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Clouds moving in front or away from the sun are the leading cause of irradiance variability. These variations
have a repercussion on the electricity production of photovoltaic systems. Predicting such changes is essential
for proper control of these systems and for maintaining grid stability. Images from the sky have proven
to help with short-term solar irradiance forecasting, especially when combined with artificial intelligence.
Nevertheless, these models tend to smooth the irradiance fluctuations. We propose a forecasting model to
predict the clear-sky index in a forecast horizon of 20 min with a 1-minute resolution. Our model, based on
a classifier to determine the sky conditions and, on an optical flow, applies an artificial intelligence model
explicitly trained on each class of sky conditions. This strategy has an equivalent performance to an unclassified
model and a forecast skill between 5 and 20% with respect to the smart persistence model for most classes
of sky conditions while requiring considerably less training data. Although our model reduces the overall
predicting error, it still has difficulties predicting irradiance changes and mainly overcast days. Our classifying
strategy can be applied to other models targeting different objectives to predict sudden changes in either

irradiance or power related to photovoltaic systems.

1. Introduction

Clouds influence the irradiance from the Sun as it travels through
the atmosphere with their shape, size, and constitution [1]. One of
the most obvious effects is that they block the sunlight, reducing the
available Sun power reaching the ground. They can also cause the
opposite: increasing (or enhancing) the irradiance above the theoretical
irradiance at the top of the atmosphere [1,2], caused by scattering
inside the cloud [3] which leads to an increase in the diffuse irradi-
ance [2]. Cloud enhancement, for example, can cause blowing of fuses
(leading to production loss), overloading of the inverters (leading to
efficiency loss) [4] or underestimation of maximum Photovoltaic (PV)
production [5]. Therefore, the movement of clouds in front of the Sun
produces fluctuations in the solar irradiance available for PV produc-
tion. These fluctuations occur even in the sub-minute range, negatively
affecting the PV systems in the form of significant PV power ramps
which impose a challenge to grid operators [6], and the variability of
solar irradiance affect the maximum power point trackers’ operation
resulting in efficiency loss [7].

Irradiance forecasting is a method to alleviate some of the chal-
lenges of variations caused by moving clouds. It is applied in the
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operation of PV systems with benefits such as increasing battery life-
times of PV systems that incorporate them [8], and it has proven to be
a crucial requirement of grid operations with high renewable energy
penetration [9].

In the very short term, defined by a time horizon from seconds
to maximum 30 min [10], images from the sky provide valuable
information such as cloud identification (e.g., [11]), cloud classifica-
tion (e.g., [12]), and cloud tracking (e.g., [13]). Such sky images are
obtained with an All-Sky Imager (ASI) (a camera equipped with a fish-
eye lens facing the sky) which takes a picture of the sky in a particular
location. This has the advantage of retrieving higher resolution infor-
mation on the site than satellite images (which cover a broader area),
ceilometers, and radars (which have lower local resolution) [14].

The core idea behind predicting irradiance using sky images is to
(1) identify clouds, (2) determine how they are moving, and (3) assess
whether they will obstruct the Sun [13,15-19]. Additional information
(or features) can be given to the model to improve the prediction. For
example, in [16], the authors included not only the cloud pixels and
their movement but also identified the cloud edges and corners related
to the cloud type and the pixel intensity of the clear and cloudy pixels.
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Lists of terms

Al Artificial Intelligence

ASI All-Sky Imager

ANN Artificial Neural Network

CC Cloud Cover

CNN Convolutional Neural Network
GHI Global Horizontal Irradiance
HYTA Hybrid Thresholding Algorithm

LSTM Long Short-Term Memory
nBRR Normalized Blue-Red Ratio
RNN Recurrent Neural Network
RGB Red-Green-Blue

RMSE Root Mean Squared Error
PV Photovoltaic

Convolutional Neural Networks (CNNs) can automatically detect
these features [20] and can be used to perform irradiance forecasting,
such as SUNSET [21,22], SolarNet [23] and ECLIPSE [24]. SUNSET is
a CNN that receives a sequence of sky images and historical PV power
production to forecast a 15-min horizon [21,22]. In highly variable
moments, the model predicts the average output PV power in the
prediction horizon [22]. SolarNet follows a different approach, as it
was designed to predict over a wide range of time horizons using 6
CNNs trained for different forecasting horizons and a single sky image
as input. It can predict up to 60 min with a 10-min resolution [23].

The prediction of irradiance ramps can be done by predicting the
future position of the cloud pixels and determining whether or not these
pixels will block the Sun [24,25]. ECLIPSE uses this approach to predict
up to 10 min with a resolution of 2 min, and it tackles specifically the
prediction of important irradiance ramps. It achieves this by combining
temporal information (using a sequence of images) along with spacial
information (location of the clouds and the Sun) [24].

CNNs are not the only architecture for implementing sky image
forecasting. Especially when including sequences of images, other Arti-
ficial Intelligence (AI) architectures such as Long Short-Term Memory
(LSTM) or Recurrent Neural Network (RNN) can also compete and
even outperform CNNs [26-30]. Nevertheless, a CNN has a relatively
simpler architecture than LSTM or RNN [31] and the improvement in
the error reduction that the former offer is marginal (around 2%) on
forecasting horizons greater than 10 min [27,30]. In some cases, the
CNN can even perform better than the networks incorporating temporal
information [30].

In general, sky-image-based forecasting methods outperform per-
sistence models in many sky conditions, although their performance
for ramp detection is still one of the main challenges and an ongoing
research topic [28]. This holds even for models based on artificial intel-
ligence, as they tend to output a smooth prediction of irradiance that
effectively misses steep ramps [26,27,29] or they predict an average
of the output [22,27]. Additionally, the output from AI models tends
to lag from the actual measurements [27]. Even more, deep learning
models are sensitive to weather conditions [29,31].

To tackle these problems, hybrid models have been proposed. Some
combine image processing techniques to extract the evaluating features
and then feed them to an LSTM which performs the forecast. This model
can solve the problem with time alignment and detect some ramps [19].

Al-based hybrid models can also be created by training different
models to cover various scenarios. One of these is based on implement-
ing a classifier for four cloud types. Then four different models are
trained using Support Vector Regression and Multiple Linear Regressor.
The final prediction is made by determining the prevailing cloud type
on a sky image and then applying the corresponding model to that
cloud type [18]. The authors claim an improvement in the error not
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only with respect to the persistence model but also to models based on
Artificial Neural Network (ANN)’s [18].

The classification can also be done in terms of time. This is achieved
by training the same model aiming at different forecasting horizons
and then combining their output using a linear combination [32]. This
strategy is also useful to deal with models which have many inputs,
such as images and irradiance measurements. In this case, the time
resolution of the data can have different sampling times. The use of
different models and combining their output (ensemble learning) can
help to deal with these situations [33] or facilitate training with fewer
data by using transfer learning [34].

The purpose of this work is therefore to develop a mixed model
based on sky images (Section 2.1), a sky classifier (Section 2.3), and
a CNN (Section 2.4).

As opposed to ensemble learning techniques, which are also based
on classification, our model does not combine the output of different
models but uses the output of a specialized model on a particular sky
class which leads to a reduction in the prediction error (Sections 3 and
R

2. Model structure

Our model consists of three main modules: image processing, sky
classifier, and artificial intelligence. Fig. 1(a) illustrate the structure
of the model. The model receives a sky image and a clear-sky index
(defined in Section 2.3) and the coordinates of the Sun in the image.
The image is manipulated to obtain the cloud cover (Fig. 1(b)). Using
this and the clear-sky index it is classified in one of five categories.
The image is then fed, along with the clear-sky index to one of the five
CNNs trained for the particular class the image belongs to. The output
is a minute resolution of the Global Horizontal Irradiance (GHI) over
the next 20 min.

2.1. Image processing module

The image processing module processes the images that will serve
as input to the classifier. After the processing, the Cloud Cover, the
clear-sky index and the position of the Sun within the image are
obtained.

2.1.1. Cloud identification

A digital color image (such as that captured by an ASI) is a discrete
representation of the intensity of the light impinging upon the sensor of
the camera [35]. The color of the digital image is obtained by superim-
posing a checkered pattern where three filters (red, green and blue) are
embedded (Bayer pattern) [36] to the sensor or having three separate
red, green and blue sensors [35,36]. The reason for these three colors is
that the model used to represent each pixel in the image defines them
as primary colors and is called the Red-Green-Blue (RGB) model [35].
Using the RGB model results in a 3D representation of an image where
each matrix dimension represents one primary color [35,36].

The color channels of a sky image can be used to identify clouds
(cloud segmentation). On a clear day when looking at the sky, it
appears blue. If, at this instant, a sky image is taken, the value of the
blue pixels will be higher than the Red pixels, assuming that our image
is mapped in the RGB color space. On the contrary, a cloud-covered sky
image will have a greater count of red pixels, making the clouds appear
white or gray [12]. Using this fact, the clouds can be detected by using
a ratio (e.g., [37]) or a difference (e.g., [12]) between the image’s red
and blue channels and then establishing a threshold above which the
pixels will be classified as clouds while the rest as sky. A combination
between the difference and ratio of the red and blue channels can also
be used to establish such threshold. This is the case of the Normalized

Blue-Red Ratio (nBRR) which is defined in Eq. (1).
Blue — Red

nBRR = ————— 1
Blue + Red
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Fig. 1. (a) Overview of the prediction model. (b) Detail of the sky classifier module.

The problem with the thresholding method is that it fails to detect
very thin clouds, has a large misclassification rate due to the overlap
of the pixel distribution between clear and cloudy conditions, and
performs poorly on pixels located around the sun [11,38].

The fact that partially cloudy, overcast, and clear days exhibit
different nBRR pixel distributions can improve classification accuracy.

The nBRR pixels of partly cloudy images exhibit a bimodal distri-
bution, while this feature disappears on overcast and clear-sky images.
The bimodality can be identified from the standard deviation of the
histograms [38]. Depending on the sky condition, the thresholding
technique can be adapted for partially cloudy (bimodal distribution),
partially or clear-sky images (unimodal distribution) [38]. This is the
core idea behind the Hybrid Thresholding Algorithm (HYTA), which
achieves an overall accuracy of 88.53%. However, HYTA excludes sun
pixels, because very few sun pixels, can shift the whole histogram due
to their large intensity. For this reason, the improved algorithm version,
HYTA+ [11], was developed. This method adds another classification
step by first determining whether a cloud covers the sun. Following
the logic of the HYTA, the algorithm of [39] is based on sun coverage
identification and sky condition classification. We build upon this
model because of its simplicity and accuracy. Our implementation of
the algorithm [39] is explained below.

1. Sun identification: Determines whether the sun is blocked or not.

1.1. Identification of the sun. Eq. (2) returns the coordinates
(in pixels) of the sun in the image based on the position
of the sun in the sky described by its azimuth (A4) and
altitude (a) (in degrees). It is based on the projection of
the sky dome on a plane [40]. Once the sun is identified,
the image is cropped, considering a radius of 200 pixels
around the sun’s coordinates

Xsun = Xcemer + Rimage
Y,

sun = Yeenter T Rimage X cos(A) cos(a)

X sin(A) cos(a)

@

1.2. Obtaining the sun coverage ratio. The cropped image is
converted to grayscale. The sun is detected by identifying
very bright and white pixels with a value exceeding 210.

The value of 210 is the minimum average pixel intensity
of the region around the sun of 150 clear-sky images [39]
(Note: the maximum pixel value of a grayscale image is
255). Then, the ratio of white pixels in the whole image
is calculated. The sun is clear if at least 95% of the pixels
of the cropped image are white [39].

2. If the sun is blocked:

2.1.

Apply a fixed threshold of 0.6 on the Red/Blue ratio to
identify the clouds.

3. If the sun is not blocked:

3.1.

3.2.

Determine if there are cloudy pixels in the image. The
original work [39] set a fixed threshold of 0.6 on the pixel
intensity of the image, excluding 200 pixels around the
Sun. We decided to apply the average of the normalized
Blue-Red Ratio (Eq. (1)). Our threshold value was set
at 0.45, which corresponds to the 75th percentile of the
pixel values of 100 partially cloudy days. This means that
values above 0.45 will be classified as clear. Fig. 2 shows
the statistics of both figures. Using the average of the
nBRR (with the sun blocked as in [39]) results in lower
overlapping than using the original pixel intensity of the
Blue-Red ratio. Our chosen value ensures that most of the
clear-sky images are correctly classified, albeit sacrificing
accuracy for the partly cloudy days which statistically is
25% of the evaluated images. Despite this considerable
large value, a visual inspection of the images suggest that
the misclassified images show small clouds, not covering
the sun, and a deep blue sky, which is acceptable for
the clear-sky classification. Lowering the threshold to
the minimum of the observed clear-sky images, results
in worst classification as completely overcast where the
sun is visible (foggy conditions, for example), can be
misclassified as clear-skies.

For images classified as partly cloudy, apply superpixel
segmentation method following the approach of [41]. The
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Fig. 2. Statistics of 100 clear-sky images and 100 partly cloudy images. (a) Mean pixel value using the nBRR and (b) Pixel intensity using the Blue-Red ratio as in [39]. Note
that with the pixel intensity, there is a greater overlap between clear day and partially cloudy images.

superpixel segmentation method is, as the name implies,
a segmentation strategy that will aggregate pixels with
similar characteristics of brightness, texture, and contour
smoothness into blocks called superpixels[42]. The super-
pixels offer a segmentation that is closer to how a human
would segment the same image manually [42]. The super-
pixel segmentation method proposed in [41] essentially
obtains a global threshold to separate clouds from sky for
the whole image using the Otsu algorithm, which is an
automated method for finding the optimal threshold. It is
based on the fact that the pixels of high-contrast grayscale
images have a bimodal distribution. Thanks to this fact,
two classes can be created based on the humps of the
bimodal distribution. The Otsu thresholding iterates over
the image histogram and in each pass separates these two
classes by evaluating the probability of each class and
its variance, which are dependent on the threshold. The
optimal threshold will maximize the variance between
both classes [43].

After the global threshold is obtained, the cloud detection
algorithm applies superpixel segmentation to the image.
For each superpixel, a local threshold is obtained and
then compared against the global threshold. This allows
establishing a decision on the threshold that should be ap-
plied to each superpixel. By doing this, the identification
of clouds is performed per superpixel instead of globally.
Hence a more accurate identification is achieved [41].

The cloud cover is the count of cloudy pixels to the total image
pixels. It is important to mention that we masked the pixels of the image
corresponding to the horizon to avoid counting these objects as clouds.
We also considered only images with a sun elevation higher than 10°
over the horizon. Some examples of cloud identification can be found
in Appendix A.

2.2. Optical flow

The cloud motion is incorporated by calculating a dense optical
flow. This tool allows the tracking of pixels between two consecutive
images by calculating the displacement of pixels (or group of pixels)
between two consecutive images [44]. In particular, we applied the
Farneback method [45]. This method approximates the pixel intensity
of a greyscale image as a quadratic polynomial. Then, it assumes that
the consecutive image is described by the same polynomial function but
displaced by a displacement vector field. The Farneback algorithm aims
to retrieve this displacement vector for every pixel [45].

This algorithm is implemented in the Python package OpenCV as the
function calcOpticalFlowFarneback and returns the displace-
ment vector for every pixel in terms of magnitude and angle [46].

The optical flow has been applied to irradiance forecasting by first
determining the full displacement vector field and then finding an
equivalent vector which describes the motion of the main cloud block
near the Sun. This can be later related with the direct normal irradiance
to predict occlusions of the Sun [47].

2.3. Sky classifier

The sky-classifier is built upon the cloud cover retrieved from an in-
stantaneous sky image and the clear sky index obtained simultaneously.
To recall, the clear-sky index is an adimensional number relating the
measured GHI (GHI,,) against the GHI obtained from a clear-sky model
GHI,, at any instant. Mathematically, it is expressed as in Eq. (3). The
clear-sky index removes the seasonal variation of irradiance, allowing
for an analysis for the changes in irradiance caused by clouds [48].

GHI,,
¢~ GHI,

For this reason, we hypothesized that there should be an almost
linear relation between the cloud cover and the clear-sky index (i.e. the
larger the cloud cover, the lower the clear-sky index). Fig. 3(a) shows
the scatter plot of the clear-sky index and the cloud cover for our
dataset. From this image the hypothesized relation cannot be verified.

Pfister, et al. [1] described the relation between the cloud cover,
the irradiance, and the clear-sky index. In their results, two bands, or
clusters can be observed: The first occurs at very high clear-sky indices
spreading over a wide range of cloud cover, and the second one at very
low clear-sky indices scattered from cloud cover values between 40 and
100% [1]. These bands are not identifiable in our dataset (Fig. 3(a)).
The potential reasons for these differences are how they processed
the irradiance data. In both works, 1-min data was used; however, in
the work of Pfister, et al. [1], the average of 1-s measurements over
the minute is taken, while in our work, we took a single irradiance
measurement that coincides with the instant that the sky-image is
taken. Our approach results in measurements with higher variability
(hence, the scattering observed in Fig. 3(a)). Nevertheless, with this
strategy, we do not include events that are not captured by the camera
at that instant. For example, at a particular moment, a sky image might
show a clear sun. However, in the course of the minute between images,
the sun might have been obscured. By averaging the 60 s of the minute,
this information is incorrectly assigned to the unobscured image.

Since we do not observe clusters of data, we applied K-means (50
clusters) and then manually grouped these clusters together to obtain
a final classification consisting of five classes. The logic for the cluster
strategy is as follows:

3
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Fig. 3. (a) Scatter data from instantaneous clear-sky index and cloud cover. (b) Classified dataset. Observe that there are some data points with very high clear-sky index values.
Although it is not unexpected to have values of the clear-sky index exceeding unity (due to cloud enhancement), extreme values (close to two) correspond to a mismatch between
the clear-sky index model and the measurements. This occurs mainly in the early morning or late evening.

Class 1: clear-sky images (high clear-sky index, very low cloud
cover)

Class 2: partly cloudy images following an almost linear relation
of the clear-sky index and cloud cover.

Class 3: overcast days with high irradiance (high cloud cover,
high clear-sky index). This group includes the overirradiance
phenomenon.

Class 4: overcast images (Very low clear sky-index, very high
cloud cover)

Class 5: Partly clear skies with sun obscured images (low cloud
cover, low clear-sky index)

Fig. 3(b) shows the resulting clusters after the classification logic.

2.4. Artificial intelligence module

The last module of the model is the one that makes the prediction. It
implements a CNN, which processes a low-resolution, color sky image
merged with the optical flow information at every pixel, resulting in
a 64 x 64 pixels image with five channels. The first three channels
of the image correspond to the red, green, and blue channels, respec-
tively. The last two channels map the magnitude of the pixels’ velocity
(channel 4) and their direction (channel 5) obtained from the optical
flow. The architecture of this network is a convolutional neural network
with only one convolutional step, which processes the image. Then, the
output is flattened to a one-dimensional vector and concatenated with
the auxiliary input data: the X and Y coordinates of the Sun’s position
on the image and the clear-sky index. The auxiliary data combined with
the flattened image is fed to a three-layer neural network. The output
is a vector containing the 20-min ahead clear-sky predictions.

This architecture is trained 6 times: one considering the whole
dataset (reference) and one time per sky class. In short, the full pipeline
of the model is

1. Get sky-image

2. Using the image processing module, obtain: cloud cover, clear-
sky index and position of the Sun in the image.

3. Obtain the class of the image.

4. Use the CNN model trained on the sky-image class to get the
final prediction

3. Results and discussion

The data set used in this study contains sky images taken using
a CMS Shreder ASI-16/50 All Sky Imager located at the monitoring
station of the Photovoltaic Materials and Devices. The irradiance was
measured with a silicon-based pyranometer provided by the manufac-
turer of the sky camera. The full dataset contains data from 29-03-2021
until 24-02-2022. For training purposes, we used a reduced sample
of this dataset containing 80 000 randomly sampled sky images with
their associated irradiance values and with a sun elevation higher than
10° above the horizon. The distribution of the dataset can be found
in Appendix B, Fig. B.1. The clear-sky index was calculated using the
python pvlib function clearsky with the solis model [49]. A reference
model, hereafter called “full model”, was trained to study the potential
improvement of the classifier. This model has the same architecture of
each CNNs used in the classifier but is trained with a random sample of
64 000 data points containing data from all classes. The rest of the data
points are used for testing the model’s performance hyperparameter
tuning was performed for any of the models, as the study’s main goal is
to obtain a comparison of the advantages of the classifier. Each model
was trained for 20 epochs using the mean squared error as the loss
function. It is worth mentioning that the architectures of all models
remain the same.

The models for each class were trained using a sample that contains
the same amount of data points regardless of the class (9536 data-
points). Similarly, as the reference model, each model was trained for
20 epochs with no hyperparameter tuning.

Fig. 4 shows the forecast skill defined in Eq. (4) [27], where
RMSE,,, is the RMSE of the model under evaluation and RMSE, ,jine
is the RMSE of the baseline model (either the model trained with
the whole dataset (Full model) or the persistence model). Fig. 4(a)
compares both, the full model (model trained with the whole dataset)
and the classified models against the smart persistence model, which
assumes that the clear-sky index will remain constant throughout the
forecast horizon. Note that in Class 4 (overcast) the persistence model
performs better than the full and classified models, and in Class 5
(mainly overcast with patches of blue), the smart persistence model
performs better than the classified model. The classified model is the
best option for predicting Class 1 (clear skies), while the full model is
the best option for predicting classes 2, 3, and 5 as seen in Fig. 4(b).

_ RMSEj;cjine — RMSE

FS = eval o 100 4
RMSEbasclinc
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Fig. 4. Forecast skill per class using the RMSE. (a) Performance per class of the classified and the full models (model trained with the full dataset) against the smart persistence
model. The forecast skill of the smart persistence is zero, and is marked with a solid line. (b) Performance of the classifier against the full model (model trained with the full
dataset). The forecast skill of the full model is zero because it is the reference in this particular case. It is marked with a dashed line.
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application of the classifier on the whole dataset, where Class 1 was predicted with a class 1 CNN, classes 2,3 and 5 with the full model and Class 4 with the smart persistence
model. The prediction on the same dataset with the full model is also shown. The red line on all graphs indicates a perfect prediction. Points above the red line indicate that the
model overestimates the labeled value and points below the red label indicate that the model underestimates the labeled value.



V.A. Martinez Lopez et al.

—-—Class1 - - Class2
Class 3 ----Class 4
----Class 5
04
03
&
£
=
==10:2
w
@]
=
4
0.1
0.0 0 5 10 15 20

Time horizon [min]

(a)

Solar Energy 269 (2024) 112320

—-—Class1 - — Class 2
Class 3 —---Class 4
----Class 5
04
03

RMSE [W/m?]
[N

o

0.0

0 5 10 15 20
Time horizon [min]

(b)

Fig. 6. RMSE as a function of the prediction horizon for (a) the reference model performing in each class, and (b) the classified model.

With the results of Fig. 4, it is evident that the full model out-
performs the classified model in almost every class. The performance
of the classified and the Full model are very similar, with a slight
improvement in classes 2 and 3. The full model exhibits a larger
scattering between the expected and the predicted values (Fig. 5), while
in the classified model, the points are more clustered. Because of this,
the full model has more points close to the perfect prediction line
resulting in lower error, especially in large clear-sky indices. We can
conclude that the full model is more accurate, but the classified model
is more precise in classes 1, 2, and 3 (Figs. 5(a), 5(b), and 5(c)).

The classified model fails on classes 4 and 5 (Figs. 4(a), 5(d), and
5(e)), and the smart persistence model is, by far, the best option for
predicting overcast days (Class 4) (Fig. 4(a)).

Fig. 6 shows the evolution of the RMSE as the forecast horizon
increases. The error increases as the forecast horizon increases, as
expected. For the full model (Fig. 6(a)), the increase of the error is
minimal, while for the classified model, it is more evident (Fig. 6(b)).
The models tend to ignore the changes in irradiance, and minimize the
error along the whole prediction horizon. For this same reason, the
classified model fails in classes 4 and 5, as the model predicts always
the same value (Figs. 5(d) and 5(e)).

Fig. 7 shows the application of the model to predict the Global
Horizontal Irradiance (GHI). Multiplying the model’s output with the
modeled clear-sky gives the value of the GHI. During the clear part of
the day, the classified model outputs a smoother prediction closer to
the measured GHI. In the variable part of the day, both models predict
a trend rather than the actual value of irradiance, and neither of them
captures the peaks and valleys of the measured irradiance. The Figure
also shows the moments where the classified model failed (Class 5, in
both cases).

The use of the optical flow to incorporate temporal information of
the cloud movement did not show any improvement. There was no
difference in the training error of the reference model with and without
the optical flow. This suggests that the optical flow does not provide
useful information to the model and can be ruled out as a predictor.

One potential explanation for this, is that the optical flow used
in this work (the Farneback method [45]) tracks the movement of
pixels. But this does not necessarily implies that it tracks the clouds. The
Farneback method may provide too much information that the models
interpret as noise. Another potential reason for the poor performance
of the optical flow is that clouds do not move as a block, but they

Measured
Prediction reference
Prediction class

500

)

S
400 |

GHI (W/m

200 |

100

1 1 1
09:00 12:00 15:00

Time

Fig. 7. Example of 1 day with prediction using the classification model and the
reference model. The measurements for such a day are also included as a guide. Note
that both models have difficulties during the variable part of the day.

also change, which is not captured by the optical flow method. This
makes the correlation between past images and future measurements
a difficult task [25]. Nevertheless, although including the temporal in-
formation of clouds in forecasting models leads to improved prediction
accuracy as proved by [27,28], this improvement is marginal and might
not justify the extra effort needed for such an improvement.

Despite an overall higher performance of the full model, our ap-
proach has the advantage of improving the prediction by combining
different models. The results presented here assumed that the predic-
tion module is the same for the five classes, but the classifier approach
can also be combined with different models. For example, use the
classified model for Class 1, the reference model for Classes 2, 3, and
5, and the smart persistence for Class 4.

Fig. 5(f) shows an example of such an ensemble. When the predicted
instant corresponds to Class 1, the predictor is the specialized CNN of
Class 1. When it corresponds to classes 2, 3, and 5 the predictor is the
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None

None

None

Fig. A.1. Random examples of Class 1 cloud identification. The images on the left column are the original images. On the right, the clearer areas identify “Cloud” pixels while
the darker are “Not cloud” pixels. The label “None” indicates that there are no clouds identified in that image. Note that the horizon has a mask of black pixels.

full model. The predictor is the smart persistence model for instants
that correspond to Class 4. This strategy reduces the error by 2.05%
with respect to the full model. Although the improvement is not large,
it proves that using specialized systems for different sky classes reduces
the prediction error. This opens the possibility of implementing other
prediction algorithms even better than our full model for a particular
class, while using the classifier concept.

Note that, except for classes 4 and 5, the performance of the full
and classified models is considerably close. Even if the full model
outperforms the classified model, this could be acceptable, considering
that the amount of data to train the classified networks is only a fraction
of the data needed for the full model (around 14% per class, 42% for
classes 1,2, and 3, 70% for the five classes). Naturally, increasing the
number of training examples also helps the prediction accuracy of the
classified model.

Our model (both the reference and classifier) still suffers from
limitations regarding the prediction of ramps. This phenomenon is not
particular to our model, but is present in many prediction models using
sky images [22,27-29].

Improving the accuracy of predictions directly impacts applying
these methods to control PV systems. Grid operators impose restrictions

on the ramp rate (i.e., they impose a limit on the rate of change in the
plant’s output power) [50-53] that are typically handled with energy
storage systems [51,53]. Incorporating prediction can help in reducing
the size of electric storage [52], increasing its lifetime with proper
control [53] or even eliminating [50-52] it, which has a direct effect on
the cost of the system [53]. However, these benefits are only achieved
if the prediction accuracy is high. Otherwise, it might be detrimental
as the curtailed power is higher because of an incorrect prediction
or a larger energy storage system is needed to compensate for the
inaccuracy.

4. Conclusion

We presented a model for minutely predicting the clear-sky index
in a 20-min horizon. Our model is based on sky images, a sky classi-
fier, and a convolutional neural network. The reference model has a
superior performance than the classified model. The classified model
outperforms the reference model in Class 1 with a forecast skill of 5%,
while the difference between the classified and reference is small for
most of the classes. The classified model fails in overcast and mostly
overcast days and partially clouded moments still represent a challenge



V.A. Martinez Lopez et al.

Solar Energy 269 (2024) 112320

Fig. A.2. Random examples of Class 2 cloud identification. The images on the left column are the original images. On the right, the clearer areas identify “Cloud” pixels while

the darker are “Not cloud” pixels. Note that the horizon has a mask of black pixels.

for both models when the smart persistence model outperforms the
most complex artificial intelligence models. The extra effort needed to
classify the sky conditions and train more models is justified because
using specialized models per sky class can yield better accuracy than a
universal one for all classes.
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Appendix A. Examples of cloud detection

This section shows examples of the cloud identification of each
class. The examples were taken randomly from the training dataset.
In all cases, the images on the left correspond to the image under
evaluation. On the right is the cloud identification output. The cloud
pixels are highlighted with clear areas. Figs. A.1, A.2, A.3, A.4, and
A.5 show the examples per class.

Appendix B. Dataset distribution

Fig. B.1 shows the distribution of the dataset in terms of the sun’s el-
evation. As a remainder, the minimum sun elevation that we considered
is 10°.
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Fig. A.3. Random examples of Class 3 cloud identification. The images on the left column are the original images. On the right, the clearer areas identify “Cloud” pixels while
the darker are “Not cloud” pixels. Note that the horizon has a mask of black pixels.
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Fig. A.4. Random examples of Class 4 cloud identification. The images on the left column are the original images. On the right, the clearer areas identify “Cloud” pixels while
the darker are “Not cloud” pixels. Note that the horizon has a mask of black pixels.
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Fig. A.5. Random examples of Class 5 cloud identification. The images on the left column are the original images. On the right, the clearer areas identify “Cloud” pixels while
the darker are “Not cloud” pixels. Note that the horizon has a mask of black pixels.
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