pp. 12787–12794. doi: 10.1109/IROS47612.2022.9981095.

[11] Manuel Baltieri and Christopher Buckley. “PID Control as a Process of Ac-
tive Inference with Linear Generative Models”. en. In: Entropy 21.3 (Mar.
2019), p. 257. issn: 1099-4300. doi: 10.3390/e21030257. url: https://
www.mdpi.com/1099-4300/21/3/257 (visited on 06/16/2023).

[12] Manuel Baltieri and Christopher L. Buckley. “A Probabilistic Interpretation
of PID Controllers Using Active Inference”. en. In: From Animals to Animats
15. Ed. by Poramate Manoonpong, Jørgen Christian Larsen, Xiaofeng Xiong,
John Hallam, and Jochen Triesch. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 15–26. isbn: 978-3-319-97628-0.
doi: 10.1007/978-3-319-97628-0_2.

[13] Manuel Baltieri and Christopher L. Buckley. “On Kalman-Bucy filters, linear
quadratic control and active inference”. In: (2020). Publisher: arXiv Version
Number: 1. doi: 10.48550/ARXIV.2005.06269. url: https://arxiv.org/
abs/2005.06269 (visited on 06/16/2023).

[14] Manuel Baltieri and Christopher L. Buckley. “The modularity of action and
perception revisited using control theory and active inference”. In: The 2018
Conference on Artificial Life. arXiv:1806.02649 [q-bio]. 2018, pp. 121–128.
doi: 10.1162/isal_a_00031. url: http://arxiv.org/abs/1806.02649
(visited on 06/16/2023).

https://doi.org/10.1007/978-3-030-93736-2_58
https://doi.org/10.1007/978-3-030-93736-2_48
https://doi.org/10.1007/978-3-030-93736-2_48
https://doi.org/10.23919/ECC54610.2021.9654913
https://doi.org/10.23919/ECC54610.2021.9654913
https://doi.org/10.1109/IROS47612.2022.9981095
https://doi.org/10.3390/e21030257
https://www.mdpi.com/1099-4300/21/3/257
https://www.mdpi.com/1099-4300/21/3/257
https://doi.org/10.1007/978-3-319-97628-0_2
https://doi.org/10.48550/ARXIV.2005.06269
https://arxiv.org/abs/2005.06269
https://arxiv.org/abs/2005.06269
https://doi.org/10.1162/isal_a_00031
http://arxiv.org/abs/1806.02649

Bibliography

8

143

[15] Moses Bangura and Robert Mahony. “Real-time Model Predictive Control
for Quadrotors”. en. In: IFAC Proceedings Volumes 47.3 (2014), pp. 11773–
11780. issn: 14746670. doi: 10.3182/20140824-6-ZA-1003.00203. url:
https://linkinghub.elsevier.com/retrieve/pii/S1474667016434890
(visited on 08/25/2023).

[16] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan
D. Ratli�, Dieter Fox, Fabio Ramos, and Byron Boots. “STORM: An In-
tegrated Framework for Fast Joint-Space Model-Predictive Control for Re-
active Manipulation”. en. In: Proceedings of the 5th Conference on Robot
Learning. ISSN: 2640-3498. PMLR, Jan. 2022, pp. 750–759. url: https://
proceedings.mlr.press/v164/bhardwaj22a.html (visited on 06/19/2023).

[17] Mogens Blanke, Michel Kinnaert, Jan Lunze, Marcel Staroswiecki, and J.
Schröder. Diagnosis and Fault-Tolerant Control. eng. 2., ed. Berlin: Springer
Berlin, 2006. isbn: 978-3-540-35653-0.

[18] Morten Rufus Blas and Mogens Blanke. “Stereo vision with texture learning
for fault-tolerant automatic baling”. en. In: Computers and Electronics in
Agriculture 75.1 (Jan. 2011), pp. 159–168. issn: 01681699. doi: 10.1016/
j . compag . 2010 . 10 . 012. url: https : / / linkinghub . elsevier . com /
retrieve/pii/S016816991000222X (visited on 06/19/2023).

[19] Rafal Bogacz. “A tutorial on the free-energy framework for modelling percep-
tion and learning”. en. In: Journal of Mathematical Psychology. Model-based
Cognitive Neuroscience 76 (Feb. 2017), pp. 198–211. issn: 0022-2496. doi:
10.1016/j.jmp.2015.11.003. url: https://www.sciencedirect.com/
science/article/pii/S0022249615000759 (visited on 06/15/2023).

[20] Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex
X. Lee, Maria Bauza, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil
Raju, Antoine Laurens, Claudio Fantacci, Valentin Dalibard, Martina Zam-
belli, Murilo Martins, Rugile Pevceviciute, Michiel Blokzijl, Misha Denil, Na-
than Batchelor, Thomas Lampe, Emilio Parisotto, Konrad Øo≥na, Scott Reed,
Sergio Gómez Colmenarejo, Jon Scholz, Abbas Abdolmaleki, Oliver Groth,
Jean-Baptiste Regli, Oleg Sushkov, Tom Rothörl, José Enrique Chen, Yusuf
Aytar, Dave Barker, Joy Ortiz, Martin Riedmiller, Jost Tobias Springenberg,
Raia Hadsell, Francesco Nori, and Nicolas Heess. RoboCat: A Self-Improving
Foundation Agent for Robotic Manipulation. arXiv:2306.11706 [cs]. June 2023.
doi: 10.48550/arXiv.2306.11706. url: http://arxiv.org/abs/2306.
11706 (visited on 09/12/2023).

[21] Christopher L. Buckley, Chang Sub Kim, Simon McGregor, and Anil K.
Seth. “The free energy principle for action and perception: A mathematical
review”. en. In: Journal of Mathematical Psychology 81 (Dec. 2017), pp. 55–
79. issn: 0022-2496. doi: 10 . 1016 / j . jmp . 2017 . 09 . 004. url: https :
//www.sciencedirect.com/science/article/pii/S0022249617300962
(visited on 06/15/2023).

https://doi.org/10.3182/20140824-6-ZA-1003.00203
https://linkinghub.elsevier.com/retrieve/pii/S1474667016434890
https://proceedings.mlr.press/v164/bhardwaj22a.html
https://proceedings.mlr.press/v164/bhardwaj22a.html
https://doi.org/10.1016/j.compag.2010.10.012
https://doi.org/10.1016/j.compag.2010.10.012
https://linkinghub.elsevier.com/retrieve/pii/S016816991000222X
https://linkinghub.elsevier.com/retrieve/pii/S016816991000222X
https://doi.org/10.1016/j.jmp.2015.11.003
https://www.sciencedirect.com/science/article/pii/S0022249615000759
https://www.sciencedirect.com/science/article/pii/S0022249615000759
https://doi.org/10.48550/arXiv.2306.11706
http://arxiv.org/abs/2306.11706
http://arxiv.org/abs/2306.11706
https://doi.org/10.1016/j.jmp.2017.09.004
https://www.sciencedirect.com/science/article/pii/S0022249617300962
https://www.sciencedirect.com/science/article/pii/S0022249617300962

8

144

[22] Giovanni Buizza Avanzini, Andrea Maria Zanchettin, and Paolo Rocco. “Con-
strained model predictive control for mobile robotic manipulators”. en. In:
Robotica 36.1 (Jan. 2018), pp. 19–38. issn: 0263-5747, 1469-8668. doi: 10.
1017 / S0263574717000133. url: https : / / www . cambridge . org / core /
product/identifier/S0263574717000133/type/journal_article (vis-
ited on 06/19/2023).

[23] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. “Sequential Composition
of Dynamically Dexterous Robot Behaviors”. en. In: The International Jour-
nal of Robotics Research 18.6 (June 1999). Publisher: SAGE Publications Ltd
STM, pp. 534–555. issn: 0278-3649. doi: 10.1177/02783649922066385. url:
https://doi.org/10.1177/02783649922066385 (visited on 06/15/2023).

[24] Luca Massimiliano Capisani, Antonella Ferrara, and Pierluigi Pisu. “Sliding
mode observers for vision-based fault detection, isolation and identification in
robot manipulators”. In: Proceedings of the 2010 American Control Confer-
ence. Baltimore, MD: IEEE, June 2010, pp. 4540–4545. doi: 10.1109/ACC.
2010.5530865. url: http://ieeexplore.ieee.org/document/5530865/
(visited on 06/19/2023).

[25] Jan Carius, René Ranftl, Farbod Farshidian, and Marco Hutter. “Constrained
stochastic optimal control with learned importance sampling: A path integral
approach”. In: The International Journal of Robotics Research 41.2 (Feb.
2022), pp. 189–209. issn: 0278-3649, 1741-3176. url: http://journals.
sagepub.com/doi/10.1177/02783649211047890 (visited on 06/19/2023).

[26] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Rid-
der, Arnau Carrera, Narcis Palomeras, Natalia Hurtos, and Marc Carreras.
“ROSPlan: Planning in the Robot Operating System”. en. In: Proceedings
of the International Conference on Automated Planning and Scheduling 25
(Apr. 2015), pp. 333–341. issn: 2334-0843. doi: 10.1609/icaps.v25i1.
13699. url: https://ojs.aaai.org/index.php/ICAPS/article/view/
13699 (visited on 06/15/2023).

[27] Nicola Castaman, Enrico Pagello, Emanuele Menegatti, and Alberto Pretto.
“Receding Horizon Task and Motion Planning in Changing Environments”.
en. In: Robotics and Autonomous Systems 145 (Nov. 2021), p. 103863. issn:
09218890. doi: 10.1016/j.robot.2021.103863. url: https://linkinghub.
elsevier.com/retrieve/pii/S0921889021001482 (visited on 08/25/2023).

[28] Hendry F. Chame, Ahmadreza Ahmadi, and Jun Tani. “A Hybrid Human-
Neurorobotics Approach to Primary Intersubjectivity via Active Inference”.
In: Frontiers in Psychology 11 (Dec. 2020), p. 584869. issn: 1664-1078. doi:
10.3389/fpsyg.2020.584869. url: https://www.frontiersin.org/
articles/10.3389/fpsyg.2020.584869/full (visited on 06/16/2023).

[29] Jie Chen and Ron J. Patton. Robust Model-Based Fault Diagnosis for Dy-
namic Systems. Ed. by Kai-Yuan Cai. Vol. 3. The International Series on
Asian Studies in Computer and Information Science. Boston, MA: Springer

https://doi.org/10.1017/S0263574717000133
https://doi.org/10.1017/S0263574717000133
https://www.cambridge.org/core/product/identifier/S0263574717000133/type/journal_article
https://www.cambridge.org/core/product/identifier/S0263574717000133/type/journal_article
https://doi.org/10.1177/02783649922066385
https://doi.org/10.1177/02783649922066385
https://doi.org/10.1109/ACC.2010.5530865
https://doi.org/10.1109/ACC.2010.5530865
http://ieeexplore.ieee.org/document/5530865/
http://journals.sagepub.com/doi/10.1177/02783649211047890
http://journals.sagepub.com/doi/10.1177/02783649211047890
https://doi.org/10.1609/icaps.v25i1.13699
https://doi.org/10.1609/icaps.v25i1.13699
https://ojs.aaai.org/index.php/ICAPS/article/view/13699
https://ojs.aaai.org/index.php/ICAPS/article/view/13699
https://doi.org/10.1016/j.robot.2021.103863
https://linkinghub.elsevier.com/retrieve/pii/S0921889021001482
https://linkinghub.elsevier.com/retrieve/pii/S0921889021001482
https://doi.org/10.3389/fpsyg.2020.584869
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.584869/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.584869/full

Bibliography

8

145

US, 1999. doi: 10 . 1007 / 978 - 1 - 4615 - 5149 - 2. url: http : / / link .
springer.com/10.1007/978-1-4615-5149-2 (visited on 06/19/2023).

[30] Xinjia Chen. “A New Generalization of Chebyshev Inequality for Random
Vectors”. In: (2007). Publisher: arXiv Version Number: 2. doi: 10.48550/
ARXIV.0707.0805. url: https://arxiv.org/abs/0707.0805 (visited on
06/19/2023).

[31] Michele Colledanchise, Diogo Almeida, and Petter Ögren. “Towards Blended
Reactive Planning and Acting using Behavior Trees”. In: 2019 International
Conference on Robotics and Automation (ICRA). ISSN: 2577-087X. May
2019, pp. 8839–8845. doi: 10.1109/ICRA.2019.8794128.

[32] Michele Colledanchise and Petter Ögren. “How Behavior Trees Modular-
ize Hybrid Control Systems and Generalize Sequential Behavior Composi-
tions, the Subsumption Architecture, and Decision Trees”. In: IEEE Transac-
tions on Robotics 33.2 (Apr. 2017). Conference Name: IEEE Transactions on
Robotics, pp. 372–389. issn: 1941-0468. doi: 10.1109/TRO.2016.2633567.

[33] Lin Cong, Michael Grner, Philipp Ruppel, Hongzhuo Liang, Norman Hen-
drich, and Jianwei Zhang. “Self-Adapting Recurrent Models for Object Push-
ing from Learning in Simulation”. In: 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA:
IEEE, Oct. 2020, pp. 5304–5310. isbn: 978-1-72816-212-6. doi: 10.1109/
IROS45743.2020.9341076. url: https://ieeexplore.ieee.org/document/
9341076/ (visited on 06/19/2023).

[34] Lancelot Da Costa, Thomas Parr, Noor Sajid, Sebastijan Veselic, Victorita
Neacsu, and Karl Friston. “Active inference on discrete state-spaces: A syn-
thesis”. en. In: Journal of Mathematical Psychology 99 (Dec. 2020), p. 102447.
issn: 00222496. doi: 10.1016/j.jmp.2020.102447. (Visited on 06/15/2023).

[35] Lancelot Da Costa, Noor Sajid, Thomas Parr, Karl Friston, and Ryan Smith.
Reward Maximisation through Discrete Active Inference. arXiv:2009.08111
[cs, math, q-bio]. July 2022. url: http://arxiv.org/abs/2009.08111
(visited on 06/19/2023).

[36] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter Fox.
“Object Rearrangement Using Learned Implicit Collision Functions”. In:
2021 IEEE International Conference on Robotics and Automation (ICRA).
Xi’an, China: IEEE, May 2021, pp. 6010–6017. isbn: 978-1-72819-077-8. doi:
10.1109/ICRA48506.2021.9561516. url: https://ieeexplore.ieee.org/
document/9561516/ (visited on 06/19/2023).

[37] W.E. Dixon, I.D. Walker, D.M. Dawson, and J.P. Hartranft. “Fault detection
for robot manipulators with parametric uncertainty: a prediction-error-based
approach”. In: IEEE Transactions on Robotics and Automation 16.6 (Dec.
2000), pp. 689–699. issn: 1042296X. doi: 10.1109/70.897780. url: http:
//ieeexplore.ieee.org/document/897780/ (visited on 06/19/2023).

[38] Kutluhan Erol, James Hendler, and Dana Nau. “HTN Planning: Complexity
and Expressivity”. In: 1994.

https://doi.org/10.1007/978-1-4615-5149-2
http://link.springer.com/10.1007/978-1-4615-5149-2
http://link.springer.com/10.1007/978-1-4615-5149-2
https://doi.org/10.48550/ARXIV.0707.0805
https://doi.org/10.48550/ARXIV.0707.0805
https://arxiv.org/abs/0707.0805
https://doi.org/10.1109/ICRA.2019.8794128
https://doi.org/10.1109/TRO.2016.2633567
https://doi.org/10.1109/IROS45743.2020.9341076
https://doi.org/10.1109/IROS45743.2020.9341076
https://ieeexplore.ieee.org/document/9341076/
https://ieeexplore.ieee.org/document/9341076/
https://doi.org/10.1016/j.jmp.2020.102447
http://arxiv.org/abs/2009.08111
https://doi.org/10.1109/ICRA48506.2021.9561516
https://ieeexplore.ieee.org/document/9561516/
https://ieeexplore.ieee.org/document/9561516/
https://doi.org/10.1109/70.897780
http://ieeexplore.ieee.org/document/897780/
http://ieeexplore.ieee.org/document/897780/

8

146

[39] Davide Faconti and Michele Colledanchise. Behaviortree.cpp. 2019. url: https:
//github.com/BehaviorTree/BehaviorTree.CPP.

[40] Shaoji Fang, Mogens Blanke, and Bernt J. Leira. “Mooring system diagnosis
and structural reliability control for position moored vessels”. en. In: Control
Engineering Practice 36 (Mar. 2015), pp. 12–26. issn: 09670661. doi: 10.
1016/j.conengprac.2014.11.009. url: https://linkinghub.elsevier.
com/retrieve/pii/S0967066114002718 (visited on 06/19/2023).

[41] R. Ferrari, H. Dibowski, and S. Baldi. “A Message Passing Algorithm for
Automatic Synthesis of Probabilistic Fault Detectors from Building Automa-
tion Ontologies”. en. In: IFAC-PapersOnLine 50.1 (July 2017), pp. 4184–
4190. issn: 24058963. doi: 10.1016/j.ifacol.2017.08.809. url: https:
//linkinghub.elsevier.com/retrieve/pii/S2405896317312636 (visited
on 06/19/2023).

[42] Charles W. Fox and Stephen J. Roberts. “A tutorial on variational Bayesian
inference”. en. In: Artificial Intelligence Review 38.2 (Aug. 2012), pp. 85–
95. issn: 1573-7462. doi: 10 . 1007 / s10462 - 011 - 9236 - 8. url: https :
//doi.org/10.1007/s10462-011-9236-8 (visited on 06/19/2023).

[43] K.J. Friston, N. Trujillo-Barreto, and J. Daunizeau. “DEM: A variational
treatment of dynamic systems”. en. In: NeuroImage 41.3 (July 2008), pp. 849–
885. issn: 10538119. doi: 10 . 1016 / j . neuroimage . 2008 . 02 . 054. url:
https://linkinghub.elsevier.com/retrieve/pii/S1053811908001894
(visited on 06/16/2023).

[44] Karl Friston. “Hierarchical Models in the Brain”. en. In: PLOS Computa-
tional Biology 4.11 (Nov. 2008). Publisher: Public Library of Science, e1000211.
issn: 1553-7358. doi: 10.1371/journal.pcbi.1000211. url: https://
journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.
1000211 (visited on 07/24/2023).

[45] Karl Friston. “The free-energy principle: a unified brain theory?” en. In: Na-
ture Reviews Neuroscience 11.2 (Feb. 2010). Number: 2 Publisher: Nature
Publishing Group, pp. 127–138. issn: 1471-0048. doi: 10.1038/nrn2787.
url: https://www.nature.com/articles/nrn2787 (visited on 06/15/2023).

[46] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck,
John O’Doherty, and Giovanni Pezzulo. “Active inference and learning”. en.
In: Neuroscience & Biobehavioral Reviews 68 (Sept. 2016), pp. 862–879. issn:
0149-7634. doi: 10.1016/j.neubiorev.2016.06.022. url: https://www.
sciencedirect.com/science/article/pii/S0149763416301336 (visited
on 06/15/2023).

[47] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck,
and Giovanni Pezzulo. “Active Inference: A Process Theory”. en. In: Neural
Computation 29.1 (Jan. 2017), pp. 1–49. issn: 0899-7667, 1530-888X. doi:
10.1162/NECO_a_00912. url: https://direct.mit.edu/neco/article/
29/1/1-49/8207 (visited on 06/15/2023).

https://github.com/BehaviorTree/BehaviorTree.CPP
https://github.com/BehaviorTree/BehaviorTree.CPP
https://doi.org/10.1016/j.conengprac.2014.11.009
https://doi.org/10.1016/j.conengprac.2014.11.009
https://linkinghub.elsevier.com/retrieve/pii/S0967066114002718
https://linkinghub.elsevier.com/retrieve/pii/S0967066114002718
https://doi.org/10.1016/j.ifacol.2017.08.809
https://linkinghub.elsevier.com/retrieve/pii/S2405896317312636
https://linkinghub.elsevier.com/retrieve/pii/S2405896317312636
https://doi.org/10.1007/s10462-011-9236-8
https://doi.org/10.1007/s10462-011-9236-8
https://doi.org/10.1007/s10462-011-9236-8
https://doi.org/10.1016/j.neuroimage.2008.02.054
https://linkinghub.elsevier.com/retrieve/pii/S1053811908001894
https://doi.org/10.1371/journal.pcbi.1000211
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000211
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000211
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000211
https://doi.org/10.1038/nrn2787
https://www.nature.com/articles/nrn2787
https://doi.org/10.1016/j.neubiorev.2016.06.022
https://www.sciencedirect.com/science/article/pii/S0149763416301336
https://www.sciencedirect.com/science/article/pii/S0149763416301336
https://doi.org/10.1162/NECO_a_00912
https://direct.mit.edu/neco/article/29/1/1-49/8207
https://direct.mit.edu/neco/article/29/1/1-49/8207

Bibliography

8

147

[48] Karl Friston, Jérémie Mattout, and James Kilner. “Action understanding and
active inference”. en. In: Biological Cybernetics 104.1 (Feb. 2011), pp. 137–
160. issn: 1432-0770. doi: 10.1007/s00422- 011- 0424- z. url: https:
//doi.org/10.1007/s00422-011-0424-z (visited on 06/15/2023).

[49] Karl Friston, Jérémie Mattout, Nelson Trujillo-Barreto, John Ashburner, and
Will Penny. “Variational free energy and the Laplace approximation”. en. In:
NeuroImage 34.1 (Jan. 2007), pp. 220–234. issn: 1053-8119. doi: 10.1016/
j.neuroimage.2006.08.035. url: https://www.sciencedirect.com/
science/article/pii/S1053811906008822 (visited on 06/16/2023).

[50] Karl Friston, Francesco Rigoli, Dimitri Ognibene, Christoph Mathys, Thomas
Fitzgerald, and Giovanni Pezzulo. “Active inference and epistemic value”.
In: Cognitive Neuroscience 6.4 (Oct. 2015). Publisher: Routledge _eprint:
https://doi.org/10.1080/17588928.2015.1020053, pp. 187–214. issn: 1758-8928.
doi: 10.1080/17588928.2015.1020053. url: https://doi.org/10.1080/
17588928.2015.1020053 (visited on 07/24/2023).

[51] Karl Friston, Spyridon Samothrakis, and Read Montague. “Active inference
and agency: optimal control without cost functions”. en. In: Biological Cy-
bernetics 106.8 (Oct. 2012), pp. 523–541. issn: 1432-0770. doi: 10.1007/
s00422-012-0512-8. url: https://doi.org/10.1007/s00422-012-0512-
8 (visited on 06/15/2023).

[52] Karl Friston, Klaas Stephan, Baojuan Li, and Jean Daunizeau. “Generalised
Filtering”. en. In: Mathematical Problems in Engineering 2010 (2010), pp. 1–
34. issn: 1024-123X, 1563-5147. doi: 10.1155/2010/621670. url: http://
www.hindawi.com/journals/mpe/2010/621670/ (visited on 06/16/2023).

[53] Karl J. Friston, Jean Daunizeau, and Stefan J. Kiebel. “Reinforcement Learn-
ing or Active Inference?” en. In: PLOS ONE 4.7 (July 2009). Publisher: Pub-
lic Library of Science, e6421. issn: 1932-6203. doi: 10.1371/journal.pone.
0006421. url: https://journals.plos.org/plosone/article?id=10.
1371/journal.pone.0006421 (visited on 07/24/2023).

[54] Karl J. Friston, Jean Daunizeau, James Kilner, and Stefan J. Kiebel. “Action
and behavior: a free-energy formulation”. en. In: Biological Cybernetics 102.3
(Mar. 2010), pp. 227–260. issn: 1432-0770. doi: 10.1007/s00422- 010-
0364-z. url: https://doi.org/10.1007/s00422-010-0364-z (visited on
06/15/2023).

[55] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom
Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. “Integrated Task
and Motion Planning”. In: Annual Review of Control, Robotics, and Au-
tonomous Systems 4.1 (May 2021), pp. 265–293. issn: 2573-5144, 2573-5144.
doi: 10.1146/annurev- control- 091420- 084139. url: https://www.
annualreviews.org/doi/10.1146/annurev- control- 091420- 084139
(visited on 08/25/2023).

https://doi.org/10.1007/s00422-011-0424-z
https://doi.org/10.1007/s00422-011-0424-z
https://doi.org/10.1007/s00422-011-0424-z
https://doi.org/10.1016/j.neuroimage.2006.08.035
https://doi.org/10.1016/j.neuroimage.2006.08.035
https://www.sciencedirect.com/science/article/pii/S1053811906008822
https://www.sciencedirect.com/science/article/pii/S1053811906008822
https://doi.org/10.1080/17588928.2015.1020053
https://doi.org/10.1080/17588928.2015.1020053
https://doi.org/10.1080/17588928.2015.1020053
https://doi.org/10.1007/s00422-012-0512-8
https://doi.org/10.1007/s00422-012-0512-8
https://doi.org/10.1007/s00422-012-0512-8
https://doi.org/10.1007/s00422-012-0512-8
https://doi.org/10.1155/2010/621670
http://www.hindawi.com/journals/mpe/2010/621670/
http://www.hindawi.com/journals/mpe/2010/621670/
https://doi.org/10.1371/journal.pone.0006421
https://doi.org/10.1371/journal.pone.0006421
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006421
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006421
https://doi.org/10.1007/s00422-010-0364-z
https://doi.org/10.1007/s00422-010-0364-z
https://doi.org/10.1007/s00422-010-0364-z
https://doi.org/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/doi/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/doi/10.1146/annurev-control-091420-084139

8

148

[56] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. “PDDL-
Stream: Integrating Symbolic Planners and Blackbox Samplers via Opti-
mistic Adaptive Planning”. In: Proceedings of the International Conference
on Automated Planning and Scheduling 30 (June 2020), pp. 440–448. issn:
2334-0843, 2334-0835. doi: 10 . 1609 / icaps . v30i1 . 6739. url: https :
/ / ojs . aaai . org / index . php / ICAPS / article / view / 6739 (visited on
08/25/2023).

[57] Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack Kael-
bling, and Dieter Fox. “Online Replanning in Belief Space for Partially Ob-
servable Task and Motion Problems”. In: 2020 IEEE International Con-
ference on Robotics and Automation (ICRA). ISSN: 2577-087X. May 2020,
pp. 5678–5684. doi: 10.1109/ICRA40945.2020.9196681.

[58] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and Act-
ing. 1st ed. Cambridge University Press, July 2016. isbn: 978-1-139-58392-
3. doi: 10 . 1017 / CBO9781139583923. url: https : / / www . cambridge .
org/core/product/identifier/9781139583923/type/book (visited on
06/15/2023).

[59] Malik Ghallab, Dana Nau, and Paolo Traverso. “The actor’s view of auto-
mated planning and acting: A position paper”. en. In: Artificial Intelligence
208 (Mar. 2014), pp. 1–17. issn: 0004-3702. doi: 10.1016/j.artint.2013.
11.002. url: https://www.sciencedirect.com/science/article/pii/
S0004370213001173 (visited on 06/15/2023).

[60] Jason Harris, Danny Driess, and Marc Toussaint. “FC 3 : Feasibility-Based
Control Chain Coordination”. In: 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Kyoto, Japan: IEEE, Oct. 2022,
pp. 13769–13776. isbn: 978-1-66547-927-1. doi: 10.1109/IROS47612.2022.
9981758. url: https://ieeexplore.ieee.org/document/9981758/ (vis-
ited on 08/25/2023).

[61] Conor Heins, Beren Millidge, Daphne Demekas, Brennan Klein, Karl Friston,
Iain Couzin, and Alexander Tschantz. “pymdp: A Python library for active
inference in discrete state spaces”. In: Journal of Open Source Software 7.73
(May 2022). arXiv:2201.03904 [cs, q-bio], p. 4098. issn: 2475-9066. doi: 10.
21105/joss.04098. url: http://arxiv.org/abs/2201.03904 (visited on
06/15/2023).

[62] Casper Hesp, Ryan Smith, Thomas Parr, Micah Allen, Karl J. Friston, and
Maxwell J. D. Ramstead. “Deeply Felt A�ect: The Emergence of Valence
in Deep Active Inference”. en. In: Neural Computation 33.2 (Feb. 2021),
pp. 398–446. issn: 0899-7667, 1530-888X. doi: 10.1162/neco_a_01341.
url: https://direct.mit.edu/neco/article/33/2/398/95642/Deeply-
Felt-Affect-The-Emergence-of-Valence-in (visited on 06/15/2023).

https://doi.org/10.1609/icaps.v30i1.6739
https://ojs.aaai.org/index.php/ICAPS/article/view/6739
https://ojs.aaai.org/index.php/ICAPS/article/view/6739
https://doi.org/10.1109/ICRA40945.2020.9196681
https://doi.org/10.1017/CBO9781139583923
https://www.cambridge.org/core/product/identifier/9781139583923/type/book
https://www.cambridge.org/core/product/identifier/9781139583923/type/book
https://doi.org/10.1016/j.artint.2013.11.002
https://doi.org/10.1016/j.artint.2013.11.002
https://www.sciencedirect.com/science/article/pii/S0004370213001173
https://www.sciencedirect.com/science/article/pii/S0004370213001173
https://doi.org/10.1109/IROS47612.2022.9981758
https://doi.org/10.1109/IROS47612.2022.9981758
https://ieeexplore.ieee.org/document/9981758/
https://doi.org/10.21105/joss.04098
https://doi.org/10.21105/joss.04098
http://arxiv.org/abs/2201.03904
https://doi.org/10.1162/neco_a_01341
https://direct.mit.edu/neco/article/33/2/398/95642/Deeply-Felt-Affect-The-Emergence-of-Valence-in
https://direct.mit.edu/neco/article/33/2/398/95642/Deeply-Felt-Affect-The-Emergence-of-Valence-in

Bibliography

8

149

[63] Lukas Hewing, Kim P. Wabersich, Marcel Menner, and Melanie N. Zeilinger.
“Learning-Based Model Predictive Control: Toward Safe Learning in Con-
trol”. en. In: Annual Review of Control, Robotics, and Autonomous Systems
3.1 (May 2020), pp. 269–296. issn: 2573-5144, 2573-5144. doi: 10.1146/
annurev-control-090419-075625. url: https://www.annualreviews.
org/doi/10.1146/annurev-control-090419-075625 (visited on 06/19/2023).

[64] Francois R Hogan and Alberto Rodriguez. “Reactive planar non-prehensile
manipulation with hybrid model predictive control”. en. In: The International
Journal of Robotics Research 39.7 (June 2020), pp. 755–773. issn: 0278-3649,
1741-3176. doi: 10 . 1177 / 0278364920913938. url: http : / / journals .
sagepub.com/doi/10.1177/0278364920913938 (visited on 06/19/2023).

[65] Taylor Howell, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom
Erez, and Yuval Tassa. Predictive Sampling: Real-time Behaviour Synthesis
with MuJoCo. Publisher: arXiv Version Number: 2. 2022. doi: 10.48550/
ARXIV.2212.00541. url: https://arxiv.org/abs/2212.00541 (visited on
06/19/2023).

[66] Baichuan Huang, Abdeslam Boularias, and Jingjin Yu. “Parallel Monte Carlo
Tree Search with Batched Rigid-body Simulations for Speeding up Long-
Horizon Episodic Robot Planning”. In: 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Kyoto, Japan: IEEE, Oct.
2022, pp. 1153–1160. isbn: 978-1-66547-927-1. doi: 10.1109/IROS47612.
2022.9981962. url: https://ieeexplore.ieee.org/document/9981962/
(visited on 08/25/2023).

[67] Orkin Je�. “Applying Goal-Oriented Action Planning to Games”. In: AI
Game Programming Wisdom 2 (2003), pp. 217–228. url: https://cir.
nii.ac.jp/crid/1573387451004878592 (visited on 06/15/2023).

[68] Jin-Ho Shin and Ju-Jang Lee. “Fault detection and robust fault recovery
control for robot manipulators with actuator failures”. In: Proceedings 1999
IEEE International Conference on Robotics and Automation. Vol. 2. Detroit,
MI, USA: IEEE, 1999, pp. 861–866. isbn: 978-0-7803-5180-6. doi: 10.1109/
ROBOT . 1999 . 772398. url: http : / / ieeexplore . ieee . org / document /
772398/ (visited on 06/19/2023).

[69] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
“Planning and acting in partially observable stochastic domains”. en. In:
Artificial Intelligence 101.1 (May 1998), pp. 99–134. issn: 0004-3702. doi:
10.1016/S0004-3702(98)00023-X. url: https://www.sciencedirect.
com/science/article/pii/S000437029800023X (visited on 07/24/2023).

[70] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Hierarchical task and mo-
tion planning in the now”. In: 2011 IEEE International Conference on Robotics
and Automation. ISSN: 1050-4729. May 2011, pp. 1470–1477. doi: 10.1109/
ICRA.2011.5980391.

https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1146/annurev-control-090419-075625
https://www.annualreviews.org/doi/10.1146/annurev-control-090419-075625
https://www.annualreviews.org/doi/10.1146/annurev-control-090419-075625
https://doi.org/10.1177/0278364920913938
http://journals.sagepub.com/doi/10.1177/0278364920913938
http://journals.sagepub.com/doi/10.1177/0278364920913938
https://doi.org/10.48550/ARXIV.2212.00541
https://doi.org/10.48550/ARXIV.2212.00541
https://arxiv.org/abs/2212.00541
https://doi.org/10.1109/IROS47612.2022.9981962
https://doi.org/10.1109/IROS47612.2022.9981962
https://ieeexplore.ieee.org/document/9981962/
https://cir.nii.ac.jp/crid/1573387451004878592
https://cir.nii.ac.jp/crid/1573387451004878592
https://doi.org/10.1109/ROBOT.1999.772398
https://doi.org/10.1109/ROBOT.1999.772398
http://ieeexplore.ieee.org/document/772398/
http://ieeexplore.ieee.org/document/772398/
https://doi.org/10.1016/S0004-3702(98)00023-X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391

8

150

[71] Leslie Pack Kaelbling and Tomás Lozano-Pérez. “Integrated task and motion
planning in belief space”. en. In: The International Journal of Robotics Re-
search 32.9-10 (Aug. 2013). Publisher: SAGE Publications Ltd STM, pp. 1194–
1227. issn: 0278-3649. doi: 10.1177/0278364913484072. url: https://
doi.org/10.1177/0278364913484072 (visited on 06/15/2023).

[72] Raphael Kaplan and Karl J. Friston. “Planning and navigation as active
inference”. en. In: Biological Cybernetics 112.4 (Aug. 2018), pp. 323–343.
issn: 1432-0770. doi: 10.1007/s00422-018-0753-2. url: https://doi.
org/10.1007/s00422-018-0753-2 (visited on 06/15/2023).

[73] Hilbert J. Kappen. “Linear Theory for Control of Nonlinear Stochastic Sys-
tems”. en. In: Physical Review Letters 95.20 (Nov. 2005), p. 200201. issn:
0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.95.200201. url: https:
/ / link . aps . org / doi / 10 . 1103 / PhysRevLett . 95 . 200201 (visited on
08/14/2023).

[74] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal
motion planning”. en. In: The International Journal of Robotics Research
30.7 (June 2011), pp. 846–894. issn: 0278-3649, 1741-3176. doi: 10.1177/
0278364911406761. url: http://journals.sagepub.com/doi/10.1177/
0278364911406761 (visited on 06/19/2023).

[75] J. Krüger, T.K. Lien, and A. Verl. “Cooperation of human and machines
in assembly lines”. en. In: CIRP Annals 58.2 (2009), pp. 628–646. issn:
00078506. doi: 10.1016/j.cirp.2009.09.009. url: https://linkinghub.
elsevier.com/retrieve/pii/S0007850609001760 (visited on 06/19/2023).

[76] Thijs van de Laar, Ayça Özçelikkale, and Henk Wymeersch. “Application of
the Free Energy Principle to Estimation and Control”. In: IEEE Transactions
on Signal Processing 69 (2021). Conference Name: IEEE Transactions on
Signal Processing, pp. 4234–4244. issn: 1941-0476. doi: 10.1109/TSP.2021.
3095711.

[77] Pablo Lanillos and Gordon Cheng. “Adaptive Robot Body Learning and
Estimation Through Predictive Coding”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). ISSN: 2153-0866. Oct.
2018, pp. 4083–4090. doi: 10.1109/IROS.2018.8593684.

[78] Pablo Lanillos, Cristian Meo, Corrado Pezzato, Ajith Anil Meera, Mohamed
Baioumy, Wataru Ohata, Alexander Tschantz, Beren Millidge, Martijn Wisse,
Christopher L. Buckley, and Jun Tani. Active Inference in Robotics and Ar-
tificial Agents: Survey and Challenges. en. Dec. 2021. url: https://arxiv.
org/abs/2112.01871v1 (visited on 06/15/2023).

[79] Teguh Santoso Lembono, Antonio Paolillo, Emmanuel Pignat, and Sylvain
Calinon. “Memory of Motion for Warm-Starting Trajectory Optimization”.
In: IEEE Robotics and Automation Letters 5.2 (Apr. 2020), pp. 2594–2601.
issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2020.2972893. (Visited on
09/27/2023).

https://doi.org/10.1177/0278364913484072
https://doi.org/10.1177/0278364913484072
https://doi.org/10.1177/0278364913484072
https://doi.org/10.1007/s00422-018-0753-2
https://doi.org/10.1007/s00422-018-0753-2
https://doi.org/10.1007/s00422-018-0753-2
https://doi.org/10.1103/PhysRevLett.95.200201
https://link.aps.org/doi/10.1103/PhysRevLett.95.200201
https://link.aps.org/doi/10.1103/PhysRevLett.95.200201
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
http://journals.sagepub.com/doi/10.1177/0278364911406761
http://journals.sagepub.com/doi/10.1177/0278364911406761
https://doi.org/10.1016/j.cirp.2009.09.009
https://linkinghub.elsevier.com/retrieve/pii/S0007850609001760
https://linkinghub.elsevier.com/retrieve/pii/S0007850609001760
https://doi.org/10.1109/TSP.2021.3095711
https://doi.org/10.1109/TSP.2021.3095711
https://doi.org/10.1109/IROS.2018.8593684
https://arxiv.org/abs/2112.01871v1
https://arxiv.org/abs/2112.01871v1
https://doi.org/10.1109/LRA.2020.2972893

Bibliography

8

151

[80] Martin Levihn, Leslie Pack Kaelbling, Tomas Lozano-Pérez, and Mike Stil-
man. “Foresight and reconsideration in hierarchical planning and execution”.
In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. ISSN: 2153-0866. Nov. 2013, pp. 224–231. doi: 10.1109/IROS.2013.
6696357.

[81] Anqi Li, Mustafa Mukadam, Magnus Egerstedt, and Byron Boots. “Multi-
objective Policy Generation for Multi-robot Systems Using Riemannian Mo-
tion Policies”. en. In: Robotics Research. Ed. by Tamim Asfour, Eiichi Yoshida,
Jaeheung Park, Henrik Christensen, and Oussama Khatib. Springer Proceed-
ings in Advanced Robotics. Cham: Springer International Publishing, 2022,
pp. 258–274. isbn: 978-3-030-95459-8. doi: 10.1007/978-3-030-95459-
8_16.

[82] Shen Li, Daehyung Park, Yoonchang Sung, Julie A. Shah, and Nicholas
Roy. “Reactive Task and Motion Planning under Temporal Logic Specifi-
cations”. In: 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA). Xi’an, China: IEEE, May 2021, pp. 12618–12624. isbn: 978-
1-72819-077-8. doi: 10.1109/ICRA48506.2021.9561807. url: https://
ieeexplore.ieee.org/document/9561807/ (visited on 08/25/2023).

[83] D. V. Lindley. Bayesian Statistics: A Review. en. Society for Industrial and
Applied Mathematics, Jan. 1972. doi: 10.1137/1.9781611970654. url:
http://epubs.siam.org/doi/book/10.1137/1.9781611970654 (visited
on 06/19/2023).

[84] Steve Macenski, Francisco Martín, Ru�n White, and Jonatan Ginés Clavero.
“The Marathon 2: A Navigation System”. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). ISSN: 2153-0866. Oct.
2020, pp. 2718–2725. doi: 10.1109/IROS45743.2020.9341207.

[85] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier
Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur
Handa, and Gavriel State. “Isaac Gym: High Performance GPU Based Physics
Simulation For Robot Learning”. In: Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks. Ed. by J. Vanschoren
and S. Yeung. Vol. 1. Curran, 2021.

[86] N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse. “Using a
Memory of Motion to E�ciently Warm-Start a Nonlinear Predictive Con-
troller”. In: 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA). Brisbane: IEEE, May 2018, pp. 2986–2993. isbn: 978-1-5386-
3081-5. doi: 10.1109/ICRA.2018.8463154. (Visited on 09/27/2023).

[87] Francisco Martín Rico, Matteo Morelli, Huascar Espinoza, Francisco Rodríguez-
Lera, and Vicente Matellán Olivera. “Optimized Execution of PDDL Plans
using Behavior Trees”. In: Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems. AAMAS ’21. Richland, SC:
International Foundation for Autonomous Agents and Multiagent Systems,
May 2021, pp. 1596–1598. isbn: 978-1-4503-8307-3. (Visited on 06/19/2023).

https://doi.org/10.1109/IROS.2013.6696357
https://doi.org/10.1109/IROS.2013.6696357
https://doi.org/10.1007/978-3-030-95459-8_16
https://doi.org/10.1007/978-3-030-95459-8_16
https://doi.org/10.1109/ICRA48506.2021.9561807
https://ieeexplore.ieee.org/document/9561807/
https://ieeexplore.ieee.org/document/9561807/
https://doi.org/10.1137/1.9781611970654
http://epubs.siam.org/doi/book/10.1137/1.9781611970654
https://doi.org/10.1109/IROS45743.2020.9341207
https://doi.org/10.1109/ICRA.2018.8463154

8

152

[88] Ajith Anil Meera and Martijn Wisse. “Free Energy Principle Based State
and Input Observer Design for Linear Systems with Colored Noise”. In: 2020
American Control Conference (ACC). ISSN: 2378-5861. July 2020, pp. 5052–
5058. doi: 10.23919/ACC45564.2020.9147581.

[89] Cristian Meo and Pablo Lanillos. “Multimodal VAE Active Inference Con-
troller”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). ISSN: 2153-0866. Sept. 2021, pp. 2693–2699. doi: 10.
1109/IROS51168.2021.9636394.

[90] Toki Migimatsu and Jeannette Bohg. “Object-Centric Task and Motion Plan-
ning in Dynamic Environments”. In: IEEE Robotics and Automation Letters
5.2 (Apr. 2020), pp. 844–851. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.
2020.2965875. url: https://ieeexplore.ieee.org/document/8957055/
(visited on 08/25/2023).

[91] Beren Millidge, Alexander Tschantz, and Christopher L. Buckley. “Whence
the Expected Free Energy?” en. In: Neural Computation 33.2 (Feb. 2021),
pp. 447–482. issn: 0899-7667, 1530-888X. doi: 10.1162/neco_a_01354. url:
https://direct.mit.edu/neco/article/33/2/447/95645/Whence-the-
Expected-Free-Energy (visited on 07/24/2023).

[92] Joao Moura, Theodoros Stouraitis, and Sethu Vijayakumar. “Non-prehensile
Planar Manipulation via Trajectory Optimization with Complementarity Con-
straints”. In: International Conference on Robotics and Automation (ICRA).
Philadelphia, PA, USA: IEEE, May 2022, pp. 970–976. isbn: 978-1-72819-
681-7. doi: 10.1109/ICRA46639.2022.9811942. url: https://ieeexplore.
ieee.org/document/9811942/ (visited on 06/19/2023).

[93] Esmaeil Najafi, Robert Babuöka, and Gabriel A.D. Lopes. “An application
of sequential composition control to cooperative systems”. In: 2015 10th In-
ternational Workshop on Robot Motion and Control (RoMoCo). July 2015,
pp. 15–20. doi: 10.1109/RoMoCo.2015.7219707.

[94] K.S. Narendra and J. Balakrishnan. “Adaptive control using multiple mod-
els”. In: IEEE Transactions on Automatic Control 42.2 (Feb. 1997), pp. 171–
187. issn: 00189286. doi: 10.1109/9.554398. url: http://ieeexplore.
ieee.org/document/554398/ (visited on 06/19/2023).

[95] Dana Nau, Malik Ghallab, and Paolo Traverso. “Blended Planning and Act-
ing: Preliminary Approach, Research Challenges”. en. In: Proceedings of the
AAAI Conference on Artificial Intelligence 29.1 (Mar. 2015). Number: 1.
issn: 2374-3468. doi: 10.1609/aaai.v29i1.9768. url: https://ojs.
aaai.org/index.php/AAAI/article/view/9768 (visited on 06/15/2023).

[96] Petter Ögren and Michele Colledanchise. Behavior Trees in Robotics and AI:
An Introduction. eng. CRC Press, 2018. url: https://urn.kb.se/resolve?
urn=urn:nbn:se:kth:diva-232942 (visited on 06/15/2023).

https://doi.org/10.23919/ACC45564.2020.9147581
https://doi.org/10.1109/IROS51168.2021.9636394
https://doi.org/10.1109/IROS51168.2021.9636394
https://doi.org/10.1109/LRA.2020.2965875
https://doi.org/10.1109/LRA.2020.2965875
https://ieeexplore.ieee.org/document/8957055/
https://doi.org/10.1162/neco_a_01354
https://direct.mit.edu/neco/article/33/2/447/95645/Whence-the-Expected-Free-Energy
https://direct.mit.edu/neco/article/33/2/447/95645/Whence-the-Expected-Free-Energy
https://doi.org/10.1109/ICRA46639.2022.9811942
https://ieeexplore.ieee.org/document/9811942/
https://ieeexplore.ieee.org/document/9811942/
https://doi.org/10.1109/RoMoCo.2015.7219707
https://doi.org/10.1109/9.554398
http://ieeexplore.ieee.org/document/554398/
http://ieeexplore.ieee.org/document/554398/
https://doi.org/10.1609/aaai.v29i1.9768
https://ojs.aaai.org/index.php/AAAI/article/view/9768
https://ojs.aaai.org/index.php/AAAI/article/view/9768
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232942
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232942

Bibliography

8

153

[97] Wataru Ohata and Jun Tani. “Investigation of the Sense of Agency in Social
Cognition, Based on Frameworks of Predictive Coding and Active Inference:
A Simulation Study on Multimodal Imitative Interaction”. In: Frontiers in
Neurorobotics 14 (Sept. 2020), p. 61. issn: 1662-5218. doi: 10.3389/fnbot.
2020.00061. url: https://www.frontiersin.org/article/10.3389/
fnbot.2020.00061/full (visited on 06/16/2023).

[98] Guillermo Oliver, Pablo Lanillos, and Gordon Cheng. “An Empirical Study
of Active Inference on a Humanoid Robot”. In: IEEE Transactions on Cogni-
tive and Developmental Systems 14.2 (June 2022). Conference Name: IEEE
Transactions on Cognitive and Developmental Systems, pp. 462–471. issn:
2379-8939. doi: 10.1109/TCDS.2021.3049907.

[99] Laurentz E. Olivier and Ian K. Craig. “Fault-tolerant nonlinear mpc using
particle filtering”. In: IFAC-PapersOnLine 49.7 (2016). Publisher: Elsevier,
pp. 177–182.

[100] Je� Orkin. “Three States and a Plan: The A.I. of F.E.A.R.” en. In: (2006).
[101] Joaquim Ortiz-Haro, Erez Karpas, Michael Katz, and Marc Toussaint. “A

Conflict-Driven Interface Between Symbolic Planning and Nonlinear Con-
straint Solving”. In: IEEE Robotics and Automation Letters 7.4 (Oct. 2022),
pp. 10518–10525. issn: 2377-3766, 2377-3774. doi: 10 . 1109 / LRA . 2022 .
3191948. url: https://ieeexplore.ieee.org/document/9832718/ (vis-
ited on 08/25/2023).

[102] Pierre-Yves Oudeyer and Frederic Kaplan. “What is intrinsic motivation?
A typology of computational approaches”. In: Frontiers in Neurorobotics 1
(2007). issn: 1662-5218. url: https://www.frontiersin.org/articles/
10.3389/neuro.12.006.2007 (visited on 07/24/2023).

[103] Sébastien Paquet, Ludovic Tobin, and Brahim Chaib-draa. “An online POMDP
algorithm for complex multiagent environments”. In: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems.
AAMAS ’05. New York, NY, USA: Association for Computing Machinery,
July 2005, pp. 970–977. isbn: 978-1-59593-093-4. doi: 10.1145/1082473.
1082620. url: https://doi.org/10.1145/1082473.1082620 (visited on
06/15/2023).

[104] Thomas Parr and Karl J. Friston. “Generalised free energy and active in-
ference”. en. In: Biological Cybernetics 113.5 (Dec. 2019), pp. 495–513. issn:
1432-0770. doi: 10.1007/s00422-019-00805-w. url: https://doi.org/
10.1007/s00422-019-00805-w (visited on 07/24/2023).

[105] Gaetano Paviglianiti, Francesco Pierri, Fabrizio Caccavale, and Massimiliano
Mattei. “Robust fault detection and isolation for proprioceptive sensors of
robot manipulators”. en. In: Mechatronics 20.1 (Feb. 2010), pp. 162–170.
issn: 09574158. doi: 10.1016/j.mechatronics.2009.09.003. url: https:
//linkinghub.elsevier.com/retrieve/pii/S0957415809001548 (visited
on 06/19/2023).

https://doi.org/10.3389/fnbot.2020.00061
https://doi.org/10.3389/fnbot.2020.00061
https://www.frontiersin.org/article/10.3389/fnbot.2020.00061/full
https://www.frontiersin.org/article/10.3389/fnbot.2020.00061/full
https://doi.org/10.1109/TCDS.2021.3049907
https://doi.org/10.1109/LRA.2022.3191948
https://doi.org/10.1109/LRA.2022.3191948
https://ieeexplore.ieee.org/document/9832718/
https://www.frontiersin.org/articles/10.3389/neuro.12.006.2007
https://www.frontiersin.org/articles/10.3389/neuro.12.006.2007
https://doi.org/10.1145/1082473.1082620
https://doi.org/10.1145/1082473.1082620
https://doi.org/10.1145/1082473.1082620
https://doi.org/10.1007/s00422-019-00805-w
https://doi.org/10.1007/s00422-019-00805-w
https://doi.org/10.1007/s00422-019-00805-w
https://doi.org/10.1016/j.mechatronics.2009.09.003
https://linkinghub.elsevier.com/retrieve/pii/S0957415809001548
https://linkinghub.elsevier.com/retrieve/pii/S0957415809001548

8

154

[106] Chris Paxton, Nathan Ratli�, Clemens Eppner, and Dieter Fox. “Repre-
senting Robot Task Plans as Robust Logical-Dynamical Systems”. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
ISSN: 2153-0866. 2019, pp. 5588–5595. doi: 10.1109/IROS40897.2019.
8967861.

[107] Corrado Pezzato, Mohamed Baioumy, Carlos Hernandez Corbato, Nick Hawes,
Martijn Wisse, and Riccardo Ferrari. “Active inference for fault tolerant con-
trol of robot manipulators with sensory faults”. In: Active Inference: First
International Workshop, IWAI 2020, Co-located with ECML/PKDD 2020,
Ghent, Belgium, September 14, 2020, Proceedings 1. Springer, 2020, pp. 20–
27.

[108] Corrado Pezzato, Carlos Hernández Corbato, Stefan Bonhof, and Martijn
Wisse. “Active Inference and Behavior Trees for Reactive Action Planning
and Execution in Robotics”. In: IEEE Transactions on Robotics 39.2 (Apr.
2023). Conference Name: IEEE Transactions on Robotics, pp. 1050–1069.
issn: 1941-0468. doi: 10.1109/TRO.2022.3226144.

[109] Corrado Pezzato, Riccardo Ferrari, and Carlos Hernández Corbato. “A Novel
Adaptive Controller for Robot Manipulators Based on Active Inference”. In:
IEEE Robotics and Automation Letters 5.2 (Apr. 2020). Conference Name:
IEEE Robotics and Automation Letters, pp. 2973–2980. issn: 2377-3766. doi:
10.1109/LRA.2020.2974451.

[110] Corrado Pezzato, Chadi Salmi, Elia Trevisan, Javier Alonso Mora, and Car-
los Hernandez Corbato. “Sampling-Based MPC Using a GPU-parallelizable
Physics Simulator as Dynamic Model: an Open Source Implementation with
IsaacGym”. en. In: pezzato_sampling_ws_2023. May 2023. url: https:
//openreview.net/forum?id=fvfZKL1hCx (visited on 06/15/2023).

[111] Tim Pfeifer, Sven Lange, and Peter Protzel. “Dynamic Covariance Estimation
— A parameter free approach to robust Sensor Fusion”. In: 2017 IEEE In-
ternational Conference on Multisensor Fusion and Integration for Intelligent
Systems (MFI). Nov. 2017, pp. 359–365. doi: 10.1109/MFI.2017.8170347.

[112] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes
for machine learning. Adaptive computation and machine learning. OCLC:
ocm61285753. Cambridge, Mass: MIT Press, 2006. isbn: 978-0-262-18253-9.

[113] Nathan D. Ratli�, Karl Van Wyk, Mandy Xie, Anqi Li, and Muhammad
Asif Rana. “Generalized Nonlinear and Finsler Geometry for Robotics”. In:
2021 IEEE International Conference on Robotics and Automation (ICRA).
Xi’an, China: IEEE, May 2021, pp. 10206–10212. isbn: 978-1-72819-077-8.
doi: 10.1109/ICRA48506.2021.9561543. url: https://ieeexplore.ieee.
org/document/9561543/ (visited on 06/19/2023).

[114] Vahab Rostampour, Riccardo Ferrari, and Tamas Keviczky. “A set based
probabilistic approach to threshold design for optimal fault detection”. In:
2017 American Control Conference (ACC). Seattle, WA, USA: IEEE, May
2017, pp. 5422–5429. isbn: 978-1-5090-5992-8. doi: 10.23919/ACC.2017.

https://doi.org/10.1109/IROS40897.2019.8967861
https://doi.org/10.1109/IROS40897.2019.8967861
https://doi.org/10.1109/TRO.2022.3226144
https://doi.org/10.1109/LRA.2020.2974451
https://openreview.net/forum?id=fvfZKL1hCx
https://openreview.net/forum?id=fvfZKL1hCx
https://doi.org/10.1109/MFI.2017.8170347
https://doi.org/10.1109/ICRA48506.2021.9561543
https://ieeexplore.ieee.org/document/9561543/
https://ieeexplore.ieee.org/document/9561543/
https://doi.org/10.23919/ACC.2017.7963798
https://doi.org/10.23919/ACC.2017.7963798
https://doi.org/10.23919/ACC.2017.7963798

Bibliography

8

155

7963798. url: https://ieeexplore.ieee.org/document/7963798/ (vis-
ited on 06/19/2023).

[115] Vahab Rostampour, Riccardo Ferrari, André M.H. Teixeira, and Tamás Ke-
viczky. “Di�erentially-Private Distributed Fault Diagnosis for Large-Scale
Nonlinear Uncertain Systems”. en. In: IFAC-PapersOnLine 51.24 (2018),
pp. 975–982. issn: 24058963. doi: 10.1016/j.ifacol.2018.09.703. url:
https://linkinghub.elsevier.com/retrieve/pii/S2405896318324236
(visited on 06/19/2023).

[116] Vahab Rostampour, Riccardo M.G. Ferrari, Andre M.H. Teixeira, and Tamas
Keviczky. “Privatized Distributed Anomaly Detection for Large-Scale Non-
linear Uncertain Systems”. In: IEEE Transactions on Automatic Control
66.11 (Nov. 2021), pp. 5299–5313. issn: 0018-9286, 1558-2523, 2334-3303.
doi: 10.1109/TAC.2020.3040251. url: https://ieeexplore.ieee.org/
document/9268470/ (visited on 06/19/2023).

[117] Evgenii Safronov, Michele Colledanchise, and Lorenzo Natale. “Task Plan-
ning with Belief Behavior Trees”. In: 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). ISSN: 2153-0866. Oct. 2020,
pp. 6870–6877. doi: 10.1109/IROS45743.2020.9341562.

[118] Noor Sajid, Philip J. Ball, Thomas Parr, and Karl J. Friston. “Active Infer-
ence: Demystified and Compared”. en. In: Neural Computation 33.3 (Mar.
2021), pp. 674–712. issn: 0899-7667, 1530-888X. doi: 10.1162/neco_a_
01357. url: https://direct.mit.edu/neco/article/33/3/674-712/
97486 (visited on 06/15/2023).

[119] Jürgen Schmidhuber. “Formal Theory of Creativity, Fun, and Intrinsic Moti-
vation (1990–2010)”. In: IEEE Transactions on Autonomous Mental Develop-
ment 2.3 (Sept. 2010). Conference Name: IEEE Transactions on Autonomous
Mental Development, pp. 230–247. issn: 1943-0612. doi: 10.1109/TAMD.
2010.2056368.

[120] Philipp Schwartenbeck, Johannes Passecker, Tobias U Hauser, Thomas HB
FitzGerald, Martin Kronbichler, and Karl J Friston. “Computational mech-
anisms of curiosity and goal-directed exploration”. In: eLife 8 (May 2019).
Ed. by Michael J Frank. Publisher: eLife Sciences Publications, Ltd, e41703.
issn: 2050-084X. doi: 10.7554/eLife.41703. url: https://doi.org/10.
7554/eLife.41703 (visited on 06/15/2023).

[121] Max Schwenzer, Muza�er Ay, Thomas Bergs, and Dirk Abel. “Review on
model predictive control: an engineering perspective”. en. In: The Interna-
tional Journal of Advanced Manufacturing Technology 117.5 (Nov. 2021),
pp. 1327–1349. issn: 1433-3015. doi: 10.1007/s00170-021-07682-3. url:
https://doi.org/10.1007/s00170-021-07682-3 (visited on 06/19/2023).

[122] Sarah Schwöbel, Stefan Kiebel, and Dimitrije MarkoviÊ. “Active Inference,
Belief Propagation, and the Bethe Approximation”. en. In: Neural Compu-
tation 30.9 (Sept. 2018), pp. 2530–2567. issn: 0899-7667, 1530-888X. doi:

https://doi.org/10.23919/ACC.2017.7963798
https://doi.org/10.23919/ACC.2017.7963798
https://doi.org/10.23919/ACC.2017.7963798
https://doi.org/10.23919/ACC.2017.7963798
https://ieeexplore.ieee.org/document/7963798/
https://doi.org/10.1016/j.ifacol.2018.09.703
https://linkinghub.elsevier.com/retrieve/pii/S2405896318324236
https://doi.org/10.1109/TAC.2020.3040251
https://ieeexplore.ieee.org/document/9268470/
https://ieeexplore.ieee.org/document/9268470/
https://doi.org/10.1109/IROS45743.2020.9341562
https://doi.org/10.1162/neco_a_01357
https://doi.org/10.1162/neco_a_01357
https://direct.mit.edu/neco/article/33/3/674-712/97486
https://direct.mit.edu/neco/article/33/3/674-712/97486
https://doi.org/10.1109/TAMD.2010.2056368
https://doi.org/10.1109/TAMD.2010.2056368
https://doi.org/10.7554/eLife.41703
https://doi.org/10.7554/eLife.41703
https://doi.org/10.7554/eLife.41703
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3

8

156

10.1162/neco_a_01108. url: https://direct.mit.edu/neco/article/
30/9/2530-2567/8396 (visited on 06/15/2023).

[123] Nicola Scianca, Daniele De Simone, Leonardo Lanari, and Giuseppe Oriolo.
“MPC for Humanoid Gait Generation: Stability and Feasibility”. In: IEEE
Transactions on Robotics 36.4 (Aug. 2020), pp. 1171–1188. issn: 1552-3098,
1941-0468. doi: 10.1109/TRO.2019.2958483. url: https://ieeexplore.
ieee.org/document/8955951/ (visited on 08/25/2023).

[124] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics.
Modelling, Planning and Control. Advanced Textbooks in Control and Signal
Processing. London: Springer London, 2009. doi: 10.1007/978-1-84628-
642-1. url: http://link.springer.com/10.1007/978-1-84628-642-1
(visited on 06/19/2023).

[125] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Intro-
duction to autonomous mobile robots. 2nd ed. Intelligent robotics and au-
tonomous agents. OCLC: ocn649700153. Cambridge, Mass: MIT Press, 2011.
isbn: 978-0-262-01535-6.

[126] Ryan Smith, Karl J. Friston, and Christopher J. Whyte. “A step-by-step tuto-
rial on active inference and its application to empirical data”. en. In: Journal
of Mathematical Psychology 107 (Apr. 2022), p. 102632. issn: 0022-2496. doi:
10.1016/j.jmp.2021.102632. url: https://www.sciencedirect.com/
science/article/pii/S0022249621000973 (visited on 06/15/2023).

[127] Mark Solms. The hidden spring: a journey to the source of consciousness.
eng. London: Profile Books, 2021. isbn: 978-1-78816-283-8.

[128] Max Spahn, Bruno Brito, and Javier Alonso-Mora. “Coupled Mobile Ma-
nipulation via Trajectory Optimization with Free Space Decomposition”. In:
2021 IEEE International Conference on Robotics and Automation (ICRA).
Xi’an, China: IEEE, May 2021, pp. 12759–12765. isbn: 978-1-72819-077-8.
doi: 10.1109/ICRA48506.2021.9561821. url: https://ieeexplore.ieee.
org/document/9561821/ (visited on 08/25/2023).

[129] Max Spahn, Chadi Salmi, and Javier Alonso-Mora. Local Planner Bench:
Benchmarking for Local Motion Planning. Publisher: arXiv Version Number:
1. 2022. doi: 10.48550/ARXIV.2210.06033. url: https://arxiv.org/abs/
2210.06033 (visited on 06/19/2023).

[130] Max Spahn, Martijn Wisse, and Javier Alonso-Mora. “Dynamic Optimization
Fabrics for Motion Generation”. In: IEEE Transactions on Robotics (2023),
pp. 1–16. issn: 1552-3098, 1941-0468. doi: 10.1109/TRO.2023.3255587.
url: https://ieeexplore.ieee.org/document/10086617/ (visited on
06/19/2023).

[131] Evangelos Theodorou. “Nonlinear Stochastic Control and Information The-
oretic Dualities: Connections, Interdependencies and Thermodynamic Inter-
pretations”. en. In: Entropy 17.5 (May 2015), pp. 3352–3375. issn: 1099-4300.
doi: 10.3390/e17053352. url: http://www.mdpi.com/1099-4300/17/5/
3352 (visited on 08/14/2023).

https://doi.org/10.1162/neco_a_01108
https://direct.mit.edu/neco/article/30/9/2530-2567/8396
https://direct.mit.edu/neco/article/30/9/2530-2567/8396
https://doi.org/10.1109/TRO.2019.2958483
https://ieeexplore.ieee.org/document/8955951/
https://ieeexplore.ieee.org/document/8955951/
https://doi.org/10.1007/978-1-84628-642-1
https://doi.org/10.1007/978-1-84628-642-1
http://link.springer.com/10.1007/978-1-84628-642-1
https://doi.org/10.1016/j.jmp.2021.102632
https://www.sciencedirect.com/science/article/pii/S0022249621000973
https://www.sciencedirect.com/science/article/pii/S0022249621000973
https://doi.org/10.1109/ICRA48506.2021.9561821
https://ieeexplore.ieee.org/document/9561821/
https://ieeexplore.ieee.org/document/9561821/
https://doi.org/10.48550/ARXIV.2210.06033
https://arxiv.org/abs/2210.06033
https://arxiv.org/abs/2210.06033
https://doi.org/10.1109/TRO.2023.3255587
https://ieeexplore.ieee.org/document/10086617/
https://doi.org/10.3390/e17053352
http://www.mdpi.com/1099-4300/17/5/3352
http://www.mdpi.com/1099-4300/17/5/3352

Bibliography

8

157

[132] Evangelos A. Theodorou and Emanuel Todorov. “Relative entropy and free
energy dualities: Connections to Path Integral and KL control”. In: 2012
IEEE 51st IEEE Conference on Decision and Control (CDC). Maui, HI,
USA: IEEE, Dec. 2012, pp. 1466–1473. isbn: 978-1-4673-2066-5. doi: 10.
1109/CDC.2012.6426381. url: http://ieeexplore.ieee.org/document/
6426381/ (visited on 08/14/2023).

[133] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine
for model-based control”. In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE, Oct.
2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109. url: http://
ieeexplore.ieee.org/document/6386109/ (visited on 06/19/2023).

[134] Marc Toussaint, Jason Harris, Jung-Su Ha, Danny Driess, and Wolfgang
Honig. “Sequence-of-Constraints MPC: Reactive Timing-Optimal Control of
Sequential Manipulation”. In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Kyoto, Japan: IEEE, Oct. 2022,
pp. 13753–13760. isbn: 978-1-66547-927-1. doi: 10.1109/IROS47612.2022.
9982236. url: https://ieeexplore.ieee.org/document/9982236/ (vis-
ited on 08/25/2023).

[135] Alexander Tschantz, Beren Millidge, Anil K. Seth, and Christopher L. Buck-
ley. Reinforcement Learning through Active Inference. arXiv:2002.12636 [cs,
eess, math, stat]. Feb. 2020. doi: 10.48550/arXiv.2002.12636. url: http:
//arxiv.org/abs/2002.12636 (visited on 06/16/2023).

[136] Mien Van, Denglu Wu, Shuzhi Sam Ge, and Hongliang Ren. “Fault Diagno-
sis in Image-Based Visual Servoing With Eye-in-Hand Configurations Using
Kalman Filter”. In: IEEE Transactions on Industrial Informatics 12.6 (Dec.
2016), pp. 1998–2007. issn: 1551-3203, 1941-0050. doi: 10.1109/TII.2016.
2590338. url: http://ieeexplore.ieee.org/document/7508912/ (visited
on 06/19/2023).

[137] Thijs Van De Laar, �smail �enöz, Ayça Özçelikkale, and Henk Wymeersch.
“Chance-Constrained Active Inference”. en. In: Neural Computation 33.10
(Sept. 2021), pp. 2710–2735. issn: 0899-7667, 1530-888X. doi: 10.1162/
neco _ a _ 01427. url: https : / / direct . mit . edu / neco / article / 33 /
10/2710/103013/Chance- Constrained- Active- Inference (visited on
06/16/2023).

[138] William Vega-Brown and Nicholas Roy. “CELLO-EM: Adaptive sensor mod-
els without ground truth”. In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. ISSN: 2153-0866. Nov. 2013, pp. 1907–1914.
doi: 10.1109/IROS.2013.6696609.

[139] M.L. Visinsky, J.R. Cavallaro, and I.D. Walker. “Robotic fault detection
and fault tolerance: A survey”. en. In: Reliability Engineering & System
Safety 46.2 (Jan. 1994), pp. 139–158. issn: 09518320. doi: 10.1016/0951-
8320(94)90132-5. url: https://linkinghub.elsevier.com/retrieve/
pii/0951832094901325 (visited on 06/19/2023).

https://doi.org/10.1109/CDC.2012.6426381
https://doi.org/10.1109/CDC.2012.6426381
http://ieeexplore.ieee.org/document/6426381/
http://ieeexplore.ieee.org/document/6426381/
https://doi.org/10.1109/IROS.2012.6386109
http://ieeexplore.ieee.org/document/6386109/
http://ieeexplore.ieee.org/document/6386109/
https://doi.org/10.1109/IROS47612.2022.9982236
https://doi.org/10.1109/IROS47612.2022.9982236
https://ieeexplore.ieee.org/document/9982236/
https://doi.org/10.48550/arXiv.2002.12636
http://arxiv.org/abs/2002.12636
http://arxiv.org/abs/2002.12636
https://doi.org/10.1109/TII.2016.2590338
https://doi.org/10.1109/TII.2016.2590338
http://ieeexplore.ieee.org/document/7508912/
https://doi.org/10.1162/neco_a_01427
https://doi.org/10.1162/neco_a_01427
https://direct.mit.edu/neco/article/33/10/2710/103013/Chance-Constrained-Active-Inference
https://direct.mit.edu/neco/article/33/10/2710/103013/Chance-Constrained-Active-Inference
https://doi.org/10.1109/IROS.2013.6696609
https://doi.org/10.1016/0951-8320(94)90132-5
https://doi.org/10.1016/0951-8320(94)90132-5
https://linkinghub.elsevier.com/retrieve/pii/0951832094901325
https://linkinghub.elsevier.com/retrieve/pii/0951832094901325

8

158

[140] Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. “Model Pre-
dictive Path Integral Control: From Theory to Parallel Computation”. en.
In: Journal of Guidance, Control, and Dynamics 40.2 (Feb. 2017), pp. 344–
357. issn: 0731-5090, 1533-3884. doi: 10.2514/1.G001921. url: https:
//arc.aiaa.org/doi/10.2514/1.G001921 (visited on 06/19/2023).

[141] Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos
A. Theodorou. “Aggressive driving with model predictive path integral con-
trol”. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). Stockholm: IEEE, May 2016, pp. 1433–1440. isbn: 978-1-4673-8026-
3. doi: 10.1109/ICRA.2016.7487277. url: https://ieeexplore.ieee.
org/document/7487277/ (visited on 08/14/2023).

[142] Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evan-
gelos A. Theodorou. “Information-Theoretic Model Predictive Control: The-
ory and Applications to Autonomous Driving”. In: IEEE Transactions on
Robotics 34.6 (Dec. 2018), pp. 1603–1622. issn: 1552-3098, 1941-0468. doi:
10 . 1109 / TRO . 2018 . 2865891. url: https : / / ieeexplore . ieee . org /
document/8558663/ (visited on 06/19/2023).

[143] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M.
Rehg, Byron Boots, and Evangelos A. Theodorou. “Information theoretic
MPC for model-based reinforcement learning”. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA). Singapore: IEEE, May
2017, pp. 1714–1721. isbn: 978-1-5090-4633-1. doi: 10.1109/ICRA.2017.
7989202. url: https://ieeexplore.ieee.org/document/7989202/ (vis-
ited on 08/25/2023).

[144] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. “DESPOT: Online
POMDP Planning with Regularization”. In: Journal of Artificial Intelligence
Research 58 (Jan. 2017), pp. 231–266. issn: 1076-9757. doi: 10.1613/jair.
5328. url: https://jair.org/index.php/jair/article/view/11043
(visited on 06/15/2023).

[145] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari. “FORCES NLP: an e�cient
implementation of interior-point methods for multistage nonlinear nonconvex
programs”. en. In: International Journal of Control 93.1 (Jan. 2020), pp. 13–
29. issn: 0020-7179, 1366-5820. doi: 10.1080/00207179.2017.1316017.
url: https://www.tandfonline.com/doi/full/10.1080/00207179.
2017.1316017 (visited on 06/19/2023).

[146] Youmin Zhang and Jin Jiang. “Bibliographical review on reconfigurable fault-
tolerant control systems”. en. In: Annual Reviews in Control 32.2 (Dec. 2008),
pp. 229–252. issn: 1367-5788. doi: 10.1016/j.arcontrol.2008.03.008.
(Visited on 07/25/2023).

[147] Yuezhe Zhang, Corrado Pezzato, Elia Trevisan, Chadi Salmi, Carlos Her-
nandez Corbato, and Javier Alonso-Mora. Multi-Modal MPPI and Active In-
ference for Reactive Task and Motion Planning. arXiv:2312.02328 [cs]. Dec.
2023. url: https://arxiv.org/abs/2312.02328 (visited on 12/04/2023).

https://doi.org/10.2514/1.G001921
https://arc.aiaa.org/doi/10.2514/1.G001921
https://arc.aiaa.org/doi/10.2514/1.G001921
https://doi.org/10.1109/ICRA.2016.7487277
https://ieeexplore.ieee.org/document/7487277/
https://ieeexplore.ieee.org/document/7487277/
https://doi.org/10.1109/TRO.2018.2865891
https://ieeexplore.ieee.org/document/8558663/
https://ieeexplore.ieee.org/document/8558663/
https://doi.org/10.1109/ICRA.2017.7989202
https://doi.org/10.1109/ICRA.2017.7989202
https://ieeexplore.ieee.org/document/7989202/
https://doi.org/10.1613/jair.5328
https://doi.org/10.1613/jair.5328
https://jair.org/index.php/jair/article/view/11043
https://doi.org/10.1080/00207179.2017.1316017
https://www.tandfonline.com/doi/full/10.1080/00207179.2017.1316017
https://www.tandfonline.com/doi/full/10.1080/00207179.2017.1316017
https://doi.org/10.1016/j.arcontrol.2008.03.008
https://arxiv.org/abs/2312.02328

Bibliography 159

[148] Ziyi Zhou, Dong Jae Lee, Yuki Yoshinaga, Stephen Balakirsky, Dejun Guo,
and Ye Zhao. “Reactive Task Allocation and Planning for Quadrupedal
and Wheeled Robot Teaming”. In: 2022 IEEE 18th International Confer-
ence on Automation Science and Engineering (CASE). Mexico City, Mex-
ico: IEEE, Aug. 2022, pp. 2110–2117. isbn: 978-1-66549-042-9. doi: 10 .
1109/CASE49997.2022.9926658. url: https://ieeexplore.ieee.org/
document/9926658/ (visited on 08/25/2023).

https://doi.org/10.1109/CASE49997.2022.9926658
https://doi.org/10.1109/CASE49997.2022.9926658
https://ieeexplore.ieee.org/document/9926658/
https://ieeexplore.ieee.org/document/9926658/

A
Appendix

A.1. Generative models

Consider the generative model in active inference P (ō, s̄, ÷, fi). By using the chain
rule, we can write:

P (ō, s̄, ÷, fi) = P (ō|s̄, ÷, fi)P (s̄|÷, fi)P (÷|fi)P (fi) (A.1)

Note that ō is conditionally independent from the model parameters ÷ and fi given
s̄. In addition, under the Markov property, the next state and current observations
depend only on the current state:

P (ō|s̄, ÷, fi) =
TŸ

·=1
P (o· |s·) (A.2)

The model is further simplified considering that s̄ and ÷ are conditionally indepen-
dent given fi:

P (s̄|÷, fi) =
TŸ

·=1
P (s· |s·≠1, fi) (A.3)

Finally, consider the model parameters explicitly:

P (ō, s̄, ÷, fi) = P (ō, s̄, A, B, D, fi) =

P (fi)P (A)P (B)P (D)
TŸ

·=1
P (s· |s·≠1, fi)P (o· |s·) (A.4)

P (A), P (B), P (D) are Dirichlet distributions over the model parameters [47]. In
case the model parameters are fixed by the user, as in this work, it holds:

P (ō, s̄, fi) = P (fi)
TŸ

·=1
P (s· |s·≠1, fi)P (o· |s·) (A.5)

161

A

162

Given the generative model above, we are interested in finding the posterior
hidden causes of sensory data. For the sake of these derivations, we consider that
the parameters associated with the task are known and do not introduce uncertainty.
Using Bayes rule:

P (s̄, fi|ō) = P (ō|s̄, fi)P (s̄, fi)
P (ō) (A.6)

Computing the model evidence P (ō) exactly is a well-known and often intractable
problem in Bayesian statistics. The exact posterior is then computed minimizing
the Kullback-Leibler divergence (DKL, or KL-Divergence) with respect to an ap-
proximate posterior distribution Q(s̄, fi). Doing so, we can define the free-energy as
a functional of approximate posterior beliefs which result in an upper bound on sur-
prise. By definition DKL is a non-negative quantity given by the expectation of the
logarithmic di�erence between Q(s̄, fi) and P (s̄, fi|ō). Applying the KL-Divergence:

DKL [Q(s̄, fi)||P (s̄, fi|ō)] =
EQ(s̄,fi) [ln Q(s̄, fi) ≠ ln P (s̄, fi|ō)] Ø 0 (A.7)

DKL is the information loss when Q is used instead of P . Considering equation
(A.6) and the chain rule, equation (A.7) can be rewritten as:

DKL [·] = EQ(s̄,fi)

5
ln Q(s̄, fi) ≠ ln P (ō, s̄, fi)

P (ō)

6

= EQ(s̄,fi) [ln Q(s̄, fi) ≠ ln P (ō, s̄, fi)]
¸ ˚˙ ˝

F [Q(s̄,fi)]

+ ln P (ō) (A.8)

We have just defined the free-energy as the upper bound of surprise:

F [Q(s̄, fi)] Ø ≠ ln P (ō) (A.9)

A.2. Variational Free-energy

To fully characterize the free-energy in equation (A.8), we need to specify a form for
the approximate posterior Q(s̄, fi). There are di�erent ways to choose a family of
probability distributions [122], compromising between complexity and accuracy of
the approximation. In this work, we choose the mean-field approximation. It holds:

Q(s̄, fi) = Q(s̄|fi)Q(fi) = Q(fi)
TŸ

·=1
Q(s· |fi) (A.10)

Under mean-field approximation, the plan-dependent states at each time step are
approximately independent of the states at any other time step. We can now find an
expression for the variational free-energy. Considering the mean-field approximation

A.2. Variational Free-energy

A

163

and the generative model in eq. (A.5) we can write:

F [Q(s̄, fi)] = EQ(s̄,fi)

5
ln Q(fi) +

Tÿ

·=1
ln Q(s· |fi)

≠ ln P (fi) ≠

Tÿ

·=1
ln P (s· |s·≠1, fi) ≠

Tÿ

·=1
ln P (o· |s·)

6
(A.11)

Since Q(s̄, fi) = Q(s̄|fi)Q(fi), and since the expectation of a sum is the sum of the
expectation, we can write:

F [·] = DKL [Q(fi)||P (fi)] + EQ(fi) [F (fi) [Q(s̄|fi)]] (A.12)

where

F (fi) [Q(s̄|fi)] = EQ(s̄|fi)

5 Tÿ

·=1
ln Q(s· |fi)

≠

Tÿ

·=1
ln P (s· |st≠· , fi) ≠

Tÿ

·=1
ln P (o· |s·)

6
(A.13)

One can notice that F (fi) is accumulated over time, or in other words, it is the sum
of free energies over time and plans:

F (fi) =
Tÿ

·=1
F (fi, ·) (A.14)

Substituting the agent’s belief about the current state at time · given fi with sfi
·
, we

obtain a matrix form for F (fi, ·) that we can compute given the generative model:

F (fi) =
Tÿ

·=1
sfi€

·

5
ln sfi

·
≠ ln (Ba·≠1sfi

·≠1) ≠ ln (A€o·)
6

(A.15)

Given a plan fi, the probability of state transition P (s· |s·≠1, fi) is given by the
transition matrix under plan fi at time · , multiplied by the probability of the state
at the previous time step. In the special case of · = 1, we can write:

F (fi, 1) = sfi€
1

#
ln sfi

1 ≠ ln D ≠ ln (A€o1)
$

(A.16)

Finally, we can compute the expectation of the plan-dependent variational free-
energy F (fi) as EQ(fi)

#
F (fi)

$
= fi€Ffi. We indicate Ffi = (F (fi1), F (fi2)...)€ for

every allowable plan. To derive state and plan updates that minimize free-energy,
F in equation (A.12) is partially di�erentiated and set to zero, as we will see in the
next appendixes.

A

164

A.3. State estimation

We di�erentiate F with respect to the su�cient statistics of the probability distri-
bution of the states. Note that the only part of F dependent on the states is F (fi).
Then:

ˆF

ˆsfi
·

= ˆF

ˆF (fi)
ˆF (fi)
ˆsfi

·

= fi€#
1 + ln sfi

·
≠ ln (Ba·≠1sfi

·≠1)

≠ ln (B€
a·

sfi

·+1) ≠ ln (A€o·)
$

(A.17)

Setting the gradient to zero and using the softmax function for normalization:

sfi

·
= ‡(ln (Ba·≠1sfi

·≠1) + ln (B€
a·

sfi

·+1) + ln (A€o·)) (A.18)

Note that the softmax function is insensitive to the constant 1. Also, for · = 1 the
term ln (Ba·≠1sfi

·≠1) is replaced by D. Finally, ln (A€o·) contributes only to past
and present time steps, so for this term is null for t < · Æ T since those observations
are still to be received.

A.4. Expected Free-energy

We indicate with G(fi) the expected free-energy obtained over future time steps until
the time horizon T while following a plan fi. Basically, this is the variational free-
energy of future trajectories which measures the plausibility of plans according to
future predicted observations [118]. To compute it we take the expectation of vari-
ational free-energy under the posterior predictive distribution P (o· |s·). Following
Sajid et al. [118] we can write:

G(fi) =
Tÿ

·=t+1
G(fi, ·) (A.19)

then:

G(fi, ·) = E
Q̃

#
ln Q(s· |fi) ≠ ln P (o· , s· |s·≠1)

$

= E
Q̃

#
ln Q(s· |fi) ≠ ln P (s· |o· , s·≠1) ≠ ln P (o·)

$
(A.20)

where Q̃ = P (o· |s·)Q(s· |fi). The expected free-energy is:

G(fi, ·) Ø E
Q̃

#
ln Q(s· |fi) ≠ ln Q(s· |o· , s·≠1, fi) ≠ ln P (o·)

$
(A.21)

Equivalently, we can express the expected free-energy in terms of preferred obser-
vations [34]:

G(fi, ·) = E
Q̃

#
ln Q(o· |fi) ≠ ln Q(o· |s· , s·≠1, fi) ≠ ln P (o·)

$
(A.22)

Making use of Q(o· |s· , fi) = P (o· |s·) since the predicted observations in the future
are only based on A which is plan independent given s· , we have:

G(fi, ·) = DKL [Q(o· |fi)||P (o·)]¸ ˚˙ ˝
Expected cost

+EQ(s· |fi) [H(P (o· |s·))]
¸ ˚˙ ˝

Entropy

(A.23)

A.5. Updating plan distribution

A

165

were H[P (o· |s·)] = EP (o· |s·) [≠ ln P (o· |s·)] is the entropy. We are now ready
to express the expected free-energy in matrix form, such that we can compute it.
From the previous equation, one can notice that plan selection aims at minimizing
the expected cost and ambiguity. The latter relates to the uncertainty about future
observations given hidden states. In a sense, plans tend to bring the agent to future
states that generate unambiguous information over states. On the other hand, the
cost is the di�erence between predicted and prior beliefs about final states. Plans
are more likely if they minimize cost, and lead to observations that match prior
desires. Minimizing G leads to both exploitative (cost minimizing) and explorative
(ambiguity minimizing) behavior. This results in a balance between goal-oriented
and novelty-seeking behaviors

Substituting the su�cient statistics in equation (A.23), and recalling that the
generative model specifies P (o·) = C, one obtains [126]:

G(fi, ·) = ofi€
·

[ln ofi

·
≠ ln C]¸ ˚˙ ˝

Reward seeking

≠diag(A€ ln A)€sfi

·¸ ˚˙ ˝
Information seeking

(A.24)

Note that prior preferences are passed through the softmax function before comput-
ing the logarithm.

A.5. Updating plan distribution

The update rule for the distribution over possible plans follows directly from the
variational free-energy:

F [·] = DKL [Q(fi)||P (fi)] + fi€Ffi (A.25)

The first term of the equation above can be written as:

DKL [Q(fi)||P (fi)] = EQ(fi) [ln Q(fi) ≠ ln P (fi)] (A.26)

Recalling that the approximate posterior over policies is a softmax function of the
expected free-energy Q(fi) = ‡(≠G(fi)) [34, 47], and taking the gradient with respect
to fi it results:

ˆF

ˆfi
= ln fi + Gfi + Ffi + 1 (A.27)

where Gfi = (G(fi1), G(fi2), ...)€ Finally, setting the gradient to zero and normalizing
through softmax, the posterior distribution over plans is obtained:

fi = ‡(≠Gfi ≠ Ffi) (A.28)

The plan that an agent should pursue is the most likely one.

Acknowledgements

W hat a journey! Four years ago I embarked on this adventure, straight after the
Master, with energy and enthusiasm. I still remember how Carlos suggested I

apply for a PhD with him, even though he knew I did not want to pursue a doctorate.
I do not recall how you actually convinced me over lunch, but I remember at the
end I thought "Why not, this PhD sounds like fun". And it was, so thank you. Here
I am now, perhaps wiser, but definitely older, still looking at the world with the
same enthusiasm. The more you learn, the more you understand that there is much
more to learn. This is the flame that keeps me going.

I have been lucky I had two supervisors, Carlos and Martijn, who always threw
gasoline on this flame, to see what happens. You gave me the freedom to express
myself and let me go my own way. Challenging me to try new things and going out
of my comfort zone. Martijn, you have been an inspiration to me. Your kindness
and thoughtfulness for others, your ideals, and visions against mainstream trends,
profoundly impacted me and shaped who I am today. I believe the (academic and
not) world should have more like you. I would also like to thank those who did
not supervise me directly but were there to guide me sometimes, like Riccardo from
DSCS with whom I had many interesting discussions. A special thanks to Joris as
well, for the random emails to grab a co�ee together. The chats we had were always
fun, deep, and technical. Every time I left your o�ce I had such great motivation
to study new theories and pursue new ideas! You could challenge me with my
knowledge and choices, which I really appreciate.

A PhD is a process, not a title. A process where you mainly learn from others. I
will steal a quote from Mohamed, with whom I co-authored many Active Inference
papers. Here it goes: "You should surround yourself with people that are smarter
than you". So thanks to all my co-authors, colleagues, and flatmates who over the
years made me ask the right questions and think. Thanks to Elia for introducing
me to MPPI, and for discussing with me why robots are still so stupid and what we
can do to improve! Thanks to Max for always complaining about the system, and
how badly we write software in academia. I have learned many things from you, and
from Chadi as well, the wizard that magically makes everything work on the robots.
Without you all guys, I would not have managed to achieve what I achieved.

I have been lucky to sit at AIRLab, together with other PhDs, MSc students, and
people from the industry. This made the PhD less of a lonely journey and exposed
me to many di�erent realities besides academia. It was great to work with my peers
and other engineers from RoboHouse on the demos in the retail store. I have also
learned a lot from the students I supervised during the years. It is not easy to be
a good supervisor, and the experience with you guys made me grow considerably,
thank you. So, for all the people involved in AIRLab and the ones from RoboHouse,
thanks for the hard work we did together, the laughs, the ping-pong matches, and

167

168

the Friday beers. These memories are impressed in my brain and will be forever
with me.

I would like to thank my parents for the support they always gave me. You
would have been happy with whatever I chose to do in my life, and this is priceless
because you never forced me to be someone I am not, allowing me to be where I
am. I could have been a carpenter, like my grandpa, a man of di�erent times, an
artist who inspired me and keeps inspiring me, educating me to seek beauty and
perfection in anything we do. Some people like you have a special place in my heart.
This holds for Renzo as well, even if you are not with us anymore, I hope you know
that you are the reason why I kept studying after high school in the first place. I
wish you could see how far I have gotten. My sincere thanks go to you and to all
the people who saw something in me.

Perhaps I should thank the odds, the series of random events and decisions that
led me here. We tend to forget how lucky we are to be born in this part of the
world. We have no right to complain or be unhappy.

I am grateful for all the great fun I had here at TU Delft, many friends made this
experience unforgettable. A special thanks to all my bouldering buddies: struggling,
failing, succeeding, and improving together was amazing. Our bouldering sessions
were a nice break from my studies, together with the beers and pizzas beside the
canal. Of course, this would not have been possible without you Jorge, who con-
vinced me to start this sport. You are one of a kind, bringing mess into my organized
life. Please keep the tradition of ringing the bell and showing up unannounced, spon-
taneous nights out in these over-optimized lives are priceless. And of course, it is
thanks to you that I met Patricija. The most important person of all.

Patricija, with you and your family I had amazing experiences. You push me
to be the best version of myself, to try new things, and to experience life. Every
challenge with you seems like a walk in the park. From meeting and hanging out in
the middle of a pandemic fighting the curfew, to randomly deciding to buy a house
together in the most heated market. Nothing has ever been so easy. You supported
me every day during this PhD. You made me forget all the stress and the problems
that sometimes came with it, always putting a smile on my face. Perhaps more than
anyone else, you see who I am, and remind me how lucky we are. Since I am with
you, I cannot remember a sad day. And this says it all.

Corrado Pezzato
Delft, August 2023

Curriculum Vitæ

Corrado PEZZATO

16-04-1995, born in Mirano, Italy.

Education

2014-2017 BSc in Automation Engineering (Cum Laude)
University of Bologna, Italy

2017-2019 MSc in Systems and Control (Cum Laude)
TU Delft, The Netherlands

2019-2023 PhD in Cognitive Robotics
TU Delft, The Netherlands

Awards

2023 Third prize for best paper at the ICRA 2023 workshop
Embracing Contacts [Link]

Experience

2018-2019 President of D.S.A. Kalman at Systems and Control

169

https://sites.google.com/view/icra2023embracingcontacts/home

List of Publications

Journals

6. Yuezhe Zhang, Corrado Pezzato, Elia Trevisan, Chadi Salmi, Carlos Hernández
Corbato, and Javier Alonso-Mora. Multi-Modal MPPI and Active Inference for Re-

active Task and Motion Planning. In preparation for submission at IEEE Robotics
and Automation Letters (2023).

5. Corrado Pezzatoú, Chadi Salmiú, Max Spahnú, Elia Trevisanú, Javier Alonso
Mora, and Carlos Hernández Corbato. "Sampling-based Model Predictive Control

Leveraging Parallelizable Physics Simulations". Submitted to IEEE Robotics and
Automation Letters (2023).

4. Corrado Pezzato, Carlos Hernández Corbato, Stefan Bonhof, and Martijn Wisse.
"Active Inference and Behavior Trees for Reactive Action Planning and Execution

in Robotics." IEEE Transactions on Robotics (2023).

3. Cristian Meo, Giovanni Franzese, Corrado Pezzato, Max Spahn, and Pablo Lanil-
los. "Adaptation through prediction: multisensory active inference torque control."

IEEE Transactions on Cognitive and Developmental Systems (2022).

2. Pablo Lanillos, Cristian Meo, Corrado Pezzato, Ajith Anil Meera, Mohamed Bai-
oumy, Wataru Ohata, Alexander Tschantz, Beren Millidge, Martijn Wisse, Christo-
pher L. Buckley, and Jun Tani. "Active inference in robotics and artificial agents:

Survey and challenges." arXiv preprint arXiv:2112.01871 (2021).

1. Corrado Pezzato, Riccardo Ferrari, and Carlos Hernández Corbato. "A novel

adaptive controller for robot manipulators based on active inference." IEEE Robotics
and Automation Letters (2020).

Conferences

2. Mohamed Baioumyú, Corrado Pezzatoú, Riccardo Ferrari, and Nick Hawes. "Un-

biased Active Inference for Classical Control." In IEEE International Conference on
Intelligent Robots and Systems, IROS (2022).

1. Mohamed Baioumyú, Corrado Pezzatoú, Riccardo Ferrari, Carlos Hernández Cor-
bato, and Nick Hawes. "Fault-tolerant control of robot manipulators with sensory

faults using unbiased active inference." In European Control Conference, ECC (2021).

* Indicates equal contribution

171

172

Workshops

3. Corrado Pezzatoú, Chadi Salmiú, Elia Trevisanú, Javier Alonso Mora, and Car-
los Hernández Corbato. "Sampling-Based MPC Using a GPU-parallelizable Physics

Simulator as Dynamic Model: an Open Source Implementation with IsaacGym." In
Embracing Contacts Workshop at ICRA (2023).

2. Mohamed Baioumy, Corrado Pezzato, Carlos Hernández Corbato, Nick Hawes,
and Riccardo Ferrari. "Towards stochastic fault-tolerant control using precision learn-

ing and active inference." In Second International Workshop on Active Inference,
IWAI (2021).

1. Corrado Pezzato, Mohamed Baioumy, Carlos Hernández Corbato, Nick Hawes,
Martijn Wisse, and Riccardo Ferrari. "Active inference for fault tolerant control of

robot manipulators with sensory faults." In First International Workshop on Active
Inference, IWAI (2020).

* Indicates equal contribution

	Summary
	Samenvatting
	Introduction
	Motivations
	Overview of the problem
	Research roadmap

	Summary of contributions
	Structure of the document

	Background
	Active Inference
	Continuous Active Inference
	Discrete Active Inference

	Model Predictive Path Integral Control
	Fault-tolerant control

	Fault-tolerant Control of Robot Manipulators with Sensory Faults using Unbiased Active Inference
	Abstract
	Introduction
	Preliminaries
	Active inference controller (standard AIC)
	Limitations of fault-tolerant control with standard AIC

	Unbiased Active Inference
	Derivation of the u-AIC
	Definition of the observation model
	Estimation and control using the u-AIC
	Key differences between AIC and u-AIC

	Fault detection, isolation, and recovery
	Residual generation
	Threshold for fault detection
	Fault isolation
	Fault recovery

	Simulation study
	Conclusions

	Unbiased Active Inference for Classical Control
	Abstract
	Introduction
	Related work
	Structure of the paper

	Preliminaries
	The generative model
	Free-energy
	State estimation
	Control

	Limitations of the AIC
	Limitation #1: biased state estimation
	Limitation #2: implicit modelling of actions

	Unbiased Active Inference controller
	Derivation of the u-AIC
	Proof of convergence
	Extensions of the u-AIC for control

	Relationship between the AIC and u-AIC
	Convergence of beliefs
	Control law
	General architecture

	Experimental evaluation
	Simulation
	7-DOF Panda arm

	Conclusion

	Active Inference and Behavior Trees for Reactive Action Planning and Execution in Robotics
	Abstract
	Introduction
	Related Work
	Contributions
	Paper structure

	Background on Active Inference and BTs
	Background on Active Inference
	Background on BTs

	Active Inference and BTs for Reactive Action Planning and Execution
	Definition of the models for Active Inference
	BTs integration: planning preferences, not actions
	Action preconditions and conflicts
	Complete control scheme

	Theoretical analysis
	Analysis of convergence
	Analysis of robustness

	Experimental evaluation
	Experimental scenarios
	Implementation
	Robustness: Dynamic regions of attraction
	Resolving run-time conflicts
	Safety
	Comparison and design principles

	Discussion
	Active Inference as a planning node in a BT
	Why choose BTs
	Why choose Active Inference

	Conclusions

	Sampling-based Model Predictive Control Leveraging Parallelizable Physics Simulations
	Abstract
	Introduction
	Related work
	Contributions

	Sampling-based MPC via parallelizable physics simulations
	Background theory on MPPI
	Proposed algorithm
	Exploiting the physics simulator features

	Experiments
	Motion planning and collision avoidance
	Prehensile manipulation with whole-body control
	Non-prehensile manipulation
	Real-world experiments

	Discussion
	Conclusions

	Multi-Modal MPPI and Active Inference for Reactive Task and Motion Planning
	Abstract
	Introduction
	Related work
	Contributions

	Background
	Active Inference Planner
	Model Predictive Path Integral Control

	Methodology
	Overview
	Action planner - Active Inference
	Motion planner - Multi-Modal MPPI (M3P2I)
	Plan interface

	Experiments
	Push-pull scenario
	Object stacking scenario

	Conclusions

	Conclusion and discussion
	Conclusions
	Discussion
	Active Inference or MPPI? Choices and insights
	Challenges and future work

	Bibliography
	Appendix
	Generative models
	Variational Free-energy
	State estimation
	Expected Free-energy
	Updating plan distribution

	Acknowledgements
	Curriculum Vitæ
	List of Publications

