

Delft University of Technology

Leveraging Factored State Representations for Enhanced Efficiency in Reinforcement
Learning

Suau, M.

DOI
10.4233/uuid:e19a0363-d9cf-4f33-8936-757c268f27a1
Publication date
2024
Document Version
Final published version
Citation (APA)
Suau, M. (2024). Leveraging Factored State Representations for Enhanced Efficiency in Reinforcement
Learning. [Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:e19a0363-
d9cf-4f33-8936-757c268f27a1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:e19a0363-d9cf-4f33-8936-757c268f27a1
https://doi.org/10.4233/uuid:e19a0363-d9cf-4f33-8936-757c268f27a1
https://doi.org/10.4233/uuid:e19a0363-d9cf-4f33-8936-757c268f27a1

Leveraging Factored State Representations
for Enhanced Efficiency in Reinforcement

Learning

Dissertation

for the purpose of obtaining the degree of doctor at

Delft University of Technology
by the authority of the Rector Magnificus

prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Friday 19, January 2024 at 12:30 hours

by

Miguel SUAU DE CASTRO

Master of Science in Mathematical Modelling and Computation,
Technical University of Denmark,

born in Lugo, Spain.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Dr. F.A. Oliehoek Delft University of Technology, promotor
Dr. M.T.J. Spaan Delft University of Technology, promotor

Independent members:

Dr. S. Magliacane University of Amsterdam
Dr. E. Mocanu University of Twente
Prof.dr. A. Jonsson Pompeu Fabra University
Prof.dr.ir. B. De Schutter Delft University of Technology
Prof.dr.ir. J.W.C. van Lint Delft University of Technology

Printed by: ProefschriftMaken (www.proefschriftmaken.nl)
Front and Back: Adriana Bravo Salvà

Copyright © 2024 by M. Suau de Castro

An electronic version of this dissertation is available at

https://repository.tudelft.nl/

www.proefschriftmaken.nl
https://repository.tudelft.nl/

A mis padres, Lourdes y Antonio.

Summary

Reinforcement learning techniques have demonstrated great promise in tackling sequential
decision-making problems. However, the inherent complexity of real-world scenarios
presents significant challenges for its application. This thesis takes a fresh approach that
explores the untapped potential of factored state representations as a means to enhance
the efficiency of reinforcement learning.

Factored representations involve variables describing various features of the environment.
These variables, along with their possible values, define the agent’s states. Unlike standard
representations, factored representations provide a unique perspective that enables us
to gain deeper insights into the underlying structure of the environment and refine our
understanding of the problem at hand.

By analyzing variable dependencies, we can abstract simplified representations of the
environment states and construct computationally lightweight models. To do so, we will
explore potential factorizations of key functions governing the reinforcement learning
problem, such as transitions, rewards, policies, or value functions. These factorizations
can be achieved by exploiting variable redundancies and leveraging relations of conditional
independence.

This thesis proposes a set of methods that are shown to improve the efficiency and
scalability of reinforcement learning in complex scenarios. We hope that the findings of
this research contribute to showcasing the potential of factored representations and serve
as inspiration for future research in this direction.

Samenvatting

Reinforcement learning technieken hebben veelbelovende resultaten laten zien bij sequential
decision-making problemen. Echter zorgt de hoge complexiteit van de echte wereld nog
voor aanzienlijke uitdagingen bij de toepassing ervan. Deze dissertatie volgt een nieuwe
benadering die het potentieel van gefactoriseerde toestandsrepresentaties onderzoekt als
een middel om de efficiëntie van reinforcement learning te verbeteren.

Gefactoriseerde representaties gebruiken variabelen om verschillende kenmerken van de
omgeving te beschrijven. Deze variabelen, samen met hun mogelijke waarden, definiëren
de toestanden van de agent. In tegenstelling tot standard representaties bieden gefac-
toriseerde representaties een uniek perspectief waardoor we een dieper inzicht krijgen
in de onderliggende structuur van de omgeving en ons begrip van het probleem kunnen
verfijnen.

Door de afhankelijkheden tussen variabelen te analyseren, kunnen we vereenvoudigde
representaties van de toestand van de omgeving verkrijgen en computationeel goedkopere
modellen bouwen. Om dit te bereiken onderzoekt dit proefschrift het gebruik van gefac-
toriseerde representaties van transities, rewards en zogenaamde ‘value functions’. Deze
factorisaties kunnen worden bereikt door gebruik te maken van variabele redundanties en
relaties van voorwaardelijke onafhankelijkheid.

Dit proefschrift stelt een reeks methoden voor die de efficiëntie en schaalbaarheid van
reinforcement learning in complexe scenario’s verbeteren. We hopen dat de resultaten van
dit onderzoek zullen bijdragen aan het aantonen van het potentieel van gefactoriseerde
representaties en toekomstig onderzoek in deze richting zullen inspireren.

Resumen

Las técnicas de aprendizaje por refuerzo han demostrado ser muy prometedoras para abor-
dar problemas de toma de decisiones secuenciales. Sin embargo, la inherente complejidad
del mundo real sigue planteando importantes retos para su aplicación. Esta tesis adopta
un nuevo enfoque que explora el potencial de las representaciones de estado factorizadas
como medio para mejorar la eficiencia del aprendizaje por refuerzo.

Las representaciones factorizadas utilizan variables para describir diversas características
del entorno. Estas variables, junto con sus posibles valores, definen los estados del agente. A
diferencia de las representaciones estándar, las representaciones factorizadas proporcionan
una perspectiva única que nos permite obtener una visión más profunda de la estructura
subyacente del entorno y refinar nuestra comprensión del problema en cuestión.

Analizando las dependencias entre variables, podemos obtener representaciones simplifi-
cadas del estado del entorno y construir modelos computacionalmente más ligeros. Para
lograrlo, esta tesis investiga posibles factorizaciones de las funciones que rigen el problema
de aprendizaje por refuerzo, como transiciones, recompensas, políticas o funciones de valor.
Estas factorizaciones pueden lograrse explotando possibles redundancias entre las variables
y aprovechando relaciones de independencia condicional.

Esta tesis propone un conjunto de métodos que demuestran mejorar la eficiencia y
escalabilidad del aprendizaje por refuerzo en escenarios complejos. Esperamos que los
resultados de esta investigación contribuyan a mostrar el potencial de las representaciones
factorizadas y sirvan de inspiración para futuras investigaciones en esta dirección.

Acknowledgements

This section is dedicated to the many individuals whose invaluable support made my Ph.D.
journey possible.

First and foremost, I would like to express my gratitude to my supervisors, Frans Oliehoek
and Matthijs Spaan, for believing in me when I applied to the Ph.D. program, for
supporting me in the face of rejections, for teaching me not to take criticism personally,
for challenging my ideas, and overall for helping me become a better researcher.

I would also like to thank my colleagues from the Influence project: Elena Congeduti, Rolf
Starre, Aleksander Czechowski, and Alexander Mey, who played a fundamental role both
academically and personally. I had a lot of fun with all of you in the office and during our
travels. A special thank you to Jinke He, without whom completing my Ph.D. would not
have been possible. Our extensive discussions about research and life were a highlight of
my journey.

My time at Delft would not have been the same without the people at the Interactive
Intelligence group, including Elie Saad, Ding Ding, Frank Kaptein, Thomas Moerland,
Merijn Bruijnes, Luciano Cavalcante Siebert, Bernd Dudzik, Myrte Tielman, Catholijn
Jonker, Willem-Paul Brinkman, Pradeep Murukannaiah, Catharine Oertel, Wouter Pasman,
and those who joined us later: Nele Albers, Enrico Liscio, Carolina Jorge, Mani Tajaddini,
Siddharth Mehrotra, Maria Tsfasman, Emma van Zoelen, Ruben Verhagen, Pei Yu Chen,
Sietze Kuilman, Zuzanna Osika, Mohammed Al Owayyed, Frank Broz. Special thanks
go to my friends Franziska Burger and Ilir Kola. Fran, thank you for always being so
kind and welcoming, and for organizing all our social activities. Ilir, thank you for the
unwavering support and advice during challenging times and for making my time in Delft
much more enjoyable. I will miss hanging out with you, watching football, and sharing
pizza. I would also like to thank Anita Hoogmoed for patiently handling all my inquiries

and Ruud de Jong for always being ready to help with a huge smile.

I am grateful to all the people at the RL group from whom I learned a great deal over
these years, including Mustafa Mert Çelikok, Robert Loftin, Thiago Dias Simão, Canmanie
Ponnamlbalam, Qisong Yang, Moritz Zanger, Davide Mambelli, Oussama Azizi, and
Wendelin Böhmer, among others.

A heartfelt thanks to my fellow Spaniards in Delft, Marcos Pieras and Daniel Jarne.
Marcos, thank you for making me feel closer to home; I enjoyed our bike rides and walks
around Delft. Dani, you have been a huge support when I needed to relieve stress from
work, always ready to hang out and have fun.

Cambio al castellano para agradecer a mis amigos: Luis Munar, Ana Rojas, Aina Riutord,
Adriana Bravo, Gonzalo Mateos, Carlos Morell, Almudena Tecglen, Guillermo Abolafia,
Laura Torra, Isabel Escolar, María de Juan, Kiko Sagristá, Guillermo de España, Andrés
de España, Xisco Mascaró, Toni Trian, Biel Oliver, Miguel Colom, Valentín Galdós, Carlos
Bolado y Alejandro Bolado, entre otros, el estar conmigo en los buenos y malos momentos.
Espero teneros siempre cerca.

También me gustaría agradecer el apoyo a mi familia, a mis hermanas Elena e Inés,
a mis cuñados Kike y Mariana, a mis sobrinos Marcos y Tomás, y en especial a mis
padres, Antonio y Lourdes. Mamá, gracias por preocuparte tanto por mí, por estar
siempre dispuesta a ayudarme y por el cariño en los momentos difíciles. Papá, gracias por
apoyarme en mis estudios, enseñarme a valorar el trabajo y el esfuerzo, por hacerme sentir
seguro, y por ayudarme en la toma de decisiones. Gran parte de todo esto os lo debo a
vosotros. Me siento muy afortunado de tener una familia que me apoya y me quiere.

Finalmente, quisiera atribuir este éxito a mi novia, mi confidente, y mi mejor amiga, Clara.
Gracias por estar a mi lado, por animarme en los peores momentos, por soportar mi mal
carácter, por complementarme y hacerme mejor persona. Nunca habría logrado esto sin ti.
Te quiero.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

1.2.1 Local Simulators . 2

1.2.2 State Abstraction . 3

1.3 Contributions . 4

2 Background 7

2.1 Reinforcement Learning . 7

2.1.1 Markov Decision Processes . 8

2.1.2 Reinforcement Learning Methods 9

2.1.3 Partial Observations . 9

2.1.4 State Abstraction . 10

2.1.5 Function Approximation . 11

2.2 Probabilistic Graphical Models . 12

2.2.1 Factorization . 13

2.2.2 Conditional Independence and D-Separation 14

CONTENTS

2.2.3 Confounding . 16

2.2.4 Dynamic Bayesian Networks . 16

2.3 Factored Representations . 17

2.3.1 Factored POMDPs . 18

2.3.2 Locality . 18

2.3.3 Influence-Based Abstraction . 19

2.3.4 D-Separating Set . 20

3 Influence-Augmented Local Simulators 23

3.1 Introduction . 24

3.2 Related Work . 25

3.3 Influence-Augmented Local Simulators . 26

3.3.1 Finite Memory Agents and AIP History Dependence 28

3.3.2 Off-Policy Generalization and D-sets 29

3.3.3 Sufficiently Similar Training Conditions 32

3.4 Experiments . 33

3.4.1 Experimental Setup . 33

3.4.2 Traffic Control . 33

3.4.3 Warehouse Commissioning . 36

3.4.4 Finite Memory Agents and AIP History Dependence 39

3.5 Conclusion . 39

4 Distributed Influence-Augmented Local Simulators 43

4.1 Introduction . 44

4.2 Related Work . 45

CONTENTS

4.3 Preliminaries . 46

4.3.1 Problem Formulation . 46

4.3.2 Influence-Augmented Local Simulators 48

4.4 Distributed Influence-Augmented Local Simulators 49

4.4.1 Enabling Parallelization . 49

4.4.2 Algorithm . 52

4.4.3 Mitigating the Negative Effects of Simultaneous Learning 52

4.5 Experiments . 54

4.5.1 Experimental Setup . 54

4.5.2 Environments . 54

4.5.3 Results . 56

4.6 Scope and Limitations . 60

4.7 Conclusion . 60

5 Influence-Aware Memory 63

5.1 Introduction . 64

5.2 Related Work . 65

5.3 Example: Warehouse Commissioning . 66

5.4 Influence-Aware Memory . 67

5.4.1 Influence-Aware Memory Network 69

5.4.2 Learning Approximate D-sets . 70

5.5 Experiments . 72

5.5.1 Environments . 72

5.5.2 Experimental Setup . 74

CONTENTS

5.5.3 Learning Performance and Convergence 74

5.5.4 High Dimensional Observation Spaces 76

5.5.5 Learning Approximate D-sets. 77

5.5.6 Architecture Analysis . 78

5.6 Conclusion . 79

6 Policy Confounding 81

6.1 Introduction . 82

6.2 Example: Frozen T-Maze . 83

6.3 Related Work . 84

6.4 Preliminaries . 85

6.5 State Representations . 85

6.5.1 Markov State Representations . 86

6.5.2 π-Markov State Representations 87

6.6 Policy Confounding . 87

6.6.1 Why Should We Care about Policy Confounding? 90

6.6.2 When Should We Worry about OOT Generalization in Practice? . 91

6.6.3 What Can We Do to Improve OOT Generalization? 92

6.7 Experiments . 93

6.7.1 Experimental setup . 93

6.7.2 Environments . 94

6.7.3 Results . 95

6.8 Conclusion . 97

7 Concluding Remarks 99

CONTENTS

7.1 Conclusion . 99

7.2 Scope . 100

7.3 Limitations . 101

7.4 Future Work . 102

7.4.1 Adaptive Simulators for Non-Stationary Environments 102

7.4.2 Generalization in Dynamics Modeling 103

7.4.3 Causal Reinforcement Learning . 104

Appendices 107

A Influence-Augmented Local Simulators 109

A.1 Proofs . 109

A.2 Example: Spurious Correlations in the Traffic Domain 114

A.3 Runtimes . 115

A.4 Local Simulators . 116

A.5 Results . 117

A.5.1 Traffic control intersection 2 . 117

A.5.2 Comparison on the number of timesteps 117

A.5.3 Sufficiently similar training conditions 118

A.6 Implementation Details . 121

A.7 Algorithms . 122

B Distributed Influence-Augmented Local Simulators 125

B.1 Proofs . 125

B.2 Further Related Work . 130

CONTENTS

B.3 Algorithms . 132

B.4 Results . 132

B.4.1 DIALS vs GS . 132

B.4.2 AIPs training frequency . 135

B.5 Implementation Details . 139

B.5.1 Approximate Influence Predictors 139

B.5.2 Local regions . 139

B.6 Simulators . 140

B.7 Runtimes . 141

B.8 Memory Usage . 142

B.9 Hyperparameters . 142

C Influence-Aware Memory 145

C.1 Implementation details . 145

C.2 Runtime performance . 147

C.3 Learning curves . 148

C.4 Results on the original Atari games . 148

C.5 Decoding the agent’s internal memory . 149

C.6 Analysis of the hidden activations . 150

C.7 Attention maps . 151

D Policy Confounding 153

D.1 Proofs . 153

D.2 Example: Watch the Time . 156

D.3 Further Related Work . 157

CONTENTS

D.4 Dynamic Bayesian Networks . 159

D.5 Experimental Results . 159

D.5.1 Learned state representations . 159

D.5.2 Buffer size and exploration/domain randomization 160

D.6 Further Experimental Details . 161

Chapter 1

Introduction

In the series of things those which follow are always aptly fitted to those which
have gone before; for this series is not like a mere enumeration of disjoint
things, which has only a necessary sequence, but it is a rational connection: and
all existing things are arranged together harmoniously, so the things which come
into existence exhibit no mere succession, but a certain wonderful relationship.

–Marcus Aurelius, Meditations

1.1 Motivation

Reinforcement learning (RL; Sutton and Barto, 2018) has emerged as a powerful framework
for addressing sequential decision-making problems. RL involves training an agent to
navigate an unknown environment through trial and error, learning from the feedback
it receives in the form of rewards. The ultimate objective is to develop a policy that
maximizes the cumulative reward over time. While RL has demonstrated effectiveness in
small-scale problems, it faces significant challenges when applied to complex real-world
scenarios (Dulac-Arnold et al., 2019), primarily due to their inherent complexity and
dimensionality, which can hinder learning efficiency (Botvinick et al., 2019).

This thesis explores the potential of factored state representations (Boutilier et al., 2000)
in addressing some of these challenges. Factored representations rely on a set of variables

2 CHAPTER 1. INTRODUCTION

describing certain features of the environment to determine the agent’s state. Each
combination of these variables defines a unique state.

Factored representations are convenient for several reasons. First, unlike standard repre-
sentations that simply enumerate states, treating them as independent entities, factored
representations explicitly capture relationships between states that can be exploited to
learn useful state representations. The similarity between two states can be assessed by
comparing the values of their corresponding state variables. Second, factored representa-
tions provide a natural way of forming state abstractions. Ignoring certain state variables
has the effect of grouping together states that share the same values for the remaining ones
(Boutilier et al., 2000; Dietterich, 2000). Finally, and perhaps most importantly, factored
state representations can provide valuable insights into the structure of RL problems as
they allow for a much finer inspection of the environment dynamics. Both transition and
reward probabilities can be expressed in terms of the state variables; hence, we can find
compact representations for them by analyzing the relationships between these variables
(Boutilier et al., 1995; Kearns and Koller, 1999; Guestrin et al., 2003; Nair et al., 2005;
Hengst et al., 2002; Jonsson and Barto, 2005).

1.2 Objective

The primary objective of this thesis is to improve the efficiency of RL. This is achieved by
examining the probabilistic dependencies among variables in factored state representations
and trying to identify ways to streamline certain computations. To do so, we will rely
on the use of probabilistic graphical models (PGMs; Koller and Friedman, 2009). PGMs
offer a compact and intuitive way of visualizing the joint probability distribution of a
group of variables in a system. In particular, we will employ Dynamic Bayesian Networks
(DBNs; Dean and Kanazawa, 1989; Murphy, 2002), which are a type of PGMs specifically
designed to capture the interactions between variables over time. Below we describe the
two approaches that we explore in this thesis to try to accomplish the above objective.

1.2.1 Local Simulators

Most practical applications of RL rely on simulators to provide initial training for the
agent before deploying it in the real world (Bellemare et al., 2020; Degrave et al., 2022).
Simulators are essential because modern RL methods typically require large amounts

1.2. OBJECTIVE 3

of data to learn effective policies. However, simulators of complex environments can be
expensive to run.

Yet, in many real-world problems, agents directly interact with only a subset of state
variables. For example, consider the task of training an agent to control the traffic lights
at a specific intersection in a large city. In this case, the agent’s observations may be
limited to information about the traffic in the local neighborhood. Additionally, since the
impact of the agent’s actions is local, the reward function may also be conditioned on local
information only. Thus, one may argue that simulating the entire system is unnecessary
because observations and rewards depend solely on the local subset of state variables.
However, local state transitions can still be affected by non-local variables. The traffic
patterns in the local neighborhood are affected by the traffic conditions in the rest of the
city.

Fortunately, in the traffic example and in many other real-world systems, although the
local neighborhood may be affected by the full set of state variables, it is only directly
influenced by the road segments connecting the intersection to the rest of the city. In the
language of probability theory, we can say that the local neighborhood is conditionally
independent of the rest of the city, given these road segments. This property is leveraged
by the theoretical framework of influence-based abstraction (IBA; Oliehoek et al., 2021) to
demonstrate that by monitoring the value of those variables that influence the local region
directly, the rest of the non-local state variables can be abstracted away, thus simplifying
the computation of local state transitions. In Chapters 3 and 4, we will show how these
theoretical insights can be translated into a practical method to design local simulators
that mimic the influence of the non-local variables through machine learning models.

1.2.2 State Abstraction

Another approach to enhance the efficiency of RL is through state abstraction (Li et al.,
2006). State abstraction involves grouping states into clusters and treating all states
within the same cluster as unique entities. Most state abstraction methods (Singh et al.,
1994a; McCallum, 1995b; Abel, 2020) consider states as a whole and form clusters based on
behavioural equivalence (Givan et al., 2003; Ferns et al., 2006). In contrast, when working
with factored representations, removing variables from the representation naturally leads
to the grouping of states. This means we can form state abstractions by identifying the
important state variables and ignoring the irrelevant ones (Boutilier et al., 2000; Dietterich,

4 CHAPTER 1. INTRODUCTION

2000). In fully observable environments, assuming the reward always depends on the same
group of variables, this process simply implies determining whether a variable is needed
to predict the current reward and the next transition.1

Unfortunately, performing state abstraction is more delicate under partial observability
since a variable may be relevant even if it does not directly influence the next transitions
and rewards. In such cases, before removing a variable, it is crucial to ensure that it
neither influences nor is influenced by any of the hidden state variables, or at least not
directly. Again, we can do so by analyzing the dependencies between variables. Exploring
this idea will be the central focus of Chapter 5.

Finally, in Chapter 6 we shift the focus slightly away from efficiency and delve into the
topic of generalization. We show that under certain policies agent’s may be able to remove
additional variables from their representation, which are deemed unnecessary under such
policy but which may still be required when following other policies. This occurs due to
spurious correlations induced by the policy between the state variables and the agent’s
future transitions and rewards. Removing additional variables can be advantageous as long
as the agent consistently adheres to a fixed policy. However, it can lead to catastrophic
outcomes if the agent deviates from its usual trajectories.

1.3 Contributions

Here we outline the main contributions of this thesis. These are divided in four items
which correspond to the four papers the thesis is based on. The first two focus on the
objective of designing lightweight local simulators (Section 1.2.1), while the second two
investigate state abstraction (Section 1.2.2). Each paper is described in a separate chapter
providing a more detailed explanation of its respective contributions.

• Chapter 3: Influence-Augmented Local Simulators (Suau et al., 2022d).
In this paper, we study how to build local simulators of complicated systems. The
proposed method, Influence-Augmented Local Simulators (IALS), which builds
on the IBA framework, can be applied to problems where agents interact with a
reduced portion of a larger environment while still being affected by global dynamics.
IALS combines the use of local simulators to closely mimic the local dynamics with

1Strictly speaking, a variable is only relevant if it is necessary to predict the current reward and the
next abstract state (Givan et al., 2003).

1.3. CONTRIBUTIONS 5

learned models that capture the influence of the global system. Through extensive
experimentation, IALS is shown to considerably speed up the agent’s training time
while matching the performance of agents trained in the true environment.

• Chapter 4: Distributed Influence-Augmented Local Simulators (Suau
et al., 2022a). This paper extends the IBA framework to multi-agent systems,
demonstrating that simultaneous learning is possible without incurring major compu-
tational costs. We show how networked environments can be factorized into multiple
regions such that the agents in the environment can be trained in separate simulators
that run independently and in parallel. We call the resulting method distributed
influence-augmented local simulators (DIALS). Our experiments reveal that DIALS
not only reduces the runtime and improves scalability but also seems to mitigate
the inherent non-stationarities of multi-agent learning.

• Chapter 5: Influence-Aware Memory (Suau et al., 2022b). This paper
presents a method to improve learning in partially observable environments by
abstracting away observation variables that have no direct influence on, or are not
influenced by, the hidden state variables. By removing these irrelevant variables from
the agent’s memory, we can overcome convergence difficulties and enhance learning
efficiency. To implement this idea, we propose a deep learning architecture that
combines a feedforward and a recurrent neural network in parallel. The recurrent
neural network receives only the variables that are strictly necessary for predicting
the hidden state variables. Additionally, we introduce a mechanism that allows the
agent to automatically select which variables to retain.

• Chapter 6: Policy Confounding (Suau et al., 2023). This paper uncovers
the phenomenon of policy confounding, whereby, as a result of repeatedly sampling
from a particular policy, agents learn state representations that are insufficient to
predict future transitions and rewards in trajectories other than those followed under
said policy. This is because the policy, acting as a confounder, introduces spurious
correlations that the agent exploits to predict transitions and rewards. We provide a
mathematical characterization of this phenomenon and a series of clarifying examples
that illustrate how it occurs.

Chapter 2

Background

Jargon is both a necessity and a curse.

–Richard Hamming, The Art of Doing Science and Engineering: Learning to
Learn

In this chapter, we will give a brief overview of the materials that are most relevant to
understanding the rest of the thesis. In particular, we will review the topics of reinforcement
learning and probabilistic graphical models. The latter will be utilized as analytical tools
to analyze the structure of the environment and investigate the probabilistic dependencies
among variables. Although we will touch on these topics only briefly, we will provide
references to other works that cover them more extensively.

2.1 Reinforcement Learning

Reinforcement learning (RL; Kaelbling et al., 1996; Sutton and Barto, 2018) is concerned
with training an agent to act in an environment in order to solve a particular task. The
agent, which initially holds little knowledge of the world, must design a strategy by
interacting with the environment. That is, by taking actions and observing how the
environment evolves as a result of these actions. The strategy, normally referred to as
a policy, is nothing else than a function that maps the agent’s observations to actions.
The agent receives feedback from the environment in the form of numerical rewards and,

8 CHAPTER 2. BACKGROUND

through trial and error, learns which actions yield high rewards.

2.1.1 Markov Decision Processes

The agent-environment interaction is normally modeled as a Markov Decision Process
(Puterman, 2014).

Definition 2.1.1. A Markov decision process (MDP) is a tuple ⟨S,A, T,R⟩ where S is
the set of possible states of the environment, A is the set of actions that are available
to the agent, T : S × A → ∆(S) is the transitions function which, for all st, st+1 ∈ S
and a ∈ A, determines the probability T (st+1 | st, at) of transitioning from st at time t

to state st+1 at time t+ 1 given that the agent took action at, and R : S × A → R is a
function that determines the reward R(st, at) received by the agent for being at state st

and taking action at. We will sometimes use the shorthand Rt for simplicity.

The goal for the agent is to learn a policy π : S → ∆(A) that maximizes the expected
value Q, which is defined as the expected cumulative reward of being in state st, taking
action at and following π thereafter,

Qπ(st, at) = E
st+1∼T (·|st,at)
at+1∼π(·|st+1)

[
K∑
k=t

γkR(sk, ak)

∣∣∣∣∣ st, at
]
, (2.1)

where the expectation is taken with respect to the policy π and the transitions func-
tion T . From these two distributions, we can draw entire state-action trajectories
⟨st, at, ..., aK−1, sK⟩, also known as episodes, from which we can obtain the rewards
at every timestep. K is a discrete random variable, known as the horizon, that determines
the episode length. K can vary from episode to episode and may depend on the environ-
ment state. The summation inside the expectation is normally referred to as return Gt.
The parameter γ ∈ (0, 1] is the so-called discount factor, which ensures that the Q values
are bounded when K goes to infinity, and determines how much the agent should care
about immediate compared to future rewards. Alternatively, we can also express Q as

Qπ(st, at) = E
st+1∼T (·|st,at)
at+1∼π(·|st+1)

[R(st, at) + γQπ(st+1, at+1)] , (2.2)

The above expression, known as the Bellman equation (Bellman, 1957), reveals a nice
property about the value function, which is that the value at a particular state can be

2.1. REINFORCEMENT LEARNING 9

written recursively as a function of the value at its successor states. This property is the
basis of many RL methods, some of which are reviewed in the next section.

2.1.2 Reinforcement Learning Methods

If the transitions function T is known, an optimal policy π∗, can be found through dynamic
programming (Bertsekas, 2005). Unfortunately, this is typically not the case in RL, and the
MDP must be solved by directly interacting with the environment. Yet, most RL methods
rely on dynamic programming techniques, such as policy or value iteration (Puterman,
2014), to compute π∗. The idea of these methods is first to obtain an estimate Q̂π(st, at)

of the value of the current policy π, and then build a new policy π′ that improves on
the previous one by acting greedily with respect to Q̂π(st, at). That is, at every state, π′

selects the action that maximizes Q̂π(st, at). This process is repeated multiple times until
a fixed point is reached. Assuming that at every iteration, states are visited infinitely
often and that the Q estimates are sufficiently close to the true values (i.e., they use a
sufficiently large number of samples), the process is guaranteed to converge to the optimal
policy π∗ and optimal value function Q∗.

The main difference with respect to dynamic programming is that Q must be estimated
from the experiences collected from the environment. The simplest way to estimate Q

is to use Monte Carlo (MC) rollouts. Given an initial policy, we can obtain an estimate
Q̂π(st, at) by sampling multiple trajectories from the environment and averaging over the
returns. An often more efficient alternative to Monte Carlo rollouts is temporal difference
(TD) learning. Rather than sampling full trajectories, TD learning truncates them after,
say, n timesteps and uses Q̂π(st+n+1, at+n+1) to estimate the value of the remaining part of
the trajectory. TD Learning is used in classical RL methods such as Q-learning (Watkins
and Dayan, 1992) and Sarsa (Rummery and Niranjan, 1994), and it is also at the core of
some of today’s most sophisticated RL methods (Mnih et al., 2015; Van Hasselt et al.,
2016; Schulman et al., 2017; Hessel et al., 2018).1

2.1.3 Partial Observations

So far, we have assumed that states are fully observable to the agent. This is, unfortunately,
not the case in many settings. Some of the information may actually be hidden or very

1The reader is referred to Sutton and Barto (2018, Chapters 4-9) for more details about classical RL
methods.

10 CHAPTER 2. BACKGROUND

hard to access. Think, for instance, of the game of blackjack; the cards in the deck are not
visible to the players. Yet, players can estimate which ones are more likely to appear next
by keeping track of the ones that have already been burned. This is a classic example of a
partially observable setting. In the same way we did it with the fully observable case, we
can also represent these types of problems mathematically using the Partially Observable
MDP framework (Kaelbling et al., 1996).

Definition 2.1.2 (POMDP). A partially observable Markov decision process (POMDP)
is a tuple ⟨S,A, T,R,Ω, O⟩ where S is the set of states, A is the set of actions, T and R

are the transitions and rewards functions, as defined in Definition 2.1.1, Ω is the set of
observations, and O : S → ∆(Ω) is the observation or emission function, which, for all
st ∈ S and ot ∈ Ω, determines the probability O(ot | st) of observing ot given that the
agent is at state st.

Since the agent receives only a partial observation ot of the latent state st, a policy based
only on the most recent information can be sub-optimal (Singh et al., 1994b). In general,
the agent must keep track of past actions and observations to make the right action choices.
The optimal policy is, therefore, a mapping from the past action-observation history (from
now on simply referred to as history), ht = ⟨o1, a1, ..., at−1, ot⟩, to a probability distribution
∆(A) over actions A, π : H → ∆(A), where H is the set of all possible histories of any
length.

2.1.4 State Abstraction

It can happen that the state space, as defined by the MDP or POMDP models, is too
granular. That is, the models may make more distinctions than are actually needed for
the agent to solve the task. This occurs when two states are behaviorally equivalent from
the perspective of the agent. The theory of state abstraction focuses on investigating these
situations and provides tools for grouping states together (Singh et al., 1994a; McCallum,
1995b; Dietterich, 2000). The coarsest type of state abstraction guaranteeing the resulting
abstract MDP to be equivalent to the original MDP is known as model-irrelevance state
abstraction (Li et al., 2006) or bisimulation (Dean and Givan, 1997; Givan et al., 2003).

Definition 2.1.3 (Model-Irrelevance State Abstraction). Let Φ : S → S̄ be a function
that maps ground states st ∈ S to abstract states s̄t ∈ S̄. Φ is a model-irrelevance state

2.1. REINFORCEMENT LEARNING 11

abstraction if, for all st ∈ S, at ∈ A, s′t ∈ {st}Φ, and st+1 ∈ S,

R(st, at) = R(s′t, at)

and ∑
s′t+1∈{st+1}Φ

T (s′t+1 | st, at) =
∑

s′t+1∈{st+1}Φ
T (s′t+1 | s′t, at),

where {st}Φ = {s′t ∈ S : Φ(s′t) = Φ(st)} is st’s equivalence class under Φ.

Simply put, Φ is a model-irrelevance state abstraction if it only groups together two states
when, for any given action, these yield the same immediate reward, and their probabilities
of transitioning to every possible abstract state are the same. State abstractions satisfying
these conditions are guaranteed to be equivalent to the original representation. That is, for
any policy and action, the expected value Q is the same when conditioning on the abstract
states s̄t or on the ground states st. This implies that the optimal policy is preserved when
solving the abstract MDP induced by a model-irrelevance state abstraction. Unfortunately,
finding a function Φ satisfying these conditions is often as hard as solving the original
MDP. Hence, most of the work on state abstraction focuses on finding approximations
(Abel et al., 2016; van der Pol et al., 2020; Zhang et al., 2021; Agarwal et al., 2021; Abel,
2020), some of which rely on metrics to measure the similarity between two states (Ferns
et al., 2006; Castro, 2020). Despite potentially incurring a value loss, these approximations
can be efficiently learned, are effective in shrinking the state space, and thus can help in
solving the RL problem.

2.1.5 Function Approximation

The methods outlined in Section 2.1.2 are useful for solving moderately sized MDPs that
have around a hundred or even a thousand states. However, real-world problems frequently
have many more states, and, even if we could apply state abstractions, obtaining accurate
point estimates of the value at each (abstract) state may require an impractically large
number of samples. Moreover, we may also run into memory problems, given that the
value estimates for each state-action pair must be stored separately in an array.

One way to address these limitations is to use function approximation. Instead of storing
the value of each state explicitly, a parametric function can be trained to predict the value
at any given state based on the observation variables that are provided as input. The hope

12 CHAPTER 2. BACKGROUND

is that by training on a relatively small number of samples, the function approximator
can exploit the hidden structure of the problem to accurately predict values, and even
generalize to states that the agent has not encountered.

Neural networks are a popular choice when it comes to selecting a type of function
approximator. The subfield of RL that deals with the integration of neural networks into
the RL framework is known as Deep RL. The two main categories of methods for training
neural networks for RL are value-based and policy-based methods. Value-based methods
(e.g., DQN; Mnih et al., 2015) follow the same principle as value iteration. The optimal
value function is learned iteratively, by estimating the value of the current policy while
simultaneously improving it by acting greedily. The most common objective function for
training a neural network to approximate the value function is the mean-squared error
(MSE). A gradient can be easily derived from the MSE to optimize the weights of a neural
network through gradient descent. In contrast, policy-based methods aim to learn the
optimal policy directly. These methods rely on the policy gradient (Marbach and Tsitsiklis,
2001; Sutton et al., 1999) to optimize a neural network whose output is a distribution
over the actions. Yet, only a few methods (e.g., REINFORCE; Williams, 1992) truly
optimize the policy directly using MC estimates of the return. Most methods are actually
hybrid. In the sense, that despite optimizing a policy network through the policy gradient,
they also learn a value function (e.g. actor-critic methods: A3C, Mnih et al., 2016; PPO,
Schulman et al., 2017).2

Deep RL has demonstrated great success in tackling high-dimensional domains, including,
large board games with millions of states (Silver et al., 2016), complex video games with
raw images as observations (Vinyals et al., 2019), and robotic tasks with continuous action
spaces Lillicrap et al. (2016). Yet, as we discuss in Chapters 3 and 4, neural networks
are extremely sample-inefficient, and most applications rely on simulators to generate
synthetic experiences that the agent can learn from before being deployed in the real
world.

2.2 Probabilistic Graphical Models

A probabilistic graphical model (PGM) is nothing else than a visual representation of
a probability distribution. PGMs do not convey any more information than what a set

2For an introduction to RL with function approximation, the reader is referred to Sutton and Barto
(2018, Chapters 10-13).

2.2. PROBABILISTIC GRAPHICAL MODELS 13

Figure 2.1: Three PGMs expressing different probabilistic relationships between three
random variables, A, B, and C.

of equations defining the dependencies between the variables forming the distribution
can convey. However, they allow us to readily visualize the structure of the distribution.
In the following, we shall discuss some of the insights that PGMs can provide and show
how complex computations can be simplified by making use of them. As in the previous
section, we will only cover the essentials here.3

2.2.1 Factorization

Figure 2.1 shows three simple examples of PGMs. Specifically, these are known as Bayesian
networks (BNs) or directed acyclic graphs (DAGs) (Pearl, 1988; Jensen and Nielsen, 2007).
The three nodes in each of the diagrams represent random variables. The edges show the
dependencies between variables, and the arrows indicate the direction of these dependencies.
For instance, in the first diagram, we see that A is connected to C. We say that A is the
parent of C, while C is node A’s child. We also see B is connected to C, which means
that C itself is a parent of B. Moreover, we say that A is an ancestor of B and B is A’s
descendant. As such, given the probabilistic dependencies shown in the first diagram, we
can apply the product rule to decompose the joint probability of A, B, and C as

Pr(A,B,C) = Pr(B | C) Pr(C | A) Pr(A). (2.3)

In the second diagram, we see that A is still connected to C, but the edge going from C

to B is now gone. There is also another edge connecting A and B. Hence, in this second
case, Pr(a, b, c) is given by

Pr(A,B,C) = Pr(A | C) Pr(C | A) Pr(A). (2.4)
3The reader is referred to Bishop (2006, Chapter 8) for an overview, and to Koller and Friedman (2009)

for full coverage of PGMs.

14 CHAPTER 2. BACKGROUND

Finally, in the third diagram, we have that both A and C are connected to B,

Pr(A,B,C) = Pr(B | A,C) Pr(C) Pr(A). (2.5)

What we did here is known as factorization, and although these examples were fairly
simple, PGMs are generally very useful for determining how complicated distributions can
be factorized. In fact, the above can be generalized into an expression that works for PGMs
defining joint distributions of any kind. Let X be a set of variables X = {X1, X2, ..., Xn}.
Assuming we are provided a diagram like the ones in Figure 2.1 showing the dependencies
among variables, we can factorize their joint probability Pr(x) as

Pr(X) =

n∏
i=1

Pr(Xi | PA(Xi)) (2.6)

where PA(Xi) denotes the parents of Xi. For the above to hold, it is important that the
PGM contains no cycles. That is, any path starting from a particular node should never
end at that same node.

2.2.2 Conditional Independence and D-Separation

Another advantage of PGMs is that they give away any conditional independences between
the variables forming the distribution. Two variables A and B are said to be conditionally
independent given a third one C, written as A ⊥⊥ B | C, if

Pr(A | B,C) = Pr(A | C) (2.7)

One can test for conditional independence, by, starting from expressions like the ones in
(2.3), (2.4), and (2.5), trying to get to an expression like (2.7). However, depending on
the number of variables, this process can be really tedious.

In contrast, using PGMs, we can immediately tell whether two variables A and B are
conditionally independent given a third one C by testing for d-separation (Pearl, 1988).
This involves checking whether the paths connecting the two nodes representing these
variables are active or inactive. If, given C, there are no active paths connecting A and B,
then we can guarantee that A and B are conditionally independent. In such cases, we say
that the two variables are d-separated. We will use again the examples in Figure 2.1 to
define what we mean by active and inactive paths.

2.2. PROBABILISTIC GRAPHICAL MODELS 15

In the first PGM, we see that A influences B through C. Therefore, in general, A and
B are not independent. However, if we are given C, then A becomes irrelevant since C

blocks the only path connecting A and B. Paths of the form A→ C → B are known as
head-to-tail. Head-to-tail paths are open unless the middle node (in this case, C) is given.

In the second PGM, B and C are both children of A, and thus they cannot influence each
other. Nevertheless, B can give away information about A, which in turn can be used to
infer B. Hence, B and C are generally not independent unless A is given, in which case
A, C cannot help in inferring B since we already know everything about A. Paths of the
form B ← A→ C are known as tail-to-tail. Tail-to-tail paths are open unless the middle
node (in this case, A) is given.

The last PGM is perhaps the most interesting of the three. In this case, both A and C

influence B, but they do not influence each other. Moreover, knowing A does not tell us
anything about C since, in contrast to the second case, they do not have any common
ancestors. However, if B was given, then knowing A may tell us something about C. We
can illustrate this with an example from Pearl (1988) (taken from Scheines, nd). Let us
assign the three Boolean variables ‘dead battery’, ‘car will not start’, and ‘empty tank’
to nodes A, B, and C in the third PGM, respectively. Knowing that the battery is dead
tells us that the car will not start, but it does not tell us anything about the gas tank
(nor it does knowing that the battery is charged). For all we know, the gas tank could
also be empty. In contrast, if we know that the battery is not dead and that the car does
not start, the tank being empty becomes more likely. Paths of the form A→ B ← C are
known as head-to-head. Head-to-head paths are closed unless the middle node (in this
case, B) is given. The difference with respect to the previous two cases is that node B in
the third PGM is a collider. Colliders act differently than non-colliders in the sense that
when their values are given, any paths between two nodes that pass through the collider
become active. Moreover, if rather than being given the collider itself, we are given one of
its descendants, the path will also become active. Going back to the car example, being
told that the car’s owner could not go to work by car and knowing that the car’s battery
was charged, reveals more information about the gas tank than knowing only that the
owner could not use the car.

As we will see in the following chapters, conditional independence is important because
it can be exploited to (1) reduce the complexity of generative models (e.g. simulators;
Chapters 3 and 4), and (2) narrow down the function class we start from when learning
inference models (e.g. policies or value functions; Chapter 5).

16 CHAPTER 2. BACKGROUND

2.2.3 Confounding

In causal inference (Pearl et al., 2016; Peters et al., 2017), the term confounding describes
the emergence of a spurious correlation between two variables as a result of a third variable,
known as the confounder, that influences both. A spurious correlation is a statistical
association that does not respond to a causal relation.

A popular example is the spurious correlation between foot size and reading ability (Pearl
and Mackenzie, 2018). If we collected a dataset containing only the foot size and the
reading grades of a hundred children of different ages, we would see a strong correlation
between the two. These two apparently unrelated variables happen to be statistically
associated due to the influence of a hidden confounder: the children’s age.

Learning in the presence of hidden confounders can be challenging, as machine learning
models may pick up on spurious correlations and fail to generalize (Arjovsky, 2021). In
Chapter 6, we will use PGMs to demonstrate how the agent’s policy can sometimes act as
a confounder and introduce spurious correlations.

2.2.4 Dynamic Bayesian Networks

We now describe the type of PGMs we will use throughout this thesis to represent RL
problems. These are known as Dynamic Bayesian Networks (DBNs; Dean and Kanazawa,
1989; Murphy, 2002).4 DBNs relate variables with one another across time. Figure 2.2 is
an example of DBN. The edges in the graph show how variables at a particular point in
time are related to other variables and to themselves at adjacent timesteps. DBNs are
particularly well-suited to describe sequential decision problems like the ones we study in
RL since transition dynamics are encoded in the network structure. Moreover, the Markov
property of MDPs guarantees that edges cannot jump over multiple timesteps. That is,
edges only connect variables within the same timestep (i.e., intra-stage connections) or
from one timestep to the next one. This implies that a DBN showing only two timesteps,
known as a two-stage DBN (2DBN), is sufficient to represent the transition dynamics.
Figure 2.2 shows an example of a DBN representation of an MDP. We use circles for state
variables, boxes for actions, and diamonds for rewards.

4Strictly speaking, the graphical models we will use can be considered a hybrid of DBNs and influence
diagrams (Shachter, 1988), as we incorporate the agent’s actions and rewards into the model.

2.3. FACTORED REPRESENTATIONS 17

Figure 2.2: A DBN representation of an MDP with four state variables. We use circles for
state variables, squares for actions, and diamonds for rewards.

2.3 Factored Representations

We now describe the types of models we will work with and provide their formal definitions.

Our work is based on the assumption that states are represented by a set of variables.
This is common when parametric functions are used to model policies and value functions.
These variables, also known as factors, typically describe features of the agent’s state in
the environment (e.g., location, velocity, orientation, etc.). Therefore, the set of states
is given by the Cartesian product of these variables (i.e., the set of all combinations of
values these variables can take). Factoring the state space has an effect on observations,
rewards, and transitions, which can also be modeled in terms of the state variables.

As argued in Chapter 1, the main benefit of representing states using variables is that we
can inspect the dynamics of the environment in more detail and potentially abstract away
certain variables in observations, transitions, and reward distributions. We seek to exclude
from the representation all those variables that are irrelevant for the agent to solve the
task. Starting from the FPOMPD framework (Definition 2.3.1), we will be analyzing the
relationships between state variables to find more efficient ways of representing the problem.
The concepts reviewed in this section are the basis of our work on influence-augmented
local simulators covered in Chapters 3 and 4, and influence-aware memory, Chapter 5.

18 CHAPTER 2. BACKGROUND

2.3.1 Factored POMDPs

As this thesis focuses on partially observable settings, we now extend the POMDP
framework to include factored representations (Boutilier et al., 1999).

Definition 2.3.1 (FPOMDP). A factored partially observable Markov decision process
(FPOMDP) is a tuple ⟨S, S,A, T,R,Ω, O⟩ where S is the set of states, S is the set of
state variables S = {S1, ..., Sk}, such that every state st = ⟨s1t , ..., skt ⟩ ∈ ×i dom(Si) = S
is a k-dimensional vector, A is the set of actions, T and R are the transition and reward
functions, as defined in Definition 2.1.1, Ω is the observation space, and O is the observation
function, as defined in Definition 2.1.2.

2.3.2 Locality

One important property of the problems we tackle in this thesis is locality. In many
situations, the agent’s observations of the environment are limited and depend only on
a local subset of the state variables. Moreover, given that the agent’s effect on the
environment is also limited (i.e., actions cannot influence all state variables), the same
can be argued about the reward function. These two insights can be translated directly
into a new framework, the Local-FPOMDP (Witwicki and Durfee, 2010a; Oliehoek et al.,
2012), which is a special case of FPOMDP (Definition 2.3.1).

Definition 2.3.2. A Local-FPOMDP is an FPOMDP where O and R depend only on
a subset of state variables X = {X1, ..., X |X|} ⊆ S known as the local state variables.
Each combination of these variables determines a different local state xt = ⟨x1t , ..., x

|X|
t ⟩ ∈

×i dom(Xi). Hence, we can write O(ot | st) = Ȯ(ot | xt) and R(st, at) = Ṙ(xt, at), where
Ȯ and Ṙ are the local observation and local reward functions. Further, we use Y to denote
the set of non-local state variables, Y = X \ S.

Looking at the above definition, one can argue that sampling from the full transition
function T (st+1 | st, at) is overly complicated. Note that both rewards and observations
condition only on local variables Xt. Hence, we may be able to define instead a new
transition function T̄ : ×i dom(Xi) × A → ∆(×i dom(Xi)) that models only the local
state variables X, such that, for all xt, xt+1 ∈ ×i dom(Xi) and a ∈ A, T̄ determines the
probability T̄ (xt+1 | xt, at) of transitioning to the local state xt+1 given the current local
state xt and the action at. The problem, though, is that Xt+1 may still depend on other
non-local state variables Y = F \X, and thus T̄ is generally not well defined.

2.3. FACTORED REPRESENTATIONS 19

Figure 2.3: A DBN representation of a Local-FPOMDP. Red nodes represent local state
variables, whereas grey nodes represent non-local state variables. The three dots on top of
Y indicate that there can be, potentially many, other non-local variables. The red box
delimits the agent’s local region of interaction. The nodes highlighted in black depict
the influence source U , which is the only non-local variable influencing the local region
directly.

2.3.3 Influence-Based Abstraction

Here we briefly describe the framework of influence-based abstraction (IBA; Oliehoek et al.,
2012).5 From the previous section, we know that local states may sometimes depend on
non-local state variables, which forces us to model the full set of state variables. However,
as we will see in the following chapters, in many local-FPOMDPs, only a fraction of
the state variables will directly influence the local region. IBA exploits this property
to simplify the transitions function of the original FPOMDP. The idea is most easily
understood by means of a DBN representing the problem.

The DBN in Figure 2.3 shows the dynamics of a local-FPOMDP prototype. The agent’s
local region, corresponds to the variables, denoted by X = ⟨X1, X2⟩, that lie within the
red box. The diagram also shows the non-local variables Y and U . The three dots on
top of Y indicate that there can be, potentially many, other non-local variables. The

5The reader is referred to Oliehoek et al. (2021) for an in-depth exposition of the IBA framework.

20 CHAPTER 2. BACKGROUND

non-local variable U is known as the influence source and, as shown in the DBN, is the
only variable that influences the local region directly. Hence, we know that given Ut,
Xt+1 is conditionally independent of Yt, Pr(xt+1 | xt, ut, yt) = Pr(xt+1 | xt, ut), which
means that we can further simplify our model and convert the local-FPOMDP into an
influence-augmented local model (IALM).

Definition 2.3.3 (IALM). An influence-augmented local Model (IALM) is a local-
FPOMDP with local transition function Ṫ (xt+1 | xt, ut, at), where, ut ∈ ×k

i=1 dom(U i) are
known as the influence sources, and are defined as the subset of non-local state variables,
U = {U1, ..., U |U |} ⊆ Y , that influence X directly. Further, we define the influence
distribution I(ut | lt) = Pr(ut | lt), where lt = ⟨x0, a0, ..., at−1, xt⟩ represents the action
local state history (ALSH) with Lt denoting the set of local state X and action variables
A in a an ALSH of length t. Using Ṫ and I, the probability of the next local state being
xt+1 given the past ALSH lt and the action a can be computed as

Pr(xt+1 | lt, at) =
∑
ut

Ṫ (xt+1 | xt, ut, at)I(ut | lt). (2.8)

Note that, as opposed to the Local-FPOMDP, the transition function Ṫ in the IALM is
defined purely in terms of the local state variables and the influence sources. However,
since the influence sources are not explicitly modeled, we need to infer their value through
the the influence distribution. Yet, this representation of the problem can be shown to be
equivalent (Oliehoek et al., 2012), and in many cases, computationally much lighter than
the original FPOMDP. The problem is that even if we had the full transitions function
T , computing the influence distribution I is generally intractable due to combinatorial
explosion. Nonetheless, as will be shown in Chapter 3, we can approximately capture
I(ut | lt) by fitting machine learning models to samples collected from the environment.

2.3.4 D-Separating Set

In the same way that not all state variables are strictly relevant if we want to compute
the local transitions, not all variables in Lt are needed in order to model the influence
sources. For instance, if we take the DBN from Figure 2.3, we see that ⟨X2

0 , ..., X
2
t+1⟩ and

⟨A0, ..., At⟩ d-separate (Section 2.2.2) Ut+1 from the rest of the ALSH. Hence, we know
that Ut+1 and Lt+1 are conditionally independent given ⟨X2

0 , ..., X
2
t+1⟩ and ⟨A0, ..., At⟩.

This set of variables, which is generally known as the d-separating set (d-set; Oliehoek
et al., 2012), is highlighted in red in Figure 2.4.

2.3. FACTORED REPRESENTATIONS 21

Definition 2.3.4 (d-set). The d-separating set (d-set) is the subset of variables in an
ALSH, Dt ⊆ Lt, such that the influence sources Ut and the remaining variables in the
ALSH, Lt \Dt, are conditionally independent given Dt; Ut ⊥⊥ Lt \Dt | Dt.

This insight can be used to simplify the influence distribution, since we have that, for all
ut ∈ ×i dom(U i) and lt ∈ ×i dom(Li

t), I(ut | lt) = Pr(ut | dt). Moreover, as we will show
in Chapter 5, it can also be incorporated into the agent’s policy as an inductive bias to
facilitate learning.

Figure 2.4: A DBN representation of the same Local-FPOMDP from Figure 2.3. The
d-separating set is highlighted in red.

Chapter 3

Influence-Augmented Local
Simulators

I basically know of two principles for treating complicated systems in simple
ways: the first is the principle of modularity and the second is the principle of
abstraction. I am an apologist for computational probability in machine learning
because I believe that probability theory implements these two principles in deep
and intriguing ways – namely through factorization and through averaging.
Exploiting these two mechanisms as fully as possible seems to me to be the way
forward in machine learning.

–Michael I. Jordan, 1997 (quoted in Murphy, 2022)

Learning effective policies for real-world problems is still an open challenge for the field
of reinforcement learning (RL). The main limitation being the amount of data needed
and the pace at which that data can be obtained. In this chapter, we study how to build
lightweight simulators of complicated systems that can run sufficiently fast for deep RL to
be applicable. We focus on domains where agents interact with a reduced portion of a
larger environment while still being affected by the global dynamics. Our method combines
the use of local simulators with learned models that mimic the influence of the global
system. The experiments reveal that incorporating this idea into the deep RL workflow
can considerably accelerate the training process and presents several opportunities for the
future.1,2

1This chapter is based on Suau et al. (2022c) and Suau et al. (2022d).
2Source code is available at https://github.com/INFLUENCEorg/IALS

https://github.com/INFLUENCEorg/IALS

24 CHAPTER 3. IALS

3.1 Introduction

The remarkable success of Deep Reinforcement Learning (RL) on paper is in stark contrast
with its narrow applicability to real-world problems. Among many other reasons, the most
important factor preventing the practical deployment of this framework is perhaps its high
sample complexity (Botvinick et al., 2019). This is a very well-known issue, and there is
a long list of previous works that, in one way or another, have tried to alleviate it (e.g.,
Kakade, 2003; Mnih et al., 2015; Ha and Schmidhuber, 2018). Nonetheless, there have
been relatively few real-world successes thus far. Here, rather than proposing yet another
method that tries to solve the problem directly, we present a more pragmatic approach to
get around it. Our solution is based on the observation that Deep RL’s best results have
been obtained in domains like video games (Bellemare et al., 2013; Vinyals et al., 2019)
or simulated environments (Brockman et al., 2016; Ganesh et al., 2019; Bellemare et al.,
2020) where data collection is extremely fast. Unfortunately, real-world problems are
typically more complex and simulators, if available, are usually very slow (Dulac-Arnold
et al., 2019).

In this work, we design lightweight versions of large simulators with the goal of speeding up
the overall training process. The method we propose applies to domains where agents only
interact with a reduced local part of a larger environment, yet they are indirectly being
affected by the global dynamics. Traffic control is one example of such environments. Say,
for instance, that we wanted to train an agent to control the traffic lights at a particular
intersection in a very large city. To do so, we could build a small local simulator that
captures only the information that is directly relevant to the agent (traffic density in the
neighborhood; van der Pol and Oliehoek 2016). However, after training, we may find that
an agent that does very well in the small simulator performs poorly in the real intersection.
The performance gap would be caused by a data distribution shift (Quionero-Candela
et al., 2009; Arjovsky, 2021). Even though the simulator might be able to closely mimic
the local dynamics (i.e. cars moving within the intersection), it would fail to account for
the interactions of the local neighborhood with the rest of the city. Thus, the agent learns
a policy based on certain transition dynamics that turn out to be very different in the real
world. Alternatively, we could try to model the dynamics of a sufficiently large portion of
the city, but this would surely result in a very slow simulator.

One important property of the traffic domain is that, although the agent’s local problem
may be affected by many external variables (traffic densities in other parts of the city), it

3.2. RELATED WORK 25

is only directly influenced by the road segments that connect the intersection with the rest
of the city. Hence, we can simply monitor the traffic densities at these road segments since,
from the agent’s local perspective, they summarize the effect of all the external variables.
This insight is not specific to the traffic domain. It is in fact common in networked systems
(e.g. warehouse commissioning, Claes et al. 2017; electrical power grids, Wang et al. 2021;
heating systems, Gupta et al. 2021; telecommunication networks, Suau et al. 2021) that
interactions between different components occur through a limited number of variables.

Supported by the formal framework of influence-based abstraction (IBA; Oliehoek et al.,
2021), we exploit the above property to build local simulators that mirror the response of
the global system through the so-called influence predictor.

Contributions The main contribution of this chapter is the integration of the IBA
framework with the Deep RL workflow. Our experiments reveal, that the combination of
local simulators and influence predictors can considerably accelerate the reinforcement
learning process. We also demonstrate both theoretically and empirically that, under
mild conditions, the memory needs of the influence predictor are fully determined by the
agent’s memory capacity. Moreover, we study the impact that distribution shifts caused
by changes in the agent’s policy may have on the influence predictor and explore how to
prevent the model from picking up on spurious correlations that are not invariant across
policies. Finally, we investigate the effect of transfer learning and show how inaccurate
simulators might also be able to render effective policies.

3.2 Related Work

The problem of sample complexity has been extensively studied by the RL community.
Among many others, the most promising solutions are: replaying previous experiences
to make more efficient use of the available data (Mnih et al., 2015; Schaul et al., 2016a;
van Hasselt et al., 2019), or learning surrogate models of the environment dynamics
(Sutton, 1990; Ha and Schmidhuber, 2018; Schrittwieser et al., 2020; Moerland et al.,
2023). Yet, these techniques are only effective when provided with enough real samples. If
not, replay buffers might not be sufficient to obtain good policies, and surrogate models
might generalize poorly. An alternative is to train agents with synthetic data coming from
a simulator. However, most real-world scenarios are excessively complex and simulators, if
available, are computationally expensive (Dulac-Arnold et al., 2019). Here we argue that

26 CHAPTER 3. IALS

building a simulator of the entire system is often unnecessary. In fact, as we explain in the
following sections, in many situations, we can get away by just modeling the dynamics
around the agent’s local neighborhood.

A few prior works have investigated the computational benefits of factorizing large systems
into independent local regions (Nair et al., 2005; Varakantham et al., 2007; Kumar et al.,
2011; Witwicki and Durfee, 2011). Unfortunately, since local regions are often coupled
to one another, such factorizations are not always appropriate. Nonetheless, in many
cases, the interactions between regions occur through a limited number of variables.
Using this property, the theoretical work by Oliehoek et al. (2021) on influence-based
abstraction (IBA) describes how to build influence-augmented local simulators (IALS)
of local-FPOMDPs, which model only the variables in the environment that are directly
relevant to the agent while monitoring the response of the rest of the system with the
influence predictor. The problem is the exact computation of the conditional influence
distribution is intractable, and we can only try to estimate it from data. Congeduti et al.
(2021) provide theoretical bounds on the value loss when planning with approximate
influence predictors. The work by He et al. (2020) has empirically demonstrated the
advantage of this approach to improve the efficiency of online planning in two discrete
problems.

Here, we extend the method to more realistic problems and study how to integrate the
IBA framework with Deep RL. This has profound implications that do not arise in the
planning context, namely the relation between the agent’s memory capacity and the
history dependence of the influence predictor (Section 3.3.1), and the problem of off-policy
generalization (Section 3.3.2). Moreover, while He et al. showed that the IALS outperforms
the global simulator only when the time budget is limited, our results reveal that the IALS
can train policies in a fraction of the time and that these can match the same performance
as policies trained on the GS, without imposing any time constraints, and despite the
IALS being only approximate.

3.3 Influence-Augmented Local Simulators

In the following, we describe how we make use of the IALM formulation (Definition 4.3.3) to
design lightweight simulators that can speed up the long training times imposed by neural
network policies. Figure 3.1 (right) shows a diagram of the influence-augmented local
simulator (IALS), which is composed of a local simulator and an approximate influence

3.3. INFLUENCE-AUGMENTED LOCAL SIMULATORS 27

Global
Simulator

Local
Simulator

Approximate Influence
Predictor

Influence

local
variables

Environment

Figure 3.1: A conceptual diagram of the IALS.

predictor.

Local simulator (LS): The LS is an abstracted version of the environment that only
models a small portion of it. As opposed to a global simulator (GS), which should closely
reproduce the dynamics of every state variable, the LS focuses on characterizing the
transitions of those variables xt that the agent directly interacts with, Ṫ (xt+1|xt, ut, at).
Recall that, in our setting, both the reward R and observation O functions are defined in
terms of xt and at.

Approximate influence predictor (AIP): The AIP monitors the interactions between
the local region and the external variables yt by estimating I(ut|lt). Ideally, we would like
the approximation to match the true influence distribution. However, due to combinatorial
explosion, computing the exact probability I(ut|lt) is generally intractable (Oliehoek et al.,
2021), and so we can only try to approximate it using, for instance, a parametric function.
We write Îθ to denote the AIP, where θ are the parameters, which need to be learned from
data. Replacing the true influence distribution with an approximation implies that we are
no longer guaranteed to find the optimal policy (Congeduti et al., 2021). Nonetheless, as
we show in our experiments, it is often worth trading accuracy for computational efficiency.
We model Îθ using a neural network, which we train on a dataset of N samples of the form
(ln, un) collected from the GS (see Algorithm 4 in Appendix A.7). Since role of the AIP is

28 CHAPTER 3. IALS

to estimate the conditional probability of the influence sources ut given the past ALSH,
we can formulate the task as a classification problem.3 The neural network is optimized
using the expected cross-entropy loss,

L(Îθ) = −
1

N

N∑
n=0

log Îθ(un|ln), (3.1)

which minimizes the KL divergence between the true probabilities I(ut|lt) and those
predicted by Îθ(ut|lt).4 Once the network has been trained, we can simulate trajectories
with the IALS (Algorithm 5 in Appendix A.7). These trajectories can then be used to
train policies with any standard Deep RL method (Mnih et al., 2015; Schulman et al.,
2017).

In the next two sections we discuss two important considerations when training AIPs
for the RL setting. We first show that, since the agent’s memory is inevitably finite, we
normally will not need to train complicated AIPs that condition on the full ALSH (Section
3.3.1). In Section 3.3.2, we study the impact that distribution shifts caused by changes in
the agent’s policy may have on the AIP, and explore how to prevent the AIP from picking
up on spurious correlations that are not invariant across policies.

3.3.1 Finite Memory Agents and AIP History Dependence

As mentioned before, we can only rely on approximations of I(ut|lt) since computing the
exact distribution that conditions on the full ALSH is intractable. Unfortunately though,
even with the most sophisticated RNNs (Hochreiter and Schmidhuber, 1997; Cho et al.,
2014), learning long term temporal dependencies is also very difficult. However, it is worth
noting that, if capturing long term dependencies is hard for the AIP, it is too for the
agent. In fact, it is very common in Deep RL to find policies that have access only to
finite memories (Mnih et al., 2015; Oh et al., 2016a) or that are trained on short sequences
(Schmidhuber, 1991; Hausknecht and Stone, 2015). Thus, if the agents memory is finite,
one might well wonder whether the extra level of accuracy that an influence predictor
which conditions on the full ALSHs provides is needed. The result below shows that, the
history dependence of the influence predictor is, under mild conditions, determined by the
agent’s memory capacity.

3Note that we assume for simplicity that the influence sources U are discrete variables. However, our
approach can generalize to continuous variables by formulating the AIP learning problem as a regression
rather than a classification problem.

4Please refer to Appendix A.6 for more details on the implementation of the AIP.

3.3. INFLUENCE-AUGMENTED LOCAL SIMULATORS 29

Theorem 3.3.1. Let lt−k:t be a truncated version of lt containing only the last k action-
local-state pairs and let a0:t−k be the sequence of past actions from time 0 up to k. Let the
agent’s policy π̄ be a function of ht−k:t π̄(at|ht−k:t), where ht−k:t is also a truncated version
of ht. If for all ut, a0:t−k we have P (ut|lt−k:t, a0:t−k) = P (ut|lt−k:t), then an influence
predictor that conditions only on lt−k:t, Ī(ut|lt−k:t), is sufficient to guarantee no loss in
value.5

Proof. Found in Appendix A.1.

Intuitively, a finite memory agent whose policy conditions on the last k elements in the
AOH is only capable of computing an expectation over the action-values given these k

elements. In turn, the distribution of ut given the full ALSH lt, I(ut|lt), is effectively
washed away by the same expectation. The condition P (ut|lt−k:t, a0:t−k) = P (ut|lt−k:t) is
needed for P (ut|lt−k:t) to be well-defined independently of the policy. Intuitively, this just
means that a0:t−k cannot have any long-term effects on the influence distribution (See
proof in Appendix A.1 for more details). The upshot is that the agent’s memory capacity
limits the temporal dependencies of the influence predictor,6 meaning that I may as well
condition directly on lt−k:t rather than lt. This insight is empirically evaluated in Section
3.4.4.

3.3.2 Off-Policy Generalization and D-sets

Given that the true influence distribution conditions on the full ALSH, it is, in principle,
independent of the exploratory policy π0 that we use to collect the data. Indeed, if we would
represent I(ut|lt) with a table, we could compute unbiased estimates of the true probabilities
I(ut|lt) by using any arbitrary policy that visits every possible ALSH. The problem arises
when we use function approximators to estimate the influence sources. In particular, if we
call P π0(lt, ut) the stationary joint distribution of influence sources and ALSHs induced
by the exploratory policy π0 that we use to collect the data Dπ0 = {(l1, u1), ...(lN , uN)}
from the GS (as described by Algorithm 4 in Appendix A.7), we can write

θ∗ = argmin
θ

L(Îθ, D
π0), (3.2)

where we see that, in fact, the loss in (3.1) depends on Dπ0 . Therefore, because we are
fitting Îθ to Dπ0 , the model will be biased towards P π0 . This is not so bad considering

5Note that this refers only to the value of polices of the form π̄(at|ht−k:t), which might perform
arbitrarily worse than policies that condition on the full AOH, π(at|ht) (Singh et al., 1994b).

6More details on the practical implications of this result are given in Appendix A.6.

30 CHAPTER 3. IALS

that we want the influence predictions to be more reliable for those ALSHs that the agent
visits more often. However, it can pose a problem when the policy π that we train starts
deviating from π0. In general, we want the AIP to perform well on any distribution that
the agent may experience during training, {P π}π∈Π, where Π denotes the set of possible
policies. We then rewrite the optimization problem in (3.2) as

θ∗ = argmin
θ

max
π∈Π

L(Îθ, D
π) (3.3)

to indicate that we wish to minimize the worst-case loss.

The key issue here is that, before training, we have only access to the exploratory policy π0.
Equation (3.3) is an instance of a well-studied problem in the field of out-of-distribution
generalization (Quionero-Candela et al., 2009; Arjovsky, 2021). In principle, according to
Arjovsky (2021, Section 3.6.1), finding a solution to (3.3) by minimizing (3.2) requires, (i)
supp(P π) ⊆ supp(P π0), (ii) infinite number of samples, and (iii) infinite capacity models.

The first condition is met so long as π0(at|lt) > 0 for all at and lt. The second and
third conditions, on the other hand, can never be fulfilled in practice. On top of that,
high-capacity influence predictors are particularly undesirable for our purpose because
they are computationally demanding. The consequence of training low-capacity models
on finite datasets is that they may pick-up on spurious correlations (Pearl, 2000) between
ALSHs and influence sources.7 These correlations could be just an artifact of π0 and
may disappear after the policy is updated. One way to prevent the above, is to find a
representation of lt that elicits an invariant predictor of ut across all P π (Peters et al.,
2016; Arjovsky et al., 2019; Krueger et al., 2021).

Definition 3.3.1 (invariant predictor). A subset of variables Dt from Lt elicit an invariant
predictor of Ut across policies π ∈ Π if for all dt ∈ ×i dom(Di

t), ut ∈ ×i dom(U i
t) in the

intersection of supports, supp(P π1(d, u)) ∩ supp(P π2(d, u)), we have

Pπ1(ut|dt) = Pπ2(ut|dt) for all π1, π2 ∈ Π. (3.4)

Theorem 3.3.2. A subset of variables Dt from Lt is guaranteed to elicit an invariant
predictor of Ut, across all π ∈ Π, if (i) Dt constitutes a d-separating set (Definition 2.3.4)
and (ii) all policies are functions of the local AOH, π(ht).

Proof. Found in Appendix A.1.
7A visual example of a spurious correlation appearing in the traffic problem is given in Appendix A.2.

3.3. INFLUENCE-AUGMENTED LOCAL SIMULATORS 31

Note that, according to the result above, the full ALSH lt does elicit an invariant predictor
of ut since it is, by definition, a d-set. Hence, feeding lt should be sufficient for the model
to find stable and invariant correlations. The problem, however, is that in practice, models
tend to converge to low-capacity solutions that require little “effort" to learn (Arjovsky,
2021). As such, the representations formed by an influence predictor that is fed the full
ALSH may or may not constitute a d-set. The solution we propose is to feed solely a
minimal d-set d∗t into the AIP Îθ. Not only does this reduce the dimensionality of the input
space but also prevents the AIP from learning shortcuts (Geirhos et al., 2020) resulting
from spurious correlations that are not stable under policies other than π0

7. Provided
we have the DBN of the problem, there are many algorithms available that can help us
find a minimal d-set (Acid and De Campos, 1996; Tian et al., 1998). If not, some domain
knowledge may be sufficient in most cases, to remove a few variables from lt and prevent
confounding (Suau et al., 2022b).

Working in the joint space (dt, ut) instead of (lt, ut) has a another positive effect on off-
policy generalization. Since lt includes the agents actions the distribution P π0(l, u) might
be arbitrarily far from a distribution in {P π(l, u)}π∈Π. This is problematic because our
low-capacity influence predictor may be unable to generalize well under large distribution
shifts.

Proposition 3.3.1. Let π0 be the exploratory policy used to collect the dataset. Then, for
all π ∈ Π, ut ∈ ×i dom(U i

t), lt ∈ ×i dom(Li
t)

KL(Pπ0(dt, ut)||Pπ(dt, ut)) ≤ KL(Pπ0(lt, ut)||Pπ(lt, ut))

where KL is the Kullback–Leibler divergence.

Proof. Found in Appendix A.1.

The result above shows that the distributions of pairs (d∗, u) induced by two policies in Π

are never further apart than their full AOHs counterparts. In fact, if actions and d-sets
are only weakly-coupled the distributions may be very close. In the extreme case, if d-sets
are causally independent with respect to the agent’s actions, the influence sources can be
considered exogenous (Boutilier et al., 1996; Chitnis and Lozano-Pérez, 2020) and the two
distributions are equivalent.

Corollary 3.3.3. Let a0:t be the past sequence of actions from 0 to t. If P (dt|do(ao:t)) =
P (dt) for all dt and a0:t. Then, for any π1 ̸= π2 : π1, π2 ∈ Π we have that, for all

32 CHAPTER 3. IALS

ut ∈ ×i dom(U i
t), lt ∈ ×i dom(Li

t), P π1(dt, ut) = P π2(dt, ut) even though P π1(lt, ut) ̸=
P π2(lt, ut).

Proof. Found in Appendix A.1.

Of course, in some domains, certain instantiations of the influence sources may only
occur when very specific action sequences are followed. In such cases, a finite dataset
collected with a random uniform policy will not be sufficient to fully cover the joint space
of influence sources and d-sets, and thus the AIP may be unable to generalize well. If
this happens, assuming a GS is available during training, the obvious solution would be
to retrain the AIP every certain number of policy updates. Nonetheless, as we explain
in the next section, in many cases, it might not be worth paying the computational cost
associated to this solution since inaccurate simulators might still provide good enough
experiences to learn from.

3.3.3 Sufficiently Similar Training Conditions

Up to this point we have discussed the importance of training accurate AIPs that are
also invariant to distribution shifts caused by changes in the agent’s policy. Nonetheless,
here we pose a different question: to what extent is it possible to achieve near-optimal
performance with inaccurate AIPs? As a matter of fact, it is very common in real-life
engineering to model individual components in isolation without considering whether they
belong to a larger system. Here we will fall short of giving a complete answer but we
will make some observations to suggest that agents might not always require the most
accurate AIPs. A view that is also supported by our experiments.

First, if the IALS can produce at least a few observation sequences that are similar to the
ones generated by the true environment, an agent with sufficient capacity will be able to
learn from those, and perform well in the real world. Given that one of the premises of our
method is the need for accurate LS, even if the influence predictor was entirely random,
the chances of getting just a small percentage of useful experiences may be in fact quite
high. Yet, as discussed in Section 3.3, different frequencies in some of the transitions might
change the value of certain ALSHs and in turn affect the agent’s policy. This will occur if
some of the unrealistic trajectories generated by an inaccurate AIP overlap partly with the
realistic ones. Our second argument, is that different influence distributions may still lead
to the same, or very similar, optimal policy (Becker et al., 2003). That is, even if the agent

3.4. EXPERIMENTS 33

is trained on an inaccurate IALS, some of the strategies that the agent will develop might
be transferable and could also be useful when followed under real trajectories (Lazaric,
2012).

3.4 Experiments

The goal of the experiments is to: (1) Study whether we can reduce training times by
replacing the GS with the IALS. (2) Measure the impact of the AIP accuracy on the
learning process and the agent’s final performance. (3) Investigate the memory needs of the
AIP when the agent’s memory is finite. The experiments are conducted on two benchmark
domains: traffic control and warehouse commissioning. While these environments have
been designed to emulate real-world challenges, it is essential to emphasize that they
only bear a limited resemblance to the complexities and nuances inherent in realistic
scenarios (Geroliminis and Daganzo, 2008; Knoop et al., 2015). Hence, the results obtained
should not be automatically extrapolated to the real world. For a comprehensive review
of strategies for real road traffic control, the interested reader is referred to Papageorgiou
et al. (2003); Qadri et al. (2020).

3.4.1 Experimental Setup

Agents are trained separately with PPO (Schulman et al., 2017) on (1) the global simulator
(GS), (2) the influence-augmented local simulator (IALS) with an AIP trained offline
on a dataset collected from the GS, (3) an IALS that uses an untrained AIP to make
predictions (untrained-IALS). To measure the agent’s performance, training is interleaved
with periodic evaluations on the GS. The results are averaged over 5 runs with different
random seeds.

3.4.2 Traffic Control

Figure 3.2 shows a grid-like traffic network composed of 25 intersections. The agent
controls the traffic lights at one of the intersections only. The rest of the traffic lights are
controlled by fixed actuators that use sensors to adapt to the traffic. The policies used in
this experiment for the actuated traffic light controllers were extensively optimized by Wu
et al. (2017). We train agents separately on the two intersections highlighted in Figure

34 CHAPTER 3. IALS

1

2

Figure 3.2: A screenshot of the traffic environment. We train agents separately on the
two intersections highlighted by the blue and the red dashed boxes. The rest of the
intersections are controlled by fixed actuators that use sensors to adapt to the traffic. The
goal is to maximize the average speed of cars within the intersection. The agent can only
observe cars inside the dashed boxes.

3.2. The goal is to maximize the average speed of cars within the intersection. The agent
can only observe cars inside the dashed boxes.

GS, LS, AIP, and D-set

The GS and LS are built using Flow (Wu et al., 2017) and SUMO (Lopez et al., 2018).
The GS simulates the entire traffic grid (Figure 3.2) while the LS only models the local
neighborhood of the intersection being trained (Figure A.3 in Appendix A.4). The
influence sources ut are binary variables indicating whether or not a car will be entering
the simulation from each of the four incoming lanes at the current timestep. The AIP Îθ

is a feedforward neural network that we train offline on a dataset of (dt, ut) pairs collected
from the GS. The d-set dt is a length 37 binary vector encoding the location of cars
along the four incoming lanes. Traffic light information is not included in dt to prevent
confounding (Section 3.3.2).8 Since the two intersections highlighted in Figure 3.2 are

8A visual example of a spurious correlation appearing in the traffic problem is given in Appendix A.2.

3.4. EXPERIMENTS 35

influenced differently by the rest of the traffic network we train separate AIPs for each of
them.

Results

0 1 2 3 4 5 6
Runtime (h)

80

100

120

140

160

180

M
ea

n
Ep

iso
di

c
Re

wa
rd

GS
IALS
untrained-IALS
Actuated

0 1 2 3 4 5 6
Total runtime (h)

GS

IALS

untrained-IALS

0.0 0.2 0.4 0.6 0.8
Influence cross-entropy loss

IALS

untrained-IALS

Figure 3.3: Top: Learning curves of agents trained with the GS, the IALS and the
untrained-IALS on intersection 1 (Figure 3.2) as a function of wall-clock time. The dotted
horizontal lines show the final performance of the agents after 2M timesteps of training.
Middle: Total runtime of training for 2M training steps on the three simulators. Bottom:
Cross entropy loss for the trained and untrained AIPs.

The plot at the top of Figure 3.3 are the learning curves of agents trained with the GS,
the IALS, and the untrained-IALS to control the traffic lights at intersection 1 (Figure
3.2).9 The plot shows the mean episodic reward as a function of real wall-clock time,
which for IALS includes the time for data collection and the AIP training time. Agents
are trained for 2M timesteps on all three simulators. The dotted horizontal lines at the
end of the red and blue curves show the agent’s final performance. The black horizontal
line indicates the performance of the actuated traffic light controller. The two bar charts
at the bottom show the total training time when using each of the three simulators, and

9Results for intersection 2 are provided in Appendix A.5.1.

36 CHAPTER 3. IALS

the AIP’s accuracy with and without training. The results suggest that policies trained on
the IALS (red) can match the performance of those trained on the GS (orange) in about
1/3 of the total training time, despite the IALS is not as accurate as the GS. This is in line
with our hypothesis in Section 3.3.3. Similar influence distributions, I(ut|lt) ≈ Îθ(ut|lt),
may lead to the same, or very similar, optimal policy. More experiments exploring this
phenomenon are provided in Appendix A.5.3. In contrast, since the distribution P π(lt, ut)

induced by the untrained AIP is very different from the true distribution, as evidenced by
the high cross entropy loss (blue bar bottom chart), agents trained on the untrained-IALS
(blue) perform much worse. A table with a breakdown of the runtimes is included in
Appendix A.3. A comparison of the mean episodic reward as a function of the number of
timesteps is provided in Appendix A.5.2.

3.4.3 Warehouse Commissioning

A team of 36 robots (blue and purple) need to fetch the items (yellow) that appear with
probability 0.02 on the shelves (black dashed lines) of the warehouse in Figure 3.4. Each
robot has been designated a 5 × 5 square region and can only collect the items that
appear on the shelves at the edges. The regions overlap so that each of the 4 item shelves
in a robot’s region is shared with one of its 4 neighbors. The blue robots have been
programmed to go for the oldest item in their region. The purple robot that is inside
the region highlighted by the red box, still needs to be trained. This robot receives as
observations a bitmap encoding its own location and a set of 12 binary variables that
indicate whether or not each of the 12 items within its region needs to be collected. The
purple robot, however, cannot see the location of the other robots even though all of them
are directly or indirectly influencing it through their actions.

GS, LS, AIP, and D-set

The GS simulates the entire warehouse (Figure 3.4), while the LS models only the 5× 5

square region delimited by the red box (Figure A.3 in Appendix A.4). The influence
sources ut encode the location of the four neighbor robots. The AIP is a GRU (Cho
et al., 2014) that we train offline on a dataset of (dt, ut) pairs collected from the GS. If
the AIP predicts that any of the neighbor robots is at one of the 12 cells within the red
box and there is an active item on that cell, that item is removed and the purple robot
can no longer collect it. The d-set dt includes the history of the 12 item variables and

3.4. EXPERIMENTS 37

Figure 3.4: A screenshot of the warehouse environment. The robots (blue and purple)
need to fetch the items (yellow) that appear on the shelves (black dashed lines). Each
robot can only collect the items that appear on their designated region. We train the
purple robot inside the red box. The blue robots have been programmed to go for the
oldest item in their region. The purple robot only receives information about its own
location and what items need to be collected. However, cannot see the location of the
other robots.

12 additional binary variables encoding whether or not the controlled robot was (is) at
one of the item locations. The latter variables are meant to differentiate between an item
that is gone because the controlled robot collected it from an item that was picked up
by the neighbor robots. The rest of variables in lt (i.e. the robot’s history of locations)
are unnecessary for predicting ut, and thus susceptible of becoming confounders (Section
3.3.2).

Results

The plot at the top of Figure 3.5 shows the learning curves of the warehouse robot as
a function of real wall-clock time, which for IALS includes the time for data collection
and the AIP training time. Agents are trained for 2M timesteps on all three simulators.
The dotted horizontal lines at the end of the red and blue curves show the agent’s final
performance. The short horizontal line at the beginning of the red curve represents the
time for data collection and the AIP’s training time. The two bar charts at the bottom
show the total training time when using each of the three simulators, and the AIP’s

38 CHAPTER 3. IALS

0 2 4 6 8 10 12
Runtime (h)

2

4

6

8

10

12

14

M
ea

n
Ep

iso
di

c
Re

wa
rd

GS
IALS
untrained-IALS

0 2 4 6 8 10 12
Total runtime (h)

GS

IALS

untrained-IALS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Influence cross-entropy loss

IALS

untrained-IALS

Figure 3.5: Top: Learning curves of agents trained with the GS, the IALS and the
untrained-IALS on the the warehouse environment as a function of wall-clock time. The
dotted horizontal lines at the end of the red and blue curves show the final performance of
the agents after 2M timesteps of training. Middle: Total runtime of training for 2M steps
on the three simulators. Bottom: Cross entropy loss for the trained and untrained AIPs.

accuracy with and without training. Again, we see that robots trained on the IALS (red)
are able to reach the same performance as those trained on the GS (orange) in about
1/3 of the total training time despite the IALS is only approximate. Moreover, robots
trained on the untrained-IALS (blue) perform reasonable well on the GS. Although the
frequency at which items disappear with the untrained-IALS differs very much from that
of the true environment, the basic strategy on how to collect items can still be learned.
These results further confirm our hypothesis that inaccurate simulators may, in some cases,
render effective policies (Section 3.3.3). More experiments experiments exploring this
phenomenon are provided in Appendix A.5.3. A table with a breakdown of the runtimes
is included in Appendix A.3. The learning curves as a function of the number of timesteps
are provided in Appendix A.5.2.

3.5. CONCLUSION 39

3.4.4 Finite Memory Agents and AIP History Dependence

Here we investigate whether our theoretical result from Theorem 3.3.1 also holds in
practice. We want to show that when the agent’s memory is finite, meaning it can only
access observations from k timesteps in the past, an influence predictor which conditions
on the same history length is sufficient. We test this on the warehouse domain. To make
the need for memory more evident, we modify the environment so that items always
disappear from the robot’s region after exactly 8 timesteps. We first train, AIPs with and
without memory. We call the resulting simulators M-IALS and NM-IALS respectively. A
histogram showing for how long items are active before disappearing under each of the
simulators is shown in Figure 3.6. As expected, while the former can reach an accuracy of
100% (items always remain for 8 timesteps with the M-IALS), the spectrum is much wider
for the NM-IALS. This is because the latter can only estimate the marginal distribution
P π(ut|ot). Then, we train agents with (M) and without memory (NM) on the M-IALS and
the NM-IALS. The results for all four combinations are shown in Figure 3.6. As indicated
by the theory, the plot shows that when agents have no memory AIPs may condition
only on the current observation (red). In such cases, the extra level of detail that a more
accurate history-dependent AIP can provide is wasted (green). In contrast, when agents
can distinguish observations from one another based on their memories from the past,
AIPs that make predictions by looking at the history are fundamental. This is evidenced
by the gap between the blue and orange curves. It is worth to point out that, even though
the memory agent performs worse when trained on the NM-IALS (orange) than when
trained on the M-IALS (blue), it can still outperform the agents with no memory (red
and green). We posit that this is because, with the NM-IALS items still disappear after 8
timesteps on average (see dashed vertical line in the bottom left histogram in Figure 3.6),
which allows the memory agent to learn to not go for an item if this has been active for a
long time. This once again suggests that, in some cases, inaccurate influence predictors
might still provide good enough experiences to learn from.

3.5 Conclusion

This chapter has offered a practical solution to allow the application of Deep RL methods
to large systems, where performing exhaustive simulations can not be afforded. We
focused on domains where, although the agent only interacts with a local portion of the
environment, it is influenced by the global dynamics. The main idea was to replace the

40 CHAPTER 3. IALS

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of training steps 1e6

15

16

17

18

19

20

21

22

23
M

ea
n

Ep
iso

di
c

Re
wa

rd

M | M-IALS
M | NM-IALS
NM | M-IALS
NM | NM-IALS

0 10 20 30 40
Item disappearance frequency with NM-IALS

0.00

0.05

0.10

0 10 20 30 40
Item disappearance frequency with M-IALS

0.00

0.25

0.50

0.75

1.00

Figure 3.6: Top: Learning curves of agents with (M) and without memory (NM) trained
on M-IALS and NM-IALS. Bottom: item disappearance frequencies with NM-IALS and
with M-IALS.

computationally inefficient global simulator by a lightweight version that only models the
agent’s local problem. However, as we showed in our experiments, directly doing this
sometimes translates in a distribution shift on the agent’s experience that yields poor
performing policies. A good simulator needs to account for the interactions between the
local region and the global dynamics. The results of our experiments suggested that by
combining a pretrained influence predictor with the local simulator, we could speed up the
learning process considerably while matching the performance of agents trained on the
global simulator. Moreover, we analyzed the consequences of training influence predictors
on data distributions that are different from those the predictor sees when deployed and
resolved that, when possible, the human designer should remove from the input those
variables that are irrelevant for predicting the influence sources. Finally, in line with the
results in Section 3.3.1, the last experiment revealed that the agent’s memory capacity
limits the memory needs of the influence predictor.

Future work may explore how to train multiple agents using independent IALS. This could
lead to even further speedups since agents could train on separate simulators running in
parallel. However, having agents learning simultaneously would imply that the influence

3.5. CONCLUSION 41

distributions would no longer be stationary since a change in any of the agents’ policies
could alter the other agents’ local dynamics. Hence the method would need to be reworked
such that the AIPs can handle moving targets. Another direction for future research is to
study how to deal with environments where coverage of untrained and trained policies
is different. That is, environments where random policies are unlikely to reach certain
ALSHs. If the AIPs cannot generalize to the new data points, a solution would be to
retrain the AIPs when the agent starts visiting new ALSHs. Nonetheless, paying the
computational cost associated to this solution might not be necessary in many cases since,
as we discuss in section 3.3.3, slightly inaccurate simulators might be sufficient to train
good performing policies.

Chapter 4

Distributed Influence-Augmented
Local Simulators

Truth... is much too complicated to allow for anything but approximations.

–John von Neumann, The Mathematician

Due to its high sample complexity, simulation is, as of today, critical for the successful
application of reinforcement learning. Many real-world problems, however, exhibit overly
complex dynamics, making their full-scale simulation computationally slow. In this chapter,
we show how to factorize large networked systems of many agents into multiple local
regions such that we can build separate simulators that run independently and in parallel.
To monitor the influence that the different local regions exert on one another, each of
these simulators is equipped with a learned model that is periodically trained on real
trajectories. Our empirical results reveal that distributing the simulation among different
processes not only makes it possible to train large multi-agent systems in just a few hours
but also helps mitigate the negative effects of simultaneous learning.1,2

1This chapter is based on Suau et al. (2022a).
2Source code is available at https://github.com/INFLUENCEorg/DIALS.

https://github.com/INFLUENCEorg/DIALS

44 CHAPTER 4. DIALS

4.1 Introduction

Imagine we have to train a team of agents to control the traffic lights of a very large city,
so large that we simply cannot control all traffic lights using a single policy. The first step
would be to split the problem into multiple sub-regions. A natural division would be to
assign one traffic light to each agent. Then, since the agents act locally, we would limit
their observations to contain only local information. This partial observability could affect
their optimal policies but would also make each individual decision-making problem more
manageable (McCallum, 1995b; Dearden and Boutilier, 1997). Moreover, we may also want
to reward agents only for what occurs in their local neighborhood such that we reduce the
variance of the returns (Spooner et al., 2021) and facilitate credit assignment (Castellini
et al., 2020). Finally, we could train all agents together on a big traffic simulator that
reproduces the global dynamics. However, if the city is truly large, it could take weeks or
even months to optimize their policies. That is assuming training actually converges.

One may argue that, since the agents’ observations and rewards are local, we could as
well train them on separate simulators that model only the local transition dynamics
(i.e. cars moving within each of the sub-regions; van der Pol and Oliehoek 2016). This
approach might work if the agents’ local transitions are isolated from the rest of the system
(Becker et al., 2003), but would probably break when the local regions are coupled. This
is because the local simulators would fail to account for the fact that the agents’ local
regions belong to a larger system and depend on one another. A solution is to model the
influence the global system exerts on each local region. In many scenarios, such as in the
traffic problem, even though the local regions may be affected by many external variables
(e.g.traffic densities in other parts of the city), they are only directly influenced by a small
subset of them (e.g., road segments that connect the intersections with the rest of the city).
This subset of variables is known as the influence sources. The theoretical framework of
Influence-Based Abstraction (Oliehoek et al., 2021) shows that by monitoring the posterior
distribution of the influence sources given the action local state history (ALSH), one can
simulate realistic trajectories that match those produced by the global simulator. The
resulting simulator, known as the influence-augmented local simulator (IALS), has been
proven effective in single agent scenarios when combined with planning (He et al., 2020)
and reinforcement learning (RL) algorithms (Chapter 3; Suau et al., 2022d).

In this chapter, we extend the IBA framework to multi-agent domains. We show how
to factorize large networked systems, such as the previous traffic example, into multiple

4.2. RELATED WORK 45

sub-regions so that we can replace the global simulator (GS) with a distributed network of
IALSs that can run independently and in parallel. There is one important caveat to this.
The IBA framework assumes only a single agent is learning at a time. This assumption is
needed to make the influence distributions stationary. This implies that in our case, since
we want the agents to learn simultaneously, previously computed influence distributions
would no longer be valid after the agents update their policies. The naive solution would be
to recompute new influence distributions every time any agent updates its policy. However,
we argue that this is not only impractical, since recomputing the distributions is not
without costs, but also undesirable. The theoretical results in Section 4.4.1 demonstrate
that multiple (similar) joint policies may induce the same influence distributions and that
even when they vary a little, they can still elicit the same optimal policies. Further, our
insights in Section 4.4.3 hint that what seems to be a problem at first, may in fact be
an advantage since in many situations, maintaining the previous influence distributions
implies that the local transitions, although biased, remain stationary.

Contributions The main contributions of this chapter are: (1) adapting IBA to multi-
agent reinforcement learning (MARL),3 and demonstrating that simultaneous learning is
possible without incurring major computational costs, (2) showing that by distributing the
simulation among different processes, we can parallelize training and scale up to systems
with many agents, (3) revealing that the non-stationarity issues inherent to MARL are
partly mitigated as a result of this training scheme.

4.2 Related Work

A few prior works have investigated the computational benefits of factorizing large systems
into independent local regions (Nair et al., 2005; Varakantham et al., 2007; Kumar et al.,
2011; Witwicki and Durfee, 2011). Unfortunately, since local regions are often coupled
to one another, such factorizations are not always appropriate. Nonetheless, in many
cases, the interactions between regions occur through a limited number of variables.
Using this property, the theoretical work by Oliehoek et al. (2021) on influence-based
abstraction (IBA) describes how to build influence-augmented local simulators (IALS)
of local-POMDPs, which model only the variables in the environment that are directly

3Although the original IBA formulation (Oliehoek et al., 2012) is already framed as multi-agent, it
assumes agents learn one at a time while the other agents’ policies are fixed.

46 CHAPTER 4. DIALS

relevant to the agent while monitoring the response of the rest of the system with the
influence predictor. The problem is that the exact computation of the conditional influence
distribution is intractable, and we can only try to estimate it from data. Congeduti et al.
(2021) provide theoretical bounds on the value loss when planning with approximate
influence predictors. The work by He et al. (2020) has empirically demonstrated the
advantage of this approach to improve the efficiency of online planning in two discrete
toy problems. Suau et al. (2022d) scale the method to high-dimensional problems by
integrating the IBA framework with single-agent RL showing that the IALS can train
policies much faster than the GS. In this chapter, we extend the IBA solution to MARL
and explain how to build a network of independent IALS such that we can train agents in
parallel.

One of the consequences of training agents on independent simulators is that the non-
stationarity issues arising from having the agents learn simultaneously are partly mitigated.
There is a sizeable body of literature that concentrates on this issue (Hernandez-Leal et al.,
2017), we include a review of these works in Appendix B.2 for completeness. However, we
note that our main purpose is to scale MARL up to systems with many agents. Hence,
we are not concerned here with comparing our method with those that exclusively target
non-stationarity, especially given that, for scalability reasons, these cannot be applied to
the high-dimensional problems we consider here.

4.3 Preliminaries

4.3.1 Problem Formulation

The type of problems we describe in the introduction can be formulated as factored
partially observable stochastic games (Hansen et al., 2004), which are defined as follows.

Definition 4.3.1 (FPOSG). A factored partially observable stochastic game (FPOSG)
is a tuple ⟨N,S, S,A, T, {Ri},Ω, {Oi}⟩ where N = {1, ..., n} is the set of n agents, S is
the set of states, S is the set of state variables S = {S1, ..., S|S|}, such that every state
st ∈ ×j dom(Sj) = S is a vector st = ⟨s1t , ..., s

|S|
t ⟩, A = ×i∈NAi is the set of joint actions

at = ⟨a1t , ..., ant ⟩, with Ai being the set of actions for agent i, T : S × A → ∆(S) is the
transition function, which determines the probability T (st+1|st, at) of transitioning to
st+1 given st and the joint action at, Ri : S ×A → R is the reward function for agent i,
with Ri(st, at) being the reward that agent i receives for taking the joint action at in st

4.3. PRELIMINARIES 47

, Ω = ×i∈NΩi is the set of joint observations oit = ⟨o1t , ..., ont ⟩, with Ωi being the set of
observations for agent i, and Oi is the observation function for agent i, which determines
the probability Oi(oit|st) that agent i observes oit given st.

Solving the FPOSG implies finding the policy πi for each agent i that maximizes the
expected Q-value (Equation 2.1). However, agents receive only partial observations oi of
the true state s, which are not necessarily Markovian. Therefore, optimal policies are, in
general, history-dependent in a POSG. Hence, we define the agents’ policies πi(ait|hit) as
mappings from action-observation histories (AOH), hit = ⟨oi1, ai1, ..., ait−1, o

i
t⟩, to probability

distributions over actions, such that agent i’s optimal policy πi∗ is the one that for every
AOH hit selects the action with the highest Q-value.

Given the structural assumptions we made in the introduction about the agents’ only
being able to observe and be rewarded for what occurs in their local neighborhood, we can
narrow down the problem formulation and work with a specific class of FPOSGs called
local-FPOSGs (Oliehoek et al., 2021), which better encompass the problems we consider
here.

Definition 4.3.2 (Local-FPOSG). A local-FPOSG is an FPOSG where, for all i ∈ N ,
Oi and Ri depend only on agent i’s actions Ai and a local subset of state variables
Xi = {Xi,1, ..., Xi,m} ⊆ X, known as the local state variables. Each combination of these
variables determines a different local state for agent i, xit = ⟨x

i,1
t , ..., x

i,|X|
t ⟩ ∈ ×j dom(Xi,j

t).
Hence, for all i ∈ N , st ∈ S, oi ∈ Ωi, and a ∈ A, we can write Oi(oit|st) = Ȯi(oit|xit) and
Ri(st, at) = Ṙi(xit, a

i
t), where Ȯi and Ṙi are the local observation and reward functions for

agent i. Further, we use Y i to denote agent i’s set of non-local state variables, Y i = Xi \F .

It is easy to show that, from the perspective of agent i, if the policies of all other agents
−i are fixed, the local-FPOSG is just a local-FPOMDP (Definition 2.3.1). Hence, just as
we did with the local-FPOMDP in Section 2.3.3, we can factorize the above model into
multiple influence-augmented local models, one for each agent.

Definition 4.3.3 (IALM). An influence-augmented local Model (IALM) for agent i is a
local-FPOMDP with local transition function Ṫ : ×j dom(Xi,j)×Ai → ∆(×j dom(Xi,j)),
which determines the probability T i(xit+1|xit, uit, ait) of transitioning to xit+1 given xit, ait
and the influence sources uit. Further, we define agent i’s influence distribution I which for
all uit ∈ ×j dom(U i,j

t), determines the probability Ii(uit|lit) of uit given agent i’s action local
state history (ALSH) lit = ⟨xi0, ai0, ..., ait−1, x

i
t⟩. Such that, using Ṫ and I, the probability

48 CHAPTER 4. DIALS

Figure 4.1: Left: A Dynamic Bayesian Network showing agent i’s transition dynamics in
a local-form FPOSG prototype. Right: A conceptual diagram of the IALS.

of agent i’s next local state xit+1 can be computed as

Pr(xi
t+1 | lit, ait) =

∑
ui
t

Ṫ i(xi
t+1 | xi

t, u
i
t, a

i
t)I

i(ui
t | lit). (4.1)

4.3.2 Influence-Augmented Local Simulators

Here we briefly describe how the IALM formulation can be used in practice to build the
IALS (Suau et al., 2022d), which consists of a local simulator and an approximate influence
predictor.

Local simulator (LS): The LS is an abstracted version of the environment that only
models a small portion of it. As opposed to a global simulator (GS), which should closely
reproduce the dynamics of every state variable, the LS focuses on characterizing the
transitions of those variables Xi that agent i directly interacts with, Ṫ i(xit+1|xit, uit, ait).

Approximate influence predictor (AIP): The AIP monitors the interactions between
agent i’s local region Xi, the external variables Y i, and the other agents’ actions A−i, by
estimating Ii(uit|lit). Since, due to combinatorial explosion, computing the exact probability

4.4. DISTRIBUTED INFLUENCE-AUGMENTED LOCAL SIMULATORS 49

6

Global Simulator

Environment

321

4 5

7 8 9

Local
Simulators

Approximate
Influence Predictors

987654321

Figure 4.2: A conceptual diagram of the DIALS

Ii(uit|lit) is generally intractable (Oliehoek et al., 2021), a neural network is used instead to
approximate the influence distribution. Thus, we write Îθi to denote agent i’s AIP, where
θi are the network parameters. The AIP Îθi is trained on a dataset Di of N samples of the
form (lit, u

i
t) collected from the GS. Since the role of the AIP is to estimate the conditional

probability of the influence sources uit given the past ALSH, we can formulate the task as
a classification problem and optimize the network using the expected cross-entropy loss
(Bishop, 2006).

4.4 Distributed Influence-Augmented Local Simulators

As mentioned in the previous section, local-form FPOSGs are solved iteratively in the IBA
framework. This means that only a single agent can update its policy at a time. Here,
we relax this assumption and discuss the advantages and disadvantages of simultaneous
learning. Proofs for all the theoretical results in this section can be found in Appendix
B.1.

4.4.1 Enabling Parallelization

The main reason to disallow simultaneous learning is that changes in the other agents’ poli-
cies can affect agent i’s influence distribution Ii(uit|lit), which may become non-stationary.

50 CHAPTER 4. DIALS

This renders previously computed influences useless because they no longer capture the
true response of the global system.

This restriction, however, prevents IBA from unlocking its full potential. The fact that
each agent’s IALS is independent of the others means that the computations can be
distributed among different processes that can run in parallel. Hence, putting aside the
non-stationarity issue, and assuming no overhead costs in spawning an increasing number
of processes, the total runtime of the method would stay constant if the dimensionality of
the global system grew, either because the number of non-local variables or the number
of agents increased. This is in contrast to having agents learn simultaneously in the
same GS, in which case larger environments imply longer runtimes. Moreover, since each
IALS simulates only a portion of the environment the total amount of memory space
needed would be split among the different processors. Hence, we could run the simulation
on multiple machines with small memory rather than one big machine with very large
memory.

In principle, one could prevent the AIPs from becoming stale by simply updating all
{Îθi(uit|lit)}i∈N every time any of the other agents changes its policy. However, this creates
a difficult moving target problem and makes the whole method very inefficient since,
especially in deep RL, policies are updated very frequently. Fortunately, as we argue in the
following, in many cases, paying the extra cost of retraining the AIPs is neither necessary
nor desirable.

Multiple Joint Policies May Induce the Same Influence Distribution

In the following, we show that multiple joint policies may often map onto the same
influence distribution Ii(uit|lit) ∈ Ψi for agent i ∈ N .

Lemma 4.4.1. Let Π = ×i∈NΠi be the product space of joint policies with Πi being the set
of policies for agent i. Moreover, let Ψ = ×i∈NΨi be the product space of joint influences,
with Ψi being the set of influence distributions for agent i. Every joint policy π ∈ Π induces
exactly one influence distribution Ii ∈ Ψi for every agent i ∈ N .

Proposition 4.4.1. The space of joint policies Π = ×i∈NΠi is necessarily greater than
or equal to the space of joint influences Ψ = ×i∈NΨi, |Π| ≥ |Ψ|. Moreover, there exist
local-form FPOSGs for which the inequality is strict.

4.4. DISTRIBUTED INFLUENCE-AUGMENTED LOCAL SIMULATORS 51

The advantages of this result were shown empirically by Witwicki and Durfee (2010b),
who demonstrated that planning times can be reduced by searching the space of joint
influences rather than the space of joint policies, which is often much larger. In fact, in
the extreme case of local transition independence (Becker et al., 2003),4 we have that for
all joint policies π there is a single {Ii}i∈N

Corollary 4.4.2. Let agent i’s influence sources uit be independent of the other agents’
actions a−i. Then, for any joint policy π ∈ Π, there is a unique influence distribution
Ii∗ ∈ Ψi for every agent i ∈ N and |Π| ≫ |Ψ| = 1.

The result above implies that, in this particular case, we would only need to train the
AIPs once at the beginning. Although we do not expect the situation in Corollary 4.4.2
to be the norm, we do believe that in many scenarios, such as in the two environments
we explore here, we would not need to retrain the AIPs very often because similar joint
policies will influence the local regions in very similar, if not in the same, ways. Moreover,
the next result shows that even when this is not the case, an outdated Ii computed from
an old joint policy might still produce the same optimal policy for agent i.

Multiple Influence Distributions May Induce the Same Optimal Policy

We use the simulation lemma (Kearns and Singh, 2002) to prove that if two influence
distributions are similar enough they will induce the same optimal policy.

Lemma 4.4.3. Let M i
1 and M i

2 be two IALMS differing only on their influence distributions
Ii1(u

i
t|lit) and Ii2(u

i
t|lit). Let Qπi

M i
1

and Qπi

M i
2

be the value functions induced by M i
1 and M i

2

for the same πi. If, for all hit ∈ H i
t , uit ∈ ×j dom(U i,j

t), Ii1 and Ii2 satisfy∑
lit,u

i
t

P (lit | hi
t)
∣∣Ii1(ui

t | lit)− Ii2(u
i
t|lit)

∣∣ ≤ ξ, (4.2)

then ∣∣∣Qπi

Mi
1
(hi

t, a
i
t)−Qπi

Mi
2
(hi

t, a
i
t)
∣∣∣ ≤ R̄

(K − t)(K − t+ 1)

2
ξ (4.3)

for all πi ∈ Πi, hit ∈ H i
t , and ait ∈ Ai, where K is the horizon and R̄ = ||R||∞

Intuitively, Lemma 4.4.3 shows that the difference in value between M i
1 and M i

2 is upper-
bounded by the maximum difference between Ii1 and Ii2 times a constant. Actually, if the

4As opposed to IBA, Becker et al. (2003) assume agents are tied by a shared global reward.

52 CHAPTER 4. DIALS

action-gap (Farahmand, 2011) (i.e. value difference between the best and the second best
action) in one of the IALMs is larger than twice the difference between the Qπi

M1
and Qπi

M2

the IALMs share the same optimal policy.

Theorem 4.4.4. Let M i
1 and M i

2 be two IALMS differing only on their influence distribu-
tions Ii1(u

i
t|lit) and Ii2(u

i
t|lit). M i

1 and M i
2 induce the same optimal policy πi∗ if, for some

∆,
Qπi∗

Mi
1
(hi

t, ā
i
t)−Qπi∗

Mi
1
(hi

t, â
i
t) > 2∆ ∀hi

t, â
i
t ̸= āit (4.4)

with ∣∣∣Qπi

Mi
1
(hi

t, a
i
t)−Qπi

Mi
2
(hi

t, a
i
t)
∣∣∣ ≤ ∆ ∀hi

t, a
i
t, π

i, (4.5)

where āit = argmaxait Q
πi∗

M i
1
(hit, a

i
t)

Combining Lemma 4.4.3 and Theorem 4.4.4, we see that, because the difference in value
between M i

1 an M i
2 depends on ξ (Lemma 4.4.3), the closer the distributions Ii1 and Ii2

are, the more likely it is that M i
1 and M i

2 share the same optimal policy. Note that we
have no control over the action gap as it is domain-dependent. In some domains, the gap
might be large and we can be more relaxed about not retraining the AIPs. In some others,
the gap might be small and we may need to retrain the AIPs more frequently.

4.4.2 Algorithm

After the analysis above, we are now ready to present our method, which we call Distributed
Influence-Augmented Local Simulators (DIALS). Algorithm 1 describes how we can train
multi-agent systems with DIALS. As mentioned earlier, the key advantage of using DIALS
is that simulations can be distributed among different processes, and thus training can be
fully parallelized. This enables MARL to scale to very large systems with many learning
agents. Moreover, following from our theoretical results, AIP training, which can also be
done in parallel, is performed only every certain number of timesteps. The hyperparameter
F in Algorithm 1 controls the AIPs’ training frequency. The effect of F on the learning
performance is empirically investigated in Section 4.5.

4.4.3 Mitigating the Negative Effects of Simultaneous Learning

The results in the previous section showed that the AIPs may not need to be retrained
every single time the policies are updated, as the influence distributions may often stay

4.4. DISTRIBUTED INFLUENCE-AUGMENTED LOCAL SIMULATORS 53

Algorithm 1 MARL with DIALS

1: Initialize policies {πi}i∈N and AIPs {Îθi}i∈N

2: repeat
3: Collect datasets {Di}i∈N from GS ▷ See Algorithm 4 in Appendix B.3
4: in parallel, for i ∈ N do
5: Train AIP Îθi on dataset Di ▷ See Section 4.3.2
6: end for
7: in parallel, for i ∈ N do
8: for F steps do ▷ F is the AIPs’ training frequency
9: Simulate trajectories with IALS ⟨Ṫ i, Ṙi, Ȯi, Îθi⟩ ▷ See Algorithm 5 in Appendix

B.3
10: Train policy πi ▷ Using any standard RL method
11: end for
12: end for
13: until end of training

the same or vary only a little. Yet, we now argue that, even when changes in the joint
policy do affect the influence distributions Ii(uit|lit) significantly, it may be advantageous
not to retrain the AIPs.

First, we have already mentioned that when all agents learn simultaneously in the same
simulator the transition dynamics often look non-stationary from the perspective of each
individual agent. This may result in sudden performance drops caused by oscillations
in the value targets (Claus and Boutilier, 1998). In contrast, when using independent
IALS to train our agents, the transition dynamics remain stationary unless we update
the AIPs. Hence, by not updating the AIPs too frequently, we get a biased but otherwise
more consistent learning signal that the agents can rely on to improve their policies.

Second, we posit that the poor empirical convergence of many off-the-shelf Deep RL
methods (Hernandez-Leal et al., 2017; Yu et al., 2021) is also because stochastic gradient
descent updates often result in policies that perform worse than the previous ones. Thus,
when learning together, agents may try to adapt to other agents’ poor performing policies.
These policies, however, are likely to be temporary as they are just a result of the inherent
stochasticity of the learning process. Similarly, in many environments, agents shall take
exploratory actions before they can improve their policies, which may also negatively
impact cooperation if they learn simultaneously (Zhang et al., 2009, 2010). In our case,
we can again benefit from the fact that the AIPs need to be purposely retrained, and do
so only when the policies of the other agents have improved sufficiently.

Even though further theoretical analysis would be needed to be more conclusive about the

54 CHAPTER 4. DIALS

benefits of using independent simulators, the observations above give reasons to believe
that what we initially described as a problem may in fact be an advantage. This view is
also supported by our experiments.

4.5 Experiments

The goal of the experiments is to: (1) test whether we can reduce training times by replacing
GS with DIALS, (2) investigate how the method scales to large environments with many
learning agents, (3) evaluate the convergence benefits of using separate simulators to train
agents rather than a single GS, and (4) study the effect of the AIPs’ training frequency F

on the agents’ learning performance.

4.5.1 Experimental Setup

Agents are trained independently with PPO (Schulman et al., 2017)5 on (1) the global
simulator (GS), (2) distributed influence-augmented local simulators (DIALS) with AIPs
trained periodically on datasets collected from the GS using the most recent joint policy,
(3) DIALS with untrained AIPs (untrained-DIALS).

To measure the agent’s performance, training is interleaved with periodic evaluations
on the GS. The results are averaged over 10 random seeds on all except on the largest
scenarios (10× 10) for which, due to computational limitations we could only run 5 seeds.
We report the mean return of all learning agents. We also compare the simulators in terms
of total runtime. For DIALS this includes the agents’ training time, the AIPs’ training
time, and the time for data collection.

4.5.2 Environments

Traffic control The first domain we consider is a multi-agent variant of the traffic control
benchmark proposed by Vinitsky et al. (2018). In this scenario, agents are requested to
manage the lights of a big traffic network. Each agent controls a single traffic light and
can only observe cars when they are inside the intersection’s local neighborhood. Their

5The vanilla PPO algorithm with decentralized value functions (independent PPO; IPPO) has been
shown to perform exceptionally well on several multi-agent environments (de Witt et al., 2020; Yu et al.,
2021).

4.5. EXPERIMENTS 55

goal is to maximize the average speed of cars within their respective intersections. To
demonstrate the scalability of the method we evaluate DIALS on four different variants of
the traffic network with 4, 25, 49, and even 100 intersections (agents). A screenshot of the
traffic network with 25 intersections is shown in Appendix B.6. The GS and LS are built
using Flow (MIT License) (Wu et al., 2017) and SUMO (Eclipse Public License Version 2)
(Lopez et al., 2018). The GS simulates the entire traffic network while each LS models
only the local neighborhood of each intersection i ∈ N (Figure A.3 in Appendix B.6).
We use the same LS for every agent-intersection but since, depending on where they are
located, they are influenced differently by the rest of the traffic network, we have separate
AIPs, {Iθi}i∈N , for each them. These are feedforward neural networks with the same
architecture but different weights θi, trained periodically with frequency F on datasets
{Di}i∈N collected from the GS. The influence sources uit are binary variables indicating
whether or not a car will be entering from each of the four incoming lanes.

Warehouse Commissioning The second domain we consider is a warehouse commis-
sioning task (Suau et al., 2022d). A team of robots (blue) needs to fetch the items (yellow)
that appear with probability 0.02 on the shelves (dashed black lines) of the warehouse (see
Figure B.5 in Appendix B.6). Each robot has been designated a 5× 5 square region and
can only collect the items that appear on the shelves at the edges. The regions overlap so
that each of the 4 item shelves in a robot’s region is shared with one of its 4 neighbors.
The robots receive a reward between [0, 1] when collecting an item. The exact value
depends on how old the item is compared to the other items in their region. This is to
encourage the robots to collect the oldest items first. The robots receive as observations a
bitmap encoding their own location and a set of 12 binary variables that indicate whether
or not a given item needs to be collected. The robots, however, cannot see the location of
the other robots even though all of them are directly or indirectly influencing each other
through their actions. We built four variants of the warehouse with 4, 25, 49, and 100

robots (agents). A screenshot of the warehouse with 25 robots is shown in Appendix B.6.
The GS simulates the entire warehouse while the LS models only a 5× 5 square region
(Figure A.3 in Appendix B.6). We use the same LS for every robot (agent) but since
depending on where they are located they are influenced differently by the rest of the
robots, we have separate AIPs, {Îθi}i∈N , for each of them. These are GRUs (Cho et al.,
2014) with the same architecture but different weights θi, which we train periodically with
frequency F on datasets {Di}i∈N collected from the GS. Robot i’s influence sources uit

encode the location of the four neighbor robots. If its AIP Îθi predicts that any of the

56 CHAPTER 4. DIALS

neighbor robots is at one of the 12 cells within its region, and there is an active item on
that cell, that item is removed and robot i can no longer collect it.

It is essential to emphasize that, while the environments above have been designed to
emulate real-world challenges, they only bear a limited resemblance to the complexities
and nuances inherent in realistic scenarios (Geroliminis and Daganzo, 2008; Knoop et al.,
2015). Hence, the results obtained should not be automatically extrapolated to the real
world. For a comprehensive review of strategies for real road traffic control, the interested
reader is referred to Papageorgiou et al. (2003); Qadri et al. (2020).

4.5.3 Results

GS vs. DIALS The two plots on the left of Figures 4.3a and 4.3b show the average
return as a function of the number of timesteps obtained with GS, DIALS, and untrained-
DIALS on the 4-agent traffic and warehouse environments. Shaded areas indicate the
standard error of the mean. Agents are trained for 4M timesteps on all three simulators.
The results reveal that, while agents trained on DIALS seem to converge steadily towards
similar high-performing policies, agents trained with the GS often get stuck in local
minima, hence the poor mean episodic reward and large standard error obtained with the
GS relative to that of the DIALS. In contrast, the low performance of agents trained with
the untrained-DIALS indicates that estimating the influences correctly is important for
learning good policies. It is worth noting that the gap between the GS and the DIALS is
larger in Figure 4.3b than in Figure 4.3a. We posit that this is because, in the warehouse
domain, agents are more strongly coupled. For comparison, the dashed-black lines in the
plots on the left of Figures 4.3a and 4.3b show the performance of hand-coded policies. For
the traffic domain, we used fixed traffic light controllers that were extensively optimized
by Wu et al. (2017). For the warehouse domain, we hand-coded policies that follow the
shortest path toward the oldest item in the agent’s region. The learning curves for the
other scenarios are provided in Appendix B.4 together with further discussion on these
results.67

6A video showing the GS of the traffic network and one of the IALS is provided at https://youtu.be/
DgVE6OIQQz8.

7A video showing how agents trained with DIALS perform on the 100-agent variant of the traffic
scenario is provided at https://youtu.be/G9EthZ-G3vo.

https://youtu.be/DgVE6OIQQz8
https://youtu.be/DgVE6OIQQz8
https://youtu.be/G9EthZ-G3vo

4.5. EXPERIMENTS 57

0 1 2 3 4
Timesteps 1e6

0

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

(1b)

GS
untrained-DIALS
DIALS F=4M
hand-coded

4 25 49 1000

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

(2b)

4 25 49 100

22

24

26

28

To
ta

l r
un

tim
e

(h
)

(3b)

Number of agents
(a) Traffic

0 1 2 3 4
Timesteps 1e6

0

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

(1b)

GS
untrained-DIALS
DIALS F=4M
hand-coded

4 25 49 1000

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

(2b)

4 25 49 100

22

24

26

28
To

ta
l r

un
tim

e
(h

)

(3b)

Number of agents
(b) Warehouse

Figure 4.3: (1a) and (1b) Learning curves with the three simulators on the 4-intersection
traffic and 4-robot warehouse environments. (2a) and (2b): Final average return of
agents trained with the three simulators for 4M timesteps. (3a) and (3b): Total runtime
of training with the three simulators for 4M timesteps. The y-axis is in log2 scale.

58 CHAPTER 4. DIALS

Scalability The benefits of parallelization are more apparent when moving to larger
environments. The two bar plots in Figures 4.3a and 4.3b depict the final average return
and the total run time of training 4, 25, 49, and 100 agents on the two tasks for 4M
timesteps. The plots show that DIALS scales far better than the GS to larger problem
sizes, while also yielding better-performing policies. For example, training 100 agents
on the traffic network takes less than 6 hours with the DIALS, whereas training them
with the GS would take more than 10 days. This is a speedup factor of 40. In fact,
since the maximum execution time allowed by our computer cluster is 1 week, the results
reported for the GS in the scenarios of size 10× 10 do not correspond to 4M timesteps but
the equivalent of 1 week of training. We would also like to point out that, disregarding
the overhead costs associated with multiprocessing, the DIALS runtime should remain
constant independently of the problem size. However, to update the AIPs, new samples
are collected from the GS, which does increase the runtime. This explains the gap between
DIALS and untrained-DIALS. That said, the number of samples needed to update the
AIPs (80K for traffic and 10K for warehouse) is significantly lower than the samples needed
to train the agents (4M), which is why the runtime difference between GS and DIALS is
so large. A table with a breakdown of the runtimes is given in Appendix B.7.

AIPs’ training frequency Our first results have already demonstrated that isolating
the agents in separate simulators and not updating the AIPs too frequently can be
beneficial for convergence. We now further investigate this phenomenon by evaluating
the agents’ learning performance for different values of the hyperparameter F . The two
plots on the left of Figures 4.4a and 4.4b show the learning curves for agents trained on
DIALS where F is set to 100K, 500K, 1M, and 4M timesteps. In the traffic domain, the
gap between the green and the purple curve (Figure 4.4a) suggests that it is important to
retrain the AIPs at least every 1M timesteps, such that agents become aware of changes
in the other agents’ policies. In contrast, in the warehouse domain (Figure 4.4b), we see
that training the AIPs only once at the beginning (DIALS F = 4M) seems sufficient. In
fact, updating the AIPs too frequently (DIALS F = 100K) is detrimental to the agents’
performance. This is consistent with our hypothesis in Section 4.4.3. The plots on the
right show the average cross-entropy (CE) loss of the AIPs evaluated on trajectories
sampled from the GS. As explained in Section 4.4 since all agents learn simultaneously,
the influence distributions {I(uit|lit)}i∈N are non-stationary. For this reason, we see that
the CE loss changes as the policies of the other agents are updated. We can also see how
the CE loss decreases when the AIPs are retrained, which happens more or less frequently

4.5. EXPERIMENTS 59

0 1 2 3 4 5
Runtime (h)

160

170

180

190

200

210
Av

er
ag

e
Re

tu
rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0 1 2 3 4 5
Runtime (h)

0.3

0.4

0.5

0.6

0.7

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(a) Traffic 25 agents

0 2 4 6 8 10
Runtime (h)

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0 2 4 6 8 10
Runtime (h)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(b) Warehouse 25 agents

Figure 4.4: Left (a) and (b): Learning curves with DIALS for different values of F on
the 25-agent versions of the two environments. Right (a) and (b): Influence CE loss as
a function of runtime averaged over the 25 AIPs.

depending on the hyperparameter F . Note that the CE not only measures the distance
between the two probability distributions but also the absolute entropy. In the warehouse
domain, the neighbor robots’ locations become more predictable (lower entropy) as their
policies improve. This explains why in the first plot from the right the CE loss decreases
even though the AIPs are not updated. Also in the same plot, even though by the end of
training DIALS F = 4M is highly inaccurate, as evidenced by the gap between the purple
and the other curves, it is still good enough to train policies that match the performance
of those trained with DIALS F = 500K and F = 1M. This is in line with our results in
Section 4.4. The same plots for the rest of the scenarios are provided in Appendix B.4.

60 CHAPTER 4. DIALS

4.6 Scope and Limitations

DIALS targets networked environments with well-defined local regions where the inter-
actions between different regions occur through a limited number of variables. There is
plenty of examples of domains that have this particular structure including traffic, heating
and water systems, logistics, telecommunications, etc. Knowledge of the influence sources
U and how these affect the local regions is required for building the DIALS. In most cases,
however, (as in the two environments we explored here) some domain knowledge suffices
to be able to tell what the influence sources are.

Moreover, having or being able to build high-fidelity local simulators of these local regions
is also a requirement. Fortunately, there exist plenty of simulators of real systems that
can readily be used such as, SUMO (Lopez et al., 2018), Robosuite (Zhu et al., 2020),
BRAX (Freeman et al., 2021). There is also a lot of commercial software for building
custom-made simulators such as Mujoco (Todorov et al., 2012), or Unity (Juliani et al.,
2018). Also, note that most (if not all) of the work that has applied RL to real-world
problems relies on simulation to train the policies offline (Bellemare et al., 2020; Degrave
et al., 2022). Hence, we believe that DIALS can have a strong impact on many real-world
applications.

Finally, although the experiments reveal that DIALS can considerably accelerate training
times, it is also memory-demanding. As shown in Appendix B.8 (Table B.3), the total
memory usage with DIALS increases exponentially with the number of simulators/processes.
There is thus a trade-off between fast computation and total memory needed. Note,
however, that the memory is split among the different processes. Hence, rather than
using a big machine with large memory, DIALS can run on several smaller ones with less
memory.

4.7 Conclusion

This chapter has offered a practical solution that allows training large networked systems
with many agents in just a few hours. We showed how to factorize these systems into
multiple sub-regions such that we could build distributed influence-augmented local
simulators (DIALS).

The key advantage of DIALS is that simulations can be distributed among different

4.7. CONCLUSION 61

processes, and thus training can be fully parallelized. To account for the interactions
between the different sub-regions, the simulators are equipped with approximate influence
predictors (AIPs), which are trained periodically on real trajectories sampled from a global
simulator (GS). We demonstrated that, although using DIALS agents learn simultaneously,
training the AIPs very frequently is neither necessary nor desirable. Our results reveal
that DIALS not only enables MARL to scale up but also mitigates the non-stationarity
issues of simultaneous learning.

Future work could analyze this phenomenon from a theoretical perspective, study how to
adapt DIALS to more strongly coupled domains where frequent training of the AIPs is
important, or design a method to directly estimate how the changes in the agents’ policies
affect the influence distributions. This is so that the AIPs can readily be updated without
having to run the GS to generate new samples.

Chapter 5

Influence-Aware Memory

Muchos años después, frente al pelotón de fusilamiento, el coronel Aureliano
Buendía había de recordar aquella tarde remota en que su padre lo llevó a
conocer el hielo.

–Gabriel García Márquez, Cien Años de Soledad

Due to its perceptual limitations, an agent may have too little information about the
state of the environment to act optimally. In such cases, it is important to keep track
of the observation history to uncover hidden state. Recent deep reinforcement learning
methods use recurrent neural networks (RNN) to memorize past observations. However,
these models are expensive to train and have convergence difficulties, especially when
dealing with high dimensional input spaces. In this chapter, we propose influence-aware
memory (IAM), a theoretically inspired memory architecture that tries to alleviate the
training difficulties by restricting the input of the recurrent layers to those variables that
influence the hidden state information. Moreover, as opposed to standard RNNs, in which
every piece of information used for estimating Q values is inevitably fed back into the
network for the next prediction, our model allows information to flow without being
necessarily stored in the RNN’s internal memory. Results indicate that, by letting the
recurrent layers focus on a small fraction of the observation variables while processing the
rest of the information with a feedforward neural network, we can outperform standard
recurrent architectures in training speed and policy performance. This approach also
reduces runtime and obtains better scores than methods that stack multiple observations

64 CHAPTER 5. INFLUENCE-AWARE MEMORY

to remove partial observability.1

5.1 Introduction

It is not always guaranteed that an agent will have access to a full description of the
environment to solve a particular task. In fact, most real-world problems are by nature
partially observable. This means that some of the variables that define the state space are
hidden (McCallum, 1995b). This type of problems can be modeled as partially observable
Markov decision processes (POMDP) (Kaelbling et al., 1996). The model is an extension
of the MDP framework (Puterman, 1994), which, unlike the original formulation, does
not not assume states to be fully observable. This implies that the Markov property is no
longer satisfied. That is, future observations do not solely depend on the most recent one.

Most POMDP methods try to extract information from the full action-observation history
to disambiguate hidden state. We argue however, that in many cases, memorizing all the
observed variables is costly and requires unnecessary effort. Instead, we can exploit the
structure of our problem and abstract away from our history those variables that have no
direct influence on the hidden ones.

Previous work on influence-based abstraction (IBA) (Witwicki and Durfee, 2010b; Oliehoek
et al., 2012) demonstrates that, in certain POMDPs, the non-Markovian dependencies in
the transition and reward functions can be fully determined given a subset of variables in
the history. Hence, the combination of this subset together with the current observation
forms a Markov representation that is sufficient to compute the optimal policy. In this
chapter, we use these theoretical insights to propose a new memory model that tries to
correct certain flaws in standard RNNs that limit their effectiveness when applied to
reinforcement learning (RL). We identify two key features that make our model stand apart
from the most widely used recurrent architectures, LSTMs (Hochreiter and Schmidhuber,
1997) and GRUs (Cho et al., 2014):

1. The input of the RNN is restricted to a subset of observation variables which in
principle should contain sufficient information to estimate the hidden state.

2. There is a feedforward connection parallel to the recurrent layers, through which the
information that is important for estimating Q values but that does not need to be

1This chapter is based on Suau et al. (2022b).

5.2. RELATED WORK 65

memorized can flow.

Although these two features might be overlooked as minor modifications to the standard
architectures, together, they provide a theoretically sound inductive bias that brings the
structure of the model into line with the problem of hidden state. Moreover, as shown in
our experiments, they have an important effect on convergence, learning speed, and final
performance of the agents.

5.2 Related Work

Partial observability: The problem of partial observability has been extensively studied
in the past. The main bulk of the work, comes from the planning community where most
solutions rely on forming a belief over the states of the environment using agent’s past
observations (Ng and Jordan, 2000; Pineau et al., 2003; Silver and Veness, 2010). Classic
RL algorithms, on the other hand, cannot directly apply the above solution due to the
lack of a fully specified transition model. Instead, they learn stochastic policies that rely
only on the current observation (Littman, 1994; Jaakkola et al., 1995), or use a finite-sized
history window to estimate the hidden state (Lin and Mitchell, 1993; McCallum, 1995a).
Curiously enough, even though the previous solutions do not scale to large and continuous
state spaces, in the field of Deep RL the problem is most of the times either ignored, or
naively overcome by stacking a window of past observations (Mnih et al., 2015). Other
more sophisticated approaches incorporate external memories (Oh et al., 2016b) or use
RNNs to keep track of the past history (Schmidhuber, 1991; Hausknecht and Stone, 2015;
Jaderberg et al., 2019). Although this solution is much more scalable, recurrent models
are computationally expensive and often have convergence difficulties when working with
high dimensions (McCallum, 1995b; Kaelbling et al., 1996). A few works, have tried to
aid the RNN by using auxiliary tasks like predicting game feature information (Lample
and Chaplot, 2017) or image reconstruction (Igl et al., 2018). We, on the other hand,
recognize that the internal structure of standard RNNs might not always be appropriate
and propose a new memory architecture that is better aligned with the RL problem.

Attention: One of the variants of the memory architecture we propose implements
a spatial attention mechanism (Xu et al., 2015) to provide the network with a layer
of dynamic weights. This form of attention is different from the temporal attention

66 CHAPTER 5. INFLUENCE-AWARE MEMORY

d-set

influence
link

observation
variables

hidden
variables

Figure 5.1: Warehouse environment (left). Dynamic Bayesian Network describing the
environment dynamics (right).

mechanism that is used in seq2seq models (Luong et al., 2015; Vaswani et al., 2017).
While the latter allows the RNN to condition on multiple past internal memories to make
predictions, the spatial attention mechanism we use, is meant to filter out a fraction of
the information that comes in with the observations. Attention mechanisms have recently
been used in the context of Deep RL to facilitate the interpretation of the agent’s behavior
(Mott et al., 2019; Tang et al., 2020) or to tackle multi-agent problems (Iqbal and Sha,
2019). Similar to our model, the architecture proposed by Sorokin et al. (2015) also uses
an attention mechanism to find the relevant information in the game screen and feed it
into the RNN. However, their model misses the feedforward connection through which the
information that is useful for predicting action values but that does not need to be stored
in memory can flow (see Section 5.4.1 for more details).

5.3 Example: Warehouse Commissioning

Figure 1 shows a robot (purple) that needs to fetch the items (yellow) that appear with
probability 0.05 on the shelves at the edges of the 7× 7 grid representing a warehouse.
The robot receives a reward of +1 every time it collects an item. The added difficulty of
this task is that item orders get canceled if they are not collected before 8 timesteps since
they appear. Thus, the robot needs to maintain a time counter for each item and decide
which one is best to go for.

The dynamics of the problem are represented by the dynamic Bayesian network (DBN)
(Pearl, 1988; Boutilier et al., 1999) in Figure 5.1 (right), where Lt denotes the robot’s
current location in the warehouse, and It and Pt are binary variables indicating if the item

5.4. INFLUENCE-AWARE MEMORY 67

R
N
N

FNN

ob
se

rv
at
io
n

va
lu
e

Attention MechanismIAM Network

po
lic
y

D

D

Figure 5.2: Influence-aware Memory network architecture (left). Diagram of the attention
mechanism for image data (right)

order is active and whether or not the robot is at the item pick-up location. The hidden
variable Yt is the item’s time counter2, to which the robot has no access. The robot can
only infer the time counter based on past observations. To do so, however, it does not
need to remember the full history, but only whether or not a given item order was active
at a particular timestep. More formally, inspecting the DBN, we see that Yt+1 is only
indirectly influenced by the agent’s past location Lt−1 via Pt−1 and the item variable It.
Therefore, we say that Yt+1 is conditionally independent of Lt−1 given Pt−1 and It,

Pr(Yt+1 = yt+1|Lt−1 = lt−1, Pt−1 = pt−1, It = it) = Pr(Yt+1 = yt+1|Pt−1 = pt−1, It = it) (5.1)

This means that in order to infer the hidden variable Y at any timestep it is sufficient to
condition on the past values of P and I. The history of these two variables, highlighted in
green in Figure 5.1, constitutes the d-separating set (d-set; Definition 2.3.4).

5.4 Influence-Aware Memory

The properties outlined in the previous section, are not unique to the warehouse example.
In fact, as we show in our experiments, it is often the case in partially observable problems
that only a fraction of the observation variables influence the hidden state. This does not
necessarily imply that the agent can completely ignore the rest of the information. In the
warehouse example, the robot’s current location, despite being irrelevant for inferring the
hidden state, is in fact crucial for estimating the current action values.

The Bellman equation for the optimal action value function Q∗ of a POMDP can be
2For simplicity, we only include a single item in the DBN in Figure 5.1. The dynamics of all the other

items in the warehouse are analogous.

68 CHAPTER 5. INFLUENCE-AWARE MEMORY

expressed in terms of the history of actions and observations ht as

Q∗(ht, at) = R(ht, at) +
∑
ot+1

Pr(ot+1|ht, at)max
at+1

Q∗(ht+1, at+1), (5.2)

with
Pr(ot+1|ht, at) =

∑
ot+1,st+1,yt

Pr(ot+1|st+1)Pr(st+1|ot, yt, at)Pr(yt|ht) (5.3)

where R(ht, at) =
∑

st
Pr(st|ht)R(st, at) is the expected immediate reward at time t over

the set of possible states st given a particular history ht.

Exploiting d-separation, we can replace the dependence on the full history of actions and
observations ht by a dependence on the d-set dt,

Q∗(⟨dt, ot⟩, at) = R(⟨dt, ot⟩, at)

+
∑
ot+1

Pr(ot+1|⟨dt, ot⟩, at)max
at+1

Q∗(⟨dt+1, ot+1⟩, at+1),
(5.4)

Q∗(⟨dt, ot⟩, at) = R(⟨dt, ot⟩, at)

+
∑

ot+1,yt

Pr(ot+1|st+1) Pr(st+1|⟨yt, ot⟩, at)Pr(yt|dt)max
at+1

Q∗(⟨dt+1, ot+1⟩, at+1),
(5.5)

and dt+1 ≜ ⟨dt, D(ot+1)⟩, where D(·) is the d-set selection operator, which chooses
the variables in ot+1 that are added to dt+1. Note that, although dt contains enough
information to estimate the hidden state, ot is still needed to estimate Q. Hence, given
the tuple ⟨dt, ot⟩ we can write

Q∗(ht, at) = Q∗(⟨dt, ot⟩, at), (5.6)

The upshot is that in most POMDPs the combination of dt and ot forms a Markov
representation that the agent can use to find the optimal policy. Unfortunately, in the RL
setting, we are normally not provided a fully specified DBN to determine the exact d-set.
Nonetheless, in many problems like in our warehouse example it is not difficult to make
an educated guess about the variables containing sufficient information to predict the
hidden ones. The network architecture we present in the next section enables us to select
beforehand what variables the agent should memorize. This is however not an prerequisite
since, as we explain in Section 5.4.2, we can also force the RNN to find such variables by
restricting its capacity.

5.4. INFLUENCE-AWARE MEMORY 69

5.4.1 Influence-Aware Memory Network

The Influence-aware Memory (IAM) architecture we propose is depicted in Figure 5.2.
The network tries to encode the ideas of IBA as inductive biases with the goal of being
able to learn policies and value functions more effectively. Following from (5.6), our
architecture implements two separate networks in parallel: an FNN, which processes the
entire observation,

xt = Ffnn(ot), (5.7)

and an RNN, which receives only D(ot) and updates its internal state,

d̂t = Frnn(d̂t−1, D(ot)), (5.8)

where we use the notation d̂t to indicate that the d-set is embedded in the RNN’s internal
memory. The output of the FNN xt is then concatenated with d̂t and passed through
two separate linear layers which compute values Q(⟨xt, d̂t⟩, at) and action probabilities
π(⟨xt, d̂t⟩, at).

IAM vs. standard RNNs: We try to facilitate the task of the RNN by feeding only
the information that, in principle, should be enough to uncover hidden state. This is only
possible thanks to the parallel FNN channel, which serves as an extra gate through which
the information that is useful for predicting action values but that does not need to be
stored in memory can flow. This is in contrast to the standard recurrent architectures that
are normally used in Deep RL (e.g. LSTM, GRU, etc.), which suffer from the fact that
every piece of information that is used for estimating values is inevitably fed back into the
network for the next prediction. Intuitively, standard RNNs face a conflict: they need to
choose between ignoring those variables that are unnecessary for future predictions, risking
worse Q estimates, or processing them at the expense of corrupting their internal memory
with irrelevant details. Figure 5.3 illustrates this idea by comparing the information flow
in both architectures.

Finally, since the recurrent layers in IAM are freed from the burden of having to remember
irrelevant information, they can be dimensioned according to the memory needs of the
problem at hand. This translates into networks that combine regular size FNNs together
with small RNNs.

70 CHAPTER 5. INFLUENCE-AWARE MEMORY

R
N
N

R
N
N

R
N
N

FN
N

R
N
N

FN
N

RNN IAM

Figure 5.3: Information flow in standard RNNs (left) compared to IAM (right). The
diagram on the left shows that the same vector ht that is used for estimating π and Q is
also part of the input for the next prediction (green arrows). On the other hand, in the
IAM architecture there is another vector xt coming out from the FNN, which is only used
for estimating π and Q at time t and is not stored in memory. Hence, the RNN in IAM is
free to include in d̂t only the information that the agent needs to remember.

Image data: If our agent receives images rather than feature vectors, we first preprocess
the raw observations o with a CNN, Fcnn(ot) = vt and obtain m×m vectors v of size N ,
where N is the number of filters in the last convolutional layer and m×m the dimensions
of the 2D output array of each filter (Figure 5.2 right). Fortunately, since the convolution
operator preserves the topology of the input, each of these vectors corresponds to a
particular region of the input image. Thus, we can still use domain knowledge to choose
which vectors should go into the RNN.

5.4.2 Learning Approximate D-sets

Having the FNN channel can help detach the RNN from the task of estimating the
current Q values. However, without the d-set selection operator D, nothing prevents the
information that does not need to be remembered from going through the RNN. Although,
as we show in our first two experiments, it is often possible for the designer to guess
what variables directly influence the hidden state information, it might not always be so
straightforward. In such cases, rather than manually selecting the d-set, the agent will
have to learn D from experience. In particular, we add a linear layer before the RNN,
to act as information bottleneck (Tishby and Zaslavsky, 2015) and filter out all that

5.4. INFLUENCE-AWARE MEMORY 71

information that is irrelevant:
D̂A(ot) = Aot (5.9)

where D̂ indicates that the operator is learned rather than handcrafted and A is a matrix
of weights of size K ×N , where N is the number of observation variables (the number of
filters in the last convolutional layer when using images) and K is a hyperparameter that
determines the dimensions of the output. The matrix A needs to be computed differently
depending on the nature of the problem:

Static d-sets: If the variables that must go into the d-set do not change from one
timestep to another. That is, if D always needs to choose the same subset of observation
variables, as occurs in the warehouse example, we just need a fixed matrix A to filter all
observations in the same way. A can be implemented as a separate linear layer before the
RNN or we can just directly restrict the size the RNN’s input layer.

Dynamic d-sets: If, on the other hand, the variables that must go into the d-set do
change from one timestep to another, we use a multi-head spatial attention mechanism
(Xu et al., 2015; Vaswani et al., 2017) to recompute the weights in every iteration. Thus
we write At to indicate that the weights can now adapt to ot and d̂t−1. The need for such
dynamism can be easily understood by considering the Atari game of breakout. To be able
to predict where the ball will be next, the agent does not need to memorize the whole set
of pixels in the game screen, but only the ones containing the ball, whose location differs
in every observation and hence the need of a varying matrix At. Specifically, for each row
i in At, each element αi,j

t is computed by a two-layer fully connected network that takes
as input the corresponding element in the observation vector oi and d̂t−1, followed by a
softmax operator. Figure 5.2 is a diagram of how each of the attention heads operates for
the case of using as input the output of the CNN vt instead of the observation vector ot.
Please refer to Appendix C.1 for more details about the technical implementation of this
mechanism.

Note that the above solutions would not be able to filter out the information that is only
useful for the current Q estimates without the parallel FNN connection (Figure 5.3). We
would also like to stress that these mechanisms are by no means guaranteed to find the
optimal d-set. Nonetheless, as shown in our experiments, they constitute an effective
inductive bias that facilitates the learning process.

72 CHAPTER 5. INFLUENCE-AWARE MEMORY

5.5 Experiments

We empirically evaluate the performance of our memory architecture on the warehouse
example (Section 5.3), a traffic control task, and the flickering version of the Atari video
games (Hausknecht and Stone, 2015). The goal of our experiments is:

1. Learning performance and convergence: Evaluate whether our model im-
proves over standard recurrent architectures. We compare learning performance,
convergence and training time.

2. High dimensional observation spaces: Show that our solution scales to high
dimensional problems with continuous observation spaces.

3. Learning approximate d-sets: Demonstrate the advantages of restricting the
input to the RNN and compare the relative performance of learning vs. manually
specifying the d-sets.

4. Architecture analysis: Analyze the impact of the architecture on the learned
representations by inspecting the network hidden activations.

5.5.1 Environments

Below is a brief description of the three domains on which we evaluate our model. Please
refer to Appendix C.1 for more details.

Warehouse: This is the same task we describe in our example in Section 5.3. The
observations are a combination of the agent’s location (one-hot encoded vector) and the
24-item binary variables. In the experiments where d-sets are manually selected, the RNN
in IAM only receives the latter variables while the FNN processes the entire vector.

Traffic Control: In this environment (Lopez et al., 2018), the agent must optimize
the traffic flow at the intersection in Figure 5.4. The agent can take two different actions:
either switching the traffic light on the top to green, which automatically turns the other
to red, or vice versa. The observations are binary vectors that encode whether not there is
a car at a particular location. Cars are only visible when they enter the red box. There is
a 6 seconds delay between the moment an action is taken and the time the lights actually

5.5. EXPERIMENTS 73

switch. During this period the green light turns yellow, and no cars are allowed to cross
the road. Agents need to anticipate cars entering the red box and switch the lights in time
for them to continue without stopping. This forces the recurrent models to remember
the location and the time at which cars left the intersection and limits the performance
of agents with no memory3. In the experiments where d-sets are manually selected, the
RNN in IAM receives the last two elements in each of the two vectors encoding the road
segments (i.e. 4 bits in total). The location of these elements is indicated by the small
grey boxes in Figure 5.4. This information should be sufficient to infer hidden state.

Figure 5.4: Traffic control environment. Cars are only visible when they enter the red box.
The small grey boxes show the variables that we feed into the RNN.

Flickering Atari: In this version of the Atari video games (Bellemare et al., 2013) the
observations are replaced by black frames with probability p = 0.5. This adds uncertainty
to the environment and makes it more difficult for the agent to keep track of moving
elements. The modification was introduced by Hausknecht & Stone (2015) to test their
recurrent version of DQN and has become the standard benchmark for Deep RL in
POMDPs (Zhu et al., 2017; Igl et al., 2018).

3Videos showing the results of the traffic control experiment can be found at https://tinyurl.com/
wc3jpf4

https://tinyurl.com/wc3jpf4
https://tinyurl.com/wc3jpf4

74 CHAPTER 5. INFLUENCE-AWARE MEMORY

5.5.2 Experimental Setup

We compare IAM against two other network configurations: A model with no internal
memory that uses frame stacking (FNN) and a standard recurrent architecture (LSTM).
All three models are trained using PPO (Schulman et al., 2017). For a fair comparison,
and in order to ensure that both types of memory have access to the same amount of
information, the sequence length parameter in the recurrent models (i.e. number of time
steps the network is unrolled when updating the model) is chosen to be equal to the
number of frames that are fed into the FNN baseline. We evaluate the performance of
our agents at different time steps during training by calculating the mean episodic return.
The results are averaged over three random seeds. A table containing the full list of
hyperparameters used for each domain and for each of the three architectures, together
with a detailed description of the tuning process, is provided in Appendix C.1.

5.5.3 Learning Performance and Convergence

We first evaluate the performance of our model on the warehouse and traffic control
environments. Although the observation sizes are relatively small compared to most deep
RL benchmarks (73 and 30 variables respectively), the two tasks are quite demanding
memory-wise. In the warehouse environment, the agent is required to remember for how
long each of the items has been active. In the traffic domain, cars take 32 timesteps to
reappear again in the red box when driving around the big loop (Figure 5.4). Figure
5.5, shows the learning curves of IAM and LSTM in the two environments. While both
LSTM and IAM reach similar levels of performance on the traffic control task the LSTM
network takes much longer to converge (bottom). On the other hand, in the warehouse
environment, IAM clearly outperforms the LSTM baseline (top). The final scores obtained
by FNNs with (red) and without memory4 (black) (i.e. observation stacking) are also
included for reference. These results are strong evidence that the parallel feedforward
channel in IAM is indeed helping overcome the convergence difficulties of LSTMs, by
bypassing the recurrent layers (Section 5.4.1).

Figure 5.6 is a performance comparison of LSTM and IAM for various recurrent layer sizes5.
4Please note that, although the optimal policy in these two environments requires memory, memoryless

policies can still reach a decent performance level.
5For a fair comparison, the reported results for IAM correspond to networks where D̂ is learned and

not manually specified. The labels indicate the total number of recurrent neurons. Both LSTMs and
IAMs have also feedfoward layers of equivalent size. A detailed description of how these were chosen so as

5.5. EXPERIMENTS 75

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Steps 1e6

26

28

30

32

34

36

38

40

42

Av
er

ag
e

Re
tu

rn

IAM
LSTM
FNN (1 obs.)
FNN (8 obs.)

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
Steps 1e6

32

34

36

38

40

42

Av
er

ag
e

Re
tu

rn

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Steps 1e6

45

40

35

30

25

20

15

10

5

Av
er

ag
e

Re
tu

rn

IAM
LSTM
FNN (1 obs.)
FNN (32 obs.)

1.4 1.5 1.6 1.7 1.8 1.9 2.0
Steps 1e6

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

Av
er

ag
e

Re
tu

rn

Figure 5.5: Average return and standard deviation during training of IAM and LSTM as
a function of the number of timesteps on the warehouse (top) and the traffic (bottom)
environments. For ease of visualization, the plots on the right are zoomed in versions of
the ones on the left. The dashed horizontal lines indicate the final performance of FNNs
with (red) and without memory (black).

While the best recurrent layer size for the LSTM baseline is 128 in both domains, the size
of the recurrent model of IAM can be brought down to 64 for the warehouse environment
and just 8 recurrent neurons for the traffic task, and still outperform the memoryless FNN
baseline (dashed black curve). This, of course, translates into a significant reduction in
the total number of weights and computational speedups. A full summary of the average
runtime for each architecture, along with a description of the computing infrastructure
used, is given in Appendix C.2.

not to interfere with the results is provided in Appendix C.1.

76 CHAPTER 5. INFLUENCE-AWARE MEMORY

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Steps 1e6

45

40

35

30

25

20

15

10

5

Av
er

ag
e

Re
tu

rn

IAM-128
IAM-64
IAM-32
IAM-16
IAM-8

LSTM-128
LSTM-64
LSTM-32
LSTM-16
LSTM-8

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Steps 1e6

15

20

25

30

35

40
Av

er
ag

e
Re

tu
rn

IAM-128
IAM-64

IAM-32
IAM-16

LSTM-128
LSTM-64

LSTM-32
LSTM-16

Figure 5.6: Average return and standard deviation during training of IAM (learned D̂)
and LSTM for various recurrent layer sizes on the warehouse (top) and the traffic (bottom)
environments. The dashed black lines are the learning curves of FNNs without memory.

5.5.4 High Dimensional Observation Spaces

The advantage of IAM over LSTMs and FNNs becomes even more apparent as the
dimensionality of the problem increases. Table 5.1 compares the average scores obtained
in Flickering Atari by the FNN and LSTM baselines with those of IAM. Both IAM and
LSTM receive only 1 frame. The sequence length parameter is set to 8 time steps for the
two networks. The FNN model, on the other hand, receives the last 8 frames as input.
The learning curves are shown in Appendix C.3, together with the results obtained in the
original games and the average runtime.

5.5. EXPERIMENTS 77

Table 5.1: Average final score on the Flickering Atari games for each of the three network
architectures and standard deviation. Bold numbers indicate the best results on each
environment.

FNN (8 frames) LSTM IAM
Breakout 26.57± 1.51 21.32± 0.45 83.10± 5.29

Pong 18.07± 0.06 −20.25± 0.03 20.07± 0.11

Space Invaders 854.93± 11.64 520.44± 9.41 834.66± 21.23

Asteroids 1393.75± 11.28 1424.87± 5.23 2281.63± 63.92

MsPacman 2388.03± 167.03 1081.11± 293.79 2326.04± 31.53

Figure 5.7: Example of a full game screen and the reconstruction made by the memory
decoder.

5.5.5 Learning Approximate D-sets.

As explained in Section 5.4.2, if the optimal d-set is static, like in the warehouse and
traffic environments, we might be able to learn D̂ by simply restricting the size of the
RNN. The first two rows in Table 5.2, show a performance comparison between manually
selecting our d-set, and forcing the network weights to filter out the irrelevant variables by
limiting its capacity. The problem needs to be treated with a bit more care in cases where
the variables that influence the hidden state change from one observation to another, as
occurs in the Atari games. In such situations, just restricting the size of the RNN is not
sufficient since the weights are static, and hence unable to settle for any particular subset
of pixels in the game screen (Section 5.4.2). The last two columns in Table 5.2 are the
scores obtained in Flickering Atari with static weights (2nd column) and with the dynamic
weights computed by the attention mechanism (3rd column). Manual selection is not

78 CHAPTER 5. INFLUENCE-AWARE MEMORY

Table 5.2: Comparison between manually selecting the d-set and learning it, and between
using static and dynamic weights.

Manual Learned (static) Learned (dynamic)
Warehouse 40.99± 0.20 40.76± 0.12 -

Traffic Control −3.76± 0.12 −3.37± 0.09 -
Breakout - 26.17± 0.82 83.10± 5.29

Pong - 19.72± 0.27 20.07± 0.11

Space Invaders - 583.12± 8.76 834.66± 21.23

Asteroids - 1841.87± 26.09 2281.63± 63.92

MsPacman - 2097.97± 34.71 2326.04± 31.53

feasible in the Atari domain.

5.5.6 Architecture Analysis

Decoding the agent’s internal memory: We evaluated if the information stored
in the agent’s internal memory after selecting the d-set and discarding the rest of the
observation variables was sufficient to uncover hidden state. To do so, we trained a decoder
on predicting the full game screen given the encoded observation xt and d̂t, using a dataset
of images and hidden activations collected after training the policy. The image on the
leftmost of Figure 5.7 shows an example of the full game screen, from which the agent
only receives the region delimited by the red box. The second image from the right shows
the prediction made by the decoder. Note that although everything outside the red box
is invisible to the agent, the decoder is able to make a fair reconstruction of the entire
game screen based on the d-set encoded in the agent’s internal memory d̂. This implies
that IAM can capture the necessary information and remember how many cars left the
intersection and when without being explicitly trained to do so6.

Analysis of the hidden activations: Finally, we used Canonical Correlation Analysis
(CCA) (Hotelling, 1992) to measure the correlation between the network hidden activations
when playing Breakout and two important game features: ball velocity and number of
bricks destroyed. The projections of the hidden activations onto the space spanned by the
canonical variates are depicted in the two plots on the right of Figure 5.7. The scatter
plot on the left shows four distinct clusters of hidden memories d̂t. Each of these clusters

6A video of this experiment where we use the decoder to reconstruct an entire episode can be found at
https://tinyurl.com/y9cvuz7l. More examples are provided in Appendix C.5.

https://tinyurl.com/y9cvuz7l

5.6. CONCLUSION 79

Figure 5.8: Left: RNN’s internal memories d̂ projected onto the two first canonical
components, colors indicate the direction of the velocity vector. Right: FNN’s outputs x
projected onto the first canonical component against the number of bricks destroyed.

corresponds directly to one of the four possible directions of the velocity vector. The plot
on the right, shows a clear uptrend. High values of the first canonical component of xt
correspond to frames with many missing bricks. While the FNN is taking care of the
information that does not need to be memorized (i.e. number of bricks destroyed) the
RNN is focused on inferring hidden state variables (i.e. ball velocity). More details about
this experiment are given in Appendix C.6.

5.6 Conclusion

The primary goal of this chapter was to reconcile neural network design choices with
the problem of partial observability. We studied the underlying properties of POMDPs
and developed a new memory architecture that tries to decouple hidden state inference
from value estimation. Influence-aware memory (IAM) connects an FNN and an RNN in
parallel. This simple solution allows the RNN to focus on remembering just the essential
pieces of information. This is not the case in other recurrent architectures. Gradients in
LSTMs and GRUs need to reach a compromise between two, often competing, goals. On
the one hand, they need to provide good Q estimates and on the other, they should remove
from the internal memory everything that is irrelevant for future predictions. Our model
enables the designer to select beforehand what variables the agent should memorize. This
is however not an prerequisite since, as shown in our experiments, we can force the RNN

80 CHAPTER 5. INFLUENCE-AWARE MEMORY

to find such variables by restricting its capacity. We also investigated a solution for those
problems in which the variables influencing the hidden state information differ from one
observation to another. Our results suggest that while standard architectures have severe
convergence difficulties, IAM can even outperform methods that stack multiple frames to
remove partial observability. Finally, aside from the clear benefits in learning performance,
our analysis of the network hidden activations suggests that the inductive bias introduced
in our memory architecture enables the agent to choose what to remember.

Chapter 6

Policy Confounding

‘How can I tell,’ said the man, ‘that the past isn’t a fiction designed to account
for the discrepancy between my immediate physical sensations and my state of
mind?’

–Douglas Adams, The Restaurant at the End of the Universe

Reinforcement learning agents may sometimes develop habits that are effective only when
specific policies are followed. After an initial exploration phase during which agents try out
different actions in the environment, they eventually converge on a particular policy. At
this point, the distribution over state-action trajectories becomes narrower, leading agents
to repeatedly experience the same transitions. This repetitive exposure can give rise to
spurious correlations. Agents may then pick up on these correlations and develop simple
habits that only work well within the specific set of trajectories dictated by their policy.
The issue here is that these habits can result in incorrect outcomes if agents are forced
to deviate from their typical trajectories due to changes in the environment or in their
policies. In this chapter, we provide a mathematical characterization of this phenomenon,
which we refer to as policy confounding, and show, through a series of examples, when
and how it occurs in practice.1

1This chapter is based on Suau et al. (2023).

82 CHAPTER 6. POLICY CONFOUNDING

6.1 Introduction

This morning, I went to the kitchen for a coffee. When I arrived,
I forgot why I was there, so I got myself a coffee—

How often do you do something without paying close attention to your actions? Have you
ever caught yourself thinking about something else while washing the dishes, making coffee,
or cycling? Acting out of habit is a vital human skill as it allows us to concentrate on
more important matters while carrying out routine tasks. You can commute to work while
thinking about how to persuade your boss to give you a salary raise or prepare dinner
while imagining your next holidays in the Alps. However, unlike in the above example,
habits can also lead to undesired outcomes when we fail to recognize that the context has
changed. You may hop in your car and start driving towards work even though it is a
Sunday and you actually want to go to the grocery store, or you may flip the light switch
when leaving a room even though the lights are already off.

Here, we show that reinforcement learning (RL) agents also struggle from this same
issue. This is due to a phenomenon we term policy confounding, which reflects how
policies, as a result of influencing both past and future observation variables, may induce
spurious correlations (Pearl et al., 2016) among them. These correlations can lead to the
development of seemingly sensible but incorrect habits, such as automatically flipping the
light switch upon leaving a room, without confirming whether the lights are on. This
occurs when agents are forced to deviate from their usual trajectories due to changes in
their policies or the environment. We refer to this problem as out-of-trajectory (OOT)
generalization. It is important to note that OOT generalization differs from the standard
RL generalization problem (Kirk et al., 2023) in that the objective is not to generalize to
environments with different dynamics and (or) rewards but rather generalize to different
trajectories within the same environment.

Contributions This chapter introduces and characterizes the phenomenon of policy
confounding. To do so, we provide a mathematical framework that helps us describe the
different types of state representations, and reveal how, as a result of policy confounding,
the agent may learn representations based on spurious correlations that do not guarantee
OOT generalization. Moreover, we include a series of clarifying examples that illustrate
how this occurs. Unfortunately, we do not have a complete answer for how to prevent
policy confounding. However, we suggest a few off-the-shelf solutions that may help

6.2. EXAMPLE: FROZEN T-MAZE 83

GOAL

GOAL

START

0 20000 40000 60000 80000 100000
Timesteps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

Train env
Eval env

Figure 6.1: Left: An illustration of the Frozen T-Maze environment. Right: Learning
curves when evaluated in the Frozen T-Maze environment with (blue curve) and without
(red curve) ice.

mitigate its effects. We hope this work will create awareness among the RL community
about the risks of policy confounding and inspire further research on this topic.

6.2 Example: Frozen T-Maze

We now provide an example to illustrate the phenomenon and motivate the need for
careful analysis. The environment shown in Figure 6.1 is a variant of the popular T-Maze
environment (Bakker, 2001). The agent receives a binary signal, green or purple, at the
start location. Then, it needs to move to the right and reach the correct goal at the end
of the maze (ignore the blue cells and the black vertical arrow in the middle of the maze
for now). The agent obtains a reward of +1 for moving to the green (purple) goal when
having received the green (purple) signal and a reward of −1 otherwise. There is also a
−0.1 penalty per timestep to encourage the agent to take the shortest path toward the
goal. At first sight, one may think that the only way the agent can solve the task is if,
at every cell along its trajectory, it can recall the initial signal. However, once the agent
figures out the shortest path to each of the two goals (depicted by the green and purple
arrows), the agent may safely forget the initial signal. The agent knows that whenever it is
at any of the cells along the green (purple) path, it must have received the green (purple)
signal. Hence, it can simply move toward the right goal on the basis of its own location.
Sticking to this habit is optimal so long as the agent commits to always taking these two
paths.2 It is also essential that the environment’s dynamics remain the same since even
the slightest change in the agent’s trajectories may erase the spurious correlation induced

2Note that the two paths highlighted in Figure 6.1 are not the only optimal paths. However, for the
agent to be able to ignore the initial signal, it is important that the paths do not overlap.

84 CHAPTER 6. POLICY CONFOUNDING

by the agent’s policy between the agent’s location and the correct goal.

To show that this actually occurs in practice, we train agents in the original environment
(train env) and evaluate them on a variant of the same (eval env), where some ice (blue)
has appeared in the middle of the maze. The ice makes the agent slip from the upper cell
to the bottom cell and vice versa. Note that, although the ice does change the environment
dynamics, its purpose is to force the agent to take trajectories different from the optimal
ones. The way we implemented it, the effect of the ice would be equivalent to forcing the
agent to move down twice when in the top cell or move up twice when in the bottom cell.
Importantly, these trajectories are feasible in the original environment. The plot on the
right of Figure 1 shows the return averaged over 10 trials. The performance drop in the
evaluation environment (blue curve) suggests that the agents’ policies do not generalize.
The ice confuses the agents, who, after being pushed away from their preferred trajectories,
can no longer select the right goal. More details about this experiment are provided in
Section 6.7.

6.3 Related Work

The presence of spurious correlations in the training data is a well-studied problem in
machine learning. These correlations often provide convenient shortcuts that a model can
exploit to make predictions (Beery et al., 2018). However, the performance of a model that
relies on them may significantly deteriorate under different data distributions (Quionero-
Candela et al., 2009; Arjovsky, 2021). Langosco et al. (2022) show that RL agents may
use certain environment features as proxies for choosing their actions. These features,
which show only in the training environments, happen to be spuriously correlated with
the agent’s objectives. In contrast, we demonstrate that, as a result of policy confounding,
agents may directly take part in the formation of spurious correlations. A few prior
works have already reported empirical evidence of particular forms of policy confounding,
showing that in deterministic environments, agents can rely on information that correlates
with the agent’s progress in an episode to determine the optimal actions. This strategy is
effective because under fixed policies, features such as timers (Song et al., 2020), agent’s
postures (Lan et al., 2023), or previous action sequences (Machado et al., 2018) can be
directly mapped to the agent’s state. These works provide various hypotheses to justify
their experimental observations. Here, we contribute an overarching theory that explains
the underlying causes and mechanisms behind these results, along with a series of examples

6.4. PRELIMINARIES 85

illustrating other types of policy confounding. Please refer to Appendix D.3 for more
details on related work.

6.4 Preliminaries

In this section, we introduce the notation used throughout the chapter and provide the
mathematical formulation of the problem. We focus again on problems where states are
represented by a set of observation variables. (Boutilier et al., 1999).

Definition 6.4.1 (FMDP). A Factored Markov decision process (FMDP) is an MDP
(Definition 2.1.1) where the set of states is described by a set of observation variables
Θ = {Θ1, ...,Θ|Θ|}. Each variable Θi can take any of the values in its domain θi ∈ dom(Θi).
Hence, every state s corresponds to a different combination of values ⟨θ1, ..., θ|Θ|⟩ ∈
×i dom(Θi) = S.

The task for the agent involves finding a policy π : S → ∆(A) that maximizes the expected
discounted sum of rewards (Sutton and Barto, 2018). Yet, depending on the number of
observation variables, learning a policy that conditions on all of them may be infeasible.
Fortunately, in many problems, not all variables are strictly relevant; the agent can usually
find compact representations of the states, that are sufficient for solving the task.

While, for simplicity, we employ the MDP formulation, the framework we introduce next
is not limited to fully observable environments. In cases where the current observation
does not satisfy the Markov property, meaning that current observation variables alone
are insufficient for predicting state transitions, we address this limitation by augmenting
Θ with past action and observation variables. In the extreme case, the agent may need
to condition its decisions on the entire history, which itself is guaranteed to satisfy the
Markov property (Kaelbling et al., 1998).

6.5 State Representations

As discussed in previous chapters, factored representations are useful because they readily
define relationships between states. States can be compared to one another by looking
at the individual values the different variables take. Removing some of the variables in
Θ has the effect of grouping together those states that share the same values for the

86 CHAPTER 6. POLICY CONFOUNDING

remaining ones. Thus, in contrast with the classical RL framework, which treats states
as independent entities, we can define state abstractions at the variable level instead of
doing so at the state level (Li et al., 2006).

Definition 6.5.1 (State representation). A state representation is a function Φ : S → S̄,
with S = ×i dom(Θi), S̄ = ×i dom(Θ̄i), and Θ̄ ⊆ Θ.

Intuitively a state representation Φ(st) is a context-specific projection of a state s ∈ S =

×i dom(Θi) onto a lower dimensional space s̄ = ×i dom(Θ̄i) defined by a subset of its
variables, Θ̄ ⊆ Θ. We use {s}Φ = {s′ ∈ S : Φ(s′) = Φ(s)} to denote the equivalence class
of s under Φ.

6.5.1 Markov State Representations

As noted in Section 6.4, the agent should strive for state representations with few variables.
Yet, not all state representations will be sufficient to learn the optimal policy; some may
exclude variables that contain useful information for the task at hand.

Definition 6.5.2 (Markov state representation). A state representation Φ(st) is said to
be Markov if, for all st, st+1 ∈ S, at ∈ A,

R(st, at) = R(Φ(st), at) and
∑

s′t+1∈{st+1}Φ

T (s′t+1 | st, at) = Pr(Φ(st+1) | Φ(st), at),

where R(Φ(st), at) = {R(s′t, at)}s′t∈{st}Φ is the reward at any s′t ∈ {st}Φ.

The above definition is analogous to the notion of bisimulation (Dean and Givan, 1997;
Givan et al., 2003) or model-irrelevance state abstraction (Li et al., 2006). Representations
satisfying these conditions are guaranteed to be behaviorally equivalent to the original
representation. That is, for any given policy and initial state, the expected return (i.e.,
cumulative reward; Sutton and Barto, 2018) is the same when conditioning on the full set
of observation variables Θ or on the Markov state representation Φ.

Definition 6.5.3 (Minimal state representation). A state representation Φ∗ : S → S̄∗

with S̄∗ = ×i dom(Θ̄∗i) is said to be minimal, if all other state representations Φ : S → S̄
with S̄ = ×i dom(Θ̄i) and Θ̄ ⊂ Θ̄∗, for some s ∈ S, are not Markov.

In other words, Φ∗ is minimal when none of the remaining variables can be removed while
the representation remains Markov. Hence, we say that a minimal state representation Φ∗

is a sufficient statistic of the full set of observation variables Θ.

6.6. POLICY CONFOUNDING 87

Definition 6.5.4 (Superfluous variable). Let {Θ̄∗}∪Φ∗ be the union of variables in all
possible minimal state representations. A variable Θi ∈ Θ is said to be superfluous, if
Θi /∈ {Θ̄∗}∪Φ∗ .

6.5.2 π-Markov State Representations

Considering that the agent’s policy will rarely visit all states, the notion of Markov state
representation seems excessively strict. We now define a relaxed version that guarantees
the representation to be Markov when a specific policy π is followed.

Definition 6.5.5 (π-Markov state representation). A state representation Φπ(ht) is said
to be π-Markov if, for all st, st+1 ∈ Sπ, at ∈ supp(π(· | st)),

R(st, at) = Rπ(Φπ(st), at) and
∑

s′t+1∈{st+1}Φ
π

T (s′t+1 | st, at) =
π

Pr(Φπ(st+1) | Φπ(st), at),

where Sπ ⊆ S denotes the set of states visited under π, Rπ(Φπ(st), at) = {R(s′t, at)}s′t∈{st}Φπ ,
{s}Φπ = {s′ ∈ Sπ : Φπ(s′) = Φπ(s)}, and Prπ is probability under π.

Definition 6.5.6 (π-minimal state representation). A state representation Φπ∗ : Sπ → S̄π∗

with S̄π∗ = ×i dom(Θ̄π∗i) is said to be π-minimal, if all other state representations
Φ : Sπ → S̄π with S̄π = ×i dom(Θ̄i) and Θ̄ ⊂ Θ̄π∗, for some s ∈ Sπ, are not π-Markov.

6.6 Policy Confounding

We are now ready to describe how and when policy confounding occurs, as well as why
we should care, and how we should go about preventing it. The proofs for all theoretical
results are deferred to Appendix D.1.

The next result demonstrates that a π-Markov state representation Φπ requires at most
the same variables, and in some cases fewer, than a minimal state representation Φ∗, while
still satisfying the Markov conditions for those states visited under π, s ∈ Sπ.

Proposition 6.6.1. Let Φ∗ be the set of all possible minimal state representations, where
every Φ∗ ∈ Φ∗ is defined as Φ∗ : S → S̄∗ with S̄∗ = ×i dom(Θ̄∗i). For all π and all Φ∗ ∈ Φ∗,
there exists a π-Markov state representation Φπ : Sπ → S̄π with S̄π = ×i dom(Θ̄πi) such
that for all s ∈ Sπ, Θ̄π ⊆ Θ̄∗. Moreover, there exist cases for which Θ̄π is a proper subset,
Θ̄π ̸= Θ̄∗.

88 CHAPTER 6. POLICY CONFOUNDING

...

...

...

...

...

...

Figure 6.2: Two DBNs representing the dynamics of the Frozen T-Maze environment,
when actions are sampled at random (left), and when they are determined by the optimal
policy (right).

Although the result above seems intuitive, its truth may appear incidental. While it is
clear that Φπ will never require more variables than the corresponding minimal state
representation Φ∗, whether or not Φπ will require fewer, seems just an arbitrary consequence
of the policy being followed. Moreover, since the variables in Θ̄∗ are all strictly relevant for
predicting transitions and rewards, one may think that a policy π inducing representations
such that Θ̄π ⊂ Θ̄∗ can never be optimal. However, as shown by the following example, it
turns out that the states visited by a particular policy, especially if it is the optimal policy,
tend to contain a lot of redundant information. This is particularly true in environments
where future states are heavily influenced by past actions.

Example 6.6.1. (Frozen T-Maze) Let us consider the Frozen T-Maze again (Section
6.2). Figure 6.2 shows two dynamic Bayesian networks (DBN; Dean and Kanazawa, 1989;
Murphy, 2002) describing the dynamics of the environment. The nodes labeled as L

represent the agent’s location from t = 0 to t = 8. All intermediate nodes between t = 0

and t = 7 are omitted for simplicity. The nodes labeled as G indicate whether the goal is
to go to the green or the purple cell (see Figure 6.1). Note that G always takes the same
value at all timesteps within an episode (either green or purple). The information in G

is hidden and only passed to the agent at the start location through the node X0. This
makes the environment partially observable. Hence, states are defined as the history of
actions, locations, and signal values, st = ⟨l0, x0, a0..., at−1, lt, xt⟩. Most of the information
in st is irrelevant for predicting transitions and rewards. However, depending on the policy
being followed, the agent may be able to ignore more or fewer variables. This can be
shown by comparing the two DBNs in Figure 6.2. Let us say that we want to predict
the reward R8 at given the state s8 at time t = 8. On the one hand, if actions are not
specified by any particular policy, but simply sampled at random (left DBN), to determine
R8, one needs to know the signal X0 received at t = 0 and the agent’s current location

6.6. POLICY CONFOUNDING 89

Figure 6.3: A DBN illustrating the phenomenon of policy confounding. The policy opens
backdoor path that can affect conditional relations between the variables in Θt and Θt+1.

L8. These are highlighted by the green circles. This is because the actions ⟨A0, ..., A7⟩
appear as exogenous variables and can take any possible value. Hence, the reward could
be either −0.1, (per timestep penalty), −1 (wrong goal), or +1 (correct goal) depending
on the actual values of X0 and L8. On the other hand, when actions are sampled from the
optimal policy π∗ (right DBN), knowing L8 (green circle) is sufficient to determine R8. In
this second case, π∗ makes the action A0, and thus all future agent locations, dependent
on the initial signal X0. This occurs because, under the optimal policy (green and purple
paths in Figure 6.1), the agent always takes the action ‘move up’ when receiving the green
signal or ‘move down’ when receiving the purple signal, and then follows the shortest path
towards each of the goals. As such, we have that, from t = 1 onward, Φπ∗

(st) = lt is a
π-Markov state representation since it constitutes a sufficient statistic of the state st under
π∗. Analogously, from t = 1, actions may also condition only on L.

The phenomenon highlighted by the previous example is the result of a spurious correlation
induced by the optimal policy between the initial signal X0 and the agent’s future locations
⟨L1, ..., L8⟩. Generally speaking, this occurs because policies act as confounders, opening
backdoor paths between future state variables Θt+1 and the variables in the current
state Θt (Pearl, 2000). This is shown by the DBN depicted in Figure 6.3, where we see
that the policy influences both the current observation variables and future observation
variables, hence potentially affecting their conditional relationships. For instance, in the
above example, Rπ∗

(L8 = ‘green goal’) = +1 when following π∗, while for an arbitrary π,
R(L8 = ‘green goal’) = ±1.

Definition 6.6.1 (Policy Confounding). A state representation Φ : S → S̄ is said to be
confounded by a policy π if, for some st, st+1 ∈ S, at ∈ A,

Rπ(Φ(st), at) ̸= Rπ(do(Φ(st)), at) or
π

Pr(Φ(st+1) | Φ(st), at) ̸=
π

Pr(Φ(st+1) | do(Φ(st)), at)

90 CHAPTER 6. POLICY CONFOUNDING

The operator do(·) is known as the do-operator, and it is used to represent physical
interventions in a system (Pearl, 2000). These interventions are meant to distinguish
cause-effect relations from mere statistical associations. In our case, do(Φ(st)) means
setting the variables forming the state representation Φ(st) to a particular value and
considering all possible states in the equivalence class, s′t ∈ {st}Φ. That is, independently
of what policy is being followed.

It is easy to show that the underlying reason why a π-Markov state representation may
require fewer variables than the minimal state representation (as in Example 6.6.1) is
indeed policy confounding.

Theorem 6.6.1. Let Φ∗ : S → S̄∗ with S̄∗ = ×i dom(Θ̄∗i) be a minimal state repre-
sentation. If, for some π, there is a π-Markov state representation Φπ : Sπ → S̄π with
S̄π = ×i dom(Θ̄πi), such that Θ̄π ⊂ Θ̄∗ for some s ∈ S, then Φπ is confounded by policy
π.

Finally, it is worth noting that even though, in Example 6.6.1, the variables included
in the π-minimal state representation are a subset of the variables in the minimal state
representation, Θ̄π∗ ⊂ Θ̄∗, this is not always the case, as Θ̄π∗ may contain superfluous
variables (Definition 6.5.4). An example illustrating this situation is provided in Appendix
D.2 (Example D.2.1).

Proposition 6.6.2. Let {Θ̄∗}∪Φ∗ be the union of variables in all possible minimal state rep-
resentations. There exist cases where, for some π, there is a π-minimal state representation
Φπ∗ : Sπ → S̄π∗ with S̄π∗ = ×i dom(Θ̄π∗i) such that Θ̄π∗ \ {Θ̄∗}∪Φ∗ ̸= ∅.

6.6.1 Why Should We Care about Policy Confounding?

Leveraging spurious correlations to develop simple habits can be advantageous when
resources such as memory, computing power, or data are limited. Agents can disregard and
exclude from their representation those variables that are redundant under their policies.
However, the challenge is that some of these variables may be crucial to ensure that the
agent behaves correctly when the context changes. In the Frozen T-Maze example from
Section 6.2, we observed how the agent could no longer find the correct goal when the ice
pushed it away from the optimal trajectory. This is a specific case of a well-researched
issue known as out-of-distribution (OOD) generalization (Quionero-Candela et al., 2009;
Arjovsky, 2021). We refer to it as out-of-trajectory (OOT) generalization to highlight that

6.6. POLICY CONFOUNDING 91

the problem arises due to repeatedly sampling from the same policy and thus following
the same trajectories. In contrast to previous works (Kirk et al., 2023) that address
generalization to environments that differ from the training environment, our objective
here is to generalize to trajectories the agent never (or only rarely) takes.

Ideally, the agent should aim to learn representations that enable it to predict future
rewards and transitions even when experiencing slight variations in its trajectory. Based
on Definition 6.5.2, we know that, in general, only a Markov state representation satisfies
these requirements. However, computing such representations is typically intractable
(Ferns et al., 2006), and thus most standard RL methods usually learn representations by
maximizing an objective function that depends on the distribution of trajectories P b(τ)

visited under a behavior policy b (e.g., expected return, Eτ∼P b(τ) [G(τ)]; Sutton and Barto,
2018). The problem is that b may favor certain trajectories over others, which may lead
to the exploitation of spurious correlations in the learned representation.

6.6.2 When Should We Worry about OOT Generalization in Practice?

The previous section highlighted the generalization failures of representations that depend
on spurious correlations. Now, let us delve into the circumstances in which policy
confounding is most prone to cause problems.

Function Approximation Function approximation has enabled traditional RL methods
to scale to high-dimensional problems, where storing values in lookup tables is infeasible.
Using parametric functions (e.g., neural networks) to model policies and value functions,
agents can learn abstractions by grouping together states if these yield the same transitions
and rewards. As mentioned before, abstractions occur naturally when states are represented
by a set of variables since the functions simply need to ignore some of these variables.
However, this also implies that value functions and policies are exposed to spurious
correlations. If a particular variable becomes irrelevant due to policy confounding, the
function may learn to ignore it and remove it from its representation (Example 6.6.1).
This is in contrast to tabular representations, where, every state takes a separate entry,
and even though there exist algorithms that perform state (state) abstractions in tabular
settings (Andre and Russell, 2002; Givan et al., 2003), these abstractions are normally
formed offline before learning (computing) the policy, hence avoiding the risk of policy
confounding.

92 CHAPTER 6. POLICY CONFOUNDING

Narrow Trajectory Distributions In practice, agents are less prone to policy con-
founding when the trajectory distribution P b(τ) is broad (i.e., when b encompasses a
wide set of trajectories) than when it is narrow. This is because the spurious correlations
present in certain trajectories are less likely to have an effect on the learned representations.
On-policy methods (e.g., SARSA, Actor-Critic; Sutton and Barto, 2018) are particularly
troublesome for this reason since the same policy being updated must also be used to
collect the samples. Yet, even when the trajectory distribution is narrow, there is no
reason why the agent should pick up on spurious correlations while its policy is still being
updated. Only when the agent commits to a particular policy should we start worrying
about policy confounding. At this point, lots of the same trajectories are being used for
training, and the agent may ‘forget’ (French, 1999) that, even though certain variables
may no longer be needed to represent the states, they were important under previous
policies. This generally occurs at the end of training when the agent has converged to a
particular policy. However, if policy confounding occurs earlier during training, it may
prevent the agent from further improving its policy (Nikishin et al., 2022; please refer to
Appendix D.3 for more details).

6.6.3 What Can We Do to Improve OOT Generalization?

As mentioned in the introduction, we do not have a complete answer to the problem of
policy confounding. Yet, here we offer a few off-the-shelf solutions that, while perhaps
limited in scope, can help mitigate the problem in some situations. These solutions revolve
around the idea of broadening the distribution of trajectories so as to dilute the spurious
correlations introduced by certain policies.

Off-policy methods We already explained in Section 6.6.2 that on-policy methods are
particularly prone to policy confounding since they are restricted to using samples coming
from the same policy. A rather obvious solution is to instead use off-policy methods, which
allow using data generated from previous policies. Because the samples belong to a mixture
of policies it is less likely that the model will pick up the spurious correlations present
on specific trajectories. However, as we shall see in the experiments, this alternative
works only when replay buffers are large enough. This is because standard replay buffers
are implemented as queues, and hence the first experiences coming in are the first being
removed. This implies that a replay buffer that is too small will contain samples coming
from few and very similar policies. Since there is a limit on how large replay buffers are

6.7. EXPERIMENTS 93

allowed to be, future research could explore other, more sophisticated, ways of deciding
what samples to store and which ones to remove (Schaul et al., 2016b).

Exploration and domain randomization When allowed, exploration may mitigate
the effects of policy confounding and prevent agents from overfitting their preferred
trajectories. Exploration strategies have already been used for the purpose of generalization;
to guarantee robustness to perturbations in the environment dynamics (Eysenbach and
Levine, 2022), or to boost generalization to unseen environments (Jiang et al., 2022).
The goal for us is to remove, to the extent possible, the spurious correlations introduced
by the current policy. Unfortunately, though, exploration is not always without cost.
Safety-critical applications require the agent to stay within certain boundaries (Altman,
1999; García and Fernández, 2015). When training on a simulator, an alternative to
exploration is domain randomization (Tobin et al., 2017; Peng et al., 2018; Machado et al.,
2018). The empirical results reported in the next section suggest that agents become less
susceptible to policy confounding when adding enough stochasticity to the environment or
to the policy. Yet, there is a limit on how much noise can be added to the environment
or the policy without altering the optimal policy (Sutton and Barto, 2018, Example 6.6:
Cliff Walking).

6.7 Experiments

The goal of the experiments is to: (1) demonstrate that the phenomenon of policy
confounding described by the theory does occur in practice, (2) uncover the circumstances
under which agents are most likely to suffer the effects of policy confounding and fail to
generalize, and (3) evaluate how effective the strategies proposed in the previous section
are in mitigating these effects.

6.7.1 Experimental setup

Agents are trained with an off-policy method, DQN (Mnih et al., 2015) and an on-
policy method, PPO (Schulman et al., 2017). We represent policies and value functions
as feedforward neural networks and use a stack of past observations as input in the
environments that require memory. We report the mean return as a function of the
number of training steps. Training is interleaved with periodic evaluations on the original

94 CHAPTER 6. POLICY CONFOUNDING

START

eval

START

train
DOOR

KEY

START GOAL

Figure 6.4: Illustrations of the Key2Door (top) and Diversion (bottom) environments.

environments and variants thereof used for validation. The results are averaged over 10
random seeds. Please refer to Appendix D.6 for more details about the setup.

6.7.2 Environments

We ran our experiments on three grid-world environments: the Frozen T-Maze from
Section 6.2, and the below described Key2Door, and Diversion environments. We use
these as pedagogical examples to clarify the ideas introduced by the theory. Nonetheless,
in Appendix D.3, we refer to previous works showing evidence of particular forms of policy
confounding in high dimensional domains.

Example 6.7.1. Key2Door. Here, the agent needs to collect a key placed at the
beginning of the corridor in Figure 6.4 (left) and then open the door at the end. The
current observation variables do not show whether the key has already been collected. The
states are thus given by the history of past locations st = ⟨l0, ..., lt⟩. This is because to
solve the task in the minimum number of steps, the agent must remember that it already
got the key when going to the door. Yet, since during training, the agent always starts
the episode at the first cell from the left, when moving towards the door, the agent can
forget about the key (i.e., ignore past locations) once it has reached the third cell. As
in the Frozen T-Maze example, the agent can build the habit of using its own location
to tell whether it has or has not got the key yet. This, can only occur when the agent
consistently follows the optimal policy, depicted by the purple arrow. Otherwise, if the
agent moves randomly through the corridor, it is impossible to tell whether the key has
or has not been collected. In contrast, in the evaluation environment, the agent always
starts at the second to last cell, this confuses the agent, which is used to already having
the key by the time it reaches said cell. A DBN is provided in Appendix D.4.

6.7. EXPERIMENTS 95

0 20000 40000 60000 80000 100000
Timesteps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Re

tu
rn

PPO train
PPO eval
DQN train
DQN eval

0 20000 40000 60000 80000 100000
Timesteps

−1.0

−0.5

0.0

0.5

1.0

Av
er

ag
e

Re
tu

rn

PPO train
PPO eval
DQN train
DQN eval

0 5000 10000 15000 20000
Timesteps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

PPO train
PPO eval
DQN train
DQN eval

Figure 6.5: DQN vs. PPO in the train and evaluation variants of Frozen T-Maze (left),
Key2Door (middle), and Diversion (right).

Example 6.7.2. Diversion. Here, the agent must move from the start state to the
goal state in Figure 6.4 (right). The observations are length-8 binary vectors. The first 7

elements indicate the column where the agent is located. The last element indicates the
row. This environment aims to show that policy confounding can occur not only when the
environment is partially observable, as was the case in the previous examples, but also in
fully observable scenarios. After the agent learns the optimal trajectory depicted by the
green arrow, it can disregard the last element in the observation vector. This is because,
if the agent does not deviate, the bottom row is never visited. Rather than forgetting
past information, the agent ignores the last element in the current observation vector for
being irrelevant when following the optimal trajectory. We train the agent in the original
environment and evaluate it in a version with a yellow diversion sign in the middle of the
maze that forces the agent to move to the bottom row. A DBN is provided in Appendix
D.4.

Note that, as we did in the Frozen T-Maze environment, in order to assess whether the
learned state representations generalize beyond the agent’s usual trajectories we must
modify the environment dynamics so as to force the agents to take alternative trajectories.
Importantly, these alternative trajectories are both possible and probable in the original
environments, and thus one would expect well-trained agents to perform well on them.

6.7.3 Results

On-policy vs. off-policy The results in Figure 6.5 reveal the same pattern in all three
environments. PPO fails to generalize outside the agent’s preferred trajectories. After
an initial phase where the average returns on the training and evaluation environments

96 CHAPTER 6. POLICY CONFOUNDING

0 20000 40000 60000 80000 100000
Timesteps

−1.0

−0.5

0.0

0.5

1.0
Av

er
ag

e
Re

tu
rn

DQN eval, BS=200
DQN eval, BS=20K

0 20000 40000 60000 80000 100000
Timesteps

−1.0

−0.5

0.0

0.5

1.0

Av
er

ag
e

Re
tu

rn

PPO eval, eps=.2
DQN eval, BS=200, eps=.1

Figure 6.6: Frozen T-Maze. Left: DQN small vs. large buffer sizes. Right: PPO and DQN
when adding stochasticity.

increase (‘PPO train’ and ‘PPO eval’), the return on the evaluation environments (‘PPO
eval’) starts decreasing when the agent commits to a particular trajectory, as a result
of policy confounding. In contrast, since the training samples come from a mixture of
policies, DQN performs optimally in both variants of the environments (‘DQN train’ and
‘DQN eval’) long after converging to the optimal policy.3 A visualization of the state
representations learned with PPO, showing that the policy does ignore variables that are
necessary for generalization, is provided in Appendix D.5.1.

Large vs. small replay buffers We mentioned in Section 6.6.3 that the effectiveness
of off-policy methods against policy confounding depends on the size of the replay buffer.
The results in Figure 6.6 (left) confirm this claim. The plot shows the performance of
DQN in the Frozen T-Maze environment when the size of the replay buffer contains 100K
experiences and when it only contains the last 10K experiences. We see that in the second
case, the agents performance in the evaluation environment decreases (red curve left plot).
This is because, after the initial exploration phase, the distribution of trajectories becomes
too narrow, and the spurious correlations induced by the latest policies dominate the
replay buffer. Similar results for the other two environments are provided in Appendix
D.5.2.

3The small gap between ‘DQN train’ and ‘DQN eval’ is due to the −0.1 penalty per timestep. In
all three environments, the shortest path is longer in the evaluation environment than in the training
environment.

6.8. CONCLUSION 97

Exploration and domain randomization The last experiment shows that if sufficient
exploration is allowed, DQN may still generalize to different trajectories, even when using
small replay buffers (blue curve right plot Figure 6.6). In the original configuration, the
exploration rate ϵ for DQN starts at ϵ = 1 and decays linearly to ϵ = 0.0 after 20K
steps. For this experiment, we set the final exploration rate ϵ = 0.1. In contrast, since
exploration in PPO is normally controlled by the entropy bonus, which makes it hard to
ensure fixed exploration rates, we add noise to the environment instead. The red curve in
Figure 6.6 (right) shows that when we train in an environment where the agent’s actions
are overridden by a random action with 20% probability, the performance of PPO in the
evaluation environment does not degrade after the agent has converged to the optimal
policy. This suggests that the added noise prevents the samples containing spurious
correlations from dominating the training batches. However, it may also happen that
random noise is not sufficient to remove the spurious correlations. As shown in Figure D.7
(Appendix D.5.2), in the Key2Door environment, neither forcing the agent to take random
actions 20% of the time nor setting ϵ = 0.1, solves the OOT generalization problem.
Similar results for Diversion are provided in Appendix D.5.2.

6.8 Conclusion

This paper described the phenomenon of policy confounding. We showed both theoretically
and empirically how as a result of following certain trajectories, agents may pick up on
spurious correlations, and build habits that are not robust to trajectory deviations. We
also uncovered the circumstances under which policy confounding is most likely to occur
in practice and suggested a few ad hoc solutions that may mitigate its effects. We conceive
this paper as a stepping stone to explore more sophisticated solutions. An interesting
avenue for future research is the integration of tools from the field of causal inference
(Pearl et al., 2016; Peters et al., 2017) to aid the agent in forming state representations
that are grounded on causal relationships rather than mere statistical associations (Lu
et al., 2018; Zhang et al., 2020; Sontakke et al., 2021; Saengkyongam et al., 2023).

Chapter 7

Concluding Remarks

I always do that, get into something, and see how far I can go.

–Richard P. Feynman, ‘Surely You’re Joking, Mr. Feynman!’

In this chapter, we provide a summary of the main takeaways of this thesis, discuss the
limitations of our work, and set the direction for future research.

7.1 Conclusion

This thesis has advocated for the use of factored representations in RL problems. We have
provided several examples highlighting the structural insights and efficiency advantages
that these representations offer.

In Chapter 3, we showed how by exploiting the structure in certain problems, we could
build lightweight local simulators that capture the influence of the global system on the
local region through machine learning models. Experimental results showed that agents
trained on these local simulators achieve performance comparable to those trained on
exact global simulators.

Expanding on this approach, Chapter 4 illustrated how large systems with multiple
interacting elements can be factorized into independent regions. The experiments showed
that this approach, aside from providing significant computational benefits, also facilitates

100 CHAPTER 7. CONCLUDING REMARKS

the convergence of multi-agent RL.

Chapter 5 showed how, in partially observable environments, we could determine what
particular variables the agent should memorize by analyzing the dependencies between
the hidden state variables and the variables in the action-observation histories, leading to
improved learning speed and convergence.

Lastly, in Chapter 6, we investigated the types of representations necessary for predicting
future transitions and rewards under specific policies. We demonstrated that methods
focused on maximizing expected returns yield representations insufficient for generalization
to trajectories different from those that the agent usually follows.

Despite falling short of fully exploring the potential of factored representations, this thesis
contributes to showcasing how we can gain valuable insights and a better understanding
of the RL framework by examining the variable dependencies in factored representations.

7.2 Scope

The concepts and methods outlined in this thesis demonstrate good promise in enhancing
the efficiency and scalability of RL. There is a compelling basis for optimism regarding
the potential improvement of real-world system performance. It is important to note,
however, that the assessment of these approaches has been conducted exclusively within
synthetic environments characterized by simplified dynamics and structures. While these
environments have been designed to emulate real-world challenges in domains such as traffic
control and warehouse commissioning, it is essential to emphasize that these simulations
only bear a limited resemblance to the complexities and nuances inherent in realistic
scenarios (Geroliminis and Daganzo, 2008; Knoop et al., 2015). Hence, the results obtained
should not be automatically extrapolated to the real world. The translation of these
methods into tangible products for deployment in real systems requires addressing a host
of limitations, some of which are discussed in the next section. For a comprehensive review
of strategies for real road traffic control, the interested reader is referred to Papageorgiou
et al. (2003); Qadri et al. (2020).

7.3. LIMITATIONS 101

7.3 Limitations

Below we outline some of the limitations of our methods. Please note that the list is not
exhaustive.

1. High-level representations: The insights presented in this thesis require a suffi-
ciently high-level representation of the problem. Our work assumes this is already
given, but features or symbols describing the environment may not be available
in many cases. Thus, our methods’ future impact and applicability to practical
problems depend heavily on research in this area (Lopez-Paz et al., 2017; Schölkopf
and von Kügelgen, 2022). Moreover, factored representations alone are not sufficient
to examine the environment dynamics. In general, we also need to be provided the
dependencies between variables in the form of a DBN. Some readers may question
the use of DBNs in analyzing RL problems, as it contradicts one of the fundamental
premises of RL, namely that the environment dynamics are not known in advance.
However, the methods presented here can still be applied even if the dynamics
are not fully known (i.e., conditional probabilities are not specified). In general,
high-level DBNs showing the dependencies between variables are sufficient. For-
tunately, in many cases these can be constructed with some domain knowledge of
the environment. Alternatively, one can also resort to methods for learning DBNs
(Jonsson and Barto, 2007; Daly et al., 2011).

2. Well-defined local regions The main assumption we made in Chapters 3 and 4
was that the agents’ observations and rewards depended solely on the subset of state
variables within their local regions. This limitation affects their performance in two
ways. First, the information the agents receive may be insufficient for making good
decisions, resulting in suboptimal policies. Second, the reward function may not
align with the true objective due to its narrow focus. In the single-agent scenario,
local performance improvements could adversely impact unaccounted regions of
the environment. In the multi-agent scenario, it may lead to competition among
agents. The solution, of course, is to enlarge the local regions. However, there is
a limit to how much the local regions can grow while maintaining the approach’s
effectiveness. Another related limitation is that, for DBNs to represent partially
observable problems (Section 2.1.3), it is essential that the agent’s observations
depend on the same group of state variables at all possible states. Moreover,
interactions between different regions should occur through a limited number of

102 CHAPTER 7. CONCLUDING REMARKS

variables. Fortunately, many domains exhibit this particular structure, including
traffic, cooling systems, logistics, and telecommunications.

3. Stationary dynamics: As is typically the case in RL research, IALS (Chapter 3)
and DIALS (Chapter 4) assume that the dynamics of the global environment are
stationary, which is generally not true in most real-world problems. Several external
factors may come into play and affect local regions. Unfortunately, neural networks
are not the most reactive type of models. They tend to overfit the training data and
are often unable to learn new patterns.

4. Off-Policy Generalization As seen in Chapter 3, training low-capacity influence
predictors on finite datasets with limited support over the state-action space can
lead to models that overfit to spurious correlations induced by the exploratory policy
used to collect the data (an example of this is provided in A.2). The solution we
adopted was to feed into the influence predictor only the necessary information.
However, even then, it is not guaranteed that the influence model will perform well
when tested under other policies.

5. Policy confounding and generalization Finally, our work on policy confounding
(Chapter 6) raises important questions that challenge standard RL methods. We
discussed the phenomenon from a theoretical perspective and provided examples
demonstrating its effects on the learned representations. We also presented a few
ad-hoc solutions to this problem, but these were somewhat limited in scope.

7.4 Future Work

7.4.1 Adaptive Simulators for Non-Stationary Environments

As mentioned in the previous section, one of the limitations of our work on influence-
augmented local simulators (IALS; Chapter 3) is that the approximate influence predictors
(AIPs) are trained offline on a dataset of historical experiences collected off-line with
some exploratory policy. This assumes that the dynamics of the global environment
are stationary. However, we already saw in Chapter 4 that this was not the case when
other agents were learning simultaneously, forcing us to retrain the AIPs every so often.
Moreover, not only are the other agents’ policies subject to change, but external hidden
factors could also affect the dynamics (Feng et al., 2022). For instance, in the traffic

7.4. FUTURE WORK 103

control scenario, traffic densities may vary depending on the time of day, there might be
road closures due to construction works, and events such as concerts or sports games may
also impact traffic patterns.

One solution is to continuously update the simulator as we gather new data from the
environment using cameras or sensors. In our previous work (He et al., 2022), we
demonstrated how the AIPs could be learned online while planning in the environment.
However, the dynamics were assumed to be stationary, and the new data was merely used
to enhance the old AIPs. Under non-stationarity, old AIPs trained with past data become
increasingly outdated and biased as time goes by since, strictly speaking, only the most
recent data can be trusted. Therefore, we require models that can quickly adapt and
capture the new dynamics. One natural way of achieving this is to use Kalman filters
(Kalman, 1960) to update the parameter estimates as new data comes in. See Wang
and Papageorgiou (2005) and van Lint and Djukic (2012) for examples of traffic state
estimation using Kalman filters. More sophisticated methods such as Gaussian processes
(Williams and Rasmussen, 2006) may also be useful for this purpose since they make very
few assumptions about the underlying distribution, measure the prediction uncertainty,
and can be computed swiftly as long as the number of data points is not too large.

Another alternative is to learn various predictive models for different contexts. Naturally,
this assumes that data for each context is available during training. If so, one could, for
instance, train separate neural networks for each context and use them interchangeably. Yet,
assuming that the dynamics stay relatively similar across contexts, rather than training
completely independent networks, it may be advantageous to allow some parameter
sharing for enhanced training speed and overall accuracy. This can be achieved by utilizing
hypernetworks, wherein a network, fed with context-specific information is used to generate
some of the weights of another network, known as the target network, which makes the
final predictions. This architecture allows the target network to dynamically adapt and
respond differently to the same input depending on the context. See Beukman et al. (2023)
for an example of the use of hypernetworks in the context of RL and Li et al. (2021a) for
an example in the context of traffic forecasting.

7.4.2 Generalization in Dynamics Modeling

Developing predictive models of dynamical systems solely based on historical data raises
concerns when utilizing the model for system optimization. To effectively guide system

104 CHAPTER 7. CONCLUDING REMARKS

optimization, the model must accurately capture the consequences of executing actions at
every conceivable state. However, conventional machine learning techniques are unable to
guarantee consistent performance across regions of the state space that are inadequately
represented in the training data. Models tend to show overconfidence in low-data regions
even when there is high aleatoric uncertainty (Depeweg et al., 2018; Li et al., 2022).
Obtaining a well-balanced dataset that uniformly covers all regions, particularly optimal
ones, is impractical, as current policies are not optimal (otherwise, we would not be seeking
to improve them).

One solution is to enforce established physical properties of the environment into the
models, either through the objective function in the form of penalties, or through the
architecture, by introducing inductive biases (Karniadakis et al., 2021). The primary
objective is to guide the behavior of the models in the low-data regions. Refer to Van Lint
et al. (2005); Huang and Agarwal (2020) for examples of this approach in the context of
traffic prediction.

The above techniques will likely mitigate the problem but additional safeguards are
necessary. Note that, the underlying challenge originates from deploying the model within
a different data distribution than the one on which it was trained. Specifically, the
model is trained on the distribution of trajectories induced by the policy followed when
generating the data, yet it is queried with trajectories sampled from different policies.
Consequently, the model may unintentionally capture spurious correlations and struggle
to generalize effectively. This phenomenon, which we named policy confounding, was
previously discussed in Chapter 6 in the context of its impact on state representations.
Notably, dynamics models are also susceptible to the effects of policy confounding.

If the system structure is known, meaning we can derive DBN describing the variable
relationships, one can employ causal inference techniques (Pearl et al., 2016; Peters et al.,
2017), such as inverse probability weighting or matching, to control for confounding. The
goal is to identify the genuine causal effects of specific actions to ensure that our dynamic
models operate accurately when queried about state-action pairs that are not adequately
represented in the dataset.

7.4.3 Causal Reinforcement Learning

Preventing policy confounding, while simultaneously exploring the environment and
improving the policy, as it is the case in RL, introduces several new challenges but also

7.4. FUTURE WORK 105

opportunities. All of the solutions proposed in Chapter 6 revolve around the idea of
broadening the distribution of states so as to dilute the spurious correlations introduced
by certain policies. While these solutions might be effective in some cases, they somewhat
avoid the actual problem. Going forward, agents should aim to directly capture the causal
structure of the environment and be agnostic to the spurious correlations introduced by
their policies.

Causal inference approaches are naturally divided into two categories: passive or observa-
tional and active or interventional. We describe them below and explain how they can be
adjusted to RL.

Passive Passive methods try to uncover the causal structure of a system directly from
observational data (Mooij et al., 2016). In this setting, there is normally data from a few
different distributions (resulting from different interventions on the system), and the task
is to learn a model that generalizes to a set of test distributions. Perhaps the most popular
methods in this category are those that exploit prediction invariance (Peters et al., 2016;
Arjovsky et al., 2019; Mooij et al., 2020; Krueger et al., 2021). These are based on the
observation that causal models should be invariant to interventions on non-causal variables.
It turns out that this is also the case in RL; causal state representations should be invariant
across policies. Translating this observation into a practical algorithm implies adding
constraints or penalties to the objective function to ensure that the learned representations
are not biased toward a particular policy (Zhang et al., 2020).

Active In this setting, we are allowed to intervene in the system to determine which
variables are causal predictors and which are merely statistically associated (Peters et al.,
2017). The RL setting offers a natural way to intervene in the environment through the
agent’s actions (Seitzer et al., 2021; Sontakke et al., 2021; Lippe et al., 2023). As Professor
Schölkopf, argues in a recent paper (Schölkopf et al., 2021), "(in RL), agents can reflect on
their decisions and formulate hypotheses that can be empirically verified." Hence, causal
inference can be added as one of the agent’s exploration objectives. Agents can stress test
their representations to ensure they are grounded on causal relations rather than spurious
correlations. This is in contrast to the standard RL formulation, where agents simply
explore to maximize the return.

Appendices

Appendix A

Influence-Augmented Local
Simulators

A.1 Proofs

Theorem 3.3.1. Let lt−k:t be a truncated version of lt containing only the last k action-
local-state pairs and let a0:t−k be the sequence of past actions from time 0 up to k. Let the
agent’s policy π̄ be a function of ht−k:t π̄(at|ht−k:t), where ht−k:t is also a truncated version
of ht. If for all ut, a0:t−k we have P (ut|lt−k:t, a0:t−k) = P (ut|lt−k:t), then an influence
predictor that conditions only on lt−k:t, Ī(ut|lt−k:t), is sufficient to guarantee no loss in
value.1

Proof. We will prove that, when conditioning on the last k elements of the AOH, ht−k:t,
the action-value function Q̄π̄(ht−k:t, at), can be expressed in terms of an influence predictor
that conditions on lt−k:t, Ī(ut | lt−k:t). If this is true, then Q estimates can be obtained
by sampling from the finite memory IALS (with influence predictor Ī(ut | lt−k:t)) and the
agent’s optimal policy (in the class of finite memory policies of the form π̄(at | ht−k:t))
can be found via policy iteration Sutton and Barto (1998). Note that, finite memory
policies have been shown to perform arbitrarily bad compared to their full memory
counterparts Singh et al. (1994b). Moreover, empirical results have revealed that standard
RL methods for MDPs may fail when state representations are not Markovian Littman

1Note that this refers only to the value of polices of the form π̄(at|ht−k:t), which might perform
arbitrarily worse than policies that condition on the full AOH, π(at|ht) (Singh et al., 1994b).

110 APPENDIX A. IALS

(1994). Nonetheless, here we are only concerned with whether or not we can find the same
finite memory policies when using influence predictors that condition only on ht−k:t as those
found with influence predictors that condition on the full AOH. That is, independently of
the effectiveness of the RL method we use or the absolute performance of the policies we
find.

Given the full AOH, the action-value function Qπ(ht, at) of a local-FPOMDP satisfies the
Bellman equation and can be expressed as

Qπ(ht, at) =
∑
xt

P (xt | ht)Ṙ(xt, at)+
∑
lt

P (lt | ht)
∑
xt+1

P (ot+1 | lt, at)
[

(A.1)

∑
at+1

π(at+1 | ht+1)Q
π(⟨ht, at, ot+1⟩, at+1)

]
, (A.2)

where and P (xt | ht) is the probability of the local states xt given the previous AOH, and
from (2.8)

P (ot+1 | lt, at) =
∑
xt+1

Ȯ(ot+1 | xt+1)
∑
ut

Ṫ (xt+1 | xt, at, ut)I(ut | lt) (A.3)

If, instead, the agent’s policy π̄, and in turn the Q̄π̄ function, can condition only on the
last k elements in the AOH ht−k:t, we have

Q̄π̄(ht−k:t, at) =
∑

h0:t−k

P π̄(h0:t−k | ht−k:t)Q
π̄(ht = ⟨h0:t−k, ht−k:t⟩, at),

where h0:t−k is the AOH from 0 to k and the above expression is just the expected Q
value given ht−k:t. Then, using (A.2)

Q̄π̄(ht−k:t, at) =
∑

h0:t−k

P π̄(h0:t−k | ht−k:t)
∑
xt

P (xt | h0:t−k, ht−k:t)Ṙ(xt, at)

+
∑

h0:t−k

P π̄(h0:t−k | ht−k:t)
∑
lt

P (lt | h0:t−k, ht−k:t)
∑
ot+1

P (ot+1 | lt, at)
[

∑
at+1

π̄(at+1 | h−k+1:t+1)Q̄
π̄(h−k+1:t+1, at+1)

]

A.1. PROOFS 111

and from (A.3) we have∑
h0:t−k

P π̄(h0:t−k | ht−k:t)
∑
lt

P (lt | h0:t−k, ht−k:t)
∑
ot+1

P (ot+1 |lt, at)

=
∑
ot+1

∑
xt+1

Ȯ(ot+1 | xt+1)
∑
ut

∑
lt

Ṫ (xt+1 | xt, at,ut)I(ut | lt)
[

∑
h0:t−k

P π̄(h0:t−k |ht−k:t)P (lt | h0:t−k, ht−k:t)
]
.

Then, using the rule of conditional probability, the last summation can be simplified as∑
h0:t−k

P π̄(h0:t−k | ht−k:t)P (lt | h0:t−k, ht−k:t) =
∑

h0:t−k

P π̄(lt, h0:t−k | ht−k:t) = P π̄(lt | ht−k:t)

and thus∑
lt

Ṫ (xt+1 | xt, at, ut)I(ut | lt)P π̄(lt | ht−k:t)

=
∑

l0:t−k,lt−k:t

Ṫ (xt+1 | xt, at, ut)I(ut | l0:t−k, lt−k:t)P
π̄(l0:t−k, lt−k:t | ht−k:t)

=
∑

l0:t−k,lt−k:t

Ṫ (xt+1 | xt, at, ut)I(ut | l0:t−k, lt−k:t)P
π̄(l0:t−k | lt−k:t)P

π̄(lt−k:t | ht−k:t)

where P π̄(l0:t−k | lt−k:t, ht−k:t) = P π̄(l0:t−k | lt−k:t) because

lt−k:t is the only parent of ht−k:t

=
∑
lt−k:t

Ṫ (xt+1 | xt, at, ut)
∑
l0:t−k

P π̄(ut, l0:t−k | lt−k:t)P
π̄(lt−k:t | ht−k:t)

=
∑
lt−k:t

Ṫ (xt+1 | xt, at, ut)Ī π̄(ut | lt−k:t)P
π̄(lt−k:t | ht−k:t)

Hence, putting all together,

Q̄π̄(ht−k:t, at) =
∑

h0:t−k

P π̄(h0:t−k | ht−k:t)
∑
xt

P (xt | h0:t−k, ht−k:t)Ṙ(xt, at)

+
∑
ot+1

∑
xt+1

Ȯ(ot+1 | xt+1)
∑
ut

∑
lt−k:t

Ṫ (xt+1 | xt, at, ut)Ī
π̄(ut | lt−k:t)

P π̄(lt−k:t | ht−k:t)
∑
at+1

π̄(at+1 | h−k+1:t+1)Q̄
π̄(h−k+1:t+1, at+1)

112 APPENDIX A. IALS

Intuitively, we see that, because the action-value function Q̄π̄(at, ht−k:t) is just an expecta-
tion over all possible ht given ht−k:t, the distribution of ut given the full ALSH lt, I(ut | lt),
is effectively washed away by the same expectation. Hence, we may as well condition the
influence predictor directly on lt−k:t, Ī π̄(ut | lt−k:t).

Finally, using the assumption P (ut | lt−k:t, a0:t−k) = P (ut | lt−k:t) we can drop the
superscript π̄ from Ī π̄(ut | lt−k:t). This assumption is important because the distribution
Ī(ut | lt−k:t) is generally not well-defined. Hence, if we estimate Ī π̄0(ut | lt−k:t) from
samples collected while following π̄0 but P (ut | lt−k:t, a0:t−k) ̸= P (ut | lt−k:t), then, when
we update the policy, the marginal distribution P π̄(a0:t−k) will change and the old estimates
will be biased.

□

Theorem 3.3.2. A subset of variables Dt from Lt is guaranteed to elicit an invariant
predictor of Ut, across all π ∈ Π, if (i) Dt constitutes a d-separating set (Definition 2.3.4)
and (ii) all policies are functions of the local AOH, π(ht).

Figure A.1: Graphical causal model of a local-FPOMDP. The bidirectional arrows between
two sets of variables (e.g. between dt and ut) indicate that there can be variables in one
set that are affected by other variables in the other set and vice-versa. As depicted by the
two diagonal arrows in the middle, actions a0:t may or may not be included in dt. The top
dashed arrow connecting y and π indicates that π cannot be a function of the non-local
variables.

Proof. In this proof, we will make use of the graphical causal model in Figure A.1. We
know that the agent’s policy π can only influence the environment through its actions
a0:t. Moreover, from the definition of d-set (Definition 2.3.4), we know that the direct path
Pearl (2000) that connects the past sequence of actions a0:t with ut must go through dt.
Otherwise, (ut ⊥̸⊥ dt \ lt | dt) and dt would not constitute a d-set. Note that, as shown
by the diagonal arrows in the middle, actions in a0:t may or may not be included in dt.

A.1. PROOFS 113

Finally, the second condition in Theorem 3.3.2 implies that there cannot be backdoor paths
Pearl (2000) between π and ut. Hence, if we control for dt, π and ut become conditionally
independent,

P (ut | dt) = P π(ut | dt) for all π ∈ Π.

Moreover, for the above to hold, the d-set does not necessarily need to be minimal, dt ⊆ d∗t .
That is, as long as the path between lt \ dt and ut remains closed, dt may include as many
additional (irrelevant) variables as there are in lt. Note that this path is only open when
dt is not a d-set. □

Proposition 3.3.1. Let π0 be the exploratory policy used to collect the dataset. Then, for
all π ∈ Π, ut ∈ ×i dom(U i

t), lt ∈ ×i dom(Li
t)

KL(Pπ0(dt, ut)||Pπ(dt, ut)) ≤ KL(Pπ0(lt, ut)||Pπ(lt, ut))

where KL is the Kullback–Leibler divergence.

Proof.

KL(P π0(dt, ut) || P π(dt, ut)) =
∑
dt,ut

P π0(dt, ut) log

(
P π0(dt, ut)

P π(dt, ut)

)

=
∑
dt,ut

P π0(ut, dt) log

(
P π0(ut | dt)P π0(dt)

P π(ut | dt)P π(dt)

)

=
∑
dt

log

(
P π0(dt)

P π(dt)

)∑
ut

P π0(ut, dt)

since, from Theorem 3.3.2, we know that P (ut | dt)

is invariant across all π ∈ Π

= KL(P π0(dt) || P π(dt))

Similarly, because P (ut | lt) is also invariant across all π ∈ Π, P π0(ut | lt) = P π(ut | lt),

KL(P π0(lt, ut) || P π(lt, ut)) = KL(P π0(lt) || P π(lt)).

Then, since dt ⊆ lt, we can write

P π(lt) = P π(dt, lt \ dt)

114 APPENDIX A. IALS

and, using the chain rule

KL(P π0(lt) || P π(lt)) = KL(P π0(lt \ dt | dt) || P π(lt \ dt | dt)) +KL(P π0(dt) || P π(dt))

≥ KL(P π0(dt) || P π(dt))

where the last inequality holds because the KL divergence is always non-negative. □

Corollary 3.3.3. Let a0:t be the past sequence of actions from 0 to t. If P (dt|do(ao:t)) =
P (dt) for all dt and a0:t. Then, for any π1 ̸= π2 : π1, π2 ∈ Π we have that, for all
ut ∈ ×i dom(U i

t), lt ∈ ×i dom(Li
t), P π1(dt, ut) = P π2(dt, ut) even though P π1(lt, ut) ̸=

P π2(lt, ut).

Proof. Follows from Proposition 3.3.1. We know that π can only influence the environment
through the actions a0:t. Hence, for all π1 ̸= π2, dt, a0:t,

P (dt | do(a0:t)) = P (dt)⇒ Pπ1(dt) = Pπ2(dt) ⇐⇒ KL(Pπ1(dt) || Pπ2(dt)) = 0

and from the proof of Proposition 3.3.1

KL(Pπ1(dt, ut) || Pπ2(dt, ut)) = KL(Pπ1(dt) || Pπ2(dt))

which means that, for all π1 ̸= π2, dt, a0:t, ut,

P (dt | do(a0:t)) = P (dt)⇒ KL(Pπ1(dt, ut) || Pπ2(dt, ut)) = 0 ⇐⇒ Pπ1(dt, ut) = Pπ2(dt, ut)

and, because lt ⊆ a0:t then, for all π1 ̸= π2, lt, a0:t, ut,

KL(Pπ1(lt) || Pπ2(lt)) > 0 ⇐⇒ KL(Pπ1(lt, ut) || Pπ2(lt, ut)) > 0 ⇐⇒ Pπ1(lt, ut) ̸= Pπ2(lt, ut)

□

A.2 Example: Spurious Correlations in the Traffic Domain

Figure A.2 shows four screenshots taken from the SUMO simulator Lopez et al. (2018).
These capture a sequence consecutive states in the traffic domain (see Section 3.4.2 for
more details about this environment). The agent’s local region is depicted by the red
dashed box. The small cyan box on the right of every screenshot indicates the location of
an influence source. As shown in the screenshots, when traffic is dense, lines of cars are

A.3. RUNTIMES 115

formed along the incoming lanes in front of the traffic lights. This situation leads to the
appearance of spurious correlations between the traffic lights and the influence sources. In
particular, Figure A.2 reveals that three timesteps after the traffic lights on the horizontal
lanes are switched to green a new car appears at the influence source. Although there
is clearly no direct relationship between these two events, if this pattern occurs often
enough, as it is the case under a uniform random policy, the AIP might pick it up and
use it as a shortcut. That is, the AIP might learn to predict that a car will show at the
influence source exactly three timesteps after the lights are switched to green. This would
indeed be effective at the beginning of training, since traffic jams are common under poor
performing policies, but may result in highly inaccurate predictions when policies are
further improved. As explained in Section 3.3.2 the problem above can be prevented if
d-sets, rather than full AOHs, are fed into the AIP.

Green light

Influence
source

New car
appears

2 31 2 4

Figure A.2: Four screenshots capturing a sequence of states that may occur under a
uniform random policy. The agent’s local region is depicted by the red dashed box. The
small cyan box on the right of every screenshot indicates the location of an influence source.
The screenshots reveal that, when the traffic is dense, three timesteps after the traffic
lights on the horizontal lanes are switched to green a new car appears at the influence
source. This is clearly a spurious correlation as there is not direct relationship between
the traffic lights and the influence sources.

A.3 Runtimes

The table below shows a breakdown of the runtime for the two environments and the
three simulators. These were measured on an Intel i7-8650U CPU with 8 cores.

116 APPENDIX A. IALS

Simulator Agents training (h) Data collection (h) AIP training (h) Total (h)

Traffic
GS 6.16 - - 6.16
IALS 2.13 0.03 0.01 2.17
untrained-IALS 2.13 - - 2.13

Warehouse
GS 13.12 - - 13.12
IALS 3.90 0.03 0.06 3.99
untrained-IALS 3.90 - - 3.90

A.4 Local Simulators

Figure A.3: A screenshot of the local simulators for the traffic control (left) and warehouse
(right) environments

A.5. RESULTS 117

A.5 Results

A.5.1 Traffic control intersection 2

0 1 2 3 4 5 6
Runtime (h)

80

100

120

140

160

180

GS
IALS
untrained-IALS
Actuated

0 1 2 3 4 5 6
Total runtime (h)

GS

IALS

untrained-IALS

0.0 0.2 0.4 0.6 0.8
Influence cross-entropy loss

IALS

untrained-IALS

M
ea

n
Ep

iso
di

c
Re

wa
rd

Figure A.4: Top: Learning curves of agents trained with the GS, the IALS, and the
untrained-IALS on intersection 2 (Figure 3.2) as a function of wall-clock time. The dotted
horizontal lines show the final performance of the agents after 2M timesteps of training.
The dotted horizontal line at the begining of the red curve corresponds to the AIP training
time. Middle: Total runtime of training for 2M training steps on the three simulators.
Bottom: Cross entropy loss for the trained and untrained AIPs.

A.5.2 Comparison on the number of timesteps

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

80

100

120

140

160

180

M
ea

n
Ep

iso
di

c
Re

wa
rd

IALS
GS
untrained-IALS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Steps 1e6

2

4

6

8

10

12

14

M
ea

n
Ep

iso
di

c
Re

wa
rd

IALS
GS
untrained-IALS

Figure A.5: Learning curves as a function of the number of timesteps for the traffic (left)
and warehouse (right) environments.

118 APPENDIX A. IALS

A.5.3 Sufficiently similar training conditions

Here we further explore our research question in Section 3.3.3. To what extent can agents
trained on inaccurate IALS achieve similar performance to those trained on the GS? To
shed some light on this this complicated question, we introduce a new type of AIP which
represents the influence sources by a fixed marginal probability P (ut) independent of the
ALSH. We call the resulting simulator F-IALS (F for fixed).

Traffic results: Figure 3.3 shows the performance of agents trained on the F-IALS with
P (ut) = 0.1 (F-IALS 0.1) and P (ut) = 0.5 (F-IALS 0.5). The bar plot at the bottom of
Figure 3.3 shows that the cross-entropy loss is much higher when modeling the influence
sources with the marginal distribution P (ut) (F-IALS 0.1 and F-IALS 0.5) than when
modeling them with the learned influence predictor P (ut | lt) (IALS). This suggests that
there is a non-trivial relationship between ALSH and influence sources, and in principle

KL(I(ut | dt) || Îθ(ut | dt)) < KL(I(ut | dt) || P (ut) = 0.1)

< KL(I(ut | dt) || P (ut) = 0.5)
(A.4)

Nonetheless, agents trained on the F-IALS 0.1 reach the same (intersection 2) or similar
(intersection 1) level of performance as those trained on the IALS. This is in line with
our hypothesis in section 3.3.3. If real trajectories are somewhat likely under a random
influence predictor, an agent with sufficient capacity will be able to learn from them and
perform well on the true environment. In fact, given that the probability used for the
inflow of vehicles entering the GS is also 0.1, the chances of generating traffic patterns
with the F-IALS (0.1) similar to those of the GS are very high. In contrast, when setting
the probability of cars entering the LS to a less sensible P (ut) = 0.5 agents trained on the
F-IALS (0.5) can no longer match the same performance level.

A.5. RESULTS 119

0 1 2 3 4 5 6
Runtime (h)

80

100

120

140

160

180

0 1 2 3 4 5 6
Runtime (h)

100

120

140

160

180

0 1 2 3 4 5 6
Total runtime (h)

GS
IALS

F-IALS (0.1)
F-IALS (0.5)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Influence cross-entropy loss

IALS
F-IALS (0.1)

F-IALS (0.5)

M
ea

n
Ep

iso
di

c
Re

wa
rd

GS IALS F-IALS (0.1) F-IALS (0.5) Actuated

Figure A.6: Top: Learning curves of agents trained with the GS, the IALS and the F-IALS
on the the two intersections highlighted in Figure 3.2 as a function of wall-clock time. The
dotted horizontal lines show the final performance of the agents after 2M timesteps of
training. Second from the bottom: Total runtime of training for 2M training steps
on the three simulators. Bottom: Cross entropy loss evaluated at intersection 1 for the
three AIPs (values are very similar for intersection 2).

120 APPENDIX A. IALS

0 2 4 6 8 10 12
Runtime (h)

2

4

6

8

10

12

14
M

ea
n

Ep
iso

di
c

Re
wa

rd

GS
IALS
F-IALS

0 2 4 6 8 10 12
Total runtime (h)

GS

IALS

F-IALS

0.0 0.1 0.2 0.3 0.4 0.5
Influence cross-entropy loss

IALS

F-IALS

2 4 6 8 10 12
12.50

12.75

13.00

13.25

13.50

13.75

14.00

14.25

14.50

Figure A.7: Top: Learning curves of agents trained with the GS, the IALS and the F-IALS
on the the warehouse commissioning task as a function of wall-clock time. Zoom in version
of the same chart showing the performance difference between IALS and F-IALS. The
dotted horizontal lines show the final performance of the agents after 2M timesteps of
training. The dotted horizontal line at the beginning of the red curve corresponds to the
AIP training time. Second from the bottom: Total runtime of training for 2M steps
on the three simulators. Bottom: Cross entropy loss for the two AIPs.

Warehouse results: In this environment the fixed influence source probabilities is set
to an estimate P̂ (ut) of true value P π0(ut), which we approximated empirically from
N = 10K samples collected from the GS while following π0. Even so, the cross-entropy of
the F-IALS is again higher than that of the learned influence predictor Îθ(ut | lt), indicating
again that influence sources ut and ALSHs are strongly coupled with one another and
that there is a non-trivial relationship between them,

KL(I(ut | dt) || Îθ(ut | dt)) < KL(I(ut | dt) || P̂ (ut)) (A.5)

A.6. IMPLEMENTATION DETAILS 121

Despite being less accurate, agents trained on the F-IALS can also perform well on the
true environment. Yet, they do not reach the same level of performance as those obtained
with the GS and the IALS (see zoom in version in Figure 3.5). Even though, the basic
strategy on how to collect items can be learned from the F-IALS, the simulator does not
provide the extra level of detail needed to learn better policies. That is, a consistent
pattern that is present in both the GS and the IALS by which items that have been active
the longest are more likely to disappear next. With this, agents can learn to not go for an
item when the chances that a neighbor robot will get there first are high.

All in all we see that, in certain situations, inaccurate influence predictors can still provide
a fair amount of useful experiences for the agent to perform well on the true environment.
However, in domains with complicated dynamics, such as our warehouse environment, the
best policies can only be obtained when simulations provide the extra level of detail that
only accurate influence predictors are able to deliver.

A.6 Implementation Details

Approximate influence predictor: Due to the sequential nature of the problem,
rather than feeding the full past history every time we make a prediction, we use a recurrent
neural network (RNN) (Hochreiter and Schmidhuber, 1997; Cho et al., 2014) and process
observations one at a time,

P (ut | lt) ≈ Îθ(ut | ĥt−1, ot) = Frnn(ĥt−1, ot, ut), (A.6)

where we use ĥ to indicate that the history h is embedded in the RNN’s internal memory.

Given that we generally have multiple influence sources ut = ⟨u1t . . . uMt ⟩, we need to fit M
separate models Îθm to predict each of the M influence sources. In practice, to reduce the
computational cost, we can have a single network with a common representation module
for all influence sources and output their probability distributions using M separate heads.
This representation assumes that the influence sources are independent of one another,

I(ut | lt) =
M∏

m=0

P (um
t | lt), (A.7)

which is true for the two domains we study in this paper.

Practical implications of Theorem 3.3.1: One important consideration when training
RNNs via backpropagation through time (BPTT) is to choose the right length for the

122 APPENDIX A. IALS

input sequences (Williams and Peng, 1990). This determines the number of steps the
network is backpropagated and thus for how long past information can be retained.
On the one hand, longer sequences will often provide more information to predict the
influence sources; on the other, they will also make it harder to optimize the network.
Ideally, we would like to choose just the right sequence length such that the agent cannot
perceive any distribution shift in the local transitions. Assuming that in our environment
P (ut | lt−k:t, a0:t−k) = P (ut | lt−k:t), from Theorem 3.3.1 we know that the sequence length
should be (at least) as long as that of the agent’s (if these are also modeled by RNNs or
as long as the number of stacked observations fed to feedforward neural networks; FNN).
If P (ut | lt−k:t, a0:t−k) ̸= P (ut | lt−k:t) we can still condition the AIP only on lt−k:t, but
we might need to retrain the AIP every certain number of policy updates to prevent it
from becoming stale (see last paragraph in the proof of theorem 3.3.1; Appendix A.1).

Policies: We model policies by FNNs. In the warehouse environment, since the agent
needs memory to perform well, policies are fed with a stack of the last 8 observations.
This architecture performed better than GRUs. In the traffic control task, on the other
hand, policies are fed only with the current observation as this seems to be sufficient to
predict the influence sources.

A.7 Algorithms

A.7. ALGORITHMS 123

Algorithm 2 Collect dataset with GS
1: Input: T , O, π0 ▷ Global simulator, global observation function, and exploratory

policy
2: for n ∈ ⟨0, ..., N/T ⟩ do
3: s0 ← reset ▷ Reset initial state
4: x0 ← s0 ▷ Extract local state from global state
5: l0 ← x0 ▷ Initialize ALSH with initial local state
6: o0 ∼ O(· | s0) ▷ Sample observation from O
7: h0 ← o0 ▷ Initialize AOH with initial observation
8: for t ∈ ⟨0, ..., T ⟩ do
9: ⟨u0t , ..., ukt ⟩ ← st ▷ Extract influence sources from global state

10: D ← {lt, ⟨u0t , ..., ukt ⟩} ▷ Append ALSH-influence-source pair to the dataset
11: at ∼ π(· | ht) ▷ Sample action
12: st+1 ∼ T (· | st, at) ▷ Sample next state from GS
13: xt+1 ← st+1 ▷ Extract local state from global state
14: lt+1 ← ⟨at, xt+1⟩ ▷ Append action-local-state pair to ALSH
15: ot+1 ∼ O(· | st+1) ▷ Sample observation from O
16: ht+1 ← ⟨at, ot+1⟩ ▷ Append actions-observation pair to the AOH
17: end for
18: end for

Algorithm 3 Collect dataset with GS
1: Input: T , O, π0 ▷ Global simulator, global observation function, and exploratory

policy
2: for n ∈ ⟨0, ..., N/T ⟩ do
3: s0 ← reset ▷ Reset initial state
4: x0 ← s0 ▷ Extract local state from global state
5: l0 ← x0 ▷ Initialize ALSH with initial local state
6: o0 ∼ O(· | s0) ▷ Sample observation from O
7: h0 ← o0 ▷ Initialize AOH with initial observation
8: for t ∈ ⟨0, ..., T ⟩ do
9: ⟨u0t , ..., ukt ⟩ ← st ▷ Extract influence sources from global state

10: D ← {lt, ⟨u0t , ..., ukt ⟩} ▷ Append ALSH-influence-source pair to the dataset
11: at ∼ π(· | ht) ▷ Sample action
12: st+1 ∼ T (· | st, at) ▷ Sample next state from GS
13: xt+1 ← st+1 ▷ Extract local state from global state
14: lt+1 ← ⟨at, xt+1⟩ ▷ Append action-local-state pair to ALSH
15: ot+1 ∼ O(· | st+1) ▷ Sample observation from O
16: ht+1 ← ⟨at, ot+1⟩ ▷ Append actions-observation pair to the AOH
17: end for
18: end for

Appendix B

Distributed Influence-Augmented
Local Simulators

B.1 Proofs

Lemma 4.4.1. Let Π = ×i∈NΠi be the product space of joint policies with Πi being the set
of policies for agent i. Moreover, let Ψ = ×i∈NΨi be the product space of joint influences,
with Ψi being the set of influence distributions for agent i. Every joint policy π ∈ Π induces
exactly one influence distribution Ii ∈ Ψi for every agent i ∈ N .

Proof. We will prove it by contradiction. Let us assume there is a single joint policy π

that induces two different influence distributions Ii1 and Ii2 on agent i. From the definition
of influence (Section 4.1; Oliehoek et al. 2021) we have

Ii1(u
i
t|lit) =

∑
ui
t−1,y

i
t−1,a

−i
t−1

P1(u
i
t|xit−1, u

i
t−1, y

i
t−1, at−1)P1(u

i
t−1, y

i
t−1, a

−i
t−1|l

i
t) (B.1)

and

Ii2(u
i
t|lit) =

∑
ui
t−1,y

i
t−1,a

−i
t−1

P2(u
i
t|xit−1, u

i
t−1, y

i
t−1, at−1)P2(u

i
t−1, y

i
t−1, a

−i
t−1|l

i
t). (B.2)

First, we see that, because ⟨xit−1, u
i
t−1, y

i
t−1⟩ fully determines the Markov state st−1, the

first term in the summation can be computed from the environment’s transition function,

126 APPENDIX B. DIALS

and thus

P1(u
i
t|xit−1, u

i
t−1, y

i
t−1, at−1) =P2(u

i
t|xit−1, u

i
t−1, y

i
t−1, at−1)

=
∑
st

1(ut, st)T (st|st−1, at−1),
(B.3)

where 1(ut, st) is an indicator function that determines if the state st is feasible in the
context of ut.

Further, we know that

P1(u
i
t−1, y

i
t−1, a

−i
t−1|l

i
t) =

∑
h−i
t−1

π−i(a−i
t−1|h

−i
t−1)P1(u

i
t−1y

i
t−1, h

−i
t−1|l

i
t) (B.4)

P2(u
i
t−1, y

i
t−1, a

−i
t−1|lt) =

∑
h−i
t−1

π−i(a−i
t−1|h

−i
t−1)P2(u

i
t−1y

i
t−1, h

−i
t−1|l

i
t) (B.5)

where P1(u
i
t−1y

i
t−1, h

−i
t−1|lt) and P2(u

i
t−1y

i
t−1, h

−i
t−1|lt) can be computed recursively as

P1(u
i
t−1, y

i
t−1, h

−i
t−1|l

i
t) =∑

h−i
t−2,o

−i
t−1

O(o−i
t−1|x

i
t−1, u

i
t−1, y

i
t−1)π

−i(a−i
t−2|h

−i
t−2)P1(u

i
t−1, y

i
t−1, h

−i
t−2|l

i
t),

(B.6)

and

P2(u
i
t−1, y

i
t−1, h

−i
t−1|l

i
t) =∑

h−i
t−2,o

−i
t−1

O(o−i
t−1|x

i
t−1, u

i
t−1, y

i
t−1)π

−i(a−i
t−2|h

−i
t−2)P2(u

i
t−1, y

i
t−1, h

−i
t−2|l

i
t),

(B.7)

with h−i
t−1 = ⟨h−i,t−2, a−i,t−2, o

−i
t−1⟩. Then, if we further unroll equations (B.6) and (B.7)

up to timestep 0, we see that all probability distributions in both cases are equivalent and
we reach a contradiction. Hence,

Ii1(u
i
t|lit) = Ii2(u

i
t|lit) (B.8)

□

Proposition 4.4.1. The space of joint policies Π = ×i∈NΠi is necessarily greater than
or equal to the space of joint influences Ψ = ×i∈NΨi, |Π| ≥ |Ψ|. Moreover, there exist
local-form FPOSGs for which the inequality is strict.

B.1. PROOFS 127

Proof. From Proposition 4.4.1 it follows that the space of joint influences Ψ is at most as
large as the space of joint policies Π, |Ψ| |> |Π|. Hence, we just need to show that in some
cases Π is strictly greater than Ψ, |Π| > |Ψ|. □

A clear example is that where each agent’s local region Xi is independent of the other
agents’ policies π−i (Becker et al., 2003). That is, the actions of other agents a−i have no
effect on agent i’s local state transitions. From the definition of IALM (Definition 4.3.3)
we know that, in our setting, a−i can only affect the local state transitions through ui.
Therefore, for the local transitions to be independent the following should hold

P (uit|xit−1, u
i
t−1, y

i
t−1, at−1) = P (uit|xit−1, u

i
t−1, y

i
t−1, a

i
t−1) (B.9)

The equation above reflects that only agent i can affect uit. Thus, in the event of local
transition independence, we have that

∀i ∈ N : ∃!Ii∗(uit|lit) ∈ Ψi : ∀π ∈ Π
(
Ii(uit|lit, π) = Ii∗(uit|lit)

)
(B.10)

That is, for any joint policy π ∈ Π there is a unique influence distribution Ii∗ ∈ Ψi for
every agent i ∈ N , and thus, in this particular case, |Π| ≫ |Ψ| = 1.

To prove Lemma 4.4.3 we will use the following lemma.

Lemma B.1.1. Let Ii1(u
i
t|lit) and Ii2(u

i
t|lit) be two different influence distributions with M i

1

and M i
2 being the IALMs induced by each of them respectively. Moreover, let P1(h

i
t+1|hit, ait)

and P2(h
i
t+1|hit, ait) denote the resulting local AOH transitions for M i

1 and M i
2 respectively.

The following inequality holds∑
xi
t+1

∣∣P1(h
i
t+1|hit, ait)− P2(h

i
t+1|hit, ait)

∣∣ ≤∑
lit,u

i
t

P (lit|hit)
∣∣I1(uit|lit)− I2(u

i
t|lit)

∣∣ ∀hit, ait

(B.11)

128 APPENDIX B. DIALS

Proof.∑
hi
t+1

∣∣P1(h
i
t+1|hit, ait)− P2(h

i
t+1|hit, ait)

∣∣
=
∑
oit+1

∣∣∣∑
xi
t+1

Oi(oit+1|xit+1)
∑
ui
t

Ṫ i(xit+1|xit, uit, ait)
∑
lit

I1(u
i
t|lit)P (lit|hit)

−
∑
xi
t+1

Oi(oit+1|xit+1)
∑
ui
t

Ṫ i(xit+1|xit, uit, ait)
∑
lit

I2(u
i
t|lit)P (lit|hit)

∣∣∣
=
∑
oit+1

∣∣∣∑
xi
t+1

Oi(oit+1|xit+1)
∑
ui
t

Ṫ i(xit+1|xit, uit, ait)
∑
lit

P (lit|hit)
[
I1(u

i
t|lit)− I2(u

i
t|lit)

]∣∣∣
=
∣∣∣∑
lit,u

i
t

P (lit|hit)
[
I1(u

i
t|lit)− I2(u

i
t|lit)

]∣∣∣
≤
∑
lit,u

i
t

P (lit|hit)
∣∣I1(uit|lit)− I2(u

i
t|lit)

∣∣

(B.12)

□

Lemma 4.4.3. Let M i
1 and M i

2 be two IALMS differing only on their influence distributions
Ii1(u

i
t|lit) and Ii2(u

i
t|lit). Let Qπi

M i
1

and Qπi

M i
2

be the value functions induced by M i
1 and M i

2

for the same πi. If, for all hit ∈ H i
t , uit ∈ ×j dom(U i,j

t), Ii1 and Ii2 satisfy∑
lit,u

i
t

P (lit | hi
t)
∣∣Ii1(ui

t | lit)− Ii2(u
i
t|lit)

∣∣ ≤ ξ, (4.2)

then ∣∣∣Qπi

Mi
1
(hi

t, a
i
t)−Qπi

Mi
2
(hi

t, a
i
t)
∣∣∣ ≤ R̄

(K − t)(K − t+ 1)

2
ξ (4.3)

for all πi ∈ Πi, hit ∈ H i
t , and ait ∈ Ai, where K is the horizon and R̄ = ||R||∞

Proof. This is a special case of the simulation lemma (Kearns and Singh, 2002). We have
that the set of local states and actions is the same for both IALMs. Moreover, the reward
function is also the same R1(xt, at) = R2(xt, at).

B.1. PROOFS 129

∣∣∣Qπi

M i
1
(hit, a

i
t)−Qπi

M i
2
(hit, a

i
t)
∣∣∣ =∣∣∣∣∣∑

xi
t

P (xit|hit)R(xit, a
i
t)

+
∑

hi
t+1,a

i
t+1

P1(h
i
t+1|hit, ait)πi(ait+1|hit+1)Q

πi

M i
1
(hit+1, a

i
t+1)−

∑
xi
t

P (xit|hit)R(xit, a
i
t)

−
∑

hi
t+1,a

i
t+1

P2(h
i
t+1|hit, ait)πi(ait+1|hit+1)Q

πi

M i
2
(hit+1, a

i
t+1)

∣∣∣∣∣,
(B.13)

where P1(h
i
t+1|hit, ait) and P2(h

i
t+1|hit, ait) are the AOH transitions induced by I1 and I2

respectively.

∣∣∣Qπi

M i
1
(hit, a

i
t)−Qπi

M i
2
(hit, a

i
t)
∣∣∣ =∣∣∣∣∣ ∑

hi
t+1,a

i
t+1

πi(ait+1|hit+1)
[

P1(h
i
t+1|hit, ait)Qπi

M i
1
(hit+1, a

i
t+1)− P2(h

i
t+1|hit, ait)Qπi

M i
2
(hit+1, a

i
t+1)

]∣∣∣∣∣
=

∣∣∣∣∣ ∑
hi
t+1,a

i
t+1

πi(ait+1|hit+1)
[

P1(h
i
t+1|hit, ait)Qπi

M i
1
(hit+1, a

i
t+1)− P2(h

i
t+1|hit, ait)Qπi

M i
1
(hit+1, a

i
t+1)

+P2(h
i
t+1|hit, ait)Qπi

M i
1
(hit+1, a

i
t+1)− P2(h

i
t+1|hit, ait)Qπi

M i
2
(hit+1, a

i
t+1)

]∣∣∣∣∣
≤

∣∣∣∣∣R̄(K − t)
∑
hi
t+1

(
P1(h

i
t+1|hit, ait)− P2(h

i
t+1|hit, ait)

)

+
∑

hi
t+1,a

i
t+1

πi(ait+1|hit+1)P2(h
i
t+1|hit, ait)

[
Qπi

M i
1
(hit+1, a

i
t+1)−Qπi

M i
2
(hit+1, a

i
t+1)

]∣∣∣∣∣
(B.14)

since Qπi

M i
1
(hit+1) ≤ R̄(K − t). Then, from Lemma B.1.1 we know that

∑
hi
t+1

(
P1(h

i
t+1|hit, ait)− P2(h

i
t+1|hit, ait)

)
≤

∑
lit,u

i
t

P (lit|hit)
∣∣I1(uit|lit)− I2(u

i
t|lit)

∣∣ ≤ ξ ∀hit, ait.

(B.15)

130 APPENDIX B. DIALS

Hence,

∣∣Qπi

M i
1
(hit, a

i
t)−Qπi

M i
2
(hit, a

i
t)
∣∣ ≤ K∑

k=t

R̄(K − k)ξ = R̄
(K − t)(K − t+ 1)

2
ξ. (B.16)

□

Theorem 4.4.4. Let M i
1 and M i

2 be two IALMS differing only on their influence distribu-
tions Ii1(u

i
t|lit) and Ii2(u

i
t|lit). M i

1 and M i
2 induce the same optimal policy πi∗ if, for some

∆,
Qπi∗

Mi
1
(hi

t, ā
i
t)−Qπi∗

Mi
1
(hi

t, â
i
t) > 2∆ ∀hi

t, â
i
t ̸= āit (4.4)

with ∣∣∣Qπi

Mi
1
(hi

t, a
i
t)−Qπi

Mi
2
(hi

t, a
i
t)
∣∣∣ ≤ ∆ ∀hi

t, a
i
t, π

i, (4.5)

where āit = argmaxait Q
πi∗

M i
1
(hit, a

i
t)

Proof. We will prove it by contradiction. Let us assume there is a policy π∗ that is optimal
for M i

1 but not for M i
2. This implies that, for some hit, there is at least one action âit ̸= āit

for which
Qπ∗

M i
2
(hit, ā

i
t) < Qπ∗

M i
2
(hit, â

i
t) (B.17)

Then, because the maximum gap between QM i
1

and QM i
2

is ∆,

Qπ∗

M i
1
(hit, ā

i
t)−∆ ≤ Qπ∗

M i
2
(hit, ā

i
t) < Qπ∗

M i
2
(hit, â

i
t) ≤ Qπ∗

M i
1
(hit, â

i
t) + ∆. (B.18)

Therefore, we have
Qπ∗

M i
1
(hit, ā

i
t)−Qπ∗

M i
1
(hit, â

i
t) < 2∆, (B.19)

which contradicts the statement

Qπ∗

M i
1
(hit, ā

i
t)−Qπ∗

M i
1
(hit, a

i
t) > 2∆ ∀hit, ait (B.20)

□

B.2 Further Related Work

There is a sizeable body of literature that concentrates on the non-stationarity issues
arising from having multiple agents learning simultaneously in the same environment

B.2. FURTHER RELATED WORK 131

(Laurent et al., 2011; Hernandez-Leal et al., 2017). Although oftentimes the problem can
be simply ignored with virtually no consequences for the agents’ performance (Tan, 1993),
in general, disregarding changes in the other agents’ policies, and assuming individual
Q-values to be stationary, can have a catastrophic effect on convergence (Claus and
Boutilier, 1998).

The problem of non-stationarity becomes even more severe in the Dec-POMDP setting
(Oliehoek and Amato, 2016) since policy changes may not be immediately evident from
each agent’s AOH. To compensate for this Raileanu et al. (2018) and Rabinowitz et al.
(2018) explicitly train models that predict the other agents’ goals and behaviors. In
contrast, Foerster et al. (2018a) add an extra term to the learning objective that is meant
to predict the other agents’ parameter updates. This approach is empirically shown to
encourage cooperation in general-sum games. In order to better approximate the value
function, several works have studied the use of additional information during training
to inform each individual agent of changes in the other agents’ policies, leading to the
ubiquitous centralized training decentralized execution (CTDE) paradigm. The works by
Lowe et al. (2017) and Foerster et al. (2018b) exploit this by training a single centralized
critic that takes as input the true state and joint action of all the agents. This critic is then
used to update the policies of all agents following the actor-critic policy gradient update
(Konda and Tsitsiklis, 1999). Even though the use of additional information to augment
the critic may help reduce bias in the value estimates, the idea lacks any theoretical
guarantees and has been shown to produce the same policy gradient in expectation as
those produced by multiple independent critics (Lyu et al., 2021). Moreover, according to
Lyu et al., naively augmenting the critic with all other agents’ actions and observations
can heavily increase the variance of the policy gradients. Both results, however, assume
that the critics have converged to the true on-policy value estimates. The authors do
admit that, in practice, critics are often used even when they have not yet converged. In
such situations, centralized critics might provide more stable policy updates since they are
better equipped to follow the true non-stationary Q values. Following a similar perspective,
the concurrent work by Spooner et al. (2021) tries to reduce variance by using a per-agent
baseline function that removes from the policy gradient the contributions to the joint value
estimates of those agents that are conditionally independent, thus effectively providing
the agent with more stable updates. The works by de Witt et al. (2020) and Yu et al.
(2021) show that the vanilla PPO algorithm (Schulman et al., 2017) works already quite
well on several multi-agent tasks. Yu et al. attribute the positive empirical results to the
clipping parameter ϵ, which prevents individual policies from changing drastically, and in

132 APPENDIX B. DIALS

turn, reduces the problem of non-stationarity. Li et al. (2021b) further analyze this idea
and propose a method to estimate the joint policy divergence, which is then used as a
constraint in the optimization objective.

B.3 Algorithms

The two algorithms below describe how to generate the datasets {Di}i∈N with the GS
(Algorithm 4) and how to simulate trajectories with each of the IALS (Algorithm 5).

Algorithm 4 Collect datasets {Di}i∈N with GS

Input: T , {Ȯi}i∈N , π0 = {πi
0}i∈N ▷ Global simulator, observation functions, and

joint policy
for n ∈ ⟨0, ..., N/T ⟩ do

s0 ← reset ▷ Reset initial state
{xi0}i∈N ← s0 ▷ Extract local states from global state
{li0 ← xi0}i∈N ▷ Initialize each agent’s ALSH with initial local state
{oi0 ∼ Oi(· | x0)}i∈N ▷ Sample each agent’s observation from Oi

{hi0 ← oi0}i∈N ▷ Initialize each agent’s AOH with initial observation
for t ∈ ⟨0, ..., T ⟩ do
{ui0}i∈N ← s0 ▷ Extract each agent’s influence sources from global state
{Di ← (lit, u

i
t)}i∈N ▷ Append ALSH-influence-source pair to the datasets

{ait ∼ π(· | hit)}i∈N ▷ Sample each agent’s action from πi

st+1 ∼ T (· | st, at = {ait}i∈N) ▷ Sample next state from GS
{xit+1}i∈N ← st+1 ▷ Extract local states from global state
{lit+1 ← ⟨ait, xit+1⟩}i∈N ▷ Append action-local-state pairs to each agent’s ALSH
{oit+1 ∼ Ȯi(· | xt+1)}i∈N ▷ Sample each agent’s observation from Ȯi

{hit+1 ← ⟨ait, oit+1⟩}i∈N ▷ Append actions-observation pairs to each agent’s
AOH

end for
end for

B.4 Results

B.4.1 DIALS vs GS

The plots in Figures B.1 and B.2 show the learning curves of agents trained with the GS,
DIALS, and untrained-DIALS on the 4 variants of the traffic and warehouse environments

B.4. RESULTS 133

Algorithm 5 Simulate agent i’s trajectory with IALS

1: Input: Ṫ i, Ṙi, Ȯi, πi, Îθi ▷ local simulator, local reward and observation functions,
policy, AIP

2: xi0 ← reset ▷ Reset initial state
3: oi0 ∼ Ȯi(·|xi0) ▷ Sample observation from Ȯi

4: hi0 ← oi0 ▷ Initialize AOH with initial observation
5: for t ∈ ⟨0, ..., T ⟩ do
6: ait ∼ π(· | hit) ▷ Sample action
7: Ṙi(xit, a

i
t) ▷ Compute reward

8: uit ∼ Îθi(· | lit) ▷ Sample influence sources from AIP
9: xit+1 ∼ Ṫ (· | xit, ait, uit) ▷ Sample next local state from LS

10: lit+1 ← ⟨ait, xit+1⟩ ▷ Append action-local-state pair to ALSH
11: oit+1 ∼ Ȯi(· | xit+1) ▷ Sample observation from O
12: hit+1 ← ⟨ait, oit+1⟩ ▷ Append action-observation pair to AOH
13: end for

(4, 25, 49, and 100 agents). The bar plots show the total runtime of training for 4M
timesteps with the three simulators. Shaded areas indicate the standard error of the mean.

The orange curves in Figures B.1d and B.2d stop at 3.5M and 2M timesteps, respectively.
This is because the maximum execution time allowed by our computer cluster is 1 week,
and training 100 agents with the GS takes longer. A breakdown of the runtimes for the
three simulators is provided in Appendix B.7. Note that the runtime measurements were
made on the only machine in our computer cluster with more than 100 CPUs. This is so
that it would fit DIALS when training on the 100-agent variants. However, the experiments
that required less than 100 CPUs were ran on different machines with different CPUs.

The bar plots indicate that DIALS is computationally more efficient and scales much
better than GS. Note that the y axis is in log2 scale. Moreover, agents trained with DIALS
seem to converge steadily towards similar high-performing policies in both environments,
while agents trained with the GS suffer frequent performance drops and often get stuck in
local minima. This is evidenced by the oscillations in the orange curves, the poor mean
episodic reward, and large standard errors compared to the green (traffic) and purple
(warehouse) curves. The plots also reveal that estimating the influence distributions
correctly is important, as indicated by the large gap between DIALS and untrained-DIALS
in both environments.

It is worth noting that the gap between GS and DIALS is larger in the warehouse (Figure
B.2) than in the traffic environment (Figure B.1). We posit that this is because, in the

134 APPENDIX B. DIALS

0 1 2 3 4
Timesteps 1e6

100

120

140

160

180

200

220
Av

er
ag

e
Re

tu
rn

GS
untrained-DIALS
DIALS F=1M
hand-coded

22

24

26

28

To
ta

l r
un

tim
e

(h
)

(a) traffic 4 agents

0 1 2 3 4
Timesteps 1e6

100

120

140

160

180

200

220

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=1M
hand-coded

22

24

26

28

To
ta

l r
un

tim
e

(h
)

(b) traffic 25 agents

0 1 2 3 4
Timesteps 1e6

100

120

140

160

180

200

220

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=1M
hand-coded 22

23

24

25

26

27

28

To
ta

l r
un

tim
e

(h
)

(c) traffic 49 agents

0 1 2 3 4
Timesteps 1e6

140

160

180

200

Av
er

ag
e

Re
tu

rn
GS
untrained-DIALS
DIALS F=1M
hand-coded 22

23

24

25

26

27

28

To
ta

l r
un

tim
e

(h
)

(d) traffic 100 agents

Figure B.1: Left (a), (b), (c), and (d): Average return as a function of the number
of timesteps with GS, DIALS F = 1M, and untrained-DIALS on the traffic environment.
Right (a), (b), (c), and (d): Total runtime of training for 4M timesteps, y-axis is in
log2 scale.

warehouse environment, agents are more strongly coupled. To see this imagine that, by
random chance during training, a robot starts favoring items from one shelf over the
three others. The robot’s neighbors might exploit this and start collecting items from
the unattended shelves. However, as soon as this first robot changes its policy and starts
collecting items more evenly from all four shelves, the neighbor robots will experience
a sudden drop in the value of their policies, which can have catastrophic effects on the
learning dynamics. With the DIALS, however, agents are trained on separate simulators
and only become aware of changes in the joint policy when the AIPs are retrained. This
prevents them from constantly co-adapting to one another. This is in line with our
discussion in Section 4.4.3.

B.4. RESULTS 135

0 1 2 3 4
Timesteps 1e6

2

4

6

8

10

12

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=4M
hand-coded 22

24

26

28

To
ta

l r
un

tim
e

(h
)

(a) Warehouse 4 agents

0 1 2 3 4
Timesteps 1e6

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=4M
hand-coded

23

25

27

29

To
ta

l r
un

tim
e

(h
)

(b) Warehouse 25 agents

0 1 2 3 4
Timesteps 1e6

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

GS
untrained-DIALS
DIALS F=4M
hand-coded

23

25

27

29

To
ta

l r
un

tim
e

(h
)

(c) Warehouse 49 agents

0 1 2 3 4
Timesteps 1e6

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn
GS
untrained-DIALS
DIALS F=4M
hand-coded 23

24

25

26

27

28

29

To
ta

l r
un

tim
e

(h
)

(d) Warehouse 100 agents

Figure B.2: Left (a), (b), (c), and (d): Average return as a function of the number of
timesteps with GS, DIALS F = 1M, and untrained-DIALS on the warehouse environment.
Right (a), (b), (c), and (d): Total runtime of training for 4M timesteps, y-axis is in
log2 scale.

B.4.2 AIPs training frequency

The two plots on the left of Figures B.3 and B.4 show a comparison of the agents’ average
return as a function of runtime for different values of the AIPs training frequency parameter
F (100K, 500K, 1M, and 4M timesteps). For ease of visualization, since DIALS F = 500K,
F = 1M, and F = 4M take shorter to finish than DIALS F = 100K, the red, green, and
purple curves are extended by dotted horizontal lines. Due to computational limitations,
we ran these experiments only on the 4, 25, and 49-agent variants of the two environments.
We then chose the best-performing values for F (F = 1M for traffic and F = 4M for
warehouse) and used those to run DIALS on the environments with 100 agents.

In the traffic domain, the gap between the green and the purple curve (Figure B.3) suggests
that it is important to retrain the AIPs at least every 1M timesteps, such that agents

136 APPENDIX B. DIALS

become aware of changes in the other agents’ policies. This is consistent on all the three
variants (Figures B.3a, B.3b, and B.3c). In contrast, in the warehouse domain (Figure
B.4), we see that training the AIPs only once at the beginning (DIALS F = 4M) is
sufficient (Figures B.4a, B.4b, and B.4c). In fact, as indicated by the gap between the
brown and the rest of the curves, updating the AIPs too frequently (DIALS F = 100K),
aside from increasing the runtimes, seems detrimental to the agents’ performance. This is
consistent with our hypothesis in Section 4.4.3: “by not updating the AIPs too frequently,
we get a biased but otherwise more consistent learning signal that the agents can rely on
to improve their policies.”

The plots on the right of Figures B.3 and B.4 show the average cross-entropy (CE) loss of
the AIPs evaluated on trajectories sampled from the GS. As explained in Section 4.4 since
all agents learn simultaneously, the influence distributions {I(uit|lit)}i∈N are non-stationary.
For this reason, we see that the CE loss changes as the policies of the other agents are
updated. We can also see how the CE loss decreases when the AIPs are retrained, which
happens more or less frequently depending on the hyperparameter F . Note that the CE
not only measures the distance between the two probability distributions but also the
absolute entropy. In the warehouse domain (Figure B.4), the neighbor robots’ locations
become more predictable (lower entropy) as their policies improve. This explains why the
CE loss decreases even though the AIPs are not updated. Also note that, in the warehouse
environment (Figure B.4), even though by the end of training DIALS F = 4M is highly
inaccurate, as evidenced by the gap between the purple and the other curves, it is still
good enough to train policies that match the performance of those trained with DIALS
F = 500K and F = 1M. This is in line with our results in Section 4.4: “Multiple influence
distributions may induce the same optimal policy.”

B.4. RESULTS 137

0.0 0.5 1.0 1.5 2.0
Runtime (h)

140

160

180

200

220

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0.0 0.5 1.0 1.5 2.0
Runtime (h)

0.3

0.4

0.5

0.6

0.7

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(a) Traffic 4 agents

0 1 2 3 4 5
Runtime (h)

160

170

180

190

200

210

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0 1 2 3 4 5
Runtime (h)

0.3

0.4

0.5

0.6

0.7
In

flu
en

ce
 L

os
s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(b) Traffic 25 agents

0 2 4 6 8 10
Runtime (h)

150

160

170

180

190

200

210

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0 2 4 6 8 10
Runtime (h)

0.3

0.4

0.5

0.6

0.7

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(c) Traffic 49 agents

Figure B.3: Left (a), (b), and (c): Learning curves for different values of F on the 4,
25, and 49 agent versions of the traffic environment. Right (a), (b), and (c): CE loss
of the AIPs as a function of runtime.

138 APPENDIX B. DIALS

0 1 2 3
Runtime (h)

2

4

6

8

10

12

14
Av

er
ag

e
Re

tu
rn

DIALS F=100K
DIALS F=4M
DIALS F=1M
DIALS F=500K

0 1 2 3
Runtime (h)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=4M
DIALS F=1M
DIALS F=500K

(a) Warehouse 4 agents

0 2 4 6 8 10
Runtime (h)

2

4

6

8

10

12

14

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

0 2 4 6 8 10
Runtime (h)

0.2

0.4

0.6

0.8

1.0

1.2

1.4
In

flu
en

ce
 L

os
s

DIALS F=100K
DIALS F=500K
DIALS F=1M
DIALS F=4M

(b) Warehouse 25 agents

0 5 10 15
Runtime (h)

2

4

6

8

10

12

Av
er

ag
e

Re
tu

rn

DIALS F=100K
DIALS F=4M
DIALS F=1M
DIALS F=500K

0 5 10 15
Runtime (h)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
flu

en
ce

 L
os

s

DIALS F=100K
DIALS F=4M
DIALS F=1M
DIALS F=500K

(c) Warehouse 49 agents

Figure B.4: Left (a), (b), (c), and (d): Average return as a function of the number of
timesteps with GS, DIALS F = 1M, and untrained-DIALS on the warehouse environment.
Right (a), (b), (c), and (d): Total runtime of training for 4M timesteps, y-axis is in
log2 scale.

B.5. IMPLEMENTATION DETAILS 139

B.5 Implementation Details

B.5.1 Approximate Influence Predictors

Due to the sequential nature of the problem, rather than feeding the full past history
every time we make a prediction, we use a recurrent neural network (RNN) (Hochreiter
and Schmidhuber, 1997; Cho et al., 2014) and process observations one at a time,

P (ut|lt) ≈ Îθ(ut|ĥt−1, ot) = Frnn(ĥt−1, ot, ut), (B.21)

where we use ĥ to indicate that the history h is embedded in the RNN’s internal memory.

Given that we generally have multiple influence sources ut = ⟨u1t , ..., uMt ⟩, we need to fit M
separate models Îθm to predict each of the M influence sources. In practice, to reduce the
computational cost, we can have a single network with a common representation module
for all influence sources and output their probability distributions using M separate heads.
This representation assumes that the influence sources are independent of one another,

I(ut|lt) =
M∏

m=0

P (um
t |lt), (B.22)

which is true for the two domains we study in this paper.

Finally, although according to the POMDP framework we should condition the AIPs on
the full AOH, in many domains, one can exploit the structure of the transitions function
to find a subset of variables in the AOH that is sufficient to predict the next observation.
This subset is known as the d-separating set (Oliehoek et al., 2021), and as shown in Suau
et al. (2022b) conditioning the AIPs on this rather than the full AOH can ease the task of
approximating the influence distribution.

B.5.2 Local regions

When choosing the local regions to build the simulators, the only restriction in terms of size
is that these should contain all the necessary information to compute local observations
and rewards. In our experiments, we use one simulator per agent since, given that the
simulators run in parallel, this is the most computationally efficient way of factorizing
the environment. Yet, in certain applications, due to hardware limitations (e.g. not
enough CPUs or memory available), it might be necessary to partition the environment
into fewer local regions than the number of agents in the environment. Moreover, in

140 APPENDIX B. DIALS

Figure B.5: A screenshot of the global simulators for the 25-agent variants of the traffic
control (left) and warehouse (right) environments

some environments (including the two we explore here) better results may be obtained by
grouping some of them together in the same simulator. In fact, one could potentially treat
the agents in the same group/simulator as a single agent and train a policy to control
all of them simultaneously. Note, however, that this is orthogonal to our work as we are
mainly concerned with computational speedups.

B.6 Simulators

Figure B.5 shows two screenshots of the global simulator (GS) for the traffic (left) and
warehouse (right) environments with 25 agents each. Figure B.6 shows two screenshots of
the local simulator (LS) for the traffic (left) and warehouse environments (right). Since all
local regions are the same (i.e. Ṫ i, Ṙi, and Ȯi do not change) in the two environments, we
use the same LS for all of them. However, because depending on where these are located
they are influenced differently by the rest of the system, we train separate AIPs, {Îθi}i∈N ,
for each of them. Note that, we chose the local regions to be the same for simplicity.
However, the method can readily be applied to environments with different local transition
dynamics Ṫ i, different local observations Ȯi, and/or different local rewards Ṙi for every
agent i ∈ N .

B.7. RUNTIMES 141

Figure B.6: A screenshot of the local simulators for the traffic (left) and warehouse (right)
environments. Since all local regions are the same in the two environments, we use the
same LS for all of them.

B.7 Runtimes

The two tables below show a breakdown of the runtimes for the two environments and the
three simulators. These were measured on a machine with 128 CPUs of the type AMD
EPYC 7452 32-Core Processor. We used this machine for all our measurements because it
is the only one in our computer cluster that can fit DIALS when training on the 100-agent
variants of the environments. However, the experiments that required less than 100 CPUs
were actually run on different machines.

Table B.1: Runtimes for the traffic control environment

Agents training (h)
Data collection +

influence training (h)
Total (h)

Number of agents 2 25 49 100 2 25 49 100 2 25 49 100

GS 7.24 46.96 105.41 261.06 - - - - 7.24 46.96 105.41 261.06
DIALS F=100K 1.48 1.93 2.70 3.70 0.66 3.74 8.60 22.38 2.14 5.67 11.30 26.08
DIALS F=500K 1.48 1.93 2.70 3.70 0.13 0.75 1.72 4.48 1.61 2.68 4.42 8.18
DIALS F=1M 1.48 1.93 2.70 3.70 0.07 0.37 0.86 2.24 1.55 2.30 3.56 5.94
DIALS F=4M 1.48 1.93 2.70 3.70 0.02 0.09 0.21 0.56 1.50 2.02 2.91 4.26
untrained-DIALS 1.48 1.93 2.70 3.70 - - - - 1.48 1.93 2.70 3.70

142 APPENDIX B. DIALS

Table B.2: Runtimes for the warehouse environment

Agents training (h)
Data collection +

influence training (h)
Total (h)

Number of agents 2 25 49 100 2 25 49 100 2 25 49 100

GS 14.84 97.04 208.18 468.46 - - - - 14.84 97.04 208.18 468.46
DIALS F=100K 2.13 2.56 3.19 5.55 1.32 7.11 15.19 45.45 4.45 9.67 18.38 51.00
DIALS F=500K 2.13 2.56 3.19 5.55 0.26 1.42 3.04 9.09 2.39 3.98 6.23 14.64
DIALS F=1M 2.13 2.56 3.19 5.55 0.13 0.71 1.52 4.54 2.26 3.27 4.71 10.09
DIALS F=4M 2.13 2.56 3.19 5.55 0.03 0.18 0.38 1.13 2.16 2.74 3.57 6.68
untrained-DIALS 2.13 2.56 3.19 5.55 - - - - 2.13 2.56 3.19 5.55

B.8 Memory Usage

The table below shows the peak memory usage of the GS and the DIALS. For the latter
we provide the memory usage per process and in total. The memory needed for the GS
seems to grow logarithmically with the number of agents, whereas for DIALS the memory
usage per process stays relatively constant. However, the total amount of memory needed
to run DIALS (aggregate of all processes) increases linearly with the number of agents
and is considerably larger than that of the GS.

Table B.3: Peak Memory Usage in Megabytes (MB)

Environment Traffic Warehouse

Number of agents 4 25 49 100 4 25 49 100

GS 375.3 392.7 412.5 457.4 339.3 391.8 469.6 607.4

DIALS
Per process 219.5 221.0 225.8 228.7 195.6 201.9 203.7 207.5
Total 878.0 5525.0 11064.2 22870.0 782.4 5047.5 9981.3 20750.0

B.9 Hyperparameters

The hyperparameters used for the AIPs are reported in Table B.4. Since feeding past local
states did not seem to improve the performance of the AIPs in the traffic environment we
modeled them with FNNs. In contrast, adding the past ALSHs does decrease the CE loss
in the warehouse environment, and thus we used GRUs (Cho et al., 2014) instead. The

B.9. HYPERPARAMETERS 143

size of the networks was chosen as a compromise between low CE loss and computational
efficiency. On the one hand, we need accurate AIPs to properly capture the influence
distributions. On the other, we also want them to be small enough such that we can
make fast predictions. The hyperparameter named seq. length determines the number of
timesteps the GRU is backpropagated. This was chosen to be equal to the horizon such
that episodes did not have to be truncated. The rest of the hyperparameters in Table B.4,
which refer to the training setup for the AIPs, were manually tuned.

Table B.4: Hyperparameters for approximate influence predictors (AIPs).

Architecture Num. layers Num. neurons Seq. length Learning rate Dataset size Batch size Num. epochs

Traffic FNN 2 128 and 128 - 1e−4 1e4 128 100

Warehouse GRU 2 64 and 64 100 1e−4 1e4 32 300

The hyperparmeters used for the policy networks are given in Table B.5. We chose again
GRUs for the warehouse environment and FNNs for the traffic domain, since feeding
the previous AOHs did not seem to improve the agents’ performance in the latter. The
network size and the sequence length parameter for the GRUs were manually tuned on
the smallest scenarios with 4 agents.

Table B.5: Hyperparmeters for policy networks.

Architecture Num. layers Num. neurons Seq. length

Traffic FNN 2 256 and 128 -

Warehouse GRU 2 256 and 128 8

As for the hyperparameters specific to PPO (Table B.6), we used the same values reported
by (Schulman et al., 2017), and only tuned the parameter T , which depends on the rewards
and the episode length. T determines for how many timesteps the value function is rollout
before computing the value estimates.

144 APPENDIX B. DIALS

Table B.6: PPO hyperparameters.

Rollout steps T 16 traffic and 8 ware-
house

Learning rate 2.5e-4
Discount γ 0.99
GAE λ 0.95
Memory size 128
Batch size 32
Num. epoch 3
Entropy β 1.0e-2
Clip ϵ 0.1
Value coeff. c1 1

Appendix C

Influence-Aware Memory

C.1 Implementation details

Warehouse and traffic control: The FNN and the LSTM baselines that we used
in the warehouse and the traffic control environments, have two hidden layers. Only the
second layer in the LSTM baseline is recurrent. This seems to work much better than
the reverse option (i.e. first layer recurrent and second layer feedforward). Moreover, to
ensure a fair comparison, the size of the first layer in IAM is set equal to the size of the
first layer in the FNN and the LSTM baselines. That is, adding together the number
neurons in the FNN and the RNN channels. For instance, if the first layer of the FNN
and the LSTM baselines is 640 neurons, a valid configuration for IAM would be 512
feedfoward and 128 recurrent neurons. Such that the FNN and the RNN combined also
add up to 640. When doing observation-stacking the FNN baseline is provided the last 8
observations in the warehouse and 32 observations in the traffic environment. On the other
hand, the gradients in the recurrent architectures (LSTM and IAM) are backpropagated
for 8 and 32 timesteps (sequence length parameter). We did extensive testing to try
to find the best possible network configuration for each model. These are reported in
Table C.1 for the warehouse and Table C.2 for the traffic environment. We tried different
combinations of {128, 256, 512, 640} and {32, 64, 128, 256} for the size of the first and
second feedfoward layers, respectively. As reported in section 5.3 (Figure 3), we also tried
with {8, 16, 32, 64, 128, 256} neurons for the recurrent layers in LSTM and IAM.

146 APPENDIX C. INFLUENCE-AWARE MEMORY

Table C.1: Hyperparameters used for Warehouse Commissioning.

Warehouse
Model FNN LSTM IAM
num frames 8 1 1
time horizon 16 16 16
seq length - 8 8
FNN layer

1
layer
2

layer
1

- layer 1 layer 2

neurons 640 256 640 512 256
RNN None layer 2 layer 1
rec neurons - 128 128

Table C.2: Hyperparameters used for Traffic Control.

Traffic Control
Model FNN LSTM IAM
num frames 32 1 1
seq length - 32 32
time horizon 128 128 128
FNN layer

1
layer
2

layer
1

- layer 1 layer 2

neurons 256 64 256 128 64
RNN None layer 2 layer 1
rec neurons - 128 128

Flickering Atari: As explained in Section 4.1, when the observations are images, instead
of feeding them directly into the FNN or the RNN, we first preprocess them with a CNN.
The FNN and LSTM baselines use the same architecture reported by Mnih et al. (2015)
and Hausknecht and Stone (2015), respectively. The IAM maintains the same CNN
configuration and then connects 128 feedforward and 128 recurrent neurons in parallel
so that the total number of neurons (256) remains the same as in the FNN and LSTM
baselines. Additionally, the attention mechanism, which computes At for every ⟨ot, d̂t⟩,
consists of a single head with 256 neurons. The FNN baseline receives the last 8 frames as
input, whereas LSTM and IAM only receive 1 frame. To update the network, gradients
in the recurrent models are backpropagated for 8 timesteps. The network configurations
used for Flickering Atari, are provided in Table C.3.

As for the hyperparameters specific to PPO we used the same values reported by Schulman

C.2. RUNTIME PERFORMANCE 147

Table C.3: Hyperparameters used for Flickering Atari.

Flickering Atari
Model FNN LSTM IAM
num frames 8 1 1
seq length - 8 8
time hori-
zon

128 128 128

CNN layer 1 layer
2

layer
3

layer 1 layer
2

layer
3

layer 1 layer
2

layer
3

filters 32 64 64 32 64 64 32 64 64
kernel size 8 4 3 8 4 3 8 4 3
strides 4 2 1 4 2 1 4 2 1
FNN layer 1 None layer 1
neurons 512 - 256
Attention None None layer 1
neurons - - 256
num heads - - 1
RNN None layer 1 layer 1
rec neurons - 512 256

et al. (2017) for all three models and the three domains. These are shown in Table C.4.

Table C.4: PPO hyperparameters.

learning rate 2.5e-4
discount γ 0.99
GAE λ 0.95
memory size 128
batch size 32
num. epoch 3
num. workers 8
entropy β 1.0e-2
clip ϵ 0.1
value coeff. c1 1

C.2 Runtime performance

Table C.5 is an empirical analysis of the runtime performance of the three architectures.
The values are the average wall-clock time in milliseconds of evaluating (forward pass)

148 APPENDIX C. INFLUENCE-AWARE MEMORY

and updating (backward pass) the models. The FNN baseline receives a stack of 8, 32
and 8 observations in the Warehouse, Traffic Control and Flickering Atari environments,
respectively. On the other hand, gradients in LSTM and IAM are backpropagated for 8,
32 and 8 timesteps when updating the networks in each of the three environments. An
evaluation corresponds to a forward pass through the network. One update involves 3
epochs over a batch of 1024 experiences. The test was run on an Intel Xeon CPU E5-1620
v2.

Table C.5: Runtime performance in milliseconds

Warehouse Traffic Flickering Atari
Evaluation Update Evaluation Update Evaluation Update

FNN (obs-stacking) 1.03± 0.41 81.96± 1.29 0.90± 0.16 63.21± 0.71 3.82± 0.53 215.95± 7.54

LSTM 1.27± 0.27 151.10± 2.98 1.27± 0.12 167.36± 10.41 5.41± 1.13 285.19± 24.60

IAM 1.32± 0.50 82.60± 4.87 1.05± 0.13 144.96± 13.51 3.47± 1.84 163.30± 28.19

C.3 Learning curves

Figure C.1 shows the mean episodic reward comparison of the two baselines FNN and
LSTM and the two versions of IAM, static and dynamic, as a function of training time
on the flickering Atari games. Since we could not run all our experiments on the same
machine, training time is estimated using the values provided in Table C.5.

C.4 Results on the original Atari games

We also tested IAM on the original Atari games. Although the full game screen is visible at
all times, some of the games contain moving elements whose speed and direction can not be
measured from just a single frame. This means that the original games are also POMDPs
(Hausknecht and Stone, 2015). In DQN (Mnih et al., 2015) this issue is easily solved by
stacking the last 4 frames and feeding them into the network. Our experiments show
(Table C.6), that even when frame-stacking seems to be the optimal solution, IAM can
reach the same or even better performance of the FNN model while clearly outperforming
the LSTM baseline.

C.5. DECODING THE AGENT’S INTERNAL MEMORY 149

(a) Breakout (b) Pong

(c) Space Invaders (d) Asteroids

(e) MsPacman

Figure C.1: Average score per episode as a function of training time. Shaded areas show
the standard deviation of the mean.

C.5 Decoding the agent’s internal memory

The memory decoder consists of a two-layer fully connected FNN which takes as input the
RNN’s internal memory d̂t−1 and the output xt of the FNN (see Figure 3) and outputs
a prediction for each of the pixels in the screen. The network is trained on a dataset
containing screenshots and their corresponding network activations (d̂t−1 and xt), using
the pixel-wise cross entropy loss. The dataset is collected after training the agent’s policy.
The images are first transformed to grey-scale and then normalized to simplify the task.
The results are shown in Figure C.2. The goal of this experiment was to confirm that
although the RNN is only fed the last two elements of the binary vectors representing
each lane, it can still uncover hidden state. It is important to point out that the agent is
only trained to maximize the reward and has no explicit knowledge of the environment

150 APPENDIX C. INFLUENCE-AWARE MEMORY

Table C.6: Average score per episode and standard deviation over the last 200K timesteps
after 50 hours of training on the original (non-flickering) Atari games. The scores are also
averaged over three trials. Bold numbers indicate the best results on each environment.
Multiple results are highlighted when the differences are not statistically significant.

FNN (4 frames) LSTM IAM (static) IAM (dynamic)
Breakout 326.54± 22.21 127.37± 26.13 295.73± 31.40 339.42± 21.96

Pong 20.68± 0.07 −20.26± 0.04 20.73± 0.08 20.74± 0.04

Space Invaders 975.39± 70.06 1177.47± 24.81 1326.63± 53.59 868.23± 37.34

Asteroids 2184.61± 62.83 1618.89± 41.93 2057.21± 109.65 2792.45± 60.40

MsPacman 3859.91± 751.30 667.58± 32.39 4016.78± 273.11 3294.29± 222.64

dynamics. A video of this experiment can be found at https://tinyurl.com/y9cvuz7l.

C.6 Analysis of the hidden activations

We further analyze the information contained in d̂ when playing Breakout (non-flickering)
by looking at the activation patterns at different timesteps and their correlation with
the ball velocity. The velocity vector v is computed by comparing the location of the
ball at two subsequent frames. We use Canonical Correlation Analysis (CCA) (Hotelling,
1992) to obtain a lower dimensional representation of d̂. In broad terms, CCA is a linear
transformation that projects two sets of variables, in this case d̂ and v, onto two subspaces
that are highly correlated. This is done by iteratively finding linear combinations of d̂ and
v, known as canonical components, that maximize the correlation between them while
being uncorrelated with the previous canonical components. We found that the first two
canonical components of d̂ are highly correlated with the two coordinates of the velocity
vector (0.98 and 0.90).

We also show that the FNN’s output x, on the other hand, contains information that
does not need to be memorized but is relevant for predicting action values. We applied
CCA to compare x with the number of bricks destroyed at each frame and obtained a
correlation coefficient of 0.96. The projections of the d̂ and x onto the space spanned by
their corresponding cannonical components are shown in the two scatter plots on the left
of Figure 7 in the paper.

https://tinyurl.com/y9cvuz7l

C.7. ATTENTION MAPS 151

Figure C.2: True state (left) and state predicted by the memory decoder (right)

C.7 Attention maps

Here we include a collection of images which show the weights that the attention mechanism
gives to the different regions of the game screen based on the agent’s internal memory d̂

and the current observation ôt. The network seems to learn to focus on the regions that
are important to memorize.

152 APPENDIX C. INFLUENCE-AWARE MEMORY

Figure C.3: Breakout

Figure C.4: Pong

Appendix D

Policy Confounding

D.1 Proofs

Lemma D.1.1. Let Φπ1∗ be the set of all possible π-minimal state representations under
π1, where every Φπ1∗ ∈ Φπ1∗ is defined as Φπ1∗ : Sπ1 → S̄π1∗ and S̄π1∗ = ×i dom(Θ̄π1∗i) ,
and let π2 be a second policy such that for all st ∈ Sπ1 ∩ Sπ2 ,

supp (π2(· | st)) ⊆ supp (π1(· | st)) .

For all Φπ1∗ ∈ Φπ1∗, there exists a π-Markov state representation under policy π2, Φπ2 :

Sπ2 → S̄π2 with S̄π2 = ×i dom(Θ̄π2i), such that Θ̄π2 ⊆ Θ̄π1∗ for all st ∈ Sπ1 ∩ Sπ2.
Moreover, there exist cases where Θ̄π2

t ̸= Θ̄π1∗
t .

Proof. First, it is easy to show that

∀st ∈ S, supp (π2(· | st)) ⊆ supp (π1(· | st)) ⇐⇒ Sπ2 ⊆ Sπ1 ,

and
∀st ∈ S, supp (π2(· | st)) = supp (π1(· | st)) ⇐⇒ Sπ2 = Sπ1 .

In particular, Sπ2 ⊂ Sπ1 if there is at least one state s′t ∈ Sπ1 ∩ Sπ2 such that

supp
(
π2(· | s′t)

)
⊂ supp

(
π1(· | s′t)

)

154 APPENDIX D. POLICY CONFOUNDING

while
supp (π2(· | st)) = supp (π1(· | st))

for all other st ∈ Sπ1 ∩ Sπ2 .

In such cases, we know that there is at least one action a′ for which π2(a
′
t | s′t) = 0 but

π1(a
′
t | s′t) ̸= 0. Hence, if there was a state (or group of states) that could only be reached

by taking action a′t at s′t, π2 would never visit it and thus Sπ2 ⊂ Sπ1 .

Further, if Sπ2 ⊂ Sπ1 , we know that, for every Φπ1∗ ∈ Φπ1∗, there must be a Φπ2∗ that
requires, at most, the same number of variables, Θ̄π2

t ⊆ Θ̄π1∗
t and, in some cases, fewer,

Θ̄π1∗
t ̸= Θ̄π2∗

t (e.g., Frozen T-Maze example).

□

Proposition 6.6.1. Let Φ∗ be the set of all possible minimal state representations, where
every Φ∗ ∈ Φ∗ is defined as Φ∗ : S → S̄∗ with S̄∗ = ×i dom(Θ̄∗i). For all π and all Φ∗ ∈ Φ∗,
there exists a π-Markov state representation Φπ : Sπ → S̄π with S̄π = ×i dom(Θ̄πi) such
that for all s ∈ Sπ, Θ̄π ⊆ Θ̄∗. Moreover, there exist cases for which Θ̄π is a proper subset,
Θ̄π ̸= Θ̄∗.

Proof. The proof follows from Lemma D.1.1. We know that, in general, Sπ ⊆ S, and if
π(a′t|s′t) = 0 for at least one pair a′t ∈ A, s′t ∈ S for which there is a state (or group of
states) that can only be reached by taking action a′t at s′t, then Sπ ⊂ S. Hence, for every
Φ∗ there is a Φπ such that Θ̄π ⊆ Θ̄∗, and in some cases, we may have Θ̄π ̸= Θ̄∗ (e.g.,
Frozen T-Maze example).

□

Theorem 6.6.1. Let Φ∗ : S → S̄∗ with S̄∗ = ×i dom(Θ̄∗i) be a minimal state repre-
sentation. If, for some π, there is a π-Markov state representation Φπ : Sπ → S̄π with
S̄π = ×i dom(Θ̄πi), such that Θ̄π ⊂ Θ̄∗ for some s ∈ S, then Φπ is confounded by policy
π.

Proof. Proof by contradiction. Let us assume that Θ̄π ⊂ Θ̄∗, and yet there is no policy
confounding. I.e., for all st, st+1 ∈ S, at ∈ A,

Rπ(Φπ(st), at) = Rπ(do(Φπ(st)), at) (D.1)

D.1. PROOFS 155

and

π
Pr(Φπ(st+1) | Φπ(st), at) =

π
Pr(Φπ(st+1) | do(Φπ(st)), at) (D.2)

First, note that the do-operator implies that the equality must hold for all s′t in the
equivalence of st class under Φπ, s′t ∈ {st}Φ

π
= {h′t ∈ Ht : Φ(h

′
t) = Φ(ht)}, i.e., not just

those h′t that are visited under π,

Rπ(Φπ(st), at) = Rπ(do(Φπ(st)), at) = {R(s′t, at)}s′t∈{st}Φ (D.3)

which is precisely the first condition in Definition 6.5.2,

R(Φπ(st), at) = R(st, at), (D.4)

for all st ∈ S and at ∈ A.

Analogously, we have that,

π
Pr(Φπ(st+1) | Φπ(st), at) =

π
Pr(Φπ(st+1) | do(Φπ(st)), at)

= Pr(Φπ(st+1) | Φπ(st), at)
(D.5)

where the second equality reflects that the above must hold independently of π. Hence,
we have that for all st, st+1 ∈ S and s′t ∈ {st}Φ,

Pr(Φπ(st+1) | Φπ(st), at) = Pr(Φπ(st+1) | Φπ(s′t), at), (D.6)

which means that, for all st, st+1 ∈ S and st ∈ A,

Pr(Φπ(st+1) | Φπ(st), at) = Pr(Φπ(st+1) | st, at)

=
∑

s′t+1∈{st+1}Φπ

T (s′t+1 | st, at), (D.7)

which is the second condition in Definition 6.5.2.

Equations (D.4) and (D.7) reveal that if the assumption is true (i.e., Φπ is not confounded
by the policy), then Φπ is not just π-Markov but actually strictly Markov (Definition 6.5.2).
However, we know that Φ∗(st) is the minimal state representation, which contradicts the
above statement, since, according to Definition 6.5.3, there is no proper subset of Θ̄∗, for
all st ∈ S, such that the representation remains Markov. Hence, Θ̄π ⊂ Θ̄∗ implies policy

156 APPENDIX D. POLICY CONFOUNDING

confounding. □

Proposition 6.6.2. Let {Θ̄∗}∪Φ∗ be the union of variables in all possible minimal state rep-
resentations. There exist cases where, for some π, there is a π-minimal state representation
Φπ∗ : Sπ → S̄π∗ with S̄π∗ = ×i dom(Θ̄π∗i) such that Θ̄π∗ \ {Θ̄∗}∪Φ∗ ̸= ∅.

Proof (sketch). Consider a deterministic MDP with a deterministic policy. Imagine there
exists a variable X that is perfectly correlated with the episode’s timestep t, but that is
generally irrelevant to the task. The variable X would constitute in itself a valid π-Markov
state representation since it can be used to determine transitions and rewards so long
as a deterministic policy is followed. At the same time, X would not enter the minimal
Markov state representation because it is useless under stochastic policies. Example D.2.1
below illustrates this situation. □

D.2 Example: Watch the Time

START GOAL

Figure D.1: An illustration of the watch-the-time environment.

...

...

...

...

Figure D.2: Two DBNs representing the dynamics of the watch-the-time environment,
when actions are sampled at random (left), and when they are determined by the optimal
policy (right).

Example D.2.1. (Watch the Time) This example is inspired by the empirical results
of Song et al. (2020). Figure D.1 shows a grid world environment., The agent must go
from the start cell to the goal cell. The agent must avoid the pink cells; stepping on those
yields a −0.1 penalty. There is a is +1 reward for reaching the goal. The agent can observe
its own location within the maze L and the current timestep t. The two diagrams in

D.3. FURTHER RELATED WORK 157

Figure D.2 are DBNs describing the environment dynamics. When actions are considered
exogenous random variables (left diagram), the only way to estimate the reward at t = 10

is by looking at the agent’s location L10. In contrast, when actions are determined by the
policy (right diagram), the time variable becomes a proxy for the agent’s location. This is
because the start location and the sequence of actions are fixed. This implies that t is a
perfectly valid π-Markov state representation under π∗. Moreover, as shown by the DBN
on the right, the optimal policy may simply rely on t to determine the optimal action.

D.3 Further Related Work

Early evidence of policy confounding Although to the best of our knowledge, we are
the first to bring forward and describe mathematically the idea of policy confounding, a
few prior works have reported evidence of particular forms of policy confounding. In their
review of the Arcade Learning Environment (ALE; Bellemare et al., 2013), Machado et al.
(2018) explain that because the games are fully deterministic (i.e., initial states are fixed
and transitions are deterministic), open-loop policies that memorize good action sequences
can achieve high scores in ALE. Clearly, this can only occur if the policies themselves
are also deterministic. In such cases, policies, acting as confounders, induce a spurious
correlation between the past action sequences and the environment states. Similarly, Song
et al. (2020) showed, by means of saliency maps, how agents may learn to use irrelevant
features of the environment that happen to be correlated with the agent’s progress, such
as background clouds or the game timer, as clues for outputting optimal actions. In this
case, the policy is again a confounder for all these, a priori irrelevant, features. Zhang et al.
(2018b) provide empirical results showing how large neural networks may overfit their
training environments and, even when trained on a collection of procedurally generated
environments, memorize the optimal action for each observation. Zhang et al. (2018a)
shows how, when trained on a small subset of trajectories, agents fail to generalize to a
set of test trajectories generated by the same simulator. Lan et al. (2023) report evidence
of well-trained agents failing to perform well on Mujoco environments when starting from
trajectories (states) that are out of the distribution induced by the agent’s policy. We
conceive this as a simple form of policy confounding. Since the Mujoco environments are
also deterministic, agents following a fixed policy can memorize the best actions to take for
each state instantiation, potentially relying on superfluous features. Hence, they can overfit
to unnatural postures that would not occur under different policies. Finally, Nikishin et al.
(2022) describe a phenomenon named ‘primacy bias’, which prevents agents trained on

158 APPENDIX D. POLICY CONFOUNDING

poor trajectories from further improving their policies. The authors show that this issue
is particularly relevant when training relies heavily on early data coming from a fixed
random policy. We hypothesize that one of the causes for this is also policy confounding.
The random policy may induce spurious correlations that lead to the formation of rigid
state representations that are hard to recover from.

Generalization Generalization is a hot topic in machine learning. The promise of
a model performing well in contexts other than those encountered during training is
undoubtedly appealing. In the realm of reinforcement learning, the majority of research
focuses on generalization to environments that, despite sharing a similar structure, differ
somewhat from the training environment (Kirk et al., 2023). These differences range from
small variations in the transition dynamics (e.g., sim-to-real transfer; Higgins et al., 2017;
Tobin et al., 2017; Peng et al., 2018; Zhao et al., 2020), changes in the observations (i.e.,
modifying irrelevant information, such as noise: Mandlekar et al., 2017; Ornia et al., 2022,
or background variables: Zhang et al., 2020; Stone et al., 2021), to alterations in the
reward function, resulting in different goals or tasks (Taylor and Stone, 2009; Lazaric, 2012;
Muller-Brockhausen et al., 2021). Instead, we focus on the problem of OOT generalization.
Keeping the environment unchanged, we aim to ensure that agents perform effectively when
confronted with situations that differ from those encountered along their usual trajectories.
Note that, in our experiments agents are evaluated in altered environments with different
dynamics than those seen during training. These alterations are only intended to force
the agent to take different trajectories. Importantly, the trajectories we force the agent to
take are possible in the original environment.

State abstraction State abstraction is concerned with removing from the representation
all that state information that is irrelevant to the task. In contrast, we are worried about
learning representations containing too little information, which can lead to state aliasing.
Nonetheless, as argued by McCallum (1995b), state abstraction and state aliasing are two
sides of the same coin. That is why we borrowed the mathematical frameworks of state
abstraction to describe the phenomenon of policy confounding. Li et al. (2006) provide a
taxonomy of the types of state abstraction and how they relate to one another. Givan
et al. (2003) introduce the concept of bisimulation, which is equivalent to our definition
of Markov state representation (Definition 6.5.2) but for states instead of states. Ferns
et al. (2006) proposes a method for measuring the similarity between two states. Castro
(2020) notes that this metric is prohibitively expensive and suggests using a relaxed version

D.4. DYNAMIC BAYESIAN NETWORKS 159

that computes state similarity relative to a given policy. This is similar to our notion of
π-Markov state representation (Definition 6.5.5). While the end goal of this metric is to
group together states that are similar under a given policy, here we argue that this may
lead to poor OOT generalization.

D.4 Dynamic Bayesian Networks

Figures D.3 and D.4 show the DBNs representing the dynamics of the Key2Door and
Diversion environments respectively.

` ...

...

...

...

Figure D.3: Two DBNs representing the dynamics of the Key2Door environment, when
actions are sampled at random (left), and when they are determined by the optimal policy
(right). The nodes labeled as L represent the agent’s location, while the nodes labeled
as X represent whether or not the key has been collected. The agent can only see L.
Hence, when actions that are sampled are random (left), the agent must remember its past
locations to determine the reward R7. Note that only L1 and L7 are highlighted in the
left DBN. However, other variables in ⟨L2, ..., L6⟩ might be needed, depending on when
the key is collected. In contrast, when following the optimal policy, only L7 is needed. In
this second case, knowing the location is sufficient to determine whether the key has been
collected.

D.5 Experimental Results

D.5.1 Learned state representations

The results reported in Section 3.4 show that the OOT generalization problem exists.
However, some may still wonder if the underlying reason is truly policy confounding. To
confirm this, we compare the outputs of the policy at every state in the Frozen T-Maze
when being fed the same states (observation stack) but two different signals. That is, we
permute the variable containing the signal (X in the diagram of Figure 6.2) and leave the

160 APPENDIX D. POLICY CONFOUNDING

...

...

...

...

Figure D.4: Two DBNs representing the dynamics of the Diversion environment, when
actions are sampled at random (left), and when they are determined by the optimal policy
(right). The nodes labeled as X indicate the row where the agent is located; the nodes
labeled as Y indicate the column. We see that when actions are sampled at random, both
X6 and Y6 are necessary to determine r6. However, when actions are determined by the
optimal policy, Y6 is sufficient, as the agent always stays at the top row.

rest of the variables in the observation stack unchanged. We then feed the two versions to
the policy network and measure the KL divergence between the two output probabilities.
This metric is a proxy for how much the agent attends to the signal in every state. The
heatmaps in Figure D.5 show the KL divergences at various points during training (0, 10K,
30K, and 100K timesteps) when the true signal is ‘green’ and we replace it with ‘purple’.
We omit the two goal states since no actions are taken there. We see that initially (top left
heatmap), the signal has very little influence on the policy (note the scale of the colormap
is 10×−6), after 10K steps, the agent learns that the signal is very important when at
the top right state (top right heatmap). After this, we start seeing how the influence
of the signal at the top right state becomes less strong (bottom left heatmap) until it
eventually disappears (bottom right heatmap). In contrast, the influence of the signal at
the initial state becomes more and more important, indicating that after taking the first
action, the agent ignores the signal and only attends to its own location. The results for
the alternative case, purple signal being replaced by green signal, are shown in Figure D.6.

D.5.2 Buffer size and exploration/domain randomization

Figures D.7 and D.8 report the results of the experiments described in Section 3.4
(paragraphs 2 and 3) for Key2Door and Diversion. We see how the buffer size also
affects the performance of DQN in the two environments (left plots). We also see that
exploration/domain randomization does improve OOT generalization in Diversion but not
in Key2Door.

D.6. FURTHER EXPERIMENTAL DETAILS 161

Figure D.5: A visualization of the learned history representations. The heatmaps show
the KL divergence between the action probabilities when feeding the policy network a
stack of the past 10 observations and when feeding the same stack but with the value of
the signal being switched from green to purple, after 0 (top left), 10K (top right), 30K
(bottom left), and 100K (bottom right) timesteps of training.

Figure D.6: A visualization of the learned history representations. The heatmaps show
the KL divergence between the action probabilities when feeding the policy network a
stack of the past 10 observations and when feeding the same stack but with the value of
the signal being switched from purple to green, after 0 (top left), 10K (top right), 30K
(bottom left), and 100K (bottom right) timesteps of training.

D.6 Further Experimental Details

We ran our experiments on an Intel i7-8650U CPU with 8 cores. Agents were trained with
Stable Baselines3 (Raffin et al., 2021). Most hyperparameters were set to their default
values except for the ones reported in Tables D.1 (PPO) and D.2 (DQN), which improved
the performance over the default values.

162 APPENDIX D. POLICY CONFOUNDING

0 20000 40000 60000 80000 100000
Timesteps

−1.0

−0.5

0.0

0.5

1.0

Av
er

ag
e

Re
tu

rn

DQN eval, BS=200
DQN eval, BS=20K

0 20000 40000 60000 80000 100000
Timesteps

−1.0

−0.5

0.0

0.5

1.0

Av
er

ag
e

Re
tu

rn

PPO eval, eps=.2
DQN eval, BS=200, eps=.1

Figure D.7: Key2Door. Left: DQN small vs. large buffer sizes. Right: PPO and DQN
when adding stochasticity.

0 5000 10000 15000 20000
Timesteps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

DQN eval, BS=200
DQN eval, BS=20K

0 5000 10000 15000 20000
Timesteps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Re
tu

rn

PPO eval, eps=.2
DQN eval, BS=200, eps=.1

Figure D.8: Diversion. Left: DQN small vs. large buffer sizes. Right: PPO and DQN
when adding stochasticity.

D.6. FURTHER EXPERIMENTAL DETAILS 163

Table D.1: PPO hyperparameters.

Rollout steps 128
Batch size 32
Learning rate 2.5e-4
Number epoch 3
Entropy coefficient 1.0e-2
Clip range 0.1
Value coefficient 1
Number Neurons 1st layer 128
Number Neurons 2nd layer 128

Table D.2: DQN hyperparameters.

Buffer size 1.0e5
Learning starts 1.0e3
Learning rate 2.5e-4
Batch size 256
Initial exploration bonus 1.0
Final exploration bonus 0.0
Exploration fraction 0.2
Train frequency 5
Number Neurons 1st layer 128
Number Neurons 2nd layer 128

Bibliography

Abel, D. (2020). A theory of abstraction in reinforcement learning. PhD thesis, Brown
University.

Abel, D., Hershkowitz, D. E., and Littman, M. L. (2016). Near optimal behavior via
approximate state abstraction. In Proc. of the 33rd International Conference on Machine
learning, pages 2915–2923.

Acid, S. and De Campos, L. M. (1996). An algorithm for finding minimum d-separating
sets in belief networks. In Proceedings of the Twelfth International Conference on
Uncertainty in Artificial Intelligence.

Agarwal, R., Machado, M. C., Castro, P. S., and Bellemare, M. G. (2021). Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In Inter-
national Conference on Learning Representations.

Altman, E. (1999). Constrained Markov decision processes, volume 7. CRC press.

Andre, D. and Russell, S. J. (2002). State abstraction for programmable reinforcement
learning agents. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence, pages 119–125.

Arjovsky, M. (2021). Out of distribution generalization in machine learning. arXiv preprint
arXiv:2103.02667.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. (2019). Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893.

Bakker, B. (2001). Reinforcement learning with long short-term memory. Advances in
neural information processing systems, 14.

166 BIBLIOGRAPHY

Becker, R., Zilberstein, S., Lesser, V., and Goldman, C. V. (2003). Transition-independent
decentralized Markov decision processes. In Proceedings of the Second Joint International
Conference on Autonomous Agents and Multiagent Systems, pages 41–48.

Beery, S., Van Horn, G., and Perona, P. (2018). Recognition in terra incognita. In
Proceedings of the European conference on computer vision (ECCV), pages 456–473.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C., Moitra, S., Ponda,
S. S., and Wang, Z. (2020). Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588(7836):77–82.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The Arcade Learning
Environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, volume I. Athena
Scientific, 3rd edition.

Beukman, M., Jarvis, D., Klein, R., James, S., and Rosman, B. (2023). Dynamics
generalisation in reinforcement learning via adaptive context-aware policies. arXiv
preprint arXiv:2310.16686.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Botvinick, M., Ritter, S., Wang, J. X., Kurth-Nelson, Z., Blundell, C., and Hassabis, D.
(2019). Reinforcement learning, fast and slow. Trends in cognitive sciences, 23(5):408–
422.

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural
assumptions and computational leverage. Journal of Artificial Intelligence Research,
11:1–94.

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121(1-2):49–107.

Boutilier, C., Dearden, R., Goldszmidt, M., et al. (1995). Exploiting structure in policy
construction. In IJCAI, volume 14, pages 1104–1113.

BIBLIOGRAPHY 167

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (1996). Context-specific
independence in bayesian networks. In Proceedings of the Twelfth Conference on
Uncertainty in Artificial Intelligence, pages 115–123.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). Openai gym.

Castellini, J., Devlin, S., Oliehoek, F. A., and Savani, R. (2020). Difference rewards policy
gradients. arXiv preprint arXiv:2012.11258.

Castro, P. S. (2020). Scalable methods for computing state similarity in determinis-
tic markov decision processes. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 10069–10076.

Chitnis, R. and Lozano-Pérez, T. (2020). Learning compact models for planning with
exogenous processes. In Proceedings of the Conference on Robot Learning.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio,
Y. (2014). Learning phrase representations using RNN encoder-decoder for statisti-
cal machine translation. In Conference on Empirical Methods in Natural Language
Processing.

Claes, D., Oliehoek, F., Baier, H., Tuyls, K., et al. (2017). Decentralised online planning
for multi-robot warehouse commissioning. In Proceedings of the 16th international
conference on autonomous agents and multiagent systems, pages 492–500.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative
multiagent systems. In Proc. of the National Conference on Artificial Intelligence, pages
746–752.

Congeduti, E., Mey, A., and Oliehoek, F. A. (2021). Loss bounds for approximate
influence-based abstraction. In Proceedings of the Twentieth International Conference
on Autonomous Agents and MultiAgent Systems.

Daly, R., Shen, Q., and Aitken, S. (2011). Learning bayesian networks: approaches and
issues. The knowledge engineering review, 26(2):99–157.

de Witt, C. S., Gupta, T., Makoviichuk, D., Makoviychuk, V., Torr, P. H., Sun, M., and
Whiteson, S. (2020). Is independent learning all you need in the starcraft multi-agent
challenge? arXiv preprint arXiv:2011.09533.

168 BIBLIOGRAPHY

Dean, T. and Givan, R. (1997). Model minimization in Markov decision processes. In
Proc. of the National Conference on Artificial Intelligence, pages 106–111.

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and causation.
Computational intelligence, 5(2):142–150.

Dearden, R. and Boutilier, C. (1997). Abstraction and approximate decision-theoretic
planning. Artificial Intelligence, 89(1-2):219–283.

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T.,
Hafner, R., Abdolmaleki, A., de Las Casas, D., et al. (2022). Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419.

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F., and Udluft, S. (2018). Decompo-
sition of uncertainty in bayesian deep learning for efficient and risk-sensitive learning.
In International Conference on Machine Learning. PMLR.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of AI Research, 13:227–303.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. (2019). Challenges of real-world
reinforcement learning. arXiv preprint arXiv:1904.12901.

Eysenbach, B. and Levine, S. (2022). Maximum entropy RL (provably) solves some robust
RL problems. In International Conference on Learning Representations.

Farahmand, A.-m. (2011). Action-gap phenomenon in reinforcement learning. Advances
in Neural Information Processing Systems, 24.

Feng, F., Huang, B., Zhang, K., and Magliacane, S. (2022). Factored adaptation for
non-stationary reinforcement learning. In Advances in Neural Information Processing
Systems.

Ferns, N., Castro, P. S., Precup, D., and Panangaden, P. (2006). Methods for computing
state similarity in markov decision processes. In Proceedings of the Twenty-Second
Conference on Uncertainty in Artificial Intelligence, UAI’06, page 174–181.

Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., and Mordatch, I.
(2018a). Learning with opponent-learning awareness. In Proceedings of the Seventeenth
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18,
pages 122–130, Richland, SC. International Foundation for Autonomous Agents and
Multiagent Systems.

BIBLIOGRAPHY 169

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018b). Counterfac-
tual multi-agent policy gradients. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence.

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch, I., and Bachem, O. (2021).
Brax–a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128–135.

Ganesh, S., Vadori, N., Xu, M., Zheng, H., Reddy, P., and Veloso, M. M. (2019). Reinforce-
ment learning for market making in a multi-agent dealer market. ArXiv, abs/1911.05892.

García, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16(1):1437–1480.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and
Wichmann, F. A. (2020). Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665–673.

Geroliminis, N. and Daganzo, C. F. (2008). Existence of urban-scale macroscopic fun-
damental diagrams: Some experimental findings. Transportation Research Part B:
Methodological.

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model minimization
in Markov decision processes. Artificial Intelligence, 14(1–2):163–223.

Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. (2003). Efficient solution
algorithms for factored MDPs. Journal of AI Research, 19:399–468.

Gupta, A., Badr, Y., Negahban, A., and Qiu, R. G. (2021). Energy-efficient heating control
for smart buildings with deep reinforcement learning. Journal of Building Engineering,
34:101739.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems, volume 31, pages 2450–2462.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming for
partially observable stochastic games. In Proc. of the National Conference on Artificial
Intelligence, pages 709–715.

170 BIBLIOGRAPHY

Hausknecht, M. and Stone, P. (2015). Deep recurrent Q-learning for partially observable
MDPs. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.

He, J., Suau, M., Baier, H., Kaisers, M., and Oliehoek, F. A. (2022). Online planning in
pomdps with self-improving simulators. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22. Main Track.

He, J., Suau, M., and Oliehoek, F. (2020). Influence-augmented online planning for
complex environments. In Advances in Neural Information Processing Systems.

Hengst, B. et al. (2002). Discovering hierarchy in reinforcement learning with hexq. In
ICML, volume 19, pages 243–250. Citeseer.

Hernandez-Leal, P., Kaisers, M., Baarslag, T., and de Cote, E. M. (2017). A survey of
learning in multiagent environments: Dealing with non-stationarity. arXiv preprint
arXiv:1707.09183.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan,
D., Piot, B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements
in deep reinforcement learning. In Proceedings of the AAAI conference on artificial
intelligence.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M., Blundell,
C., and Lerchner, A. (2017). Darla: Improving zero-shot transfer in reinforcement
learning. In International Conference on Machine Learning, pages 1480–1490. PMLR.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hotelling, H. (1992). Relations between two sets of variates. In Breakthroughs in statistics,
pages 162–190. Springer.

Huang, A. J. and Agarwal, S. (2020). Physics informed deep learning for traffic state
estimation. In 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). IEEE.

Igl, M., Zintgraf, L., Le, T. A., Wood, F., and Whiteson, S. (2018). Deep variational
reinforcement learning for POMDPs. In Proceedings of the 35th International Conference
on Machine Learning, pages 2117–2126.

BIBLIOGRAPHY 171

Iqbal, S. and Sha, F. (2019). Actor-attention-critic for multi-agent reinforcement learning.
In Proceedings of the 36th International Conference on Machine Learning, pages 2961–
2970.

Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995). Reinforcement learning algorithm
for partially observable markov decision problems. In Advances in neural information
processing systems, pages 345–352.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castaneda, A. G.,
Beattie, C., Rabinowitz, N. C., Morcos, A. S., Ruderman, A., et al. (2019). Human-level
performance in 3d multiplayer games with population-based reinforcement learning.
Science, 364(6443):859–865.

Jensen, F. V. and Nielsen, T. D. (2007). Bayesian Networks and Decision Graphs.
Information Science and Statistics. Springer-Verlag New York, 2 edition.

Jiang, Y., Kolter, J. Z., and Raileanu, R. (2022). Uncertainty-driven exploration for
generalization in reinforcement learning. In Deep Reinforcement Learning Workshop
NeurIPS 2022.

Jonsson, A. and Barto, A. (2007). Active learning of dynamic bayesian networks in markov
decision processes. In Abstraction, Reformulation, and Approximation: 7th International
Symposium, SARA 2007, Whistler, Canada, July 18-21, 2007. Proceedings 7, pages
273–284. Springer.

Jonsson, A. and Barto, A. G. (2005). A causal approach to hierarchical decomposition of
factored MDPs. In Proc. of the Twenty-Second International Conference on Machine
learning, pages 401–408.

Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao, Y.,
Henry, H., Mattar, M., et al. (2018). Unity: A general platform for intelligent agents.
arXiv preprint arXiv:1809.02627.

Kaelbling, L. P., Littman, M., and Moore, A. (1996). Reinforcement learning: A survey.
Journal of AI Research, 4:237–285.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134.

Kakade, S. M. (2003). On the sample complexity of reinforcement learning. PhD thesis,
University College London.

172 BIBLIOGRAPHY

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L. (2021).
Physics-informed machine learning. Nature Reviews Physics.

Kearns, M. and Koller, D. (1999). Efficient reinforcement learning in factored MDPs. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pages 740–747.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2):209–232.

Kirk, R., Zhang, A., Grefenstette, E., and Rocktäschel, T. (2023). A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research,
76:201–264.

Knoop, V. L., Van Lint, H., and Hoogendoorn, S. P. (2015). Traffic dynamics: Its impact
on the macroscopic fundamental diagram. Physica A: Statistical Mechanics and its
Applications.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. MIT Press.

Konda, V. and Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural information
processing systems, 12.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Binas, J., Zhang, D., Priol, R. L.,
and Courville, A. (2021). Out-of-distribution generalization via risk extrapolation (rex).
In Proceedings of the 38th International Conference on Machine Learning.

Kumar, A., Zilberstein, S., and Toussaint, M. (2011). Scalable multiagent planning using
probabilistic inference. In Proc. of the International Joint Conference on Artificial
Intelligence, pages 2140–2146.

Lample, G. and Chaplot, D. S. (2017). Playing fps games with deep reinforcement learning.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pages
2140–2146.

Lan, L.-C., Zhang, H., and Hsieh, C.-J. (2023). Can agents run relay race with strangers?
generalization of RL to out-of-distribution trajectories. In The Eleventh International
Conference on Learning Representations.

BIBLIOGRAPHY 173

Langosco, L., Koch, J., Sharkey, L. D., Pfau, J., and Krueger, D. (2022). Goal misgen-
eralization in deep reinforcement learning. In International Conference on Machine
Learning, pages 12004–12019. PMLR.

Laurent, G. J., Matignon, L., Fort-Piat, L., et al. (2011). The world of independent
learners is not markovian. International Journal of Knowledge-based and Intelligent
Engineering Systems, 15(1):55–64.

Lazaric, A. (2012). Transfer in reinforcement learning: a framework and a survey. Rein-
forcement Learning: State-of-the-Art, pages 143–173.

Li, G., Knoop, V. L., and Van Lint, H. (2021a). Multistep traffic forecasting by dynamic
graph convolution: Interpretations of real-time spatial correlations. Transportation
Research Part C: Emerging Technologies, 128:103185.

Li, G., Knoop, V. L., and van Lint, H. (2022). Estimate the limit of predictability in
short-term traffic forecasting: An entropy-based approach. Transportation Research
Part C: Emerging Technologies.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a unified theory of state
abstraction for MDPs. In International Symposium on Artificial Intelligence and
Mathematics (ISAIM 2006).

Li, W., Wang, X., Jin, B., Sheng, J., and Zha, H. (2021b). Dealing with non-stationarity
in marl via trust-region decomposition. In International Conference on Learning
Representations.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2016). Continuous control with deep reinforcement learning. In
International Conference on Learning Representations.

Lin, L.-J. and Mitchell, T. M. (1993). Reinforcement learning with hidden states. From
animals to animats, 2:271–280.

Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., and Gavves, E. (2023).
Biscuit: Causal representation learning from binary interactions. arXiv preprint
arXiv:2306.09643.

Littman, M. L. (1994). Memoryless policies: Theoretical limitations and practical results.
In Proc. of the Third International Conference on Simulation of Adaptive Behavior :
From Animals to Animats 3, pages 238–245.

174 BIBLIOGRAPHY

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R.,
Lücken, L., Rummel, J., Wagner, P., and Wießner, E. (2018). Microscopic traffic simu-
lation using SUMO. In The 21st International Conference on Intelligent Transportation
Systems.

Lopez-Paz, D., Nishihara, R., Chintala, S., Scholkopf, B., and Bottou, L. (2017). Discover-
ing causal signals in images. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6979–6987.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mordatch, I. (2017). Multi-
agent actor-critic for mixed cooperative-competitive environments. Neural Information
Processing Systems (NIPS).

Lu, C., Schölkopf, B., and Hernández-Lobato, J. M. (2018). Deconfounding reinforcement
learning in observational settings. arXiv preprint arXiv:1812.10576.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025.

Lyu, X., Xiao, Y., Daley, B., and Amato, C. (2021). Contrasting centralized and de-
centralized critics in multi-agent reinforcement learning. Proceedings of the Twentieth
International Conference on Autonomous Agents and MultiAgent Systems.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling,
M. (2018). Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562.

Mandlekar, A., Zhu, Y., Garg, A., Fei-Fei, L., and Savarese, S. (2017). Adversarially
robust policy learning: Active construction of physically-plausible perturbations. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3932–3939. IEEE.

Marbach, P. and Tsitsiklis, J. N. (2001). Simulation-based optimization of markov reward
processes. IEEE Transactions on Automatic Control, 46(2):191–209.

McCallum, A. K. (1995a). Instance-based utile distinctions for reinforcement learning
with hidden state. In Machine Learning Proceedings 1995, pages 387–395. Elsevier.

McCallum, A. K. (1995b). Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, University of Rochester.

BIBLIOGRAPHY 175

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529.

Moerland, T. M., Broekens, J., Plaat, A., Jonker, C. M., et al. (2023). Model-based
reinforcement learning: A survey. Foundations and Trends in Machine Learning, 16(1):1–
118.

Mooij, J. M., Magliacane, S., and Claassen, T. (2020). Joint causal inference from multiple
contexts. The Journal of Machine Learning Research, 21(1):3919–4026.

Mooij, J. M., Peters, J., Janzing, D., Zscheischler, J., and Schölkopf, B. (2016). Distin-
guishing cause from effect using observational data: methods and benchmarks. The
Journal of Machine Learning Research, 17(1):1103–1204.

Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., and Rezende, D. J. (2019). Towards
interpretable reinforcement learning using attention augmented agents. In Advances in
Neural Information Processing Systems, pages 12329–12338.

Muller-Brockhausen, M., Preuss, M., and Plaat, A. (2021). Procedural content generation:
Better benchmarks for transfer reinforcement learning. In 2021 IEEE Conference on
games (CoG), pages 01–08. IEEE.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, UC Berkeley, Computer Science Division.

Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press.

Nair, R., Varakantham, P., Tambe, M., and Yokoo, M. (2005). Networked distributed
POMDPs: A synthesis of distributed constraint optimization and POMDPs. In Proc.
of the National Conference on Artificial Intelligence, pages 133–139.

Ng, A. Y. and Jordan, M. (2000). PEGASUS: A policy search method for large MDPs
and POMDPs. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, pages 406–415. Morgan Kaufmann Publishers Inc.

176 BIBLIOGRAPHY

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and Courville, A. (2022). The
primacy bias in deep reinforcement learning. In International Conference on Machine
Learning, pages 16828–16847. PMLR.

van der Pol, E. and Oliehoek, F. A. (2016). Coordinated Deep Reinforcement Learners for
traffic light control. NIPS Workshop on Learning, Inference and Control of Multi-Agent
Systems.

Oh, J., Chockalingam, V., Singh, S., and Lee, H. (2016a). Control of memory, active
perception, and action in minecraft. In Proc. of the 33rd International Conference on
Machine learning, pages 2790–2799.

Oh, J., Chockalingam, V., Singh, S., and Lee, H. (2016b). Control of memory, active
perception, and action in minecraft. In Proceedings of the 33rd International Conference
on International Conference on Machine Learning.

Oliehoek, F., Witwicki, S., and Kaelbling, L. (2021). A sufficient statistic for influence
in structured multiagent environments. Journal of Artificial Intelligence Research,
70:789–870.

Oliehoek, F. A. and Amato, C. (2016). A Concise Introduction to Decentralized POMDPs.
Springer Briefs in Intelligent Systems. Springer.

Oliehoek, F. A., Witwicki, S. J., and Kaelbling, L. P. (2012). Influence-based abstraction
for multiagent systems. In AAAI12.

Ornia, D. J., Romao, L., Hammond, L., Mazo Jr, M., and Abate, A. (2022). Observational
robustness and invariances in reinforcement learning via lexicographic objectives. arXiv
preprint arXiv:2209.15320.

Papageorgiou, M., Diakaki, C., Dinopoulou, V., Kotsialos, A., and Wang, Y. (2003).
Review of road traffic control strategies. Proceedings of the IEEE.

Pearl, J. (1988). Probabilistic Reasoning In Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University
Press.

Pearl, J., Glymour, M., and Jewell, N. P. (2016). Causal inference in statistics: A primer.
2016. Internet resource.

BIBLIOGRAPHY 177

Pearl, J. and Mackenzie, D. (2018). The book of why: the new science of cause and effect.
Basic books.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Sim-to-real transfer
of robotic control with dynamics randomization. In 2018 IEEE international conference
on robotics and automation (ICRA), pages 3803–3810. IEEE.

Peters, J., Bühlmann, P., and Meinshausen, N. (2016). Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical
Society. Series B (Statistical Methodology), pages 947–1012.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal inference: foundations
and learning algorithms. The MIT Press.

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based value iteration: An anytime
algorithm for POMDPs. In Proc. of the International Joint Conference on Artificial
Intelligence, pages 1025–1032.

Puterman, M. L. (1994). Markov Decision Processes—Discrete Stochastic Dynamic
Programming. Wiley.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons.

Qadri, S. S. S. M., Gökçe, M. A., and Öner, E. (2020). State-of-art review of traffic signal
control methods: challenges and opportunities. European transport research review.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. (2009).
Dataset shift in machine learning. The MIT Press.

Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami, S. A., and Botvinick, M. (2018).
Machine theory of mind. In International conference on machine learning, pages
4218–4227. PMLR.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021).
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8.

Raileanu, R., Denton, E., Szlam, A., and Fergus, R. (2018). Modeling others using oneself
in multi-agent reinforcement learning. In International conference on machine learning,
pages 4257–4266. PMLR.

178 BIBLIOGRAPHY

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist systems,
volume 37. University of Cambridge, Department of Engineering Cambridge, UK.

Saengkyongam, S., Thams, N., Peters, J., and Pfister, N. (2023). Invariant policy learning:
A causal perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016a). Prioritized experience replay.
In 4th International Conference on Learning Representations.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016b). Prioritized experience replay.
In International Conference on Learning Representations.

Scheines, R. (n.d.). D-separation. https://www.andrew.cmu.edu/user/scheines/tutor/
d-sep.html. Accessed: 2023-04-21.

Schmidhuber, J. (1991). Reinforcement learning in Markovian and non-Markovian envi-
ronments. In Advances in Neural Information Processing Systems, pages 500–506.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and
Bengio, Y. (2021). Toward causal representation learning. Proceedings of the IEEE,
109(5):612–634.

Schölkopf, B. and von Kügelgen, J. (2022). From statistical to causal learning. arXiv
preprint arXiv:2204.00607.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez,
A., Lockhart, E., Hassabis, D., Graepel, T., et al. (2020). Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588(7839):604–609.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Seitzer, M., Schölkopf, B., and Martius, G. (2021). Causal influence detection for improving
efficiency in reinforcement learning. In Advances in Neural Information Processing
Systems, volume 34.

Shachter, R. D. (1988). Probabilistic inference and influence diagrams. Operations Research,
36:589–605.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489.

https://www.andrew.cmu.edu/user/scheines/tutor/d-sep.html
https://www.andrew.cmu.edu/user/scheines/tutor/d-sep.html

BIBLIOGRAPHY 179

Silver, D. and Veness, J. (2010). Monte-carlo planning in large pomdps. In Advances in
neural information processing systems, pages 2164–2172.

Singh, S., Jaakkola, T., and Jordan, M. (1994a). Reinforcement learning with soft state
aggregation. Advances in neural information processing systems, 7.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994b). Learning without state-estimation
in partially observable Markovian decision processes. In Proc. of the International
Conference on Machine Learning, pages 284–292.

Song, X., Jiang, Y., Tu, S., Du, Y., and Neyshabur, B. (2020). Observational overfitting
in reinforcement learning. In International Conference on Learning Representations.

Sontakke, S. A., Mehrjou, A., Itti, L., and Schölkopf, B. (2021). Causal curiosity: Rl
agents discovering self-supervised experiments for causal representation learning. In
International conference on machine learning, pages 9848–9858. PMLR.

Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., and Ignateva, A. (2015). Deep attention
recurrent q-network. arXiv preprint arXiv:1512.01693.

Spooner, T., Vadori, N., and Ganesh, S. (2021). Factored policy gradients: Leveraging
structure for efficient learning in MOMDPs. Advances in Neural Information Processing
Systems, 34.

Stone, A., Ramirez, O., Konolige, K., and Jonschkowski, R. (2021). The distracting control
suite–a challenging benchmark for reinforcement learning from pixels. arXiv preprint
arXiv:2101.02722.

Suau, M., Agapitos, A., Lynch, D., Farrell, D., Zhou, M., and Milenovic, A. (2021). Offline
contextual bandits for wireless network optimization. arXiv preprint arXiv:2111.08587.

Suau, M., He, J., Celikok, M. M., Spaan, M. T. J., and Oliehoek, F. A. (2022a). Distributed
influence-augmented local simulators for parallel MARL in large networked systems. In
Advances in Neural Information Processing Systems.

Suau, M., He, J., Congeduti, E., Starre, R. A., Czechowski, A., and Oliehoek, F. A.
(2022b). Influence-aware memory architectures for deep reinforcement learning in
POMDPs. Neural Computing and Applications. Special Issue on Adaptive and Learning
Agents.

180 BIBLIOGRAPHY

Suau, M., He, J., Spaan, M. T., and Oliehoek, F. A. (2022c). Speeding up deep rein-
forcement learning through influence-augmented local simulators. In Proceedings of the
21st International Conference on Autonomous Agents and Multiagent Systems, pages
1735–1737.

Suau, M., He, J., Spaan, M. T. J., and Oliehoek, F. (2022d). Influence-augmented
local simulators: a scalable solution for fast deep RL in large networked systems. In
Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 20604–20624. PMLR.

Suau, M., Spaan, M. T. J., and Oliehoek, F. A. (2023). Bad habits: Policy confounding and
out-of-trajectory generalization in RL. In Sixteenth European Workshop on Reinforcement
Learning.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning, pages 216–224.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. The
MIT Press.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information
processing systems, 12.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the tenth international conference on machine learning, pages 330–337.

Tang, Y., Nguyen, D., and Ha, D. (2020). Neuroevolution of self-interpretable agents.
arXiv preprint arXiv:2003.08165.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(7).

Tian, J., Paz, A., and Pearl, J. (1998). Finding minimal d-separators. Tech. rep. R-254,
University of California, Los Angeles.

Tishby, N. and Zaslavsky, N. (2015). Deep learning and the information bottleneck
principle. In 2015 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE.

BIBLIOGRAPHY 181

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain
randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS),
pages 23–30. IEEE.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE.

van der Pol, E., Kipf, T., Oliehoek, F. A., and Welling, M. (2020). Plannable approxima-
tions to mdp homomorphisms: Equivariance under actions. In Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence.

van Hasselt, H. P., Hessel, M., and Aslanides, J. (2019). When to use parametric models
in reinforcement learning? In Advances in Neural Information Processing Systems,
volume 32.

van Lint, H. and Djukic, T. (2012). Applications of kalman filtering in traffic management
and control. In New Directions in Informatics, Optimization, Logistics, and Production.
informs.

Van Lint, J., Hoogendoorn, S., and van Zuylen, H. J. (2005). Accurate freeway travel
time prediction with state-space neural networks under missing data. Transportation
Research Part C: Emerging Technologies.

Varakantham, P., Marecki, J., Yabu, Y., Tambe, M., and Yokoo, M. (2007). Letting loose
a SPIDER on a network of POMDPs: Generating quality guaranteed policies. In Proc.
of the International Conference on Autonomous Agents and Multiagent Systems.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information
Processing Systems 17, pages 5998–6008.

Vinitsky, E., Kreidieh, A., Le Flem, L., Kheterpal, N., Jang, K., Wu, C., Wu, F., Liaw,
R., Liang, E., and Bayen, A. M. (2018). Benchmarks for reinforcement learning in
mixed-autonomy traffic. In Conference on robot learning, pages 399–409. PMLR.

182 BIBLIOGRAPHY

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi,
D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in starcraft
II using multi-agent reinforcement learning. Nature, 575(7782):350–354.

Wang, J., Xu, W., Gu, Y., Song, W., and Green, T. (2021). Multi-agent reinforcement
learning for active voltage control on power distribution networks. Advances in Neural
Information Processing Systems, 34.

Wang, Y. and Papageorgiou, M. (2005). Real-time freeway traffic state estimation based
on extended kalman filter: a general approach. Transportation Research Part B:
Methodological.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical note: Q-learning. Machine Learning,
8(3-4):279–292.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning.
MIT press Cambridge, MA.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3-4):229–256.

Williams, R. J. and Peng, J. (1990). An efficient gradient-based algorithm for on-line
training of recurrent network trajectories. Neural computation, 2(4):490–501.

Witwicki, S. and Durfee, E. (2010a). From policies to influences: A framework for nonlocal
abstraction in transition-dependent Dec-POMDP agents. In Proc. of the International
Conference on Autonomous Agents and Multiagent Systems, pages 1397–1398.

Witwicki, S. J. and Durfee, E. H. (2010b). Influence-based policy abstraction for weakly-
coupled Dec-POMDPs. In Proc. of the International Conference on Automated Planning
and Scheduling, pages 185–192.

Witwicki, S. J. and Durfee, E. H. (2011). Towards a unifying characterization for quan-
tifying weak coupling in Dec-POMDPs. In Proceedings of the Tenth International
Conference on Autonomous Agents and Multiagent Systems, pages 29–36.

Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., and Bayen, A. M. (2017). Flow: A
modular learning framework for autonomy in traffic. arXiv preprint arXiv:1710.05465.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio,
Y. (2015). Show, attend and tell: Neural image caption generation with visual attention.
In Proc. of the 32nd International Conference on Machine learning, pages 2048–2057.

BIBLIOGRAPHY 183

Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., and Wu, Y. (2021). The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955.

Zhang, A., Ballas, N., and Pineau, J. (2018a). A dissection of overfitting and generalization
in continuous reinforcement learning. arXiv preprint arXiv:1806.07937.

Zhang, A., Lyle, C., Sodhani, S., Filos, A., Kwiatkowska, M., Pineau, J., Gal, Y.,
and Precup, D. (2020). Invariant causal prediction for block mdps. In International
Conference on Machine Learning, pages 11214–11224. PMLR.

Zhang, A., McAllister, R. T., Calandra, R., Gal, Y., and Levine, S. (2021). Learning invari-
ant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations.

Zhang, C., Abdallah, S., and Lesser, V. (2009). Integrating organizational control into
multi-agent learning. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 757–764.

Zhang, C., Lesser, V. R., and Abdallah, S. (2010). Self-organization for coordinating
decentralized reinforcement learning. In AAMAS, volume 10, pages 739–746.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. (2018b). A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893.

Zhao, W., Queralta, J. P., and Westerlund, T. (2020). Sim-to-real transfer in deep
reinforcement learning for robotics: a survey. In 2020 IEEE symposium series on
computational intelligence (SSCI), pages 737–744. IEEE.

Zhu, P., Li, X., and Poupart, P. (2017). On improving deep reinforcement learning for
POMDPs. ArXiv e-prints, arXiv:1704.07978.

Zhu, Y., Wong, J., Mandlekar, A., and Martín-Martín, R. (2020). robosuite: A modular sim-
ulation framework and benchmark for robot learning. arXiv preprint arXiv:2009.12293.

Curriculum Vitae

12-05-1991 Born in Lugo, Spain

Education

2010 - 2014 Bachelor’s Degree in Energy Engineering
Technical University of Madrid

2016 - 2018 Master of Science in Mathematical Modelling and Computation
Technical University of Denmark

Work Experience

2016 Solutions Assistant
NTT Data

2017 - 2018 Business Intelligence Analyst
Unity Technologies

2018 - 2023 Ph.D. Candidate
Delft University of Technology

2020 - 2022 Lecturer, CSE2530, Computational Intelligence
Delft University of Technology

2021 Ph.D. Research Intern
Huawei Ireland Research Center

2022 Ph.D. Research Intern
J.P. Morgan AI Research

2023 - Now AI Research Scientist
Phaidra Inc.

List of Publications

10. M. Suau, M. T. J Spaan, F. A. Oliehoek. Bad Habits: Policy Confounding and
Out-of-Trajectory Generalization in RL. European Workshop on Reinforcement
Learning, 2023.

9. M. Suau, J. He, M. M. Çelikok, M. T. J Spaan, F. A. Oliehoek. Distributed Influence-
Augmented Local Simulators for Parallel MARL in Large Networked Systems. Neural
Information Processing Systems, 2022.

8. M. Suau, J. He, M. T. J Spaan, F. A. Oliehoek. Influence-Augmented Local
Simulators: A Scalable Solution for Fast Deep RL in Large Networked Systems.
International Conference on Machine Learning, 2022.

7. J. He, M. Suau, H. Baier, M. Kaisers, F. A. Oliehoek. Online Planning in POMDPs
with Self-Improving Simulators. International Joint Conferences on Artificial Intelli-
gence, 2022.

6. M. Suau, J. He, M. T. J. Spaan, F. A. Oliehoek. Speeding up Deep RL through
Influence-augmented Local Simulators. Extended Abstract. Autonomous Agents
and Mult-Agents Systems, 2022.

5. M. Suau, J. He, E. Congeduti, J. He, R.A.N. Starre, A. Czechowski, F. A. Oliehoek.
Influence-aware Memory Architectures for Deep Reinforcement Learning in POMDPs.
Neural Computing and Applications, Springer Journal, 2022.

4. M. Suau, A. Agapitos, D. Lynch, D. Farrell, M. Zhou, A. Milenovic. Offline
Contextual Bandits for Wireless Network Optimization. Offline RL workshop,
Neural Information Processing Systems, 2021.

https://arxiv.org/abs/2306.02419
https://arxiv.org/abs/2306.02419
https://arxiv.org/abs/2207.00288
https://arxiv.org/abs/2207.00288
https://proceedings.mlr.press/v162/suau22a.html
https://proceedings.mlr.press/v162/suau22a.html
https://www.ijcai.org/proceedings/2022/0642
https://www.ijcai.org/proceedings/2022/0642
https://dl.acm.org/doi/abs/10.5555/3535850.3536093
https://dl.acm.org/doi/abs/10.5555/3535850.3536093
https://link.springer.com/article/10.1007/s00521-022-07691-7
https://offline-rl-neurips.github.io/2021/pdf/18.pdf
https://offline-rl-neurips.github.io/2021/pdf/18.pdf

3. N. Albers, M. Suau, F.A. Oliehoek. Using Bisimulation Metrics to Analyze and
Evaluate Latent State Representations. Benelux Conference on Artificial Intelligence
and Machine Learning, 2021.

2. J. He, M. Suau, F.A. Oliehoek. Influence-augmented Online Planning for Complex
Environments. Neural Information Processing Systems, 2020.

1. M. Suau, E. Congeduti, R.A.N. Starre, A. Czechowski, F.A. Oliehoek. Influence-
based Abstraction in Deep Reinforcement Learning. Workshop on Adaptive Learning
Agents, Autonomous Agents and Mult-Agents Systems 2019.

http://bnaic.liacs.leidenuniv.nl/wordpress/wp-content/uploads/papers/BNAICBENELEARN_2020_Final_paper_39.pdf
http://bnaic.liacs.leidenuniv.nl/wordpress/wp-content/uploads/papers/BNAICBENELEARN_2020_Final_paper_39.pdf
https://proceedings.neurips.cc/paper/2020/hash/2e6d9c6052e99fcdfa61d9b9da273ca2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2e6d9c6052e99fcdfa61d9b9da273ca2-Abstract.html
https://pure.tudelft.nl/portal/en/publications/influencebased-abstraction-in-deep-reinforcement-learning(e3907031-1af3-4583-8741-b6b4ed729170).html
https://pure.tudelft.nl/portal/en/publications/influencebased-abstraction-in-deep-reinforcement-learning(e3907031-1af3-4583-8741-b6b4ed729170).html

	Introduction
	Motivation
	Objective
	Local Simulators
	State Abstraction

	Contributions

	Background
	Reinforcement Learning
	Markov Decision Processes
	Reinforcement Learning Methods
	Partial Observations
	State Abstraction
	Function Approximation

	Probabilistic Graphical Models
	Factorization
	Conditional Independence and D-Separation
	Confounding
	Dynamic Bayesian Networks

	Factored Representations
	Factored POMDPs
	Locality
	Influence-Based Abstraction
	D-Separating Set

	Influence-Augmented Local Simulators
	Introduction
	Related Work
	Influence-Augmented Local Simulators
	Finite Memory Agents and AIP History Dependence
	Off-Policy Generalization and D-sets
	Sufficiently Similar Training Conditions

	Experiments
	Experimental Setup
	Traffic Control
	Warehouse Commissioning
	Finite Memory Agents and AIP History Dependence

	Conclusion

	Distributed Influence-Augmented Local Simulators
	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Influence-Augmented Local Simulators

	Distributed Influence-Augmented Local Simulators
	Enabling Parallelization
	Algorithm
	Mitigating the Negative Effects of Simultaneous Learning

	Experiments
	Experimental Setup
	Environments
	Results

	Scope and Limitations
	Conclusion

	Influence-Aware Memory
	Introduction
	Related Work
	Example: Warehouse Commissioning
	Influence-Aware Memory
	Influence-Aware Memory Network
	Learning Approximate D-sets

	Experiments
	Environments
	Experimental Setup
	Learning Performance and Convergence
	High Dimensional Observation Spaces
	Learning Approximate D-sets.
	Architecture Analysis

	Conclusion

	Policy Confounding
	Introduction
	Example: Frozen T-Maze
	Related Work
	Preliminaries
	State Representations
	Markov State Representations
	-Markov State Representations

	Policy Confounding
	Why Should We Care about Policy Confounding?
	When Should We Worry about OOT Generalization in Practice?
	What Can We Do to Improve OOT Generalization?

	Experiments
	Experimental setup
	Environments
	Results

	Conclusion

	Concluding Remarks
	Conclusion
	Scope
	Limitations
	Future Work
	Adaptive Simulators for Non-Stationary Environments
	Generalization in Dynamics Modeling
	Causal Reinforcement Learning

	Appendices
	Influence-Augmented Local Simulators
	Proofs
	Example: Spurious Correlations in the Traffic Domain
	Runtimes
	Local Simulators
	Results
	Traffic control intersection 2
	Comparison on the number of timesteps
	Sufficiently similar training conditions

	Implementation Details
	Algorithms

	Distributed Influence-Augmented Local Simulators
	Proofs
	Further Related Work
	Algorithms
	Results
	DIALS vs GS
	AIPs training frequency

	Implementation Details
	Approximate Influence Predictors
	Local regions

	Simulators
	Runtimes
	Memory Usage
	Hyperparameters

	Influence-Aware Memory
	Implementation details
	Runtime performance
	Learning curves
	Results on the original Atari games
	Decoding the agent's internal memory
	Analysis of the hidden activations
	Attention maps

	Policy Confounding
	Proofs
	Example: Watch the Time
	Further Related Work
	Dynamic Bayesian Networks
	Experimental Results
	Learned state representations
	Buffer size and exploration/domain randomization

	Further Experimental Details

