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Abstract in English Language

Author: Ekaterina Moiseeva

Affiliation: KTH Royal Institute of Technology

Title: Impact of high levels of wind penetration on the exercise of market
power in the multi-area systems

Language: English

Keywords: wind integration, market power, game theory, mathematical pro-
gramming

New European energy policies have set a goal of a high share of renewable
energy in electricity markets. In the presence of high levels of renewable
generation, and especially wind, there is more uncertainty in the supply. It is
natural, that volatility in energy production induces the volatility in energy
prices. This can create incentives for the generators to exercise market power
by traditional means: withholding the output by conventional generators,
bidding not the true marginal costs, or using locational market power. In
addition, a new type of market power has been recently observed: exercise of
market power on ramp rate.

This dissertation focuses on modeling the exercise of market power in
power systems with high penetration of wind power. The models consider a
single, or multiple profit-maximizing generators. Flexibility is identified as
one of the major issues in wind-integrated power systems. Therefore, part of
the research studies the behavior of strategic hydropower producers as main
providers of flexibility in systems, where hydropower is available.

Developed models are formulated as mathematical and equilibrium prob-
lems with equilibrium constraints (MPECs and EPECs). The models are
recast as mixed-integer linear programs (MILPs) using discretization. Result-
ing MILPs can be solved directly by commercially-available MILP solvers,
or by applying decomposition. Proposed Modified Benders Decomposition
Algorithm (MBDA) significantly improves the computational efficiency.
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Abstract in Spanish Language

Autor: Ekaterina Moiseeva

Afiliacion: KTH Royal Institute of Technology

Titulo: Impacto de los altos niveles de penetracién del viento en el ejercicio
del poder de mercado en los sistemas de multiples zonas

Idioma: Ingles

Palabras claves: integracién del viento, poder de mercado, teoria de juegos,
programacién matematica

Las nuevas politicas energéticas europeas han establecido como objetivo
un alto nivel de intercambio de energias renovables, en el Mercado eléctrico.
Con la presencia de altos niveles de generaciéon de energias renovables, especial-
mente la producida por el viento, aumenta la incertidumbre en la transmisién
de la energia procedente de esta fuente. Esto es un efecto natural donde la
volatilidad de la produccién de esta energia se refleja en la volatilidad de
los precios de mercado eléctrico. Este hecho puedo repercutir en incentivos
econémicos para los productores de energia a la hora de ejercer méas poder
de mercado por medios tradicionales: retener la produccién convencional,
atando los costes marginales o ejerciendo més poder en mercado localizados.
Ademaés, se ha observado un nuevo tipo de poder de mercado: el poder de
mercado que refiere a ramp rate.

Esta tesis se centra en el modelado de las practicas de poder de mercado
en los sistemas de potencia donde existe alta generaciéon de energia eélica.
Los modelos consideran la maximizaciéon de beneficio con uno o multiples
productores de energia. La flexibilidad se identifica como uno de los mayores
problemas en los sistemas de potencia con integracion eblica. Por este motive,
parte de este trabajo de investigacion estudia el comportamiento de estrategias
de productores de energia hidroeléctrica como los principales proveedores
de flexibilidad en los sistemas de potencia, alld dénde la hidroeléctrica esté
presente.

Los modelos desarrollados son formulados como problemas matemaéticos
y problemas de equilibrio con restricciones de equilibrio (MPECs y EPECs).
Los modelos son reformulados como mixed-integer programas lineales enteros
mixtos (MILP). Los MILPs resultantes pueden ser resueltos directamente
por algoritmos MILP comerciales, o aplicando descomposiciéon. Esta tesis
propone un nuevo Modified Benders Decomposition Algorithm (MBDA), el
cual mejora significativamente la eficiencia computacional.






Abstract in Swedish Language

Forfattare: Ekaterina Moiseeva

Anslutning: Kungliga Tekniska Hoégskolan

Titel: Inverkan av hoga nivaer av vindkraft pa utévande av marknadsinfly-
tande i fleromrades kraftsystem

Sprak: Engelska

Nyckelord: vind integration, marknadsinflytande, spelteori, matematisk pro-
grammering

Ny europeisk energipolitik har som mal att 6ka andelen fornybar el-
produktion. Fornybar elproduktion fran vindkraft har till skillnad fran
konventionell kraftproduktion, en storre osidkerhet i utbudet. Det &r naturligt,
att den hér volatila osékerheten i energiproduktionen skapar volatilitet d&ven
i energipriserna. Detta kan skapa mdjligheter for producenter att utéva
marknadsinflytande genom att undanhalla produktionen av konventionella
kraftkéllor, genom att anvinda fabricerade marginalkostnader eller med hjilp
av lokalt marknadsinflytande. Dessutom har en ny typ av marknadsinflytande
nyligen observerats, vilket dr att utéva marknadsinflytande med hjéalp av
ramphastigheter.

Denna avhandlings fokus dr pa modellering av utévandet av marknadsin-
flytande i kraftsystem med hog andel av vindkraft. Modellerna beaktar en
enda eller flera vinstmaximerande generatorer. Flexibilitet har identifierats
som en av de stora problemen vid integrering av hog andel vindkraft i ett
kraftsystem. Storskalig vattenkarft &r vildigt flexibel och dérfoér fokuserar en-
del av forskningen pa vattenkraftsproducenternas strategiska mojligheter att
leverera flexibilitet i kraftsystem med hog andel elproduktion fran vindkraft.

De utvecklade modellerna har formulerats som matematiska jamvikt-
sproblem med jamviktsbegransningar (MPECs och EPECs). Modellerna é&r
omarbetade till sa kallade mized-integer linear programs (MILPs) med hjilp
av diskreta metoder. Resulterande MILPs kan l6sas direkt med hjilp av
kommersiellt tillgdngliga MILP-16sare, eller genom att applicera sa kallad
decomposition. Den foreslagna Modified Benders Decomposition Algorithm
(MBDA) forbéattrar effektiviteten i berdkningarna avsevért.
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Abstract in Dutch Language

Auteur: Ekaterina Moiseeva

Instituut: KTH Royal Institute of Technology

Titel: Impact van hoge niveaus van windpenetratie bij de uitoefening van
marktmacht in de multizone systemen

Taal: Engels

Trefwoorden: windintegratie, marktmacht, speltheorie, wiskundige program-
mering

Het nieuwe Europese energiebeleid heeft als doel gesteld om een groot
aandeel duurzame energie op de elektriciteitsmarkten te realiseren. In aan-
wezigheid van hoge niveaus van hernieuwbare elektriciteitsproductie, vooral
op basis van wind, is er een grotere voorzieningsonzekerheid. Volatiliteit in de
energieproductie veroorzaakt vanzelfsprekend volatiliteit in de energieprijzen.
Dit kan prikkels voor producenten creéren om de marktmacht op traditionele
wijze uit te oefenen: reductie van de conventionele productie-eenheden,
inbieden op andere dan de marginale productiekosten, of plaatselijke mark-
tmacht te gebruiken. Daarnaast is recentelijk een nieuw type marktmacht
waargenomen: uitoefening van de machtspositie op de ramp rate.

Dit proefschrift richt zich op het modelleren van de uitoefening van de
marktmacht in energiesystemen met een hoog aandeel windvermogen. De
modellen beschouwen een enkele of meerdere winst-maximerende producenten.
Flexibiliteit wordt geidentificeerd als een van de belangrijkste problemen in
zulke energiesystemen. Daarom richt een deel van dit onderzoek zich op het
strategisch gedrag van waterkrachtproducenten als belangrijkste leveranciers
van flexibiliteit, wanneer tenminste waterkracht beschikbaar is.

De ontwikkelde modellen worden geformuleerd als wiskundige en equi-
librium problemen met equilibrium constraints (MPEC’s en EPEC’s). De
modellen worden herschikt als mized-integer lineair programmeren opgaven
(MILP’s) met discretisatie. De resulterende MILP’s kunnen worden opgelost
door commercieel verkrijgbare MILP-solvers, of door ontleding toe te passen.
Het voorgestelde Modified Benders Decomposition Algorithm (MBDA) ver-
betert de berekeningsefficiéntie significant.
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Chapter 1

Introduction

This chapter motivates the topic of the dissertation and defines the background
for the studies in Sections [I.I) and [I.2] The list of publications in journals
with Journal Citation Report (JCR) and peer-reviewed conference papers
is provided in Section Finally, the outline for the remaining chapters is

given in Section

1.1 Background

The deregulation of electric power industry has started in 1981 in Chile,
followed by England and Wales (1990), Norway (1991), and Argentina (1992)
[1]. The aim of liberalization was to bring economic benefits in the long
term, delivering timely and well-located investments by private companies.
Liberalization was also expected to improve efficiency in the operation of
generation plants, networks, and distribution services. Competition was seen
as a driving force behind these changes |2|. This required significant changes
in the way the electricity industry is organized and operated.

Electricity industry reform has apparently improved the efficiency and
productivity of the industry. In Australia there are evidences of greater
efficiency and reliability amongst generating plants [3|. The liberalization in
Europe has allowed increasing opportunities for electricity market integration
and cross-border trade [4].

However, the liberalization of the electricity markets was not always a
smooth process. The crisis and market breakdown that hit California in
2001, only a few years after the new market was launched [2], have raised

1
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significant skepticism in the society. During the crisis, the electricity prices
went to extreme levels, forcing the disconnection of some of the loads. The
crisis had serious consequences for consumers, who were disconnected from
the grid in rotating blackouts, and for electric utilities, which suffered major
financial distress. Unilateral market power has been identified as one of the
major causes of these events [5|. Another example is the liberalization of
power industry in England and Wales. Even though the reform there has
led to significant improvements in many dimensions, the decision to create
only three generating companies out of the state-owned CEGB has led to
significant market power, persisting for several years [6].

Market power is the ability of electricity generating firms to influence
market prices through their unilateral actions [5}7]. Electricity markets have
many features, which make them prone to the exercise of market power:
binding transmission constraints, largely inelastic demand, limited number of
competing firms, repeated bidding [8]. There are no large scale technologies
for storing electrical energy. These factors give rise to physical and economic
withholding by dominant generating firms: the companies bid capacity or
price, which differ from their true characteristics. The lessons learned from
the beginning of the liberalization process have led to the development of
market power indicators — measures, showing the presence of market power
in electricity markets. Some indicators, e.g. HHI and four-firm concentration
ratio, are based on calculating the share of the largest companies in the
market [3,/9]. Other classic measures calculate the margin between the price
bids and real marginal costs of producers [10].

While these measures had an important role in the beginning of the
liberalization process, modern power industry has considerably evolved. In
particular, the share of renewable resources has considerably increased in
many countries around the world bringing new challenges. The European
Union (EU) has set a target to reduce greenhouse gas emissions by 80-95% in
2050 as compared to 1990 levels |11]. The governmental and social support
resulted in a significant increase in the installed capacity of renewable power
sources, in particular wind power. Wind power was installed more than any
other form of power generation in 2015. It accounted for 44.2% of total
power capacity installations [12]. The amount of new wind power turbines
installations continues to increase every year. One of the primary challenges
in the integration of wind power is the problem of intermittency. Even a
carefully predicted wind power output may suddenly depart from the forecast
level. This calls for an increased amount of flexibility required in the system.
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Flexibility expresses the capability of a power system to maintain continuous
service, even when exposed to rapid and large swings in supply or demand [13].
There are many levels at which flexibility can be offered in power systems:
flexibility of generation resources, flexibility of transmission and distribution
systems [14], flexibility of the market to incentivize the power system to
account for variability [15]|, and demand side flexibility [16]. Ramp rates
largely define flexibility from the generation side.

There is some evidence of strategic behavior with respect to ramp rates
occurring in practice. In the Australian National Electricity Market (NEM),
when transmission constraints arise within a certain region, the generators
are paid the regional price for their output rather than the correct local
marginal price. Generators in this situation are said to be “constrained on”
or “constrained off”. When the regional price is high, a generator, which is
constrained off, will strategically manipulate its bid in a variety of ways in
order to maintain a high output target from the dispatch engine. This typically
involves offering the generator’s output at the price floor (-1,000 $/MWh).
Alternatively, some generators also routinely reduce their offered ramp rate
in order to maintain their dispatch level. In an attempt to prevent this, in
2009 a new rule was introduced which requires generators to offer a minimum
ramp rate of 3 MW per minute (or 3% of unit capacity). More recently
the Australian Energy Regulator (AER) has proposed a rule, which requires
generators to offer a ramp rate which matches their technical capability.

1.2 Research motivation

The theoretical foundation behind the exercise of market power in power
systems with high penetration of wind power is still very weak. The incentives
for the exercise of market power in such systems should be carefully studied.
There is a need for new models, able to capture the increased need for
flexibility in wind-integrated systems. In present dissertation this challenge is
addressed. New models are proposed, capturing the exercise of market power
in wind-integrated systems. Such models can be used for full-scale market
modeling and analysis.
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1.3 List of publications

The following articles were published (to be published) during the PhD studies:

Papers published in journals with Journal Citation Report (JCR):

[J1] E. Moiseeva, M.R. Hesamzadeh, D.R. Biggar, “Exercise of Market Power
on Ramp Rate in Wind-Integrated Power Systems,” IEEE Transactions
on Power Systems, Vol. 30, No. 3, pp. 1614-1623, May 2015 (Invited
paper to special section on Wind & Solar Energy: Uncovering and
Accommodating Their Impacts on Electricity Markets).

[J2] E. Moiseeva, S. Wogrin, M.R. Hesamzadeh, “Generation Flexibility in
Ramp Rates: Strategic Behavior and Lessons for Electricity Market

Design,” Furopean Journal of Operational Research, accepted February
2017.

[J3] E. Moiseeva, M.R. Hesamzadeh, “Strategic Bidding of a Hydropower
Producer under Uncertainty: Modified Benders Approach,” IEEE Trans-
actions on Power Systems, accepted April 2017.

Paper under review in journal with JCR:

[J4] E. Moiseeva, M.R. Hesamzadeh, “Nash Equilibria in Hydro-Dominated
Systems under Uncertainty: Modified Benders Approach,” IEEE Trans-
actions on Sustainable Energy, submitted February 2017.

Working paper:

[J5] E. Moiseeva, M.R. Hesamzadeh, D. Bunn, D.R. Biggar “Modeling the
Hedging Decisions of a Generator with Market Power in Systems with
High Penetration of Wind Power,” Furopean Journal of Operational
Research.
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Peer-reviewed conference papers:

[C1]

C2]

C3]

[C4]

C5]

1.4

E. Moiseeva, M.R. Hesamzadeh, “Modeling the Unilateral Multi-part
Strategic Withholding in Electricity Markets,” Australasian Universities

Power Engineering Conference, Wollongong, Australia, 27-30 September
2015.

E. Moiseeva, M.R. Hesamzadeh, “Strategic Bidding by a Risk-Averse
Firm with a Portfolio of Renewable Sources,” IEEE PowerTech Confer-
ence, Eindhoven, the Netherlands, 29 June-2 July 2015.

E. Moiseeva, M.R. Hesamzadeh, I. Dimoulkas, “Tacit Collusion with
Imperfect Information: Ex-Ante Detection,” IEEE Power & Energy
Society General Meeting, National Harbor, MD, USA, 27-31 July 2014.

E. Moiseeva, M.R. Hesamzadeh, “Modeling the Hedging Decisions in
Electricity Markets Using Two-stage Games,” IEEE ISGT Europe 2013
Conference, Copenhagen, Denmark, 6-9 October 2013.

E. Moiseeva, M.R. Hesamzadeh, “Impact of Energy Storage Devices on
Energy Price in Decentralized Wind-Diesel Utilities,” 10th International
Conference on the European Energy Market, Stockholm, Sweden, 28-30
May 2013.

Thesis outline

The remaining chapters of this dissertation are organized as follows:

Chapter 2

Chapter 3

Chapter 4

Chapter 5

and stochastic programming.

and assumptions.

behavior. The chapter is based on the publication |[J1]|

based on publications and ||J4]

provides the mathematical foundations for the dissertation, in-
cluding the relevant concepts from game theory, optimization,

gives a brief description of power system modeling conventions

reviews exercise of market power in wind-integrated systems
and identifies flexibility as one of the drivers for strategic

focuses on the exercise of market power in hydro-dominated
power systems with high share of wind power. Since hy-
dropower producers are often the main providers for flexibility,
their strategic behavior is carefully reviewed. The chapter is



Chapter 6

Chapter 7
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reviews market power from the market design perspective.
Two market design possibilities are compared and the impact
of each of the design on the propensity of strategic genera-
tors to exercise market power in wind-integrated systems is
discussed. The chapter is based on publication
concludes the dissertation and provides the possible directions
for future research.



Chapter 2

Mathematical foundation

This chapter reviews the main mathematical principles, forming the theoreti-
cal foundation of this dissertation. The necessary chapters of game theory are
reviewed in Section optimization concepts are discussed in Section [2.2]
Section describes the uncertainty modeling, utilized in this dissertation.
Section [2.4] describes Benders decomposition technique, which is used to solve
large optimization problems’ instances.

2.1 Game theory

In this dissertation game theory is used to model the interaction of strategic
players. The players are assumed to be rational and posses perfect infor-
mation regarding the set of competitors’ strategies. The section focuses on
simultaneous-move and sequential games.

2.1.1 Simultaneous-move games

Simultaneous-move games are often used to model the interaction of strategic
players in the markets. The situation with multiple profit-maximizing firms
and no collusion can be modeled as Cournot [17-19] or Bertrand [20] games.
Alternatively, conjectured-price response parameter is sometimes used to
express a variety of competition intensities [21].

In Bertrand games each firm chooses a single price for each generator,
or each area served, and believes that other firms will change prices in
response [20,22,123]. The limitation of the Bertrand models is that even with

7
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a large number of companies in presence of capacity limit and transmission
system the prices in the market can rise above marginal costs and even
fluctuate without convergence |22}24|.

Cournot is another form of competition, where firms choose quantities,
as best response to the anticipated competitors’ strategies. Its simplicity and
valuable qualities have made Cournot a popular concept in power market
models |17,25-29|. It has been shown that even in the markets with relatively
large number of competing firms Cournot models yield prices well above the
competitive levels [30].

Conjectured-price response captures various degrees of strategic behavior
in the spot market. Conjectural variations reflect the firm’s conjecture about
other firms’ reaction to a change in its production |21,31]. This representation
allows us to express the special cases of oligopolistic behavior ranging from
perfect competition to a Cournot oligopoly [32]. Since this method can be seen
as a “shortcut” for more complicated behaviors in implicit dynamic games, it
has been a subject of theoretical controversies [33]. However, the conjectural
variations appear versatile, when used in industrial applications. They can
capture the competition structure, which is neither perfectly competitive, nor
Cournot [34].

Nash equilibrium

Nash equilibrium is a solution concept for a non-cooperative game, in which
each player is assumed to know the equilibrium strategies of the other players,
and no player has an incentive to deviate from its equilibrium strategy [35].
This solution concept was introduced by John Nash [36}37] and has been
widely used in economics and industrial organization. Nash equilibrium
concept is used in game-theoretic models of simultaneous-move games in
electricity markets [38-41].
The definition of Nash equilibrium can be expressed mathematically as
following;:
mi(sy,s%;) > mi(si, st,), Vi (2.1)
This condition guarantees that for each strategic actor ¢ the profit in the
candidate strategy combination s; must be greater or equal than the profit

under alternative choice of strategy s;, while the strategies of the competitors
s*; are held fixed.
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Multiple Nash equilibria

Depending on a case study, one problem may have several Nash equilibria [42].
In this dissertation two methods are utilized to deal with this multiplicity
of solutions: finding all Nash equilibria or focusing on the extremal Nash
equilibrium.

¢ Finding all Nash equilibria can be done by formulating an opti-
mization problem, aiming to find one Nash equilibrium and extending
it with an integer cut [43]. An integer cut removes each newly obtained
equilibrium from the feasible set. The problem is solved multiple times,
until there are no more Nash equilibria. This technique is demonstrated

in

e Extremal Nash equilibrium was introduced in [44], where it was
defined as Nash equilibrium that maximizes or minimizes a certain
objective function, in the context of a selfish routing game. In [45|
Worst and Best extremal Nash equilibria (WNE and BNE) are applied
to the social cost. If §* is the set of all Nash equilibria strategies and
SC(s}) is the social cost of each Nash equilibrium, s¥"°™! is the worst
Nash equilibrium of the game if and only if

57Ot ¢ grg max SC(s). (2.2)

! s*eS*

In a similar way Best Nash equilibrium is a Nash equilibrium at which
social costs are minimized. The concept of extremal Nash equilibria
allows to differentiate between multiple Nash equilibria, according to
the defined criterion (in this case — social cost).

Nash equilibrium under uncertainty

In this dissertation proposed models often include uncertainty. Bayesian
and robust Nash equilibria are two ways of finding Nash equilibrium under
uncertainty:

e For Bayesian Nash equilibrium each player is assumed to have
a subjective uncertainty probability distribution function [46]. This
assumption is applicable to the most of the uncertainties observed in
the power system, such as wind, reservoir inflows, demand uncertainty.
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When introducing scenarios w describing the uncertainty, the Nash
equilibrium (2.1)) becomes:

Eylmiw(s), s%;)] > Eylmiw(si, s5;)], Vi (2.3)

e Finding robust Nash equilibrium does not require the prior knowl-
edge of probability distribution function for the incomplete informa-
tion [47]. This is very useful, when certain scenarios have no historic
data or when probabilities of the scenarios are difficult to compute.
Robust Nash equilibrium uses the worst-case approach, where is
reformulated as follows:

min(m, (s}, s%;)] > min(m, (s, s7;)], Vi (2.4)

2.1.2 Sequential-move game

Another type of model used in this dissertation is Stackelberg game. In
Stackelberg game one player is the leader of the game — it acts first. Other
players are observing the action of the leader and reacting using their available
actions |48|. This structure is often used to represent a dominant firm, deciding
on its strategic bids. The bids are received by the system operator, who
dispatches the firm and the competitive fringe [49,50]. More information on
the electricity market organization can be found in Section [3:2] Stackelberg
game can be formulated as a bilevel optimization problem. This type of
problems will be reviewed in Section [2.2.3]

2.2 Optimization

An optimization problem or mathematical programming problem is a mathe-
matical entity that allows maximizing or minimizing a certain objective (i.e.
objective function) subject to restrictions, typically in the form of equality or
inequality constraints [51]. An optimization problem has general form:

minixmize f(z) (2.5a)
subject to: h(z) =0 (2.5b)
g(z) <0, (2.5¢)

where z € R” is the optimization variable vector, f(z) : R® — R is the
objective function to be minimized, h(z) : R” — R™~ are the functions for
the equality constraints and g(z) : R” — R for the inequality constraints.
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2.2.1 Linear optimization problems

Linear programming problems (LP) is a particular class of optimization
problems. An LP is generally formulated as:

minimize ¢!z (2.6a)
subject to: Az > b (2.6b)
x> 0. (2.6¢)

The dual problem of a linear problem is formulated as:

maxi)\mize A (2.7a)
subject to: ATA < T (2.7b)
A> 0. (2.7¢)

According to the Strong Duality Theorem [52] if « is an optimal solution
of the primal problem (2.6 and A is an optimal solution of the dual problem

(2.7), then
e =\Tb. (2.8)
Additionally, it can be shown that at an optimal solution

A(cTx)

A\ =
77 T A,

V5. (2.9)

It means that ); is the sensitivity of the objective function of the primal prob-
lem with respect to the right-hand-side parameter b; of that primal problem.
This result will be important for the Benders decomposition technique.

The Karush-Kuhn-Tucker (KKT) conditions are conditions that the
optimal solutions of a broad range of optimization problems should satisfy.
For linear problems the KKT conditions are both sufficient and necessary for
the optimality [51]. The KKT conditions of problem are:

' = XTA=0 (2.10a)
Ar >b ( )
x>0 (2.10c)
M- Az)=0 (2.10d)
A>0 (2.10e)
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The KKT conditions include stationary conditions , primal feasibility
conditions -7 complementary slackness conditions , and
dual feasibility conditions . For linear problems only complementary
slackness conditions are non-linear. KKT conditions can be written as
linear or mixed-integer system of equations using one of the three following
techniques to avoid nonlinear complementary slackness conditions (CSCs).

Disjunctive Constraints

The disjunctive constraints, or BigM technique, is a commonly used technique,
first introduced in [53], to linearize the expressions of the form: y” g(z,y) = 0,
where both y and g(x,y) are positive continuous variables. Introducing a
binary variable b, the expression can be rewritten as yb+ g(z,y)(1—b), which
in turn can be expressed with a set of constraints:

0>y>K(1-0b)
0> g(x,y) > Kb

The value of K is a pre-determined parameter and should be chosen in such
a way that the value of 47 g(z,v) is bounded above by it. However, the value
should not be chosen too high, as it makes the optimization task, where such
technique is implemented, ill-conditioned, and, therefore, computationally
difficult [54]. It also should not be chosen too low to impose extra bounds on
involved variables. The advantage of the method is that it is straight-forward
in implementation [55].

SOS1-based Approach

The SOS1-based approach for solving mathematical problems with equilibrium
constraints is explicitly discussed in [56]. The method is applied to the
problem with equilibrium constraints in the form: y” g(z,y) = 0, where y > 0,
g(z,y) > 0, and z, y are optimization variables. After the introduction of
SOS1 variables v+ and v~ the equivalent constraint set is:

y=>0

g(x,y) >0

vt T = (y+g(z,y))/2
ot —vT = (y—g(z,y))/2
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Strong duality

Another way of reformulating a lower-level optimization problem is by using
the strong duality property similar to in the KKT conditions. To do
this, the problem should satisfy Slater’s sufficient condition for strong duality,
namely the primal problem should be convex and strictly feasible. This
technique is commonly used for the solution of MPECs [57], as it allows
avoiding the complementary slackness conditions and, therefore, nonlinearities
in the lower level.

Comparison

The common problem with using the disjunctive constraints is that, while
seemingly easy to implement, parameters K need to be chosen carefully, as
described in detail in [54]. Additionally, using this method of linearization re-
quires adding a number of binary variables, which increases the computational
time for the large-scale mixed-integer problems [58].

In contrast, using Schur decomposition and SOS type 1 technique does
not require preliminary design. Authors in [56] show that under certain
conditions, the nonlinear terms, arising in KKT conditions, can be linearized
using the SOS1 technique. This, in turn, requires the introduction of new
variables, but the method is shown to outperform the disjunctive constraints
technique in terms of computational efficiency.

The drawback of the additional variables is canceled out in the strong
duality formulation used to avoid the nonlinear terms in the formulation |59).
The conditions for applying this technique typically hold in the problems
arising from modeling the electricity markets. The strong duality holds if the
weak Slater’s condition holds.

2.2.2 Mixed-integer linear optimization problems

In mixed-integer linear optimization problems (MILP) some of the variables
are integer. An example of MILP can be formulated as follows:

minimize ¢! x + dTy (
T,y

subject to: A1z > by (

Ay > by (2.11c

x>0, ye{0,1}. (2.11d
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MILP can be solved to the global optimum by commercial solvers. MILP
solvers are usually based on modern modifications of grid search algorithm
[60], simplex-like method [61], or branch and bound [62]. However, due
to the solution procedure, even small mixed-integer problems can be very
computationally intensive and require significant amounts of physical memory.

2.2.3 Equilibrium problems

Equilibrium problems are commonly used to model the game-theoretic situa-
tions. Two models discussed in this disseratation are Mathematical Problems
with Equilibrium Constraints (MPEC) and Equilibrium Problems with Equi-
librium Constraints (EPEC).

MPEC problems

The leader-follower structure of the Stackelberg game can be expressed using
optimization problem constrained by optimization problem (OPcOP). The
mathematical representation can be as following:

minimize f(z,y,z) (2.12a)
T,y

subject to: h(z,y,z) =0 (2.12b)

g(z,y,2) <0 (2.12¢)

z € arg minimize fi(x,y,2) (2.12d)

subject to: hi(z,y,z) =0 (2.12¢)

gl(x7yaz) <0 (212f)

If the lower level problem satisfies the constraint qualification, OPcOP can
be directly reformulated to MPEC, by taking the KKT conditions of the
lower-level optimization problem [51]. The structure of two problems is
compared in Figure Complementary slackness conditions can be further
reformulated by one of the techniques presented in Section [2:2.1]

EPEC problems

The previous section describes MPEC models as representing leader-follower
structure, when a single leader anticipates the equilibrium reaction of the
followers, who in turn naively believe that the leader’s decisions are exogenous



2.2. OPTIMIZATION 15

Objective function (minimize or maximize) Objective function (minimize or maximize)

subject to: subject to:

Constraints Constraints

KKT conditions of

Constraining ORI NI constraining optimization problem

a) OPcOP: Optimization problem constrained b) MPEC: Mathematical problem
by another optimization problem with equilibrium constraints

Figure 2.1: Structure of optimization problem constrained by optimization
problem (OPcOP) as compared to mathematical problem with equilibrium
constraints (MPEC)

Objective function

subject to:

Constraints

KKT conditions of
constraining optimization problem

Figure 2.2: Structure of equilibrium problem with equilibrium constraints
(EPEC)

and fixed. EPEC models are used to model games when there is more than
one leader. The aim is to find an equilibrium between multiple leaders — in
the context of electricity markets, Nash equilibrium between strategic players.
An illustration to EPEC structure is presented in Figure [2.2]

EPEC can be thought as a collection of MPEC problems. Accordingly,
a common way to solve such problem is diagonalization [63-65]. Using this
method MPEC problems corresponding to different producers can be solved
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iteratively, by fixing the decision variables for all but one strategic agents
and looking for a stable point, when neither of the players wants to change
its strategy unilaterally. This method is used in However, the method
is only applicable to smaller case studies, due to a computationally intensive
convergence procedure. Additionally, a post-check is required to guarantee
that obtained stable point is a Nash equilibrium.

Other possible methods can include solving the whole EPEC formulation,
and checking the second-order sufficient condition for each player’s MPEC,
as in [42|. The scalability of the problem can be limited. One way to avoid
the scalability difficulties is to combine Bertrand and Cournot models of
competition, or to disregard some of the constraints [66].

In this dissertation EPEC instances are solved by discretization of the
solution space [4567-69]. The method is demonstrated in [J1] and Using
this method Nash equilibrium constraint and constraints for all strategic
generators, including the formulation for the alternative strategies are specified
as in . EPEC problem for finding a Nash equilibrium can be formulated
as a MILP optimization problem:

minimize Ar = %:h € (2.13a)
subject to: (s, s%;) + € > mi(ss,s%;), Vielstratesic, (2.13b)

€ >0, Vig[stratesic, (2.13c)

QMIEP e X (2.13d)

Here QMILP js a set of variables including upper-level and lower-level variables.

Set X describes the feasible set of the whole problem including the upper
level constraints and KKT conditions of the lower level. Variable ¢; is a
deviation of current strategy from the profit-maximizing strategy, expressed
in profit difference. At Nash equilibrium ¢; = 0, Vi.

2.3 Uncertainty modeling

Uncertainty is a crucial element of the models used in this dissertation. The
relevant sources of uncertainty, including wind power generation uncertainty,
can be represented using scenarios. Sources of uncertainty, identified in this
dissertation, and utilized scenario generation techniques are described in the
following sections.
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2.3.1 Sources of uncertainty

The following sources of uncertainty are identified as relevant for the models
under consideration:

e Uncertainty in wind power production — can be modeled using sampling
from a probability distribution function, or using a moment-matching
technique. These scenario-generation techniques are described in the
following section. This source of uncertainty is considered in all models

[J1]} [72]} [73], and [74]}

e Uncertainty in demand — demand is an important source of uncertainty
in the short term. While deviations are usually mild, they may affect
the strategy of generating company.

e Inflow uncertainty — is identified as the most important source of
uncertainty in the models including hydropower producers [70-72|. This
source of uncertainty is considered in the models of hydro-dominated

systems in [|J3| and [[J4]

e Uncertainty in competitors’ offers — is used to represent possible devia-
tions in the bids of the fringe generators. This source of uncertainty is
relevant for MPEC models of a single dominant firm |73H75].

2.3.2 Scenario generation techniques

A single-period stochastic programming model can be formulated [76] as:

minimize go(x, €) (2.14a)

x
subject to: g;(z,€) <0 Vi (2.14b)
r e X CR", (2.14c¢)

where € is a random vector. Except for some trivial cases can not
be solved with continuous distributions. Hence, continuous distribution of
the stochastic parameters have to be approximated by discrete distributions
with a limited number of outcomes. Such discretization is often called a
scenario tree [77]. In this dissertation two scenario-generation methods are
used, described below.
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Kic
—_—

Wind uncertainty revealed

Bidding cena.rlos (
decision

Competitors’ bids revealed

CVaR

Figure 2.3: Scenario creation for a problem of risk-concerned profit-
maximizing producer.

Conditional sampling

Conditional sampling is the most common method for generating scenarios
[77]. At each stage of the scenario tree several values are sampled from the
stochastic process {€}, sampling each marginal (the univariate component)
separately. The samples are then combined all-against-all, resulting in a
vector of independent random variables. An example of this approach, utilized
for the publication is presented in Figure

Resulting scenario tree grows exponentially with the dimension of the
random vector. Sampling w scenarios for k£ marginals, the obtained number
of scenarios is w*. To mitigate this problem a scenario reduction technique
can be applied |78.[79]. Many of the scenario reduction techniques are readily
implemented in optimization software (GAMS), and therefore the number of
scenarios can be scaled according to computational requirements [80].

Moment matching

Conditional sampling has two important limitations: it can only be applied
if the exact probability distribution functions of random parameters are pro-
vided, and it does not take into account the correlation between multiple un-
certain parameters. These drawbacks are mitigated by the moment-matching
technique [81]. Marginals can be described by the moments (mean, variance,
skewness, kurtosis, etc.), obtained from the real data.

In and Nord Pool data is used to generate scenarios reflecting
the correlations and statistical properties of the real data. Other examples of
moment-matching technique usage can be found in [82-85|.
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2.4 Benders decomposition

EPEC and MPEC problems, introduced in Section [2.2.3] can be reformulated
to MILP using strong duality condition as in Section and discretization.
MILP problems can be solved in a centralized manner using the powerful
solvers nowadays available |86]. Alternatively, MILP problems can be decom-
posed to separate integer and continuous variables. For stochastic MPEC
problems the resulting continuous problems can be further decomposed by
blocks per scenarios. In further section several modifications of Benders
decomposition are presented, which exploit the special structure of MILP
problems.

2.4.1 Primal Benders decomposition

Primal Benders decomposition is a short name for the “Benders decomposition
based on primal problem”, adopted in this dissertation. Assume a MILP
problem of a form

inimi i T diy; 2.15
minimize ;czv +; i (2.15a)
subject to: Zalﬂi + Zeljyj = VI (2.15b)
i J
z; € {0,1} Vi, y; € R Vj. (2.15¢)

Primal master problem (MPP'™mal) is formulated as:

minimize Z CiTi + o (2.16a)

subject to: a > Zdjyj(-k) + Z )\gk)(xi — xﬁk)), k=1,.,u—1 (2.16Db)
j i

z; € {0,1} Vi (2.16¢)

o > adovn, (2.16d)

Here 2® is the value of x; in the previous iteration (expression ([2.16bf) does

i
not exist for the first iteration), ad°"" is a value for the lower bound of the
problem. It can be chosen arbitrarily low: ad°"" — —co.
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Corresponding primal linear Benders subproblem (SPprimal) can be for-
mulated as follows:

inimi d;y; 2.17
minimize EJ: i (2.17a)
subject to: Z ey = by — Zalix‘i Vi (2.17b)
j i
;= IL‘EU) N Vi (2.17¢c)
z; € R, Y; € R. (2.17d)

Here is used to fix the value of z; to the parametric value xz(-v) obtained
in iteration (v). The solution of this problem is y; and A;.

The procedure for solving the problem using this implementation of
Benders decomposition, requires solving MPP"™a and SPP™Mal jteratively,
until the lower bound (zé?wn =>", c,-xgv) + a(¥)) and upper bound (zl(l%) =
Yoy cixl@) +200 jy](-v)) would match. This type of decomposition is easy
in implementation, as it requires just minimal reformulation of the initial
MILP problem. However, very often the models formulated in this dissertation
contain disjunctive constraints. This method has a very limited performance
on such problems. Obtained Benders cuts are loose and sometimes contain
irrelevant information, which causes numerical difficulties limiting the use of

the method [87].

2.4.2 Dual Benders decomposition

Dual Benders decomposition is short for “Benders decomposition based on
dual problem”. It is the initial Benders procedure, described in [88]. This type
of decomposition is especially useful for MILP with disjunctive constraints.
With this formulation the disjunctive parameter is only included in the
objective function.

Assume an initial MILP problem with disjunctive constraints:

inimi djy; 2.18
mugguze ; Y ( a)
subject to: Zeljyj > b Vi (2.18b)
J
N ey = b — H(L - ;) Vi (2.18¢)

J
yj €R, z; €{0,1}. (2.18)
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Here H is a disjunctive parameter — a large constant which relaxes or enforces
constraint (2.18c) depending on the value of variable x;. Fixing binary

variables to a candidate vector x;, a general linear subproblem (similar to
SPprimaI) is:

mlnlymlze g d;y;
J

subject to: Zeljyj >b u Vi
J
Zé@jy > Bz —H(l —JZZ‘) sy Vi
J
y; € R.

Here wu; are Lagrange multipliers of general (non-disjunctive) constraints, u;
are the Lagrange multipliers for the disjunctive constraints. The dual of this
problem (SPa) ig:

maximize > b+ (b — H(1 — ;) (2.19)
l i

subject to: Zuelj + Zﬁéij <d; Vj (2.20)
] i

uy, U; > 0. (2.21)

Notice that the feasible region of problem SPY" is free from the disjunctive
parameter H. The extreme points of the feasible region can be denoted as
{uP,uP},, the initial MILP (2.15)) can be restated as MPaua

minimize «
T,o

subject to: a > Zufbl + Zﬂf(i)z‘ — H(1—-)), Vp
1 i

T; € {0, 1} Vi
a > adown'

Similarly to the previous formulation, master and subproblems are solved
iteratively, until the convergence is attained [88|.
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2.4.3 Modified Benders decomposition (MBDA)

Modified Benders decomposition is based on the reformulation of Benders
procedure, proposed in [89] and additionally modified in this dissertation to
improve the computational properties. Subproblem can be reformulated as
follows (SPMBDA)

ma}ii’glize Z urby + Z U;b;
l i
subject to: Zuelj + Zﬂéij <d; Vj
1 i
i
ug, Uj > 0.

Notice that subproblem becomes completely independent from the disjunctive
parameter H. The lemma that allows removing the disjunctive parameter
from the objective function is stated in [[J3|l The corresponding master

problem MPMBDA ¢ hased on set-partitioning reformulation of problem
MPdualI
e KP
mlg}gjlze Z Wp
P
subject to: Z x; < |QP| -1+ Z Wy , Vp,
ieQp P'>p
> wp=1,
P
wp, z; € {0,1}.

Here QP is the index set corresponding to the strictly positive @, KP? is the
calculated value of the objective function at different extreme points. The
author in [89], also shows that the properties of Benders decomposition
(existence and uniqueness of the solution) hold for MBDA using tree search
algorithm. Applications of MBDA are explored in and They are
further discussed in Chapter [f]



Chapter 3

Power System Modeling

This chapter reviews the models utilized for representing the elements of power
system. Section describes the DC power flow assumption, Section
focuses on the electricity market organization and mathematical formulation
of the optimal dispatch. Section presents the models for generating
technologies, operating in the market. Section describes the assumptions
regarding the consumers in electricity markets.

3.1 DC power flow

According to [90], the exact expression for the real power flow from node i to
node j (measured at node 4, in the direction of node j) is:
Fij = Gij[Vi? = ViVj cos(8; — 6;)] + Q3 ViV sin(6; — 65),

where Gij = RU/(R?] + Xlzj), Qij = XU/(R% + X%), Rij and X’L’j are
correspondingly resistance and reactance of the line from ¢ to j. V; and V;
are voltages at nodes, §; and J; are the phase angles relative to the reference
node. For the models used in this paper the following can be assumed:

1. Line resistances are negligible compared to line reactances (R;;<<Xj;
for all lines).

2. The voltage amplitude is equal for all nodes in per unit values: |Vy| =~
1p.u.

3. Voltage angle differences between neighboring nodes are small: sin(d; —

dj) ~ (6; — &;) and cos(d; — ;) ~ 1.

23
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These assumptions allow us to use a linear formulation for the power flow:
F = HZ, where H is a Power Transfer Distribution Factors (PTDF) matrix,
and Z is a matrix of injections. It is empirically and theoretically shown in
the literature that DC power flow equations can be used for all operating
points of the grid as long as the grid topology is retained [91,92]. In the
following formulations the DC power flow assumption is used in order to
represent the network flows in a convenient linear manner.

3.2 Electricity market organization

Liberalized electricity markets are run by the system operator. In general,
market participants, producers and consumers, submit their bids on price
and production/consumption to the system operator. The system operator
collects the bids and orders them to maximize the productive and allocative
efficiency: the producers offering their production at the lowest price are
dispatched first, also the consumers, who value their consumption the most,
are supplied first. The dispatch, which minimizes the costs, subject to the
system constraints is also called optimal dispatch.

3.2.1 Optimal dispatch

Assume Cj and Qit are given values for the price and production bids
of generators. Optimal dispatch for scenarios w and time steps ¢t can be
formulated as a linear optimization problem:

mlr;lltriuze Z P, Cthnw (3.1a)
i,t,w

subject to: 0 < gt < Qit Vitw, (3.1b)
Z Qitw = Z Dyt Viw, (3.1c)
Z Hln Z Qitw — ntw < ﬂ Vltw (31d)

Here is the objective of the system operator, minimizing the total cost
of dispatch, @ is the capacity constraint, setting limit on the dispatched
production, E represent the system balance, and is an expression
setting the limit on flows. This set of constraint can be further expanded, in
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order to reflect the presence of special generating technologies, or additional
system constraints.

3.2.2 Security-constrained economic dispatch

The increasing uncertainty and variability in power system conditions call
for a revised market design, where a market operator forecasts contingencies
and carries out an efficient security-constrained dispatch. The authors in [93|
proposed a short-run economic dispatch approach to the security-constrained
economic dispatch problem. The proposed short-run economic dispatch
approach models (1) the probabilities of contingencies, and (2) the trade-off
between the preventive and corrective actions, in (3) a convex optimization
structure. The system is dispatched in a way that fast-ramping generators
can react to the contingencies in the most economic way. The advantages
of the proposed model are discussed in details in [94]. Short-run economic
dispatch can be formulated as follows:

mi(l?};irtlcize (1-— Z P,) Z (i’iqi + Z Pc(f’iq,'tc (3.2a)
c ) c,i,t

subject to: 0 < ¢ < Q; Vi, (3.2b)
0 < gite < Qic Vite, (3.2¢)
Z Gitc = Z Dntw VtC, (3'2d)

[ n
> Hin()  gite — Dnt) < Fy Vi, (3.2¢)

n “n

Gite = Qie—1)e < Ry Vite, (3.2f)
— Qite T Gi(t—1)c < Ri™ vite. (3.2g)

Here t is the number of time periods needed for the system to recover fully
from the contingency. Time step 1 is considered a non-contingency stage,
therefore: ¢;;—1). = ¢i- Generation in the following time steps in case of
a contingency c is denoted as ¢;.. There are new constraints, compared
to : (3.2c) defines the capacity limits of units in case of contingency,
(3:2)-(3.2g) set the ramp limits of units.

This formulation expresses the need of flexibility in ramps in case the
contingency, or wind power fluctuation occurs. Strategic behavior in such

setup is studied in [[J1]}
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3.3 Generating technologies

The formulations (3.1) and above can be used to model conventional
generating technologies, assuming not taking into account start-up and
shut-down costs. These formulations can be extended to include additional
constraints, representing certain generation technologies [75].

3.3.1 Wind power

Wind power is a rapidly growing renewable source usually characterized by
considerable investment costs and relatively low maintenance and operation
costs. Spilling the energy produced by a wind power unit is usually cost-
inefficient, but could be reasonable in order to manage the network congestions
or as a part of profit-maximizing strategy [95]. To model this undesirable,
but possible power spillage wind turbines are modeled as power producers
with close to zero marginal costs. The intermittency of a wind turbine output
is modeled by introducing the scenarios of available capacity as in .

3.3.2 Hydropower

Hydropower producers are the main providers of flexibility in the systems,
where they are present. Hydropower producers can be modeled using the
following expressions:

0 < sitw V(i € I")tw, (3.3a)
0 < M < M; V(i € I")tw, (3.3b)
Mitw—i(—1yw = MPI(t=1) + View—LiGitw—Sitw
+ ) Citimyw + Sig—Tyyw) V(i € IM)tw. (3.3¢)
ielup

Here in time step t, scenario w: $;4, is spillage of hydropower producer, mytq,
is the water level, Vi, is an inflow. M; is the maximum water level, and ]\42-0
is the initial water level taken into account if the constraint is formulated
for the first time step (I(¢ = 1)). In hydropower plants with a large storage
capacity, head variation has negligible influence on operating efficiency in the
short-term, therefore a constant production equivalent I'; can be assumed [96].

Constraint (3.3a)) limits spillage, (3.3b|) sets the limits on water level, (3.3d])
describes the hydrological balance.
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A system of connected reservoirs is considered. Therefore the hydrological
balance for unit ¢, includes the water used for production or spilled by an
upstream unit ¢ € I“P. Additionally, depending on the waterways’ structure,
there might be time lag in water relocation Tj.

In certain applications it may be also needed to model a problem of
hydropower producer. Since hydropower producers have limited volume of
the reservoir, it might be profitable to save some water for the future. The
future water value is included in the profit formulation of the producer:

= Z P, ( Z()\ntw - 07;]\/[)(]itw + szwA{;Z) (34)

(el™)w 3

Here the first term in paranthesis describes the market profit of the hydropower
producer: Apy, is the locational marginal price, and CZ»M is the marginal costs
of the generator. The second term describes the value of the water kept in
the reservoir by the end of the modeling horizon: A{ is a parameter, forecast
by the hydropower producer and defining the value of water in the future.

3.3.3 Energy storage

Energy storage can act as a load within its capacity L; < 0, consuming
electricity during the periods of a lower price, or like a generator, smoothing
out the demand spikes [97]. For energy storage constraint (3.2c)) becomes:

for i € I°°8° . L. < qite < Kie. (3.5)

The conversion cannot be regarded as completely free, as there are certain
in

losses. Power flowing in the battery, P > 0, amounts to I;?,f energy stored,

itc —

where 7" is an efficiency factor. Analogically, Pt > 0 flowing out of a

battery becomes P°“n°ut after conversion. Therefore, the output of energy
storage unit can be written as:

n

P!
for i € I°%°8° ; gy = ——ie 4 poutyout (3.6)

in itc

Other constraints for the battery are the minimum E™" and maximum
E™a% states of charge. Considering the initial state of charge E° they can be
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written as:
E° + Z ( ztc _ lc;’zt out) < pmaz (37&)
E°+ Z (n—t — Pgtyet) > g (3.7b)
in

To avoid the simultaneous charging and discharging of the battery the objec-
tive function is updated with penalizing terms. For example, the objective

function (|3.2al) can be rewritten as:

mi{}rili(l?gcize (1- Z Pc)(z Cigi + P;(T;:l)ccm + Pﬁ?il)cco“t)-i-
i

> Pe(Cidite + Pifpg)ec™ + Pty ™) (3:8)

c,i,t

Here ¢™ and ¢ are small penalizing costs. These costs are ensuring the
correct operation of the storage device.

3.4 Demand

In the formulations and it is assumed that demand is inelastic,
expressed with a parameter D,t,. This assumption is common in power
systems, where consumers often do not receive price signals and therefore do
not respond by reducing their consumption [98]. However, demand response
can be modeled in this framework as a “virtual” generator with high costs
Cgf and capacity equivalent to the capacity of demand-responsive consumers.
This generator can be dispatched, when the price reaches high-enough levels,
imitating the disconnection of flexible consumption. The symmetry between

total surplus maximization and generation cost minimization is proved in [3].



Chapter 4

Exercise of market power in
wind-integrated systems

This chapter focuses on modeling strategic behavior on ramps in wind-
integrated power system. The findings are based on the publication We
propose a model for describing the strategic behavior on ramp rates and
demonstrate illustrative and numerical results.

4.1 Introduction

With an increasing penetration of wind power, there is likely to be an
increasing need for fast-ramping generating units. These generators ensure
that no load is lost if supply drops due to the uncertainties in wind power
generation. However, it is observed in practice that, in a presence of network
constraints, fast-ramping generating units are prone to act strategically and
exercise market power by withholding their ramp rates. In the Australian
National Electricity Market (NEM), when the prices increase to very high
levels, some generators were observed to decrease their declared ramp-rate
capabilities, in order to maintain high output for a longer period of time.
Another evidence of strategic behavior was observed in South Australia,
an area with very high penetration of wind power. A sudden reduction in
wind output there must be matched by a rapid increase in the output of
thermal generators. On several occasion the price in the area spiked up
to $12000/MWh. These occasions tended to coincide with times when the
offered ramp rate from thermal units was less than their technical capability.

29
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It appears that at times generators may have a commercial incentive to limit
the rate at which they ramp up in response to a fall in wind power output.

In this chapter we propose a model, capable to model ramp-rate game
in wind integrated power systems. The model covers an important gap in
the literature. The authors of [99,100] consider ramp rates as a part of the
bidding information of profit-maximizing generating companies, but they
do not assume any strategic behavior relating to ramp rates. The authors
of [101] provide an analysis of strategic ramp-rate bidding, but significantly
simplify the market clearing problem and do not take into account possible
contingencies or network constraints.

The model in this chapter is set up using the concept of the multiple
leaders-follower game as discussed in Section The follower is a market
operator who runs the short-run economic dispatch problem, discussed earlier
in Section SRED allows to model a trade-off between preventive and
corrective measures for possible contingencies, e.g. wind power outages, in
convex structure. The leaders are the profit-maximizing generators, strategic
on both ramp rate and generation capacity. The whole setup is modeled as
an Equilibrium Problem with Equilibrium Constraints (EPEC). The result of
the EPEC model is a set of Nash equilibria of the ramp-rate game. To tackle
the multiple Nash equilibria problem, we use the concept of the extremal-
Nash equilibria, introduced in Section We use different techniques
for the linearization of the problem and motivate the best one [59]. The
final formulation of the proposed game-theoretic model is a single-stage
Mixed-Integer Linear Program (MILP). To show the distinctive features of
the proposed game model, the whole formulation is applied to the illustrative
two-node example system and to the IEEE 24-node system.

4.2 Modeling

This section gives the detailed formulation of the model used in the simulations
and the assumptions made. We model a ramp-rate Stackelberg game with
multiple leaders and a single follower. The leaders are strategic generators,
seeking to maximize their profits by offering strategic bids to the market.
The follower is a market operator performing a security-constrained short-run
economic dispatch. We assume that all forward contracts [102] have been
released before the dispatch takes place.
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4.2.1 Lower level

The short-run economic dispatch (SRED) represents the lower level of the
ramp-rate game. The setup of this dispatch, the motivation behind it, and
the adopted assumptions are discussed in Section The linear problem
representing the optimal short-run economic dispatch in this chapter is as
follows:

minimize (1 — ch) Z(cigi) + ch(cigitc) (4.1a)

9i,9itc - )
7 c,i,t
subject to: ¢;, gite > 0 < uﬁi (4.1b)
9 < K; o pit? (4.1c)
Jite < Kic — Mﬁ? (41d)
Z Gite = Z dy, <~ )\g (416)
n, eEn n
Z H; Z (gite — dn) < Fy © pige (4.1f)
n n,ien

Gite = Gi(t—1)e < R “ i (4.1g)
— ite + Gigt—1)c < RI" o pi (4.1h)

The short-run economic dispatch problem in — is convex and
satisfies the weak Slater’s condition. Accordingly, the Karush-Kuhn-Tucker
(KKT) optimality conditions can be written as linear or mixed-integer system
of equations using one of the three techniques to avoid nonlinear complemen-
tary slackness conditions described in Section strong duality, SOS type
1 technique, or BigM technique.

We will denote the total number of primal feasibility equations —
(4.1h]) as a star (x). Three discussed techniques for linearizing the KKT system
are compared in Table in terms of constraints, variables and constant
parameters. Simulating these techniques shows that computational time
depends strongly on these values. As shown in Table [I.1] the strong duality
technique is the most computationally efficient technique for linearizing our
KKT system. Therefore, to ensure the scalability and computational efficiency
of the problem formulation, we adopt the strong duality technique in our
further simulations.
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Table 4.1: Linearization techniques for KKT system. (x) = (4TIC — 3IC +
I+TC + LTC) — number of primal feasibility constraints. Capital letters —
number of elements in sets, see Nomenclature.

Strong duality | SOS type 1 | BigM technique
Constraints 2(x) +1—=TC | 4(x) —3TC | 4(x) — 3TC
Binary variables 0 0 (x) =TC
SOS1 variables 0 2(%) =2TC | 0
BigM constants 0 0 (x) —=TC

4.2.2 Upper level

The upper level of the ramp-rate game is the profit-maximization task solved
by the strategic generators. The profit formulation for the generator ¢ can be
written as:

i = (Pn — €i)Gis (4.2)
where p,, is the price at the connection node n of generator ¢. The nodal price
pn can be expressed as a summation of a system price, )\th, and transmission
congestion price, >, uﬁcHli, (pn = AE -3, uchli). The expression 1)
for the initial state and for each time step ¢ is then:

Tite = (Aﬁ - Z Mzctcle' = Ci)Yite- (4.3)
l

Expressing the A2 from stationary conditions, following the logic in [45], we
recast the profit expression as:

Tite = 1§ 20; + (lige + Wie + 11122 Gite- (4.4)

This expression contains nonlinear terms in primal and dual variables. How-
ever, using the complementary slackness conditions, we can equivalently
write:

129 = pi? K, pdegie = 1t Kie
D1 D1 A
Z Hite Gite = Z Hite R?p (4.5)
t t

D2 _ D2 pdn
E Hite Gite = E Hige B
t t
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For the nonstrategic generators the bidding levels of ramp rates are true
ramping capabilities, (R!” = R!¥ and R¥ = R%). For the strategic gen-
erators, we assume a strategic choice on ramping level. We can model this
strategic choice, by introducing a vector of binary variables xqf,f and :Uf,?

R = (b + Zbkx )R, (4.6a)

RI™ = (b + Z it RI™. (4.6b)

Here by and by, are vectors of constants, such that by + >, by, = 1. This way,

T 4" — 1 means that the generator bids the full ramp-rate capability to the

market. If z;;, = 0, then R!” = byR;* and RI™ = byRJ", which means the
generator bids the minimum possible ramp rate level. This way a strategy set

= {s1, s2...s} for the strategic unit ¢ is obtained as a set of all k possible

d
comblnatlons for the vector :E",f 4

We substitute the expressions (4.5))-(4.6]) in the profit formulation (4.4

and use the disjunctive constraints [53] to linearize the product of binary

. dn D1,D2
variables x“k’ and continuous variables fi;;.

D1,D2 _  up,dn D1,D2 : up __ pdn _ .
; =2, My - Assuming for conciseness that R;” = R{" = R;,

we obtain the following expression for the profit:

, by introducing a new vari-

=K+ (MﬁgKm +bo(pize + ize) (4.7)

tc

+ Z ztck + Zztck ka )

The zkal’DQ terms are linearized with a following set of constraints:

Dl ,D2 <R xup,dn

Zik 128k >
,DL.D2 D1,D2
Zip TS e (4.8)
D1,D2 D1,D2 7% up,dn
Zik > e — Kip(1—a™).

Here K and Ky are big-enough disjunctive constants, designed according to
the recommendations in [54].

The Nash equilibrium between the strategic generators on ramp rate is
reached, when given the ramp-rate strategy of other generators, no player
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wants to deviate from the chosen strategy. Or, expressed mathematically:

D Tite(siys7) = el 57). (4.9)

itc itc
To avoid the problem of multiple Nash equilibria, we use the concept of
extremal Nash equilibria, as in [2.1.1] The whole ramp-rate game model
consists of the optimality conditions derived in Section the profit
formulation , disjunctive constraints , an expression ensuring the
Nash equilibrium outcome , and an extremal-Nash equilibrium expression.
As an example, the mixed-integer linear programming problem for finding
the best-Nash equilibrium is set out in below:

Minimize (1 — ch) Z(Cigi) + ch(cigitc) (4.10)

i u it
subject to: g, gite > 0, i < Ki,  gire < Kie (4.11)
> gie=) dn (4.12)
n,ien n
> Hi Y (gite —dn) < F (4.13)
n njien
Gite = Gi(t—1)c = R (4.14)
— gite + Git—1)c < RI" (4.15)
Hites 1525 1t Hzos Hige s Hige = 0 (4.16)

Profit formulation and linearization (4.7))-(4.8))
Nash equilibrium condition (4.9)
Stationary conditions

Strong duality implication

4.3 Illustrative case study

We consider a network with two distinctive areas. The areas are represented
by 2 nodes: G1, G2, G3 are placed in node 1, G4, G5, G6 and demand are
placed in node 2. We consider a capacity-constrained line, connecting these
2 nodes. Node 1 represents a generation surplus area, while the demand is
mostly concentrated in node 2. An example of this setup is the Swedish
power system, where generation is mainly concentrated in North and the
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load centers are situated in South. The northern and southern parts are
only connected by several constrained links. The unit data is presented in
Table

While units G1 to G3, G5 and G6 have low probabilities of failure, unit
G4, representing the aggregation of wind power units, has a 1% probability
of going off the network, due to the extreme wind conditions. The demand is
predicted to be 1500 MW during the short dispatch period under consideration.
The dispatch is shown in Figure

We consider 2 cases: case (a) represents a base-case, when generators are
bidding their true ramping capabilities. In case (b) the generators G5 and
G6 have 4 bidding strategies on their ramping capabilities. They can offer 4
levels of ramp rate, from 25% to 100% of their true ramping capability.

In case (b) the bidding decisions of strategic generators G5 and G6 differ.
Table presents that in case of the best-Nash equilibrium (BNE) generator
G6 withholds 25% of its ramping capability. The optimal dispatch of the
system is shown in Figure (b). We see that the lower ramp rate of G6
forces the market operator to dispatch G5 even in a no-contingency state (time
step 1). In the case of the worst-Nash equilibrium (WNE) both generators
withhold. The corrective actions are taking more time and dispatch costs
increase. As shown in Table [£:3] the costs of market power in cases of BNE
and WNE are €6862 and €13365, respectively. This means 21.6% and 42%
increase in dispatch costs as compared to the dispatch cost of the competitive
case. The average market clearing prices (MCPs), calculated through 7
periods, increase as well.

We see that the concept of extremal-Nash equilibria, introduced in Section

Table 4.2: Unit data for the 2-nodes system. R;?=R%" =R, In bold — identified
cases of withholding.

Unit, Capacity, Costs, Ramp rates, (MW /hr)
i K; (MW) | ¢; (€/MW) | R; | BNE R; | WNE R;

G1 500 10 1000 1000 1000
G2 500 100 100 100 100
G3 800 50 100 100 100
G4 800 0.1 100 100 100
GbH 500 200 100 100 75
G6 500 1000 500 375 375
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(a) Competitive bidding
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300
0

1 2 3 4 5 6 7
MCP (€): 0.1 1000 1000 1000 1000 200 200

(b) Strategic bidding - BNE
1500

1200
900
600
300

0

Electricity production (MW)

1 2 3 4 5 6 7
MCP (€): 200 1000 1000 1000 1000 200 200

(b) Strategic bidding - WNE
1500

1200
900
600
300

0

1 2 3 4 5 6 7
MCP (€): 200 1000 1000 1000 1000 1000 200

Time steps (t)
e G] s G2 e G3 = G4 G5 == G6
Marginal costs: min m————— mm— max

Figure 4.1: Short-run economic dispatch and market clearing prices (MCPs)
for the cases of (a) competitive and (b) strategic bidding. BNW: best-Nash
equilibrium case, WNE: worst-Nash equilibrium case.
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: //7/WNE(G5 G6 strategic)

_______________ —_ , GO strategic

1 / s = BNE (G5, G6 strategic)
L / > < = WNE (all generators strategic)
By —— BNE (all generators strategic)

1
9
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Figure 4.2: The concept of Nash-equilibria band with BNE and WNE as
the lower and upper bounds. Clouds of Nash equilibria solutions for the
cases, when generators G5 and G6 are strategic, and when all generators are
strategic.

Table 4.3: Cost of market power on ramp rate for the illustrative case study
(loss of G4 with probability of 1%, G5 and G6 strategic)

No gaming | Best NE | Worst NE
Dispatch costs (€) 31,779 38641 45144
Cost of market power (€) 6862 13365
Relative increase in costs 21.6% 42%
Average electricity price (€) 629 657 771

sets the bounds for the solution space (Nash-equilibria cloud) in the
case of strategic generators. The solutions in the cloud are equiprobable.
Figure presents the evolution of dispatch costs over different contin-
gency probabilities. The cloud of solutions, when all generators are strategic,
is a super set for the cloud of solutions, when only generators G5 and G6
are strategic. Both bounds are important for the market power assessment;
however, depending on the application we could be interested in a lower or
upper bound. Another observation from the figure is that the cloud becomes
thinner and tends to the non-strategic costs, when the probability of contin-
gency is higher. This can be explained by the trade-off between preventive
and corrective actions. As a severe contingency is more probable, system
operator takes more preventive actions to minimize the costs and often the
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most expensive generators are dispatched in the preventive action.

4.4 Numerical results

Here we present only the main findings of the ramp-game modeling on a
larger network, for more results we refer the reader to . EPEC problems
are known to be computationally intesive |103|, the purpose of this section is
to demonstrate that the developed formulation is scalable to larger system, in
this case 24-node IEEE system [104]. We assume that G13 is an aggregation
of several wind power units. The output of G13 is predicted to be 300 MW,
however there is a certain probability that the real output will be different.

In this section we consider a joint game for ramp and quantity. To do
so, we introduce a variable Kic, which describes the production bid of the
strategic generator:

Kic. = (by + Z bkxcap . (4.17)

Here l’?,?p is a vector of binary variables. Constraints (4.11)) are then changed
to the following expressions:

9irgite = 0, i < Kic,  gic < Kie. (4.18)

Following the same logic as in ramp-game, we change the expression for the
profit:

= bopf? + Z brzi? + Z ( Z b Kie + bo(pite + pige - (4.19)
+ uztc + Z ztck + Zztck ka )

A2 A2 1P _ : : . .
Here z;;* = ul zk and thck uztc .. are linearized the same way as

described in . It should be noted that the formulation can be extended
further to include other strategic parts of the bid, as for example in [105].
The wind-integrated power systems are characterized by variability of
wind power output. Therefore, we investigate different probabilities and sizes
for wind power contingencies. Figure shows the dispatch costs in the
case of two-step demand response with 7 strategic generators (G1, G2, G3,
G5, G6, G11 and G12). Both BNE and WNE costs are plotted. In the
BNE case, when the actual output of the wind generating unit is more or

cap
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Figure 4.3: Dispatch costs for the cases with different output deviation

predicted with different probabilities. (a) Best-Nash equilibrium case, (b)
Worst-Nash equilibrium case.

around the predicted value we observe a linear increase in the dispatch costs
with the increased probability of congestion. However, when the severity of
contingency is high — the actual wind output is less than predicted value by
25% or more — we observe rapid increases in the dispatch costs caused by

the gaming behavior of strategic generators. In the WNE case, the dispatch
costs are high in all studied cases.

According to the obtained results we can observe that when the severity of
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contingency is high, which may depend on the system flexibility, the generators
are prone to exercise market power by bidding strategically on their capacity
and ramp rate levels. This strategic behavior affects considerably the dispatch
costs and prices in the system, especially when the demand response is limited.
This result supports the necessity of ramp-game modeling in the systems
with intermittent supply.

The model is implemented on GAMS platform and solved by CPLEX
solver. The GAMS code runs on 2.8 GHz Intel Processor with 2 cores and
8 GB RAM. As an example, the computation time for the BNE case of
two-steps demand response and the wind generators output predicted to be
120 MW with probability of 1% is 38 minutes.

4.5 Conclusion

In this chapter we model the strategic behavior in wind-integrated systems,
where the intermittency is high, so that the security-constrained short run
economic dispatch is a welfare-maximizing way of operating the system.
We assume a market operator who collects the bid information, including
marginal costs, available capacity and ramp rates. Strategic generators,
willing to maximize their profit, can bid lower than their true ramp rates and
capacities. The outcome of the market is a Nash equilibrium.

Mustrative case study demonstrates that in presence of network con-
straints and a major contingency, the generators are prone to exercise market
power and bid a lower ramp rate to the market. Further, using a 24-node case
study we show that if the severity of contingency is high, strategic generators
are prone to maximize their profits by bidding strategically to the market.

This study shows that contingencies, introduced by a strong intermittency,
have a significant effect on the proneness of generators to bid strategically,
which in turn affects the dispatch costs and, therefore, the system social
welfare. Here, the ramping capabilities of the units are particularly important,
as they define the speed, with which the system reacts to the contingencies.



Chapter 5

Market power in power
systems with high share of
wind power and hydropower

In this chapter we study the strategic behavior of hydropower producers
as main providers of generation flexibility in wind-integrated systems. The
chapter is based on publications and . In this chapter we will study
the cases of a single dominant hydropower producer and of Nash equilibrium
of multiple hydropower producers.

5.1 Introduction

As we have seen in Chapter [4] flexibility plays a crucial role in the systems
with high penetration of wind power. Fast-ramping producers compensate
the fluctuations of wind power and may have incentives to withhold this
flexibility in order to obtain higher profits. Hydropower producers are often
regarded as flexibility providers in the systems, where this type of power is
available.

The annual hydropower share in electricity generation in Norway is 95-99%.
It is also high in Brazil (80%), Iceland (88%), New Zealand (65%), Austria
(70%), Canada (62%) and Sweden (42%) [106]. Even though hydropower
producers have such an important market share, they have been traditionally
regarded as price-takers, optimizing their production schedule based on the
price expectation. However, the price-taking assumption for a hydropower

41
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producer does not always hold [3]|. Reference [107] shows that in hydrothermal
systems the strategic behavior can lead to significantly higher prices. In
winter 2002-2003, extraordinary high prices were observed in Nordic market.
A number of observers voiced the concern that the high prices were a result
of strategic behavior by hydropower producers. The hydropower producers
may have used an opportunity to spend more stored water in summer in
order to create scarcity and, therefore, high prices, in winter |70].

Hydropower producers can use their unique characteristics (such as a
capability to store energy, hydrological coupling between units and near-zero
marginal cost) to behave strategically in the market [106], [108]. With an
increasing penetration of wind and solar generation, hydropower producers
can ramp fast to cover the generation fluctuations. Withholding such ramping
capability adds another dimension to the strategic behavior of hydropower
producers.

Modeling the hydro-dominated systems requires accounting for hydro-
specific constraints. The few studies that have looked at market power
assessment involving the hydropower producers, have significantly simplified
the modeling. Usually only a single profit-maximizing hydropower producer
is considered, and the optimal dispatch conditions are simplified as a residual
demand curve [109], [110]. In reference |107]| the authors consider the market
power assessment in a hydrothermal power system, but employ a simplifying
residual demand approach, expressing price as a function of price-makers
production, rather than as a result of the optimal dispatch. The authors
in |28 include the equilibrium constraints, but their model neglects the
uncertainty in reservoir inflows and contains nonlinearities.

)

In this chapter we model the cases of single dominant hydropower producer
and multiple hydropower producers in power systems with high share of wind
power. The respective MPEC and EPEC models are recast as MILP and
solved using a Modified Benders Decomposition Algorithm (MBDA), discussed
earlier in Section [2:4.3] We compare the numerical results with other types
of Benders decomposition and monolith solution by CPLEX solver.

5.2 Modeling

In this section we discuss the models of a single profit-maximizing hydropower
producer, formulated as an MPEC, and multiple producers, formulated as an

EPEC.
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5.2.1 Single profit-maximizing hydropower producer

The price-making hydropower producer is modeled in (/5.1).

1
mquiﬁzrgitzeﬂ = Z <Z ntw — CIztw + szwAfITi) (5.1&)

(iel™)w
subject to: 0 < iy < Qy, 0 <7 < Ry, 0< & < Cy,¥(i € I,  (5.1b)

where )\ntwa Qitw, Sitw, Mitw €

arg{ minimize ZP CitGitw (5.1c)

Qitw, Sitw Mitw *
?,t,w

subject to: 0 < g < it - uﬁ}u, uﬁfﬂ, Vi, (5.1d)

Zq,tw = Z Dotw )\EU, Viw, (5.1e)

Z Hi, Z Gitw — Dntw) < Iy /ng, Vitw, (5.1f)
— i < i1y — Gitw < Ti ¢ o, i, Vitw,  (5.1g)
0 < siw :pby,, V(e IMtw, (5.1h)
0 < Mt < M; = bt k2 V(i € T)tw, (5.1i)

Mt —i(—1yw = MPT(E=1) + View—LiGitw—Sitw
+ ) Ciditw + sitw) = Ao, V(i € Ih)tw}. (5.1)

icIup

Here is the profit formulation, where A4, is a locational marginal
price (LMP) and it can be expressed as Aptw = A3, — Zl?n uﬁlen. We
model hydropower producer using the assumptions made in Section [3.3.2
The term miTwA{ 1“% describes the future value of water left in the reservoir
by the end of the modeling horizon (at time step 7). Strategic hourly bids
(Git, ¢it), and ramp-rate bid 7; of the hydropower producer are modeled by the
constraints . The LMPs and the dispatch variables are the output of the
lower-level economic dispatch problem —. Expressions are
the generation constraints. Expression represents the energy balance
constraint, (5.1f) accounts for the network constraints and is setting
the constraints on ramp rate. A system of connected reservoirs is considered
for the hydropower producer. We model the constraints on spillage ,
water level and hydrological balance condition .
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Since the lower-level problem — is linear, we can equivalently
rewrite it as Karush-Kuhn-Tucker (KKT) conditions. We avoid the comple-
mentary slackness conditions by substituting them with the strong duality
condition, as it was shown to be more convenient for linearization in Chap-
ter [l Accordingly, primal feasibility constraints —, dual feasibility
constraints, stationarity constraints and strong duality constraint form the
optimality conditions of the lower-level problem. Now, we can reformulate
the profit by deriving the LMP from the stationary conditions:

T= Z Py ( ; Z :ulthln - )taw + szwAfrl‘i) =

(iel™)w

. D D
E Pw( E (Cit — Mztw + Mztw + Mztw Hitw — Mz‘(t1+1) + 'u’z(t—i-l)
(iel)w t

1
ztw + F Z Azt‘w - taw + szwA' ﬁ) . (52)

ieldn

We simplify expression ([5.2]) using the complementary slackness (CS) con-
ditions. The term (x) = ( T )\gw + LiD i pan )\gw)%'tw appeared from the
hydrological balance constraint (| and it exists only for hydropower units.
The final profit expression becomes:

= Z Py (Z (Mﬁfuéz't+(Mi’ﬁ+H£i)fi+éitqitw—cquitw
(ielh)w t

1
il Mi=AGy (MPL(E=1)4+ Vi) ) +mirh] ). (5.3)

The equivalent one-level program can be formulated by combining the upper-
level constraints and the lower-level optimality conditions. The variables
of one-level optimization include primal variables and dual variables of the
lower-level problem, and variables of the upper-level problem: QNLP—{qztw,
Sitws Mitw, Higtys Higs Hines it Mliws Higs Higtos R Mios Mows ity i,
¢it}. The final profit expression and strong duality condition contain
bilinear terms g, git, ,ugfﬂffi, ugifi and ¢;;qi. For the non-strategic units
we assume: G = Q;, 7 = R;, Gy = C’Z-M, Vi € (I\I"). For the strategic units
these terms need to be linearized.

We approximate the generation capacity @); by a pre-defined number

of discrete capacities ;. Therefore: Mﬁi@it = uﬁfn Sk Qi=> zﬁik,
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where >, 2!, = 1. Variable z 2 . can be linearized as follows [53]:

_ N _
- K1 -afy,) < Zztwk Qiktipn, < KU1 — ) -
@22, gwk) v(ieIM)twk, (5.4a)

. _7h
— Kz 7 <Zt3)k<Kq itk (BZtU’k”thwk) V(iel")twk. (5.4b)
In the constraints above K9 is a suitably large constant, not too high to

create computational instabilities, and not too low to put extra bounds on
the variables |111]. Introducing K", we rewrite (5.1d)) and (5.1g)) as follows.

Gitw < Qe+ K(1—2d,) : (v42,), V(ieI")twk, (5.5a)
Gitt—1)yw — Gitw < Rt K" (1—al) « (vL,), V(eI twk, (5.5b)
Gitw —Gie—1yw < Rt K" (1=al)): (v2,), V(eI twk. (5.5¢)

We repeat the hnearlzatlon steps for other blhnear terms, introducing zztwk_

D
Nztw Zk‘ xszlk’ itwk lu“ztw Zk xszZk’ ztwk Gitw Zk :L"Ltkc’tk’ We form a

MILP s D1 _Ds _obj
new set of variables () by adding :L'Ztk, e Titks Zipetes itk Zioks Zitwk

to QNP The proposed stochastic MILP model is set out in ([5.6).
o b
m%’ﬁ}gze =) FPu <Z( ztwk+Zztwk+zztwk+zftujjk_cijw%tw
(ielh),w 3
1
il MG (MU= 14V +miroh =) (5.62)
(2
subject to: (5.1¢]), (5.11), (5.1h)-(5.13)), (5.4), (5.5),
(5.1d)), , stationary conditions Vi € I\I", (5.6b)
Ay Ay Dy D PP C
Hitars it Hitw> :U’itfu’ Hitws Hits Fitaos i 2 0, (5.6¢)

Do obj . . h
Linearization of zmﬂk, 2oy Zaon asin (9.4), Viel’,

Linearization of strong duality implication as in (5.4]).

5.2.2 Multiple profit-maximizing hydropower producers

Section [5.2.3] described the formulation of a stochastic MILP model for a
single profit-maximizing hydropower producer. In this section we discuss,
how we can formulate the game of multiple strategic hydropower producers.
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In Section 2.2.3] we discussed that Nash equilibrium can be formulated as
an optimization problem:

minimize Am = Z € (5.7a)
ielh

subject to: mi(s,s*,) + e > misi, s*,), Viell, (5.7b)

€ >0, Viel" (5.7¢)

At a Nash equilibrium point the deviation ¢; is zero for all players. Under
uncertainty the profit m; can be different in different scenarios. There are
several ways of how to extend the definition of Nash equilibrium in the case
of uncertainty.

Bayesian Nash equilibrium

Each player is assumed to have a subjective uncertainty probability dis-
tribution function [46]. This assumption is applicable to the most of the
uncertainties observed in the power system, such as wind, reservoir inflows, de-
mand uncertainty. When introducing scenarios w describing the uncertainty,
the Nash equilibrium becomes:

Eylmiw(st, s%)] + € > Bulmiw(si, s%,)], Viel™ (5.8)

Robust Nash equilibrium

Finding robust Nash equilibrium does not require the prior knowledge of
probability distribution function for the incomplete information [47]. This is
very useful, when certain scenarios have no historic data or when probabilities
of the scenarios are difficult to compute. Robust Nash equilibrium uses the
worst-case approach, where is reformulated as follows:

min[m, (s7,s%;)] + € > min[my, (si, s;)], Viel™. (5.9)
w w
We introduce 77" to formulte a mixed-integer reformulation of (5.9):

T (ST, %) e > T (s, 8%, Vie I (5.10)

)
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b

Introducing binary variables x}°” we ensure that W;“m takes the smallest

value in scenarios ming,[m,|:
TN < i, V(€ TMws (5.11a)
T > i, — I‘((l — 2590 V(i € I™)ws, (5.11b)

w

Za:mb (5.11c)

The profit for the hydropower producer can be derived in a similar way as
in (5.2). Extending the formulation by considering the profit in alternative
strategies Ty (si,s*;) we can write the whole optimization problem as a

stochastic MILP problem ([5.12)).
minimize Arm = Z € (5.12a)

QMILP
icIh

subject to: NE definition , or -— , €6 >0,

For s and (s;, s*,), Vi € I":

M F:
{Triw :Z(Z( ltwk+zztwk+zztwk+P zztwk) C qitw—i_'u’it?uMi
t k

1
“AG (MPX(t = 1)+Vi))+mireA] = V(ielw, (5.12b)
%

(G.1d. E1f), G-1n)-E.1j), (G-4), (G-9),
(5.1d), (5.1g)), stationary conditions Vi € I\I",

1 ,,A2 1, D2 E 1,
Fitws Fitaws Mitws Mitw’ Hitas Fitws Pty Mztw > O
D2 o bj h
Linearization of Zztwk’ ok Zitwk @S 10 , Viel”,

Linearization of strong duality as in }

5.3 Solution Approach

In optimization problem , if we fix binary variables x?tk, xp and xf,,
the problem separates in a series of linear programs which can be solved
in parallel. For the stochastic MILP problem in fixing the binary
variables results in a linear program, partly decomposable by blocks in case
of the robust Nash equilibrium.

Benders decomposition is commonly used for mixed-integer program, as
it allows dealing with complicating variables. In this section we propose
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Modified Benders Decomposition Algorithm (MBDA). In Section we
compare it numerically with alternative Benders approaches (as described
in Section and with solution by CPLEX solver. In this section we
discuss subproblem and master problem based on the model of a single
profit-maximizing generator. The corresponding derivations for the case of
multiple strategic hydropower producers are provided in

Modified subproblem corresponding to initial MILP can be formu-
lated as follows:

magisrglize prdual Z P, Z (qbgu Z Dy — Zul(gw(E—FZHlnDntw)—
Z (bffgjc quffgj chkxzk Z ¢%th2 Z ¢ztw Z Qlk

ieI\Ih ielh zeI\Ih ielh
- Z 1tw ztw Z ufw ztw Z le - Z ¢ztw
ieI\IM ielh ielh
2{:¢ﬁh&ﬂ4flﬁ=ﬂJ-thw))), (5.13a)
ielh
SUb‘]eCt to: Z( 1= xltk; thk ta altwk + aztwk) + jztk (BltU)k + ﬁltwk))
(ielh)tw,k

+ ((1— jrk)(ygf;;k + ag&k + Oéglluk) + j":k(ﬂztwk + thwk))
+ ((1 - :i:rk)( ztwk +a aztwk + aztwk) + xzk(BltU/k + 6ztwk))
. bj b
+ ((1=2F,) (a zotzik‘l'o‘ztwk) + xztk(ﬁftik+ﬁft%k))) =0 (513b)

OF e X, (5.13¢)

The feasible region X includes stationary conditions for all variables of
(5.6 with fixed binary variables and dual feasibility constraints. We observe
that both feasible region and the objective function of the subproblem are
free from the disjunctive parameters.

Using the special form of the disjunctive constraints, we can formulate the
modified master problem. We use an observation that disjunctive constraints
require that solutions to a mathematical program satisfy a subset of given
constraints. Therefore, all constraints can be distributed in two sets: relaxed
and enforced constraints, depending on the value of the binary variables :E;-Itk,
xp, T5,,- We propose the following formulation, where disjunctive parameters
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are removed.

xqmixnrir;lgizeﬂ Kobo + Z K;0; (5.14a)
itk ik itk d j
subject to: > (D ((1=afy)+ (1)) +(1-a%)

LkEQ? t

<P - 14 ) 0,1(K; < Kji), V), (5.14b)
j/eJ!
S al =1 =1, af,=1,V(i € I")}, (5.14c)
k k k

Oo+> 0; =1, {aly, ol x5y 0} € {0,1}. (5.14d)

J

In optimization problem (5.14)), parameter K;=5 " P, wd““l where Wd“al is a
calculated objective functlon of - Also parameter K(]——OO is the lower
bound of - 6; is an auxiliary binary variable, created at every iteration.
J' is the index set of previous iterations and j is the index of current iteration.

D D Dy D2
If we deﬁne 0= {aztwk7 ﬂtwka /thwlm thwk’ itwks Litwk 5ztwk7 Fitwk’ itk
D2 3 —obj obj  7obj obj A2 D Py
Qitwks thk’ thwk’ Xk Yitwk Pitwk> fitwk’ Vitwk> Vitwk 'Ltwk} then Q

the index set of strictly positive variables of € in iteration j. |Qp | is the
cardinality of this set.

5.4 Illustrative case studies

The models formulated in Section [5.2] allow us to model the strategic behavior
of hydropower producers in the Systems with high levels of wind power uncer-
tainty. Publication presents several illustrative case studies, highlighting
the possibilities for the exercise of market power by hydropower producer. In
|J4|| we explore possible Nash equilibria, which may occur under uncertainty.
Below we present some of our findings.

5.4.1 The impact of forecast future water price on price
bidding of hydropower producer

The opportunity cost of the hydropower producer depends on the future
expected prices. For hydropower producer the cost today is the benefit



CHAPTER 5. MARKET POWER IN POWER SYSTEMS WITH HIGH
50 SHARE OF WIND POWER AND HYDROPOWER

9000 ====e===20€_c
o [T
® SS
£ 5 8000 e e0cc oo 158 &
@ & > o0 0 35
S 5 <
s & 3
%;—17000 (((( 10 35
2 u g8
[a) T =

0 0.5 1 1.5 2

Forecasted future price, $/MWh

Profit of hydropower o Hydropower producer’s

[ Dispatch costs, § [ producer, $ bidding price, $

Figure 5.1: Study of future price effect on dispatch cost and profits.

obtained by using the water tomorrow |[106|. This benefit is calculated using
the best available optimization techniques and historic data, and determines
how much water should be saved today in order to be used tomorrow. The
price-quantity bids of a hydropower producer are based on the result of these
calculations.

The stochastic MILP model is used to study the impact of forecast
future price on the price bidding of a hydropower producer. We should note
that forecast is very much dependent on the availability of data on wind
power. In wind-integrated power systems this forecast may be very rough. In
Figure the forecast future price A{ in is varied between $0/MWh
and $2/MWh. We observe that the price bid of the strategic hydropower
producer depends on the forecast future price.

The price bid of the strategic hydropower producer changes between three
values of $14, $15 and $20/MWh. This means that in proximity of these
steps the sensitivity of price bid to the forecast future price is very high. The
same holds for the dispatch cost. For example, the strategic hydropower
producer bids $15 and $20/MWh for forecast future prices $1.2/MWh and
$1.3/MWHh, respectively. This results in $1450 (+19.5%) increase in the
dispatch cost for just $0.1/MWh (+7.7%) increase in the forecast future price.
This shows the sensitivity of dispatch cost with respect to the forecast future
price. Accordingly, the accuracy of forecast future price can have a severe
impact on price bidding of a strategic hydropower producer.
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5.4.2 Strategic behavior in price, quantity and ramp-rate
bids

The optimization model can be used to derive the price, quantity and
ramp-rate bids of the hydropower producer (Figure[5.2}(a)). The strategic
bids increase the profit of hydropower producer above its competitive level.
In Figure [5.2}(b), (c), and [5.2}(d) the profit increase with respect to wind
generation level and its standard deviation is shown.

We observe that all three types of bid have an important effect on the
dispatch cost. Strategic behavior in quantity and price (Figure(b) and
(c)) produce similar results. This is because both of them can be used by the
strategic hydropower producer to drive the price to the highest possible value.
We also see that strategic behavior in ramp-rate bidding has an important
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Figure 5.2: Increase in hydropower producer’s profit, resulting from strategic
bidding on quantity, price and ramp rate. STD: standard deviation.
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effect even when the other two types of strategic bids are not employed
(Figure [5.2}(d)). This happens in the systems with limited flexibility, where
there are not many fast-ramping generators. In our simulations, the strategic
hydropower producer is the main provider of system flexibility. Therefore its
strategic behavior in ramp-rate bidding leads to the increase in its profit and
market prices.

5.4.3 Comparison of Nash equilibria

Since a multitude of solutions is difficult in interpretation, the policy makers
and market participants would often prefer to have a single Nash equilibrium
reference that can characterize the market situation. This is sometimes
implemented with a concept of the best/worst Nash equilibrium [45]. We
implement this by extending the objective function by minimiza-
tion/maximization of the total social costs in the system correspondingly. In
this section we analyze the strategic behavior, as different concepts of Nash
equilibrium introduced in Section [5.2] are applied.

We compare the results from the best and worst Nash equilibria in
Table we provide the bids offered by the strategic hydropower producers
to the market operator (bold values show withholding), profits, and dispatch
cost corresponding to the different Nash equilibria. The following observations
can be made:

e Bids: Withholding occurs in both types of Nash equilibria. There is
more withholding if we consider the worst Nash equilibria, resulting in
higher profits for the strategic generators. Worst Nash equilibria (high
social costs) — is usually the result from high market prices.

e Profits of strategic generators: The profits in Bayesian Nash equi-
librium are higher, than in the robust Nash equilibrium. In robust Nash
equilibrium strategic bid is optimal for the worst-case scenario, while
for Bayesian Nash eqilibrium all scenarios are taken into account.

e Social costs span: The difference between the worst and the best
Nash equilibria is the largest for the robust Nash equilibria. For robust
Nash equilibrium we only consider the worst-case scenario, therefore
we do not consider if the chosen strategy holds as a Nash equilibrium
for another scenario. This provides more flexibility for the strategic
generator when choosing its strategy.
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Table 5.1: Comparison of Bayesian and robust best and worst Nash equilibria.
DC: dispatch cost.

Bayesian Robust
best worst best worst,
) 1. G3 | 100 100 100 75
Capacity bid, ¢, MW G4 | 25 50 75 100
G3 |10 10 10 2.5
1A MW
Ramp-rate bid, r, A a4 |10 75 10 5
. 1A G3 |20 20 15 20
Price bid, &, 3777, G4 | 20 35 20 35
G3 | 4637.5 5400 2845 4500
Profit, 3., miw, $ G4 | 2875 287.5 100 250
DC, $ 4950 5250 3890 5700

Different types of Nash equilibrium can be used depending on the modeling
goals. We can interpret from the results that Bayesian Nash equilibrium
is more consistent with realistic behavior, assuming that the probability
distributions of the uncertain parameters are known. Robust Nash equilibrium
can be applied, when the probability distribution functions of the uncertain
parameters are impossible to obtain (e.g., if the event does not have a
historical data).

5.5 Numerical results

The performance is evaluated in and using the 4-; 24-, 118- and
300-node case studies, obtained from MATPOWER [112|. Simulations for
are performed on a computer with two 2.80 GHz CPU and 8 GB of
RAM, while for we use a computer with 18 cores with hyper-threading
Intel Xeon E5-2699 CPU and 128 GB of RAM. In order to improve the
performance, the parallelized MBDA is implemented in GAMS using the
grid solve and Gather-Update-Scatter-Solve (GUSS) facilities. A detailed
explanation of these facilities is provided in [113].

We assume 4 time periods and strategic hydropower producer has 3
actions for each type of the bid (19683 possible combinations for bidding).
Additionally, uncertainty in each time period is represented by 20 stochastic
scenarios. The scenarios for our simulations have been generated from the
real data using the moment-matching technique [81], obtained from Nord
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Pool [114] and processed to fit the case studies. The numerical results in
and prove the computational efficiency of the proposed MBDA approach.
We conclude that disjunctive parameter, which is present in primal and dual
Benders approaches has an important numerical effect. Primal and dual
Benders do not converge after 10 hours of simulation.

We also compare MBDA to the state-of-the-art MILP solver — CPLEX.
While CPLEX is better for smaller case studies it considerably underperforms
on larger case studies, e.g. 118-node IEEE case study. The reason is in the
solution procedure, having large memory requirements. Full evaluation of

the numerical results and time quotes are provided in |[J3[| and [|J4]

5.6 Conclusion

One of the reasons, why exercise of market power can be present in wind-
integrated power systems, is due to strong fluctuations in supply. Such
fluctuations need to be balanced by fast-ramping generators. The role of
such flexible generators (especially in the Nordic region) is on hydropower
producers, able to ramp up and down quickly to cover the wind power
intermittency. It is commonly assumed that hydropower producers are price-
takers, deciding their price bids based on price forecasts and future value of
water in the reservoirs. However, in this chapter we find out that the crucial
role of hydropower producers implies an advantageous position, which can be
exploited in order to exercise market power.

In this chapter we derive two stochastic bilevel programs for strategic
bidding of hydropower producers. The upper level is one or multiple strategic
hydropower producers, bidding their price, quantity and ramp rate to the
lower-level system operator. Using a disjunction-based linearization technique
the stochastic bilevel program is reformulated as a stochastic MILP with
disjunctive constraints. To solve the reformulated stochastic MILP model, the
modified Benders decomposition algorithm is proposed. The proposed solution
algorithm does not require the optimal tuning of disjunctive parameters and
it can be parallelized. The computational efficiency of the parallelized MBDA
is demonstrated using the 118-node and 300-node case studies. We have also
compared our parallelized MBDA with the state-of-the-art CPLEX solver.

Through an illustrative example system and the developed stochastic
MILP model, we identify possible strategies specific to hydropower producers
for maximizing the profit. We also study the outcome of Nash equilibrium un-
der uncertainty by applying Bayesian and robust Nash equilibria approaches.



Chapter 6

Lessons for market design in
wind-integrated power systems

In previous chapters we have seen that exercise of market power on ramp
rate is an important issue in wind-integrated power systems. In this chapter
we study how market design can create incentives for generators to behave
strategically or competitively. This chapter is based on publication

6.1 Introduction

With a high wind power share, when generation suddenly departs from the
dispatched level it is very important that there are enough of fast-ramping
generators, able to sustain the energy balance [115]. We have seen in the
previous chapters that a lack of such generators, or their strategic behavior
may result in price spikes. The higher the ramping gradient that a power
plant can cover, the fewer plants are needed to meet a given net load ramp,
thus leading to less minimum generation per ramping |116]. There is a variety
of market designs created in the deregulated framework taking into account
the limitations of the units: markets in PJM Interconnection, New York
Independent System Operator (NYISO) and New England electricity markets
involve multi-dimensional auctions, so that participants specify technical
constraints during the dispatch.

There is a thorough analysis in [117], showing that preventing gaming on
ramp rates is a difficult task and there are no commonly adopted instruments
that guarantee to prevent gaming behavior. One of the techniques to avoid

95
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the manipulation is to allow ramp-rate constraints to change only once a
month, or some other suitable time interval, as adopted, for example, in
California [118]. The “NYISO Market Participants User’s Guide” states that
regulation movement (MW /6 sec) response rate can be updated in three
business days [119]. While this has a very little theoretical foundation, the
purpose is to prevent generators from responding to the market conditions
with false ramp rates. The expected effect would be that, exposed to the
uncertainty and high competition, generators would bid the true ramp rate
constraints. However, such a mitigating strategy allows a company to specify
a deceptive constraint for the whole period in which the ramp constraint
can be changed: a regulatory agency often cannot certify the constraint as
generators are usually allowed to bid to several markets and may divide their
ramping capability between the markets [117]. A different strategy is adopted
for example in Nordic electricity market, where generators are free choosing
the ramp rate between their flexible orders. To the best of our knowledge
there is no research evaluating the efficiency of separating the market stages
of production and ramp bids with respect to market power considerations.

In this paper we study the practical implications of separating the stages
of a strategic decision as a technique to mitigate the exercise of market
power. We model a day-ahead market and allow generators to specify the
ramp-rate level as a part of their offers. We use two types of models: a
single-stage equilibrium model, corresponding to taking the strategic decision
regarding a ramp-rate level and produced quantity simultaneously; and a
two-stage model, in which generators choose their ramp rates in the first
stage and compete in quantities in the second stage. A single-level setup
can be reflected by a complementarity problem formulation (linear — LCP, or
mixed — MCP) [120}|121], while a bilevel setup takes a form of an equilibrium
problem with equilibrium constraints (EPEC) [103].

6.2 Methodology

Equilibrium models are often employed to represent the nature of market
interactions and competition between the strategic generators [122|. In
this section we explore the impact of flexibility of power generation on
market outcomes. In particular, we compare two different market setups
represented by two models: a model that considers the case when ramp-
rate and production decisions are taken simultaneously; and a model in
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which ramp rate is decided first, and then production decisions are taken.
We employ a conjectured-price response parameter, which is immediately
obtained from the conjectural variations model, capturing various degrees of
strategic behavior in the spot market. Conjectural variations [21}31] reflect
the firm’s conjecture about other firms’ reaction to a change in its production.
This representation allows us to express the special cases of oligopolistic
behavior ranging from perfect competition to a Cournot oligopoly [32].

6.2.1 Simultaneous ramp and quantity bidding: the
one-stage model

In the single-stage model, every generating unit ¢ faces a profit-maximization
problem: in time period ¢ it chooses the level of production ¢;;. The ramp-rate
level r; is chosen simultaneously with the production level in the first time
period and stays constant throughout the modeling horizon. The objective
of the generator is to maximize the revenues in the production stage minus
the costs. Parameter ¢ represents the symmetric marginal production cost.

In order to derive the analytic results in this section, let us assume that
there are two consecutive time periods: t; and ¢2. The optimization problem
of a company 7 can be formulated as follows:

( ma;;iglize (Pt (Qity s Q—it1) — )ity + (Pts ity G—its) — €)qit, (6.1a)
subject to: Q > gy >0 Hig, by, Yt (6.1b)

Vi : RZTzZO XZ)A@ (616)
T 2 ity — Qity Vs (6.1d)

Qity = Gito = Ti 17, (6.1e)

In the optimization problem above @ is the symmetric installed capacity
of the generating unit ¢ and R is the maximum technically possible ramp
rate. Constraints — show that the change of production between
two time periods is limited by the ramp rate. These constraints are specified
for the time steps following the first one (|¢| > 1). The variables on the right
are the dual variables associated with constraints —.

Prices py(gi, q—;) come from the market equilibrium (ME) conditions that
link optimization problems of all producers: energy balances for both load
periods and the affine definition of the elastic demand d;, where « is the
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elasticity parameter.

ME: d; = Z%’t, dy = DY — api(qit, q—ir) VL. (6.2)
i

The ME conditions mimic the economic dispatch problem of the system
operator. These conditions define the price p:(qit, ¢—it), dependent on the
production ¢;; of the generating companies. The demand elasticity « reflects
the price responsiveness of the consumers in the market. This formulation
aims at reflecting the market setups used in most of the countries with
liberalized electricity markets [51]. Choosing arbitrary the case of increasing
demand allows us to remove the constraint from our model as it will
be inactive. Since only two time periods are considered, the declared up-rate
will be equal to the increased production without loss of generality. The
production in the second time period can therefore be expressed as:

qitg - qitl + Ti- (63)

Since electricity is a perfectly substitutable good, we can capture a range
of behavioral outcomes by conjectural variations in the short-run market
formulation, as first introduced in [123|. Conjectural variation is the belief
that one firm has about the way its competitors may react if it varies its
output or price. This approach attempts to reproduce the dynamic pricing in
a “reduced-form” static competition, therefore we are specifying exogenously
the reaction of the firms to their rivals. This approach is criticized for the
the exogenous nature of the conjectural variations [33], but it allows us to
capture a range of behavioral outcomes — from competitive to cooperative and
has one parameter which has a simple economic interpretation. We define a
conjectured price response parameter #; as a company 4’s belief concerning
its influence on price p¢(qit, ¢—it) in a short-term spot market. We express
the conjectured price response as:

9 — _ dpi(qit, q—it)
' dgit

This parameter only captures the effect of change in ¢;; and not ;. By
considering only conjectured price response on production we express the
type of competition in either of the ramping and the energy markets.
Different levels of the conjectured price response parameter correspond to
different market structures. We assume 6; varying from 0, which corresponds
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to perfect competition in the market to (1/a), which represents the Cournot
oligopoly [124]. By choosing the conjectured price response parameter to vary
in this range we study the behavioral outcomes most common in electricity
markets. Further, in this section we assume symmetric conjectured price
responses 0 = 61 = 6.

The Lagrangian function of problem for producer i is:

Li =Pt (Git1 > a—ity) — )ity + (P2 (Qity G—itz) — €)its + Z (ﬁit(@ — qit)+
t

Hit%'t) + +Xi(R —13) + Nri) + 7 (T — ity + Gity)-

Although parameter 6 is implicit in formulation it becomes explicit when
we solve the problem by taking the KKT conditions, which are equivalent to
the original optimization problem.

We substitute the first derivative of price by € and use the dual multipliers
introduced previously. Note that 1 denotes the complementarity between
the constraint and its respective dual variable. The KKT conditions of the
problem are as follows:

(g =P O —ctp, ~ Py, +7 =0 (64a)
% = Pty = O0Gity =+ py, — g, =7 =0 (6.4b)
Ui =)\ —Ai+7 =0 (6.4c)
0<Ti; LQ—qy>0 Vt (6.4¢)
0<A L7 >0 (6.4f)
0<ANLR—r;>0 (6.4g)
0<% L7i—Git, + qiy 20 (6.4h)
dy =Y g, diy=D]—ap Vt. (6.5)
7

For the case, when Q > gt > 0 and R>r> 0, the dual multipliers By
i;; and );, \; are equal to zero and we can solve a system of equations:

DY —>".q; _
Vi : DY, =37 (qity +ri) _
i —2 = — 0(giny + i) — ¢ —7; = 0,

7i = 0.
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This set of equations can be simplified to the following:

; DY91 - Zz qit; & — Odeqitl —Qac = 0’
Vi : '
th - Ei(%’h +r) — 049(%1 +7r)—ac=0

We can derive a closed-form solution for the optimal production level and the
ramp rate, as presented below. Note that SL indicates “single level”, since
the solution corresponds to the single-stage equilibrium model where ramp
and production decisions were taken simultaneously:

0 0
su_ Dy =Dy

SL _ 6.6
TZ ae + 2 ) ( a)
DY —ac
C]if = 04277”’ qf’;f = q{if + T;,SL' (6.6b)

6.2.2 Separated stages of ramp and quantity bidding: the
two-stage model

The market setup, where the generators choose their ramp rate in the first
stage and compete in quantities in the second stage, can be modeled using
a bilevel equilibrium formulation — EPEC. The bilevel structure aims to
represent the market situation when ramp bidding occurs before the actual
quantity game. The EPEC problems, known for their complexity, are hard
to solve in a closed form. Similar to the previous single-level model, we study
the case of two load periods with increasing demand and two symmetric
power producers.

In the first stage of the game, the generating units take their decisions
regarding the ramp-rate levels that will maximize their profits taking into
account the optimal production decisions from the second stage. The upper
level of a bilevel model representing the ramp game can be formulated as
follows:

max}_mize (ptl (Qitla Q—it1) - C)Qim + (ptz (Qitzv Q—itQ) - c)qitQ (67&)

Vi : subject to: R>r >0 Ais (6.7b)
qit € QVF. (6.7¢)
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Quantity g;; is an outcome of the lower-level QL market equilibrium game:

max(}mize(ptl (Gity> q—it1) — )ity + (P2 (Qity> G—itz) — )ity (6.8a)

subject to: Q> gy >0 Higs ft;, V't (6.8b)
Ti 2 Qity = ity * Vi (6.8¢)

Vi :

The market equilibrium conditions link together the optimization problems
of the generators:

ME: dy=Y g, dy=D]—ap Vt. (6.9)
%

Let us first focus on the lower-level problem (6.8]). Following the same logic
as in the single-level model we can show that the second derivative of the
objective function is negative and the constraint qualification holds. Hence,
the problem can equivalently be written and solved as a set of KKT
conditions. The KKT conditions take a form:

aﬁql;tz = Pty (%tlaq ’Ltl) - eﬂ_h'h —c+ Hitl - ﬁitl + 71 =0 (6 10&)

aaqi:é = Pto (q’itQa qf’itg) - eqitz —c+ Hih - ﬁitz ’Y'L =0 (6 10b)

Vii §0<p, Lge>0 Vit (6.10c)
0<T; LQ—qu>0 Vt (6.10d)

\0 S 71 € Ty — Qity + qity Z 0 (6 106)

In order to obtain a closed-form solution we follow a backward induction.
We first find the optimal solution of the lower level parameterized by the
upper-level variable. Then, we plug this expression in the upper-level and
deduce a subgame-perfect Nash equilibrium (SPNE) — an equilibrium, which
is optimal for both stages and for the game as a whole, |[125|. This concept is
often used for describing the sequence of decisions in the electricity market,
as for example in the case of forward price caps in |126]. We express the
prices in time periods ¢1 and 9 from the market equilibrium conditions
and use them to complement the equations .

Simplifying and solving the system for the optimal level of quantity
parameterized by the r; variable, we get:

0
oL, _ Di—iain A = _
. 8(11';1 - «a - H%tl —Cc+7; = 0
vi TR
oL; _ Piy72.i(Giy +ri . . _
e DLrEwntn) g ) e, =0



CHAPTER 6. LESSONS FOR MARKET DESIGN IN
62 WIND-INTEGRATED POWER SYSTEMS

Summing up the expressions for two time periods, and solving the resulting
system of equations for two producers we get the following:
B = D} + D) —2ac — (2 + ab) B —
" 200 + 4 »i

agt +r; Vi (6.11)

Note that BL indicates “bilevel”, since this solution for quantities corresponds
to the bilevel equilibrium model, and helps distinguish it from ¢5~.

We can substitute g;;, in by the derived lower-level optimal expression
for the production level . The expression for the bilevel-optimal ramp-
rate level becomes:

—D?I + D% — 2Ti1 — Ty = 0
—D?I + D,E)Q — T'il — 27"2'2 =0
DO o DO
- =R (6.12)

We observe that the expression for the optimal level of ramp rate in two-stage
model is independent from the conjectured price response parameter 6. In the
next section we discuss this result and compare the single-stage and two-stage
models.

6.2.3 Discussing the results

The solutions derived in Sections and [6.2.2) provide us with important
insights on strategic decisions regarding the ramp-rate flexibility. In the
following propositions we sum up our observations.

Proposition 1.1. For two time periods, two symmetric generators with
affine cost functions and perfectly substitutable products we find that the
optimal level of ramp rate for the two-stage model is independent from the
conjectured price response parameter 0, representing any market structure
from perfect competition to the Cournot oligopoly. In particular, this can be
observed for the ramp-rate level as given in .

Proof. Section [6.2.2] proves the above proposition by deriving the closed-form
solution to the two-stage model. The expression is derived assuming the
nontrivial solution Q); > ¢;; > 0 and R; > r; > 0. O
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Proposition 1.2. Using the same assumptions as for the Proposition 1,
we observe that in the one-stage model the level of ramp rate offered to the
market varies with the level of competition, represented by the conjectured
price response: (a) the levels of ramp-rate of single- and two-stage setups
coincide when the market structure approaches Cournot (0 = 1/a); (b) in
the case of perfect competition the ramp-rate level in a single-stage model is
higher than in a two-stage model.

Proof. (a) The optimal two-stage model ramp rate is given by expression
6.12)) and is independent of the conjectured price response 6. The expression
6.6af) for an optimal ramp-rate level in a one-stage model depends on 6.
However, if in the second expression we substitute # = 1/«a, which is the
conjectured price response corresponding to the Cournot oligopoly, expressions
(6.6al) and (6.12)) coincide. (b) We can show that for any other choice of
0 < 1/« the optimal level of ramp rate in a single-stage model is higher, as
the denominator of the expression is smaller than the denominator of
the expression . Expressed mathematically, af 4+ 2 < 3. O

According to Proposition 1.1, if ramp-rate and quantity levels are decided
sequentially and the producers hold conjectures on production, strategic
producers are going to withhold the ramp rate regardless of their beliefs on
the competition level in the spot market, since doing this improves total
profits for the generators. This contradicts the logic of regulatory approaches
that separate the two decision stages in order to incentivize producers to
allow more ramp-rate flexibility in the second stage. Comparing expressions
(6.6a) and (6.12)) we see that the maximum value for af in the denominator
of is 1, and therefore if the generators are deciding their ramp rates
before the spot market, the formulation for the optimal ramp rate takes
the form of . We show theoretically that if the generators are able to
behave strategically they do so in the first stage, withholding their ramp
rate, therefore limiting the amount of production in the second stage for any
degrees of market competition. We investigate this further using a case study
in Section [6.41

Proposition 1.2 shows that the optimal ramp-rate levels in two-stage and
single-stage setups coincide in the case of Cournot oligopoly. However, for
any other belief regarding the competition level in the market we can show
that allowing offering the production and ramp simultaneously yields higher
ramp-rate flexibility offered by the generators. The result, shown for the case
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of two load periods and symmetric generators may hold for a bigger case
study as it will be shown in Section

In contrast, in the two-stage model ramping creates an additional layer
of strategic behavior. Production variables are connected with ramp-rate
variable through an inequality constraint. The intuition can be that in the
two-stage model strategic firm tries to recover in the upper level the market
power lost with more competitive energy markets expressed in the conjectural
variations in the lower level. A conclusion of this intuition would be that
there is nothing to recover in the Cournot model and hence the results of
the single and two stage model coincide for that assumption. Ramping is
the only way to recover the lost market power in perfect competition, this is
possibly why the two results diverge the most.

6.3 Extension of the models

We can extend the models presented in Section[6.2]to consider a more realistic
market situation with an arbitrary number of load periods and asymmetric
firms.

6.3.1 Extended formulation of the single-level equilibrium
problem

We introduce a parameter cf%, a cost of pre-committing the ramp rate. There

are two reasons for including this cost. Including such a cost in the objective
function reflects the wear-and-tear of the fast-ramping generating units if con-
sidered by the generating company. The single-level formulation, introduced
in Section [6.2.1] can then be written as:

(

maximize > ((pt(Qita q—it) — Ci)Qit — Cf'm) (6.13a)
subject to: Qi>qi>0: Higs fy, Y (6.13b)
Vi Ri > it >0 Nigy Ay (6.13c)
Tit 2 Qit = Qi(t—1) * Vit (6.13d)
Tit 2 Qi(t—1) — it * Yy (6.13¢)
di = D} — api(qit, g-ir) Yt (6.14a)
di =Y qi V. (6.14D)
i
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Here (/6.13b)) defines the production bid limits, (6.13c) limits the bid on ramp

rate. Equations (6.13d)) and (6.13¢]) define ramping constraints for every two
sequential time periods. We consider a general load profile, where demand

can increase or decrease, and therefore both upward and downward ramping
constraints are necessary. The variables, following after the colon are the
Lagrange multipliers associated with the respective constraints.

The KKT conditions of problem (6.13a])-(6.13a]) are also the optimality
conditions. The resulting equilibrium problem is as follows:

gii = pe(Qits g—it) — Oiqie — i + B, — Hap — 7, + Vit
Y1y ~ Vie+1) = 0 vt (6.15a)
S — Pt Ny — Xy, + V=0 Wt (6.15b)
0<7yLQi—gqe>0 Vt (6.15¢)
Vi 0<p, Lar>0 vt (6.15d)
0<7, Lri—aqttdgp1) >0 Vt (6.15¢)
0<%y L rie +qit — qig—1) =0 Vi (6.15f)
0< Nt LRi—raa >0 Vt (6.15g)
0<XAyLri=>0 Vit (6.15h)
Dy — api(git, q—it) —de =0 Vi (6.16a)
> g —di=0 Vt. (6.16b)

i

The introduced setup can be directly programmed as a mixed complementarity
problem (MCP) in GAMS and solved until optimality with PATH solver [127].

6.3.2 Extended formulation of the bilevel equilibrium
problem

The ramp-bidding problem for a single generating company can be formulated
as an MPEC. The corresponding bilevel program for generating company ¢* op-
timizing over a set of variables Q;« = {ri¢, qit, Dt (Git, q—it), di, B Flits V.o Vit }
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is as follows:

maﬁiinize ((pt(%‘t, q-it) — Ci*)qirt — Cﬁri*t) (6.17a)
! t

subject to: Ry > ri=s >0 Vi (6.17b)

Qi > qu >0 V(it) (6.17¢)

it = Qit + Gie—1) > 0 V(it) (6.17d)

Tit = Qit—1) + qit > 0 V(it) (6.17e)

>0, Ty > 0,7, >0, 7, >0 V(i) (6.17f)

Pe(Gits G—it) — 0iGit — ¢ + By, — Hig — ¥, + Vit

+ Yigerry = Vite+1) =0 (6.17g)
yai =0 V(it) (6.17h)
T (Qi — qir) = 0 V(it) (6.171)
Y, (=it + Gig—1) + i) =0 V(it) (6.17j)
Yit(Git — Gip—1) +1it) =0 V(it) (6.17k)
D} — apy(git,q—it) —di =0 Vi (6.171)
D ai—di =0 Vt. (6.17m)

Here constraints (6.17b|) correspond to the upper-level constraints, constraints

(6.17c)-(6.17¢) are the lower-level primal constraints. The corresponding
Lagrange multipliers are nonnegative as outlined in the constraints (6.171).

Constraint ((6.17g)) is the stationarity condition. Conditions (6.17h)) to (6.17
are the complementary slackness conditions. Constraints (6.171) and (6.17m
correspond to the equalities shared by all generators in the lower level.

With the state-of-the-art solvers (e.g., COUENNE), the problem can be
attempted directly as a nonlinear problem, as in this paper. We can obtain a
solution to the whole EPEC problem by solving the MPECs iteratively: we
sequentially fix the strategic variables of all generators except of one, which
is free to choose any level in response to the levels fixed for all other units.
This procedure is repeated for all generators in loop until convergence to
an equilibrium point, at which no producer wants to change the strategic
decision unilaterally [111].

>~




6.4. CASE STUDIES 67

6.3.3 Additional extensions

Additionally, we consider two main extensions:

e We reflect highly concentrated markets we consider a firm ownership of
the generating units: a generating company may own several generating
units with possibly different production costs. The objective functions
in (6.13a)) and (6.17a)) become:

Tr= ) ((pt(qz‘t,Q—it) — ) Qirt — Cﬁ’f’i*t)- (6.18)
irefit

Here, unit ¢* belongs to the firm f and the profit is maximized for the
whole firm.

e We consider an important extension of the model to the decision-
making under uncertainty. The uncertainty in wind-integrated power
systems can be modeled with a set of scenarios W, where each scenario
w € W has a certain probability prob,,. The profit formulation ((6.18]
introduced in the previous subsection is then extended as follows:

T = Z prObw <(ptw(Qitw7 q—itw) - ci*)Qi*tw - Cgri*t) . (619)

*efit,w

We also add a nonanticipativity constraint to ensure that ramp rate
cannot be changed for every realization of the scenario in the two-stage
model.

6.4 Case studies

The developed model can be a tool for analyzing how a market setup affects
the flexibility bidding in the system. In this section we check, whether
Propositions 1.1 and 1.2, introduced in Section [6.2.3] are still valid for the
extended version of the models by performing the simulations. We also model
the stochastic case study with firms owning several units. More case studies

can be found in [[J2]f
6.4.1 Comparison of the duopoly models

The duopoly case study lets us analyze the importance of information revealed
in the ramp and quantity game. As derived in Section [6.2] the closed-form
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Figure 6.1: Single-stage and two-stage equilibrium solutions for a system with two symmetric
generating companies.

expression for the ramp-rate bids in the case of a single-level (SL) and bilevel
(BL) optimization problem formulations are:

SL _ Doz — Doy

6.20

! ad+2 ( 2)
Doo — D

T‘ZBL — 02 ol 3 o1 (6.20b)

To check this result we formulate the models explicitly as optimization prob-
lems and perform the simulations. In this simple case study the capacity and
ramp limits are considered nonbinding. The production costs are symmetric
and equal to 10 €/MW. We assume two load periods with the demand
intercepts DY = [200,400] MW. The elasticity of demand o = 7.2 MW?2h /€.

Figure [6.1] shows the simulation results for the different values of conjec-
tured price parameter. We observe that the ramp-rate level in the single-stage
model steadily decreases with a growing conjectured price response parame-
ter until it reaches the value of a two-stage model bid in the point, which
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Figure 6.2: Symmetric duopoly case study results.

corresponds to the Cournot competition. The optimal level of ramp rate
does not depend on how the unit perceives the competitiveness in the market.
The producers prefer to withhold the flexibility and choose a relatively low
level of ramp.

Figure (a) is obtained by running the one-stage model for a fixed
combination of ramp-rate levels of two players for an arbitrary level of the
conjectured price response parameter § = 0.05 €/MW?h. Since the companies
are symmetric, we can expect the equilibrium to lie on the middle line, where
the bids of the both players are equal. This line is shown in Figure (b)
We observe that the highest profits for the both units are reached when
r1 =712 =50 MW /h (point 1 in Figure[6.2}(b)). This solution would be a
stable point if the producers were cooperating, as it maximizes the sum of
their profits. However, as we can see in Figure [6.3], in which a profit curve
of a single producer is shown for the ramp-rate level of other player fixed,
a generator can obtain a higher profit by unilaterally changing its level of
the ramp rate (which can be visualized by moving along the x axis of the
plane following the arrow). A response to such strategy will be an increase
of a ramp-rate level by the second producer. An equilibrium point is finally
reached when no unit wants to change its bid unilaterally. In Figure [6.3
we can see that point 2 coincides with the point of the highest profit for a
given combination of the ramp rates. This logic illustrates reaching a Nash
equilibrium between strategic producers.

We can obtain the same point by fixing the decision of one of the players
and observing the response, or reaction, of the other player. By repeating
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this for a range of values and for both players we obtain reaction functions,
shown in Figure The reaction functions intersect in the only point, which
is a Nash equilibrium (point 2 in Figures (b), and. In this simple
case of smooth profit functions we can prove numerically that this point is
the only Nash equilibrium.

Point 3 corresponds to the solution of the single-stage model for the given
choice of parameter §. We can see from Figure that this point offers the
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highest flexibility in ramp. Since the producers are competing in quantities
and ramps at the same time, they choose to leave the ramp-rate level flexible,
so they can react to the competitors’ strategies by withholding or providing
more production to the market.

The equivalence of the single-stage and two-stage models for the choice of
the conjectured price response representing Cournot competition can be found
in some other games. In [128| the authors study the capacity-investment
problem and show that for the case of a one load-period game and 2 symmetric
producers the investments are generally higher for the single-stage problem,
converging to the same value when competition structure is approaching
Cournot.

The above study confirms an intuition that market design impacts the
generators’ behavior and the social welfare. A two-stage setup, which may
seem fair intuitively, can lead to higher withholding and therefore social
welfare losses.

6.4.2 Stochastic case study

Authors in [117] find that by letting generators restate their ramp rates
only once in a longer time period, policy makers can prevent them from
responding to market conditions with false ramp rates. In this case study we
show that uncertainty, and in particular, wind uncertainty may actually lead
to the opposite results in certain circumstances. This means that there are
numerical examples, where uncertainty leads to lower levels of flexibility than
the deterministic case. In Table [6.1] we present the demand data used for
this case study. Note that the deterministic data corresponds to the average
of all stochastic scenarios. Figure [6.5] shows the comparison of ramp-rate
levels obtained in the deterministic and stochastic cases (for single-stage MCP
model we plot the maximum value of ramp rate in scenarios). We observe that
while the expected value of the demand intercept in the stochastic scenarios
is equal to the one in the deterministic case, the bids follow a very different
pattern. Several observations can be made:

e Counter-intuitively, we can observe that stochasticity yields smaller
total ramping levels than the deterministic scenario in both two- and
single-stage models — this can be explained by the fact that there is
a chance of getting higher profit from the expensive unit, if the high-
demand scenario occurs. In this case study, the generating companies
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facing the uncertainty choose to withhold their ramp rates to ensure a
certain level of profits in every scenario. However, we should note that
it is not the general case, and the results may be different depending
on the parameters of the model,;

The initial gap for the low values of the conjectured price response
corresponds to the situations close to perfect competition, when the
less expensive generator provides the whole capacity to the market, so
the second generator is not expected to ramp;

The kinks in the simulations of the bilevel model can be explained
by the solution procedure, as the EPEC is solved via diagonalization.
While in a single-level model the result is unique, the two-level model
can often have several Nash equilibria as solutions (several points at
which no company wants to deviate unilaterally). This is a reason for
the jumps in the optimal ramping level. In such case, when there are
multiple equilibria, they can be evaluated based on criterion (e.g., social
welfare - best/worst Nash equilibrium as discussed in [45]) to choose
the equilibrium that yields the best result with respect to this criterion.

Apart from these particularities that happen close to perfect compe-
tition, the ramping flexibility levels follow the same trend as in the
duopoly case. The two-stage model levels, for the most part, do not
seem to be affected by competitive market behavior. Moreover, the
ramping levels obtained in the single-level model under Cournot compe-
tition, and the bilevel ramping levels for arbitrary market competition
seem to converge to similar values.

These observations allow us to conclude that the outcome similarity of the
single- and two-stage models at Cournot holds even for the case, when we
consider the portfolio bidding and uncertainty. We also observe that in

Table 6.1: Optimization scenarios

Model Scenario probability, p.u. D?l, MW D?z, MW
Deterministic 1 700 1000
Stochastic sl: s2: 83: s4: sl:  s2: s3: s4: | sl: s2: s3: sd:

0.25 0.25 0.25 0.25 700 900 500 700| 1000 1000 800 1200
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Figure 6.5: Comparison of the stochastic and deterministic cases

this particular case the ramp-rate levels in case of simultaneous bidding are
steadily higher than in the case of the separated bidding stages.

It is worth noting that in the stochastic case the results do not show the
same stability as in two previous case studies. For example, we can find cases,
when the social welfare is higher in two-stage models, because it is more
profitable for companies to produce more, so the prices decrease. The intuition
for these observations is possibly in the structure of the stochastic model. In
the stochastic two-stage model ramp rate is declared before the uncertainty
is realized and production takes place. Therefore, the ramp rate constraint
does not hold as an equality between ramp rate and the difference in the
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production, and ramp rate cannot be always used by strategic generators
to affect the production levels. However, the existence of the cases that the
generators choose to limit their ramp rates even when facing the uncertainty
questions considerably the logic of separating the stages of deciding the
production and flexibility levels.

6.5 Conclusion

Generation-side flexibility becomes increasingly important as the share of
wind generation becomes larger and there are frequent swings in generation
supply. In this chapter we present how generating companies decide ramp-rate
flexibility and production in a one-stage and a two-stage processes, and we
analyze the impact of these different market setups on the results.

We present two models — a single- and a bilevel model — to represent
two different types of market setups: bidding the ramp and quantity levels
simultaneously; or doing it in two stages, where the generators choose their
ramp rates in the first stage, and compete in quantities in the second stage.
A market structure, where the bids on ramp rate are submitted before the
actual market clearing happens is a common regulatory practice, aiming to
minimize the manipulation on the ramping constraints. In this chapter we
show that such a regulatory intuition can actually lead to a higher level of
withholding. We provide a comparison for a range of different conjectured
price responses, capturing company’s beliefs regarding its influence on market
prices. The proposed model shows that for a market, the structure of which
is more competitive than Cournot oligopoly, it may be advantageous to allow
simultaneous bidding of ramp rates and quantities. We observe that otherwise,
the producers are likely to exercise their market power in the pre-commitment
stage as such strategy locks higher profits in the second stage.
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Conclusion

In the final chapter the key conclusions are drawn and the directions for the
future research are outlined.

7.1 Concluding remarks

This dissertation studies the exercise of market power in power systems with
high penetration of wind power. In this dissertation the problem of increased
generation flexibility requirements in wind-integrated systems is tackled. The
background for the studies and mathematical modeling, required to represent
the problem, are presented in Chapters [I}3]

Starting from Chapter [4] a model of profit-maximizing generators in a
system with high penetration of wind power is presented. The model captures
the need for flexibility in such systems, due to fluctuations of wind power.
This study is motivated by real examples of the strategic behavior, and
demonstrates how strategic generators may choose to withhold the ramp rate
in order to maximize their profit. The developed model represents the Nash
equilibrium between multiple strategic generators and is therefore formulated
as an EPEC. EPEC model is then recast as a single-stage MILP, which can
be solved by commercial solvers. The case studies presented in the chapter
emphasize the importance of modeling the ramp-rate withholding, as it turns
out to be crucial in the wind-integrated systems.

Chapter [5] extends the findings of the previous chapter to power systems,
where hydropower is present. Hydropower producers possess unique character-
istics and are usually used to balance the fluctuations in supply. These unique
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characteristics can create additional advantages for hydropower producers if
they have incentives to exercise market power. Several case studies of single
profit-maximizing hydropower producer and several hydropower producers
are described in this chapter. Also, the definition of Nash equilibrium under
uncertainty is discussed. The models of single and multiple producers can
be formulated as MPEC and EPEC respectively. The equilibrium problems
can then be reformulated as MILP and solved using modified Benders de-
composition approach. This approach allows solving larger case studies by
decomposing the formulation in smaller instances, avoiding the disjunctive
parameter.

Finally, Chapter [6] opens the topic of regulatory strategies to limit the
exercise of market power on ramp rate. In this chapter two market designs
are compared: a design where ramp-rate bid is decided at the same time
with production-bid (single-stage model), and a design, where generators first
declare their ramp rate and then in the second stage decide their production
bids. While the intention of the first design is exactly to limit the strategic
behavior on ramp rates, a simple case study with two symmetric generators
provides a close-form solution, which actually confirms the opposite. The
results of the two-generators case study show that generator may choose to
“lock in” higher profits by declaring lower ramp rate in the first stage. It
may be more advantageous from the system perspective to allow producers
declare their ramp rate at the same time with production bidding.

7.2 Future work

One of the major directions for future research is studying the techniques
for mitigating market power in wind-integrated power systems. The study,
described in Chapter [6] shows that the currently used techniques may not
have a strong theoretical foundation and need reconsideration. One of the
common mitigation approach is introduction of the forward contracts. This
approach needs to be studied further in the context of wind-integrated power
systems. Working paper |[J5| will discuss the theoretical implications of
forward contracts in wind-integrated power systems.

Another possible direction is studying the effect of new promising tech-
nologies for demand response. With advances in I'T systems, cheaper storage
technologies and price-observing consumers, there are more possibilities for
demand side to mitigate the strategic behavior of producers and smooth out
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the price peaks.

Presented models are also very computationally demanding. As case
studies are getting larger, the computation time increases. In order to use the
developed models for larger case studies, e.g. on European level, proposed
decomposition technique can be further improved, or new techniques can be
proposed.
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Exercise of Market Power on Ramp Rate in
Wind-Integrated Power Systems

Ekaterina Moiseeva, Student Member, IEEE, Mohammad Reza Hesamzadeh, Senior Member, IEEE,
and Darryl R. Biggar

Abstract—With an increasing penetration of wind power, there
is likely to be an increasing need for fast-ramping generating
units. These generators ensure that no load is lost if supply drops
due to the uncertainties in wind power generation. However, it is
observed in practice that, in a presence of network constraints,
fast-ramping generating units are prone to act strategically and
exercise market power by withholding their ramp rates. In
this paper we model this gaming behavior on ramp rates. We
assume a market operator who collects bids in form of marginal
costs, quantities, and ramp rates. He runs a ramp-constrained
economic dispatch given the generators’ bids, forecasted demand,
and contingencies. Following the game-theoretic concepts, we set
up a multi-level optimization problem. The lower-level problem
is the ramp-constrained economic dispatch and the higher-level
represents the profit maximization problems solved by strategic
generators. The whole problem is formulated as an Equilibrium
Problem with Equilibrium Constraints (EPEC). The outcome of
the EPEC problem is a set of Nash equilibria. To tackle the
multiple Nash equilibria problem, the concept of the extremal-
Nash equilibria is defined and formulated. We model the concept
of extremal-Nash equilibria as a single-stage mixed-integer linear
programming problem (MILP) and demonstrate the application
of this mathematical framework on an illustrative case and on a
more realistic case study with tractable results.

Index Terms—Market power; Ramp rate; Wind power.

NOMENCLATURE

The main notation is presented below for a quick reference.
Additional symbols are introduced throughout the text.

Indices

t Time periods, ¢ € (1..T),

c Possible contingencies, ¢ € (1..C),
) Generating units, 7 € (1..1),

is Strategic generating units, is € (1..1,), I C I,
s Bidding strategies, s € (1..5),

l Transmission lines, [ € (1..L),

n System nodes, n € (1..N).
Variables

™ Profit of generator i,

gite  Dispatched output by generator 4,
}Eﬁ?p Ramp-up bid of generator i,

R¥"  Ramp-down bid of generator i.

E. Moiseeva and M.R. Hesamzadeh are with the Electricity Market Re-
search Group (EMReG), KTH Royal Institute of Technology, Stockholm,
Sweden (e-mail: moiseeva@kth.se, mrhesamzadeh@ee.kth.se).

D.R. Biggar is with the Australian Competition and Consumer Commission,
Melbourne, Australia.

Parameters
K; Maximum output by unit 4,
c; Marginal cost of unit ¢,

De Probability of contingency c,

R}?  Ramp-up limits for unit ¢ in At

R¢™  Ramp-down limits for unit ¢ in At

Hj;,, Power Transfer Distribution Factor (PTDF),
F Flow limit on line [,

dy Demand at node n.

Lagrange multipliers (LM)
LM of unit ¢ lower capacity limit,
115 LM of unit ¢ initial state upper capacity limit,

,uﬁg LM of unit 7 transient states upper capacity limit,
A2 LM of energy balance,

pS. LM of a flow constraint on line I,

bl LM of unit i ramp-up constraint,

uh?2 LM of unit i ramp-down constraint.

I. INTRODUCTION

HE share of wind power in electricity generation is

forecasted to continue increasing rapidly worldwide [1].
One of the primary challenges in the integration of large
amounts of wind power is the problem of intermittency. Even
a carefully predicted wind power output may, with some
positive probability, depart suddenly from the forecast level
due to contingencies or weather conditions. This increasing
uncertainty and variability in power system conditions calls
for a revised market design, where a market operator forecasts
contingencies and carries out an efficient security-constrained
dispatch both before and after a contingency occurs. Such
dispatch, which takes into account transmission constraints
and ramping limits, will maximize the overall social welfare
in a wind-integrated system. By predicting the dispatch of
the system after each possible contingency, such an approach
ensures the optimal operation of the system ex ante and ex
post, minimizes the reserve capacity required, and facilitates
the integration of larger amounts of wind generation.

The advantages of security-constrained economic dispatch
have been well-discussed in literature [2]-[6]. The recent
advances in its formulations include modeling the wind gen-
eration uncertainty [7] and reserve procurement, based on
the contingency prediction [8]. More recently, [9] proposed
a short-run economic dispatch approach to the security-
constrained economic dispatch problem. The proposed short-
run economic dispatch approach models (1) the probabilities of
contingencies, and (2) the trade-off between the preventive and



corrective actions, in (3) a convex optimization structure.The
system is dispatched in a way that fast-ramping generators
can react to the contingencies in the most economic way. The
advantages of the proposed model are discussed in details
in [10]. An important feature of this dispatch model is that
the ramp-rates can be defined for longer time periods. This
feature of the model has two advantages: first, it reflects the
reality. In practice (e.g., in California electricity market), each
electricity producer is allowed to game on its (i) price offer, (ii)
quantity offer and (iii) ramp offer. However, unlike the price
and quantity offers, the producers usually indicate their ramp
constraints for a longer time horizon, e.g., for a six-month
time period, [11]. Second, this setting is expected to help
mitigating the exercise of market power on ramp-rate, [12]
Following such dispatch, the power system operator can adjust
the output of controllable units over very short time scales
by probabilistic trade-off between preventive and corrective
actions. The generating units’ bid information includes not
only the marginal costs and the available capacity, but also
the ramp rates of the units defined for a longer time-period —
as they affect the ability of generators to respond to different
contingencies.

Following the short-run economic dispatch framework in
[10], we assume an electricity market design where bid
information includes available generation capacity, marginal
generation cost, and generator’s ramp rate. A generator, seek-
ing to maximize its profit, takes a strategic decision regarding
its bid. In particular a ramp rate, affecting the rate at which a
generator reacts to a contingency, has an effect on electricity
spot price. A generator may choose not to bid its full ramp rate,
if it rationally expects such decision to maximize its revenue.

There is some evidence of strategic behavior with respect
to ramp rates occurring in practice. In the Australian National
Electricity Market (NEM), when transmission constraints arise
within a certain region, we observe a situation where genera-
tors are paid the regional price for their output rather than the
correct local marginal price. Generators in this situation are
said to be “constrained on” or “constrained off”. When the
regional price is high, a generator, which is constrained off,
will strategically manipulate its bid in a variety of ways in
order to maintain a high output target from the dispatch engine.
This typically involves offering the generator’s output at the
price floor (-1,000 $/M W h). Alternatively, some generators
also routinely reduce their offered ramp rate in order to
maintain their dispatch level. In an attempt to prevent this,
in 2009 a new rule was introduced which requires generators
to offer a minimum ramp rate of 3 MW per minute (or 3% of
unit capacity). More recently the Australian Energy Regulator
(AER) has proposed a rule, which requires generators to offer
a ramp rate which matches their technical capability.

The strategic manipulation of ramp rates, which has proved
troublesome in the NEM, is primarily a consequence of the
mis-pricing that arises from the regional pricing structure
of the NEM. Although it is a form of strategic behavior
it is not a consequence of the exercise of market power.
Nevertheless, it is possible to find examples in the NEM,
where market power in ramp rates is likely to be present and
may have been exercised. For example, the South Australian

region of the NEM features significant wind generation. At
times of high wind generation there may be only one or two
conventional thermal units generating in South Australia. If
the interconnector into this area is operating at its limit, a
reduction in wind output must be matched by a rapid increase
in output from those thermal units. On several occasions these
ramp-up limits have been binding, resulting in a spike in the
5-minute wholesale price to above 12,000 $/MWh. These
occasions have tended to coincide with times when the offered
ramp rate from the thermal units is less than their technical
capability. It appears that some generators may at times have
a commercial incentive to limit the rate at which they ramp
up in response to a fall in wind output.

This paper formulates a ramp-rate game in wind-integrated
power systems. The game is set up using the concept of the
leader-follower game in applied mathematics. The follower is
a market operator who runs the short-run economic dispatch
problem. The leaders are the profit-maximizing generators,
strategic on both ramp-rate and generation capacity. The whole
set-up is modelled as an Equilibrium Problem with Equilib-
rium Constraints (EPEC). The result of the EPEC model is
a set of Nash equilibria of the ramp-rate game. To tackle the
multiple Nash equilibria problem, the concept of the extremal-
Nash equilibria is introduced [16]. Different linearization
techniques are tested and the best one is selected [17]. The
final formulation of the proposed game-theoretic model is a
single-stage Mixed-Integer Linear Program (MILP). To show
the distinctive features of the proposed game model, the whole
formulation is applied to the illustrative two-node example
system and to the IEEE 24-node system. The simulation results
clearly show the strategic behaviors on ramp rates.

The developed model could be used by the market operators
and regulators for predicting market power abuse on ramp-
rate. We assume that the market operator or regulator has a
good knowledge of their systems. They can estimate the key
parameters of the model using the historical data to which they
have access.

The possibility of strategic behavior regarding the ramp
rate is poorly covered in literature. The authors of [13], [14]
consider ramp rates as a part of the bidding information
of profit-maximizing generating companies, but they do not
assume any strategic behavior relating to ramp rates. The
authors of [15] provide an analysis of strategic ramp-rate
bidding, but significantly simplify the market clearing problem
and do not take into account possible contingencies or network
constraints. To the authors’ best knowledge, there is no refer-
ence, which provides a full game-theoretic model for strategic
behaviors on ramp-rate capabilities along with the strategic
behaviors on quantity and transmission related strategies by
generating units. The proposed multi-period EPEC formulation
in this paper clearly models and predicts this complex bidding
behavior in wind-integrated power systems.

The paper is organized as follows. Section II presents the
model and the assumptions used. The application of the model
to the illustrative case is demonstrated in Section III and
to the realistic case in Section IV. Section V presents the
possibilities for the future extension. Finally, the conclusions
are drawn in Section VI. Appendix I presents the details on the



computation challenges, Appendix II provides the derivation
of KKT conditions.

II. RAMP-RATE GAME MODEL

This section gives the detailed formulation of the model
used in the simulations and the assumptions made. We have
a ramp-rate Stackelberg game with multiple leaders and a
single follower. The leaders are strategic generators, seeking to
maximize their profits by offering strategic bids to the market.
The follower is a market operator performing a security-
constrained short-run economic dispatch. We assume that all
forward contracts [18] have been released before the dispatch
takes place.

A. Short-Run Economic Dispatch

The short-run economic dispatch (SRED) represents the
lower level of the ramp-rate game. The set-up of this dispatch,
the motivation behind it, and the adopted assumptions are fully
described in [9] and [10]. We assume that with a non-zero
probability p., contingency ¢ will occur (e.g., wind power
unit goes off or the output of a wind power unit dramatically
changes with respect to a previous hour), and with probability
(1->". pc) no contingency occurs and the system operates in a
normal mode. Therefore, the objective function of the market
operator consists of two parts: the cost function before the
contingency occurs and the cost function after the contingency
occurs:

minimize (1 — ZPC) Z(Ci!]i) + ch(cigit(:) (D

9isGite

i c,i,t

Here ¢ is the number of periods needed for the system to
recover fully from the contingency. We consider time step 1 as
a non-contingency stage and denote: g;(;—1). = ¢;- Generation
in the following time steps ¢ in case of a contingency c is
denoted as g;c.

The constraints of the dispatch problem and the correspond-
ing Lagrange multipliers are:
a) Production constraints:

9is Gite > 0 “ fite
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b) Energy balance constraints:
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¢) Network flow constraints:
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d) Ramping constraints:
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The short-run economic dispatch problem in (1)-(5) is
convex and satisfies the weak Slater’s condition. Accordingly,

the Karush-Kuhn-Tucker (KKT) optimality conditions can be
written as linear or mixed-integer system of equations using
one of the three following techniques to avoid nonlinear
complementary slackness conditions (CSCs):

e CSCs linearized through disjunctive constraints.

The disjunctive constraints [19], or BigM technique, is
a commonly used technique to linearize the expressions
of the form: yTg(z,y) = 0, where both y and g(x,y)
are positive continuous variables by introducing a binary
variable b and a disjunctive constant K. This approach
is frequently used in equilibrium models, for example
MPEC model in [20], as it allows for straight-forward
reformulation of bilevel models.

o CSCs linearized through SOS type I variables.

As it is described in [21], the terms of the form,
yPg(z,y) = 0, where y > 0 and g(x,y) > 0, arising
in equilibrium problems formulations, can be efficiently
linearized by introducing the SOS type 1 variables v+
and v™.

Strong duality theorem implication. In this approach, we
replace all CSCs with the condition that primal and dual
objective functions give equal results at the optimum
(Strong duality condition). The strong duality expression
is derived in (28).

Some further details and a comparison of these techniques
can be found in Appendix I. We will denote the total number
of primal feasibility equations (2)-(5) as a star (x). Three
discussed techniques for linearizing the KKT system are
compared in Table I in terms of constraints, variables and
constant parameters. Simulating these techniques shows that
computational time depends strongly on these values. As
shown in Table I, the strong duality technique is the most
computationally efficient technique for linearizing our KKT
system. Therefore, to ensure the scalability and computational
efficiency of the problem formulation, we adopt the strong
duality technique in our further simulations.

For the conciseness and tractability reasons the full deriva-
tion of KKT conditions is shown in Appendix II. The final set
of optimality conditions for the short-run economic dispatch
problem includes:

o The primal feasibility constraints of the problem: (2)-(5)

o The dual feasibility constraints — the non-negativity of
Lagrange multipliers corresponding to the equations (2),
(4) and (5)

o The stationary conditions: (27)

The strong duality term: (28)

TABLE 1
LINEARIZATION TECHNIQUES FOR KKT SYSTEM.
(%) = (4TIC — 3IC + I+ TC + LTC) - NUMBER OF PRIMAL
FEASIBILITY CONSTRAINTS. CAPITAL LETTERS — NUMBER OF ELEMENTS
IN SETS, SEE NOMENCLATURE.

Strong duality SOS type 1 BigM technique
Constraints 2(x)+1—TC | 4(x) —3TC | 4(x) —3TC
Binary variables | 0 0 (x) —TC
SOS!1 variables 0 2(x)—2TC | 0
BigM constants 0 0 (x) —TC




B. Profit Maximization and Extremal-Nash Equilibria

The upper-level of the ramp-rate game is the profit-
maximization task solved by the strategic generators. The
profit formulation for the generator ¢ can be written as:

i = (pn — ¢i)9s, (6)

where p,, is the price at the connection node n of generator

i. The nodal price p, can be expressed as a summation

of a system price, A2, and transmission congestion price,

S Hi, (pn = A2 — 37, u§ Hys). The expression (6) for

the initial state and for each time step ¢ is then:

e = ufioHy = ci)gite. )
[

Tite =

Expressing the A2 from stationary conditions (27), following
the logic in [16], we recast the profit expression as:

Tite = 2 + (S + piie + 12 gite- ®

This expression contains nonlinear terms in primal and dual
variables. However, using the complementary slackness con-
ditions (26), we can equivalently write:

129 = piPKi,  phegice = pie Kie
> ullgie = Z piE R ©
t
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For the nonstrategic generators the bidding levels of ramp rates
are true ramping capabilities, (R'? = R and R¢" = RI™).
For the strategic generators, we assume a strategic choice
on ramping level. We can model this strategic choice, by
introducing a vector of binary variables 11’{' and 2@

(bo + Z bpx?

R{™ = (bo + Zbkxg’: )R
k

R“p (10)

an

Here by and by, are vectors of constants, such that by+Y_, by =
1. This way, 2*2"*" = 1 means that the generator bids the full
ramp-rate capablllty to the market. If z;; = 0, then R!¥ =
boR' and R{" = byR¢", which means the generator bids
the minimum possible ramp rate level. This way a strategy set
S; = {s1, s2...s} for the strategic unit ¢ is obtained as a set
of all k possible combinations for the vector %",

We substitute the expressions (9)-(11) in the profit for-
mulation (8) and use the disjunctive constraints [19] to lin-
earize the product of binary variables 3’ " and co[r)ltir[])uous

1,D2

variables [LB , by introducing a new variable z;,
up,dn, D1,D2

" Wie Assummg for conciseness that R;¥ = RI" =
R;, we obtain the following expression for the profit:
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terms are linearized with a following set of
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Here K and K, are big-enough disjunctive constants, de-
signed according to the recommendations in [22].

The Nash equilibrium between the strategic generators on
ramp-rate is reached, when given the ramp-rate strategy of
other generators, no player wants to deviate from the chosen
strategy. Or, expressed mathematically:

S mirels]is) =Y mie(si 5).

itc itc
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Definition: The Extremal-Nash equilibria
The Nash equilibrium sj, is called the worst-Nash
equilibrium of the ramp-rate game if and only if
sty = arg mazimize DC(s*) where DC refers to the
dispatch cost in the short-run economic dispatch formulation.
Alternatively, the s is called the best-Nash equilibrium of the
ramp-rate game if and only if s}, = arg minimize DC(s*).
The extremal-Nash equilibrium is then defined as sy, or s7p.

It should be noted that the number of strategies, available
for the actors, directly affects the number and the existence
of Nash equilibria. There are three possible situations, (i) no
equilibrium: in which case the game-theoretic model is not
useful, (ii) one equilibrium: which is an idealistic case, (iii)
multiple equilibria: in which case we propose focusing on the
above-mentioned extremal-Nash equilibria.

The whole ramp-rate game model consists of the optimality
conditions derived in Section II-A, the profit formulation (12),
disjunctive constraints (13), an expression ensuring the Nash
equilibrium outcome (14), and an extremal-Nash equilibrium
expression. As an example, the mixed-integer linear program-
ming problem for finding the best-Nash equilibrium is set out
in below:

Minimize (1 — pr Z cigi) + Zpr((’thtc) 15)

o ot
st Gi,Gite 20, gi < Ky gie < Kic (16)
> o= Zdn a7
n,ien
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n,ien
gi(t) — gi(t — 1) < R (19)
— gi(t) +gi(t —1) < R (20)
figes 12 S il nBE n2 > 0 @

Profit formulation and linearization (12)-(13)
Nash equilibrium condition (14)

Stationary conditions (27)

Strong duality implication (28)
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Fig. 1. The two-area system. The generation and demand are aggregated to
2 nodes with a constrained link between them.

For the worst-Nash equilibrium formulation, the minimiza-
tion problem above will be changed to the maximization
problem.

III. ILLUSTRATIVE EXAMPLE

In this section, we demonstrate the developed model on a
simple example system. We also explain the concept of the
extremal-Nash equilibria as the upper and lower bounds of
the Nash equilibria set.

‘We consider a network with two distinctive areas. The areas
are represented by 2 nodes, aggregating the units located
in the associated areas. We consider a capacity-constrained
line, connecting these 2 nodes, as shown in Fig. 1. Node
1 represents a generation surplus area, while the demand is
mostly concentrated in node 2. An example of this set-up
is the Swedish power system, where generation is mainly
concentrated in North and the load centers are situated in
South. The northern and southern parts are only connected by
several constrained links. We use this set-up for a transparent
demonstration of generators’ bidding behaviors on ramp-rate
in presence of network and unit constraints. The unit data is
presented in Table II.

While units G1 to G3, G5 and G6 have low probabilities of
failure, unit G4, representing the aggregation of wind power
units, has a 1% probability of going off the network, due to the
extreme wind conditions. The demand is predicted to be 1500
MW during the short dispatch period under consideration. The
dispatch is shown in Fig. 2.

The market operator collects bids, an information about the
expected level of demand and possible contingencies. Here,
we consider 2 cases: case (a) represents a base-case, when
generators are bidding their true ramping capabilities. In case
(b) the generators G5 and G6 have 4 bidding strategies on
their ramping capabilities. They can offer 4 levels of ramp
rate, from 25% to 100% of their true ramping capability.

In case (b) the bidding decisions of strategic generators
G5 and G6 differ. Table II presents that in case of the best-

TABLE II
UNIT DATA FOR THE 2-NODES SYSTEM. R;”’:Rf":Ri IN BOLD —
IDENTIFIED CASES OF WITHHOLDING.

Unit, Capacity, Costs, Ramp rates, (MW/hr)
i K; MW) | ¢; €MW) | R, | BNER; | WNE R;

Gl 500 10 1000 1000 1000
G2 500 100 100 100 100
G3 800 50 100 100 100
G4 800 0.1 100 100 100
G5 500 200 100 100 75
G6 500 1000 500 375 375

(a) Competitive bidding

1 2 3 4 5 6 7

MCP (€): 0.1 1000 1000 1000 1000 200 200

z (b) Strategic bidding - BNE
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(b) Strategic bidding - WNE

1500
1200
900
600
300
0
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Time steps (t)
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Marginal costs: min e————— m— max

Fig. 2. Short-run economic dispatch and market clearing prices (MCPs)
for the cases of (a) competitive and (b) strategic bidding. BNW: best-Nash
equilibrium case, WNE: worst-Nash equilibrium case.

TABLE 11T
COST OF MARKET POWER ON RAMP RATE FOR THE ILLUSTRATIVE CASE
STUDY (LOSS OF G4 WITH PROBABILITY OF 1%, G5 AND G6 STRATEGIC)

No gaming Best NE | Worst NE
Dispatch costs (€) 31,779 38,641 45,144
Cost of market power (€) 6,862 13,365
Relative increase in costs 21.6% 42%
Average electricity price (€) 629 657 771

Nash equilibrium (BNE) generator G6 withholds 25% of his
ramping capability. The dispatch then follows the pattern
showed in Fig. 2-(b) BNE. We see that the lower ramp rate
of G6 forces the market operator to dispatch G5 even in a no-
contingency state (time step 1). In the case of the worst-Nash
equilibrium (WNE) both generators withhold. The corrective
actions are taking more time and dispatch costs increase. As
shown in Table III, the costs of market power in cases of BNE
and WNE are €6,862 and €13,365, respectively. This means
21.6% and 42% increase in dispatch costs as compared to
the dispatch cost of the competitive case. The average market
clearing prices (MCPs), calculated through 7 periods, increase
as well.

We see that the concept of extremal-Nash equilibria, in-
troduced in Section II sets the bounds for the solution space
(Nash-equilibria cloud) in the case of strategic generators. The
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Fig. 3. The concept of Nash-equilibria band with BNE and WNE as the lower
and upper bounds. Clouds of Nash equilibria solutions for the cases, when
generators G5 and G6 are strategic, and when all generators are strategic.

solutions in the cloud are equiprobable.

Fig. 3 presents the evolution of dispatch costs over different
contingency probabilities. The cloud of solutions, when all
generators are strategic, is a super set for the cloud of
solutions, when only generators G5 and G6 are strategic.
Both bounds are important for the market power assessment;
however, depending on the application we could be interested
in a lower or upper bound. Another observation from the
figure is that the cloud becomes thinner and tends to the non-
strategic costs, when the probability of contingency is higher.
This can be explained by the trade-off between preventive and
corrective actions. As a severe contingency is more probable,
system operator takes more preventive actions to minimize the
costs and often the most expensive generators are dispatched
in the preventive action.

IV. CASE STUDY

The EPEC problems are widely known to be computa-
tionally hard and not easily scalable, [23]. The formulation,
developed in Section II, is numerically efficient due to the
linearization techniques employed. In Section IV-A, we first
extend the ramp-rate game model to include the strategic
bidding on generators’ capacities. Then the full model is
applied to the IEEE 24-node example system. Section IV-B
describes the results of simulations on the test system.

A. Ramp and Quantity Gaming Model

We extend the model described in Section II by considering
the game both on quantity and ramp rate. To do so, we
introduce the variable f(ic, which is the bid on generation
capacity, strategically chosen by the generator:

Kie = (bo+ > by K. (22)
k

Here " is a vector of binary variables. Constraints (16) are
then changed to the following expressions:

Girgite 2 0, 9i < K, gic < Kie (23)
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Fig. 4. The IEEE 24-nodes example system.

Following the same logic as in ramp-game, we change the
expression for the profit:

i =bopd® + 3 bzl + (Z b K (24)
k tc k
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same way as described in (13):
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where K3 4 are disjunctive constraints.

B. Simulation results

In this section, we will model the strategic behaviors both
on ramp rate and generation capacity in the IEEE 24-node
test system. The model is implemented on GAMS platform
and solved by CPLEX solver. The GAMS code runs on 2.8
GHz Intel Processor with 2 cores and 8 GB RAM. All two
cores are used for the CPLEX solver. The data for the test
system can be found in [24]. In our study we consider Bus 13
as a slack bus.

The test system shown in Fig. 4 has 15 generating units,
where G13 is an aggregation of several wind power units.
The output of G13 is predicted to be 300 MW, however there
is a certain probability that the real output will be different.



There is a probability of 1% that the output of the aggre-
gation of wind turbines is reduced to 120 MW. We assume
the strategic behavior of generators G1, G2, G3, G5, G6, G11
and G12 and compare their profits in case of different demand
response scenarios. The assumed cases of demand response
(DR) are:

e Case 1: we introduce the value of lost load — if some
demand is not covered, the price in the corresponding
node spikes to a very high value (one-step DR).

o Case 2: there are two steps of demand response — a
limited response with medium high prices, and a value
of lost load (two-step DR).

o Case 3: there are three steps with low and medium prices
and a value of lost load (three-step DR).

Table IV presents the profits, obtained by generators in
the cases of best-Nash equilibrium (BNE) and worst-Nash
equilibrium (WNE). The dispatch costs in different cases of
demand response are also presented in this table. Table V
presents the bid values of ramp and generation capacities in
the cases of different demand response levels and on different
bounds of Nash equilibria cloud. We observe that in all cases
of demand response there are occurrences of withholding
behavior (market power) either on generation capacity bid,
ramp rate bid or both. However, both the dispatch costs and
profits of strategic generators decrease as we introduce several
steps of demand response. As probability of contingency is
relatively small, system operator does not take preventive
actions, which can be reflected in dispatch costs.

The wind-integrated power systems are characterized by
variability of wind power outputs. Therefore, we investigate
different probabilities and sizes for wind power contingencies.
Fig. 5 shows the dispatch costs in the case of two-step demand
response with 7 strategic generators. Both BNE and WNE
costs are plotted. In the BNE case, when the actual output
of the wind generating unit is more or around the predicted
value we observe a linear increase in the dispatch costs with
the increased probability of congestion. However, when the
severity of contingency is high — the actual wind output is
less than predicted value by 25% or more — we observe rapid

TABLE IV
PROFITS AND DISPATCH COSTS IN CASE OF BEST- AND WORST-NASH
EQUILIBRIUM (BNE /WNE). 1SDR: ONE-STEP DEMAND RESPONSE,
25DR: TWO-STEP DEMAND RESPONSE, 3SDR: THREE-STEP DEMAND

RESPONSE.
Unit, Compe- 1sDR 2sDR 3sDR
is -tetive BNE /WNE | BNE/WNE | BNE /WNE
Profits of strategic generators, 103-€
Gl 0.4 0 /407 59 /407 0.23 /203
G2 5.1 407 /1,562 467 /1,563 7.4 /781
G3 0.4 1,563 /407 89 /407 0.3 /203
G5 2.9 1,538 /2,307 | 457 /1,538 0.8 /1,538
G6 0.7 3,013 /4,543 | 898 /1,514 6.7 /1,514
Gl1 17.7 102 /2,059 1,233 /2,059 | 22.4 /2,059
GI2 17.7 411 /4,543 1,233 /2,059 | 22.6 /2,059
Dispatch costs, 103-€

System | 49 99 /1,096 67 /1,750 49 /1,640

(a) Best-Nash equilibrium
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Fig. 5. Dispatch costs for the cases with different output deviation predicted
with different probabilities. (a) Best-Nash equilibrium case, (b) Worst-Nash
equilibrium case.

TABLE V
RAMP AND CAPACITY WITHHOLDING IN CASE OF BEST- AND
WORST-NASH EQUILIBRIUM (BNE /WNE). IN BOLD — IDENTIFIED
WITHHOLDING.ISDR: ONE-STEP DEMAND RESPONSE, 2SDR: TWO-STEP
DEMAND RESPONSE, 3SDR: THREE-STEP DEMAND RESPONSE.

Unit, Capacity bid, K;, (MW) Ramp rate bid, R;, (MW/hr)
is 1sDR 2sDR 3sDR 1sDR 2sDR 3sDR
Gl 3/6 6/2 61/3 40 /40 |20 /40 | 30/20
G2 411 473 2/1 152 /152 | 152 /152 | 152 /76
G3 3/6 6/3 6172 10 /40 | 30 /40 |20 /20
G5 21 /21 21175 211/5 150 /300 | 150 /150 | 300 /150
G6 972 972 972 295 /443 | 295 /148 | 443 /148
Gl1 20/20 [20/5 20 /5 400 /200 | 400 /200 | 400 /200
G12 20/15 [10/5 15 /5 400 /100 | 400 /200 | 400 /200

increases in the dispatch costs caused by the gaming behavior
of strategic generators. In the WNE case, the dispatch costs
are high in all studied cases.

According to the obtained results we can observe that when
the severity of contingency is high, which may depend on
the system flexibility, as introduced in [10], the generators are
prone to exercise market power by bidding strategically on
their capacity and ramp rate levels. This strategic behavior
affects considerably the dispatch costs and prices in the
system, especially when the demand response is limited. This
result supports the necessity of ramp-game modeling in the
systems with intermittent supply.

As discussed in Section II, the strong duality implemen-
tation results in a smaller number of constraints and binary



variables. This allows us to apply the model for bigger case-
studies. The computation time for this system varies with
the number of strategic units (dominant market actors), and
severity of the contingency. As an example, the computation
time for the BNE case of two-steps demand response and
the wind generators output predicted to be 120 MW with
probability of 1% is 38 minutes.

V. FUTURE WORK

The presented model opens an interesting subject for the
studies on ramp rates gaming in electricity markets. The model
can be extended to consider a set of strategic decisions on ramp
rates, bidding quantities and prices. Such extension will reflect
the existing markets and make it possible to introduce and
test market power mitigation policies, such as an extension of
the bidding period for ramp rates. Improving the numerical
efficiency of the proposed model and considering a larger
strategy set is another extension to this work.

Further, modeling the stochastic volatility of wind power
output using the stochastic programming techniques can help
in better understanding of gaming on ramp rates. Finally, the
model can be extended to consider gaming with incomplete
information.

VI. CONCLUSION

This paper presents a ramp-rate game model. We model
the strategic behavior in wind-integrated systems, where the
intermittency is high, so that the security-constrained short run
economic dispatch is a welfare-maximizing way of operating
the system. We assume a market operator who collects the
bid information, including marginal costs, available capacity
and ramp rates. Strategic generators, willing to maximize
their profit, can bid lower than their true ramp rates and
capacities. The outcome of the market is a Nash equilibrium.
We introduce the concept of Nash-equilibria band to tackle
the multiple Nash equilibria problem and formulate the whole
model as a mixed-integer linear program.

We demonstrate an application of the developed model on
an illustrative case study. We show that in presence of network
constraints and a major contingency, the generators are prone
to exercise market power and bid a lower ramp rate to the
market.

Further, we extend the mathematical formulation by adding
the possibility of strategic behavior on capacity and compare
the dispatch costs in the cases with different demand response
levels using a 24-nodes IEEE example system. We show that
if the severity of contingency is high, strategic generators are
prone to maximize their profits by bidding strategically to the
market. We also quote the computation time.

Obtained results are important for the studies of increasing
penetration of wind generation. This study shows that contin-
gencies, introduced by a strong intermittency, have a signifi-
cant effect on the proneness of generators to bid strategically,
which in turn affects the dispatch costs and, therefore, the
system social welfare. Here, the ramping capabilities of the
units are particularly important, as they define the speed, with
which the system reacts to the contingencies.

APPENDIX I: COMPUTATIONAL CHALLENGES

Solving EPEC problems is a well-known computational
challenge. Finding the optimal solution is often complicated
either by a big number of binary variables or by the heuristic
decomposition techniques, which may not guarantee finding
the global optimum. The search in the solution space is usually
performed by branch-and-cut, with a preceding decomposition
or reformulation. In this section we demonstrate several re-
formulation techniques, applicable for the described problem
and compare their computational performance for finding the
global optimal solution.

A. Disjunctive Constraints

The disjunctive constraints, or BigM technique, is a com-
monly used technique, first introduced in [19], to linearize
the expressions of the form: y”g(z,y) = 0, where both y
and g(z,y) are positive continuous variables. We introduce a
binary variable b, so that the expression can be rewritten as
yb+ g(x,y)(1 —b), which in turn can be expressed with a set
of constraints:

0>y>K(1-b)
0> g(z,y) > Kb

The value of K is a pre-determined parameter and should be
chosen in such a way that the value of X is bounded above
by it. However, the value should not be chosen too high,
as it makes the optimization task, where such technique is
implemented, ill-conditioned, and, therefore, computationally
difficult [22].

B. SOSI-based Approach

The SOS1-based approach for solving mathematical prob-
lems with equilibrium constraints is explicitly discussed in
[21]. The method is applied to the problem with equilibrium
constraints in the form: y”g(z,y) = 0, where y > 0,
g(z,y) > 0, and z, y are optimization variables. After the
introduction of SOS1 variables v™ and v~ the equivalent
constraint set is:

y>0

gz, y) >0

vt 07 = (y+g(z,p))/2
vt =07 = (y—g(z,9))/2

C. Strong duality

Another way of reformulating a lower-level optimization
problem is by using the strong duality property in the KKT
conditions. To do this, the problem should satisfy Slater’s
sufficient condition for strong duality, namely the primal
problem should be convex and strictly feasible. This technique
is commonly used for the solution of MPECs [25], as it
allows avoiding the complementary slackness conditions and,
therefore, nonlinearities in the lower level.



D. Comparison

The common problem with using the disjunctive constraints
is that, while seemingly easy to implement, they need to be
chosen carefully, as described in detail in [22]. Additionally,
using this method of linearization requires adding a number of
binary variables, which increases the computational time for
the large-scale mixed-integer problems [26].

In contrast, using Schur decomposition and SOS Typel
technique does not require preliminary design. Authors in
[21] show that under certain conditions, the nonlinear terms,
arising in MPEC formulation can be linearized using the
SOS1 technique. This, in turn, requires the introduction of
new variables, but the method is shown to outperform the
disjunctive constraints technique in terms of computational
efficiency

The drawback of the additional variables is canceled out
in the strong duality formulation used to avoid the nonlinear
terms in the formulation [17]. The conditions for applying this
technique typically hold in the EPEC problems arising from
modeling the electricity markets. We say that the strong duality
holds if the weak Slater’s condition holds.

All three modeling approaches were tried for the formula-
tion of the problem. It is observed that due to the decreased
number of variables, the strong duality technique significantly
outperforms two other techniques, making the scaling of EPEC
possible.

APPENDIX II: KKT CONDITIONS OF THE OPTIMAL
DISPATCH

In this section we denote the time step 1 as a no-contingency
state. Therefore, g;(;=1). = gi- To derive the KKT conditions
of the problem we first write the Lagrangian corresponding to
a linear problem given in (1)-(5):

L=—(1~ Zpa Z(cigi) + 2pc(cigitc> (25)
+ Zumgm + Z i (K : '— 9:)
+ ”ZL A3 (Koo — gie) + Z AL Z Gite — dn)
itc n,ieEn
+ ZZM“L Z Hy; Z Jite *edn))
te n,ieEn
+ Z PEHRP — gie + g;t—l)c)
+ izcﬂnc Rdn + Gite — Gi(t—1)c)-
ite

The dual feasibility conditions are:

Al D1
Hites 192, s, 1o e 2 >0

The corresponding complementary slackness conditions are:

uﬁllzgitc = 01

/‘gf (Kie — gite) = 0,
pite(Fr = Z Hyi Y (gie —dn)) =0, (26)
n,i€n
Mm (R P — Gite +97(f— c) =0,
pR2(RI™ + gipe — Gi(t-1)c) = 0.
The stationary conditions can then be formulated as:
dL
T = pr Z 4y peci @)
e itc
+uie+ Zu + Zum
itc itc
N S
nltc
- Z pize + Z tiize
itc itc
+ > R - > 2=

i(t+1)e i(t+1)c
The implication of a strong duality theorem is that the primal
objective equals dual objective at optimum. This can be

expressed mathematically as:

(1prL D (cig) + Y pelcigine) = — ZWK (28)

u c,i,t
7ZM£;§KLL Z)\ Zdn
itc
- Zm,cZHh(F/ + Z dy)
lte n,i€N
_ ZMN(‘ Ru[l Z MDZRdn
itc itc

The strong duality equation (28), added to the KKT conditions,
is equivalent to the complementarity conditions. This makes
complementarity conditions unnecessary in the problem for-
mulation.
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Abstract

A ramp rate usually defines the speed at which an electric power producer can decrease
or increase its production in limited time. The availability of fast-ramping generators sig-
nificantly affects the economic dispatch, especially in the systems with high penetration of
intermittent energy sources, e.g. wind power, since the fluctuations in supply are common
and sometimes unpredictable. One of the regulatory practices of how to impel generators to
provide their true ramp rates is to separate the stages of submitting the bids on ramp rate
and production. In this paper we distinguish two types of market structures: one-stage —
when electric power producers are deciding their production and ramp rate at the same time,
or two-stage — when generators decide their ramp rate first, and choose their production lev-
els at the second stage. We employ one-stage and two-stage equilibrium models respectively
to represent these market setups and use a conjectured price response parameter ranging
from perfect competition to the Cournot oligopoly to investigate the effect of the market
competition structure on the strategic decisions of the generators. We compare these two
market setups in a symmetric duopoly case with two time periods and prove that in the
two-stage market setup the level of ramp rate is independent of the strategic behavior in the
spot market and generally lower than the one offered in the one-stage setup. We also show
that the ramp-rate levels in one- and two-stage models coincide at the Cournot oligopoly.
We extend the model to asymmetry, several load periods, portfolio bidding, and uncertainty,
and show that withholding the ramp rate still occurs in both models. Our findings prove
that market regulators cannot rely on only separating the decision stages as an effective
measure to mitigate market power and in certain cases it may lead to an adverse effect.
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1. Introduction

The deregulation of electric power industry has started in 1981 in Chile, followed by
England and Wales (1990), Norway (1991), and Argentina (1992), (Pérez-Arriaga, 2014).
As a result of the changes, the countries moved away from a centralized planner deciding the
investments and committing the units for the dispatch, to a system where private companies
compete to supply energy in a market framework. Investments in the market are partly
induced by the market processes and partly follow the regulatory incentives. The latter
became one of the main reasons why in recent years the share of wind power has been
increasing rapidly, and it is widely acknowledged that flexibility of the power system is the
key for integrating variable renewable energy sources.

In general sense, power system flexibility describes the extent to which a power system
can adapt the patterns of electricity generation and consumption in order to maintain the
balance between supply and demand in a cost-efficient manner. Flexibility expresses the
capability of a power system to maintain continuous service, even when exposed to rapid
and large swings in supply or demand (Miiller, 2014). There are many levels at which
flexibility can be offered in power systems: flexibility of generation resources, flexibility of
transmission and distribution systems, flexibility of the market to incentivize the power
system to account for variability, and demand side flexibility (Strbac, 2008).

One of the most important aspects of power system’s flexibility is an availability of a
sufficient share of rapidly dispatchable generators. With a high wind power share, when
generation suddenly departs from the dispatched level it is very important that there are
enough of fast-ramping generators, able to sustain the energy balance (Holttinen et al., 2011).
A lack of such generators may result in price spikes, when the generation is insufficient. The
higher the ramping gradient that a power plant can cover, the fewer plants are needed to
meet a given net load ramp, thus leading to less minimum generation per ramping (Brauner
et al., 2014). There is a variety of market designs created in the deregulated framework
taking into account the limitations of the units: markets in PJM Interconnection, New
York Independent System Operator (NYISO) and New England electricity markets involve
multi-dimensional auctions, so that participants specify technical constraints during the
dispatch. In Contreras et al. (2001) the authors describe the day-ahead electricity auction
in the Spanish system. The bidders are allowed to specify ramp-rate constraints, which are
incorporated into the market clearing formulation and solved using a heuristic algorithm.
Another design, called short-run economic dispatch, taking into account the generation
flexibility, is studied in details in Hesamzadeh et al. (2014). The authors propose an optimal
dispatch approach, where possible system contingencies are internalized and flexibility of the
units is taken into account to reach a balance between preventive and corrective measures
for these contingencies.

There are multiple studies and models, trying to evaluate the system’s flexibility. For
example, IMRES is an electricity generation-planning model for low-carbon power systems
(De Sisternes, 2013) and BID3 is a model developed by Poyry Management Consulting (UK)
for future scenarios evaluation. Ramp constraints are included in the constraints set in paper
describing the profit-maximizing bidding strategies in Li et al. (1999) and operational costs
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minimization in Munoz et al. (2016).

However, there is an important drawback in these models since they do not consider
the possibility of strategic behavior involving ramp constraints. It was first shown using
an overly simplified model in Kai et al. (2000) that generators can act strategically when
declaring their bids on ramp rate to ensure higher profits in the production stage. There
is a thorough analysis in Oren and Ross (2005), showing that preventing such gaming is
a difficult task and there are no commonly adopted instruments that guarantee to prevent
gaming behavior. A game-theoretical bilevel model for analyzing the market power on ramp
rate is employed in Moiseeva et al. (2015), however it is assumed that ramp-rate and quantity
decisions are taken simultaneously and the market structure is fixed as a Cournot oligopoly.

One of the techniques to avoid the manipulation is to allow ramp-rate constraints to
change only once a month, or some other suitable time interval, as adopted, for example,
in California (CAISO, 2009). The “NYISO Market Participants User’s Guide” states that
regulation movement (MW /6 sec) response rate can be updated in three business days (NY-
ISO, 2013). While this has a very little theoretical foundation, the purpose is to prevent
generators from responding to the market conditions with false ramp rates. The expected
effect would be that, exposed to the uncertainty and high competition, generators would
bid the true ramp rate constraints. However, such a mitigating strategy allows a company
to specify a deceptive constraint for the whole period in which the ramp constraint can be
changed: a regulatory agency often cannot certify the constraint as generators are usually
allowed to bid to several markets and may divide their ramping capability between the mar-
kets (Oren and Ross, 2005). A different strategy is adopted for example in Nordic electricity
market, where generators are free choosing the ramp rate between their flexible orders. To
the best of our knowledge there is no research evaluating the efficiency of separating the
market stages of production and ramp bids with respect to market power considerations.

In this paper we study the practical implications of separating the stages of a strategic
decision as a technique to mitigate the exercise of market power. We model a day-ahead
market and allow generators to specify the ramp-rate level as a part of their offers. We
use two types of models: a single-stage equilibrium model, corresponding to taking the
strategic decision regarding a ramp-rate level and produced quantity simultaneously; and a
two-stage model, in which generators choose their ramp rates in the first stage and compete
in quantities in the second stage. A single-level setup can be reflected by a complementarity
problem formulation (linear — LCP, or mixed — MCP) (Hobbs, 2001, Garcia et al., 2006),
while a bilevel setup takes a form of an equilibrium problem with equilibrium constraints
(EPEC) (Ralph and Smeers, 2006).

In order to study the effect of the market structure we employ a conjectured-price re-
sponse parameter, which is immediately obtained from the conjectural variations model,
capturing various degrees of strategic behavior in the spot market. Conjectural variations
(Fudenberg and Tirole, 1989, Figuieres et al., 2004) reflect the firm’s conjecture about other
firms’ reaction to a change in its production. This representation allows us to express
the special cases of oligopolistic behavior ranging from perfect competition to a Cournot
oligopoly (Daxhelet and Smeers, 2001). The method attempts to capture the dynamic game
features in a “reduced-form” static competition model by specifying a certain parameter,
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which represents the beliefs of the firm. Since this method can be seen as a “shortcut” for
more complicated behaviors in implicit dynamic games, it has been a subject of theoretical
controversies (Tirole et al., 1988). However, the conjectural variations appear as a versatile
tool, when analyzing the behavior of strategic agents in markets with different degrees of
competitiveness, as in reality markets are neither perfectly competitive, nor can be charac-
terized as Cournot oligopolies (de Haro et al., 2007). This is also the reason why conjectural
variations are consistently used in industrial applications.

Multi-level decision-making is a widely studied research topic. Drawing on the existing
research in the area, our paper is similar in spirit to the work in Wogrin et al. (2013b), where
the authors compare the open-loop and closed-loop models for the case of capacity expansion.
Providing a similar analysis of the differences between the models, our formulations also
consider the inter-temporal ramp-rate constraints. We also demonstrate an extension of the
models to the stochastic case (Gabriel et al., 2009), when there are several scenarios of the
market outcomes. Further, we reflect the concentration of the real-world markets (Gabriel
and Leuthold, 2010) using a portfolio formulation, when several units may be owned by a
single generating firm.

Single-level problems, being easier in the solution and the interpretation, are widely
used in practice. In Murphy and Smeers (2005) the authors interpret a single-level capacity
expansion problem as simultaneously building the capacity and selling it in long-term con-
tracts, so there is no spot market. In Allaz (1992) the authors represent a two-stage game of
forward contracts and spot market competition with a single-level model, using conjectural
variation parameter to reflect the dynamics of the game. However, as noted in Wogrin et al.
(2013b), closed-loop models reflect sequentiality of the markets better. The difficulty of
solving the closed-loop equilibrium models leads to the necessity of using either iterative
algorithms as in Gabriel et al. (2012), or ez post solution analysis (Pozo and Contreras,
2011). In this paper we also mention the arising difficulties of solving EPECs, including
the fact that possible multiple solutions can appear (Huppmann and Egerer, 2015). We
also show that with a particular value of conjectured price response (at Cournot oligopoly)
the solutions of the single-level and the bilevel models are similar, and, therefore, the easier
single-level model can be solved in order to approximate the complicated EPEC.

To the best of our knowledge this paper is the first providing the theoretical comparison
behind performing the ramp-rate and quantity bidding in a single or two distinct stages.
In contrast with the existing literature on the comparison of open-loop and closed-loop
formulations, we include intertemporal ramp-rate constraints and extend the model to a
realistic case of portfolio bidding and bidding under uncertainty. We show that generators
prefer to withhold the ramp rate in the first stage. In such a way they maintain the level
of output in the production stage, even when a big change is required by the market, and
receive high profits.

To improve the generality of the findings, we perform the analysis assuming a range
of competitive market behaviors — from perfect competition to a Cournot oligopoly. Our
findings show that the results of a bilevel equilibrium model and a single-level model are
similar (or coincide in the case of a symmetric duopoly) only for the case with a very limited
competition — a Cournot oligopoly.



The contribution of the current paper is therefore threefold:

e A closed-form expression demonstrating the propensity of the strategic generators to
withhold ramp rates in a two-stage decision-making process;

e For the proposed one-stage and two-stage models reflecting two different market setups:
an analysis of the strategic behavior for market competition intensity ranging from
perfect competition to the Cournot oligopoly;

e Development of a two-stage (EPEC) and one-stage (MCP) extended equilibrium mod-
els considering the portfolio bidding and strategic decision-making under uncertainty.

The paper is organized as follows. Section 2 describes the formulation of a single- and
two-stage equilibrium models, based on a small example of two symmetric generators and
two load periods. In Section 3 we extend the model to an arbitrary number of generators
and load periods. We also discuss the uniqueness of the solution and consider the portfolio
ownership of the units and bidding under uncertainty as the extensions. Section 4 provides
the case studies and practical results of the simulations. Section 5 concludes the paper.

2. Methodology

Equilibrium models are often employed to represent the nature of market interactions
and competition between the strategic generators Anderson and Cau (2011). In this section
we explore the impact of flexibility of power generation on market outcomes. In particular,
we compare two different market setups represented by two models: a model that considers
the case when ramp-rate and production decisions are taken simultaneously; and a model
in which ramp rate is decided first, and then production decisions are taken.

In Section 2.1 we formulate a market setup, in which the players compete in ramp rates
and quantities simultaneously. We derive a closed-form expression for a simple case of two
load periods and two symmetric generating companies. In Section 2.2 we formulate a two-
stage competition model: in the first stage the generators submit the levels of ramp rates,
in the second — they compete in quantities. By deriving the theoretical results for the both
cases we demonstrate and discuss in Section 2.3 how the difference in the compared market
setups can lead to a less liquid market. In both models we use a conjectural variation
parameter to study how different levels of competition in the market affect the strategic
decisions of the players.

2.1. Simultaneous ramp and quantity bidding: the one-stage model

In the single-stage model, every generating unit 7 faces a profit-maximization problem:
in time period ¢ it chooses the level of production ¢;;. The ramp-rate level r; is chosen simul-
taneously with the production level in the first time period and stays constant throughout
the modeling horizon. The objective of the generator is to maximize the revenues in the
production stage minus the costs. The cost function of the generator can be any convex
function, as this will not affect the convexity of the whole problem. For the simplicity of
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Indices Variables

i,i*,7  Generating units, 7 € (1..I) it Production level of generator i in
t Time periods, ¢t € (1..T") time period ¢
w Scenarios, w € (1..W) Tt Ramp-rate level of generator ¢ in
f Firm portfolios, f € (1..F) time period ¢
pe(qit, q—it) Price in time period ¢

Parameters dy Demand in the time period ¢
Qs Capacity of generator i
R; Maximum ramp of generator 4 Lagrange multipliers (LM)
i Generation costs of generator 4 My LM of 4’s lower capacity limit
ck Ramp pre-committing costs it LM of i’s upper capacity limit
@ Demand slope i LM of i’s lower ramp limit
DY Demand intercept Nit LM of i’s upper ramp limit
0; Conjectured price response pa- 7, LM of i’s ramp-down constraint

rameter Vit LM of i’s ramp-up constraint

prob,, Probability of scenario w

mathematical derivations and proofs we have assumed a linear cost function C'(g;;). Be-
low, parameter ¢ represents the symmetric marginal production cost, which is the simplest
example of an affine cost function.

In order to derive the analytic results in this section, let us assume that there are two
consecutive time periods: #; and t;. The optimization problem of a company i can be
formulated as follows:

mazii’glize (1 (Gitrs @-itr) = )ity + (Pea(its» G—ita) — )it (1a)
subject to: Q>qi>0 Higs b,V (1b)

Vi : R>r, >0 S A (1c)
Ti 2 Gity = Git,  * Vs (1d)

Qity — ity 2 T3 * 7, (le)

In the optimization problem above @ is the symmetric installed capacity of the generating
unit 4 and R is the maximum technically possible ramp rate. Constraints (1d)-(1e) show
that the change of production between two time periods is limited by the ramp rate. These
constraints are specified for the time steps following the first one (|¢| > 1). The variables on
the right are the dual variables associated with constraints (1b)-(1e).

Prices p;(¢;, q—;) come from the market equilibrium (ME) conditions that link optimiza-
tion problems of all producers: energy balances for both load periods and the affine definition
of the elastic demand d;, where « is the elasticity parameter.

ME: di=3 qu di= D~ opi(Gi.g-i) Vt. (2)
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The ME conditions mimic the economic dispatch problem of the system operator. These
conditions define the price p:(git, g—it), dependent on the production g; of the generating
companies. The demand elasticity a reflects the price responsiveness of the consumers in
the market — the higher is its value, the less is demand in the market, when the price is
high. This formulation aims at reflecting the market setups used in most of the countries
with liberalized electricity markets (Gabriel et al., 2012).

For the two time period example analyzed in this section, there only exist three different
cases of demand profiles. Case 1: increasing demand — corresponds to the case where demand
in the time period 2 is higher than in the time period 1 and hence, constraint (1d) is active;
case 2: decreasing demand — when demand in the time period 2 is lower than the one in
time period 1 and constraint (1le) is active; or case 3: stagnating demand, when neither of
these constraints is active, which corresponds to demand that stays the same during both
time periods. In the third case the problem simplifies to a standard quantity game. Cases
1 and 2 are symmetric, and hence we arbitrarily choose case 1 to illustrate our derivations,
however, these derivations would be equivalent for case 2 (with the only difference that the
upward ramp becomes a downward ramp). Choosing the case of increasing demand allows
us to remove the constraint (1e) from our model as it will be inactive.

Since only two time periods are considered, the declared up-rate will be equal to the
increased production without loss of generality. Moreover, the inequality constraint (1d) will
hold as an equality at equilibrium, since there are no gains associated with keeping the ramp
rate higher than the change of production between two time periods. In real applications,
there also might be costs associated with keeping the ramp rate high (e.g., machine fatigue,
higher maintenance costs). Then at equilibrium the profit-maximizing producer will keep
the ramp rate only as high as required for the change of production rate, in order to avoid
unnecessary costs. If the ramp rate will be higher than necessary, the producer can reduce
it (which would reduce the corresponding cost in the objective function) without changing
its output or the market price. This would be a contradiction to an optimal solution and
therefore will not hold as an equilibrium. The production in the second time period can
therefore be expressed as:

Qits = ity + T (3)

The equilibrium problem combining optimization problem (1) for every generator i and
the ME conditions (2) can be written as a single convex quadratic optimization problem
(Basic version of the Market equilibrium as an Optimization Model - BMOM) as it was
shown for the case of the capacity expansion in (Barquin et al., 2004). Using the same
assumptions — affine cost functions and single-level strategic decision — we can form a new
objective function, which resembles the social welfare maximization. The model is demon-
strated in Appendix A. It is easy to verify that the KKT conditions of this optimization
problem will coincide exactly with the KKT conditions of single-stage equilibrium problem.

Since electricity is a perfectly substitutable good, we can capture a range of behavioral
outcomes by conjectural variations in the short-run market formulation, as first introduced
in Bowley et al. (1924). Conjectural variation is the belief that one firm has about the
way its competitors may react if it varies its output or price. This approach attempts to
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reproduce the dynamic pricing in a “reduced-form” static competition, therefore we are
specifying exogenously the reaction of the firms to their rivals. This approach is criticized
for the the exogenous nature of the conjectural variations (Tirole et al., 1988), but it allows
us to capture a range of behavioral outcomes — from competitive to cooperative and has one
parameter which has a simple economic interpretation.

We define the conjectural variation parameters as ®;;. These represent agent i’s belief
about how another agent j changes its production in response to a change in i’s production.
Therefore:

dg; . .
i = chJ-’ i F

q)i,i =1.

Using these equations in a price function, when price is a function of supply in the market
(¢, g—:), such as the function given in (2), we obtain:

dp(i, q-:) 1 1

In our application we consider a global conjectural variation ® which represents the reaction
of all competitors combined: ¢ = Z#i D,

We can now define a conjectured price response parameter ¢; as a company i’s belief
concerning its influence on price p:(git, ¢—iz) in a short-term spot market. We express the
conjectured price response as:

_ dpe(Qit q-it)

1
0;=—(1+®) =
Oé( * ) dqit

This parameter is more convenient to depict the firms’ beliefs regarding the influence
of change in their production on price, as opposed to a firm’s influence on production by
competitors. This parameter only captures the effect of change in ¢; and not r;. By
considering only conjectured price response on production we express the type of competition
in either of the ramping and the energy markets.

Different levels of the conjectured price response parameter correspond to different mar-
ket structures. We assume 6; varying from 0, which corresponds to perfect competition in
the market to (1/a), which represents the Cournot oligopoly (Daxhelet, 2008). By choosing
the conjectured price response parameter to vary in this range we study the behavioral out-
comes most common in electricity markets. Further, in this section we assume symmetric
conjectured price responses 0 = ¢, = 0s.

The Lagrangian function of problem (1) for producer ¢ is:

L =(pu, (@it 4-it) = ity + Pro (Gt Goits) = )its + Y (T @ = i) + p,,qe) +
t

+ Ni(R = 1) + A\ri) + 7 (i — Gty + Giny)-
8



Although parameter 6 is implicit in formulation (1) it becomes explicit when we solve the
problem by taking the KKT conditions'. The # parameter is also explicit in the quadratic
BMOM formulation presented in Appendix A. The constraint qualification holds, as the
problem satisfies the Slater’s condition (the feasible region has an interior point). Therefore,
the KKT conditions are equivalent to the original optimization problem.

We substitute the first derivative of price by 6 and use the dual multipliers introduced
previously. Note that L denotes the complementarity between the constraint and its respec-
tive dual variable. The KKT conditions of the problem (1) are as follows:

glffl =pu =0, —c+p, — Ty, +7=0 (4a)
o = piy = Oty — ¢+ 1, — Ty, =7 =0 (4b)
%f =N —-Ai+7,=0 (4c)
Vi - O0<p,Lagp=0 Vt (4d)
0<7, LO—g:>0 Vi (4e)
0<ALr>0 (4f)
0<XNLR—r;>0 (4g)
0<% Lri—dq+q =0 (4h)

dt = Z i, dt = D? — Py Vt. (5)

For a closed-form solution to the arising equilibrium problem given in (4) and (5), the
solution satisfies the following:

1. We assume that at equilibrium the price is higher than the marginal costs of the
producers and the production levels of both generating companies are nonzero, i.e.,
r; > 0 and ¢ > 0. Complementarity conditions imply that the Lagrange multipliers
corresponding to the lower limits I and ), are equal to zero.

2. For two identical players with the same optimization problems it may occur that the
number of solutions is infinite, even if the optimization problems are convex. However,
if two generating companies have the same marginal costs it is realistic to assume that
in electricity markets they will be dispatched equally, so that generating companies
offering the production at equal prices are remunerated equally (Weedy et al., 2012).

3. We use the definition of production in the second period (3). The prices in (4a) and
(4b) can then be expressed from the market equilibrium conditions (5): g, (Gity, ¢—ity) =

(D:?l - Zi Qi) ], Py (Gity» G-it,) = (D?Q - Zi(%‘tl + 1))/

!The concavity of each producer’s maximization problem holds for any value of 6; in [0,1/a]: taking
the derivative of the objective function (1a) with respect to ¢;; yields p¢(qit, q—it) — 0:¢; — ¢. The second
derivative is, therefore, (6; — 6;) = 0. The second derivative with respect to r; is zero, therefore the Hessian
of the profit expression can be seen as a negative semi-definite matrix and concavity holds.
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The upper capacity limits as in (4e) and (4g) represent the physical limitations of the
generating companies. Disregarding them would simplify the analysis but will contradict
the finite nature of the problem. Therefore the inequalities Q > ¢ > 0 and R>r >0
cannot be omitted in general case and we can separate 4 cases:

Cl: gy, = Q.r; = R,qu, = Q — R. In this case the system of equations (4) for every
generator becomes:

ptl(Qwé) - 9(@ - R) - C+i¢ = 07
K Ptz(Q)_eQ_C_ﬁitz_%:Oa
i +7; = 0.
The system of three equations with three unknown variables can be solved for 7i;,,, i,

and 7;.

C2: qu, = Q,r < 1:27 Qit, = Q — 7;. With these assumptions the system of equations (4)
simplifies to three equations for each generator, solvable for 7z, 7; and 7;:

0 —5(Q—ri A _
BHON g eery—0

Vi DY ->Q ~ _ _
5= = 0Q — ¢ — Ty, —7; =0,
7 = 0.
The first equation can be solved to obtain the expression for r;:
o a(0Q + ¢)
T fa+2

03: ¢ < Q,r; = R. The system of equations becomes:

DY —>aqi _
BB gy, eimm0

V’L : Dngz(q”1+f?'> _ 9(

(e

Qity +R)—C—7l- =0,
—X\i +7; = 0.
We can express the optimal level of g, :
DY + DY — 2R — a(OR + 2c)
20c + 4 '

qit, =

C4: Q > gy > 0and R > r; > 0. In this case the dual multipliers By Pt and )\, \; are
equal to zero and we can solve a system of equations:

0~ i -
%TM_gqitl_c+7i:07
Vi § PhSileatnd g 4y e _5.—0
P 1ty 7 7 )
7 = 0.
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This set of equations can be simplified to the following:

i { D) =37 ginya — ablgy, — ac =0,
U DY, = i + 1) — ab(gin, +1i) —ac=0
We can derive a closed-form solution for the optimal production level and the ramp
rate, as presented below. Note that SL indicates “single level”, since the solution

corresponds to the single-stage equilibrium model where ramp and production decisions
were taken simultaneously:

0 _ o
SL_Dt2 Dtl

SL _ 7 6
i af +2 (Ga)
, DY — ac . , .
sL _ Mt SL _ SL SL
Qit, = mv Qit, = Qg T 15 (6b)

Even though all 4 cases are possible solutions that can occur in reality, we choose to focus
on interior solution, i.e. C4 (when the capacity and ramp limits are not binding), so that we
can see the analytical expression for all strategic variables. Also, in this case we can observe
the effect of market structure (the effect of firm 4’s belief concerning its influence on price
with change in electricity production level #). The cases C1-C3 can easily be included in the
study, but the value for some of the strategic parameters depends on the choice of data (Q,
]:2), and the results do not vary with market structure since they are already at the bound.

Therefore, the unbounded case appears as a more interesting one.

2.2. Separated stages of ramp and quantity bidding: the two-stage model

The market setup, where the generators choose their ramp rate in the first stage and
compete in quantities in the second stage, can be modeled using a bilevel equilibrium for-
mulation — EPEC. The bilevel structure aims to represent the market situation when ramp
bidding occurs before the actual quantity game. The EPEC problems, known for their
complexity, are hard to solve in a closed form. Similar to the previous single-level model,
we study the case of two load periods with increasing demand and two symmetric power
producers.

In the first stage of the game, the generating units take their decisions regarding the
ramp-rate levels that will maximize their profits taking into account the optimal production
decisions from the second stage. As in Section 2.1, without loss of generality we choose
to illustrate the case when the demand is increasing. The upper level of a bilevel model
representing the ramp game can be formulated as follows:

maX}miZC (pt1 (Qitl ) q—it1) - C)qit1 + (ptz (Qit27 Q—itQ) - C)qitz (73')
Vi subject to: R>r, >0 S A (7b)
gir € QL. (7c)
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Quantity g is an outcome of the lower-level QX" market equilibrium game:

max;imize (Pt (Gitys G—ity) — )ity + (Pt (Qitys Gits) — )i (8a)
Vi 4 subject to: Q>qi>0 S,V (8b)
Ti 2 Gity = Git,  * Vs (8¢)
The market equilibrium conditions link together the optimization problems of the generators:
ME: d =Y g, di=D]—ap V. (9)
i

Let us first focus on the lower-level problem (8). Following the same logic as in the single-
level model we can show that the second derivative of the objective function is negative and
the constraint qualification holds. Hence, the problem (8) can equivalently be written and
solved as a set of KKT conditions. The KKT conditions take a form:

g = o (it Git) = Oy — €+ pr, — Ty, +7;, =0 (10a)
36,,%2 = Pty (Gitss G-its) — Oit, — € + Ky, — Fity =7 =0 (10Db)
Vi 0<p, Lg>0 Vt (10c)
OgﬁitJ-Q*QitZO vt (10d)
0<% Lri—dqu+qu >0 (10e)

In order to obtain a closed-form solution we follow a backward induction. We first find the
optimal solution of the lower level parameterized by the upper-level variable. Then, we plug
this expression in the upper-level and deduce a subgame-perfect Nash equilibrium (SPNE)
— an equilibrium, which is optimal for both stages and for the game as a whole, (Fudenberg
and Tirole, 1991). This concept is often used for describing the sequence of decisions in the
electricity market, as for example in the case of forward price caps in Yao et al. (2007). We
express the prices in time periods ¢; and ¢, from the market equilibrium conditions (9) and
use them to complement the equations (10).

We would like to stress that the production and ramp level of the generating companies
in reality have strictly defined technical limits. However, for the sake of theoretical analysis
we consider an interior case?. Also, we take into account that in two time periods the
generator will not precommit a higher ramp rate than required, therefore constraint (8c)
holds as an equality. Simplifying and solving the system (10) for the optimal level of quantity
parameterized by the r; variable, we get:

ac, _ DY -%iain
8(11,1,1 «

oL; __ Dtozfzi(‘thr”) _ 9(
B‘Zztz «

—0gir, —c+7;=0
Vi :
Git, + 7)) —c—7;=0

2As in the case of single-level game we can distinguish four separate cases. However, in three of the cases
the expression contains data-dependent parameters Q and R. Therefore, for conciseness reasons we omit
the discussion of the cases, as it is performed in the way similar to the single-level model.: Q > gt > 0 and
R>r; >0, when Q; > ¢ > 0, hence Higs by, =0
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Summing up the expressions for two time periods, and solving the resulting system of equa-
tions for two producers we get the following:

{ D?] - Zz ity — aeqiltl —2ac+ D?z - Zi(qih + Ti) + ae(qiltl + ril) =0
Dz?l - Zz qit; — aeqiztl —2ac+ Dl?z - Zi(Qih + T’i) + aa(qiztl + Tiz) =0

DY + D% —20c —1;(2 4 b
BL — b L2 ( ) ¢k qflL—i-ri Vi. (11)

— Bl — bL
it 200 + 4 » i

Note that BL indicates “bilevel”, since this solution for quantities corresponds to the bilevel
equilibrium model, and helps distinguish it from ¢%%.

We can substitute g;;, in (7) by the derived lower-level optimal expression for the pro-
duction level (11). We use qff = q;?f + r; to define the production in the second time step.
This substitution yields an unconstrained convex optimization problem. Therefore, if the
function has an optimum point, this point is unique. We can find the optimal solution by
setting the derivative of Lagrangian, corresponding to the optimization problem (7) to zero.

The derivative of the Lagrange function of a generating company ¢ becomes:

OLi :Z (wqm + pi(gBL, BE dqfi" B CaqffL) _ (iq,BL B lpt (¢B%.qPL )
07”1- 87”1- it it 2 Hd—it a"’i Bri 2 it1 ottt ity ) Y—itq
1 1 1 1 1
+ 50) + (* g it 1)+ Splai) aZi rire) = 56) = §(pt2(qi’ff,q?ﬁl7n,m)
1
— Pu (qglLa (Ii[z/l)) - %7'2' =0. (12)

Since the derivative of Lagrangian (12) of a generating company ¢ depends on the production
and ramp rate levels of the generating company (—¢) we solve expressions for both generating
companies as a system of equations. The expression for the bilevel-optimal ramp-rate level
becomes:

_Dl?l + D?Q - 27‘,’1 —Tip = 0
—D?l —+ D?Q — ’l”il — 27‘1‘2 = O
B (13

We observe that the expression for the optimal level of ramp rate in two-stage model is
independent from the conjectured price response parameter 6. In the next section we discuss
this result and compare the single-stage and two-stage models.

2.3. Discussing the results

The solutions derived in Sections 2.1 and 2.2 provide us with important insights on
strategic decisions regarding the ramp-rate flexibility. In the following propositions we sum
up our observations.
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Proposition 1.1. For two time periods, two symmetric generators with affine cost
functions and perfectly substitutable products we find that the optimal level of ramp rate
for the two-stage model is independent from the conjectured price response parameter 0,
representing any market structure from perfect competition to the Cournot oligopoly. In
particular, this can be observed for the ramp-rate level as given in (13).

Proof. Section 2.2 proves the above proposition by deriving the closed-form solution to the
two-stage model. The expression is derived assuming the nontrivial solution Q; > ¢; > 0
and R, > > 0. O

Proposition 1.2. Using the same assumptions as for the Proposition 1, we observe
that in the one-stage model the level of ramp rate offered to the market varies with the
level of competition, represented by the conjectured price response: (a) the levels of ramp-
rate of single- and two-stage setups coincide when the market structure approaches Cournot
(0 =1/a); (b) in the case of perfect competition the ramp-rate level in a single-stage model
is higher than in a two-stage model.

Proof. (a) The optimal two-stage model ramp rate is given by expression (13) and is inde-
pendent of the conjectured price response . The expression (6a) for an optimal ramp-rate
level in a one-stage model depends on 6. However, if in the second expression we substitute
0 = 1/, which is the conjectured price response corresponding to the Cournot oligopoly,
expressions (6a) and (13) coincide. (b) We can show that for any other choice of § < 1/« the
optimal level of ramp rate in a single-stage model is higher, as the denominator of the expres-
sion (6a) is smaller than the denominator of the expression (13). Expressed mathematically,
afd +2 < 3. O

According to Proposition 1.1, if ramp-rate and quantity levels are decided sequentially
and the producers hold conjectures on production, strategic producers are going to withhold
the ramp rate regardless of their beliefs on the competition level in the spot market, since
doing this improves total profits for the generators. This contradicts the logic of regulatory
approaches that separate the two decision stages in order to incentivize producers to allow
more ramp-rate flexibility in the second stage. Comparing expressions (6a) and (13) we
see that the maximum value for af in the denominator of (6a) is 1, and therefore if the
generators are deciding their ramp rates before the spot market, the formulation for the
optimal ramp rate takes the form of (13). We show theoretically that if the generators
are able to behave strategically they do so in the first stage, withholding their ramp rate,
therefore limiting the amount of production in the second stage for any degrees of market
competition. We investigate this further using a case study in Section 4.

Proposition 1.2 shows that the optimal ramp-rate levels in two-stage and single-stage
setups coincide in the case of Cournot oligopoly. However, for any other belief regarding
the competition level in the market we can show that allowing offering the production and
ramp simultaneously yields higher ramp-rate flexibility offered by the generators. The result,
shown for the case of two load periods and symmetric generators may hold for a bigger case
study as it will be shown in Section 4. The intuition for this result could be that ramping
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does not introduce any additional strategic behavior in the single-stage model. It is shown
in Appendix B that the KKT conditions of single-stage model with ramp and quantity as
strategic variables are equivalent to the KKT conditions of quantity-only single-stage model.

In contrast, in the two-stage model ramping creates an additional layer of strategic
behavior. Production variables are connected with ramp-rate variable through an inequality
constraint. The intuition can be that in the two-stage model strategic firm tries to recover
in the upper level the market power lost with more competitive energy markets expressed
in the conjectural variations in the lower level. A conclusion of this intuition would be that
there is nothing to recover in the Cournot model and hence the results of the single and
two stage model coincide for that assumption. Ramping is the only way to recover the lost
market power in perfect competition, this is possibly why the two results diverge the most.

3. Model extension

In this section we extend the models presented in Section 2 to consider a more realistic
market situation with an arbitrary number of load periods and asymmetric firms, as formu-
lated in Section 3.1 for the single-level model and in Section 3.2 for the bilevel equilibrium
model. Since the extended models cannot be solved analytically as in the previous section,
we also discuss the resolution methods and the uniqueness of the equilibrium solution in
case of the extended bilevel equilibrium model.

Additionally, we consider two main extensions. In Section 3.3 in order to reflect highly
concentrated markets we consider a firm ownership of the generating units: a generating
company may own several generating units with possibly different production costs. Sec-
ondly, in Section 3.4 we consider an important extension of the model to the decision-making
under uncertainty. In the areas with high penetration of intermittent renewable sources (e.g.
wind power) it is especially important to consider the set of possible scenarios that can con-
siderably affect the decision.

3.1. Extended formulation of the single-level equilibrium problem

To extend the formulation of Section 2.1 to an arbitrary number of load periods, we
consider ¢;; as a production level of unit 7 in the load period ¢ and r; as a ramp-rate level
limiting the change of production between two sequential time periods.

We also introduce a parameter ¢, a cost of pre-committing the ramp rate. There are
two reasons for including this cost. First, including such a cost in the objective function
reflects the wear-and-tear of the fast-ramping generating units if considered by the generating
company. Thermal shock, metal fatigue, corrosion, erosion, and heat decay are common
damage mechanisms that result from frequent ramping. It can also be interpreted as an
increase of production costs due to consumption of the useful life of generating equipment.
This is the cost of the company for being flexible in the market, as for example described as
supplier’s ancillary cost in Tsitsiklis and Xu (2015). Authors in Troy et al. (2012) consider
the wear-and-tear of generators’ components by dynamically modeling cycling costs that
they define as frequent start-ups or ramping of units. The authors discuss the difficulty of
estimating such costs, as they change dynamically and require long-term historic data, but

15



they estimate ramping costs to 10-20% of the marginal costs. Intertek Aptech has analyzed
cycling costs for over 300 generating units and found that the cost of cycling a conventional
fossil-fired power plant can be as much as $2500-500000 per start/stop cycle (Lefton, 2004).
Second, setting the ramp rate cost very small also excludes a multitude of equilibria if the
company is indifferent about a ramp-rate level. If the optimal solution lies on a facet of
the feasible set, including a cost of pre-commiting the ramp rate forces the solution to be a
corner solution. The single-level formulation can then be written as:

m%lximize Zt ((Pt((hn q—it) - Ci)Qit - CZRrit) (14a)
it,Tit

subject to: Qi>qu>0: Higs b, V't (14b)

Vi Ri>7rie >0 N, Ay (14c)

Tit 2 it — Gi(t—1) © Vit (14d)

Tt 2 Qie—1) — Git Y, (14e)

dy = D? — ap(qit, q—ir) Vit (15a)

dy = Z%‘t Vt. (15b)

Here (14b) defines the production bid limits, (14¢) limits the bid on ramp rate. Equations
(14d) and (14e) define ramping constraints for every two sequential time periods®. In this
section we consider a general load profile, where demand can increase or decrease, and there-
fore both upward and downward ramping constraints are necessary. The variables, following
after the colon are the Lagrange multipliers associated with the respective constraints.

We rewrite the optimization problems in (14a)-(15b) by their KKT conditions for all
companies. Such equilibrium problem can also be formulated as a quadratic optimization
problem, as shown in Barquin et al. (2004). Hence, the KKT conditions are also the opti-
mality conditions. The resulting equilibrium problem is as follows:

Squ = pe(Git; i) — 0iGit — ¢ + My = Ha =Y, Ve T Y1)

—Vi(tr1) = 0 vt
9L _ _ClR +Azt — Xit +lzt TV = U

= =
[S2 N>
o o

A~ -
—_
o,

N N NI N NS N

—_~

ort
0<7i LQi—qu>0 Vt 16¢
vi 0<pr, Lgu>0 Vi

—_
D
@

0<7,Lri—a¢+de1)=20 Vi
0<%y Lri+dqu—qig—1)>0 Vi
0< Nt LRi—7ry >0 Vi

0< A\, Lry>0 Vi

—_—
—
D
)

—~ o~
— =
[ N
= 09

3We assume this constraint exists for the time period 2 onwards, as we do not take into account the
production level preceding the first time step: g;(z=1)—1-
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D} — api(qir, q-u) —dy =0 Vi (17a)
> gu—di=0 Vt. (17D)

8.1.1. Resolution of a single-stage equilibrium model

As it was shown above, the formulated extended single-stage equilibrium model is convex.
The introduced setup can be directly programmed as a mixed complementarity problem
(MCP) in GAMS and solved until optimality with PATH solver (Dirkse and Ferris, 1995).
It has been shown in Billups et al. (1997) that state-of-the-art solvers are able to solve large-
scale MCP problems to global optimality in reasonable time, and therefore the problem is
highly scalable.

3.2. Extended formulation of the bilevel equilibrium problem

In this section we propose the extension of the two-stage model proposed in Section 2.2
to a general case with multiple load periods and possibly asymmetric power producers. The
bilevel model corresponds to the case, when generators first make their decisions regarding
their ramp rates. After this information is revealed, generators participate in the second
stage of the game, where they compete in quantities.

3.2.1. Formulation of the lower level
The lower level, or the production stage, represents the conjectured-price response market
equilibrium. The market equilibrium problem can be written as:

ma}f}imize >ty g-in) — ci)aga (18a)

it

Vi - subject to: Qi > Gie = 02 oy, b, Vit (18b)
it 2 Qit = Qie-1) 7, VE (18¢c)
Tit 2 Gi—1) — it * Vi VE (18d)

dy = D) — api(qit, q-u) Vi (19)

do=> qu Vit (20)

We rewrite the market equilibrium, and substitute the optimization problem (18a) by
its KKT conditions for all companies. As before, as the structure of the problem is similar

to the single-level problem solved before and to the capacity-expansion problem recast as
a quadratic problem in Barquin et al. (2004), we can write the KKT conditions, which are
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also sufficient and necessary:

25’; = pe(Qits 4-it) — 0iqi — i T, = e = Y, T Yt Yiter)
Vi) =0 Vi (21a)
0<7iy LQi—qu>0 Vi (21b)
QLE 0<p,Lqg=>0 Vi (21c¢)
0<7, L7ri—aqt+aqu1=0 Vi (21d)
0<% Lra—dig—1)+qe=0 Vi (21e)
D} — api(git, q-it) — dr = 0 (21f)
>t —di =0. (21g)

This optimality conditions reflect the market equilibrium in the quantity games and com-
plement the upper level, formulated below.

3.2.2. Formulation of the upper level

In the upper level, the generating companies maximize their profits, the outcome of the
quantity game in the lower level, by setting the ramp-rate levels that will maximize it. The
optimization problem of every generating company i*, a member of set I, is therefore:

ma)jimize Z(pt(%&, qit) = Ci*)Qirt — Cﬁﬁ*t (22a)

i*t t
subject to: Ry > 13y >0 VI (22b)
Qi € QFE. (22¢)

The objective function of the lower level optimization problem (18a) and upper level ramp
decision (22a)-(22b) are the same, but the problems are different because they consider
different optimization variables. However, separating them to different levels represents
the awareness of generators that their ramp bid decision will affect the market equilibrium
happening in the lower level. In the next subsection we combine the two levels and form a
mathematical program with equilibrium constraints (MPEC).

3.2.8. Reformulation as an MPEC

The ramp-bidding problem for a single generating company can be formulated as an
MPEC by combining the upper level, derived in Section 3.2.2, with the lower level and market
equilibrium conditions from Section 3.2.1. The corresponding bilevel program for generating
company i* optimizing over a set of variables Qi = {Fi=t, @i, Pt(Gits G—it), Dt L., Figs Y,y Vit }
is as follows:

maximize Z ((pt(qit7 qit) — Ci=)Qirt — Cﬁﬁ'*t) (23a)

‘Ir* t
subject to: Ry > 1y >0 Vt (23b)
Qi > g >0 V(it) (23¢)
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Tt — Qit + Gi—1) > 0 V(it) (23d

)
Tit — Qige—1) + Gt > 0 V(it) (23e)
By =0, 1, >0, 9, >0, 7, >0 V(i) (23f)
Pe(its q—it) — 05Gie — i + By, — Hag — 7, + Ve + Yigepry ~ Viter1) = 0 (23g)
B, i =0 V(it) (23h)
Ti(Qi — qir) = 0 W(it) (231)
Y, (=it + G-y +1ie) = 0 V(it) (23)
Vet — Gige—1) + 1) =0 V(i) (23k)
D} — api(git, i) —dy = 0 Vi (231)
Z g —dy =0 Vi. (23m)

Here constraints (23b) correspond to the upper-level constraints, constraints (23c)-(23¢) are
the lower-level primal constraints. The corresponding Lagrange multipliers are nonnegative
as outlined in the constraints (23f). Constraint (23g) is the stationarity condition. Con-
ditions (23h) to (23k) are the complementary slackness conditions. Constraints (231) and
(23m) correspond to the equalities shared by all generators in the lower level.

The resulting problem is often called a mathematical program with complementarity
constraints (MPCC), and is nonregular and nonconvex. With the state-of-the-art solvers
(e.g., COUENNE), the problem can be attempted directly as a nonlinear problem, as in this
paper. The solvers for nonlinear programs are usually based on branch-and-bound, branch-
and-reduce, interior point method, or constraint qualification techniques. We control the
solution of our nonlinear program by checking the optimality flag provided by GAMS. For
Nash equilibrium we are interested in a point that is at least locally optimal for all generating
firms.

3.2.4. EPEC

The entire extended bilevel equilibrium problem consists of the optimization problems,
i.e. MPECsS, of every unit i* taken together, as shown in Figure 1. Therefore, MPEC derived
in Section 3.2.3 can be used to obtain the solution for the whole two-stage equilibrium
model. By using a diagonalization method (Gabriel et al., 2012) we can obtain an EPEC
solution by solving the MPECs iteratively: we sequentially fix the strategic variables of all
generators except of one, which is free to choose any level in response to the levels fixed for
all other units. This procedure is repeated for all generators in loop until convergence to an
equilibrium point, at which no producer wants to change the strategic decision unilaterally.
Even though this method is widely used in literature, there is no guarantee for convergence.

EPEC problems are usually highly nonconvex — even if the diagonalization algorithm
leads us to a solution, there is no guarantee that this solution is global. In the next subsection
we explain the methods of exploring the solution space.
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Figure 1: Equilibrium problem with equilibrium constraints (EPEC) is formed by solving the
mathematical problems with equilibrium constraints (MPECSs) of profit-maximizing producers together.

3.2.5. Multiple Nash equilibria

Since the MPEC is a nonconvex problem, it could have multiple local optima. As a
result, EPEC could have several different equilibrium points. The problem of multiple Nash
equilibria arising from solving an EPEC problem is addressed by many authors, and we do
not, focus on this in this research. Some of the methods proposed in the literature, which
can be used to explore all Nash equilibria, are shortly discussed below:

e Barrier function can be used in the objective function of the problem constrained
by the EPEC stationarity conditions (KKT conditions of respective MPECs taken
together). The value of the barrier function on a point increases to infinity as the
point approaches the boundary of the feasible region (Wright and Nocedal, 1999).
The function is used as a penalizing term to prevent reaching an identical solution, so
we can explore the feasible region further and enumerate all equilibria. Since the KKT
conditions of the nonlinear problem (MPEC) can only provide a stationary point, the
exploration process can be computationally very hard.

e Hypersphear linear constraints are introduced in the method proposed in Pozo
and Contreras (2011). Following this method, the EPEC problem is run in a loop:
for an every newly found equilibrium a new constraint is added, “cutting” this point
out of the feasibility region. The authors show how in the case of binary decisions
the added constraints are linear. In a general case the “hole” added is a quadratic
constraint.

e Discretization of the solution space is a widely used method (Wogrin et al., 2013a,
Hesamzadeh and Biggar, 2012) for finding the multiple equilibria. By recasting a
continuous problem as a mixed-integer linear problem (MILP) we can guarantee finding
all possible solutions. However, it is not always possible to discretize the problem and
save the initial set of solutions. Also the complexity of a problem increases drastically
with every additional binary variable, so higher precision discretization procedure is
costly computationally.

The best choice of a strategy for finding all Nash equilibria depends on the exact problem
under consideration and the size of the case study.
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3.2.6. Resolution of a bilevel equilibrium model

The problem addressed in this paper has been solved using the iterative diagonalization
method, as introduced earlier. Once diagonalization has converged we carry out an ex-post
analysis to verify that we have found an equilibrium. This method is very convenient for
larger case studies as it avoids formulating the entire EPEC. However, its outcome might
depend on the provided initial point.

Other possible methods can include solving the whole EPEC formulation, and checking
the second-order sufficient condition for each player’s MPEC, as in Hu and Ralph (2007).
Both ways, the scalability of the problem can be limited. One way to avoid the scalability
difficulties is to combine Bertrand and Cournot models of competition, or to disregard some
of the constraints (Neuhoff et al., 2005).

3.8. Firm ownership

Up until now we have considered a model where every strategic producer had a single
production unit. In reality a firm can own several assets whose production levels can vary
and whose costs are different as well.

To reformulate the problem we introduce a set F', representing the strategic firms owning
portfolios of several units, and update the respective objective functions to consider the profit
of a strategic portfolio. The objective functions in (14a) and (23a) become:

= Z ((pt(Qit-, -it) = Civ )it — Cﬁﬁ*t)- (24)

P*efit

Here, unit i* belongs to the firm f and the profit is maximized for the whole firm.

3.4. Stochastic modeling

Real-world decision-making always involves a high level of uncertainty of the parameters.
Different realizations of the demand, uncertainty in fuel costs, and other parameters can
significantly affect the optimal decision. The uncertainty in wind-integrated power systems
can be modeled with a set of scenarios W, where each scenario w € W has a certain
probability prob,,. The profit formulation (24) introduced in the previous subsection is then
extended as follows:

ﬂ—f = Z prObw ((ptw(qituu qfitw) - Ci*)qi*tw - Cﬁri*t) . (25)

*eftw

Facing the uncertainty represented with a set of scenarios W, a generating company decides
on the best level of ramp rate. Then, in each scenario a certain demand level is realized and
the generating companies produce accordingly. We are hence assuming that in the energy
market we know the demand level.

Note that we also add a nonanticipativity constraint to ensure that ramp rate cannot
be changed for every realization of the scenario. Therefore, the strategic decision is taken
before the uncertainty is realized:

Titw = Tit,—w = Tit- (26)
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Nonanticipativity constraint for two-stage model reflects that the ramp-rate decision has to
be made before the uncertainty is realized, which agrees with the logic of the model. In
one-stage model the ramp rate decision is made at the same time as production decision.
This corresponds to different ramp-rate values in different scenarios. Therefore, we do not
include a nonanticipativity constraint in the single-stage model.

4. Case study

The developed model can be a tool for analyzing how a market setup affects the flex-
ibility bidding in the system. In this Section we check, whether Propositions 1.1 and 1.2,
introduced in Section 2.3, are still valid for the extended version of the models by performing
the simulations. We also provide the case studies for the extended model with assymetric
generating companies, firms, owning several units, and for the stochastic case.

4.1. Comparison of the duopoly models

The duopoly case study lets us analyze the importance of information revealed in the
ramp and quantity game. As derived in Section 2, the closed-form expression for the ramp-
rate bids in the case of a single-level (SL) and bilevel (BL) optimization problem formulations
are:

Doy — D

SL 02 01

e R 27
i ald+2 (272)
rBL = Doz ; D‘le (27b)

As outlined in Propositions 1.1 and 1.2 in Section 2.3, we observe that r5% = 8L if § =
1/cr, which, according to (Fudenberg and Tirole, 1989), corresponds to the case of Cournot
competition. For the values of the conjectured price response corresponding to higher levels
of competition (6 < 1/«) the optimal level of ramp rate is higher in the case of the single-
stage model as opposed to the two-stage model.

To check this result we formulate the models explicitly as optimization problems and
perform the simulations. In this simple case study the capacity and ramp limits are consid-
ered nonbinding. The production costs are symmetric and equal to 10 €/MW. We assume
two load periods with the demand intercepts DY = [200, 400] MW. The elasticity of demand
a=T72MW?2h/€.

Figure 2 shows the simulation results for the different values of conjectured price param-
eter. We observe that the ramp-rate level in the single-stage model steadily decreases with
a growing conjectured price response parameter until it reaches the value of a two-stage
model bid in the point, which corresponds to the Cournot competition. The optimal level
of ramp rate does not depend on how the unit perceives the competitiveness in the market.
The producers prefer to withhold the flexibility and choose a relatively low level of ramp.

Figure 3-(a) is obtained by running the one-stage model for a fixed combination of
ramp-levels of two players for an arbitrary level of the conjectured price response parameter
0 = 0.05 €/MW?h. Since the companies are symmetric, we can expect the equilibrium to lie
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Figure 3: Symmetric duopoly case study results.

on the middle line, where the bids of the both players are equal. This line is shown in Figure
3-(b). We observe that the highest profits for the both units are reached when ry = ry = 50
MW /h (point 1 in Figure 3-(b)). This solution would be a stable point if the producers were
cooperating, as it maximizes the sum of their profits. However, as we can see in Figure 4,
in which a profit curve of a single producer is shown for the ramp-rate level of other player
fixed, a generator can obtain a higher profit by unilaterally changing his level of the ramp
rate (which can be visualized by moving along the x axis of the plane following the arrow).
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Figure 5: Reaction functions of both of the players. The intersection of the reaction function — Nash
equilibrium.

A response to such strategy will be an increase of a ramp-rate level by the second producer.
An equilibrium point is finally reached when no unit wants to change its bid unilaterally. In
Figure 4 we can see that point 2 coincides with the point of the highest profit for a given
combination of the ramp rates. This logic illustrates reaching a Nash equilibrium between
strategic producers.

We can obtain the same point by fixing the decision of one of the players and observing
the response, or reaction, of the other player. By repeating this for a range of values and
for both players we obtain reaction functions, shown in Figure 5. The reaction functions
intersect in the only point, which is a Nash equilibrium (point 2 in Figures 3-(b), 4, and 5).
In this simple case of smooth profit functions we can prove numerically that this point is
the only Nash equilibrium.

Point 3 corresponds to the solution of the single-stage model for the given choice of
parameter . We can see from Figure 3 that this point offers the highest flexibility in ramp.
Since the producers are competing in quantities and ramps at the same time, they choose
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to leave the ramp-rate level flexible, so they can react to the competitors’ strategies by
withholding or providing more production to the market.

The equivalence of the single-stage and two-stage models for the choice of the conjectured
price response representing Cournot competition can be found in some other games. In
(Wogrin et al., 2013b) the authors study the capacity-investment problem and show that for
the case of a one load-period game and 2 symmetric producers the investments are generally
higher for the single-stage problem, converging to the same value when competition structure
is approaching Cournot.

The above study confirms an intuition that market design impacts the generators’ be-
havior and the social welfare. A two-stage setup, which may seem fair intuitively, can lead
to higher withholding and therefore social welfare losses.

4.2. Modeling duopoly over a 24-hour horizon

We extend the proposed models to consider the 24-hour modeling period. For a realistic
demand profile, we obtain real Swedish hourly demand data for the 17th October 2016 and
scale it to fit the duopoly case study (Nord Pool, 2016). We compare two models: in a
one-stage model strategic firms choose their ramp and production level every time period,
in a two-stage model companies choose their ramp rate for the whole time horizon, and then
choose their production level at each time step.

The results of simulations are presented in Figure 6. For the single-stage model we plot
the maximum ramp rate offered through the time horizon. We observe that Proposition 1.2
holds for this case study of a longer modeling horizon. The ramp rates offered in a one-stage
model are higher, than the ones offered in two-stage model. The ramp rates coincide, when
competition level corresponds to Cournot oligopoly. The profits of generating companies are
higher in the two-stage model.

4.8. Asymmetric duopoly

In this section we verify that the results of Propositions 1.1 and 1.2 in Section 2.3 hold
for the case of asymmetric generating companies. Figure 7 shows the simulation results for
two cases: (a) with marginal costs ¢; = 5 and ¢y = 7 €/MW (quasi-symmetric firms), and
(b) with marginal costs ¢; = 5 and ¢ = 15 €/MW (asymmetric firms). We assume two load
periods with the demand intercepts DY = [200,400] MW. The elasticity of demand o = 7.2
MW?2h/€.

In Figure 7 we first observe that in both of the cases r%% = rBL if § = 1/a (under
Cournot). For the values of the conjectured price response corresponding to higher levels of
competition (f < 1/«), the optimal level of ramp rate is higher in the case of the single-stage
model as compared to the two-stage model. These findings support the Proposition 1.2 even
for quasi-symmetric and asymmetric firms.

4.4. Firm ownership

We study the effect of having multiple units merged into one portfolio by considering a
small case study. The system consists of two firms, owning two units each: a cheap unit with
¢ =5 €/MW and an expensive one with ¢; = 10 €/MW. The ramp-rate limits are equal
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to R; = 140 MW /h and the capacity limits are considered nonbinding in this particular case
in order to facilitate the interpretation of the results.

Figure 8 demonstrates the advancement of the ramp-rate levels for this case. The ramp-
rate levels follow a pattern similar to the case of duopoly, studied in Section 2. In case of
two-stage bidding there are two flat lines corresponding to two different choices of ramp-
rate level, depending on the costs of the units. The cheap unit maintains the ramp rate
at the level r = 66.67 MW /h, while the level of the second unit is zero. The generating
company chooses a zero flexibility of the expensive unit, so it is dispatched in both time
periods — when demand is lower, and when it increases. In case of simultaneous ramp and
quantity bidding generators steadily decrease the ramp rate of a cheaper unit and increase
the ramp rate of a more expensive unit with increasing . The more market power, the more
generating companies restrict their cheaper units in order to increase their profits, when
the expensive units are dispatched. The rates converge to a single value when the market
structure becomes less competitive. At this point the generators maximize their profits by
withholding their capacity and flexibility, so the price increases in both of the models. It is
worth noting that the final value of the single-stage bidding is similar to the sum between
the bids of two units in the two-stage bidding model.

We observe that even in the extended case with firms owning multiple units, we have
similar trends as in the simplified version, shown in Section 2. In particular, given that
the firms conjecture only on energy, it can be observed that the levels of ramping flexibility
do not depend on strategic spot market behavior in the bilevel model, which supports our
findings that a sequential-bidding market structure allows generating companies to exert
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Figure 8: Single-stage and two-stage solutions for a system of two symmetric competing firms with
portfolios of 2 units.
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Table 1: Social welfare calculations.

Case study Perfect competition Cournot

1-stage  2-stages 1-stage 2-stages

Total profits, €+ 0 617 4919 4919

Duopoly case Consumer surplus, € | 22 137 20 594 9 839 9 839
= Social welfare, € | 22 137 21 211 14 758 14 758

Total profits, €+ 0 617 3494 3 667

Firm ownership  Consumer surplus, € | 22 137 20 594 12536 11 993
= Social welfare, € | 22 137 21 211 16 030 15 660

market power to a larger extent than the simultaneous-bidding market structure. We observe
that the difference between the total ramping level is maximum at perfect competition and
decreases towards the values of 6 representing Cournot. The single-level model yields profits
that are always below the profits obtained in the bilevel model, which indicates that even in
this extended case the sequential-bidding market structure allows for the exercise of market
power of generating companies.

It should be noted that, while the single-stage model can be solved to the global opti-
mality, the result of a two-stage model is a Nash equilibrium (as opposed to a local/global
optimum), a point at which no company wants to deviate unilaterally by modifying its strat-
egy. There could be multiple Nash equilibria and the solution algorithm can converge to
any of them. However, from what we have observed in our case study, we always converge
to the same equilibrium independent from the starting point, which might suggest that the
equilibrium is unique.

Table 1 provides a comparison of social welfare for the case studies above. We observe
that separating the stages of deciding the flexibility and production levels results in a lower
social welfare. For duopoly the values coincide at Cournot. We can also observe that the
social welfare component of companies’ profit increases, when the level of competitiveness
reaches Cournot, while the consumer surplus decreases considerably.

4.5. Stochastic case study

Authors in Oren and Ross (2005) find that by letting generators restate their ramp
rates only once in a longer time period, policy makers can prevent them from responding

Table 2: Optimization scenarios

Model Scenario probability, p.u. D?l, MW D?z, MW
Deterministic 1 700 1000
Stochastic sl: s2: 83: s4: sl: s2: s3: sd: sl: s2: s3: s4:

025 025 025 0.25 | 700 900 500 700 1000 1000 800 1200
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Figure 9: Comparison of the stochastic and deterministic cases

to market conditions with false ramp rates. In this case study we show that uncertainty,
and in particular, wind uncertainty may actually lead to the opposite results in certain
circumstances. This means that there are numerical examples, where uncertainty leads to
lower levels of flexibility than the deterministic case. In Table 2 we present the demand
data used for this case study. Note that the deterministic data corresponds to the average
of all stochastic scenarios. Figure 9 shows the comparison of ramp-rate levels obtained in
the deterministic and stochastic cases (for single-stage MCP model we plot the maximum
value of ramp rate in scenarios). We observe that while the expected value of the demand
intercept in the stochastic scenarios is equal to the one in the deterministic case, the bids
follow a very different pattern. Several observations can be made:

e Counter-intuitively, we can observe that stochasticity yields smaller total ramping
levels than the deterministic scenario in both two- and single-stage models — this can be
explained by the fact that there is a chance of getting higher profit from the expensive
unit, if the high-demand scenario occurs. In this case study, the generating companies
facing the uncertainty choose to withhold their ramp rates to ensure a certain level of
profits in every scenario. However, we should note that it is not the general case, and
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the results may be different depending on the parameters of the model;

e The initial gap for the low values of the conjectured price response corresponds to the
situations close to perfect competition, when the less expensive generator provides the
whole capacity to the market, so the second generator is not expected to ramp;

e The kinks in the simulations of the bilevel model can be explained by the solution
procedure, as the EPEC is solved via diagonalization. While in a single-level model
the result is unique, the two-level model can often have several Nash equilibria as
solutions (several points at which no company wants to deviate unilaterally). This
is a reason for the jumps in the optimal ramping level. In such case, when there
are multiple equilibria, they can be evaluated based on criterion (e.g., social welfare
- best/worst Nash equilibrium as discussed in (Hesamzadeh and Biggar, 2012)) to
choose the equilibrium that yields the best result with respect to this criterion.

e Apart from these particularities that happen close to perfect competition, the ramping
flexibility levels follow the same trend as in the duopoly case. The two-stage model
levels, for the most part, do not seem to be affected by competitive market behav-
ior. Moreover, the ramping levels obtained in the single-level model under Cournot
competition, and the bilevel ramping levels for arbitrary market competition seem to
converge to similar values.

These observations allow us to conclude that the outcome similarity of the single- and two-
stage models at Cournot holds even for the case, when we consider the portfolio bidding
and uncertainty. We also observe that in this particular case the ramp-rate levels in case of
simultaneous bidding are steadily higher than in the case of the separated bidding stages.

It is worth noting that in the stochastic case the results do not show the same stability
as in two previous case studies. For example, we can find cases, when the social welfare is
higher in two-stage models, because it is more profitable for companies to produce more,
so the prices decrease. The intuition for these observations is possibly in the structure of
the stochastic model. In the stochastic two-stage model ramp rate is declared before the
uncertainty is realized and production takes place. Therefore, the ramp rate constraint does
not hold as an equality between ramp rate and the difference in the production, and ramp
rate cannot be always used by strategic generators to affect the production levels. However,
the existence of the cases that the generators choose to limit their ramp rates even when
facing the uncertainty questions considerably the logic of separating the stages of deciding
the production and flexibility levels.

Figure 10 shows the bidding behavior of the producers when exposed to the stochastic
scenarios with different demand patterns — increasing, decreasing, or mixed demand pattern
scenarios. We observe that the behavior in cases of increasing and decreasing demand is
absolutely symmetric. In the case of mixed demand patterns we have two different values
for ramp bid — ramping-up bid and ramping-down bid. If we force the bids to be equal the
bidding pattern will be the same as in cases a) and c).
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Figure 10: Comparison of stochastic scenarios with different demand patterns.

5. Conclusions

Generation-side flexibility becomes increasingly important as the share of wind genera-
tion becomes bigger and there are frequent swings in generation supply. In this paper we
present how generating companies decide ramp-rate flexibility and production in a one-stage
and a two-stage processes, and we analyze the impact of these different market setups on
the results.

We present two models — a single- and a bilevel model — to represent two different
types of market setups: bidding the ramp and quantity levels simultaneously; or doing it
in two stages, where the generators choose their ramp rates in the first stage, and compete
in quantities in the second stage. A market structure, where the bids on ramp rate are
submitted before the actual market clearing happens is a common regulatory practice, aiming
to minimize the manipulation on the ramping constraints. In this paper we show that such
a regulatory intuition can actually lead to a higher level of withholding. We provide a
comparison for a range of different conjectured price responses, capturing company’s beliefs
regarding its influence on market prices.

In the case of duopoly, the observed results show that for the markets that are more
competitive than Cournot oligopolies separating the flexibility from production decisions
leads to a higher level of withholding. Essentially, when ramp rate and production are
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decided simultaneously then firms need to set ramping capability as large as required by the
market. However, if ramping capability is decided previously (as in the two-stage model),
then once the market stage happens, generation companies are “limited” by the ramping
levels previously decided — which can of course be less than what would be required by the
market. Therefore, a strategy to separate the stages of choosing the flexibility and production
results in higher profits for the companies but the social welfare decreases considerably,
contrary to the regulatory practices, used by the NYISO (NYISO, 2013), or in California
(CAISO, 2009).

We extend the model to an arbitrary number of load periods and include uncertainty.
We observe many of the duopoly-case observations to hold in the extended single-level and
bilevel equilibrium models. Even in the general case separating the stages of ramp rate and
quantity bidding does not necessarily lead to a higher social welfare. The proposed model
shows that for a market, the structure of which is more competitive than Cournot oligopoly,
it may be advantageous to allow simultaneous bidding of ramp rates and quantities. We
observe that otherwise, the producers are likely to exercise their market power in the pre-
commitment stage as such strategy locks higher profits in the second stage.

Future work can include introducing a concept of conjectural variations in ramp rate. If
system operator recognizes the problem of strategic behavior in ramp rates, when declared
before the actual moment of production, we need to study, what are the possible implications,
and how we can limit this new type of strategic behavior. Including this concept will move
the analysis to studying the Generalized Nash Equilibrium.

Acknowledgements

The authors sincerely thank the anonymous reviewers for their very useful comments
and suggestions, which significantly contributed to this paper.

Appendix A. Basic market equilibrium as an optimization problem

The one-stage equilibrium model of simultaneous ramp rate and quantity bidding pre-
sented in Section 2.1 can also be formulated as an optimization model:

2
mivinioe 3 (cau + 300~ (P~ )
subject to: Q >qi >0 :ﬁit,ﬁitw
RZHZO :Xi,Ai
T 2 Qi — Q-1 Vit
Qi—1) — it = Tt 1Y,

dy :qu& 2

It can easily be verified that the KKT conditions of this optimization problem are equivalent
to (4).
32



Appendix B. Supplementary mathematical derivations

We can reformulate problem (1)-(2), as if only the production variable is strategic:

maxgmize (ptl (qit17 q*itl) - C)(Im + (ptz (Qit27 qfitz) - C)qitz (Bla)

Vi - subject to: Q>q¢:>0 His 1, Yt (B.1b)
Ti 2 Gity — Gity, Vi (B.1c)

Qit, — Qit; = T3 17, (B.1d)

ME: dy =Y g, dy=D]— api(an qi) Vt. (B.2)

The KKT conditions of this problem can be formulated as follows:

,96(551 =Pu =0, —c+py, — iy, +7—7,=0 (B.3a)
B = Prs = Oty — o+ 1y, — Ty, =7, +7, =0 (B.3b)
Vi 0<p,Llag. >0Vt (B.3c¢)
0<py LQ—gu=0 Vi (B.3d)
0<% L7i—dit,+qit, 20 (B.3e)
0<7,L7ri—dqu+dqgu=0 (B.3f)

dy= g, di=D]—ap, Vt. (B.4)

With the same assumptions as in Section 2.1, KKT conditions (B.3)-(B.4) coincide exactly
with KKT conditions (4)-(5) and the same expressions (6) can be obtained.
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Strategic Bidding of a Hydropower Producer under
Uncertainty: Modified Benders Approach
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Abstract—This paper proposes a stochastic bilevel program for
strategic bidding of a hydropower producer. The price, quantity
and ramp-rate bids are considered. The uncertainty of wind
power generation, variation of inflows for the hydropower pro-
ducer and demand variability are modeled through the moment-
matching scenario generation technique. Using discretization the
stochastic bilevel program is reformulated as a stochastic mixed-
integer linear program (MILP) with disjunctive constraints. We
propose a modified Benders decomposition algorithm (MBDA),
which fully exploits the disjunctive structure of reformatted
MILP model. More importantly, the MBDA does not require
optimal tuning of disjunctive parameters and it can be efficiently
parallelized. Through an illustrative 5-node example, we iden-
tify possible strategies (specific to a hydropower producer) for
maximizing profit, which in turn leads to market insights. We
also use the IEEE 24-node, 118-node and 300-node case studies
to show how our parallelized MBDA outperforms the standard
Benders decomposition algorithm. The parallelized MBDA is also
compared to the state-of-the-art CPLEX solver.

Index Terms—Stochastic bilevel program, disjunctive con-
straint, Modified Benders decomposition algorithm

NOMENCLATURE

The main notation is presented below for a quick refer-
ence. Additional symbols are introduced throughout the text.

Indices

i Generating units

t Time periods

l Transmission lines

n System nodes

k Bid alternatives

w Stochastic scenarios

j Benders iterations

Sets

1 Generating units

" Strategic hydropower units, 1" C I
121 Upstream and downstream units, T*5I%"C "

Parameters (upper-case letters)

M? Initial water level of unit ¢ € I", m?

M; Maximum water level of unit s € I, m?

Vitw Inflow to the reservoir of unit i € I" in ¢, m®
I Production equivalent of unit ¢ € 1 b, m3/MWh
Q; Maximum generation of unit ¢, MW

R; Maximum ramp rate of unit :, MW/h

C; Maximum price bid of unit i € I, $/MWh
cM Marginal cost of unit i, $/MWh

A‘[ Future price for unit i € I, $/MWh

E. Moiseeva and M.R. Hesamzadeh are with the Electricity Market Re-
search Group (EMReG), KTH Royal Institute of Technology, Stockholm,
Sweden (e-mail: moiseeva@kth.se, mrhesamzadeh@ee.kth.se).

P, Probability of scenario w

Hy, Power Transfer Distribution Factor
F Power flow limit on line I, MW
Dyt Demand at node n in ¢, MWh

Variables (lower-case letters)
7T Profit of strategic hydropower producer, $

Qitw Dispatched generation of unit ¢ in t, MWh
Sitw Spillage of unit i € I" in ¢, m®

Mirw  Water level of unit i € I in ¢, m3

xh Binary variable of quantity bidding decision
xl Binary variable of ramp-rate bidding decision
TG Binary variable of price bidding decision

Git Quantity bid of unit ¢ in ¢, MW
7 Ramp-rate bid of unit ¢, MW/h
Cit Price bid of unit 7 in ¢, $/MWh

Lagrange multipliers (LM)
;Lf;;u, yift\; LM of unit ¢ lower capacity limit constraint
2 LM of unit ¢ upper capacity limit constraint
LM of energy balance constraint

Ay A
Hiéfw ng
)‘tw’ Otw
LM of the flow constraint of line [

Higw i - ;

Mijess Vi, LM of unit ¢ ramp-up constraint

uﬁj], 1/53, LM of unit ¢ ramp-down constraint

wE . vE, LM of spillage nonnegativity constraint

,uf;lw ygjﬂ LM of lower water-level-limit constraint
2 LM of upper water-level-limit constraint

Fy F
/”’zéw’ Viéw
Afiw> @ity LM of water balance constraint

Operator
I(condition) “If” operator

I. INTRODUCTION

BOUT 16% of the electricity in the world is generated

by hydropower producers. The annual hydropower share
in electricity generation in Norway is 95-99%. It is also
high in Brazil (80%), Iceland (88%), New Zealand (65%),
Austria (70%), Canada (62%) and Sweden (42%) [1]. Even
though hydropower producers have such an important market
share, they have been traditionally regarded as price-takers,
optimizing their production schedule based on the price expec-
tation. However, the price-taking assumption for a hydropower
producer does not always hold [2]. Reference [3] shows that
in hydrothermal systems the strategic behavior can lead to
significantly higher prices. In winter 2002-2003, extraordinary
high prices were observed in Nordic market. A number of
observers voiced the concern that the high prices were a
result of strategic behavior by hydropower producers. The
hydropower producers may have used an opportunity to spend



more stored water in summer in order to create scarcity and,
therefore, high prices, in winter [4].

Hydropower producers can use their unique characteristics
(such as a capability to store energy, hydrological coupling
between units and near-zero marginal cost) to behave strategi-
cally in the market [1], [5]. With an increasing penetration of
wind and solar generation, hydropower producers can ramp
fast to cover the generation fluctuations. Withholding such
ramping capability adds another dimension to the strategic
behavior of hydropower producers [6].

The lack of literature on hydropower producer’s strategic
behavior is partially explained by the difficulty of modeling
hydro-dominated systems. The model often includes nonlin-
earities [7] or exponentially increasing number of scenar-
ios [8]. There are only a few works that consider price-
making hydropower producers, but they significantly simplify
the modeling, leaving out some important aspects. The authors
in [3] perform a market power assessment in hydrothermal
systems by taking into account residual demand curve (RDC)
and ignoring the uncertainty for the sake of tractability. This
approach leaves out the effect of transmission congestion and
possibly results in misleading optimal dispatch. A similar
RDC approach is employed in [9] for a single hydropower
producer, resulting in the same drawbacks. References [10]
and [11] ignore hydro-specific constraints such as cascaded
configuration and hydrological balance in their analysis. Other
works have only looked at very small case studies, as for
example duopoly in [12]. The authors in [13] take into account
a single price-making hydropower producer. While having a
sufficiently complete modeling of hydro-specific constraints,
the study does not take into account transmission constraints.

Strategic behavior in power systems is often a consequence
of an advantageous position of one, or several strategic power
producers [2]. There is a number of models, created in
order to reflect limited competition in the market. Using the
game-theoretic concepts, the situation with multiple profit-
maximizing firms can be modeled as Cournot [14] or Bertrand
[15] games. However, in our studies we focus on the advan-
tageous position of a single hydropower generating firm. This
firm can be thought as a leader of Stackelberg game [16]. The
leader chooses its bids based on what it anticipates the other
firms and the system operator would do [17]. The Stackelberg
model closely reflects the bilevel nature of strategic interaction
in electricity markets and allows to model the strategic position
of hydropower producer relative to other market participants.

Accordingly, the current paper proposes a stochastic bilevel
program for analyzing the strategic bidding of a hydropower
producer. The program has a Stackelberg leader-follower struc-
ture. The upper level is a price-making hydropower producer
bidding on price, quantity and ramp rate. The lower level is the
optimal dispatch with explicit modeling of opportunity cost.
We take into account constraints specific to the hydropower
producer, such as hydrological coupling of the reservoirs,
spillage and water level constraints. We do not take into
account the start-up and shut-down costs of the generators.

Uncertainty is a crucial element, which should be considered
for the model of hydropower producer. Uncertainty in inflows
and demand determines the bidding behavior of strategic

hydropower producer. The wind uncertainty determines the
amount of ramping needed in the system and the amount
of cheap wind power, available for the dispatch. Therefore,
we use stochastic programming to reflect the process of
decision-making under uncertainty. There are several ways to
represent that the exact values of the crucial parameters are
not available for the decision-maker at the time of decision.
Possible techniques include chance constraints or robust for-
mulation [18]. We use scenario representation to model the
uncertainty in the realization of some specific parameters.
The stochasticity of demand, inflows and wind generation
is modeled through moment-matching scenario generation
technique [19]. In contrast with other methods, such as e.g.
conditional sampling, moment-matching technique takes into
account the crucial statistical characteristics of the probability
distribution functions and the correlations between uncertain
parameters [20].

Solving stochastic MPECs is a difficult numerical problem.
Some of the solution approaches include implicit nonsmooth
approaches, piecewise sequential quadratic programming, or
perturbation and penalization methods [21]. However, non-
linear methods do not guarantee a global solution, and they
are usually computationally intensive. In this paper we use
discretization to reformulate the stochastic bilevel program as
a stochastic mixed-integer linear program (MILP) with dis-
junctive constraints [22]. We assume that strategic hydropower
producer can choose between discrete levels of capacity, price,
or ramp bid. Resulting problem can be solved to the global
optimum. There are two main approaches to solving a MILP:
(1) Solving directly (monolith solution) or (2) Applying the
decomposition technique.

Using the first method, the MILP can be solved directly
using state-of-the-art commercial solvers. MILP solvers are
usually based on modern modifications of grid search algo-
rithm [23], simplex-like method [24], or branch and bound
[25]. CPLEX solver uses a branch and cut algorithm which
solves a series of LP subproblems. The realization of CPLEX
solver in GAMS supports parallel computing technique, which
means that the branch and cut procedure can be performed
on several threads. CPLEX solver was shown to be the most
efficient solver for finding an optimal solution [26]. However,
a single stochastic mixed integer problem generates many LP
subproblems, therefore, even small mixed integer problems
can be very computationally intensive and require significant
amounts of physical memory.

Decomposition techniques were historically created to pro-
vide a faster solution to MILPs and overcome the memory
requirements. Using Benders decomposition technique, the
problem can be separated into a master problem (a mixed-
integer program) and a collection of subproblems (linear
programs), representing stochastic scenarios. The solution is
based on the sensitivities of the subproblems to the candidate
solutions from master problem. Benders decomposition guar-
antees a globally optimal solution for MILP [27]. In this paper,
the modified Benders decomposition algorithm (MBDA) is
proposed to solve the stochastic MILP model. The MBDA
retains the global optimality property of Benders procedure
and exploits the disjunctive structure of the stochastic MILP



model. It does not require optimal tuning of the disjunctive
parameters and it can be efficiently parallelized. We apply
state-of-the-art modeling modifications [28], in order to make
the decomposition computationally efficient.

Through an illustrative 5-node example, we carefully study
the market aspects of strategic bidding of a hydropower
producer. The IEEE 24-node, 118-node and 300-node sys-
tems are used to show the computational efficiency of the
parallelized MBDA. We show through the numerical results
that the parallelized MBDA outperforms the standard Benders
algorithm for large case studies. We have also compared the
parallelized MBDA to the solution of a monolith problem by
the state-of-the-art CPLEX solver.

Therefore, the contributions of this paper are: (1) It develops
a stochastic MILP model for analyzing the strategic behavior
of a hydropower producer with endogenous electricity price
formation and explicit modeling of opportunity costs; (2) The
parallelized MBDA is proposed to solve the stochastic MILP.

The paper is organized as follows. Section II presents the
stochastic bilevel model and its reformulation as a stochastic
MILP. Section IIT provides the modified Benders decom-
position algorithm. Section IV illustrates the hydro-specific
strategies in electricity markets. The computational properties
of the parallelized MBDA are detailed in Section V. Finally,
Section VI concludes the paper. Supplementary mathematical
expressions are provided in Appendices A, B, and C.

II. THE MATHEMATICAL MODEL (STOCHASTIC MILP)

The price-making hydropower producer is modeled in (1).

maximize m = E w(g Antw — C )taw

Gt Ti,Cit

(iel™),w +m1[wA7 F (13.)
subject to: 0 < G;y < @i, 0 <7 < Ry, 0< ¢ <G,

Y(i € I")t, (1b)

where Ay, Qitw, Sitw, Mitw €
arg { minimize tz PutitGitu (o)
subject to: 0 < q;tw <Gt ,uﬁju,uﬁfu, Vi, (1d)
Zqitw = Z Dpww 1 AR, Vtw, (le)
ZHln quluz ~ Dotw) < Fy 5, Vitw, (1)
-7 < qt(t 1) — Gitw < 1 gk 2, Vitw, (1g)
0< Site ¢ fiiy, V(i € IM)tw (1h)
0 < Mgy < My =l pl2 Ve My, (1)

7nilu777ni(L71)w = ]\/Ilol(tfl) + ‘/iLufriqiLufsiLw
+ 3 (Pt + si) NG, V(i € Pt} (1)
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Here (1a) is the profit formulation, where A, is a locational
marginal price (LMP) and it can be expressed as Aty =
)\fw 7Zm uﬁw Hj,,. The term my1y, A{Fi describes the future
value of water left in the reservoir by the end of the modeling
horizon (at time step 7). Strategic hourly bids (g, ¢;¢), and
ramp-rate bid 7; of the hydropower producer are modeled by
the constraints (1b). The LMPs and the dispatch variables

are the output of the lower-level economic dispatch problem
(1c)-(1j). Expressions (1d) are the generation constraints. We
assume the technical minimal outputs of generating units are
equal to zero. Expression (le) represents the energy balance
constraint, (1f) accounts for the network constraints and (1g)
is setting the constraints on ramp rate. A system of connected
reservoirs is considered for the hydropower producer. We
model the constraints on spillage (1h), water level (1i) and
hydrological balance condition (1j). In hydropower plants with
a large storage capacity, head variation has negligible influence
on operating efficiency in the short-term, therefore we assume
a constant production equivalent I'; [29].

Since the lower-level problem (lc)-(1j) is linear, we can
equivalently rewrite it as Karush-Kuhn-Tucker (KKT) condi-
tions. We avoid the complementary slackness conditions by
substituting them with the strong duality condition (14), as
it was shown to be more convenient for linearization [6].
Accordingly, primal feasibility constraints (1d)-(1j), dual fea-
sibility constraints, stationarity constraints (13a)-(13c) and
strong duality constraint (14) form the optimality conditions
of the lower-level problem. Now, we can reformulate the profit
by deriving the LMP from the stationary conditions (13a):

S P08 - St -
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We simplify expression (2) using the complementary slack-
ness (CS) conditions [6]. The term (x) (=T NG, +
T3 ieran G, )gitw appeared from the hydrological balance
constraint (1j) and it exists only for hydropower units. We
derive the linear reformulation of it in (3). The final profit
expression becomes:

= Z P (Z (”girdit"'(Hgﬁ]'*‘ltgﬁ,)fi'*‘éitqitw—CiM(Iitw
(iEI’L) w t

1
i M=AG (MAE=D+ Vi) ) 4mirad ). @)
1

The equivalent one-level program can be formulated by com-
bining the upper-level constraints and the lower-level optimal-
ity conditions. The variables of one-level optimization include
primal variables and dual variables of the lower-level problem,
and variables of the upper-level problem: ON"P={g;;., Sitws
Mitos Hipte: Wit Hitis Higao Wit Higws s M Ais
)\gw Gits i, Cit}y. The final profit expression (4) and strong
duallty condition (14) contain bilinear terms u,,qu, Um; T4,
Nmﬂ"z and ¢;1q;t- For the non-strategic units we assume: §;;
= Qi 7 = Ry, ¢y = CM, Vi € (I\I"). For the strategic
units these terms need to be linearized.

We approximate the generation capacity Q; by a pre-
deﬁned number of discrete capacmes sz Therefore: ,ultu Git

= /‘thw Zk zthlk Zk nuﬂk’ where Ek xztk = 1. Variable



A = can be linearized as follows [301":

Zitw
— K91 —al,) <252, — Quenyyl, < K9(1—alyy)
(@2 i) VGED)twk,  (5a)

A . .
2yt Brvwns B2 ) VGET" twk. (5b)

In the constraints above K¢ is a suitably large constant, not
too high to create computational instabilities, and not too low
to put extra bounds on the variables [31]. Introducing K7, we
rewrite (1d) and (1g) as follows.
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We repeat the hnea.nzanon steps for other blllnear terms,
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ONLP The proposed stochastic MILP model is set out in (7).
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Linearization of z;;} ., 2;,2 1 Zipp @ in (5), Viel",
Linearization of (14) as in (5).

In the next section we show how the stochastic MILP model
(7) can be solved efficiently using the parallelized MBDA.

III. THE SOLUTION ALGORITHM (PARALLELIZED MBDA)

In optimization problem (7), if we fix binary variables z?,,,
z,. and xf,., the problem separates in a series of linear
programs which can be solved in parallel. By employing
Benders decomposition algorithm, a MILP master problem
MP1 is formulated that provides the lower bound for the
global solution.

MP1:

mimmlze «

q
Qg T Tl

(8a)

!The Lagrange multipliers in parentheses will be used in Section III.

subject to: a > Z Py, + Z /V\;kwj (@),
w ik, w

— i)+
Z ()‘gtkwj (Igtk -z "i‘;‘tk;)) ) Vj,
i,t,k,w

fom = 1=szrk =1 fozk = 1,¥(i € I")t, (8b)
k k
down {aly, wh iy} € 0,1} (8¢)

Here o sets the lower bound of MP1. This parameter is
set arbitrarily low: a®°%"— —oo. Parameter 7,,; is the profit
in scenario w and iteration j. The &, ., &7, ;. &5, ; are bids in
iteration j and AY,, o )\lkw], /\”kw] are sensitivities of profit
functlon w1th respect to fixing bid variables x,,, 1, &5, t0
&fyy.0 Thpjs T,y Tespectively. The Benders subproblem is:

— T ©

subject to : (7b),
=4 _ 4 Y ST et AT
Titk = xitk(j—l)')\itkwﬁ T = Tip(i—1) Afkwy»>

F.C e . : —7h U B~ ]

Ty = 'L;tk(j—l)')‘ftkwjvv(ZEI ")tk, {‘Litk7 Ty, Ty JER.

Here set QM is the same as QM except that binary
variables :L‘nk, z7,, and xf,, are replaced by continuous vari-
ables &, @7, &%;. The standard Benders decomposition
algorithm consists of iteratively solving master problem and
subproblem, until the convergence is attained [32]. However,
in problem (9) the sensitivities )\“ka’ Ay and Afp,
are poor, due to disjunctive parameters in the subproblems.
The cuts obtained are loose and sometimes contain irrelevant
information, which causes numerical difficulties limiting the
use of the method [33].

q ¢ c
dikg) T Atk (T —

k
a>a

down

SP1: minimize
SZLP

A. The modified subproblem
For fixed &, &7, and Z{,,, the optimization problem (7)
is a linear program and its dual is derived in (10).

SP2: ma)gmize iual — Z P, Z <¢th Z Dpgw—

w

n
Zl’ltw Fl+ZHln ntw Z ¢ffZ,CL*Z¢ftti Zézki‘:k

zeI\I’* 161”

- Z d)zthl Z d)ztw Z Qlk7 Z ztw ztw)R

zeI\Ih i€lh i€I\Ih

Z ztw ’Lt’lU)ZRZk Z¢1twA[i+ Z ¢gw(]\[zol(t:1)
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(ielh),t,w,k

+ "i‘;]tk(ﬂztwk + ﬁztuk)) + K,((l - 71k)( ztwk + 71Dt1i)k
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(10b)

Here Q5P is the set of decision variables in (10). The feasible
region X is represented by the corresponding stationary, pri-
mal feasibility and dual feasibility conditions of optimization
problem (7), when z,,, %, and x5, are fixed to &%, &%,
and #¢,,. Full formulation of Q5" and of the feasible set X
are prov1ded in Appendix B. Note that the feasible region
of SP2 is independent of the disjunctive parameters K9, K",
K¢. The disjunctive parameters appear only in the objective
function (10a). To remove these disjunctive parameters, we
introduce the following lemma.

subject to: Q5 € X.

Lemma 1. If disjunctive parameters K9, K" and K¢ in (10)
are tuned optimally, the exact disjunction holds. Then

1- ( ztwk ta aztuk + ngwlc) + $zt1c (ﬂttuk + ﬁztuk) 0

T
1- 7;1;)(’/nwk +a ("/ztu)k + aztwk) + 7z}<(ﬁzt711L + ﬂﬁ;k)f )
1= &) (Vigay, + @y + aisy) + xzk(ﬁmuk + ank) =0,
L= &) (@00 + 05t0) + i Blean + B31,)=0.

itw
Proof. We deﬁne T1=(1- '“'?tk)(l/ztuk +altwk +amuk) and
T2 = rnk(ﬁ”wk-i-/ﬂ o) If &8y =1 we have T'1 = 0. Also,
constraint (5b) will be non binding (since K¢ is tuned opti-
mally and the constraint is effectively relaxed) and Lagrange
multipliers corresponding to a non-binding inequality is equal
to zero, Bﬁwk, /3:: = 0. Therefore, T2 = 0 and this means
T1+ T2 = 0. In the second case, if &%, = 0 then T2 = 0.
Also, the constraints (5a) and (6a) will be non-binding which
results in 71 = 0. Again we have T'1 + T2 = 0. The same
derivation holds for three other zero-equality terms. O

(
(
(
(

Using Lemma 1, the disjunctive parameters can be removed
from the optimization problem (10). Accordingly, the modified
subproblem SP3 has the same structure as SP2, except that
the terms related to the disjunctive parameters are removed
from the objective function (10a) and added to the constraint
set (10b). Additionally, SP3 has a decomposable structure,
therefore we solve it for each scenario w independently. The
exact formulation of SP3 is provided in Appendix C.

B. The modified master problem

The master problem MP2 corresponding to the dual sub-
problem SP2 is formulated in (11).

MP2: minimize « (11a)
QT T TG
subject to : a > w§", Vj, (11b)
Za« =1, ZT r=1, Zr”k LYGEeI™)t, (1lc)
a > atown, {Igmwfm lfzk} €{0,1} (11d)

Here 74! has the same formulation as 7*“*! in SP2 with
the dlﬁerence that the decision variables in Q5P are fixed

to the calculated values from SP3 in the respective iteration
j and &%, &7, 25, are replaced by binary variables x,,,
xjy,, o5,.. Note that the calculated decision variables of SP3
are not affected by the disjunctive parameters. However, the
disjunctive parameters are still present in the cuts (11b) and
they can cause numerical problems.

Using the special form of the disjunctive constraints, we
can reformulate (11). We use an observation that disjunctive
constraints require that solutions to a mathematical program
satisfy a subset of given constraints. Therefore, all constraints
can be distributed in two sets: relaxed and enforced constraints,
depending on the value of the binary variables zf,, 27,
x5, We propose the following formulation, where disjunctive
parameters are removed.

MP3: minimize

) T pC
T T ik ek o0

Koo+ »_ K6, (12a)
J

subject to:Z (Z((l—wgtk)+(1—:1;ftk))+(1—sz))
i,keﬂ;’ t
S| -1+ > 0,1(K; < Kjr),Vj, (12b)
jreg

Dl =1, ah =1 g, =1,%(i € I")t, (12¢)
k k k

0o + Zej =1 {afy 2ip, wi, 05} € {0,1}. (12d)

J

In optimization problem (12), parameter K;=3" wai’jal
where 7249 is a calculated objective function of SP3. Also
parameter Ko=—o0 is the lower bound of MP3. 0; is an
auxiliary binary variable, created at every iteration. .J’ is the
index set of previous iterations and j is the index of current
. . — Az Ay ph2 Az a1
1terat10n.DIf we define Q = {altwk taukv Bitwks B2 e Citaoks
D 71 Dy —D» Dy  —obj obj
77,1;)wk7 ﬂitwlw éituk’ Xitwk> gztwlﬂ 6ztwk7 ﬁztuk’ Nirwks Litwks
obj obj A D D
Bitwks B Vivwks Vitwks vD2 1, then O is the index set
of strictly positive variables of ) in iteration j. |Qp | is the

cardinality of this set.

Lemma 2. If constraint (12b) includes all extreme points of
(7), then MP3 is an alternative formulation of (7).

Proof. See [34]. 0

The optimization problem (12) is a set-partitioning problem.
The binary variables are determining, which of the constraints
from (5), (6) are enforced and, which are relaxed. Using
this disjunctive structure allows us to remove the disjunctive
parameter. The optimization problem (12) can be efficiently
solved by the tree-search algorithm detailed in Algorithm 1.
By using this algorithm we fix the value for §; before solving
MP3 for finding feasible zf,,, z7,, a5,,. This reduces the
number of binary variables in MP3.

We now specify the parallelized MBDA in Algorithm 2
for solving (7). In the parallelized MBDA, subproblems SP3
for different scenarios are solved in parallel. Then, the master
problem MP3 is solved.

2Please note, in our studies the subproblem is always feasible. If it is not
the case (e.g., insufficient capacity), the feasibility cut should be added [34].



Algorithm 1 The tree-search algorithm

Step 0: Set 6 to 1.

Step 1: Search for feasible «f,,, ]}, ;. If none exist, go to Step 2.
Else, go to Step 3.

Step 2: Set 0; corresponding to the best previously obtained solution
to 1 and go to Step 1. If no such 6; exists, MP3 is infeasible.
Stop.

Step 3: The feasible z%,,, xj, =, is the optimal solution. The
optimal value is K.

Algorithm 2 Parallelized MBDA

Step 0: (Initialization) Choose an initial &7,,, i, &§., iteration
counter j = 0, 2P = +inf, 2/° = —inf and e.

Step 1: (Parallelized LP phase) Solve SP3 independently for
each scenario w with &, #;, 5;. Obtain QF. Update
2= Pwﬂ'izal.

Step 2: (MP phase) Update iteration counter j<—j+1. Using informa-
tion from Step 1 add a cut to MP3. Using the tree-search algorithm
solve MP3 and obtain new solutions ikaj, Tikj» Tiky- Update

lo

z

=
Step 3: (Termination test) If 24P —z!°<e, stop. Otherwise go to Step 1.

Using the parallelized MBDA, the disjunctive parameters
are removed from both MP3 and SP3. MP3 is reformulated
as a set-partitioning problem, which has a better relaxation
than MP2 and can be solved very fast [34]. This improves the
computational efficiency of the proposed solution algorithm,
which will be shown in Section V.

C. Existence and uniqueness of the solution

Since MBDA is a reformulation of the original Benders
procedure, the original properties will hold [34]. If master
problem MP3 and subproblems SP3 can be solved to optimal-
ity (if problem (7) is feasible), the original Benders procedure
guarantees to reach a global optimum [27]. This means that
the solution will be optimal and unique.

IV. ILLUSTRATIVE CASE STUDY

To analyze the strategic behavior of a hydropower producer,
the 5-node case study in [35] is used (Fig.1). We assume
that generators G4 and G5 are hydropower units connected
in a cascaded configuration with G4 being downstream. G2
is assumed to be a wind power unit. We perform two types
of simulations using the stochastic MILP (7): (a) Detecting
the strategic behaviors; and (b) Optimal bids of hydropower
producer. To describe the effect of strategic bidding on the
system we define dispatch cost as price bids of producers
multiplied by the dispatched output.

A. Detecting the strategic behaviors

1) Relocation of water in time: One specific feature of
hydropower producer is that its production can be relocated
between the time periods to maximize its profit. This situation
was suspected in Norway, when the hydropower producers
were claimed to use too much water in summer in order to
create scarcity (and high prices) in winter [4]. We perform
the analysis of this type of strategic behavior using the MILP
model (7) proposed in this paper. We assume that there are two

$1/MWh 1E | Limit =240 MW Dy ) $1/MWh
466.5MW g | 200MW
518 200 MW
g3
gl
$14/MWh G1 ©l
somw ! $30/MWh
imit =400 MW
$15/MWh N imit =400 L < 3235 MW
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Fi§A 1. The 5-node system.
0 period 1 period 2 30[ period 1 A\ period 2
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Q=420 MWh ;=380 MWh =450 MWh =350 MWh

(a) Socially optimal allocation of water (b) Strategic allocation of water
) Profitloss in (b), due to lower price in t;

Profit gain in (b), due to higher priceint, —— Residual demand int,

—— Residual demand in t,

Fig. 2. The effect of relocation of water in time by hydropower producer.

load periods with more demand in period 2. This is illustrated
using bathtub diagram in Fig. 2, where two stepwise curves are
the residual demand curves, formed using the data of fringe
generators [1]. The residual demand curve for the hydropower
producer is that portion of market demand that is not supplied
by other firms in the market. Thus, it is the market demand
function minus the quantity supplied by other firms at each
price [2]. We assume, that the hydropower producer is limited
by the initial water in the reservoir Mg, 5=800 MWh (no
inflows).

Two situations are presented: (a) socially optimal allocation
of water between two time periods and (b) strategic allo-
cation. In the case of strategic behavior the prices become
different for the periods (A\;=$14/MWh and \;=$30/MWh),
in contrast to the uniform price in the socially optimal solution
(A1=X2=$15/MWh). By offering more water in the first time
period, strategic hydropower producer has limited amount of
water left in the reservoir, which maximizes its profit in the
second period. The gain for the hydropower producer from this
strategic behavior is $3750 which is the difference between
two hatched areas in Fig. 2-(b).

2) Using waterways instead of transmission network: A
hydropower producer with hydrologically coupled units has a
unique opportunity to relocate its production between nodes in
highly congested transmission networks. Instead of using the
electricity network, which can be congested in certain hours,
the hydropower producer can use waterways and produce
power when needed.

In the illustrative case study, G4 and G5 are located in
different nodes but they are connected by a waterway. The
transmission limits between the generation and load centers
(capacity limits of lines ED, AD and AB) are set very low, so
that the transmission network becomes congested. We simulate
4 cases: with and without hydrological coupling between
generators G4 and G5, and considering strategic and non-
strategic hydropower producer. The results of the simulations
are presented in Fig. 3.
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Fig. 3. Strategic hydropower producer with hydrologically coupled and non-
coupled units. DC: Dispatch Cost.

First, we analyze the advantages of a waterway for the
hydropower producer (both strategic and non-strategic) by
comparing the top and bottom charts in Fig. 3. Hydropower
producer with hydrologically coupled units relocates around
80 MWh water from upstream constrained-off generator (G5)
to the one located downstream, in the load pocket (G4) —
the production of G4 increases. When there is no waterway,
this relocation of water is not possible. As a result, strategic
hydropower producer receives an extra profit of $1713 ($10916
- $9203). In the non-strategic case, the waterway connection
allows to decrease the dispatch cost by $2020 ($2854 - $834).

However, we also observe that hydropower producer under
waterway case behaves strategically and raises the dispatch
cost by $210. It does not have such opportunities for exercising
unilateral market power under no-waterway case: the dispatch
is the same under the strategic and non-strategic situations.

B. Optimal bids of the strategic hydropower producer

1) The impact of forecasted future water price on price
bidding: The opportunity cost of the hydropower producer
depends on the future expected prices. For hydropower pro-
ducer the cost today is the benefit obtained by using the water
tomorrow [1]. This benefit is calculated using the best available
optimization techniques and historic data, and determines
how much water should be saved today in order to be used
tomorrow. The price-quantity bids of a hydropower producer
are based on the result of these calculations.

The stochastic MILP model (7) is used to study the impact
of forecasted future price on the price bidding of a hydropower
producer. In Fig. 4, the forecasted future price A{ in (7)
is varied between $0/MWh and $2/MWh. We observe that
the price bid of the strategic hydropower producer depends
on the forecasted future price. As future price increases, the
hydropower producer chooses to save more water for future,
by setting a higher price bid for its output. The system operator
minimizes the dispatch costs: the price bids of all generators
multiplied by the dispatched production of these generators.
The higher is the price bid of the hydropower producer, the less
is the production, dispatched by the system operator. The profit
of generator consists of the future value of saved water and
profit from the market: it linearly increases with the increase
in the future price, and in steps with increasing price bid.

Effect of forecasted future price on bidding price
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Fig. 4. Study of future price effect on dispatch cost and profits.

TABLE I
STUDYING THE INFLOW UNCERTAINTY EFFECT.

Residual demand Expected Water offered Expected dis-
curve (RDC) profit, $ in t2, MWh patch cost, $
(a) Convex RDC 36 736 596.50 / 666.5 | 22 187
(b) Concave RDC | 40 756 543.75 1 666.5 | 24 049

The price bid of the strategic hydropower producer changes
between three values of $14, $15 and $20/MWh. This means
that in proximity of these steps the sensitivity of price bid to
the forecasted future price is very high. The same holds for
the dispatch cost. The dispatch costs are calculated using the
offer of the hydropower producer, therefore they increase with
an increased price bid. For example, the strategic hydropower
producer bids $15 and $20/MWh for forecasted future prices
$1.2/MWh and $1.3/MWh, respectively. This results in $1450
(+19.5%) increase in the dispatch cost for just $0.1/MWh
(+7.7%) increase in the forecasted future price. This shows
the sensitivity of dispatch cost with respect to the forecasted
future price. Accordingly, the accuracy of forecasted future
price can have a severe impact on price bidding of a strategic
hydropower producer.

The case study demonstrates the effect that the uncertainty
regarding future water value can create on short term op-
eration. As a possible future extension of the model this
uncertainty can be represented as a stochastic value. Further,
risk management tools can be applied to deal with uncertainty
in future water value.

2) Effect of inflow uncertainty: When analyzing the strate-
gic behavior of hydropower producer, the authors in [4] use a
duopoly case study to focus on the effect of inflow uncertainty.
The authors show that the shape of the demand curve has
the highest influence on the strategic behavior in presence of
inflow uncertainty. When the residual inverse demand function
is convex, the companies save more water for the later periods.
It is opposite, when the demand function is concave. We test
this hypothesis using MILP (7), forming the demand curve
by modifying the fringe generators. We assume that, as in
[4], the strategic hydropower producer is exposed to inflow
uncertainty. We introduce two inflow scenarios with low and
high realizations for the second time period. Our analysis aims
at checking if the general theoretic analysis performed in [4]
will hold for our case study.

Our results support the findings in [4], as presented in
Table I. Even though in both cases the strategic hydropower
producer withholds capacity from the market, the one facing a
convex inverse demand function and inflow uncertainty saves
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more water for the later period. The profit of hydropower
producer and system dispatch cost are higher in the case of
concave residual demand curve.

3) General effect of uncertainty: To study the effect of
increasing uncertainty, we use MILP (7) and create two sce-
narios for each of the uncertain parameters (demand, wind and
inflow) at different standard deviations. The expected values of
these two scenarios are kept the same over different standard
deviations. The dispatch cost of the 5-node system and profit
of the strategic hydropower producer under uncertainty are
plotted in Fig. 5. We observe that the expected profit of the
strategic hydropower producer decreases with more variation
in uncertain parameters. This is partly because it is much
harder for the hydropower producer to behave strategically,
when the future is uncertain.

4) Strategic behavior in price, quantity and ramp-rate
bids: The optimization model (7) can be used to derive
the price, quantity and ramp-rate bids of the hydropower
producer (Fig. 6-(a)). The strategic bids increase the profit

of hydropower producer above its competitive level. In Fig. 6-
(b), 6-(c), and 6-(d) the profit increase with respect to wind
generation level and its standard deviation is shown.

We observe that all three types of bid have an important
effect on the dispatch cost. Strategic behavior in quantity and
price (Fig. 6-(b) and 6-(c)) produce similar results. This is
because both of them can be used by the strategic hydropower
producer to drive the price to the highest possible value. We
also see that strategic behavior in ramp-rate bidding has an
important effect even when the other two types of strategic
bids are not employed (Fig. 6-(d)). This happens in the systems
with limited flexibility, where there are not many fast-ramping
generators [6]. In our simulations, the strategic hydropower
producer is the main provider of system flexibility. Therefore
its strategic behavior in ramp-rate bidding leads to the increase
in its profit and market prices.

V. NUMERICAL RESULTS

In this section we focus on the computational performance
of the parallelized MBDA for mid and large case studies. The
performance is evaluated using the 4-, 24-, 118- and 300-node
case studies, obtained from MATPOWER [35]. All simulations
are performed on a computer with two 2.80 GHz CPU and 8
GB of RAM. We use 4 computing threads. In order to improve
the performance, the parallelized MBDA is implemented in
GAMS using the grid solve and Gather-Update-Scatter-Solve
(GUSS) facilities. A detailed explanation of these facilities is
provided in [28].

We assume 4 time periods and strategic hydropower pro-
ducer has 3 actions for each type of the bid (19683 possible
combinations for bidding). Additionally, uncertainty in each
time period is represented by 20 stochastic scenarios. The
scenarios for our simulations have been generated from the
real data using the moment-matching technique [19], obtained
from Nord Pool [36] and processed to fit the case studies.

A. Computational aspects

We compare the following implementations of Benders
approach: (1) MP1 and SP1: Standard Benders decomposition
algorithm with primal subproblem; (2) MP2 and SP2: Stan-
dard Benders decomposition algorithm with dual subproblem;
(3) MP3 and SP3: Modified Benders decomposition algorithm
(MBDA); (4) MP3 and SP3: Parallelized MBDA with GAMS
grid facility and (5) MP3 and SP3: Parallelized MBDA with
GUSS facility. In order to ensure the consistency of the results
obtained with different methods, we set the optimality gap for
Benders procedures to 0.

The computational results of the simulations are compared
in Table II. The results clearly demonstrate the superiority of
the MBDA and parallelized MBDA over the standard Benders
algorithms. The disjunctive parameters, which were set arbi-
trarily large, affect the results even in the small case study.
The formulations with disjunctive parameters in subproblem
or master problem (standard Benders approach 1 and 2) do
not converge after 10 hours for some of the case studies. This
can be explained by the computational difficulties associated
with the disjunctive parameter in the larger case studies. The



TABLE II
COMPARISON OF BENDERS PERFORMANCE ON DIFFERENT CASE STUDIES.

*: NO RESULTS OBTAINED AFTER 10 HOURS.

Benders algorithm 4-node, G2 € I" 24-node, G1 € T? 118-node, G51 € I" 300-node, G69 € I"
it ts size, MB | it t, min  size, MB | it t, min  size, MB | it th size, MB

1) Standard Benders: primal subproblem * * 350 82 363 1102 * * 203 * * 32000

2) Standard Benders: dual subproblem 17 207 3 82 282 8 12 127 43 * * 205

3) Modified Benders approach (MBDA) 17 185 5 82 227 8 10 112 43 83 38 183

4) Parallelized MBDA with grid facility 17 9% 4 82 112 7 11 8.0 43 82 35 184

5) Parallelized MBDA with GUSS 17 10 4 82 39 7 10 7.1 43 82 34 185

CPLEX 4 350 5.0 1102 9.6 1019 * >5000

difficulty of tuning the disjunctive parameters for stochastic TABLE III

problems is another complicating factor.

The size of the solution tree for one subproblem in MB
is also reported in Table II. The size reaches 32 GB in the
case of 300-node example system, making it very hard to
solve due to memory requirements. Although the size is
reduced under the standard Benders with dual subproblem
(approach 2), the algorithm cannot find the global solution
after 10 hours. For the 300-node case study, the MBDA finds
the global solution in 3.8 hours. The parallelized MBDA with
grid facility finds the global solution in 3.5 hours. Under
the parallelized MBDA with GUSS, the solution time is
reduced to 3.4 hours. As another test, the state-of-the-art
CPLEX solver is used to solve the stochastic MILP model
(7) for the same case studies for a zero optimality gap. The
CPLEX solver did not report any result after 10 hours for
the 300-node case study. The parallelized MBDA with GUSS
finds the global solutions in 3.4 hours.

B. Market aspects

Market implications of strategic behavior are summarized in
Table III. We compare the results when hydropower producer
bids its true capacity, costs, and ramp rate, and when it submits
a strategic bid. The bottom part of the table shows the increase
in dispatch cost from competitive to strategic case. We can
see that a single hydropower producer has less effect on
the dispatch cost for larger networks. This can be explained
by the decreasing share of the strategic generator. If there
are many competing generators, strategic hydropower pro-
ducer has limited opportunities for exercising unilateral market
power. We observe that expected profit sometimes remains the
same, while dispatch cost increases. Such cases correspond
to the situations, when system operator has to dispatch more
expensive generators, e.g. due to binding transmission or ramp
constraints, but the price-quantity trade-off results in the same
profit for the strategic hydropower producer.

VI. CONCLUSION

This paper proposes a stochastic bilevel program for strate-
gic bidding of a hydropower producer. The upper-level is
the strategic hydropower producer, bidding its price, quantity
and ramp-rate to the lower-level system operator. Using a
disjunction-based linearization technique the stochastic bilevel
program is reformulated as a stochastic MILP with disjunctive
constraints. To solve the reformulated stochastic MILP model,
the modified Benders decomposition algorithm is proposed.
The proposed solution algorithm does not require the optimal

MARKET POWER EXERCISE IN MID AND LARGE CASE STUDIES. DC:
DISPATCH COST.

4-node, 24-node, 118-node, | 300-node,
‘ Gel" | Gier” ‘ Gslel” ‘ Geyeln
No market power
Expected profit, $ 81.9 152.4 3100.8 8274.4
Expected DC, $ ‘ 2907.4 24101.3 ‘ 113518.7 ‘ 652105.0
After market power
Expected profit, $ 104.5 152.4 3964.3 8274.4
Expected DC, $ 4905.5 ‘ 24842.9 ‘ 116979.5 ‘ 654078.4
Effect of market power on dispatch cost
ADC, $ 1998.1 741.6 3460.8 1973.4
Increase in DC, % | 68,72% ‘ 3,08% ‘ 3,05% ‘ 0,30%

tuning of disjunctive parameters and it can be parallelized.
Through an illustrative example system and the developed
stochastic MILP model, we identify possible strategies spe-
cific to a hydropower producer for maximizing its profit.
The computational efficiency of the parallelized MBDA is
demonstrated using the 118-node and 300-node case studies.
‘We have also compared our parallelized MBDA with the state-
of-the-art CPLEX solver.

The future work can include extending the formulation to
the case with multiple dominant hydropower producers. Such
extension will require solving an equilibrium problem with
equilibrium constraints.

APPENDIX A
SUPPLEMENTARY MATHEMATICAL EXPRESSIONS

The stationary conditions of the problem (1c)-(1j) are:
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APPENDIX B
DUAL SUBPROBLEM FORMULATION: SP2

In order to take a dual of problem (7) we associate Lagrange
multipliers with every constraint of SP1:
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APPENDIX C

DUAL SUBPROBLEM FORMULATION: SP3

Problem SP3 has a following structure:
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The objective function and the feasible set of SP3 are free
from the disjunctive parameter K.
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Nash Equilibria in Hydro-Dominated Systems under
Uncertainty: Modified Benders Approach
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Abstract—In this paper we use experience of our studies
of a single profit-maximizing hydropower producer and model
strategic interaction of multiple producers in hydro-dominated
power systems under uncertainty as an equilibrium problem with
equilibrium constraints (EPEC), reformulated as a stochastic
mixed-integer linear program (MILP) with disjunctive con-
straints. We model strategic hydropower producers, who can
affect the market price by submitting strategic bids in quantity,
price, and ramp rate. The bids are submitted to the system
operator, who minimizes the dispatch cost. We take into account
the hydro-specific constraints and uncertainty in the system.
Solving the problem results in finding Nash equilibria. We discuss
two types of Nash equilibria under uncertainty: Bayesian and
robust Nash equilibria. Large EPEC instances can be solved
using a decomposition method — Modified Benders Decomposition
Approach (MBDA). This method eliminates the problem of tuning
the disjunctive parameter and reduces the memory requirements,
resulting in improved computation time.

Index Terms—EPEC, stochastic programming, disjunctive con-
straint, Modified Benders decomposition approach
NOMENCLATURE

The main notation is presented below for a quick refer-
ence. Additional symbols are introduced throughout the text.

Indices

i Generating units

t Time periods

l Transmission lines

n System nodes

k Bid alternatives

s Bidding strategies

w Stochastic scenarios

j Benders iterations

Sets

I Generating units

" Strategic hydropower units, I" C I
121 Upstream and downstream units, T“5I%"C I

Parameters (upper-case letters)

MP Initial water level of unit ¢ € I", m3
M; Maximum water level of unit ¢ € I, m?
Vitw Inflow to the reservoir of unit ¢ € I" in ¢, m?
T; Production equivalent of unit i € I, m3/MWh
Qi Maximum generation of unit i, MW
R; Maximum ramp rate of unit :, MW/h
C; Maximum price bid of unit i € I, $/MWh
cM Marginal cost of unit 7, $/MWh

if Future price for unit i € I, $/MWh

E. Moiseeva and M.R. Hesamzadeh are with the Electricity Market Re-
search Group (EMReG), KTH Royal Institute of Technology, Stockholm,
Sweden (e-mail: moiseeva@kth.se, mrhesamzadeh@ee.kth.se).

P,  Probability of scenario w

Power Transfer Distribution Factor (PTDF)
L; Time lag of downstream water relocation, h
F Power flow limit on line [, MW

Dty Demand at node n in ¢, MWh

Variables (lower-case letters)
m Profit of strategic hydropower producer, $
Qitw Dispatched generation of unit 7 in £, MWh
Sitw  Spillage of unit i € I" in ¢, m3
Mirw Water level of unit ¢ € I in ¢, m?3

q

z;,,  Binary variable of quantity bidding decision
z7,  Binary variable of ramp-rate bidding decision
x5, Binary variable of price bidding decision

Qit Quantity bid of unit ¢ in ¢, MW
T Ramp-rate bid of unit ¢, MW/h
Cit Price bid of unit 7 in ¢, $/MWh
€; Deviation of i€I" from Nash equilibrium, $MWh

Lagrange multipliers (LM)
Mﬁju, uﬁ,‘ﬂ LM of unit ¢ lower capacity limit constraint
uﬁfﬂ, 1/{?12” LM of unit ¢ upper capacity limit constraint
AE,, #E, LM of energy balance constraint

iiw» Vijw LM of the flow constraint of line [

;4511“, V., LM of unit ¢ ramp-up constraint

,ugfu, 1/53) LM of unit ¢ ramp-down constraint

uE . vE, LM of spillage nonnegativity constraint
M Vi, LM of lower water-level-limit constraint
ulz  vk2 1M of upper water-level-limit constraint
A& . ¢S . LM of water balance constraint

itw> Vitw

I. INTRODUCTION

YDROPOWER is a renewable energy source that is

economically attractive, provides high security of supply
and zero operational emissions of COs. It is by far the leading
renewable energy source in Europe — hydropower accounts for
95-99% of electricity generation in Norway, 70% in Austria,
and 42% in Sweden [1]. The balancing capabilities of hy-
dropower producers gained a special importance in recent time
with a massive introduction of variable renewable sources,
such as wind, to the power system. The critical importance
of hydropower, its low marginal cost, and high market share
in some countries all contribute to the strategic position of
hydropower producers relative to other generating companies.
For example, extraordinary high prices, which were observed
in the Nordic power market in winter 2002-2003, were at-
tributed to the strategic behavior of hydropower producers by
some of the observers. Hydropower producers have used “too
much” water in summer, creating scarcity and high prices in



winter [2]. In order to predict such cases, strategic interaction
in the market has to be mathematically modeled.

Equilibrium problems with equilibrium constraints (EPECs)
have been widely used for modeling the strategic interaction
in electricity markets, [3], [4]. Such models allow represent-
ing the bilevel structure of the market — profit-maximizing
strategic generators decide on their bids and submit them
to the power system operator. The operator orders the bids
to minimize the dispatch cost, subject to system constraints.
EPECs also take into account the interaction between multiple
strategic producers.An EPEC solution aims at finding a Nash
equilibrium — a point, at which no player wants to change the
strategy (strategic bid) unilaterally.

However, solving EPEC is a computationally and method-
ologically challenging task [5]. Depending on a case study,
there might be multiple Nash equilibria, or no equilibria at
all. Finding each equilibrium usually requires solving a non-
convex non-regular problem. Uncertainty additionally hinders
finding a solution. The applications of EPECs to the power
systems are often stylized, due to the aforementioned difficul-
ties. The case studies are often limited to 3 nodes, or greatly
simplify modeling of generators [6].

Modeling the hydro-dominated systems requires accounting
for hydro-specific constraints. The few studies that have looked
at market power assessment, involving the hydropower produc-
ers, have significantly simplified the modeling. Usually only a
single profit-maximizing hydropower producer is considered,
and the optimal dispatch conditions are simplified as a residual
demand curve [7], [8]. In reference [9] the authors consider the
market power assessment in a hydrothermal power system, but
employ a simplifying residual demand approach, expressing
price as a function of price-makers’ production, rather than
as a result of the optimal dispatch. The authors in [10]
include the equilibrium constraints, but their model neglects
the uncertainty in reservoir inflows and contains nonlinearities.

This paper proposes an EPEC formulation for modeling
the Bayesian and robust Nash equilibria in hydro-dominated
power systems. Price-making hydropower producers bid on
price, quantity, and ramp rate. The bids are considered in the
optimal dispatch problem, which results in determining the
market prices. Also, hydro-specific constraints (hydrological
coupling of the reservoirs with a delay in water relocation,
spillage, and water level constraints) are fully considered.
The stochasticity of demand, inflows, and wind generation
is modeled through moment-matching scenario generation
technique [11]. The proposed EPEC is reformulated as a
stochastic mixed-integer linear program (MILP) with disjunc-
tive constraints. We discuss two types of Nash equilibria
under uncertainty: Bayesian and robust Nash equilibria [12],
[13]. While Bayesian Nash equilibrium is one of the most
wide-spread definitions of Nash equilibrium under uncertainty,
robust Nash equilibrium has an important practical meaning.
Robust Nash equilibrium does not require a prior knowledge
regarding the probability distribution function of the uncertain
parameter. This is particularly useful when the event has no
observed history, for example political decisions or security
considerations.

The authors in [20] propose a special version of Ben-

ders decomposition approach in order to solve single-level
optimization problems with disjunctive constraints. In our
previous work we have applied modified Benders decom-
position approach (MBDA) to solve mathematical problems
with equilibrium constraints (MPECs). In this paper we use
MBDA to solve EPEC, reformulated as a stochastic MILP
model. The MBDA exploits the disjunctive structure of the
stochastic MILP model and does not require optimal tuning
of the disjunctive parameters. Through an illustrative 3-node
example, we carefully study the market aspects of strategic
bidding in a hydro-dominated power system. The IEEE 24-
node, 118-node, and 300-node systems are used to show
the computational efficiency and scalability of the proposed
application of MBDA. We show through the numerical results
that MBDA outperforms the standard Benders algorithm for
large case studies. We also compare MBDA to the monolith
(non-decomposed) problem solution using CPLEX.

The main contribution of this work is threefold: (1) We
propose an EPEC model representing the strategic interaction
of price-making hydropower producers. We model the uncer-
tainty, typically observed in hydro-dominated power systems:
wind power production, demand levels, and inflow uncertainty.
We reformulate the problem as a mixed-integer linear program
(MILP), which can be solved to a global optimum. (2) We
discuss Bayesian and robust formulations for modeling the
Nash equilibrium under uncertainty. We point out the observed
difference between them in terms of strategic bidding and
market results using an illustrative case study. (3) We solve
our EPEC model using a modified Benders decomposition
approach, which removes the disjunctive parameters from the
formulation and provides faster solution for large case studies.

The paper is organized as follows. Section II presents the
EPEC model and its reformulation as a stochastic MILP. Sec-
tion III explains how MBDA can be applied to the proposed
formulation. Section IV illustrates the proposed model and
provides a comparison of different types of Nash equilibria.
The computational properties of the MBDA are detailed in
Section V. Finally, Section VI concludes the paper.

II. MATHEMATICAL MODELING

Strategic interaction in hydro-dominated systems can be
modeled as an EPEC: profit-maximizing hydropower pro-
ducers compete in electricity market by submitting strategic
bids. The bids are received by the system operator, which
orders them and determines the system price. This structure is
illustrated in Fig. 1. Solving EPEC results in finding a Nash
equilibrium — a stable set of strategies, from which no genera-
tor wants to deviate unilaterally. In this section we present
two definitions for the Nash equilibrium under uncertainty
and discuss how to model finding a Nash equilibrium as an
optimization problem. We then formulate the profit of the
strategic hydropower producer and conclude the section by
formulating the whole EPEC as a MILP.

A. Nash equilibrium under uncertainty

Nash equilibrium is a point at which each player’s strategy
maximizes its payoff if the strategies of the competitors are
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Fig. 1. Structure of the proposed EPEC.
held fixed. Thus each player’s strategy is optimal against those
of the others [14]. This can be expressed as follows:

*) > milsi,st,), Vel 1)

This constraint guarantees that for each strategic hydropower
producer i€ 1" the profit in the candidate strategy combination
s; must be greater or equal than the profit under alternative
choice of strategy s;, while the strategies of the competitors
s*,; are held fixed. We can formulate Nash equilibrium as an
optimization problem:

mi(si,s

mi(r;g‘r_lpize A = Z €; (2a)
ielh

subject to: (s, 5% ;) + € > misi, s*,), Viel", (2b)

€ >0, Viel’ (2¢)

At a Nash equilibrium point the deviation ¢; is zero for all
players. Under uncertainty the profit 7; can be different in
different scenarios. There are several ways of how to extend
the definition of Nash equilibrium in the case of uncertainty.

1) Bayesian Nash equilibrium: Each player is assumed to
have a subjective uncertainty probability distribution function
[12]. This assumption is applicable to the most of the uncer-
tainties observed in the power system, such as wind, reservoir
inflows, demand uncertainty. When introducing scenarios w
describing the uncertainty, the Nash equilibrium (2b) becomes:

Ey[miw(st,s* )] + € > Eylmiw(sis*,)], Viel".  (3)

2) Robust Nash equilibrium: Finding robust Nash equi-
librium does not require the prior knowledge of probability
distribution function for the incomplete information [13]. This
is very useful, when certain scenarios have no historic data or
when probabilities of the scenarios are difficult to compute.
Robust Nash equilibrium uses the worst-case approach, where
(2b) is reformulated as follows:

min[m, (3, %)) + € > minfm, (s, s7,)], Vel (@)
w w

B. Profit of a hydropower producer

A profit function of a price-making hydropower producer
in scenario w is a function of strategic bid §;¢, 7;, ¢;; and can
be formulated as follows:

y 1
Tiw = Dt = CF )i + iz - 9)
t 1

Here A, is a Locational Marginal Price (LMP). The term
miTwAZ-f % describes the future value of water left in the
reservoir l;y the end of the modeling horizon (at time step
T'). Strategic hourly bid of a hydropower producer is limited
by the constraints:

0<Gu<Qi, 07 <Ry, 0< ¢ <O (6)

LMP can be expressed as a result of the optimal system
dispatch. The dispatch problem can be formulated as follows:

minimize Z PyCitGitw (7a)
QitwsSitw s Mitw itow
. . A A .
subject t0: 0 < Gitw < it * Mipy, Hites VL, (7b)
Z Gitw = Z Dntw 5[}7 Vtﬂ), (70)

Z Hln Z Qitw — Dntw) S -Fl . Nguﬂ Vltw: (7d)

iin

LR < ity — it < i 2 W22 Vitw, (Te)

0<suw :ph,, Ve I"tw, (7f)
0 < Mg < M; = plt ul2 | V(e Mtw, (Tg)

Mitw — Mig—1yw = MY + Vitw
> Citige—Loywtsi—row) :

S d

- Fiqilw = Sitw+
NG VeI tw. (Th)
Here (7a) expresses the system’s dispatch cost. Expressions
(7b) are the generation constraints. Expression (7¢c) represents
the energy balance constraint. Constraint (7d) accounts for the
network representation and (7e) is setting the constraints on
ramp rate. A system of connected reservoirs is considered
for the hydropower producers. We model the constraints on
spillage (7f), water level (7g), and hydrological balance con-
dition (7h): we model connected reservoirs and time delay L;
for the water relocated from the upstream to the downstream
reservoir. In hydropower plants with a large storage capacity,
head variation has negligible influence on operating efficiency
in the short-term. Therefore we assume a constant production
equivalent I'; [15].

The optimal dispatch problem is linear in its decision
variables. We can equivalently write it as KKT conditions.
The stationary conditions of (7) are:

dL ;
dq’t P C” +uttw /”’ﬁfy tLU Zp’lthln

D"
- uztu + “’ztu + uz(t+1)u —Hy i(t+1)w +I )\ztw

=T > MG, =0 : o5, Vitw, (8a)
dL i€ldn
o Mt NG =) A5, =0 9, Vel tw, (8b)
dL . P zEI”” i
Ty~ Hitw ~ Bz + N — )‘z(t+1 =0: ¢},
v(el")tw.  (8c)

The complementary slackness conditions are equivalent to the
result of the strong duality theorem:

Z PyitQitw= Z “thQLtw+ Z B Z Dy —

it,w i,t,w t,aw
Do A
E FitawTi

E N/ltw(ﬂ + Z HinD ntw Z N/uwrt
i,t,w

Lit,aw i,t,w
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Since Lagrange multiplier of system balance \Z, carries the
information regarding the system price, LMP can be expressed
as Antw = Al — D1 n Wit0 Hin. We can reformulate the profit
using stationary conditions (8), complementary slackness, and

hydropower balance equation [16]:
’ 1 B
Tiw = Zt:()\gu - Z Mngln - Ci]u)qitw + miTwA{ﬁ =

Z(P Cit —

y 1
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ieldn
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A A D D- D D-
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In the next section we show how we can combine the profit
formulation and the Nash equilibrium definition.

C. EPEC as a MILP

To formulate the whole EPEC as a MILP we combine the
Nash equilibrium definition (2), profit definition for each of the
players (10), and the KKT conditions of the dispatch problem
(7) for the candidate strategy s; and alternative strategies s;
[17]. The variables of one-level optimization include primal
and dual variables of (7), and variables of the upper-level
PrOblem QNLP—{%«“ Sitws Mitws Mztw ,u?mu Mthwa ,U@Dmuy
N‘ztw’ Nztu’ ugw’ N’ltw’ )‘tw’ /\zGtw/ Gits Tis Clt} The final
profit expression (10) and strong duality condition (9) contain
bilinear terms uﬁfvzjn, ulD“luf,, ,ulejﬂ and ¢;4¢;t.. For the non-
strategic units we assume: G;; = Q;, 7 = Ry, & = CM,
Vi € (I\I"). For the strategic units these terms need to be
linearized.

We approximate the generation capacity @; by a pre—
deﬁned number of discrete capacmes Qix. Therefore: Hmu‘ht

= Nmﬂ PR zthzk Ek itk Where 37, oy, = 1. Variable
« can be linearized for all (zelh)twk as follows [18]:

Qikpiyz, < KU1 —al,):
(11a)
(11b)

lt1u

- K(1- ay) < Zztu.k

— A, Ay
QXitwks Litwk
—A2 A
ﬂitwk»é”;k'
In the constraints above R 9 is a suitably large constant, not
too high to create computational instabilities, and not too low

to put extra bounds on the variables [19]. Introducing K", we
reformulate (7b) and (7e) for all (i€I”)twk as follows:

< A q
K xltk<z“ 7k<K :c

Gitw < Qi+ K(1=al,) 1 vz, (12a)
Git—yw — Gitw < R+ K" (1—27;) : Vi?,iw (12b)
Gitw —Qi(t—1)yw < Ripg+K"(1—27;): vhe . (12¢)

We repeat the linearization steps for other blllnear terms,

Dy D2
introducing z;;} , = u,,wzk lkRzk, itwk = Hmu D mRzkv
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Ziak= ditw 2y, Tnkczk We forg a new set of varlables
MILP " 2 Dy D>

Q by adding &y, €7, T Zikie Zirane Zooke Zivon ©

ONLP - Additionally, we introduce 77" to formulte a mixed-
integer reformulation of (4):

T (s¥, 8% ) e > T (s, 8%,), Ve It (13)
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Introducing binary variables z7°” we ensure that 7" takes

the smallest value in scenarios min, [m,]:

T < i, V(i € TMws (14a)

T > iy — K(l 2ho) V(i € TMws (14b)
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Proposed stochastic MILP model is set out in (15).

minimize Ar = Y ¢ (15a)

SZMILP
ielh
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Linearization of (9) as in (11)}.
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Linearization of z”

III. SOLUTION APPROACH: MODIFIED BENDERS
DECOMPOSITION

Our proposed EPEC includes constraints of all strategic
generators for all strategies and scenarios. This makes it very
hard to solve directly using the commercial MILP solvers. In
this section we apply MBDA [20] to our EPEC formulation,
which allows us to decompose the initial MILP into a small
coordinating master problem and an LP subproblem, which
is easier to solve. MBDA removes the disjunctive parameter,
resulting in the improved computational properties'.

A. Benders decomposition for disjunctive programming

A general linear disjunctive program has a form:

minimize cy (16)

P

subject to: Ay > b, Ay >b— K1 — ),k
ZI)@ - 17 Tk € {071}7 ) 2 0.
&

We employ the standard Benders decomposition. Given a
candidate vector &), we can formulate a linear program and
find its dual:

Primal subproblem —  Dual subproblem (17)

imize ub i (b
maximize u +Zuk(

minimize cy

IFor conciseness we show Benders decomposition algorithm applied to
Bayesian Nash equilibrium.



subject to: Ay > b, - K(1—ay))
Ay >b—K(1—2;),Vk  subject to: ud + @A < c,
y > 0. u,u > 0.

Note that the feasible region of the dual problem is indepen-
dent from z;, and K. The master problem is stated as:
minimize z
YTk

subject to: z > u; b+2uk7(b7 (1—z)),
> ay = 1, z € {0,1}.
k

(18)

Using the special disjunctive structure of (16) we can restate
the master problem as a set-partitioning problem [20]:
= Kb, K;0;
mlargl:,rg}ze z = Kobp + Z
subject to: Y (1—ax) §|Q§.’\71+ > 0K <K;0), Vi,
keQp j'et

D ap=1, 6o+ 0; =1, {xx0;} € {0,1}.
k J

(19)

Here parameter K;=u;b + 3, d;(b — K(1 — x3)) is the
calculated objective function of the subproblem and Ky=—o00
is the lower bound of the master problem. 6; is an auxiliary
binary variable created at every iteration. J' is the index set of
previous iterations and j is the index of current iteration (I is
an “if” operator). Q‘;’ is a set of positive Lagrange multipliers
u; corresponding to the disjunctive constraints in j, and \Q? |
is the cardinality of this set.

B. MBDA for EPEC

The disjunctive nature of (17) leads to an important obser-
vation regarding the term with disjunctive constraint in the
objective function of the dual subproblem: -, Ky (1—iy).
If #,=1, the term will be equal to zero, as 1—Z;=0.
Also, if #,=0 and K is properly tuned, the inequality
Ay>b—K(1—Z;) in the primal subproblem will be non-
binding, and therefore corresponding Lagrange multiplier
@, =0. Taking into account that K is a positive parameter,
we can divide the term by K and move it to the constraint
set, as equal to zero: y_, @y (1—&)=0.

For a fixed strategic bid (&7,,, &1, , &5,,) optimization prob-
lem (2) becomes an LP. Similarly to the logic in Section III-A
by applying the modification described in the beginning of this
section, we can derive a dual of this problem:

magiglize Aﬂd“al:ZRuZ(qﬁmZDnm Zl/zm(Fl-‘r

wk t
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Algorithm 1: Modified Benders Decomposition Approach
(MBDA)
Data: {z},,, &%, &5, }<initialize, j<1, z“P<—+o0o0,
2 —o0
while 27 — zl° > 0 do
solve subproblem;
Q’; — QP 2P « max{Andual ur} K ¢ Apdual;
solve master problem use tree-search algorithm:
begin
Oo1, J' + J;
while master problem infeasible do
Oy 11Ky < Kjer);

J\{i'h
end
end
Pl 4 T s 5C .C . - lo .
Ty Ty Lip T Lo J I+ 270 ¢ 2
end
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are the Lagrange multlpllers of dual feasibility constraints in

(15). For example, l/ﬁw is the Lagrange multiplier of ultl > 0.
The feasible region X is represented by the corresponding
stationary, primal feasibility, and dual feasibility conditions of
optimization problem (2), when zf,,, @7, and z¢, are fixed
to &%, #7, and Z¢,,. There are many constraints representing
these conditions, which we did not include here for the sake
of conciseness. The master problem can be formulated as
follows:
minimize (21a)
Ty 1T 05

z = Koby +ZK101
J

subject to:Z (Z((lfzftk)wL(l7xftk))+(lfsz))

z’,ken;’ t
<P =1+ > 0,1(K; < Kj), Y4,  (21b)
jreJ
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k k k
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z/j.mk,7 oy k} Q] is the index set of strictly positive variables

of € in iteration j.
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This master problem can be efficiently solved using the
tree-search algorithm [20]. Using this algorithm we set 6p=1
and find feasible z¥,, z7, , x%,. If the master problem turns
out infeasible we set 6;, corresponding to the best previously
obtained K, to 1 and search for a feasible solution again
repeating until the master problem is feasible. The whole
procedure of MBDA is outlined in Algorithm 1.

IV. ILLUSTRATIVE CASE STUDY

In this section we illustrate the mathematical model de-
veloped in Section II. We use a 3-node case study with
4 generators, of which G3 and G4 are strategic hy-
dropower producers. The reservoirs of hydropower produc-
ers are connected by a waterway. For our case study we
consider a time horizon of two time period. The demand
values are: Dy, 4,0=Dn,1,0=50 MW, Dy, ,=40 MW,
D, 1,,,=60 MW. For the ease of interpretation we assume that
strategic generators bid the same price-quantity in each of two
time periods. Data for the system are presented in Fig. 2. The
electric network is shown in black and the waterway system
in blue. The ramp rates of all units are assumed to be 0.1 of
the generation capacity.

A. Number of Nash equilibria under uncertainty

EPEC has a non-convex feasible region, resulting in a
multitude of possible solutions (or no solutions in some cases).
It is logical that a higher number of strategic actions available
to the generators makes the number of Nash equilibria higher.
In this section we check how uncertainty affects the number
of Bayesian and robust Nash equilibria.

We assume that the only source of uncertainty in the system
is demand and introduce a coefficient k, showing the relation
between demand levels in two different scenarios. In Fig. 3
we plot the number of Nash equilibria obtained for different
values of k. After each new equilibrium we add an integer cut
to ensure that the same equilibrium is not obtained again [21].

TABLE 1
COMPARISON OF BAYESIAN AND ROBUST BEST AND WORST NASH
EQUILIBRIA. DC: DISPATCH COST.

Bayesian Robust
best worst best worst
o G3 | 100 100 100 75
Capacity bid, ¢, MW o) | 55 50 75 100
o uw G310 10 10 25
Ramp-rate bid, 7, At G4 10 75 10 5
G3 | 20 20 15 20
s hid A S
Price bid. & 3177 G4 | 20 35 20 35
‘ G3 | 46375 5400 | 2845 4500
Profit, 32, Tiw, $ G4 | 287.5 2875 | 100 250
DC, $ 4950 5250 | 3890 5700

Our first observation is that the number of Bayesian and
robust Nash equilibria is the same, when scenarios are the
same, i.e. when there is no uncertainty. This occurs because
(3) and (4) are simplified to the same expression under the
assumption of no uncertainty.

Second, the number of Bayesian Nash equilibria decreases
with greater uncertainty. In general it is harder for the strate-
gic producers to offer a bid, which will exploit the market
conditions. Therefore there are fewer possibilities for strategic
behavior and less Nash equilibria correspondingly. As robust
Nash equilibrium is only taking into account the worst-case
scenario, changing the more profitable scenario does not affect
the amount of Nash equilbria.

B. Comparison of Nash equilibria

Since a multitude of solutions is difficult in interpretation,
the policy makers and market participants would often prefer
to have a single Nash equilibrium reference that can charac-
terize the market situation. This is sometimes implemented
with a concept of the best/worst Nash equilibrium [17]. We
implement this by extending the objective function (15a)
by minimization/maximization of the total social costs in
the system correspondingly. In this section we analyze the
strategic behavior, as different concepts of Nash equilibrium
introduced in Section II are applied.

We compare the results from the best and worst Nash equi-
libria in Table I: we provide the bids offered by the strategic
hydropower producers to the market operator (bold values
show withholding), profits, and dispatch cost corresponding
to the different Nash equilibria. The following observations
can be made:

« Bids: Withholding occurs in both types of Nash equilib-
ria. There is more withholding if we consider the worst
Nash equilibria, resulting in higher profits for the strategic
generators. Worst Nash equilibria (high social costs) — is
usually the result from high market prices.

Profits of strategic generators: The profits in Bayesian
Nash equilibrium are higher, than in the robust Nash
equilibrium. In robust Nash equilibrium strategic bid is
optimal for the worst-case scenario, while for Bayesian
Nash eqilibrium all scenarios are taken into account.

Social costs span: The difference between the worst
and the best Nash equilibria is the largest for the robust
Nash equilibria. This can be explained by the nature of



TABLE II

EFFECT OF THE FUTURE WATER VALUE AND HYDROLOGICAL COUPLING
ON HYDROPOWER PRODUCERS’ STRATEGIES. DC: DISPATCH COST.

TABLE III
EFFECT OF DISJUNCTIVE PARAMETER ON THE NUMBER OF ITERATIONS OF
BENDERS PROCEDURE. INFEAS: THE PROBLEM IS INFEASIBLE.

Future water value Waterway K= 103 104 106 10% 1012
)\1/ =0 )\{ =10 | no yes number of iterations until convergence
PP G3 | 100 50 100 25 Primal Benders | infeas 5 9 16 infeas
Capacity bid, g, MW
G4 | 100 100 100 100 Dual Benders infeas 5 5 5 infeas
G3 10 5 10 10
. id. 7. MW MBDA 5 5 5 5 5
Ramp-rate bid, 7, At Ga | 25 5 10 25
. Lo G3 | 20 20 20 20 )
Price bid, &, 17op7 G4 | 30 40 40 30 dual Bc?nders approaches, as desc-rlbed below. ) '
Profit, 3° s G3 | 5400 4950 300 325 In primal Benders approach, as implemented in e.g. [22], bi-
ront, y Tiws . - . . .
w G4 | 2875 800 150 281.5 nary variables z,, , 27, , x5, are taken as continuous variables.
DC, $ 5250 6200 7265 7209 Constraints are added to fix them to the values calculated from

robust Nash equilibrium. For this type of equilibrium
we only consider the worst-case scenario, therefore we
do not consider if the chosen strategy holds as a Nash
equilibrium for another scenario. This provides more
flexibility for the strategic generator when choosing its
strategy.
Different types of Nash equilibrium can be used depending
on the modeling goals. We can interpret from the results that
Bayesian Nash equilibrium is more consistent with realistic
behavior, assuming that the probability distributions of the
uncertain parameters are known. Robust Nash equilibrium can
be applied, when the probability distribution functions of the
uncertain parameters are impossible to obtain (e.g., if the event
does not have a historical data).

C. Strategic hydropower behavior

In the previous section we have observed that all parts of
the strategic bid — production, ramp, price — have an effect on
the profits of the strategic generators. Hydropower producers
have additional specific characteristics that make the analysis
of their strategic bidding different from thermal generators.

Two main aspects that differentiate hydropower producers
from thermal generators are the future water value and the
waterway coupling of the reservoirs in a congested network.
In Table IT we study the effect of these aspects on the worst
Bayesian Nash equilibrium.

Higher future water value has an important effect on the
dispatch cost of the system. Since G4 is a more expensive
generator, it has less advantageous position in the optimal
dispatch. Generally its profit is lower than the profit of G3.
However, with the increased future water value G4 withholds
most of its production from the market led by the assumption
that it can sell energy generated from water for the higher
price later. The dispatch cost increases considerably due to
this behavior.

To study the effect of waterway coupling we decrease the
flow limits on the power lines. In these conditions hydropower
units can take advantage of relocating water between the
nodes using the waterways instead of relocating energy in the
network. In case of waterway coupling we can obtain lower
dispatch cost, and higher profits for the generators.

V. NUMERICAL RESULTS

This section describes the relative computational perfor-
mance of MBDA. We implement and test MBDA, primal, and

the master problem. The marginal values of these constraints
are the sensitivities, which are used to create the cuts in the
master problem [23].

The dual Benders approach, as presented in e.g. [24], is
a non-modified version of Benders: the subproblem has the
form of the dual problem in (16), while master problem
has a form as in (18). In the dual Benders approach the
disjunctive parameter moves from the constraint set to the
objective function. In contrast, MBDA is completely free from
the disjunctive parameter. We will first discuss the effect
of the dsjunctive parameter on the convergence of Benders
procedure. Second, we will provide the computational results
for realistically-sized case studies.

A. Mitigating the disjunctive parameter effect

Applying the MBDA allows us to formulate the problem
without the disjunctive parameter. In comparison, primal and
dual Benders methods are affected by the value of the disjunc-
tive parameter. Table III presents the convergence procedure
of Benders algorithm for primal, dual Benders methods, and
MBDA for a 3-node case study. It can be seen that even
for a very small case study both primal and dual methods
are affected by the value of the disjunctive parameter, while
MBDA does not contain it in the formulation.

B. Performance of MBDA and standard Benders on realistic-
size networks

EPEC problems are known to be computationally challeng-
ing. In this section we demonstrate the computational effort
needed for finding the Nash equilibria. All simulations are
performed on a computer with 18 cores with hyper-threading
Inte] Xeon E5-2699 CPU and 128 GB of RAM. We solve
linear subproblems using barrier method in CPLEX, as primal
and dual simplex methods appear to be less stable for large
case studies. We also avoid matrix scaling. While in the 24-
node case study the subproblem is more efficiently solved
as one block, for larger case studies we make use of the
parallelizable robust Nash equilibrium structure. We separate
the calculation of profit for different strategies as a separate
problem and parallelize it by scenario using grid computing
to improve the numerical efficiency [25]. In this way we also
avoid using the binary variables 27°". Bayesian Nash equi-
librium is computed using the internal CPLEX parallelization
function and 4 computing threads.



TABLE IV
BENDERS PERFORMANCE ON REALISTIC CASE STUDIES. *: NO RESULTS OBTAINED AFTER 10 HOURS.

24-node, G1,G2 € I 118-node, G1,G2 € I 300-node, G5, G6 € I"

Benders algorithm . Bayesian _ Robust . Bayesian . Robust . Bayesian . Robust

time, size, time, size, | time, size, time, size, | time, size, time, size,
s MB s MB s MB N MB s MB s MB

1) Standard Benders: primal subproblem 221 1027 174 972 * * 2122 655 * * * *

2) Standard Benders: dual subproblem 158 1023 134 972 2334 13706  * * * * * *

3) Modified Benders approach (MBDA) 179 1023 133 972 2629 13408 1368 655 18058 62298 13172 4397

CPLEX MILP 191 1027 174 1027 | * * * * * * * *

We assume 4 time periods and 2 strategic hydropower  [5] X. Hu and D. Ralph, “Using EPECs to model bilevel games in restruc-
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£ straints and variables raises th . " [71 H. M. Pousinho, J. Contreras, A. G. Bakirtzis, and J. P. Catalao, “Risk-
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of (15) up to 62 GB. producer under uncertainty,” Power Systems, IEEE Transactions on,

The results of simulations are presented in Table IV. The vol. 28, no. 2, pp. 1879-1887, 2013.

. p . . [8] C. G. Baslis and A. G. Bakirtzis, “Mid-term stochastic scheduling of a
time needed for convergence and the maximum size of the price-maker hydro producer with pumped storage,” IEEE Transactions
problems are shown. The results show that standard Benders on Power Systems, vol. 26, no. 4, pp. 18561865, Nov 2011.
with a dual subproblem and MBDA are clearly the most [9] R. Kelman, L. AN Banqso, and M. V. E. Pereira, “Market power

. assessment and mitigation in hydrothermal systems,” Power Systems,
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