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Aims
Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting
clinicians in various tasks, such as personalized risk stratification. However, an overview of
current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives
of this study are to 1) provide an overview of current ML prediction models in orthopaedic
trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3)
assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST)
tool.

Methods
A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopae-
dic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the
PROBAST tool the risk of bias.

Results
A total of 40 studies reported on training and internal validation; four studies performed both
development and external validation, and one study performed only external validation. The most
commonly reported outcomes were mortality (33%, 15/45) and length of hospital stay (9%, 4/45),
and the majority of prediction models were developed in the hip fracture population (60%, 27/45).
The overall median completeness for the TRIPOD statement was 62% (interquartile range 30 to
81%). The overall risk of bias in the PROBAST tool was low in 24% (11/45), high in 69% (31/45), and
unclear in 7% (3/45) of the studies. High risk of bias was mainly due to analysis domain concerns
including small datasets with low number of outcomes, complete-case analysis in case of missing
data, and no reporting of performance measures.

Conclusion
The results of this study showed that despite a myriad of potential clinically useful applications, a
substantial part of ML studies in orthopaedic trauma lack transparent reporting, and are at high risk
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of bias. These problems must be resolved by following established guidelines to instil confidence in ML models among patients and
clinicians. Otherwise, there will remain a sizeable gap between the development of ML prediction models and their clinical application
in our day-to-day orthopaedic trauma practice.

Take home message
• Useful applications of machine-learning prediction models

in orthopaedic trauma exist, but a substantial proportion
lack external validation and transparent reporting, and are
at high risk of bias.

Introduction
Machine learning (ML) has shown great potential in aid-
ing clinicians with different tasks in orthopaedic trauma.1,2

Specific applications of artificial intelligence (AI) and ML
have emerged, such as risk stratification methods serving
as decision support tools for prediction of a diagnostic (e.g.
suspected fracture)3-5 or prognostic outcome of interest (e.g.
postoperative delirium, mortality estimation, infection, or
risk of revision surgery);6-9 the latter is often referred to as
prognostic modelling. ML-driven probability calculators and
prediction models have the great – theoretical – potential to
assess individual patients’ risk stratification in order to support
shared decision-making, and drive personalize care.

However, integration of these decision support tools
in clinical practice remains challenging. There is a substantial
gap between the myriad of published articles on ML models
in orthopaedic trauma, and the models that reach patients
and surgeons in our day-to-day practice. Before these decision
support tools can be implemented in clinical practice, external
validation and prospective testing should be performed.10

External validation refers to evaluating the model’s predictive
performance on an independent dataset that was not used
during model development. Generalizability of a prediction
model cannot be assessed after a single external validation
study, but it should be examined after thorough independ-
ent external validation for each population if the popula-
tion differs considerably in setting, in patient demographics
or outcome incidence. As a first step towards clinical imple-
mentation, future studies reporting on the development of
decision support tools should be of sufficient quality in terms
of transparency and completeness of reporting by adhering to
the Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) statement.11

This statement consists of recommendations for developing,
validating, and/or updating a prediction model whether for
diagnostic or prognostic purposes. To assess the risk of bias
of studies developing decision support tools, the Prediction
model Risk Of Bias Assessment Tool (PROBAST) was devel-
oped.12 This tool enables structured bias assessment in four
domains: participants, predictors, outcome, and analysis in
prediction model studies.

Recent systematic reviews suggested that studies
reporting on ML in the field of elective orthopaedic surgery
are at high risk of bias, lack transparency and complete
reporting, and often are not externally validated.2,9,13 Lans et
al14 recently showed that reporting relevant information is

also limited in diagnostic ML imaging studies in the field of
orthopaedics. To our knowledge, no studies report on the
application of ML prediction models focusing on structured
data in the field of orthopaedic trauma. The goal of this study
is to identify details that researchers commonly fail to provide
in order to improve the quality of ML models papers in the
field of orthopaedic trauma surgery. By doing this, we attempt
to improve our understanding of the gap between ML models
in orthopaedic trauma scientific domain, and our day-to-day
orthopaedic trauma practice, in order to eventually close the
gap.

Therefore, in this systematic review, we will: 1) provide
an overview of current ML models in orthopaedic trauma;
2) evaluate the completeness of reporting following the
TRIPOD statement; and 3) assess the risk of bias following the
PROBAST tool.

Methods
Systematic literature search
The study was performed in accordance to the PRISMA
guidelines,15 and the checklist was added (Supplementary
Table i). The study was not registered. A systematic search
of the available literature was performed in PubMed, EMBASE,
and Cochrane Library up to 10 January 2023 (Supplementary
Table ii). Two domains of medical subject headings (MeSH)
terms and keywords were combined with “AND” and within
the two domains the terms were combined with “OR”. The
first domain included words related to ML, and the second
domain to orthopaedic trauma surgery. Terms were restricted
to MeSH, title, abstract, and keywords. Titles and abstracts
were independently screened by four reviewers (HD, AK, TG,
OC). Subsequently, full-text articles were then independently
assessed for eligibility by the same four reviewers. Discrep-
ancies between the four reviewers were assessed by two
orthopaedic trauma research fellows (OQG, JHFO).

Eligibility criteria
Inclusion and exclusion criteria are shown in Table I.

Data extraction
Four  reviewers  extracted the  following data  of  the
included studies  (manually):  year  of  publication,  use
of  national  or  registry  database  (yes/no),  study  type
(development,  validation or  both  in  one study),  exter-
nal  validation study (yes/no),  study  goal  (i.e.  diagnos-
tic,  prognostic,  or  classification),  injury  type,  number
of  patients  with  the  outcome (if  applicable),  predicted
outcome,  type of  algorithm used (e.g.  support  vec-
tor  machine),  performance measures  (e.g.  area  under
the  receiver  operating characteristic  (ROC)  curve  (area
under  the  curve  (AUC),  discrimination),  calibration metrics
(calibration  reflects  the  agreement  between the  observed
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outcome and the  predicted probability),  Brier  score  (a
composite  of  discrimination and calibration),  decision-
curve  analysis,  precision-recall,16,17  availability  of  a  digital
application  (yes/no),  TRIPOD items,  and PROBAST domains.
Two reviewers  (HD,  OC)  rated adherence to  the  TRIPOD
statement,  and two other  reviewers  (AK,  TG)  rated the
PROBAST tool  domains,  under  the  direct  supervision of
two experienced reviewers  (OQG,  JHFO).

TRIPOD statement
The TRIPOD statement consists of 22 main items. Overall,
13 of the 22 items had no subitems, seven items had two
subitems, and two items had three subitems. Six (sub)items
refer to model updating or external model validation and
were therefore only extracted in studies performing external
validation.11 Some items could be scored with “referenced”
(e.g. item 6a). Referenced was considered “completed” and
included when calculating the completeness of reporting.
Each item may consist of multiple elements. Both elements
must be scored with “yes” for the item to be scored “com-
pleted”. If a study reported on multiple prediction models
(e.g. prediction model for one-year and five-year survival), we
extracted only data on the best performing model.

PROBAST tool
PROBAST assesses the risk of bias in prediction model
studies.12 This tool consists of 20 signalling questions across
four domains: participant selection (one), predictors (two),
outcome (three), and analysis (four). Each domain is rated as
having a ‘low’, ‘high’, or ‘unclear’ risk of bias. ‘Unclear’ indicates
that the reported information is insufficient: no reliable
judgment on low or high risk of bias can be made. Participant
selection (domain one) covers potential sources of bias in the
origin of data and criteria for participant selection to assess
whether patient inclusion has been performed adequately.
Predictors (domain two) should include a list of all considered
predictors, a clear definition and timing of measurement. An
outcome (domain three) should include clear definitions and
timing of measurements, and a description of the time interval
between predictor assessment and outcome determination.
Finally, analysis (domain four) covers potential sources of bias
related to inappropriate analysis methods, or omission of key
performance measures, such as discrimination and calibration.

The ratings of the four domains resulted in an
overall judgement of the risk of bias. In accordance with
the PROBAST checklist,  low overall risk of bias was assigned
to a study when each domain scored low.12  High overall
risk of bias was assigned when at least one domain was
judged to be high risk of bias. Unclear overall  risk of bias
was noted if at least one domain was judged unclear and
all other domains low. The four domains and the overall
judgment were reported.

Statistical analysis
The degree of completeness of reporting to TRIPOD statement
and PROBAST domains were calculated and presented with
percentages using medians with interquartile ranges (IQRs).
Additionally, graph bars visualized the completeness of each
guideline. We used Excel version 16 (Microsoft, USA) to extract
and record data, and SPSS version 26 (IBM, USA) for statistical
analysis.

Results
Study selection
In total, 3,951 studies were identified and 3,252 unique studies
remained after duplicate removal. Title/abstract screening
resulted in 147 potentially relevant studies. Of those, 45 met
the inclusion criteria (Figure 1).5,7,8,18–58 Studies were excluded
because they did not meet the inclusion criteria (e.g. elective
surgery, prediction of fractures, no application of artificial
intelligence, imaging study) or full text was unavailable.

Overview of ML models
Most studies (93%; 42/45) were prognostic, developmental
studies (Table II, Supplementary Table iii). Electronic health
records (EHRs) (38%, 17/45) and national databases or
registries (29%; 13/45) were often used to develop prediction
models. Most studies originated from the USA or China (Figure
2). The most frequently reported ML algorithms were support
vector machine (38%; 17/45), random forest (36%; 16/45),
and the artificial neural networks (31%; 14/45). The median
number of patients included was 875 (IQR 259 to 6,975). The
most commonly reported outcome domains were mortality
(33%; 15/45), and length of hospital stay (9%; 4/45). Most
studies focused on injuries of the lower limb (91%; 41/45). Four
studies included both development and external validation of

Table I. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

1. ML based probability calculators or prediction models in
orthopaedic trauma outcome studies (i.e. diagnostic and prognostic
modelling studies).

2. Orthopaedic trauma studies were defined as studies investigating
primary injuries to the (musculo-) skeletal system (including bones
and/or tendons and/or joints and/or muscles and/or soft-tissue)
with the following injury types: fractures, ruptures, dislocations, and
sprains.

1. Non-English studies

2. Non-relevant study types such as animal studies, letters to the editors,
case-reports, and reviews.

3. Non-ML techniques. Advanced logistic regression models such as
penalized logistic regression (LASSO, ridge, or elastic-net), boosted logistic
regression and bagged logistic regression16 were considered as ML.

4. Studies reporting on ML models for diagnostic imaging in orthopaedic
surgery.

5. Studies reporting on ML models for NLP.

6. Oral, maxillofacial, and ophthalmological studies.

LASSO, least absolute shrinkage and selection operator; ML, machine learning; NLP, natural language processing.
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the ML models in the same study (9%; 4/45). One performed
single external validation.

TRIPOD statement
The overall median completeness for the TRIPOD statement
was 62% (IQR 30 to 81) (Figure 3, Supplementary Table iv).
Method items adhered to a median completeness of 62% (IQR
40 to 82) results items to 40% (IQR 22 to 52) and discussion
items to 96% (IQR 87 to 99) (Figure 3). Six items were reported
in > 90% and nine items in < 25% of studies (Table III). No
study reported risk group creation. Of the items referring to
model updating or external model validation, the complete-
ness was low, with items 10c (how predictors were handled in
validation) and 17 (reporting any results from model updating)
in none of the studies.

PROBAST tool
The overall risk of bias was low in 24% (11/45), high in 69%
(31/45), and unclear in 7% (3/45) (Figure 4, Supplementary
Table v). The high risk of bias was mainly due to the analysis
domain (64%; 29/45). The risk of bias was predominantly low
in the other three domains (participant selection, predictors,
and outcome). In the predictors domain, studies lacked

reporting information about when the model was intended
to be used. In the outcomes domain, studies lacked informa-
tion about the time interval between predictor assessments
and the outcome determination. Studies were mainly rated as
high in the analysis domain due to small datasets with low
numbers of events, complete-case analysis in case of missing
data, and no information about complexities in the data (e.g.
competing risk analysis). The AUC was often the only reported
performance measure, and was presented in 96% (43/45) of
the studies. Calibration metrics were reported in only in 42%
(19/45) of the studies and the Brier score in only in 24%
(11/45).

Discussion
In this systematic review, we provided an overview and
assessed the transparency and quality of reporting of papers
reporting on decision support tools using ML in the field of
orthopaedic trauma surgery. We aimed to identify details that
researchers commonly fail to provide, which provides insight
to future researchers developing new ML decision support
tools in the field of orthopaedic trauma surgery. Reporting of
the abstract, and results such as performance measures, had
the worst adherence. In order for orthopaedic trauma practice

Fig. 1
PRISMA flowchart of study inclusions and exclusions. NLP, natural language processing.
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Table II. Characteristics of included studies (n = 45).

Variables Value

Median sample size (IQR) 875 (259 to 6,975)

Number of publications per
journal, n (%)

1 21 (70.0)

2 6 (20.0)

3 1 (3.3)

4 1 (3.3)

5 1 (3.3)

Year of publication,
n (%)

2022 18 (40.0)

2021 15 (33.3)

2020 5 (11.1)

2014 to 2019 3 (6.7)

< 2014 4 (8.9)

Type of database,
n (%)

Electronic health record 17 (37.8)

National/registry* 13 (28.9)

Other 15 (33.3)

Type of paper,
n (%)

Development 40 (88.9)

External validation 1 (3.3)

Development and external
validation 4 (8.9)

Injury type,
n (%)

Hip fracture 27 (60.0)

ACL rupture 5 (11.1)

Tibia fracture 3 (6.7)

Pelvic fracture 2 (4.4)

Other 8 (17.8)

Predicted outcome,
n (%)

Mortality 15 (33.3)

Length of hospital stay 4 (8.9)

Need for amputation 2 (4.4)

Delirium 3 (6.7)

Osteonecrosis 2 (4.4)

Other† 22 (48.9)

Type of algorithm used,
n (%)

SVM 17 (12.5)

RF 16 (11.8)

(Continued)

to benefit from our rapid improvement in understanding of
ML applications, future studies should adhere to recognized
guidelines such as the TRIPOD when developing and reporting
on ML-based decision support tools. This ensures develop-
ment of reliable decision support tools that can guide medical
decision-making for both patients and clinicians.

Limitations
This review has several limitations. First, some studies meeting
the selection criteria may have been missed. However,
considering the number of the screened and included studies,
adding potentially missed studies would most likely not
change our main message. Second, the TRIPOD guidelines
were employed as a benchmark. The relative importance
of each item and what composes an acceptable score can
be debated. Nonetheless, the TRIPOD statement is now a
widely recognized methodological standard for reporting on
prediction models, and many journals now demand using
this standard. Third, when scoring the completeness, strict
adherence on all elements of each item was implemented.
For example, item 2 “abstract” consists of 12 elements, which
all have to be fulfilled in order for item 2 to be marked as
“completely reported”. Authors as well as reviewers might
have good reasons to exclude certain elements. For exam-
ple, authors may not report the “potential clinical use of
the model” (item 20) if they believe their prediction model
is not (yet) fit for clinical use. Moreover, some authors may
be restricted by the maximum word count per section and
have therefore not reported certain elements. This limits the
authors in reporting according to the TRIPOD statement.

(Continued)

Variables Value

ANN 14 (10.3)

XGB 11 (8.1)

PLR 6 (4.4)

Other‡ 72 (52.9)

Digital application made
available, n (%) 14 (31.1)

*Includes databases such as American College of Surgeons National
Surgical Quality Improvement Program ACS NSQIP) and other specific
registries such as National Trauma Registries.
†Other outcomes include (for each one): need for amputation,
sarcopenia, posterior malleolar fracture, bladder rupture, need for
blood transfusion, risk for infection, unplannend subsequent surgery,
postoperative living setting, rehabilitation outcome metrics such as
relative gain in function, prolonged opioid use, ‘true’ scaphoid fracture,
adverse events on radiological follow-up, cerebral infarction, early acute
kidney injury, Medicare inpatient payments, overnight hospital stay, and
refracture.
‡Other algorithms included: logistic regression classifiers, convolutional
neural networks, logistic regression lasso, naive Bayers classifiers,
boosted decision tree, Bayes point machine, nearest neighbour
classifiers, ensemble classifiers, AdaBoost, CatBoost, ExtraTrees, voting
ensemble, multilayer perception, principal component regression, and
linear discriminant classifier.
ACL, anterior cruciate ligament; ANN, artificial neural network; IQR,
interquartile range; PLR, penalized logistic regression; RF, random forest;
SVM, support vector machine; XGB, extreme gradient boosting.
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Fourth, neither the TRIPOD nor PROBAST statements were
designed for evaluating studies reporting on ML prediction
models. Therefore, several key reporting items specific for
ML studies might still lack critical appraisal. Despite these
limitations, this review provides the first comprehensive
overview of completeness of transparent reporting for a ML
prediction model in the field of orthopaedic trauma surgery.

TRIPOD
This study shows a moderate overall median completeness
of 62%, which is comparable to other systematic reviews in
the same field.9,13 The majority of the studies (91%; 41/45)
were published after 2015, the publication year of the TRIPOD

statement. Slow implementation of guidelines is nothing
new,9 but improvement in completeness of reporting could
have been expected by now. The TRIPOD authors announced
the development of a ML-specific extension of the guideline,
the TRIPOD-AI checklist,59,60 which at the time of writing is not
yet published. This could possibly lead to a higher complete-
ness, since some items of the statement do not apply to ML
studies. Instead, these items apply better to studies using
logistic regression techniques (i.e. presentation of regression
coefficients, as stated in item 15a). In addition, improved
adherence may occur if journals demand the extended
TRIPOD-AI checklist for ML prediction model studies in the
future. The lowest completeness in reporting was found to be

Fig. 2
World map showing the distribution of the included studies consisting of 44 development studies and one external validation study (from the USA).
Of the developmental studies, four also performed external validation (three from the USA and one from Israel).

Fig. 3
Overall adherence for each TRIPOD item. Median completeness for the TRIPOD statement was 62% (interquartile range (IQR) 30 to 81). Method items
adhered to a median completeness of 62% (IQR 40 to 82), results items to 40% (IQR 22 to 52), and discussion items to 96% (IQR 87 to 99).
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Table III. Sorted by completeness of above 90% reporting and under 25% of individual TRIPOD items.

TRIPOD item TRIPOD % (n/total)

Complete reporting > 90%

4a - Describe the study design or source of data (e.g. randomized trial, cohort, or registry data), separately for the
validation dataset. 100 (45/45)

5b - Describe eligibility criteria for participants. 100 (45/45)

10d - Specify all measures used to assess model performance and, if relevant, to compare multiple models. 98 (44/45)

18 - Discuss any limitations of the study (such as non-representative sample, few events per predictor, missing data). 100 (45/45)

19b - Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and
other relevant evidence. 98 (44/45)

20 - Discuss the potential clinical use of the model and implications for future research. 93 (42/45)

Complete reporting < 25%

1 - Identify the study as developing and/or validating a multivariable prediction model, the target population, and the
outcome to be predicted. 24 (11/45)

2 - Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical
analysis, results, and conclusions. 22 (10/45)

6b - Report any actions to blind assessment of the outcome to be predicted. 0 (0/45)

7b - Report any actions to blind assessment of predictors for the outcome and other predictors. 2 (1/45)

10c - For validation, describe how the predictions were calculated. 0 (0/5)*

11 - Provide details on how risk groups were created, if done. 0 (0/45)

14a - Specify the number of participants and outcome events in each analysis. 20 (9/45)

14b - If done, report the unadjusted association between each candidate predictor and outcome. 24 (11/45)

17 - If done, report the results from any model updating (i.e. model specification, model performance). 0 (0/5)*

*External validation was performed in five studies, resulting in a total of five for items 10c and 17, which pertain validation.

Fig. 4
Risk of bias in the PROBAST tool (n = 45).
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in the results section, identifying need for better reporting of
this section.

Only 11% (5/45) of all included studies reported
external validation. It underlines the need for future external
validation studies, since external validation is an essential
step before clinical implementation of a model.61 International
collaborations and standardization of international registries
may allow for universally externally valid ML decision support
tools. This would be the next step for moving these tools from
a single country task to a coordinated global effort.62

PROBAST
Most of the included studies (69%; 31/45) were at high risk
of bias for several recurring reasons. First, missing data were
often not handled appropriately, leading to biased predictor-
outcome associations and biased model performance, as the
sample is not a representative group of the study popula-
tion.12,63,64 Many studies chose to remove patients with missing
data from the analysis (complete case analysis). A more
appropriate method for handling missing data is multiple
imputation.12 In addition, variables with excessive missing data
(often described as > 20%) are excluded in most studies.
This exclusion may result in selection bias, as variables with
a strong predictive accuracy may be missed. Therefore, the use
of prospective, complete datasets is strongly recommended.65

Second, complexities in data (e.g. censoring and
competing risks) are not accounted for appropriately. Time-
to-event analysis (such as Cox regression or Fine-and-Gray
analyses) should be used for predicting long-term outcomes,
to account for loss to follow-up due to mortality (compet-
ing risk). An example for this is the study in which osteo-
necrosis of the femoral head is predicted in patients after
a hip fracture, where death in the elderly may occur before
the diagnosis osteonecrosis is established.51 Absolute risks
predictions will be overestimated and biased because patients
with the competing event are then censored.66 Current studies
are evaluating the use of ML compared to traditional time-to-
event analyses in orthopaedic populations, but the benefit
remains limited.67,68 To date, no studies have evaluated the
benefit specific for orthopaedic trauma cohorts.67 A separate
competing risk analysis could be performed to show differen-
ces in hazard ratios for both outcomes (event and competing
event).7

Third, performance measures were often incompletely
reported. Most studies described the area under the ROC
(a discrimination measure), without reporting calibration
measures. Both model calibration and discrimination metrics
should be assessed. If not, the study is at risk of bias
because the accurate individual probabilities are not com-
pletely known.12 Researchers should therefore at least report
calibration and discrimination metrics.

Recommendations for future research
Our  findings  lead to  several  careful  recommendations
for  researchers  developing and validating ML  predic-
tion  models  in  the  field  of  orthopaedic  trauma.  First,
we recommend adhering to  the  TRIPOD and PROBAST
guidelines.  Currently,  specific  AI  extensions  for  each
guideline  are  being developed  because  there  are  clear
differences  between ML models  and traditional  prediction
models  in  model  development,  validation,  and updating.60

Until  that  time,  we recommend using the  guidelines  as
they  are,  without  the  AI  extension.

Moreover,  future  studies  should  provide  an  online
probability  calculator  or  prediction tool:  only  29% (13/45)
studies  provided an  online,  open-access  digital  application.
The  primary  goal  of  ML prediction models  is  adoption
in  clinical  practice.  Before  clinical  implementation,  external
validation and prospective  testing are  required to  test  the
accuracy  and generalizability  to  other  study  populations.
Providing access  to  a  developed model  facilitates  sharing
and collaborating,  hopefully  resulting in  increased external
validation.  Innovations  in  ML,  such as  federated learning
(a  way to  develop or  validate  an  AI  model  without
sharing data)  might  also  contribute  to  this,  as  exchang-
ing data  remains  difficult.  The  World  Health  Organization
has  recently  developed a  guideline  to  improve sharing
possibilities.69

Additionally, more (international) collaborations
between clinicians and data scientists are needed. Surgeons
are well positioned to help integrate AI into modern practice;70

to optimize the quality of ML papers, surgeons should partner
with data scientists to capture data across phases of care, and
to provide clinical context.

In summary, a great many ML prediction models exist
in orthopaedic trauma surgery. Unfortunately, a substantial
number of these models lack transparent reporting and are
at high risk of bias, and only 5/45 models are externally
validated, a required step before moving to implementation.
To minimize the risk of bias and improve completeness in
reporting in these studies, we recommend that future studies
aiming to develop ML prediction models in orthopaedic
trauma adhere to recognized guidelines, and provide proper
validation opportunities by providing open-access models.
This will ensure reliable and accurate prediction tools that can
supplement the shared decision-making process in orthopae-
dic trauma practice.

Supplementary material
PRISMA checklist, literature search, basic information of the included
studies, completed TRIPOD checklists, and completed PROBAST
checklists.
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