
 
 

Delft University of Technology

Compensating torque ripples in a coarse pointing mechanism for free-space optical
communication
A Gaussian process repetitive control approach
Mooren, Noud; van Meer, Max; Witvoet, Gert; Oomen, Tom

DOI
10.1016/j.mechatronics.2023.103107
Publication date
2024
Document Version
Final published version
Published in
Mechatronics

Citation (APA)
Mooren, N., van Meer, M., Witvoet, G., & Oomen, T. (2024). Compensating torque ripples in a coarse
pointing mechanism for free-space optical communication: A Gaussian process repetitive control approach.
Mechatronics, 97, Article 103107. https://doi.org/10.1016/j.mechatronics.2023.103107

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.mechatronics.2023.103107
https://doi.org/10.1016/j.mechatronics.2023.103107


Mechatronics 97 (2024) 103107

A
0

C
o
N
a

b

c

A

K
R
G
S
M
O

1

s
h
w
t
w
d
f
a
r
t
t
s
f
t
d
o
d

h
R

Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier.com/locate/mechatronics

ompensating torque ripples in a coarse pointing mechanism for free-space
ptical communication: A Gaussian process repetitive control approach✩

oud Mooren a, Max van Meer a, Gert Witvoet a,b,∗, Tom Oomen a,c

Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven, The Netherlands
TNO, Optomechatronics department, Delft, The Netherlands
Delft University of Technology, Delft Center for Systems and Control, Delft, The Netherlands

R T I C L E I N F O

eywords:
epetitive control
aussian process
witched reluctance motor
otion control
ptical pointing

A B S T R A C T

Actuators that require commutation algorithms, such as the switched reluctance motor (SRM) considered
in this paper and employed in the coarse pointing assembly (CPA) for free-space optical communication,
often have torque-ripple disturbances that are periodic in the commutation-angle domain that deteriorate the
positioning performance. The aim of this paper is to model the torque ripple as a Gaussian Process (GP) in the
commutation-angle domain and consequently compensate for it at arbitrary velocity. The approach employs
repetitive control (RC) at a constant velocity. A spatial GP with a periodic kernel is trained using data that
is obtained from the RC step resulting in a static non-linear function for compensation at arbitrary velocity.
Stability conditions are provided for both steps. The approach is successfully applied to a CPA prototype to
improve the tracking performance for laser communication, where the torque ripple is compensated at arbitrary
velocity.
. Introduction

Many future technological advances, including scientific earth ob-
ervations, 5G and 6G connectivity, and the Internet-of-Things, rely
eavily on high-throughput and secure data communication with
orldwide coverage. This calls for new advances in communication

echnology between satellites and from satellites to ground stations,
ell beyond the possibilities of the current radio-frequency (RF) stan-
ard. Recent developments in (inter-)satellite communication exploit
ree-space optical communication (FSOC), where a transmitter points

laser beam towards a receiver over a very long distance. Distances
ange from several hundreds of kilometers from lower-earth orbit (LEO)
o ground, to thousands of kilometers between LEO satellites, up to
ens-of-thousands of kilometers for links between ground stations and
atellites in a geostationary orbit (GEO). FSOC terminals can be much
aster and lighter than their RF counterparts, partly because all the
ransmitted power can be condensed in a single beam with very small
ivergence, which on the other hand requires pointing accuracies in the
rder of micro-radians or even sub-micro-radians to cover such large
istances. At the same time, FSOC terminals need to point their lasers

✩ This paper was recommended for publication by Associate Editor Minghui Zheng.
∗ Corresponding author at: Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven, The Netherlands.
E-mail address: G.Witvoet@tue.nl (G. Witvoet).

over very large angular ranges due to the relative motion between
transmitter and receiver.

To enable a large-stroke rotation for tracking moving objects, a so-
called coarse pointing assembly (CPA) is commonly used, in which
its size, weight, and cost are critical aspects for commercial (large
series) space applications. Traditional CPAs are quite often relatively
large, heavy, and expensive compared to the rest of the FSOC terminal,
therefore, in [1] a novel CPA actuation concept has been developed,
see Fig. 1, which offers a low-cost, low-power alternative for accurate
long-stroke laser pointing for satellite-based FSOC. This CPA concept,
developed by the Netherlands Organisation of Applied Scientific Re-
search (TNO), uses a switched reluctance motor concept [2] consisting
of three motor phases and a commutation strategy to rotate a toothed
disk and is relatively cost-effective to manufacture.

The positioning performance of the CPA depends on the interplay
between the commutation functions and the mechanical tolerances;
imperfect commutation easily leads to a torque ripple, e.g., due to
misalignment of the three motor phases. Compensating this torque
ripple disturbance can thus significantly improve the CPA performance.
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Fig. 1. Picture of the single-axis coarse pointing assembly (CPA) prototype, developed
and tested at the Netherlands Organisation of Applied Scientific Research (TNO).

The commutation strategy is typically a trade-off between minimizing
the torque ripple on one hand, and improving the power efficiency on
the other hand [2,3], which are both key aspects for commercial space-
based FSOC. Moreover, the torque ripple that appears is repeating
in the commutation-angle domain. In particular, if the CPA operates
with a constant velocity, then this disturbance is periodic in the time
domain, and it is non-periodic otherwise. The optimal torque-ripple
compensation will also differ from CPA to CPA, due to manufacturing
and assembly tolerances, which calls for automated routines to keep
this CPA a cost-effective alternative.

Data-driven learning of a torque ripple compensation function can
significantly improve control performance, see, e.g., [4], alternative
model-based approaches require more modeling effort [5]. Repetitive
control (RC) enables asymptotic rejection of time-domain periodic dis-
turbances with a known period, by learning an internal model from
data [6–8]. In [9], a Gaussian process (GP)-based internal model is
developed to incorporate prior knowledge for RC, which can be used
to enable torque ripple compensation at constant velocity. Moreover, a
spatial GP RC approach is presented in [10,11] for spatially-periodic
disturbances that can be non-periodic in the time domain such as
the torque ripple disturbance at varying velocity. However, this latter
spatial approach updates continuously, requiring a substantial compu-
tational load, whereas an automated routine to compensate for the
commutation-induced torque ripple does not necessarily require contin-
uous updating, since it principally does not change over time. To avoid
computational complexity in a low-power space-based environment,
it is therefore preferred to learn a static compensation function that
compensates for the torque ripple for arbitrary velocities.

Although recent developments in temporal RC can improve the
positioning performance of the CPA for constant velocities, an approach
that is computationally attractive and that allows compensating for the
torque ripple at arbitrary velocity is not yet developed. The aim of
this paper is to compensate for the torque ripple at arbitrary velocities
by learning a static GP-based function in the position domain. The
approach consists of two steps; first, time-domain GP-based RC [9]
is applied for compensation at a constant velocity, and second, a
spatial GP with a periodic kernel and data from step one is trained,
resulting in a continuous compensation function that is periodic in
the commutation-angle domain for compensation at arbitrary veloci-
ties. For the first step, identifying a correct compensation signal that
2

correlates with the commutation position, alternative approaches such
as iterative learning control (ILC) [12] or adaptive robust control
(ARC) [13,14] could in principle also be considered, but the unified
and versatile GP-based RC approach of [9] is considered to be most
effective, due to its simplicity in tuning and implementation, and the
non-resetting nature of the commutation disturbances. Moreover, it
easily allows to only compensate for disturbances with the correct
periodicity; as desired, non-periodic disturbances are not learned, al-
lowing for extrapolation to arbitrary velocities in the next step. For
this second step, generating the compensation function for arbitrary
velocities, the GP approach provides a non-parametric way to create
a continuous function, which allows for accurate evaluation at any
position. As such it avoids discretization and interpolation effects in
traditional approaches such as look-up tables [11]. Summarizing, the
following contributions are identified:

C1 analysis of the torque-ripple disturbance in the CPA to show that
it is periodic in the commutation-angle domain, and modeling
of the CPA as a linear system with a static non-linearity that
represents the torque ripple (Sections 2 and 3),

C2 a two-step approach for learning of a static GP for torque ripple
compensation at arbitrary velocity, including stability analysis
for both steps (Section 4); and

C3 experimental validation of the two-step approach for arbitrary
velocity, including experimental validation of GP-based RC in
[9] for constant velocity, on the CPA (Section 5).

The application of this method enables over 300% performance im-
provement in the CPA by suppressing a substantial part of the torque
ripple at arbitrary velocity. Finally, conclusions are presented in Sec-
tion 6.

2. Problem definition

The CPA depicted in Fig. 1 is the main motivation for the work in
this paper and is used for experimental validation. In this section, the
setup is further introduced and the formal control problem is outlined.

2.1. Application motivation

The purpose of a CPA, such as the single-axis prototype depicted
in Fig. 1, is to accurately rotate the last mirror in the optical path of
a moving terminal, so as to accurately point the exiting laser towards
a receiving moving object. In control terms, this means that the rotary
stage carrying the mirror needs to track a reference signal that depends
on the relative position, orientation, and velocity between the two
moving objects; in the general case the rotational velocity of this stage
thus varies over time. Fig. 2 shows an example of such satellite-level
angular velocities for a 500 km LEO-to-ground link; the right plot is
indicative for typical CPA velocities, although the exact numbers per
axis will depend on the geometry and optical layout in a particular
CPA design. The CPA presented here uses a switched reluctance motor
(SRM) containing three motor phases to drive a toothed disk with 131
teeth [1]. A cross-section of the coils and the toothed disk is schemat-
ically shown in Fig. 3; by alternating the current between the three
coils (through commutation functions) a continuous rotating motion
can be generated. Important benefits of this actuator concept are the
absence of physical contact between the coils and the rotating disk
to reduce wear and the associated contamination, and the absence of
cogging disturbances. However, due to possible imperfect commutation
between the different coil currents (see Section 3.1), there is a torque
ripple present that could hamper performance.
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Fig. 2. Illustration of the look angle evolution between a LEO satellite at 500 km height
and a ground station during a satellite overpass (left plot) and its time derivative
(right plot), ranging from overpasses nearly directly above the ground station ( ) to
overpasses 200 km away ( ).

Fig. 3. CPA actuation principle with three coils to drive the toothed disk (rotor). For
the depicted rotor position, a current through the first coil will give no torque, through
the second coil a negative torque (to the right), and through the third coil a positive
torque (to the left). This torque distribution will change as the rotor moves along
the coils. Note that this SRM actuation concept is fully non-contact, hence mechanical
abrasion and wear of the teeth or coils are highly unlikely.

Fig. 4. Torque ripple compensation strategy where the aim is to learn the compensation
unction 𝑓𝑑 (𝜙) from data. The CPA is modeled as 𝑃 with non-linearity 𝑑(𝜙) that is
patially periodic such that 𝑑(𝑘) represents a torque ripple or commutation-induced
isturbance, and additional non-repeating disturbances 𝑑.

.2. Control setting

The relevant control setting for the CPA is depicted in Fig. 4,
here the goal in this paper is to design the static function 𝑓𝑑 (𝜙) to

ompensate for the torque ripple disturbance 𝑑(𝜙), with 𝜙 the rotor
osition. The non-linear system 𝑃 represents the CPA including an ex-
sting commutation strategy and 𝐶fb is a stabilizing feedback controller.
t is assumed that the non-linear system 𝑃 is composed of a linear
ime-invariant (LTI) part 𝑃 in conjunction with the static non-linearity
̄(𝜙) ∶ R ↦ R that is a function of the rotor position. The resulting
ignal that acts on the input to 𝑃

(𝑘) = 𝑑(𝜙(𝑘)), (1)

epresents the torque ripple or commutation-induced disturbance to
e compensated. Additional non-repeating disturbances, denoted by 𝑑,
ay appear in the CPA. Since it is reasonable to assume that these do
3

i

ot correlate with the position, they have very little influence on the
resented approach and are therefore considered out of the scope of
his paper. The notation ⋅̄ refers to spatial functions.

Ideally, the compensation function to be designed 𝑓𝑑 (𝜙) is an exact
odel of 𝑑(𝜙), i.e., if

𝑑̄ (𝜙) = 𝑑(𝜙), (2)

hen the commutation-induced disturbance 𝑑(𝑘) is perfectly compen-
ated. To show this, assume that the reference is suppressed, e.g., with
n additive feedforward 𝑇f f ≈ 𝑃−1𝑟 on 𝑇𝑢, then the commutation-
nduced error is given by

= −𝑃𝑆(𝑑 − 𝑑𝑡), (3)

here 𝑆 = (𝐼+𝑃𝐶fb)−1 is the sensitivity function. If 𝑓𝑑 satisfies (2), then
(𝑘) = 𝑑𝑡(𝑘) and the error (3) is zero for arbitrary velocity variations.

For the remainder of this paper the following properties of the
on-linear function 𝑑 are considered.

efinition 1. The unknown static commutation-induced non-linearity
̄(𝜙) is periodic, i.e.,

̄(𝜙) = 𝑑(𝜙 + 𝛽), (4)

ith spatial period 𝛽 that is equal to the tooth pitch in the CPA.

ssumption 1. The unknown static non-linearity 𝑑(𝜙) is sector
ounded, i.e.,

1|𝜙| ≤ 𝑑(𝜙) − 𝜉 ≤ 𝛾2|𝜙| (5)

or some 𝛾1, 𝛾2 ∈ R with 𝛾1 < 0 < 𝛾2 and 𝜉 ∈ R.

Assumption 1 is required to provide stability conditions in the
emainder of this paper and is experimentally validated in Section 3.
efinition 1 implies that 𝑑(𝑘) is inherently non-periodic in the time-
omain, unless the angular position 𝜙(𝑘) increases linearly, i.e., when
he rotational velocity is constant. It is therefore similar to a torque
ipple disturbance that appears periodic in time with a constant rota-
ional velocity, and non-periodic otherwise. The approach presented in
his paper utilizes this to identify 𝑑(𝜙) at constant velocity, to derive a
ompensation 𝑑(𝑘) for arbitrary and non-constant velocities.

.3. Two step control approach

A two-step design method is developed to learn the spatially peri-
dic function 𝑓𝑑 from data. In the first step, data is collected to learn
𝑑̄ (𝜙) in the second step. To collect data for learning, recap that 𝑑(𝑘)
s periodic in the time-domain with a known period if the rotational
elocity is constant. However, due to imperfect commutation, among
thers, the velocity might vary slightly in practice. In this situation,
symptotic rejection of 𝑑(𝑘) can be obtained through a robust repetitive
ontrol (RC) approach [7,9,15] in the setting in Fig. 5, i.e., 𝑅 enables
o asymptotically learn a model 𝑑𝑐𝑡 (𝑘) of the periodic disturbance 𝑑(𝑘)
n a time-domain buffer, even in the presence of a non-perfect model.

Compensation at an arbitrary velocity is done in the second step in
he setting in Fig. 4. It requires that the function 𝑓𝑑 (𝜙) is defined for
ll 𝜙 ∈ R, i.e., as a continuous function. Hence, the continuous and
eriodic function 𝑓𝑑 (𝜙) is learned in the commutation domain 𝜙 based
n the time-domain data from step one, containing discrete points at
arious positions 𝜙(𝑘). Hence, interpolation and extrapolation of the
ata are required which is done by Gaussian process (GP) regression
ith a smooth and periodic prior as outlined in the remainder of this
aper.

. CPA disturbance analysis

In this section, the existing commutation strategy that is designed
or the CPA is briefly discussed, which serves as a starting point for the
ork presented in this paper. Moreover, it is shown that the CPA can

ndeed be modeled as in Fig. 4, i.e., that a disturbance is present that

s periodic in the commutation-angle domain.
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Fig. 5. Step 1 of the developed approach: the repetitive controller 𝑅 is employed to
earn the time-domain model 𝑑𝑐

𝑡 of the torque ripple 𝑑 with constant velocity. The data
𝑐
𝑡 is consequently used to learn 𝑓𝑑 (𝜙) for compensation at arbitrary velocity in Fig. 4.

Fig. 6. Commutation strategy and the CPA setup.

.1. CPA commutation strategy

The CPA setup with the commutation strategy for the three motor
hases is schematically depicted in Fig. 6. A brief explanation of the
ommutation strategy is shortly summarized below for background,
etails can be found in [1]. The system 𝑃 in Fig. 4 contains the com-

mutation strategy and CPA dynamics; the physical CPA setup without
commutation, i.e., from the squared current of each of the coils 𝑖2𝑐 to the
rotor position 𝜙 is given by 𝑃𝑀𝑓𝑇 (𝜙) with 𝑓T(𝜙) = diag(𝑓𝑇 ,1, 𝑓𝑇 ,2, 𝑓𝑇 ,3)
a position dependent function from coil current to torque output, and
𝑃𝑀 ∈ ∞ the mechanical part that is proper and stable. Moreover,
𝑓𝑇 ,𝑐 (𝜙) ∶ R ↦ R for 𝑐 = 1, 2, 3 is a non-linear function of 𝜙 that maps 𝑖2𝑐
to the torque generated by coil 𝑐

𝑇𝑐 =
1
2
𝜕𝓁
𝜕𝜙

𝑖2𝑐 = 𝑓𝑇 ,𝑐 (𝜙)𝑖2𝑐 , (6)

where 𝓁 ∈ R is the inductance and while neglecting magnetic satura-
tion, see, e.g., [16, Chapter 5]. These 𝑓𝑇 ,𝑐 are principally unknown, but
have been estimated via dedicated torque measurements as described
in [1]. The commutation strategy contains an approximate inverse of 𝑓T
denoted by 𝑓−1

T such that ideally 𝑓T(𝜙)
(

𝑓−1
T (𝜙)

)

= 𝐼 for all 𝜙 ∈ [0, 𝛽)
with 𝛽 the tooth pitch, and 𝑓C(𝜙) ∶ R ↦ R3 are the functions that
distribute the required torque 𝑇 ∈ R over the three individual motor
phases. The functions 𝑓C and 𝑓−1

𝑇 for this specific setup are developed
in [1] and used throughout the paper.

Remark 1. The functions 𝑓C(𝜙) and 𝑓−1
𝑇 (𝜙) are periodic with a single

tooth and defined for 𝜙 ∈ [0, 𝛽) with 𝛽 = 2𝜋
131 the tooth pitch, and extend

eriodically outside this interval, i.e., 𝑓𝑖(𝜙) = 𝑓𝑖(𝜙 + 𝛽).

Due to imperfections in the CPA setup and the commutation strat-
gy, e.g., the requested torque per coil 𝑇𝑖 is not equal to the actual

torque 𝑇𝑐 , there is a torque ripple disturbance present that depends
on the position output 𝜙 as in Fig. 4. Moreover, it is assumed that
this torque ripple is repeating in the commutation-angle domain with
a single tooth as in Definition 1.

3.2. Analysis of the disturbance

In this section, Definition 1 and Assumption 1 are experimentally
validated to show that the torque ripple disturbance indeed repeats
4

Fig. 7. Measured frequency response function (FRF) ( ) of the CPA setup with a
model fit ( ). At frequencies 𝑓 < 4 Hz the friction in the CPA bearings leads to a

easurement error.

Fig. 8. Measurement of the error as a function of time for different velocities 0.08
rad/s ( ), 0.1 rad/s ( ), 0.12 rad/s ( ) and 0.14 rad/s ( ), which are all
periodic but with different period.

with a single tooth. Experiments are performed with a feedback con-
troller at several constant rotational velocities ranging from 0.08 rad/s
up to 0.14 rad/s with 0.02 rad/s increments. Note that this is roughly
a factor 10 faster than the satellite-level angular velocities shown in
Fig. 2; this is partly to incorporate sufficient margin in the translation
of these indicative velocities to single-axis CPA velocities, and partly
to speed up the data collection process. The resulting error is shown in
Fig. 8 as a function of time.

Under the assumption that the CPA can be modeled as in Fig. 4
with error (3), an estimate of the disturbance 𝑑 can be obtained from
the measured error as

𝑑 = 𝑃𝑆
−1
𝑒, (7)

where 𝑃𝑆
−1

is an approximate inverse model of the process sensitivity
𝑃𝑆. The first transient part of the measurement data is omitted. A
model 𝑃𝑆 of 𝑃𝑆 is obtained with the measured frequency response
function of the CPA in Fig. 7, using the existing commutation func-
tions discussed in Section 3.1. Consequently, a stable inverse 𝑃𝑆

−1
is

computed with zero-phase-error-tracking-control (ZPETC) [17,18]. The
resulting disturbance estimate is shown in Fig. 9 as a function of 𝜙. The
following observations can be made.

• The dominant part of the error in Fig. 8 is periodic in time for
each velocity but the time-domain periods vary as the velocity
changes.

• The disturbance estimates, i.e., filtered errors, as a function of
the position in Fig. 9 are all periodic with a single tooth 2𝜋

131 =
0.048 rad, independent of the velocity. Moreover, the disturbance
estimates are similar for each velocity which motivates that the
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Fig. 9. Representation of the same error in Fig. 8, but filtered with an inverse model
of 𝑃𝑆 and plotted as a function of the position 𝜙 [rad]. Now all measurements 𝑑(𝜙)
an be observed to have the same periodicity. Moreover, the zoomed inset shows that
he data is sampled differently at each velocity.

Fig. 10. Estimates of 𝑑(𝜙) obtained from measured error data at different velocities,
0.08 rad/s ( ), 0.1 rad/s ( ), 0.12 rad/s ( ) and 0.14 rad/s ( ), to validate
the sector bound ( ) condition in Assumption 1 for −𝛾1 = 𝛾2 = 1 rad/N.

CPA can be modeled as in Fig. 4 and validates Definition 1.
There are however additional disturbances visible in Fig. 9 that
are not repetitive with 𝜙 (originating from e.g. the bearings or
small differences in tooth geometry); this paper only addresses
the compensation of the common commutation-induced or tooth
periodic disturbance.

• Based on the representation of the measurement data in Fig. 10,
which is a zoom of Fig. 9 around 𝜙 = 8.01 rad, it can be concluded
that the sector bound condition in Assumption 1 is valid for
𝛾2 = −𝛾1 = 1, since all estimated 𝑑(𝜙) remain within the gray
sector-bounded areas.

Moreover, the zoomed inset in Fig. 9 shows that the data points are
sampled differently for each velocity, i.e., non-equidistant in the rotor-
position domain for a varying velocity. This yields that indeed the
function 𝑓𝑑 (𝜙) for compensation must be defined for all 𝜙 to compen-
sate for arbitrary velocity. The design of 𝑓𝑑 (𝜙) as a GP is outlined in
the remainder of this paper.

Remark 2. The measured error can be used directly to approximate 𝑑
using a model 𝑃𝑆, however, the equality of this estimate can be poor
depending on the model quality. For this reason, in the developed two-
step approach, RC [9] is used that is robust for modeling errors up to
100% and for slight velocity variations [15].

4. Gaussian process torque ripple compensation

In this section, the two design steps to learn the compensation
function 𝑓 (𝜙) in Fig. 4 are presented. It is shown first, how the
5

𝑑

continuous compensation function 𝑓𝑑 (𝜙) is learned given a data set
with discrete observations of the disturbance through GP regression
and suitable kernel design, which is the main contribution. This allows
to evaluate 𝑓𝑑 (𝜙𝑖) at arbitrary 𝜙𝑖 ∈ R, i.e., also outside of the discrete
training points. Thereafter, an RC approach is presented to generate the
data set at constant velocity in the setting in Fig. 5, i.e., including the
non-linearity. Stability conditions are provided for both design steps.

4.1. Torque ripple compensation through GP regression

For compensation at arbitrary velocity, the compensation function
𝑑(𝜙) must be a continuous function, i.e., known for all 𝜙. This section
outlines how a continuous function is generated based on a set of
discrete observations of the disturbance through GP regression.

Suppose that a data set 𝑁 (𝜙𝑁 , 𝑑𝑁 ) is available where 𝜙𝑁 ∈ R𝑁

and 𝑑𝑁 ∈ R𝑁 contain 𝑁 ∈ N noisy data points (𝑑(𝜙(𝑘)), 𝜙(𝑘)) that give
nformation about the true spatial disturbance 𝑑(𝜙), i.e.,

𝑑𝑁 (𝜙𝑁 ) = 𝑑(𝜙𝑁 ) + 𝜖𝑁 , (8)

nd assume that 𝜖𝑁 ∼ 
(

0𝑁 , 𝜎2𝑛𝐼𝑁
)

is additive independent identically
istributed (i.i.d.) Gaussian noise. The data set 𝑁 is generated in a
eparate RC experiment at constant velocity as outlined in Section 4.4.
he aim is to learn a continuous and periodic function based on 𝑁
hat is also defined in-between the positions 𝜙𝑁 .

Many approaches exist to interpolate between discrete data points
y assuming an underlying structure or basis functions, e.g., linear
nterpolation or least-squares regression. In this paper, 𝑓𝑑 is obtained
sing GP regression, which does not require to specifically define basis
unctions. GP regression combines the data 𝑁 with prior knowledge,
.g., smoothness and periodicity, to determine a posterior distribution
ver functions [19,20]. The mean of the posterior distribution, i.e., the
ost likely sample, is the continuous function 𝑓𝑑 (𝜙) that is used for

ompensation.
Suppose that the spatial disturbance function is a Gaussian process

̄(𝜙) ∼ 
(

𝜇(𝜙), 𝜅(𝜙, 𝜙′)
)

, (9)

hich is completely characterized by the mean function 𝜇(𝜙) that is
ssumed to be zero, and the covariance function 𝜅(𝜙, 𝜙′). The design of
(𝜙, 𝜙′) is outlined in Section 4.2. By conditioning the GP, i.e., per-
orming inference on the basis of 𝑁 and the prior (9), a posterior
istribution is obtained. The posterior distribution at any position 𝜙∗ ∈
can be computed by defining the correlation between 𝜙∗ and the data
𝑁 which is generated in a separate experiment, i.e.,

𝑑𝑁
𝑑(𝜙∗)

]

∼ 

(

[

0
0

]

,

[

𝐾 + 𝜎2𝑛𝐼𝑁 𝐾∗

𝐾⊤
∗ 𝐾∗∗

])

, (10)

here 𝐾 ∈ R𝑁×𝑁 is the covariance function 𝜅(𝜙𝑁 , 𝜙𝑁 ) evaluated at all
ombinations of (𝜙𝑁 , 𝜙𝑁 ), and similar for 𝐾∗ = 𝜅(𝜙𝑁 , 𝜙∗) ∈ R𝑁×1 and
∗∗ = 𝜅(𝜙∗, 𝜙∗) ∈ R [19]. As a result, the spatial disturbance model
𝑑̄ (𝜙∗) is given by the mean of the posterior distribution

𝑑̄ (𝜙∗) = 𝜅(𝜙∗, 𝜙𝑁 )𝛼 (11)

𝛼 =
(

𝐾(𝜙𝑁 , 𝜙𝑁 ) + 𝜎2𝑛𝐼𝑁
)−1 𝑑𝑁 ∈ R𝑁 , (12)

or the full posterior distribution, see, e.g., [10,19]. Note that the
ector 𝛼 is completely determined by the data 𝑁 (𝜙𝑁 , 𝑑𝑁 ), thus the
mplementation of (11) can be done efficiently in step 2 since the
nversion in (12) can be computed a priori in step 1.

The compensation signal 𝑑𝑡(𝑘) is obtained by evaluating the GP-
ased spatial disturbance model (11) at the current position 𝜙∗ = 𝜙(𝑘),
.e.

𝑡(𝑘) = 𝑓𝑑 (𝜙(𝑘)) = 𝜅
(

𝜙(𝑘), 𝜙𝑁
)

𝛼. (13)

he following section presents the design of a suitable covariance
unction 𝜅.
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Fig. 11. Example 1: Gaussian process regression is performed with 10 random samples
)[mred] denoted by (𝑓 (𝜙), 𝜙) taken from the true periodic function 𝑑(𝜙) ( ). The

esulting GP 𝑓 (𝜙) has posterior mean ( ) and posterior variance ( ), which is a
good estimate of 𝑑(𝜙) also in-between training points by selecting appropriate smooth
and periodic prior knowledge.

Fig. 12. Example 1: periodic kernel function with period 𝑇 = 1, smoothness 𝑙 = 1 and
oise variance gain 𝜎2

𝑓 = 1.

.2. GP prior design for torque ripple disturbances

Since the spatial non-linearity is periodic as in Definition 1, the prior
n 𝑑(𝜙) must reflect this periodicity. Therefore, the covariance function
n (9) is a periodic covariance function

(𝜙, 𝜙′) = 𝜎2𝑓 exp

(

−2 sin2
(

𝜋(𝜙 − 𝜙′)∕𝑇
)

𝑙2

)

, (14)

with hyperparameters 𝛩𝑖 =
{

𝑇 , 𝑙, 𝜎𝑓
}

. The hyperparameters can be
interpreted as follows,

• 𝑇 ∈ R is the spatial period of 𝑑(𝜙) equal to the tooth pitch 𝛽;
• 𝑙 ∈ R is the smoothness; and
• 𝜎𝑓 ∈ R is a gain relative to the noise variance 𝜎2𝑛 .

Now consider the following illustrating example.

Example 1. A periodic function 𝑑(𝜙) = sin(2𝜋𝜙) + 1
2 sin(6𝜋𝜙 + 1

2𝜋)
with period 1 is used as true function, from which 10 random samples
(𝑑(𝜙𝑖), 𝜙𝑖) for 𝑖 = 1, 2,… , 10 are taken, see Fig. 11. A periodic covariance
function is used for GP regression, with the hyperparameters: 𝑇 = 1
equal to the period, 𝜎𝑓 = 1 and 𝑙 = 1 as in Fig. 12. This shows that the
covariance 𝜅(𝜙, 𝜙′) is large when 𝜙 − 𝜙′ is either small (smoothness)
or approximately equal to 𝑇 (periodicity). GP regression is performed
with the 10 data samples and periodic prior. The posterior mean and
variance are shown in Fig. 11 together with the true function. The
posterior mean, i.e., the most likely sample from the posterior, is a
continuous function that corresponds well with the true function also
in-between the data points. Moreover, the variance increases where the
estimate is less reliable.

Example 1 shows that with smooth and periodic prior in GP re-
gression, an accurate estimate of the true periodic function can be
obtained based on a limited number of discrete data points. This is used
to interpolate and extrapolate the time-domain disturbance model for
compensation at any velocity.
6

Fig. 13. Standard feedback interconnection with the linear system 𝐻 and a non-linear
memoryless function 𝑓 (𝜙).

emark 3. The periodic kernel (14) is also used in GP-based RC
o learn a time-domain periodic function [9], or spatially periodic
unction [11].

.3. Stability

To analyze stability of the interconnection in Fig. 4 with com-
ensation function 𝑓𝑑 , it is reformulated in the standard feedback
nterconnection of a linear system in feedback with a static non-
inearity as in Fig. 13. Consequently, a passivity-based stability analysis
s used to provide stability conditions.

emma 1 (Circle Criterion). Consider the standard feedback interconnec-
ion in Fig. 13 with the linear system 𝐻 ∈ 𝑝×𝑝

∞ and the memoryless func-
ion 𝑓 (𝜙) as in [21, Theorem 7.2] and [22, p. 140]. If 𝐻 is asymptotically
table and 𝑓 (𝜙) satisfies the sector bound condition

1|𝜙| ≤ 𝑓 (|𝜙|) ≤ 𝛾2|𝜙| (15)

for some 𝛾1, 𝛾2 ∈ R with 𝛾1 < 0 < 𝛾2, then the interconnection is uniformly
asymptotically stable, i.e., the output converges asymptotically to a stable
steady-state trajectory, for all 𝑓 (𝜙) that satisfy (15) if the Nyquist plot of
lies in the interior of the circular disk 𝐷(𝛾1, 𝛾2), with 1∕𝛾1 and 1∕𝛾2 the

ntersections of 𝐷(𝛾1, 𝛾2) with the real axis.

The proof of Lemma 1 can be found in [21, Theorem 7.2, Definition
.2], and [22, p. 141].

heorem 1. Consider the setting in Fig. 4 with linear system 𝑃 , static
nknown non-linearity 𝑑(𝜙), non-linear function 𝑓𝑑 (𝜙) in (11), and suppose
hat Assumption 1 is satisfied. If

𝑃𝑆(𝑒𝑗𝜔)‖∞ < 1
𝛿
. (16)

with 𝛿 ∈ R, and 𝑓𝑑 (𝜙) is sector bounded,

−𝜌|𝜙| ≤ 𝑓𝑑 (𝜙) ≤ 𝜌|𝜙| ∀ 𝜙 ∈
[

− 1
2 𝛽,

1
2 𝛽

)

, (17)

where 𝜙 can be shifted by 𝑛𝛽 where 𝑛 ∈ Z, and for 𝜌 ≥ 0, such that

𝜌 + 𝛾 ≤ 𝛿 (18)

with 𝛾 = −𝛾1 = 𝛾2 ≥ 0 in Assumption 1, then the interconnection is
asymptotically stable.

The proof of Theorem 1 is given in the appendix.

Remark 4. In Lemma 1 with 𝜆1 = −𝜆2, the condition (17) in Theorem 1
is similar to a small gain condition [21, Theorem 5.6]. For 𝜆1 ≠ −𝜆2
more general results can be obtained by following the same reasoning
as in Theorem 1.

Remark 5. The sector-bound condition (A.2) in Theorem 1 requires
that 𝑓𝑑 (0) = 0. If 𝑓𝑑 (0) ≠ 0 then it is of the form 𝑓𝑑 (𝜙) = 𝑓 0

𝑑 (𝜙) + 𝑐 for
some constant 𝑐 ∈ R such that 𝑓 0

𝑑 (0) = 0. In this case replace 𝑓𝑑 (𝜙) by
𝑓 0
𝑑 (𝜙) in (A.2) and the results in Theorem 1 remain valid, as 𝑐 can be

interpreted as a constant disturbance.
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Fig. 14. Implementation of the repetitive controller 𝑅 with Gaussian-process buffer
𝑀 and learning filter 𝐿.

Theorem 1 implies that the reciprocal of the ∞-norm of 𝑃𝑆
imposes the sector bound condition (A.2) and thereby an upper bound
on the slope of 𝑓𝑑 (𝜙) around the origin. Moreover, the conditions in
Theorem 1 can be checked on the basis of measurement data and the
pre-designed function 𝑓𝑑 (𝜙) as shown in the following application on
the CPA.

4.4. Repetitive control for constant velocity

The data set 𝑁 that is used to train the GP in Section 4.1 contains
observations of the disturbance which are obtained through an a priori
performed RC experiment at constant velocity. The RC approach in [9]
with a GP-based buffer is used, as it can easily be tuned to be robust for
small period variations and does not impose restrictions on the buffer
size (i.e. it does not require the periodicity to be an integer amount of
samples); moreover, even in the presence of modeling errors, RC can
asymptotically learn the periodic part of the error.

The repetitive controller 𝑅 in the setting in Fig. 5 is shown in Fig. 14
and is given by

𝑅 =
𝐿𝑀

1 −𝑀
, (19)

here 𝑀 = 𝜇𝛤 is a GP-based buffer that is a FIR filter, 𝛤 is a delay
ine of size 𝑁 , and 𝜇 ∈ R1×𝑁 are coefficients that are computed as
ollows

 = 𝜅(𝑋∗, 𝑋)
(

𝜅(𝑋,𝑋′) + 𝜎2𝑛𝐼𝑁
)−1 , (20)

ith 𝑋 = 𝑇𝑠 ⋅ [𝑁 𝑁 − 1 … 1]⊤ ∈ R𝑁 , 𝑋∗ = 𝑁 ⋅ 𝑇𝑠 ∈ R and 𝑇𝑠 is the
ample time. The same periodic kernel function (14) is used, where 𝑇
s the expected time-domain period.

To incorporate period-time robustness, e.g., if the velocity varies
lightly, a larger buffer size 𝑁 can be used in combination with a
ocally-periodic kernel, for details, see [9]. Moreover, 𝐿 is a stable
earning filter to ensure stability.

emark 6. Conceptually, alternative RC approaches such as [15]
hat are robust to period-time variations can also be used for this
tep, however, the presented GP-based approach yields more design
reedom. Moreover, the buffer size 𝑁 in the presented approach does
ot have to be exactly equal to the number of samples in a single
eriod, as the period is provided in the kernel function and can be any
eal number. Furthermore, the presented approach does not require an
xplicit robustness filter 𝑄, since robustness for e.g. modeling errors in
is covered by tuning the smoothness 𝑙 in the kernel (14), as explained

n [9].

heorem 2. The system in Fig. 5 with repetitive controller 𝑅 in Fig. 14
nd unknown non-linearity 𝑑(𝜙) that is sector bounded as in Assumption 1
s asymptotically stable if the following conditions hold,

|𝜇𝛤 (𝑒𝑗𝜔)(1 − 𝑆(𝑒𝑗𝜔)𝑃 (𝑒𝑗𝜔)𝐿(𝑒𝑗𝜔))| < 1 (21)

|𝑃 (𝑒𝑗𝜔)𝑆(𝑒𝑗𝜔)𝑆𝑅(𝑒𝑗𝜔)| <
1
𝛾
, (22)

or all 𝜔 ∈ [0, 𝜋], with 𝑆 = (𝐼 + 𝑃𝑆𝑅)−1 the modifying sensitivity.
7

R s
Fig. 15. Modifying sensitivity function 𝑆R with 𝑅 designed for the CPA with rotational
velocity 0.14 rad/s, such that the disturbance fundamental period equals 𝑇 = 2𝜋

0.14⋅131
=

0.343 s. The periodic kernel has equal period, such that 𝑅 suppresses disturbances at
1

0.343
≈ 2.9 Hz and its harmonics.

The proof of Theorem 2 is given in the appendix.
The condition in Theorem 2 can also be checked a priori on the

basis of a measured frequency response function of 𝑃 . Moreover, by
esigning the learning filter 𝐿 in (19) as

𝐿 ≈ (𝑃𝑆)−1, (23)

the stability condition in (21) is satisfied. Many approaches exist to
invert the process sensitivity 𝑃𝑆, e.g., using stable inversion or zero-
phase-error-tracking-control (ZPETC). Note that this choice of 𝐿 is
naturally in agreement with (7), i.e. its output 𝑑𝑐𝑡 directly approximates
the periodic disturbance that needs to be attenuated by the compensa-
tion 𝑓𝑑 . As such the learning filter 𝐿, being an approximate inverse
of Fig. 7, incorporates the dynamic characteristics of the closed loop,
including the dynamics of the CPA itself, in the presented approach.

Remark 7. If 𝑃𝑆 contains non-minimum phase zeros or delays, then
the inverse can be non-causal, i.e., in the case of ZPETC 𝐿 = 𝑧−𝑛𝑙𝐿𝑐 with
𝑙 ∈ N the number of samples preview and 𝐿𝑐 the causal part of 𝐿. If 𝐿
s non-causal then GP-based RC is also applicable, for implementation
etails see [9].

To show the attenuation properties of 𝑅 in the setting in Fig. 14,
he disturbance induced error 𝑒𝑑 can be written as

𝑑 = −𝑃𝑆𝑆R𝑑, (24)

here 𝑆𝑅 represents the closed-loop suppression of 𝑅 in addition to the
eedback controller. Consider the following example where 𝑆R is shown
or the CPA.

xample 2. A repetitive controller 𝑅 is designed for the CPA that
rotates with a constant velocity. The periodic kernel (14) is used with
the period 𝑇 seconds that corresponds with the time-domain period of
the error, e.g., for 0.14 [rad/s] the period equals 𝑇 = 2𝜋

0.14⋅131 = 0.343.
The resulting modifying sensitivity is shown in Fig. 15. This shows

that 𝑅 has high disturbance attenuation properties at 1
𝑇 ≈ 2.9 Hz and

its harmonics corresponding with the period of the torque ripple at this
specific velocity, in-between these frequencies the repetitive controller
can slightly amplify disturbances.

Example 2 shows that indeed 𝑆R is small at frequencies where the
isturbance is expected and corresponds with the kernel period 𝑇 . This

is used to asymptotically reject the disturbance 𝑑 for constant rotational
velocity, even if the model 𝑃𝑆 is non-perfect, resulting in the signal 𝑑𝑐𝑡
that equals 𝑑, i.e., a time-domain model of the disturbance. Together
with 𝜙 during the same experiment, this gives the data set 𝑁 for GP
egression.

.5. Procedure

The following procedure summarizes implementation of the two-

tep approach that is introduced in this paper.
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Fig. 16. Nyquist plot of the process sensitivity 𝑃𝑆 that is enclosed in a circle 𝐷(−𝛿, 𝛿)
around the origin with radius 1∕𝛿 = 0.07.

Procedure 1

Step 1) Constant velocity learning:

(a) Identify a model 𝑃𝑆 of 𝑃𝑆 and obtain 𝐿 in (23).
(b) Compute 𝜇 with Eq. (20), with the period in 𝜅 equal

to 𝑇 = 2𝜋
𝜈⋅131 for the CPA, where 𝜈 is the velocity in rad/s.

(c) Verify stability with Theorem 2.
(d) Perform an RC experiment at constant velocity 𝑣 and

collect data 𝑁 .

Step 2) GP regression and compensation with 𝑓𝑑 :

(a) Compute 𝛼 with (12) and data 𝑁 (𝜙𝑁 , 𝑑𝑁 ) obtained
with step 1d, and a set of hyperparameters where 𝑇
is the spatial period, 𝑙 a given smoothness and 𝜎𝑓 the
variation around the mean.

(b) Verify stability with Theorem 1.
(c) Apply (13) online, i.e., at each sample 𝑘, to compensate

the disturbance for any given 𝜙(𝑘).

Remark 8. Multiple RC experiments at different velocities can be
combined in 𝑁 to compute 𝛼 in (12). This allows to average over non-
epeating disturbances that are present in 𝑁 , i.e., similar to employing

a learning gain in traditional RC [23]. However, taking more data can
be time consuming, hence to demonstrate that our proposed method
does not require such averaging techniques, only a single velocity is
used to experimentally obtain 𝑁 in the next section.

5. Application to the CPA

In this section, the experimental results on the CPA are presented.
First, the results of applying GP-based RC to the CPA with constant
velocity are shown. Second, the GP-based spatial compensation func-
tion 𝑓𝑑 that is computed on the basis of the time-domain RC model is
shown. Third, the resulting performance for other constant and varying
velocities are presented.

5.1. RC results at constant velocity

The GP-based repetitive controller 𝑅 is designed for 3 different
velocities to, (i) experimentally validate that it rejects the disturbance
for constant velocities, and (ii) generate training data for GP regression.
Each RC is designed with the periodic kernel function (14) where the
period 𝑇 is modified correspondingly as in Step 2 of Procedure 4.5, and
the buffer size 𝑁 is such that one period easily fits in the buffer.

The resulting cumulative amplitude spectra (CAS) are shown in
Fig. 17 as a function of the spatial frequency in tooth−1. The dotted
8

ines show the current state-of-the-art performance with the existing R
Fig. 17. Cumulative amplitude spectrum (CAS) of the error with three velocities 0.08
rad/s ( ), 0.1 rad/s ( ), and 0.12 rad/s( ), for feedback (dotted), GP RC (solid)
and the spatial GP compensation (dashed).

commutation and a simple feedback controller; the solid lines show the
obtained performance after convergence of the repetitive controllers.
This shows that the repetitive controller 𝑅 removes the repeating parts
of the error that correspond with 1 tooth−1 and its harmonics for
constant velocity. Note that the existing commutation already performs
quite well, with errors of only 30 μrad RMS, but the GP-RC still manages
to improve this with about a factor 3.

5.2. Learned GP compensation and stability

From the GP-based RC experiment at a single velocity of 0.1 rad/s
the data set 𝑁 is generated, where 𝑑 = 𝑑𝑐𝑡 contains 279 data points.
Note that this velocity is considered to be around the upperlimit of what
can be expected in the CPA application, and can thus be interpreted
as a worst case. A GP-fit is made based on these data points with the
hyperparameters: smoothness 𝑙 = 0.4, the period equal to the tooth
pitch 𝑇 = 2𝜋

131 , 𝜎2𝑓 = 0.001 the approximate amplitude around the mean,
nd the estimated noise variance 𝜎2𝑣 = 6 ⋅ 10−4 such that the confidence

bound corresponds with the variance on the data points. The resulting
GP-based compensation function that is periodic with a single tooth
pitch 𝛽 is shown in Fig. 18, including the 99.7% confidence bound.

Stability is assessed with condition (18) in Theorem 1. First, 𝛿 in
(16) is determined in Fig. 16 yielding that 1∕𝛿 = 0.07 and hence
𝛿 ≈ 14.3. Second, Fig. 10 shows that −𝛾1 = 𝛾2 = 𝛾 = 1 in Assumption 1 is
a valid assumption for the unknown non-linear function 𝑑(𝜙). Third, the

P-based compensation function 𝑓𝑑 shown in Fig. 18 satisfies the sector
ound condition in (17) for 𝜌 = 0.5. As a result, 𝜌 + 𝛾 = 1.5 ≪ 𝛿 which
mplies that (18) in Theorem 1 is satisfied and the system is closed-loop
table.

emark 9. The RC output 𝑑𝑐𝑡 contains noise that is potentially am-
lified by the learning filter 𝐿 at high frequencies. Although the GP
egression is not sensitive to this noise due to the smoothness parameter
, for convenience and visualization reasons (i.e. to keep the spread
n the red dots in Fig. 18 limited) the signal 𝑑𝑐𝑡 is first pre-processed
sing an anti-causal zero-phase low-pass filter with a cut-off frequency
f 1000 Hz (close to the Nyquist frequency) to remove some of the noise
efore GP regression.

.3. Results

The learned spatial compensation function is employed at different
elocities to compensate for the repeating part of the error. The dashed
ines in Fig. 17 show the performance with the GP-based compensation,
.e. with a fixed 𝑓𝑑 (𝜙) in the implementation of Fig. 4. This clearly
hows that the periodic component is almost completely suppressed
s desired, although the performance is slightly worse compared to

C for a specific rotational velocity. The RMS errors for each velocity
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Fig. 18. Learned GP-based compensation function 𝑓𝑑 with 99.7% confidence bound
( ), which is trained with data that is obtained with the RC experiment at 0.1 rad/s.
The sector bound condition (17) with 𝜌 = 0.5 is shown in ( ).

Fig. 19. Experiment with a varying velocity in ( ) (scaled), for the state-of-the-art
feedback controller ( ) and with the learned GP-based compensation function in

).

Table 1
Root Mean Squared (RMS) error in micro-radians and the factor performance
improvement with respect to feedback control for the three constant velocities.

Velocity [rad/s] Feedback [μrad] GP RC [μrad] GP FB [μrad]

0.08 29.387 12.412 (2.4) 15.864 (1.9)
0.10 30.628 10.568 (2.9) 14.629 (2.1)
0.12 31.852 9.455 (3.4) 13.547 (2.4)
Varying 32.633 n/a 20.021 (1.6)

and control strategy are summarized in Table 1, yielding performance
improvement up to a factor 2.4 with 𝑓𝑑 .

In addition, a measurement is carried out where the CPA rotates
with a varying velocity for which RC is not applicable. The result is
shown in Fig. 19, where ( ) shows the error with feedback control and

) is the error with the learned spatial compensation. This shows that
ndependently of the velocity, the periodic component in the error that
epeats with each tooth is significantly attenuated. The overall RMS
alue of the error is improved by 60%. Moreover, a substantial part

of the remaining error can be attributed to reference-induced errors
during acceleration and deceleration which is not compensated for by
the present approach.

6. Conclusion

Automatic learning of a static compensation function for torque
ripple disturbances at arbitrary rotational velocity is successfully de-
rived and demonstrated in this paper. By employing a single repetitive
control experiment at constant velocity, a time-domain model of the
disturbance is obtained. Consequently, a Gaussian process is used to
learn, on the basis of discrete time-domain data, a spatially periodic
and continuous function. The learned function can be used for com-
pensation at arbitrary rotational velocities where the torque ripple is
not periodic. Moreover, stability checks are provided using the circle
9

criterion, taking into account the non-linearity induced by the obtained
commutation update function. The method is experimentally validated
on the coarse pointing assembly (CPA), resulting in a user-friendly
automated routine for an average performance improvement of a factor
2 on the CPA at varying velocity, which could prove to be enabling for
FSOC applications. This approach can thus successfully be employed
during integration of future CPA production series, saving labor-intense
testing and calibration steps, and thereby contributing to the cost-
effectiveness of the CPA and its applicability in commercial space
applications, such as FSOC. Future research focuses on direct learning
or updating of the individual commutation functions on the basis of
data.
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Appendix. Proofs

Proof of Theorem 1. The interconnection in Fig. 4 is reformulated in
the standard feedback interconnection in Fig. 13 with

𝑓 (𝜙) = 𝑓𝑑 (𝜙) − 𝑑(𝜙)

and 𝐻 = 𝑃𝑆. Subsequently, Lemma 1 is used to provide stability
conditions. First, the process sensitivity 𝑃𝑆 is stable by design of 𝐶fb.
Second, condition (16) implies that the Nyquist plot of 𝑃𝑆 resides in a
disk with radius 1∕𝛿 around the origin, denoted by 𝐷(−𝛿, 𝛿). It remains
o show, using the sector bound condition (15) in Lemma 1, that the
nterconnection is stable if 𝜌 + 𝛾 ≤ 𝛿. From the triangular inequality
s follows that |𝑓𝑑 (𝜙) − 𝑑(𝜙)| ≤ |𝑓𝑑 (𝜙)| + |𝑑(𝜙)|. Using Lemma 1, the
nterconnection is globally asymptotically stable if

𝑓𝑑 (𝜙)| + |𝑑(𝜙)| ≤ 𝛿|𝜙|. (A.1)

ow use Assumption 1, i.e., |𝑑(𝜙)| < 𝛾|𝜙|, to rewrite (A.1) into

𝑓𝑑 (𝜙)| ≤ (𝛿 − 𝛾)|𝜙| = 𝜌|𝜙|, (A.2)

r equivalently −𝜌|𝜙| ≤ 𝑓𝑑 (𝜙) ≤ 𝜌|𝜙| for 𝜌 ≤ 𝛿 − 𝛾 which corresponds
ith (18). Finally, as 𝑓𝑑 (𝜙) is periodic with period 𝛽, see Definition 1,

t is sufficient to check the sector bound condition (A.2) on the interval
∈
[

− 1 𝛽, 1 𝛽
)

which completes the proof.
2 2
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Proof of Theorem 2. The proof consists of two part, first, (21) is
derived in [9, Theorem 2] for stability of the linear part in Fig. 5,
i.e., for 𝑑(𝜙) = 0, second, it remains to show that (22) implies stability
with 𝑑(𝜙) ≠ 0 under Assumption 1 with Lemma 1. The setting in Fig. 5
is reformulated in the standard feedback interconnection in Fig. 13,
yielding that

𝐻 = 𝑃 (1 + 𝑃 (𝐶 + 𝑅))−1 = 𝑃𝑆𝑆R,

and 𝑓 (𝜙) = 𝑑(𝜙). Using Lemma 1 and the sector bound condition
in Assumption 1 the interconnection is stable if the Nyquist plot of
𝐻 resides inside the disk 𝐷(𝛾,−𝛾). This is equivalent to (22) which
completes the proof.
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