
 
 

Delft University of Technology

Energy-stable discretization of the one-dimensional two-fluid model

Buist, J. F.H.; Sanderse, B.; Dubinkina, S.; Oosterlee, C. W.; Henkes, R. A.W.M.

DOI
10.1016/j.ijmultiphaseflow.2024.104756
Publication date
2024
Document Version
Final published version
Published in
International Journal of Multiphase Flow

Citation (APA)
Buist, J. F. H., Sanderse, B., Dubinkina, S., Oosterlee, C. W., & Henkes, R. A. W. M. (2024). Energy-stable
discretization of the one-dimensional two-fluid model. International Journal of Multiphase Flow, 174, Article
104756. https://doi.org/10.1016/j.ijmultiphaseflow.2024.104756

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijmultiphaseflow.2024.104756
https://doi.org/10.1016/j.ijmultiphaseflow.2024.104756


International Journal of Multiphase Flow 174 (2024) 104756

A
0

Contents lists available at ScienceDirect

International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmulflow

Energy-stable discretization of the one-dimensional two-fluid model
J.F.H. Buist a,b,∗, B. Sanderse a, S. Dubinkina c, C.W. Oosterlee d, R.A.W.M. Henkes e

a Scientific Computing Group, Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
b Department of Process & Energy, Delft University of Technology, Delft, The Netherlands
c Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
d Mathematical Institute, Utrecht University, Utrecht, The Netherlands
e J.M. Burgerscentrum, Delft University of Technology, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Two-phase pipe flow
Stability
Surface tension
Energy conservation
Energy-stable scheme
Dissipation

A B S T R A C T

In this paper we present a complete framework for the energy-stable simulation of stratified incompressible
flow in channels, using the one-dimensional two-fluid model. Building on earlier energy-conserving work on
the basic two-fluid model, our new framework includes diffusion, friction, and surface tension. We show that
surface tension can be added in an energy-conserving manner, and that diffusion and friction have a strictly
dissipative effect on the energy.

We then propose spatial discretizations for these terms such that a semi-discrete model is obtained that
has the same conservation properties as the continuous model. Additionally, we propose a new energy-
stable advective flux scheme that is energy-conserving in smooth regions of the flow and strictly dissipative
where sharp gradients appear. This is obtained by combining, using flux limiters, a previously developed
energy-conserving advective flux with a novel first-order upwind scheme that is shown to be strictly dissipative.

The complete framework, with diffusion, surface tension, and a bounded energy, is linearly stable to short
wavelength perturbations, and exhibits nonlinear damping near shocks. The model yields smoothly converging
numerical solutions, even under conditions for which the basic two-fluid model is ill-posed. With our explicit
expressions for the dissipation rates, we are able to attribute the nonlinear damping to the different dissipation
mechanisms, and compare their effects.
1. Introduction

The one-dimensional two-fluid model (TFM) is a cross-sectionally
averaged model for two-phase flow in pipes and channels. Velocities
and phase fractions are resolved only along the main direction of flow,
for each fluid separately. This yields an efficient model that is useful
when calculations are needed quickly, or when many calculations need
to be made. It is most commonly used for flow assurance in oil and gas
or CO2 transport (Aursand et al., 2013; Goldszal et al., 2007), and for
safety analysis of steam-water flows in nuclear reactors (Berry et al.,
2014). In this paper we consider the incompressible and isothermal
form of the TFM. Note that the one-dimensional model discussed in this
work, with averages taken over the portions of the pipe or channel cross
section occupied by each fluid, differs from multi-dimensional two-fluid
models with a local averaging, as described for example by Chahed
et al. (2003).

The TFM possesses the ability to dynamically simulate the Kelvin–
Helmholtz instability which arises at the interface between two fluids
flowing at different velocities. This is a valuable property since it is

∗ Corresponding author at: Scientific Computing Group, Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands.
E-mail address: jurriaan.buist@gmail.com (J.F.H. Buist).

essential in predicting the transition from stratified flow to slug flow,
a type of flow which is typically unwanted due to the large loads
it places on the pipe (Fabre, 2003). However, for the basic TFM,
when the difference between the two fluids’ velocities is large, the
instability is unphysically severe. Linear stability analysis shows an
unbounded growth rate at short wavelengths, leading to the conclusion
that the model is ill-posed (Dinh et al., 2003; Drew and Passman, 1999;
Montini, 2011). For the basic model, with only first-order terms, the
results of the linear stability analysis can be compared to those of a
characteristic analysis: short wavelength unbounded instability implies
complex eigenvalues (Ramshaw and Trapp, 1978).

The stability issue is intertwined with a modeling issue. Due to
the averaged one-dimensional nature of the TFM, not all small-scale
dynamics of the instability can be resolved, and there is uncertainty on
how to model their effect on the averaged flow. The TFM implicitly
carries the long wavelength assumption, implying that the TFM can only
accurately model perturbations with a wavelength longer than the fluid
vailable online 7 February 2024
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depth (Holmås et al., 2008; Montini, 2011). It is precisely at the poorly
modeled short wavelengths that the catastrophic instability takes place.

The issue has led some researchers to use regularizing terms such
as an artificial interfacial pressure force which completely eliminates
the instability, for both long and short wavelengths (Bestion, 1990;
Evje and Flåtten, 2003; Liou et al., 2006). Others have proposed
regularizing terms which only eliminate instability below a desired cut-
off wavelength, in the form of artificial diffusion, added both to mass
and momentum equations (Bonzanini et al., 2017; Holmås et al., 2008).
Finally, researchers strive for stabilization through the systematic inclu-
sion of missing physics (Drew and Passman, 1999; López de Bertodano
et al., 2017). One example is the introduction by Song and Ishii (2001)
of momentum flux parameters, which are intended to take into account
the effect of the non-uniformity of the velocity profile. Montini (2011)
showed that these can extend the region of state space for which the
TFM is well-posed, but unphysically high parameter values are required
to stabilize the model for all relevant flow conditions. Other physical
stabilizing effects, such as molecular or turbulent diffusion (in axial
direction) (Fullmer et al., 2011) and surface tension (Ramshaw and
Trapp, 1978), specifically target the short scales.

Beyond the question of the growth of small perturbations, which is
answered by linear stability analysis, lies the question of the growth of
large perturbations, for which the full nonlinear behavior of the model
must be taken into account (López de Bertodano et al., 2017). For
related models, namely the single-layer and two-layer shallow water
equations, the mechanical energy acts as an entropy function, and as a
nonlinear bound on the solution (Bouchut and Morales de Luna, 2008;
Fjordholm et al., 2009; van Reeuwijk, 2011). An energy conservation
equation can be derived from the governing (mass and momentum
conservation) equations, leading to the conclusion that energy is a
secondary conserved quantity of the model, following the terminol-
ogy of Veldman (2021). Energy-conserving discretization schemes, in
which the energy conservation property of the continuous equations is
retained, have been designed in order to prevent numerical instabil-
ity (Gassner et al., 2016; van ’t Hof and Veldman, 2012). In previous
work (Buist et al., 2022) we showed that the basic TFM satisfies an
energy conservation equation like the shallow water equations, and
developed an energy-conserving finite volume scheme which satisfies
a semi-discrete energy conservation equation.

However, in the presence of shocks, the derivation of the energy
conservation equation for the continuous model no longer holds, and
energy needs to be dissipated (Jameson, 2008). Whereas for the com-
pressible Euler equations the Rankine–Hugoniot relations prescribe the
conservation of energy in shocks, for models like the shallow water
equations and the isothermal TFM the Rankine–Hugoniot relations only
involve conservation of mass and momentum, since these models do
not solve an energy equation. Rather, the TFM must satisfy an energy
inequality in the presence of shocks, much like the entropy inequality
that holds for the compressible Euler equations. Energy-conserving
schemes without dissipation will produce numerical oscillations in the
presence of shocks. Therefore energy-stable schemes are designed, by
taking an energy-conserving scheme as a baseline, and adding strictly
dissipative terms, which can only cause a decrease of the energy (Castro
et al., 2013; Fjordholm et al., 2011). These dissipative terms typically
take the form of numerical diffusion which is proportional to grid cell
size, and preferably dissipate the minimum required amount of energy,
and only in the vicinity of shocks, where it is needed.

The TFM requires mechanisms both for dissipation in shocks, and
for suppression of the unbounded linear instability. Following the
approach of Fullmer et al. (2014b), we achieve these effects through
the addition of axial (momentum) diffusion and surface tension. In
this work, we fit these effects, along with wall and interface friction,
into our energy-consistent framework (Buist et al., 2022). Diffusion and
friction are shown to be strictly dissipative, surface tension is shown to
be energy-conserving, and we present a spatial discretization of these
2

terms that retains these properties. Importantly, we propose a novel
discretization of the advective flux that is energy stable, with numerical
dissipation acting near discontinuities in the solution.

The extended framework possesses bounded linear growth rates
(with damping at short wavelengths), and possesses a nonlinear bound
on the energy. It possesses multiple mechanisms for dissipation, which
can be quantified using explicit expressions for the various dissipation
rates. The energy-stable nature of the semi-discrete model, consis-
tent with its continuous counterpart, provides additional fidelity in
the accuracy of the numerical solution. The framework yields grid-
converged numerical solutions, with well-resolved shocks, for flow
states for which the basic TFM is linearly ill-posed.

The analysis of the continuous model is given in Section 2, starting
with a review of the basic model and its energy behavior, followed
by the results for the extended model, and then a detailed analysis
of each term separately. In Section 3, these steps are repeated for the
semi-discrete model, with the addition of an analysis of the newly
proposed advective flux discretization, showing that it is energy stable.
The stability of the TFM is discussed in detail in Section 4, in order to
motivate the additions to the basic model. In Section 5, the energy and
stability properties predicted by analysis are verified using numerical
experiments. We test the capability to model a traveling wave, and a
growing wave which develops into a shock, and take a detailed look
at the different components of the dissipation near the shock. Our
conclusions are given in Section 6.

2. Energy conservation and the continuous two-fluid model

2.1. Governing equations for the basic model

The one-dimensional two-fluid model (TFM) is a cross-sectionally
averaged model for two-phase flow in a closed conduit (Ishii and
Mishima, 1984; Stewart and Wendroff, 1984). The conduit can take
different forms, such as a pipe with a circular cross section, as depicted
in Fig. 1, a duct with a rectangular cross section, or (more abstractly)
a two-dimensional channel with a cross section of zero width. In all
cases, the model can be obtained by defining control volumes for the
two fluids separately, which are assumed to be stratified with a sharp
interface between them, and setting up integral mass and momentum
balances for these control volumes. No energy balance is needed, since
the flow is assumed to be isothermal (Munkejord, 2006). Additionally,
the flow is assumed to be incompressible. The mass and momentum
balances are divided by their length 𝛥𝑠, the limit 𝛥𝑠 → 0 is taken, and
he resulting equations are written in terms of cross-sectionally aver-
ged variables, which are functions only of the streamwise coordinate
and time 𝑡. An important assumption made in this process is that the

treamwise length scale over which variations in the flow occur must be
uch larger than the normal length scale over which variations occur;

his is known as the long wavelength assumption (Holmås et al., 2008;
ontini, 2011). The long wavelength assumption implies that along the

ormal direction the flow is in hydrostatic balance.
The model, in conservative form, is given by (Buist et al., 2022;

anderse et al., 2017):
𝜕𝐪
𝜕𝑡

+
𝜕𝐟 (𝐪)
𝜕𝑠

+ 𝐣(𝐪) 𝜕𝑝
𝜕𝑠

= 𝟎, (1)

with the conservative variables 𝐪(𝑠, 𝑡) representing a mass per unit
length or momentum per unit length:

𝐪𝑇 =
[

𝑞1 𝑞2 𝑞3 𝑞4
]

=
[

𝜌𝑈𝐴𝑈 𝜌𝐿𝐴𝐿 𝜌𝑈 𝑢𝑈𝐴𝑈 𝜌𝐿𝑢𝐿𝐴𝐿
]

.

The conservative variables can be written in terms of the primitive vari-
ables, namely the cross-sections 𝐴𝑈 and 𝐴𝐿 (related to the heights 𝐻𝑈
and 𝐻𝐿) which are occupied by the upper and lower fluids respectively,
he densities 𝜌𝑈 and 𝜌𝐿 of each fluid, and the streamwise (averaged)

velocities 𝑢𝑈 and 𝑢𝐿. In (1), the fluxes are given by
𝑇 [ ]
𝐟 (𝐪) = 𝑓1(𝐪) 𝑓2(𝐪) 𝑓3(𝐪) 𝑓4(𝐪)
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Fig. 1. A schematic of stratified two-fluid flow in ducts (a circular pipe segment is shown as an example) described by the one-dimensional TFM.
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=
[

𝑞3 𝑞4
𝑞23
𝑞1

− 𝜌𝑈𝑔𝑛𝐻̂𝑈
𝑞24
𝑞2

− 𝜌𝐿𝑔𝑛𝐻̂𝐿

]

.

Here 𝐻̂𝑈 = 𝐻̂𝑈 (𝐪) and 𝐻̂𝐿 = 𝐻̂𝐿(𝐪) are geometric quantities, defined in
Appendix A, which are part of the terms known as the level gradients,
which describe the effect of the variation of the hydrostatic pressure
along 𝑠. The symbol 𝑔𝑛 = 𝑔 cos (𝜙) represents the normal component of
gravity, 𝜙 being the pipe inclination angle.

The pressure 𝑝 appearing in the equations denotes the pressure at
the interface between the two fluids. Its derivative is weighted by the
vector 𝐣, which is given by

𝐣(𝐪)𝑇 =
[

0 0 𝑞1
𝜌𝑈

𝑞2
𝜌𝐿

]

.

Since the upper and lower fluid together fill the pipe with cross-section
𝐴, the system is subject to the volume constraint
𝑞1
𝜌𝑈

+
𝑞2
𝜌𝐿

= 𝐴,

hich implies the volumetric flow constraint (Buist et al., 2023)
𝜕𝑄
𝜕𝑠

= 0, with 𝑄(𝐪) =
𝑞3
𝜌𝑈

+
𝑞4
𝜌𝐿

= 𝑢𝑈𝐴𝑈 + 𝑢𝐿𝐴𝐿. (2)

2.2. Energy conservation for the basic model

In this subsection, we give a concise derivation of the energy
equation of the basic TFM, based on Buist et al. (2022). The results
given in this subsection are not novel, but serve as a necessary basis
for the extended energy analysis of later subsections.

The basic TFM has been shown to conserve the following mechani-
cal energy:

𝑒𝑏(𝐪) = 𝜌𝑈𝑔𝑛𝐻̃𝑈 + 𝜌𝐿𝑔𝑛𝐻̃𝐿 + 1
2
𝑞23
𝑞1

+ 1
2
𝑞24
𝑞2

. (3)

ere 𝐻̃𝑈 = 𝐻̃𝑈 (𝐴𝑈 (𝑞1, 𝜌𝑈 )) and 𝐻̃𝐿 = 𝐻̃𝐿(𝐴𝐿(𝑞2, 𝜌𝐿)) are geometric
erms representing the centers of mass of the upper and lower fluids
espectively (see Appendix A). Given a mechanical energy 𝑒𝑏(𝐪), we can
efine the following vector:

𝑏(𝐪)𝑇 ∶=
[

𝜕𝑒𝑏
𝜕𝐪

]

=
[

− 1
2
𝑞23
𝑞21

+ 𝑔𝑛
d𝐻̃𝑈
d𝐴𝑈

− 1
2
𝑞24
𝑞22

+ 𝑔𝑛
d𝐻̃𝐿
d𝐴𝐿

𝑞3
𝑞1

𝑞4
𝑞2

]

. (4)

Taking the dot product of this vector with the governing equations
given by (1) yields

⟨𝐯𝑏 ,
𝜕𝐪
𝜕𝑡

⟩ + ⟨𝐯𝑏 ,
𝜕𝐟
𝜕𝑠

⟩ + ⟨𝐯𝑏 , 𝐣
𝜕𝑝
𝜕𝑠

⟩ = 0. (5)

sing the geometric relations (A.6), the volumetric flow constraint (2),
nd assuming 𝑔𝑛 to be constant along 𝑠, it can be shown that these terms
an be written in conservative form (Buist et al., 2022):

𝐯𝑏 ,
𝜕𝐪
𝜕𝑡

⟩ =
𝜕𝑒𝑏
𝜕𝑡

, ⟨𝐯𝑏 ,
𝜕𝐟
𝜕𝑠

⟩ =
𝜕ℎ𝑓
𝜕𝑠

, ⟨𝐯𝑏 , 𝐣
𝜕𝑝
𝜕𝑠

⟩ =
𝜕ℎ𝑝
𝜕𝑠

,

with

ℎ𝑓 = 𝑔𝑛𝑞3
d𝐻̃𝑈 + 𝑔𝑛𝑞4

d𝐻̃𝐿 + 1 𝑞33
2
+ 1 𝑞34

2
, (6)
3

d𝐴𝑈 d𝐴𝐿 2 𝑞1 2 𝑞2
nd

𝑝 = 𝑄𝑝. (7)

In the upcoming energy analysis of the additional model terms, we will
follow the same structure, and use the insight that the dot product of
𝐯𝑏 with the additional model term yields its contribution to the energy
equation.

Since each term in (5) can be written in conservative form, it
reduces to the local energy conservation equation
𝜕𝑒𝑏
𝜕𝑡

+
𝜕ℎ𝑏
𝜕𝑠

= 0, (8)

with ℎ𝑏 = ℎ𝑓 + ℎ𝑝, which describes how the energy 𝑒𝑏(𝑠, 𝑡) at a specific
oint in space changes due to an inflow or outflow. In case of periodic
r closed boundaries, integrating this equation over a section of pipe
ields the global energy conservation equation
d𝐸𝑏
d𝑡

= −
[

ℎ𝑏
]𝑠2
𝑠1

= 0, with 𝐸𝑏(𝑡) = ∫

𝑠2

𝑠1
𝑒𝑏 d𝑠. (9)

his shows that the mechanical energy is a secondary conserved quan-
ity of the TFM (in contrast to the primary conserved quantities of mass
nd momentum).

.3. Energy equation for the extended model

Having set up the basic TFM and its energy conservation equation,
e will extend it in an energy-consistent manner, with three additions

hat make it linearly well-posed and energy stable. We will show, in the
ollowing subsections, that friction and diffusion have a strictly dissipa-
ive effect, while surface tension can be added in an energy-conserving
anner. In previous work (Buist et al., 2023), the energy-conserving
ature of streamwise gravity and the energy input due to a driving
ressure gradient have been demonstrated.

The model, extended with all the additional terms, is given by

𝜕𝐪
𝜕𝑡

+ 𝜕𝐟
𝜕𝑠

+ 𝐣 𝜕𝑝
𝜕𝑠

= 𝜕𝐝
𝜕𝑠

+ 𝐬 + 𝐜𝑔 + 𝐜𝑓 + 𝐜𝑝 (10)

with 𝜕𝐝∕𝜕𝑠 representing diffusion, 𝐜𝑓 representing friction, and 𝐬 rep-
resenting surface tension. The expressions for these terms will be given
in (16), (20), and (25), respectively. The extended model includes the
following contributions from streamwise gravity, indicated in Fig. 1
with 𝑔𝑠 = 𝑔 sin (𝜙):

𝐜𝑇𝑔 =
[

0 0 −𝑔 sin (𝜙)𝑞1 −𝑔 sin (𝜙)𝑞2
]

,

and from a constant driving pressure gradient, which can be applied
in cases with periodic boundary conditions in order to balance against
streamwise gravity and friction:

𝐜𝑇𝑝 =
[

0 0 − 𝑞1
𝜌𝑈

𝜕𝑝body
𝜕𝑠 − 𝑞2

𝜌𝐿

𝜕𝑝body
𝜕𝑠

]

.

The driving pressure gradient acts as a body force, and is independent
of the variable pressure 𝑝 which acts to make the flow satisfy the
volume and volumetric flow constraints.
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For the extended model given by (10), the following energy conser-
vation equation will be derived:

𝜕𝑒
𝜕𝑡

+ 𝜕ℎ
𝜕𝑠

= −𝜖 + 𝑐𝑝 (11)

with

𝑒 = 𝑒𝑏 + 𝑒𝑔 + 𝑒𝜎 , (12)

ℎ = ℎ𝑏 + ℎ𝑔 + ℎ𝑑 + ℎ𝜎 , (13)

𝜖 = 𝜖𝑑 + 𝜖𝑓 . (14)

Eq. (11) is the first main novel result of this work. It shows that the
mechanical energy 𝑒, which consists of kinetic, potential, and surface
energy, is locally conserved except for the dissipating effects of diffu-
sion and friction. The upcoming subsections will give the expressions
(18) for ℎ𝑑 , (19) for 𝜖𝑑 , (23) for 𝜖𝑓 , (31a) for 𝑒𝜎 , and (31c) for ℎ𝜎 .
Contributions from streamwise gravity are present in the energy and
the energy flux (Buist et al., 2023):

𝑒𝑔 = 𝑔𝑦
(

𝑞1 + 𝑞2
)

, ℎ𝑔 = 𝑔𝑦
(

𝑞3 + 𝑞4
)

, with d𝑦
d𝑠

= sin(𝜙(𝑠)),

while the driving pressure gradient adds a source term:

𝑐𝑝 = −𝑄
𝜕𝑝body
𝜕𝑠

,

which is strictly positive in a flow which is aligned with its driving
pressure gradient, e.g. 𝑄 > 0 and 𝜕𝑝body∕𝜕𝑠 < 0. This term differs from
the others in that it represents an externally applied force, and therefore
does not adhere to the strictly dissipative behavior of the flow itself.

Upon integrating the local energy equation over a periodic domain,
the conservative term 𝜕ℎ∕𝜕𝑠 in (11) vanishes. Besides conservative
erms, the new energy equation has an explicit sink term −𝜖 which
emains present in the global energy equation:

d𝐸
d𝑡

= − + 𝐶𝑝 with 𝐸(𝑡) = ∫

𝑠2

𝑠1
𝑒 d𝑠,  = ∫

𝑠2

𝑠1
𝜖 d𝑠, (15)

𝐶𝑝 = ∫

𝑠2

𝑠1
𝑐𝑝 d𝑠 = −𝑄

𝜕𝑝body
𝜕𝑠

𝐿,

ith 𝐿 = 𝑠2 − 𝑠1 the length of the domain. Disregarding the (optional)
xternally supplied energy source, the energy-conserving basic model
as been supplemented with a sink term which will shown to be strictly
egative, leading to the dissipation of energy, and an energy-stable
odel.

Each addition to the model independently results in additional
erms in the energy equation. The combined result of all these additions
as given here. In the following subsections, the novel terms in (11)
ill be derived separately.

.4. Physical diffusion

Our first novel contribution in the continuous setting is that we
how that adding viscous diffusion terms to the TFM has a strictly
issipative effect, which can be quantified using an expression for the
issipation rate. We refer to these viscous terms as ‘‘physical diffusion’’
n contrast to the artificial diffusion of Bonzanini et al. (2017), Fullmer
t al. (2014a) and Holmås et al. (2008), and the numerical diffusion
hich will be discussed in Section 3. The physical diffusion terms
aturally appear in the derivation of the model, but are typically
eglected due to the long wavelength assumption, with the argument
hat the TFM cannot accurately resolve the scale at which these terms
ct. However, they are important in bounding the linear instability
f short wavelength perturbations (see Section 4), and in bounding
onlinear shocks through dissipation (see Section 5.4).

In the TFM, physical diffusion takes the form of the term 𝜕𝐝∕𝜕𝐬 as
included in (10), with 𝐝 given by (Fullmer et al., 2014b; Montini, 2011)

𝐝𝑇 =
[

0 0 𝜈 𝑞 𝜕 𝑞3 𝜈 𝑞 𝜕 𝑞4
]

. (16)
4

eff ,𝑈 1 𝜕𝑠 𝑞1 eff ,𝐿 2 𝜕𝑠 𝑞2
We use the effective viscosity model of Fullmer et al. (2011), which
combines the material viscosity 𝜈𝑚 with a turbulent viscosity 𝜈𝑡. This
serves as a closure term for small scale fluctuations that are not resolved
by the model:

𝜈eff = 𝐶𝜖
(

𝜈𝑚 + 𝜈𝑡
)

,

ith 𝐶𝜖 an adjustment factor. The parameters 𝜈𝑡 and 𝐶𝜖 are empirical:
hey can be based on fully resolved (higher dimensional) simulations,
pecific to a given test case. Physical diffusion conserves momentum,
ince it can be written in conservative form.

We now consider the effect of physical diffusion on the energy.
nlike the addition of streamwise gravity, the addition of diffusion does
ot change the energy definition. There is a contribution of the extra
erms to the left hand side (LHS) of the energy equation, which is given
y

⟨𝐯𝑏 ,
𝜕𝐝
𝜕𝑠

⟩,

with 𝐯𝑏 given by (4). Some manipulation yields (for smooth solutions)

−⟨𝐯𝑏 ,
𝜕𝐝
𝜕𝑠

⟩ = −
𝑞3
𝑞1

𝜕
𝜕𝑠

(

𝜈eff ,𝑈 𝑞1
𝜕
𝜕𝑠

𝑞3
𝑞1

)

−
𝑞4
𝑞2

𝜕
𝜕𝑠

(

𝜈eff ,𝐿𝑞2
𝜕
𝜕𝑠

𝑞4
𝑞2

)

=
𝜕ℎ𝑑
𝜕𝑠

+ 𝜖𝑑 , (17)

with

ℎ𝑑 = −𝜈eff ,𝑈 𝑞1
1
2

𝜕
𝜕𝑠

𝑞23
𝑞21

− 𝜈eff ,𝐿𝑞2
1
2

𝜕
𝜕𝑠

𝑞24
𝑞22

, (18)

𝜖𝑑 = 𝜈eff ,𝑈 𝑞1

(

𝜕
𝜕𝑠

𝑞3
𝑞1

)2
+ 𝜈eff ,𝐿𝑞2

(

𝜕
𝜕𝑠

𝑞4
𝑞2

)2
. (19)

The terms included in the energy flux ℎ𝑑 are energy-conserving,
since they can be written in conservative form. The remaining terms,
collected in 𝜖𝑑 , are not conservative. They are strictly positive, since
𝜈eff ,𝑈 , 𝑞1, 𝜈eff ,𝐿, and 𝑞2 must be positive, and the square of the differen-
ial terms must be positive. Therefore, when moved to the right hand
ide (RHS), it becomes clear that −𝜖𝑑 is a strictly negative sink term. In
onclusion, we have proven analytically that physical diffusion leads to
issipation of the energy given by (12), with dissipation rate 𝜖𝑑 .

.5. Friction terms

Our second novel contribution in the continuous setting is that we
rove that wall and interface friction add a strictly dissipative sink term
o the energy equation. The friction term 𝐜𝑓 can be added to the model
s in (10), with
𝑇
𝑓 =

[

0 0 𝜏𝑈𝑃𝑈 + 𝜏int𝑃int 𝜏𝐿𝑃𝐿 − 𝜏int𝑃int
]

. (20)

The wall stresses 𝜏𝑈 and 𝜏𝐿 represent the shear stresses acting at the
pipe perimeters 𝑃𝑈 and 𝑃𝐿, that are in contact with the upper and lower
fluids, respectively. The interface stress 𝜏int represents the shear stress
at the interface 𝑃int between the two fluids. The stress terms in the
model are the averaged effect of local stresses on the averaged flow,
and in order to express these in terms of the averaged variables, closure
relations are required. These typically take the following form (Taitel
and Dukler, 1976):

𝜏𝐿 = −1
2
𝑓𝐿𝜌𝐿𝑢𝐿|𝑢𝐿|, 𝜏𝑈 = −1

2
𝑓𝑈𝜌𝑈 𝑢𝑈 |𝑢𝑈 |,

𝜏int = −1
2
𝑓int𝜌𝑈

(

𝑢𝑈 − 𝑢𝐿
)

|𝑢𝑈 − 𝑢𝐿|,
(21)

in which 𝑓𝐿, 𝑓𝑈 , and 𝑓int are friction factors that require further closure
relations, which are functions of the solution 𝐪 (see Appendix B).

We now consider the effect of wall and interface friction on the
energy. The contribution of the extra terms to the RHS of the energy
equation is

+⟨𝐯 , 𝐜 ⟩,
𝑏 𝑓
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with 𝐯𝑏 given by (4). Carrying out the multiplication, substituting (21),
and some rewriting yields

⟨𝐯𝑏 , 𝐜𝑓 ⟩ =
𝑞3
𝑞1

(

𝜏𝑈𝑃𝑈 + 𝜏int𝑃int
)

+
𝑞4
𝑞2

(

𝜏𝐿𝑃𝐿 − 𝜏int𝑃int
)

= −𝜖𝑓 , (22)

with

𝜖𝑓 = 1
2
𝑓𝑈𝜌𝑈

(

𝑞3
𝑞1

)2
|

|

|

|

𝑞3
𝑞1

|

|

|

|

𝑃𝑈 + 1
2
𝑓𝐿𝜌𝐿

(

𝑞4
𝑞2

)2
|

|

|

|

𝑞4
𝑞2

|

|

|

|

𝑃𝐿

+ 1
2
𝑓int𝜌𝑈

(

𝑞3
𝑞1

−
𝑞4
𝑞2

)2
|

|

|

|

𝑞3
𝑞1

−
𝑞4
𝑞2

|

|

|

|

𝑃int . (23)

ince 𝑓𝑈 , 𝑓𝐿, 𝑓int , 𝜌𝑈 , 𝜌𝐿, 𝑃𝑈 , 𝑃𝐿, and 𝑃int must be positive, and the
est of the terms are either quadratic or absolute, all three terms in
23) must be positive. Therefore, −𝜖𝑓 will act as a sink in the energy
quation, which represents the dissipation of energy due to friction. In
onclusion, we have proven analytically that wall and interface friction
ave a strictly dissipative effect on the energy given by (12).

.6. Surface tension

Our third novel contribution in the continuous setting is that we
how that surface tension can be added to the TFM in such a way that
he total energy is conserved. Surface tension is an important addition
ince it makes the model linearly well-posed (see Section 4). However,
f surface tension were to be added in a non-conservative manner, it
ould spoil the energy-stable nature of the model. Therefore, it is key

o find an energy-conserving form of the surface tension.
The effect of surface tension in the TFM is typically modeled

hrough its effect on the pressure. This effect is to introduce a discon-
inuity in the pressure at the interface. The pressure difference is given
y (Montini, 2011; Ramshaw and Trapp, 1978)

𝑝 = −𝜎𝜅 = 𝜎
𝜕2𝐻𝐿

𝜕𝑠2

[

1 +
(

𝜕𝐻𝐿
𝜕𝑠

)2
]−3∕2

, (24)

ith 𝜎 the surface tension and 𝜅 the streamwise curvature of the
nterface, with the interface assumed flat along the other direction. This
s the Young–Laplace equation for the TFM.

Similar to Fullmer et al. (2014b), we include the effect of this
ressure difference through the term 𝐬 in (10), with
𝑇 =

[

0 0 0 𝑞2
𝜌𝐿

𝜕𝛥𝑝
𝜕𝑠

]

. (25)

his is a general way to write the surface tension. Typically in liter-
ture (Barnea and Taitel, 1994; Fullmer et al., 2014b; Montini, 2011;
amshaw and Trapp, 1978), the assumption

(

𝜕𝐻𝐿∕𝜕𝑠
)2 ≪ 1 will be

ade to approximate (24) as:

𝑝 ≈ 𝜎
𝜕2𝐻𝐿

𝜕𝑠2
≈ 𝜎

𝑃int

𝜕2𝐴𝐿

𝜕𝑠2
. (26)

Note that for the specific case of a 2D channel geometry (𝑃int = 1,
𝐴𝐿 = 𝐻𝐿), the two approximations in (26) are equivalent.

We note that, unlike the basic model, surface tension of the form
given by (25) is not momentum-conserving, as it cannot be written in
conservative form. This is caused by the one-dimensional nature of the
model and stands in contrast to higher-dimensional, unaveraged mod-
els, where surface tension does conserve momentum (Remmerswaal,
2023).

Though (25) is not momentum-conserving, it can still be energy-
conserving, and we aim to find a set of expressions for 𝛥𝑝 and the sur-
face energy such that the contribution of surface tension to the energy
conservation equation is of conservative form. Physically, the surface
tension is associated with an energy, proportional to the surface area,
that is conserved in combination with the mechanical energy (Remmer-
swaal, 2023). The surface area in the one-dimensional two-fluid model
(see Fig. 1) will depend on 𝜕𝐻𝐿∕𝜕𝑠 = 𝑃−1

int 𝜕𝐴𝐿∕𝜕𝑠, and 𝑃int . Therefore,
we introduce the following general form for the surface energy:

𝑒 = 𝑒 (𝑆 , 𝑃 ), with 𝑆 =
𝜕𝐴𝐿 , (27)
5

𝜎 𝜎 int int int 𝜕𝑠 c
with the functional dependencies specified as

𝑞2 = 𝑞2(𝐴𝐿), 𝑃int = 𝑃int (𝐴𝐿), 𝑆int = 𝑆int (𝑠, 𝑡), 𝐴𝐿 = 𝐴𝐿(𝑠, 𝑡).

The additional term on the LHS of the energy equation due to
surface tension as given by (25) is

−⟨𝐯𝑏 , 𝐬⟩ = −
𝑞4
𝜌𝐿

𝜕𝛥𝑝
𝜕𝑠

.

In order for the model addition to be energy-conserving, the following
condition must hold:

−
𝑞4
𝜌𝐿

𝜕𝛥𝑝
𝜕𝑠

=
𝜕ℎ𝜎
𝜕𝑠

+
𝜕𝑒𝜎
𝜕𝑡

, (28)

or in this case the addition to the energy equation will be of conserva-
ive form. We will now derive a relation between 𝛥𝑝 and 𝑒𝜎 such that
28) holds.

The time derivative of the energy given by (27) is defined by
𝜕𝑒𝜎
𝜕𝑡

=
𝜕𝑒𝜎
𝜕𝑆int

𝜕𝑆int
𝜕𝑡

+
𝜕𝑒𝜎
𝜕𝑃int

𝜕𝑃int
𝜕𝑡

,

nd under the assumption of smooth solutions, and through substitu-
ion of the mass conservation equation for the lower fluid (the second
quation of (1)), can be rewritten in the following manner:
𝜕𝑒𝜎
𝜕𝑡

=
𝜕𝑒𝜎
𝜕𝑆int

𝜕
𝜕𝑠

(

𝜌−1𝐿
𝜕𝑞2
𝜕𝑡

)

+
𝜕𝑒𝜎
𝜕𝑃int

d𝑃int
d𝐴𝐿

𝜌−1𝐿
𝜕𝑞2
𝜕𝑡

= −
𝜕𝑒𝜎
𝜕𝑆int

𝜕
𝜕𝑠

(

𝜌−1𝐿
𝜕𝑞4
𝜕𝑠

)

−
𝜕𝑒𝜎
𝜕𝑃int

d𝑃int
d𝐴𝐿

𝜌−1𝐿
𝜕𝑞4
𝜕𝑠

= −
𝜕ℎ𝜎
𝜕𝑠

−
𝑞4
𝜌𝐿

𝜕𝛥𝑝
𝜕𝑠

,

with

ℎ𝜎 = 1
𝜌𝐿

(

𝜕𝑒𝜎
𝜕𝑆int

𝜕𝑞4
𝜕𝑠

− 𝑞4
𝜕
𝜕𝑠

(

𝜕𝑒𝜎
𝜕𝑆int

)

+ 𝑞4
𝜕𝑒𝜎
𝜕𝑃int

d𝑃int
d𝐴𝐿

)

,

nd

𝑝 = 𝜕
𝜕𝑠

(

𝜕𝑒𝜎
𝜕𝑆int

)

−
𝜕𝑒𝜎
𝜕𝑃int

d𝑃int
d𝐴𝐿

. (29)

or an energy of the general form (27), and a surface tension of the
eneral form (25), (29) is the relation between the specific forms
f 𝛥𝑝 and 𝑒𝜎 , that needs to be satisfied in order to achieve energy
onservation.

We now must find a set of expressions for 𝛥𝑝 and 𝑒𝜎 , that –
irst – satisfies (29) and – second – makes physical sense. The most
traightforward way to do this is to propose an energy based on phys-
cal considerations, substitute this in (29), and check if the resulting
xpression for 𝛥𝑝 compares to our expectation, which is that it take a
orm similar to (24) or (26). From a physical point of view, the energy
hould be given by 𝜎 times the surface area, which can be expressed as

𝜎
(

𝑆int , 𝑃int
)

= 𝜎𝑃int

√

1 +
(

𝜕𝐻𝐿
𝜕𝑠

)2
= 𝜎𝑃int

√

1 +
(

𝑃−1
int

𝜕𝐴𝐿
𝜕𝑠

)2

= 𝜎𝑃int

√

1 +
(

𝑃−1
int 𝑆int

)2.

However, substituting this in (29) yields an expression for 𝛥𝑝 that does
ot relate to (24) or (26), and therefore cannot be physically justified.
imicking the conventional approach of taking approximations such as

26), we take the second order Taylor expansion of this energy around
int = 0:

𝜎
(

𝑆int , 𝑃int
)

≈ 𝜎
(

𝑃int +
1
2
𝑃−1
int 𝑆

2
int

)

.

Substituting this energy in (29) yields the following expression for 𝛥𝑝:

𝑝int =
𝜎
𝑃int

𝜕𝑆int
𝜕𝑠

− 𝜎
(

1 + 1
2
𝑃−2
int 𝑆

2
int

) d𝑃int
d𝐴𝐿

, (30)

f which the first term can be recognized in (26), but the second term
annot.
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When the scope is reduced from arbitrary geometries to the specific
case of the 2D channel geometry, for which 𝑃int = 1 and 𝐴𝐿 = 𝐻𝐿, (30)
does match (26) exactly. This means that for the channel geometry, the
combination

𝑒𝜎 = 𝜎

(

1 + 1
2

(

𝜕𝐻𝐿
𝜕𝑠

)2
)

, (31a)

𝑝 = 𝜎
𝜕2𝐻𝐿

𝜕𝑠2
, with (31b)

ℎ𝜎 = 𝜎
𝜌𝐿

(

𝜕𝑞4
𝜕𝑠

𝜕𝐻𝐿
𝜕𝑠

− 𝑞4
𝜕2𝐻𝐿

𝜕𝑠2

)

, (31c)

s energy-conserving, and it can be justified physically, since 𝑒𝜎 is an ap-
roximation of 𝜎 times the surface area, and 𝛥𝑝 is an approximation of

the Young–Laplace equation. This expression for 𝛥𝑝 can be substituted
in (25) to obtain an energy-conserving form of the surface tension.

We have therefore found a form of the surface tension 𝐬, and
an associated surface energy 𝑒𝜎 , with which the basic model can be
extended, while retaining its energy-conserving behavior. For the 2D
channel geometry, this turned out to be equivalent to a standard form,
often used in literature.

3. Energy conservation and the semi-discrete two-fluid model

3.1. Semi-discrete equations for the basic model

With the energy analysis for the continuous model complete, we will
continue to propose a discretization that inherits the energy properties
of the three additions to the model on the discrete level. In order
to obtain the same conservation properties for the discrete model as
for the continuous model, the model must be discretized in a specific
manner. Therefore, the energy analysis guides the discretization. In
this subsection, we will first summarize the previously found energy-
conserving discretization of the basic model (Buist et al., 2022), to
which energy-consistent discretizations of the additional model terms
will be added.

We define the unknowns of the semi-discrete TFM on a staggered
grid, depicted in Fig. 2, in the following manner:

𝐪𝑖(𝑡) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑞1,𝑖(𝑡)
𝑞2,𝑖(𝑡)

𝑞3,𝑖−1∕2(𝑡)
𝑞4,𝑖−1∕2(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

(

𝜌𝑈𝐴𝑈𝛥𝑠
)

𝑖
(

𝜌𝐿𝐴𝐿𝛥𝑠
)

𝑖
(

𝜌𝑈𝐴𝑈 𝑢𝑈𝛥𝑠
)

𝑖−1∕2
(

𝜌𝐿𝐴𝐿𝑢𝐿𝛥𝑠
)

𝑖−1∕2

⎤

⎥

⎥

⎥

⎥

⎦

, (32)

We introduce the following notation to denote central interpolation and
jumps respectively:

𝑎𝑖−1∕2 ∶=
1
2
(

𝑎𝑖−1 + 𝑎𝑖
)

, 𝑎𝑖 ∶=
1
2
(

𝑎𝑖−1∕2 + 𝑎𝑖+1∕2
)

, (33)
q
𝑎𝑖−1∕2

y
∶= 𝑎𝑖 − 𝑎𝑖−1, J𝑎𝑖K ∶= 𝑎𝑖+1∕2 − 𝑎𝑖−1∕2. (34)

he primitive variables can be extracted from (32) through the follow-
ng relations:

𝑈,𝑖 =
𝑞1,𝑖
𝜌𝑈𝛥𝑠

, 𝐴𝐿,𝑖 =
𝑞2,𝑖
𝜌𝐿𝛥𝑠

, 𝑢𝑈,𝑖−1∕2 =
𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

, 𝑢𝐿,𝑖−1∕2 =
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

. (35)

With this notation, the semi-discrete finite volume scheme can be
ritten locally as

d𝐪𝑖
d𝑡

+ J𝐟𝑖K + 𝐣𝑖
q
𝑝𝑖−1∕2

y
= 𝟎, (36)

ith

𝑖−1∕2 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1,𝑖−1∕2
𝑓2,𝑖−1∕2
𝑓3,𝑖−1
𝑓4,𝑖−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝑞3,𝑖−1∕2
𝛥𝑠

𝑞4,𝑖−1∕2
𝛥𝑠

( 𝑞3,𝑖−1
𝑞1,𝑖−1

) 𝑞3,𝑖−1
𝛥𝑠 − 𝜌𝑈𝑔𝑛𝐻̂𝑈,𝑖−1

( 𝑞4,𝑖−1
) 𝑞4,𝑖−1 − 𝜌 𝑔 𝐻̂

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

, and (37a)
6

⎣ 𝑞2,𝑖−1 𝛥𝑠 𝐿 𝑛 𝐿,𝑖−1 ⎦ e
𝐣𝑖 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑗1,𝑖
𝑗2,𝑖

𝑗3,𝑖−1∕2
𝑗4,𝑖−1∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0
𝑞1,𝑖−1∕2
𝜌𝑈𝛥𝑠

𝑞2,𝑖−1∕2
𝜌𝐿𝛥𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (37b)

The semi-discrete version of the volume constraint is given by
𝑞1,𝑖
𝜌𝑈𝛥𝑠

+
𝑞2,𝑖
𝜌𝐿𝛥𝑠

= 𝐴,

which implies the volumetric flow constraint (Buist et al., 2023)

J𝑄𝑖K = 0, with 𝑄𝑖−1∕2(𝐪𝑖) ∶=
𝑞3,𝑖−1∕2
𝜌𝑈𝛥𝑠

+
𝑞4,𝑖−1∕2
𝜌𝐿𝛥𝑠

. (38)

3.2. Energy conservation for the semi-discrete basic model

The basic TFM, discretized as given above, conserves the following
discretized mechanical energy:

𝑒𝑏,𝑖−1∕2 = 𝜌𝑈𝑔𝑛𝐻̃𝑈,𝑖−1∕2𝛥𝑠+𝜌𝐿𝑔𝑛𝐻̃𝐿,𝑖−1∕2𝛥𝑠+
1
2

𝑞23,𝑖−1∕2
𝑞1,𝑖−1∕2

+ 1
2

𝑞24,𝑖−1∕2
𝑞2,𝑖−1∕2

. (39)

This result was obtained in Buist et al. (2022). Here we will give a
concise version of the proof. This is needed as a basis for the extensions
of the semi-discrete energy analysis which will be made in the following
subsections.

From this definition, the 𝐯𝑏 vectors can be calculated as

𝐯𝑏,𝑖−1∕2,𝑖−1 ∶=
[ 𝜕𝑒𝑏,𝑖−1∕2

𝜕𝐪𝑖−1

]𝑇

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1
4

𝑞23,𝑖−1∕2
𝑞21,𝑖−1∕2

+ 1
2 𝑔𝑛

(

d𝐻̃𝑈
d𝐴𝑈

)

𝑖−1

− 1
4

𝑞24,𝑖−1∕2
𝑞22,𝑖−1∕2

+ 1
2 𝑔𝑛

(

d𝐻̃𝐿
d𝐴𝐿

)

𝑖−1

0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐯𝑏,𝑖−1∕2,𝑖 ∶=
[ 𝜕𝑒𝑏,𝑖−1∕2

𝜕𝐪𝑖

]𝑇

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1
4

𝑞23,𝑖−1∕2
𝑞21,𝑖−1∕2

+ 1
2 𝑔𝑛

(

d𝐻̃𝑈
d𝐴𝑈

)

𝑖

− 1
4

𝑞24,𝑖−1∕2
𝑞22,𝑖−1∕2

+ 1
2 𝑔𝑛

(

d𝐻̃𝐿
d𝐴𝐿

)

𝑖
𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The sum of the dot products of 𝐯𝑏,𝑖−1∕2,𝑖−1 and 𝐯𝑏,𝑖−1∕2,𝑖 with Eq. (36) for
𝑖−1 and 𝐪𝑖 respectively is

𝐯𝑏,𝑖−1∕2,𝑖−1 ,
d𝐪𝑖−1
d𝑡

⟩ + ⟨𝐯𝑏,𝑖−1∕2,𝑖 ,
d𝐪𝑖
d𝑡

⟩

+
⟨

𝐯𝑏,𝑖−1∕2,𝑖−1, J𝐟𝑖−1K
⟩

+
⟨

𝐯𝑏,𝑖−1∕2,𝑖, J𝐟𝑖K
⟩

+⟨𝐯𝑏,𝑖−1∕2,𝑖−1 , 𝐣𝑖−1⟩
q
𝑝𝑖−3∕2

y
+ ⟨𝐯𝑏,𝑖−1∕2,𝑖 , 𝐣𝑖⟩

q
𝑝𝑖−1∕2

y
= 0. (40)

Using the following definitions:

𝐯𝑏,𝑖,𝑖−1∕2 =
1
2
(

𝐯𝑏,𝑖−1∕2,𝑖−1 + 𝐯𝑏,𝑖+1∕2,𝑖
)

,

𝐯𝑏,𝑖,𝑖+1∕2 =
1
2
(

𝐯𝑏,𝑖−1∕2,𝑖 + 𝐯𝑏,𝑖+1∕2,𝑖+1
)

,

𝐯𝑏,𝑖,𝑖−1∕2
y
= 𝐯𝑏,𝑖+1∕2,𝑖 − 𝐯𝑏,𝑖−1∕2,𝑖−1,

𝐯𝑏,𝑖,𝑖+1∕2
y
= 𝐯𝑏,𝑖+1∕2,𝑖+1 − 𝐯𝑏,𝑖−1∕2,𝑖,

nd in addition discrete versions of the geometric relations (A.6),1
he volumetric flow constraint (38), and substituting our discretization
iven by (37), it can be shown that the terms in (40) can be written in
onservative form (Buist et al., 2022):

𝐯𝑏,𝑖−1∕2,𝑖−1 ,
d𝐪𝑖−1
d𝑡

⟩ + ⟨𝐯𝑏,𝑖−1∕2,𝑖 ,
d𝐪𝑖
d𝑡

⟩ =
d𝑒𝑏,𝑖−1∕2

d𝑡
,

1 These are only exactly satisfied by geometries with d2𝐻𝐿∕d𝐴2
𝐿 = 0 (for

xample the 2D channel geometry).
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⟨

w

ℎ

Fig. 2. Staggered grid layout.
a

𝐜

T
f

a

𝑐

⟨

𝐯𝑏,𝑖−1∕2,𝑖−1, J𝐟𝑖−1K
⟩

+ ⟨𝐯𝑏,𝑖−1∕2,𝑖 , J𝐟𝑖K⟩ =
q
ℎ𝑓,𝑖−1∕2

y
,

𝐯𝑏,𝑖−1∕2,𝑖−1 , 𝐣𝑖−1⟩
q
𝑝𝑖−3∕2

y
+ ⟨𝐯𝑏,𝑖−1∕2,𝑖 , 𝐣𝑖⟩

q
𝑝𝑖−1∕2

y
=

q
ℎ𝑝,𝑖−1∕2

y
,

ith ℎ𝑓,𝑖 a discrete version of (6)2:

𝑓,𝑖 = 𝑔𝑛

(

d𝐻̃𝑈
d𝐴𝑈

)

𝑖

𝑞3,𝑖
𝛥𝑠

+ 𝑔𝑛

(

d𝐻̃𝐿
d𝐴𝐿

)

𝑖

𝑞4,𝑖
𝛥𝑠

+
⎛

⎜

⎜

⎝

[

( 𝑞3,𝑖
𝑞1,𝑖

)

]2

− 1
2

(

𝑞23,𝑖
𝑞21,𝑖

)

⎞

⎟

⎟

⎠

×
𝑞3,𝑖
𝛥𝑠

+
⎛

⎜

⎜

⎝

[

( 𝑞4,𝑖
𝑞2,𝑖

)

]2

− 1
2

(

𝑞24,𝑖
𝑞22,𝑖

)

⎞

⎟

⎟

⎠

𝑞4,𝑖
𝛥𝑠

, (41)

and ℎ𝑝,𝑖 a discrete version of (7):

ℎ𝑝,𝑖 = 𝑄(𝑡)𝑝𝑖. (42)

The energy analysis of the additional model terms, given in Section 3.4
onward, will be fit into the same structure. The sum of the dot products
of 𝐯𝑏,𝑖−1∕2,𝑖−1 and 𝐯𝑏,𝑖−1∕2,𝑖 with the additional model term will yield the
resulting addition to the energy equation.

Since each term in (40) can be written in conservative form, it
reduces to the local energy conservation equation
d𝑒𝑏,𝑖−1∕2

d𝑡
+

q
ℎ𝑏,𝑖−1∕2

y
= 0, (43)

with ℎ𝑏,𝑖 = ℎ𝑓,𝑖 + ℎ𝑝,𝑖. Like in the continuous case, this equation can be
integrated over a closed or periodic domain to yield

d𝐸𝑏
d𝑡

= 0, with 𝐸𝑏(𝑡) =
𝑁𝑢
∑

𝑖=1
𝑒𝑏,𝑖−1∕2(𝑡),

which means that the discrete mechanical energy defined by (39) is a
secondary conserved quantity of the semi-discrete model described in
Section 3.1.

3.3. Energy equation for the semi-discrete extended model

Having introduced the energy-conserving discretization of the basic
TFM and its energy conservation equation, we will propose discretiza-
tions of the three additions to the basic model, that retain the energy
properties of their continuous counterparts, which were derived in
Section 2. We will present discretizations of friction and diffusion that
are strictly dissipative, and a discretization of surface tension that
conserves the discretized energy, extended with a discrete version of
the surface energy.

Additionally, we will present an upwind discretization of the ad-
vective terms that can be shown to be strictly dissipative, in contrast

2 The given expression for ℎ𝑓,𝑖 is different from, but equivalent to, the
expression given in Buist et al. (2023) (under the current assumptions).
7

e

to the energy-conserving discretization of the advective terms given
by (37a). We will then propose to combine this upwind advective
flux with the energy-conserving advective flux (using flux limiters), to
produce a combined flux that is strictly dissipative, but less dissipative
and less diffusive than the purely upwind flux. The combined flux is
energy stable, and adds numerical dissipation only where necessary:
near strong gradients and discontinuities. This mimics the behavior of
weak solutions to the (basic) continuous equations, which instead of the
energy equality of Section 2.2 (that is only valid for smooth solutions),
will satisfy an energy inequality.

The semi-discrete model, extended with all the additional terms, is
given by

d𝐪𝑖
d𝑡

+ J𝐟𝑖K + 𝐣𝑖
q
𝑝𝑖−1∕2

y
= J𝐝𝑖K + 𝐬𝑖𝛥𝑠 + 𝐜𝑔,𝑖𝛥𝑠 + 𝐜𝑓,𝑖𝛥𝑠 + 𝐜𝑝,𝑖𝛥𝑠 (44)

with J𝐝𝑖K representing diffusion, 𝐜𝑓,𝑖 representing friction, and 𝐬𝑖 repre-
senting surface tension. The expressions for these terms will be given
in (50), (54), and (56), respectively. The extended semi-discrete model
includes the following contributions from streamwise gravity:

𝐜𝑇𝑔,𝑖 =
[

0 0 −𝑔 J𝑦𝑖−1∕2K
𝛥𝑠

𝑞1,𝑖−1∕2
𝛥𝑠 −𝑔 J𝑦𝑖−1∕2K

𝛥𝑠
𝑞2,𝑖−1∕2

𝛥𝑠

]

with
q
𝑦𝑖−1∕2

y

𝛥𝑠
= [sin(𝜙)]𝑖−1∕2 ,

nd from a constant driving pressure gradient:
𝑇
𝑝,𝑖 =

[

0 0 −
𝑞1,𝑖−1∕2
𝜌𝑈𝛥𝑠

𝜕𝑝body
𝜕𝑠 −

𝑞2,𝑖−1∕2
𝜌𝐿𝛥𝑠

𝜕𝑝body
𝜕𝑠

]

.

The energy equation that follows from (44) reads

d𝑒𝑖−1∕2
d𝑡

+
q
ℎ𝑖−1∕2

y
+

q
ℎ𝑛,𝑖−1∕2

y
= −𝜖𝑖−1∕2 − 𝜖𝑛,𝑖−1∕2 + 𝑐𝑝,𝑖−1∕2 (45)

with

𝑒𝑖−1∕2 = 𝑒𝑏,𝑖−1∕2 + 𝑒𝑔,𝑖−1∕2 + 𝑒𝜎,𝑖−1∕2, (46)

ℎ𝑖 = ℎ𝑏,𝑖 + ℎ𝑔,𝑖 + ℎ𝑑,𝑖 + ℎ𝜎,𝑖, (47)

𝜖𝑖−1∕2 = 𝜖𝑑,𝑖−1∕2 + 𝜖𝑓,𝑖−1∕2. (48)

he upcoming subsections will give the expressions (52) for ℎ𝑑,𝑖, (53)
or 𝜖𝑑,𝑖−1∕2, (55) for 𝜖𝑓,𝑖−1∕2, (59) for 𝑒𝜎,𝑖−1∕2, and (60) for ℎ𝜎,𝑖. The

contributions from streamwise gravity are given by (Buist et al., 2023)3

𝑒𝑔,𝑖−1∕2 = 𝑔
(

𝑦𝑖−1∕2
(

𝑞1,𝑖−1∕2 + 𝑞2,𝑖−1∕2
))

, ℎ𝑔,𝑖 = 𝑔𝑦𝑖

( 𝑞3,𝑖
𝛥𝑠

+
𝑞4,𝑖
𝛥𝑠

)

,

nd the contribution of the driving pressure gradient is given by

𝑝,𝑖−1∕2 = −𝑄𝑖−1∕2
𝜕𝑝body
𝜕𝑠

𝛥𝑠,

3 The given expression for ℎ𝑔,𝑖 is different from, but equivalent to, the
xpression given in Buist et al. (2023).



International Journal of Multiphase Flow 174 (2024) 104756J.F.H. Buist et al.

t
c
t
a
a
i
e
t

𝐸

T
i
s

p
p
t
c
s
a

r
c
w
c

3

a
d
c

w

𝐝

w

H

𝑎

𝜏

w
d

𝐜

which is positive when the body force is aligned with the mean flow.
These are all semi-discrete counterparts of the continuous expressions
given in Section 2. The terms with subscript 𝑛 are specific to the semi-
discrete setting, and stem from the energy-stable combined advective
flux. The numerical energy flux ℎ𝑛,𝑖 will be given by (65) and the
numerical dissipation 𝜖𝑛,𝑖−1∕2 will be given by (66).

Eq. (45) is the second main novel result of this work, as it shows
hat we have obtained a semi-discrete model with the same energy
onservation properties as the continuous model. The model additions
hat were conservative in the continuous setting are discretized in such
way that the energy-conserving behavior is retained, and the model

dditions that were dissipative in the continuous setting are discretized
n such a way that the strictly dissipative behavior is retained. The local
nergy equation (45) can be integrated over a periodic domain to yield
he global energy equation

d𝐸
d𝑡

= −̂ − ̂𝑛 + 𝐶𝑝 with (49a)

̂(𝑡) =
𝑁𝑢
∑

𝑖=1
𝑒𝑖−1∕2(𝑡), ̂ =

𝑁𝑢
∑

𝑖=1
𝜖𝑖−1∕2(𝑡), ̂𝑛 =

𝑁𝑢
∑

𝑖=1
𝜖𝑛,𝑖−1∕2(𝑡), (49b)

𝐶𝑝 =
𝑁𝑢
∑

𝑖=1
𝑐𝑝,𝑖−1∕2(𝑡) = −𝑄(𝑡)

𝜕𝑝body
𝜕𝑠

𝐿. (49c)

his equation determines that the energy of the solution can never
ncrease, except due to an explicitly applied external force (through the
ource term 𝐶𝑝).

Therefore, the novel semi-discrete model is energy stable. It has
hysical and numerical dissipation rates (̂ and ̂𝑛) that can be com-
uted from the solution. These dissipation rates can be integrated in
ime numerically to find the total dissipated energy due to the different
ontributions. The total dissipated energy between two points in time
hould match the difference in energy between these two points in time,
s calculated through an evaluation of 𝐸 at those two points in time.

Each term in the semi-discrete model independently results in cor-
esponding terms in the energy equation. The combined result for the
omplete extended model, discretized in an energy-consistent manner,
as given here. In the following subsections we will detail the novel

ontributions separately.

.4. Physical diffusion

Our first novel contribution in the semi-discrete setting is to propose
discretization of the viscous diffusion terms and prove that it is strictly
issipative, just like its continuous counterpart. The diffusion term that
an be added to the RHS of (36) is

[

𝜕𝐝∕𝜕𝑠
]

𝑖 𝛥𝑠, in which
[

𝜕𝐝∕𝜕𝑠
]

𝑖
is the discrete version of 𝜕𝐝∕𝜕𝑠, with 𝐝 given by (16). We propose
the following straightforward central discretization, which yields the
diffusion term in (44):
[ 𝜕𝐝
𝜕𝑠

]

𝑖
= 1

𝛥𝑠
J𝐝𝑖K =

1
𝛥𝑠

(

𝐝𝑖+1∕2 − 𝐝𝑖−1∕2
)

,

ith

𝑖−1∕2 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝑑1,𝑖−1∕2
𝑑2,𝑖−1∕2
𝑑3,𝑖−1
𝑑4,𝑖−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0

𝜈eff ,𝑈
𝑞1,𝑖−1
(𝛥𝑠)2

s
𝑞3,𝑖−1
𝑞1,𝑖−1

{

𝜈eff ,𝐿
𝑞2,𝑖−1
(𝛥𝑠)2

s
𝑞4,𝑖−1
𝑞2,𝑖−1

{

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0

𝜌𝑈 𝜈eff ,𝑈𝐴𝑈,𝑖−1
J𝑢𝑈,𝑖−1K

𝛥𝑠

𝜌𝐿𝜈eff ,𝐿𝐴𝐿,𝑖−1
J𝑢𝐿,𝑖−1K

𝛥𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(50)

With diffusion, no extra term is added to the energy. The steps of
the derivation of Section 3.2 can be simply repeated. With the proposed
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discretization, the only additional terms in the energy equation (on the
LHS) are

−
⟨

𝐯𝑏,𝑖−1∕2,𝑖−1, J𝐝𝑖−1K
⟩

−
⟨

𝐯𝑏,𝑖−1∕2,𝑖, J𝐝𝑖K
⟩

= −
q
⟨𝐯𝑏,𝑖−1∕2,𝑖−1 ,𝐝𝑖−1⟩

y
−

q
⟨𝐯𝑏,𝑖−1∕2,𝑖 ,𝐝𝑖⟩

y

+ ⟨

q
𝐯𝑏,𝑖−1∕2,𝑖−1

y
,𝐝𝑖−1⟩ + ⟨

q
𝐯𝑏,𝑖−1∕2,𝑖

y
,𝐝𝑖⟩

= −

u

v𝜈eff ,𝑈
𝑞1,𝑖−1∕2
(𝛥𝑠)2

(

𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

)t
𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

|}

~

+
⎛

⎜

⎜

⎝

𝜈eff ,𝑈
𝑞1,𝑖−1∕2
(𝛥𝑠)2

t
𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

|2
⎞

⎟

⎟

⎠

−

u

v𝜈eff ,𝐿
𝑞2,𝑖−1∕2
(𝛥𝑠)2

(

𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

)t
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

|}

~

+
⎛

⎜

⎜

⎝

𝜈eff ,𝐿
𝑞2,𝑖−1∕2
(𝛥𝑠)2

t
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

|2
⎞

⎟

⎟

⎠

=
q
ℎ𝑑,𝑖−1∕2

y
+ 𝜖𝑑,𝑖−1∕2, (51)

ith

ℎ𝑑,𝑖 = − 𝜈eff ,𝑈
𝑞1,𝑖
(𝛥𝑠)2

1
2

t
( 𝑞3,𝑖
𝑞1,𝑖

)2
|

− 𝜈eff ,𝐿
𝑞2,𝑖
(𝛥𝑠)2

1
2

t
( 𝑞4,𝑖
𝑞2,𝑖

)2
|

, (52)

𝜖𝑑,𝑖−1∕2 =
⎛

⎜

⎜

⎝

𝜈eff ,𝑈
𝑞1,𝑖−1∕2
(𝛥𝑠)2

t
𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

|2
⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝜈eff ,𝐿
𝑞2,𝑖−1∕2
(𝛥𝑠)2

t
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

|2
⎞

⎟

⎟

⎠

. (53)

ere we have used a discrete product rule:

𝑖 J𝑏𝑖K = J𝑎𝑖𝑏𝑖K −
(

J𝑎𝑖K 𝑏𝑖
)

,

and a discrete chain rule:

𝑎𝑖−1∕2
q
𝑎𝑖−1∕2

y
= 1

2

r
𝑎2𝑖−1∕2

z
.

These can be derived by substituting the definitions (33) and (34), and
applying some algebraic manipulation.

The result of (51) compares directly to the continuous result, given
by (17). Like the continuous result, it consists of a conservative part,
and a strictly dissipative part. The latter is due to 𝜖𝑑,𝑖−1∕2 being strictly
positive, and the minus sign that is added when 𝜖𝑑,𝑖−1∕2 is moved to
the RHS. Therefore, it has been proven that the proposed discretization
of the diffusion terms is strictly dissipative with respect to the energy
given by (46). Moreover, an explicit expression for the dissipation rate
has been obtained, that can be used to measure the dissipation taking
place in a numerical simulation.

3.5. Friction terms

Our second novel contribution in the semi-discrete setting is to
show that wall and interface friction result in a strictly dissipative
contribution to the semi-discrete energy equation. In (44), friction is
included through the term 𝐜𝑓,𝑖𝛥𝑠, in which 𝐜𝑓,𝑖 is the discrete version
of (20). With reference to the closure relations given in Section 2.5, we
assume the following functional dependencies for the discrete friction
terms:

𝜏𝐿,𝑖−1∕2 ∶= 𝜏𝐿(𝑓𝐿,𝑖−1∕2, 𝑢𝐿,𝑖−1∕2), 𝜏𝑈,𝑖−1∕2 ∶= 𝜏𝑈 (𝑓𝑈,𝑖−1∕2, 𝑢𝑈,𝑖−1∕2),

int,𝑖−1∕2 ∶= 𝜏int (𝑓int,𝑖−1∕2, 𝑢𝑈,𝑖−1∕2, 𝑢𝐿,𝑖−1∕2),

ith primitive variables given by (35). Then we propose the following
iscretization of the friction source terms:

𝑓,𝑖 =

⎡

⎢

⎢

⎢

⎢

𝑐𝑓,1,𝑖
𝑐𝑓,2,𝑖

𝑐𝑓,3,𝑖−1∕2

⎤

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

0
0

𝜏𝑈,𝑖−1∕2𝑃𝑈,𝑖−1∕2 + 𝜏int,𝑖−1∕2𝑃int,𝑖−1∕2

⎤

⎥

⎥

⎥

⎥

. (54)
⎣

𝑐𝑓,4,𝑖−1∕2⎦ ⎣

𝜏𝐿,𝑖−1∕2𝑃𝐿,𝑖−1∕2 − 𝜏int,𝑖−1∕2𝑃int,𝑖−1∕2 ⎦
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Like with diffusion, adding friction terms to the system does not
change the energy definition. Since the friction terms do not involve
derivatives, the derivation of the contribution to the energy equation
is almost the same as in the continuous case. The only modification to
the energy equation is that the following terms are added to the RHS:

⟨𝐯𝑏,𝑖−1∕2,𝑖−1 , 𝐜𝑓,𝑖−1𝛥𝑠⟩ + ⟨𝐯𝑏,𝑖−1∕2,𝑖 , 𝐜𝑓,𝑖𝛥𝑠⟩

=
𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

(

𝜏𝑈,𝑖−1∕2𝑃𝑈,𝑖−1∕2 + 𝜏int,𝑖−1∕2𝑃int,𝑖−1∕2
)

𝛥𝑠

+
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

(

𝜏𝐿,𝑖−1∕2𝑃𝐿,𝑖−1∕2 − 𝜏int,𝑖−1∕2𝑃int,𝑖−1∕2
)

𝛥𝑠

= −𝜖𝑓,𝑖−1∕2,

with

𝜖𝑓,𝑖−1∕2 =
1
2
𝑓𝑈,𝑖−1∕2𝜌𝑈

(

𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

)2
|

|

|

|

|

𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

|

|

|

|

|

𝑃𝑈,𝑖−1∕2𝛥𝑠

+1
2
𝑓𝐿,𝑖−1∕2𝜌𝐿

(

𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

)2
|

|

|

|

|

𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

|

|

|

|

|

𝑃𝐿,𝑖−1∕2𝛥𝑠

+1
2
𝑓int,𝑖−1∕2𝜌𝑈

(

𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

−
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

)2
|

|

|

|

|

𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

−
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

|

|

|

|

|

×𝑃int,𝑖−1∕2𝛥𝑠. (55)

ince 𝑓𝑈,𝑖−1∕2, 𝑓𝐿,𝑖−1∕2, 𝑓int,𝑖−1∕2, 𝜌𝑈 , 𝜌𝐿, 𝑃𝑈,𝑖−1∕2, 𝑃𝐿,𝑖−1∕2, and 𝑃int,𝑖−1∕2
must be positive, and the rest of the terms are either quadratic or
absolute, 𝜖𝑓,𝑖−1∕2 must always be positive. Therefore, −𝜖𝑓,𝑖−1∕2 will act
as a sink in the energy equation.

This result allows us, for the first time, to compare the dissipation
due to wall and interface friction with the dissipation due to axial
diffusion. Both components of the dissipation rate can be computed
from the numerical solution, integrated numerically over time, and
compared to one another to determine which has dissipated the most
energy.

3.6. Surface tension

Our third novel contribution in the semi-discrete setting is to pro-
pose a discretization of the surface tension, and show that it is energy-
conserving. This is key in maintaining the energy-stable nature of the
semi-discrete model, while contributing favorably to the linear stability
properties of the model; see Section 4.

Surface tension is included in (44) through the term 𝐬𝑖𝛥𝑠, in which
𝐬𝑖 is the discrete version of (25). A general form of the surface tension,
analogous to (25), is given by

𝐬𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0

𝑞2,𝑖−1∕2
𝜌𝐿𝛥𝑠

1
𝛥𝑠

q
[𝛥𝑝]𝑖−1∕2

y

⎤

⎥

⎥

⎥

⎥

⎦

. (56)

e restrict the analysis to the channel geometry, for which clear results
ere obtained in the continuous analysis, and propose the following
iscretization of the pressure jump given by (31b):

𝛥𝑝int
]

𝑖 =
𝜎
𝛥𝑠

tq
𝐻𝐿,𝑖

y

𝛥𝑠

|

. (57)

his constitutes a straightforward discretization of the conventional
pproximation of the surface tension in the TFM.
9

With the proposed discretization, the extra terms on the LHS of the
nergy equation can be written as

− ⟨𝐯𝑏,𝑖−1∕2,𝑖−1 , 𝐬𝑖−1𝛥𝑠⟩ − ⟨𝐯𝑏,𝑖−1∕2,𝑖 , 𝐬𝑖𝛥𝑠⟩

= −
𝑞4,𝑖−1∕2
𝜌𝐿𝛥𝑠

t
𝜎
𝛥𝑠

tq
𝐻𝐿,𝑖−1∕2

y

𝛥𝑠

||

= − 𝜎
𝜌𝐿

t
( 𝑞4,𝑖−1∕2

𝛥𝑠

)

1
𝛥𝑠

tq
𝐻𝐿,𝑖−1∕2

y

𝛥𝑠

||

+ 𝜎
𝜌𝐿

(s 𝑞4,𝑖−1∕2
𝛥𝑠

{
1
𝛥𝑠

tq
𝐻𝐿,𝑖−1∕2

y

𝛥𝑠

|)

=
q
ℎ𝜎,𝑖−1∕2

y
+ 𝜎

𝜌𝐿

t
1
𝛥𝑠

d𝑞2,𝑖−1∕2
d𝑡

| q
𝐻𝐿,𝑖−1∕2

y

𝛥𝑠

=
q
ℎ𝜎,𝑖−1∕2

y
+ 𝜎 d

d𝑡

(q
𝐻𝐿,𝑖−1∕2

y

𝛥𝑠

)

q
𝐻𝐿,𝑖−1∕2

y

=
q
ℎ𝜎,𝑖−1∕2

y
+ 𝜎

d𝑒𝜎,𝑖−1∕2
d𝑡

, (58)

n which, based on (31), we have chosen to define the surface energy
s:

𝜎,𝑖−1∕2 = 𝜎𝛥𝑠
⎛

⎜

⎜

⎝

1 + 1
2

(q
𝐻𝐿,𝑖−1∕2

y

𝛥𝑠

)2
⎞

⎟

⎟

⎠

, (59)

with an energy flux of

ℎ𝜎,𝑖 = 𝜎 1
𝛥𝑠

s 𝑞4,𝑖
𝜌𝐿𝛥𝑠

{(q
𝐻𝐿,𝑖

y

𝛥𝑠

)

− 𝜎
( 𝑞4,𝑖
𝜌𝐿𝛥𝑠

)

1
𝛥𝑠

tq
𝐻𝐿,𝑖

y

𝛥𝑠

|

. (60)

n this derivation, we have used a discrete version of the product rule
hat can be derived from (33) and (34):

𝑎𝑖−1∕2𝑏𝑖−1∕2
y
=
(q

𝑎𝑖−1∕2
y
𝑏𝑖−1∕2

)

+ 𝑎𝑖−1∕2
q
𝑏𝑖−1∕2

y
,

and substituted the semi-discrete mass conservation equation for the
lower fluid (the second equation of (36)), specified to the 2D channel.

The derivation (58) shows that, for the surface tension discretization
given by (56) and (57), the contribution of surface tension to the semi-
discrete energy equation can be written in conservative form. This
requires adding an extra term to the energy, which must take a specific
form that is tied to this discretization. We have succeeded in finding
a combination of

[

𝛥𝑝int
]

𝑖 and 𝑒𝜎,𝑖−1∕2 that is energy-conserving. These
results hold for the 2D channel geometry.

Therefore, we have found a way to add surface tension to the semi-
discrete model, in such a way that it remains energy stable. Consistent
with the physics of the flow, no dissipation (or production) of energy
will result from surface tension. All dissipation can be attributed to
effects that would physically be expected to yield dissipation: diffusion
and wall and interface friction.

3.7. Numerical diffusion

In addition to the energy-consistent discretizations of the extra
terms in the continuous model, a modification is needed to our dis-
cretization of the basic model, as given by (37). In this subsection we
will propose an upwind discretization of the advective terms in the
momentum equations, that can be shown to add a strictly dissipative
term to the energy equation, and is therefore energy stable.

This is required because our energy-conserving central advective
flux, included in (37a), is sensitive to discontinuities. At discontinu-
ities, the proofs of energy conservation for the continuous equations
no longer hold, and the continuous equations should dissipate en-
ergy (Jameson, 2008). However, our energy-conserving flux expressly
forbids this. As a result, when discontinuities appear in the solution, nu-
merical oscillations are generated. Adding physical diffusion mitigates
the problem, but it acts at small scales, and in order to incorporate its

full effect, a high grid refinement is required.
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Therefore, it is necessary to introduce some form of (strictly dissi-
pative) numerical diffusion. The adjective ‘numerical’ indicates that it
should be grid-dependent: it is primarily needed at coarse resolutions.
Such diffusion can be provided by an upwind discretization of the
advective flux.

Different upwind discretizations can be conceived, by taking differ-
ent interpolations and by upwinding different parts of the numerical
flux, see e.g. Issa and Kempf (2003), Krasnopolsky and Lukyanov
(2018) and Liao et al. (2008). Here we present a new upwind dis-
cretization that is based on the conservative variables, and closely
resembles the energy-conserving flux of (37a), with the exception that
for the advecting velocities we use an upwind interpolation, instead of
a central interpolation:

𝑓3,𝑎,𝑖−1,𝑢 =
(

𝑞3
𝑞1

)

up,𝑖−1

𝑞3,𝑖−1
𝛥𝑠

= 𝜌𝑈 𝑢𝑈,up,𝑖−1

(

𝐴𝑈,𝑖−1𝑢𝑈,𝑖−1

)

, (61a)

4,𝑎,𝑖−1,𝑢 =
(

𝑞4
𝑞2

)

up,𝑖−1

𝑞4,𝑖−1
𝛥𝑠

= 𝜌𝐿𝑢𝐿,up,𝑖−1
(

𝐴𝐿,𝑖−1𝑢𝐿,𝑖−1
)

, (61b)

ith

𝑈,up,𝑖−1 =

⎧

⎪

⎨

⎪

⎩

𝑢𝑈,𝑖−3∕2, if 𝑞3,𝑖−1 > 0

𝑢𝑈,𝑖−1∕2, otherwise

𝑢𝐿,up,𝑖−1 =

⎧

⎪

⎨

⎪

⎩

𝑢𝐿,𝑖−3∕2, if 𝑞4,𝑖−1 > 0

𝑢𝐿,𝑖−1∕2, otherwise

This upwind flux is atypical in its choice to have 𝑢𝑈 and 𝑢𝐿 as the
upwinded variables instead of 𝑞3 and 𝑞4, and in its choice to base the
pwind directions on 𝑞3 and 𝑞4 instead of 𝑢𝑈 and 𝑢𝐿. These choices are
eeded to prove the strictly dissipative property.

We only apply an upwind discretization to the advective terms of
he momentum equations, and not to those of the mass equations. The
ass equations are left unchanged, since changing these would cause

omplications in three areas. First, changing the mass advective fluxes
ould interfere with the coupling between the mass and momentum
quations. Second, the discrete form of the volumetric flow constraint
ould be altered, since it is derived through substitution of the mass
quations in the volume constraint. Third, the discrete energy analysis
f the streamwise gravity and surface tension terms could be invali-
ated or require significant modification, since it involves substitution
f the mass equations.

We now show that the contribution to the energy equation of these
pwind fluxes can be divided into a conservative part and a non-
onservative part. To this end, the analysis of Section 3.2 is repeated,
his time with (61) taking the place of the momentum advection part
f the fluxes given in (37a). The contribution of the flux terms to (40)
an then be written as
⟨

𝐯𝑏,𝑖−1∕2,𝑖−1, J𝐟𝑖−1K
⟩

+
⟨

𝐯𝑏,𝑖−1∕2,𝑖, J𝐟𝑖K
⟩

=
q
⟨𝐯𝑏,𝑖−1∕2,𝑖−1 , 𝐟𝑖−1⟩

y
+

q
⟨𝐯𝑏,𝑖−1∕2,𝑖 , 𝐟𝑖⟩

y

− ⟨

q
𝐯𝑏,𝑖−1∕2,𝑖−1

y
, 𝐟𝑖−1⟩ − ⟨

q
𝐯𝑏,𝑖−1∕2,𝑖

y
, 𝐟𝑖⟩

=
q
ℎ𝑓,𝑖−1∕2

y
+

q
ℎ𝑢,𝑖−1∕2

y
+ 𝜖𝑢,𝑖−1∕2,

with ℎ𝑓,𝑖 given by (41), ℎ𝑢,𝑖 given by

ℎ𝑢,𝑖 = −
( 𝑞3,𝑖
𝑞1,𝑖

)

(

( 𝑞3,𝑖
𝑞1,𝑖

)

−
(

𝑞3
𝑞1

)

up,𝑖

)

𝑞3,𝑖
𝛥𝑠

−
( 𝑞4,𝑖
𝑞2,𝑖

)

(

( 𝑞4,𝑖
𝑞2,𝑖

)

−
(

𝑞4
𝑞2

)

up,𝑖

)

𝑞4,𝑖
𝛥𝑠

, (62)

and 𝜖𝑢,𝑖−1∕2 given by

𝜖𝑢,𝑖−1∕2 = 𝜖𝑢,𝑈,𝑖−1∕2 + 𝜖𝑢,𝐿,𝑖−1∕2

=
⎛

⎜

⎜

t
𝑞3,𝑖−1∕2
𝑞

|
⎛

⎜

⎜

(

𝑞3,𝑖−1∕2
𝑞

)

−
(

𝑞3
𝑞

)

⎞

⎟

⎟

𝑞3,𝑖−1∕2
𝛥𝑠

⎞

⎟

⎟

10

⎝

1,𝑖−1∕2
⎝

1,𝑖−1∕2 1 up,𝑖−1∕2
⎠ ⎠
+
⎛

⎜

⎜

⎝

t
𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

|
⎛

⎜

⎜

⎝

(

𝑞4,𝑖−1∕2
𝑞2,𝑖−1∕2

)

−
(

𝑞4
𝑞2

)

up,𝑖−1∕2

⎞

⎟

⎟

⎠

𝑞4,𝑖−1∕2
𝛥𝑠

⎞

⎟

⎟

⎠

. (63)

We have split 𝜖𝑢,𝑖−1∕2 into a part pertaining to the upper fluid (𝜖𝑢,𝑈,𝑖−1∕2,
irst line) and a part pertaining to the lower fluid (𝜖𝑢,𝐿,𝑖−1∕2, second
ine).

This shows that the contribution of the upwind flux can be writ-
en as the contribution

q
ℎ𝑓,𝑖−1∕2

y
of the energy-conserving flux, plus

ome extra terms. Some of these terms are completely between double
rackets, meaning they are energy-conserving, and can be included in
he energy flux ℎ𝑢,𝑖. The remaining terms will become source terms in
he energy equation.

We will now show that these source terms are strictly dissipative.
t is sufficient to only examine the terms pertaining to the upper fluid,
ince the terms pertaining to the lower fluid have the same structure, so
heir analysis will yield similar results. The source terms for the upper
luid can be rewritten in the following manner:

𝑢,𝑈,𝑖−1∕2 =
1
2

t
𝑞3,𝑖−1
𝑞1,𝑖−1

|
𝑞3,𝑖−1
𝛥𝑠

[

( 𝑞3,𝑖−1
𝑞1,𝑖−1

)

−
(

𝑞3
𝑞1

)

up,𝑖−1

]

+ 1
2

t
𝑞3,𝑖
𝑞1,𝑖

|
𝑞3,𝑖
𝛥𝑠

[

( 𝑞3,𝑖
𝑞1,𝑖

)

−
(

𝑞3
𝑞1

)

up,𝑖

]

.

Now, we consider the case that 𝑞3,𝑖−1 > 0 and 𝑞3,𝑖 > 0, so that 𝑢𝑈,up,𝑖−1 =
𝑢𝑈,𝑖−3∕2 and 𝑢𝑈,up,𝑖 = 𝑢𝑈,𝑖−1∕2:

𝜖𝑢,𝑈,𝑖−1∕2 =
1
2

t
𝑞3,𝑖−1
𝑞1,𝑖−1

|
𝑞3,𝑖−1
𝛥𝑠

[

( 𝑞3,𝑖−1
𝑞1,𝑖−1

)

−
𝑞3,𝑖−3∕2
𝑞1,𝑖−3∕2

]

+ 1
2

t
𝑞3,𝑖
𝑞1,𝑖

|
𝑞3,𝑖
𝛥𝑠

[

( 𝑞3,𝑖
𝑞1,𝑖

)

−
𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

]

= 1
4

t
𝑞3,𝑖−1
𝑞1,𝑖−1

|2 𝑞3,𝑖−1
𝛥𝑠

+ 1
4

t
𝑞3,𝑖
𝑞1,𝑖

|2 𝑞3,𝑖
𝛥𝑠

.

Clearly, these terms must be positive, given that we have specified that
𝑞3,𝑖−1 > 0 and 𝑞3,𝑖 > 0.

Similarly, we consider the case that 𝑞3,𝑖−1 < 0 and 𝑞3,𝑖 < 0, so that
𝑢𝑈,up,𝑖−1 = 𝑢𝑈,𝑖−1∕2 and 𝑢𝑈,up,𝑖 = 𝑢𝑈,𝑖+1∕2:

𝜖𝑢,𝑈,𝑖−1∕2 =
1
2

t
𝑞3,𝑖−1
𝑞1,𝑖−1

|
𝑞3,𝑖−1
𝛥𝑠

[

( 𝑞3,𝑖−1
𝑞1,𝑖−1

)

−
𝑞3,𝑖−1∕2
𝑞1,𝑖−1∕2

]

+ 1
2

t
𝑞3,𝑖
𝑞1,𝑖

|
𝑞3,𝑖
𝛥𝑠

[

( 𝑞3,𝑖
𝑞1,𝑖

)

−
𝑞3,𝑖+1∕2
𝑞1,𝑖+1∕2

]

= −1
4

t
𝑞3,𝑖−1
𝑞1,𝑖−1

|2 𝑞3,𝑖−1
𝛥𝑠

− 1
4

t
𝑞3,𝑖
𝑞1,𝑖

|2 𝑞3,𝑖
𝛥𝑠

.

Again, these terms must be positive, given that we have specified that
𝑞3,𝑖−1 < 0 and 𝑞3,𝑖 < 0. The third and fourth options (with differing
igns between 𝑞3,𝑖−1 and 𝑞3,𝑖) are just simple recombinations of these

two results, so they too will be strictly positive. Move these terms to
the RHS, and they become strictly negative source terms. This means
that our proposed upwind discretization adds a strictly negative source
term to the energy equation, which acts to dissipate the energy given
by (46).

Comparing this numerical dissipation term to the physical dissi-
pation term given by (53), we see that, among other differences, the
numerical dissipation has an additional factor 𝛥𝑠. It is proportional to
the cell size and will decrease at a first order rate with increasing grid
resolution.

Note that alternative upwind fluxes, such as those used by Krasnopol-
sky and Lukyanov (2018) and Liao et al. (2008), do not yield contri-
butions to the energy equation that can be written as the sum of a
conservative term and a strictly negative dissipation term. In contrast,
our new upwind advective numerical flux does possess the property of
energy stability. However, it may be more dissipative than necessary,
and for this reason we will combine it with the energy-conserving flux,

in an energy-stable manner.
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3.8. Energy-stable combined advective flux

Our fifth and key novel contribution in the semi-discrete setting is
that we combine the strictly dissipative upwind advective flux with
the energy-conserving central advective flux, in such a way that the
resulting advective flux is energy stable, but less dissipative than a
purely upwind discretization. The proposed combination possesses the
best properties of both schemes.

Our energy-conserving advective fluxes were defined in (37a) as

𝑓3,𝑎,𝑖−1,ec =
( 𝑞3,𝑖−1
𝑞1,𝑖−1

) 𝑞3,𝑖−1
𝛥𝑠

= 𝜌𝑈 𝑢𝑈,𝑖−1

(

𝐴𝑈,𝑖−1𝑢𝑈,𝑖−1

)

,

4,𝑎,𝑖−1,ec =
( 𝑞4,𝑖−1
𝑞2,𝑖−1

) 𝑞4,𝑖−1
𝛥𝑠

= 𝜌𝐿𝑢𝐿,𝑖−1
(

𝐴𝐿,𝑖−1𝑢𝐿,𝑖−1
)

.

ollowing the conventional manner of combining low-order and higher-
rder fluxes (Toro, 1999), we propose the following combination of the
nergy-conserving fluxes and the upwind fluxes given by (61), using
lux limiters:

3,𝑎,𝑖−1 =
(

1 − 𝜙
(

𝑟𝑈,𝑖−1
))

𝑓3,𝑎,𝑖−1,𝑢 + 𝜙
(

𝑟𝑈,𝑖−1
)

𝑓3,𝑎,𝑖−1,ec, (64a)

4,𝑎,𝑖−1 =
(

1 − 𝜙
(

𝑟𝐿,𝑖−1
))

𝑓4,𝑎,𝑖−1,𝑢 + 𝜙
(

𝑟𝐿,𝑖−1
)

𝑓4,𝑎,𝑖−1,ec, (64b)

ith 𝜙(𝑟𝑈,𝑖−1) and 𝜙(𝑟𝐿,𝑖−1) the limiter functions which determine the
eighting between the upwind flux and the energy-conserving flux.
ere, the upwind flux is a low-order flux, and the energy-conserving

lux is a higher-order flux. The limiting coefficients depend on the slope
f the solution:

𝑈,𝑖−1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞3,𝑖−5∕2−𝑞3,𝑖−3∕2
𝑞3,𝑖−3∕2−𝑞3,𝑖−1∕2

, if 𝑢𝑈,𝑖−1 > 0

1, if 𝑢𝑈,𝑖−1 = 0
𝑞3,𝑖−1∕2−𝑞3,𝑖+1∕2
𝑞3,𝑖−3∕2−𝑞3,𝑖−1∕2

, if 𝑢𝑈,𝑖−1 < 0

𝑟𝐿,𝑖−1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞4,𝑖−5∕2−𝑞4,𝑖−3∕2
𝑞4,𝑖−3∕2−𝑞4,𝑖−1∕2

, if 𝑢𝐿,𝑖−1 > 0

1, if 𝑢𝐿,𝑖−1 = 0
𝑞4,𝑖−1∕2−𝑞4,𝑖+1∕2
𝑞4,𝑖−3∕2−𝑞4,𝑖−1∕2

, if 𝑢𝐿,𝑖−1 < 0

These coefficients are fed to the limiter functions, for which many
options exist. Here we choose the minmod function:

𝜙(𝑟) = max [0,min (𝑟, 1)] .

The minmod function will always yield a value between 0 and 1, which
is an important property that we need to show energy stability of the
combined scheme. When the solution is smooth, 𝜙(𝑟) will be close to
1, and the energy-conserving flux will be used. When the solution is
less smooth, the upwind flux will be weighted more heavily. We note
that the minmod function could be exchanged for a less dissipative
alternative, though most conventional limiter functions are disqualified
due to the requirement that the limiter function yield a value between
0 and 1.

The energy analysis of Section 3.7 can be repeated for the fluxes
given by (64), with similar results. The contribution of the flux terms
to (40) can be written as
⟨

𝐯𝑏,𝑖−1∕2,𝑖−1, J𝐟𝑖−1K
⟩

+
⟨

𝐯𝑏,𝑖−1∕2,𝑖, J𝐟𝑖K
⟩

=
q
⟨𝐯𝑏,𝑖−1∕2,𝑖−1 , 𝐟𝑖−1⟩

y
+

q
⟨𝐯𝑏,𝑖−1∕2,𝑖 , 𝐟𝑖⟩

y

− ⟨

q
𝐯𝑏,𝑖−1∕2,𝑖−1

y
, 𝐟𝑖−1⟩ − ⟨

q
𝐯𝑏,𝑖−1∕2,𝑖

y
, 𝐟𝑖⟩

=
q
ℎ𝑓,𝑖−1∕2

y
+

q
ℎ𝑛,𝑖−1∕2

y
+ 𝜖𝑛,𝑖−1∕2,

with ℎ𝑓,𝑖 given by (41), ℎ𝑛,𝑖 given by

ℎ𝑛,𝑖 = −
(

1 − 𝜙
(

𝑟𝑈,𝑖
))

( 𝑞3,𝑖
𝑞1,𝑖

)

(

( 𝑞3,𝑖
𝑞1,𝑖

)

−
(

𝑞3
𝑞1

)

up,𝑖

)

𝑞3,𝑖
𝛥𝑠

−
(

1 − 𝜙
(

𝑟𝐿,𝑖
))

( 𝑞4,𝑖
)

(

( 𝑞4,𝑖
)

−
(

𝑞4
)

)

𝑞4,𝑖 , (65)
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𝑞2,𝑖 𝑞2,𝑖 𝑞2 up,𝑖 𝛥𝑠
and 𝜖𝑛,𝑖−1∕2 given by

𝜖𝑛,𝑖−1∕2

=
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⎜

⎝
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−
(

𝑞4
𝑞2
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⎟

⎟

⎠
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⎞

⎟

⎟

⎠

.

(66)

Since with the minmod limiter function, the factors
(

1 − 𝜙
(

𝑟𝑈,𝑖
))

and
(

1 − 𝜙
(

𝑟𝐿,𝑖
))

have values between 0 and 1, this dissipation term has
the same positivity property as the upwind dissipation term given by
(63).

Therefore, our novel advective numerical flux, formed by combining
our upwind flux and our energy-conserving flux, is energy stable. The
new energy-stable flux will be less dissipative than the pure upwind
flux, since it uses the energy-conserving flux where possible. Where the
solution is smooth, the continuous equations conserve energy, and our
energy-stable flux replicates this property. Where the solution is dis-
continuous, the energy-stable flux effectively adds numerical diffusion
which dissipates energy.

4. Stability

In this section, we discuss the stability of the basic and extended
TFM. The stability of the TFM is a topic that has received much
attention since the discovery of the ill-posedness issue by Lyczkowski
et al. (1978). Here we focus on providing a detailed motivation for
our proposed model additions of physical diffusion and surface tension.
Together these effects produce a reliable model that yields convergent
solutions under flow conditions where the basic two-fluid model fails.
Friction plays a less important role in the model’s stability, but is an
important physical effect that an accurate model must include, and is
included in the stability analysis given here.

The basic two-fluid model, as described in Section 2.1, is known to
be conditionally hyperbolic (Montini, 2011). In the region of state space
where the velocity difference is below the inviscid Kelvin–Helmholtz
(IKH) limit, the eigenvalues of the model are real, but outside this
region the eigenvalues of the model are complex (Liao et al., 2008).
Linear stability analysis (see Appendix C) confirms the issue put for-
ward by the characteristic analysis: within the hyperbolic region the
model is stable, but in the non-hyperbolic region the (linear) growth
rates for small wavelength perturbations tend towards infinity. There-
fore the model is said to be (linearly) ill-posed: the common view is
that this precludes meaningful solutions to the continuous model, and
prevents convergence of numerical solutions (Issa and Kempf, 2003).
This prevents the use of the basic model in its non-hyperbolic region.

Fig. 3 is a stability map similar to those of Barnea and Taitel (1993,
1994). It maps the stability of steady states of the TFM, where friction
is balanced by a constant driving pressure gradient (acting as a body
force). The parameters are given in Table 1 and the geometry is that
of a 2D channel. Given the lower fluid superficial velocity 𝑢𝐿𝛼𝐿 and
the upper fluid superficial velocity 𝑢𝑈 (1 − 𝛼𝐿), the hold-up 𝛼𝐿 = 𝐴𝐿∕𝐴
and driving pressure gradient 𝜕𝑝body∕𝜕𝑠 follow from the demand for a
fully developed steady state (derivatives to 𝑠 and 𝑡 must be zero). For
these steady states, the two dispersion relations 𝜔(𝜆) can be calculated
according to Appendix C. For a given perturbation wavelength 𝜆, we
consider the dispersion relation for which the imaginary component
of 𝜔 is largest: this is the most unstable mode for this wavelength. If
for this most unstable mode Im(𝜔(𝜆)) < 0, the steady state is stable
and damping (to perturbations of wavelength 𝜆), if Im(𝜔(𝜆)) = 0 it is
neutrally stable, and if Im(𝜔(𝜆)) > 0 it is unstable. As long as Im(𝜔(𝜆))
is bounded as 𝜆 → 0, the state is well-posed. If Im(𝜔(𝜆)) → ∞ for 𝜆 → 0,
the state is labeled ‘ill-posed’.
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Fig. 3. A map of the linear stability of perturbations to steady states of the TFM
with wall and interface friction, using the basic model without diffusion and surface
tension. The state space is divided into regions where perturbations are damped, are
unstable with a bounded growth rate, or are unstable with an unbounded growth rate
(ill-posed). The inviscid Kelvin–Helmholtz (IKH) and viscous Kelvin–Helmholtz (VKH)
stability boundaries are indicated. The symbol + marks the base state given by Table 2,
and the symbol ∗ marks the base state given by Table 3.

Table 1
Parameters used for the linear stability analysis. These resemble the parameters of the
Thorpe experiment (Thorpe, 1969) as described by Fullmer et al. (2014b).

Parameter Symbol Value Units

Lower fluid density 𝜌𝐿 1000 kgm−3

Upper fluid density 𝜌𝑈 780 kgm−3

Acceleration of gravity 𝑔 9.81 ms−2

Channel inclination 𝜙 0 degrees
Channel height 𝐻 0.03 m
Lower fluid material viscosity 𝜈𝑚,𝐿 1.0 ⋅ 10−6 m2 s−1

Upper fluid material viscosity 𝜈𝑚,𝑈 1.9 ⋅ 10−6 m2 s−1

Lower fluid effective viscosity 𝜈eff ,𝐿 1.13 ⋅ 10−4 m2 s−1

Upper fluid effective viscosity 𝜈eff ,𝑈 1.21 ⋅ 10−4 m2 s−1

Surface tension 𝜎 0.04 kgm s−2

Table 2
Base state used for the linear stability analysis, corresponding to the left plot in Fig. 4,
and marked with the symbol + in the stability maps.

Variable Symbol Value Units

Initial lower fluid hold-up 𝛼𝐿,0 0.4 –
Initial lower fluid velocity 𝑢𝐿,0 1 ms−1

Initial upper fluid velocity 𝑢𝑈,0 1.198 ms−1

Driving pressure gradient 𝜕𝑝body∕𝜕𝑠 −204.2 kgm−2 s−2

Table 3
Base state used for the linear stability analysis, corresponding to the right plot in Fig. 4,
and marked with the symbol ∗ in the stability maps.

Variable Symbol Value Units

Initial lower fluid hold-up 𝛼𝐿,0 0.2 –
Initial lower fluid velocity 𝑢𝐿,0 1 ms−1

Initial upper fluid velocity 𝑢𝑈,0 1.515 ms−1

Driving pressure gradient 𝜕𝑝body∕𝜕𝑠 −268.4 kgm−2 s−2

For the basic model without diffusion and surface tension, stability
is independent of wavelength (Jones and Prosperetti, 1985): if long
wavelengths are unstable then short wavelengths are also unstable
(though with different growth rates). This can be seen in Fig. 4 (similar
to figure 3.2 in López de Bertodano et al. (2017)), which shows the
growth rate of the most unstable mode, for two different steady states,
12
and for different versions of the TFM. Therefore the stability map of
the basic model in Fig. 3 is independent of wavelength. It is divided
into an ill-posed region and a well-posed region. Without friction the
whole well-posed region would be neutrally stable. Friction divides
the well-posed region of Fig. 3 into a region with damping and an
unstable region (but with bounded growth rates). The stability bound-
ary with friction is referred to as the viscous Kelvin–Helmholtz (VKH)
boundary, while the ill-posedness boundary is referred to as the inviscid
Kelvin–Helmholtz (IKH) boundary (Barnea and Taitel, 1993, 1994).

Adding physical diffusion and surface tension changes the disper-
sion relations, as can be seen in Fig. 4. Short wavelength perturbations
are stabilized, while at long wavelengths, the dispersion relations are
unchanged. The growth rate no longer tends to infinity for short
wavelengths, removing the ill-posedness issue. In case only diffusion is
added, the growth rate is bounded, but its value still increases rapidly
at short wavelengths, which causes short wavelength perturbations to
dominate the solution. In a numerical model, upon refining the grid,
increasingly unstable scales are resolved, making it impossible to reach
convergence (Holmås et al., 2008).

When both physical diffusion and surface tension are added to the
model, as suggested by Fullmer et al. (2014b), a cut-off wavelength
is introduced below which perturbations are damped, as can be seen
in Fig. 4 at approximately 𝜆𝑐 = 0.0174m. This removes the unphys-
ical short wavelength instabilities. Meanwhile, the long wavelength
instabilities, which are physical instabilities that are an integral part
of the model, can still be resolved dynamically. The removal of the
severe short wavelength instabilities means that the impediment to grid
convergence is removed, and implies that theoretically all dynamics
could be resolved without refining past 𝛥𝑠 = 𝜆𝑐∕2. The combination
of physical diffusion and surface tension is crucial to achieving the
damping effect: with only surface tension the short wavelengths are
nearly neutrally stable, with only the shortest wavelengths being very
weakly damped, due to the influence of friction.

The cut-off wavelength depends on the state and model parameters.
As the difference between the velocities of the two fluids is increased
further into the region of instability beyond the IKH limit, the cut-off
wavelength is decreased. This is apparent from comparing the stability
maps for different wavelengths in Fig. 5. The marked states in the
maps are unstable (with bounded growth rates) to long wavelength
perturbations, but stable for short wavelengths, as shown in Fig. 4.
For each possible state there will always be a cut-off wavelength
below which damping takes place. Therefore, the extended model is
unconditionally well-posed.

This method of regularization leaves intermediate scale perturba-
tions intact that might lie outside of the range of validity of the model
dictated by the long-wavelength assumption. An alternative option is
to also damp these scales, by using artificial diffusion, added to both
the mass and momentum equations (Bonzanini et al., 2017; Fullmer
et al., 2014a; Holmås et al., 2008). However, the fact that these scales
are not modeled to complete accuracy does not mean that it is more
accurate to artificially eliminate these perturbations. Our approach is
to leave these perturbations intact, for as far as they are not stabilized
by physically motivated model components.

Depending on the state, the cut-off wavelength may become quite
low and the instability quite severe. For such an unstable state, the
solution will be dominated by intermediate scale instabilities, that lie
above the cut-off wavelength, but are still of very short wavelength.
Practically, the grid resolution required to reach the cut-off wavelength
may be prohibitive. Therefore, in engineering applications, it may not
be possible to resolve all the dynamics of the model in a numerical
simulation. This does not affect the linear well-posedness: if the small
scales are not resolved, they will cause no harm, and if they are
resolved, they will be regularized by diffusion and surface tension.

The longer scale instabilities that remain present in our extended
model have bounded growth rates, but would grow indefinitely, accord-
ing to the linear stability analysis. In reality, when the perturbations
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Fig. 4. Imaginary component of the angular frequency 𝜔 for the most unstable mode, for the set of parameters given in Table 1, plotted as a function of wavelength 𝜆 = 2𝜋∕𝑘.
All models include wall and interface friction. Left: base state given by Table 2, marked by the symbol + in the stability maps. Right: base state given by Table 3, marked by the
symbol ∗ in the stability maps.
Fig. 5. Maps of the linear stability of short wavelength perturbations to steady states of the TFM, with wall and interface friction, diffusion, and surface tension. The stability of
perturbations with a specific wavelength is shown. Left: 𝜆 = 0.1m. Middle: 𝜆 = 0.01m. Right: 𝜆 = 0.001m. The symbol + marks the base state given by Table 2, and the symbol ∗
marks the base state given by Table 3.
grow large, the assumptions made in the linearization of the model
become invalid, and the behavior of the full model will depart from
the behavior of the linearized model. At this point, the nonlinear
stability of the model must be considered (López de Bertodano et al.,
2017). Nonlinear effects can bound perturbations that grow initially
due to linear instability. Typically, the unstable perturbations develop
into shocks, which must be bounded by a dissipative mechanism. In
Section 5.4 we show numerically that physical diffusion plays a crucial
role in the nonlinear damping of linear instabilities that develop into
shocks. At coarse grid resolutions, this role is taken over by numerical
diffusion.

An analytical indication of a form of nonlinear stability, which the
model should satisfy even when it is linearly unstable, is given by
the energy conservation property. The extended local energy, given by
(12), can be written in the following primitive form for the 2D channel
geometry:

𝑒ch =
1
2
𝜌𝑈𝑔𝑛𝐻

2
𝑈 + 𝜌𝑈𝑔𝑛𝐻𝑈𝐻𝐿 + 1

2
𝜌𝐿𝑔𝑛𝐻

2
𝐿 + 1

2
𝜌𝑈 𝑢

2
𝑈𝐻𝑈 + 1

2
𝜌𝐿𝑢

2
𝐿𝐻𝐿

+ 𝜌𝑈𝑔𝑦𝐻𝑈 + 𝜌𝐿𝑔𝑦𝐻𝐿 + 𝜎

(

1 + 1
2

(

𝜕𝐻𝐿
𝜕𝑠

)2
)

. (67)

Since 𝐻𝑈 and 𝐻𝐿 must be positive, each term in this expression is
positive. Therefore the global energy equation (15) implies a bound
13
on the velocities, the heights, and their spatial derivatives. A numerical
model that conserves (or strictly dissipates) this energy can be expected
to have solutions that are bounded in this way.

In conclusion, the extended model linearly damps short wavelength
perturbations, nonlinearly damps unstable long wavelength perturba-
tions when they grow large, and possesses an energy bound. These
properties are achieved by adding only physically derived terms to the
basic model (physical diffusion, friction, and surface tension). The end
result is a reliable model that can be expected to handle difficult flow
states, while still resolving physical instabilities.

5. Numerical experiments

5.1. Introduction

In this section, the energy stability and well-posedness properties
of our new framework are demonstrated through three different nu-
merical experiments. These were conducted using a code based on the
spatial discretizations given in Section 3. The numerical experiments
consider a 2D channel geometry, for which the original advective flux
described in Section 3.1 and the surface tension discretization described
in Section 3.6 are exactly energy-conserving.



International Journal of Multiphase Flow 174 (2024) 104756J.F.H. Buist et al.

c
(
a
P
c
a

b
n
s
o
f
f
n
d

t
e

s
d
s
s
l
p
t

5

b
f
t
a
t
𝜔

o
r
n
u
s
t

e
f
s
T
i
v
s
i
s
a
o

5

s
r
i
a
t
s

q
T
t
6
d
h
o
f

c
m
m
e
t
d
e
T

s
b
b
t
o

Table 4
Base state for the traveling wave case.

Variable Symbol Value Units

Initial lower fluid hold-up 𝛼𝐿,0 0.5 –
Initial lower fluid velocity 𝑢𝐿,0 0.5 ms−1

Initial upper fluid velocity 𝑢𝑈,0 0.5 ms−1

For the time integration we use the fourth order constraint-
onsistent Runge–Kutta method described by Sanderse and Veldman
2019). This method is explicit for the mass and momentum equations
nd implicit for the pressure, requiring the solution of a pressure
oisson equation. It requires the mass and momentum equations to be
oupled as has been done by setting the fluxes in the mass equations
ccording to (37a).

First, in Section 5.2 we consider a traveling wave solution to the
asic TFM without diffusion or surface tension. We show that our
ovel energy-stable advective flux (described in Section 3.8) yields
mooth solutions without excessive numerical diffusion or numerical
scillations. We compare this flux to our original energy-conserving
lux (described in Section 3.1) and to our strictly dissipative upwind
lux (described in Section 3.7). Additionally, we compare these to a
aive central scheme which is neither energy-conserving nor strictly
issipative.

In Section 5.3 we repeat the traveling wave case, but with surface
ension added according to Section 3.6. We show that this addition is
nergy-conserving, as predicted by the analysis.

Last, in Section 5.4 we consider an unstable perturbation to a
hear flow base state that would be ill-posed for the basic TFM. We
emonstrate that the complete new framework with friction, diffusion,
urface tension, and the energy-stable advective flux, is able to obtain
olutions that converge with increasing grid resolution, for this chal-
enging test case. We quantify the contributions of numerical diffusion,
hysical diffusion and friction to the nonlinear damping by computing
he dissipation, using our derived expressions for the dissipation rates.

.2. Traveling wave with the basic model and different advective fluxes

We conduct a test case with a traveling wave, induced as a pertur-
ation upon a uniform base state, for the basic model without diffusion,
riction, or surface tension. The base state is given in Table 4, and
he flow parameters are those of Table 1. The perturbation is defined
ccording to the analysis in Appendix C. It is the initial condition for
he exact solution to the linearized system, for one of the two modes
(𝑘). We set the wavelength of the perturbation to 𝜆 = 0.1m, and select

the wave mode 𝜔 = 39.89 s−1 (the other option is 𝜔 = 22.94 s−1 and
would yield a slower wave). The perturbation is then limited to the
range between 𝑠pert − 𝜆∕2 and 𝑠pert + 𝜆∕2, with 𝑠pert = 2𝜆+ 𝜆∕4. Outside
of this range the base state is kept. The computational domain has
length 𝐿 = 0.5 and has periodic boundaries. A pressure projection step
is performed on the complete initial condition, adjusting the velocities
to ensure that the volumetric flow constraint is satisfied (see Sanderse
and Veldman (2019)).

The exact solution of the linearized model is a wave traveling
to the right without deformation. The solution to the full nonlinear
model, using the energy-stable advective flux described in Section 3.8,
is shown in Fig. 6. We show the hold-up 𝛼𝐿 = 𝐴𝐿∕𝐴 and the upper
fluid velocity 𝑢𝑈 . The wave travels to the right at constant velocity,
with little deformation. At 𝑡 = 3.15 s and 𝑡 = 6.30 s, the wave has
traveled through the domain an integer number of times (4 and 8 times
respectively), and the wave can be compared to the initial perturbation.
In the middle of the wave, a slight steepening has taken place, tending
towards the formation of a discontinuity. At the edges, the wave has
diffused slightly.

In Fig. 7, we compare results for this test case, using different
discretizations of the advective flux in the momentum equations. We
14

w

compare the energy-stable scheme given by (64), the upwind scheme
given by (61), the energy-conserving scheme given in (37a), and a naive
central interpolation scheme in which the momentum advection fluxes
are given by

𝑓3,𝑎,𝑖−1,cen =

[

( 𝑞3,𝑖−1
𝑞1,𝑖−1

)

]2
𝑞1,𝑖−1
𝛥𝑠

= 𝜌𝑈
(

𝑢𝑈,𝑖−1
)2 𝐴𝑈,𝑖−1,

𝑓4,𝑎,𝑖−1,cen =

[

( 𝑞4,𝑖−1
𝑞2,𝑖−1

)

]2
𝑞2,𝑖−1
𝛥𝑠

= 𝜌𝐿
(

𝑢𝐿,𝑖−1
)2 𝐴𝐿,𝑖−1.

A high-resolution solution (𝛥𝑠 = 1.25 ⋅ 10−4 m and 𝛥𝑡 = 1.25 ⋅ 10−5 s),
btained using the energy-stable scheme, is used as a reference. The
esults show that the central and energy-conserving schemes produce
umerical oscillations in the presence of strong gradients, while the
pwind scheme is excessively diffusive. The proposed energy-stable
cheme yields the most accurate solution, without numerical oscilla-
ions and with much less diffusion than the upwind scheme.

This behavior can be understood from the perspective of the (global)
nergy, of which Fig. 7 shows the absolute and nondimensional dif-
erence with respect to the initial condition. The energy-conserving
cheme conserves energy up to a very small time integration error.
he energy-stable and upwind schemes lose energy with respect to the

nitial condition, while the central scheme gains energy (this is not
isible since only the absolute difference is plotted). The energy-stable
cheme is less dissipative than the upwind scheme, which is reflected in
ts less diffused solution. Some dissipation is physically necessary near
trong gradients or discontinuities, and the lack of this in the central
nd energy-conserving schemes can be understood to lead to numerical
scillations.

.3. Traveling wave with surface tension

Adding surface tension to the basic model yields a model that is
till energy-conserving, but for the modified energy 𝑒 = 𝑒𝑏 + 𝑒𝑠. We
epeat the previous case with this model. We test the surface tension
mplementation described in Section 3.6 with the energy-conserving
dvective flux to show that the addition is energy-conserving. We also
est the surface tension implementation with the energy-stable flux and
how that practically this yields the best results.

The addition of surface tension results in a different angular fre-
uency of 𝜔 = 40.19 s−1, for 𝜆 = 0.1m (the other mode is 𝜔 = 22.64 s−1).
he solution at various points in time is shown in Fig. 8. Due to
he slightly increased wave speed, the snapshots at 𝑡 = 3.13 s and
.25 s are now the points at which the wave has traveled through the
omain 4 and 8 times respectively. The addition of surface tension
as a dispersive effect: the traveling wave spreads out into smaller
scillations, which are not of numerical origin. This can be determined
rom the fact that they do not vanish upon grid refinement.

Fig. 9 shows energy and convergence results using the energy-
onserving advective flux. Using the energy-conserving advective flux
akes it possible to isolate the effect of the surface tension imple-
entation on the (global) energy. The figure shows how the total

nergy remains constant in time. This confirms our theoretical analysis:
he surface tension implementation is indeed energy-conserving. The
ifferent components of the energy (potential, kinetic, and surface
nergy) are free to increase or decrease, exchanging with one another.
he magnitude of the exchange is small.

Fig. 10 shows energy and convergence results using the energy-
table advective flux. Using this flux, the total energy is not conserved,
ut decreases monotonically, as discussed in Section 5.2. A comparison
etween the right plots of Figs. 9 and 10 shows that this comes with
he advantages of smoother convergence and absence of numerical
scillations. Therefore the energy-stable flux is favored, in combination

ith the energy-conserving surface tension discretization.
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Fig. 6. Two components of the solution to the traveling wave case for the basic model, using the energy-stable advective flux described in Section 3.8, with 𝛥𝑠 = 10−3 m and
𝛥𝑡 = 10−4 s.
Fig. 7. Comparison of results of the traveling wave case for the basic model, using different advective flux discretizations. In all cases, 𝛥𝑠 = 10−3 m and 𝛥𝑡 = 10−4 s. The reference
is a high-resolution solution (𝛥𝑠 = 1.25 ⋅ 10−4 m and 𝛥𝑡 = 1.25 ⋅ 10−5 s) obtained using the energy-stable scheme. Left: the solution for the hold-up at time 𝑡 = 6.3 s. Right: the absolute
difference between the energy as a function of time and the initial energy, divided by the initial energy.
5.4. Shock formation and dissipation in unstable region

In this test case we test our complete proposed framework, with all
physical effects and the energy-stable advective flux, on a challenging
case involving the rapid growth of a perturbation and development into
a shock. The flow is in the region of state space where the basic model
is ill-posed: it is marked with the symbol ∗ in the stability maps of
Section 4. However, with our extended model we are able to obtain
good convergence and a well-resolved shock.

This test case is inspired by a case from Fullmer et al. (2014b),
which is in turn derived from Holmås et al. (2008). The boundaries
are periodic, the flow parameters are given by Table 1, and the base
state is given by Table 3. This base state is altered by a single-period
sinusoidal perturbation in the hold-up (with wavelength 𝜆 = 0.1m and
amplitude 𝛥𝛼𝐿 = 0.05), which determines the initial conditions for 𝑞1
and 𝑞2. The velocities are not explicitly perturbed. Instead, a pressure
projection step is performed on the base state plus perturbed hold-up.
The projection step perturbs the velocities such that the volumetric
flow constraint is satisfied, yielding the initial conditions for 𝑞 and
15

3

𝑞4. Two components of the resulting initial condition (expressed in
primitive variables) can be seen in Fig. 11, along with the evolution
of the wave in time. The main difference between this case and the
case from Fullmer et al. (2014b) is that we add wall and interface
friction, so that all sources of dissipation are included in the numerical
experiment. The friction is balanced by a driving pressure gradient,
with a (constant) value given by Table 3, so that the base state is a
steady state (see Section 4). Without the external forcing provided by
a driving pressure gradient, the initial perturbation would quickly die
out.

While the basic model possesses an unbounded short wave growth
rate for these flow conditions, the extended model damps short wave-
length perturbations (see Fig. 4). The wavelength of the perturbation
considered here is still unstable, and indeed the perturbation is ob-
served to grow rapidly in Fig. 11. Fortunately, as predicted by the
linear stability analysis, it grows at a finite rate, and is not dominated
by extreme short wavelength instabilities. Finally, after developing
into a shock its growth is stopped by nonlinear effects. After this
point, secondary perturbations will start to grow, which will continue
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Fig. 8. Two components of the solution to the traveling wave case for the basic model plus surface tension, using the energy-stable advective flux, with 𝛥𝑠 = 10−3 m and 𝛥𝑡 = 10−4 s.
Fig. 9. Results for the traveling wave case with surface tension, using the energy-conserving advective flux. Left: components of the energy of the solution, with 𝛥𝑠 = 10−3 m and
𝑡 = 10−4 s. Right: convergence of the hold-up at time 𝑡 = 6.3 s, with a constant ratio 𝛥𝑡∕𝛥𝑠 = 0.1 s∕m.
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raveling to the right, through the periodic boundary, to reappear on
he left side of the domain. The secondary perturbations also form
iscontinuities and remain bounded in the same manner as the primary
erturbation. Eventually, at much later time, a sequence of roll waves
s observed, as shown in Fig. 12.

The global dissipation as a function of time is shown in Fig. 13. Here
he dissipated energy is calculated using the expressions for the local
issipation – 𝜖𝑑,𝑖−1∕2, 𝜖𝑓,𝑖−1∕2, 𝜖𝑛,𝑖−1∕2 – and the expression for energy
roduction due to a driving pressure gradient – 𝑐𝑝,𝑖−1∕2. These expres-
ions are summed over the domain and integrated in time (numerically)
ccording to (49), and their sum yields the total dissipated energy.
ince the initial base state is uniform, it has no (physical or numerical)
iffusion, but it does have high dissipation due to friction which is
alanced by an energy input from the driving pressure gradient. These
ase state dissipation and production terms have been subtracted so
hat friction and the driving pressure gradient do not dominate the plot.

In the second plot of Fig. 13, the instantaneous energy is calculated
sing the expression for 𝑒𝑖−1∕2, summed over the domain to yield the
lobal energy. The left and right plots of Fig. 13 show the same decrease
n total energy, confirming that the two methods of calculation are
16

onsistent. c
Fig. 13 reveals exactly how nonlinear effects bound the amplitude
f the shock. The respective contributions of the physical and nu-
erical diffusion to the nonlinear damping can now be quantified,

y examining their effect on the energy of the solution. The figure
hows that as the shock develops, the physical and numerical diffusion
nd their resulting dissipation grow large, and decrease the energy of
he solution. They act to decrease the kinetic energy of the solution,
llowing the potential and surface energy to grow slightly. We note
hat a calculation of the local dissipation shows the dissipation to be
ocalized around the shock.

The dissipation due to friction also grows with time, but less dra-
atically, since it is proportional to the size of the wave, not to its

teepness. It has a smaller stabilizing effect. Regarding the driving
ressure gradient, the energy input remains roughly constant, since it
s not dependent on the perturbation but only on the volumetric flow
ate, which is a property of the complete flow. Its negative value at
= 0.16 s means that the energy input is slightly lower than it was

or the initial base state, since the volumetric flow rate has decreased
lightly, indicating that the flow has been slowed down slightly.

Fig. 14 shows how the solution converges with grid resolution,

onfirming that the extended model is well-posed, as discussed in
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Fig. 10. Results for the traveling wave case with surface tension, using the energy-stable advective flux. Left: components of the energy of the solution, with 𝛥𝑠 = 10−3 m and
𝛥𝑡 = 10−4 s. Right: convergence of the hold-up at time 𝑡 = 6.3 s, with a constant ratio 𝛥𝑡∕𝛥𝑠 = 0.1 s∕m.
Fig. 11. Initial condition, and solution over time, for two components of the solution to the unstable shock formation case. Using the energy-stable advective flux, with 𝛥𝑠 = 10−3 m
nd 𝛥𝑡 = 10−4 s.
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ection 4. Also shown in Fig. 14 is the convergence of the dissipation,
ivided into its different components. As the grid is refined, the small
cales at which the physical diffusion acts are better resolved, allowing
he corresponding dissipation to grow and converge to its full physical
ffect. In contrast, beyond a certain resolution before which the solu-
ion is relatively smooth, the numerical dissipation decreases with grid
esolution. Only at coarse resolutions, numerical dissipation is needed
o compensate for the lack of physical dissipation. Dissipation due to
riction only varies slightly with grid resolution, since it is not a small
cale phenomenon.

Previous work has described how the linearly unstable wave is
ounded by (nonlinear) dissipation in the shock, due to numerical and
hysical diffusion (Fullmer et al., 2014b). However, up to now, dissi-
ation has remained an abstract concept for the TFM. Here we provide
efinitions for the various components of the dissipation, and specify
heir effect on a well-defined energy. Therefore, dissipation has become
concrete quantity that can be measured. This provides a stronger basis

or discussions of the nonlinear damping of unstable waves. We confirm
he conclusions of Fullmer et al. (2014b), who observe that with only
17

s

umerical diffusion, the solution fails to converge (with oscillations
ppearing at high resolutions), due to the lack of numerical diffusion
t high grid resolutions. We similarly observe (results not shown here)
hat physical diffusion without numerical diffusion leads to a less clear
onvergence, with coarse grid solutions being insufficiently diffused.
ith Fig. 14 we have made concrete that with a combination of

umerical and physical diffusion, the dissipation in the shock smoothly
onverges to a finite value, realizing a grid-independent bound on the
mplitude of the shock.

. Conclusions

This paper has proposed a complete energy-stable framework –
ncluding diffusion, friction, surface tension, and an energy-stable ad-
ective flux scheme – for reliable simulations with the one-dimensional
wo-fluid model (TFM). The paper builds on our earlier work on the
nergy-conserving basic TFM, which we have extended in an energy-
onsistent manner. We have shown that for the channel geometry,
urface tension can be added to the model in an energy-conserving
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T

Fig. 12. Snapshot of two components of the solution to the unstable shock formation case, at time 𝑡 = 1.8 s. Using the energy-stable advective flux, with 𝛥𝑠 = 10−3 m and 𝛥𝑡 = 10−4 s.

his figure shows how after the rapid growth depicted in Fig. 11, the shock breaks up into several roll waves that remain of limited amplitude.
Fig. 13. For the unstable shock formation case, this figure shows the dissipated energy (left) and the instantaneous energy (right), made non-dimensional by the total energy of
the initial condition. Using the energy-stable advective flux, with 𝛥𝑠 = 10−3 m and 𝛥𝑡 = 10−4 s. The total dissipation is divided into contributions from physical diffusion, numerical
diffusion, wall and interface friction, and a production term due to an externally applied driving pressure gradient.
manner. The additions of friction and momentum diffusion have been
shown to be strictly dissipative. Therefore, these extensions yield an
energy-stable model.

Besides their implications for energy stability, the additions to the
model also solve the basic model’s issue of unbounded linear instability
at short wavelengths: diffusion and surface tension introduce a cut-off
wavelength below which perturbations are damped. The cut-off wave-
length is shown to depend on the state: it decreases with increasing
velocity difference between the phases. Nevertheless, there exists a
cut-off wavelength for any state, rendering the model unconditionally
well-posed. These cut-off wavelengths may be shorter than the scales
at which the TFM is usually employed, but it is these scales at which
the ill-posedness issue of the one-dimensional model resides and it is
these scales which need to be stabilized. Diffusion and surface tension
offer a clearly physically motivated way to do so. Precisely because
diffusion and surface tension are physically motivated, they fit well into
our energy-stable framework.

The energy conservation and dissipation properties of the model
have been proven to carry over to the semi-discrete model, when the
18
model and its energy are discretized in a specific manner. The semi-
discrete model with surface tension is exactly energy-conserving, if
the surface energy is added to the basic energy as an extra term.
Diffusion and friction add strictly dissipative terms to the local energy
conservation equation, with expressions for the dissipation rates that
can be evaluated as functions of the local instantaneous solution.

However, the key highlight of our semi-discrete model is a new
discretization of the advective terms, which combines a previously
developed energy-conserving central discretization and a strictly dissi-
pative upwind discretization. These discretizations are combined using
flux limiters. The novel combined advective flux is energy stable, and
comes with an explicit expression for the numerical dissipation rate,
that can be evaluated during a numerical simulation. It is designed to be
energy-conserving where the solution is smooth, and dissipative where
the solution has strong gradients. This dissipation is motivated by the
fact that the energy conservation property of the continuous model
does not hold for discontinuous solutions: dissipation is required in this
case. The novel energy-stable flux retains the advantages in stability
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Fig. 14. For the unstable shock formation case, this figure shows the convergence with grid resolution, of the solution at time 𝑡 = 0.16 s. Using the energy-stable advective flux,
with a constant ratio 𝛥𝑡∕𝛥𝑠 = 0.1 s∕m. Left: hold-up fraction 𝛼𝐿 = 𝐴𝐿∕𝐴. Right: dissipated energy, divided by the total energy of the initial condition.
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and physical fidelity of the original energy-conserving flux, without the
latter’s tendency to generate numerical oscillations near discontinuities.

In numerical experiments, spatially exact energy conservation is
demonstrated for the basic model extended with surface tension, using
the original energy-conserving flux. The upwind and energy-stable
advective fluxes are demonstrated to be strictly dissipative, as opposed
to a naive central discretization that is neither conservative nor strictly
dissipative. The energy-stable scheme is shown to yield smooth so-
lutions without numerical oscillations. It is much less diffusive than
a first-order upwind scheme, and this is reflected in the dissipation,
which is lower for the energy-stable scheme than for the upwind
scheme.

A challenging test of our complete framework is provided by the
simulation of an unstable wave in a region of state space where the
basic model is linearly ill-posed. Our proposed framework yields a
convergent solution, confirming that it is well-posed. The unstable
perturbation develops into a shock, which is bounded by nonlinear
dissipation. The analytical results of this work enable a precise analysis
of the dissipation and better insight into the nonlinear damping taking
place. The dissipation due to numerical and physical diffusion are
observed to grow as the wave steepens, with numerical dissipation
dominating at coarse resolutions and physical dissipation dominating
at fine resolutions. Together, numerical and physical diffusion yield
a smoothly converging total dissipation, and a smoothly converging
solution.

In order to resolve the full effect of the physical diffusion and sur-
face tension and reach convergence, the grid needs to be refined to high
resolutions that may be impractical in engineering applications. When
the additional computational expense associated with high resolutions
is unwanted, our model has the advantage that it can also be used at
coarse resolutions, where it provides solutions that are similar to the
converged solutions, except that sharp perturbations are diffused. The
convergence plots show a monotonic steepening of the waves, without
spurious oscillations.

Though the semi-discrete computational model proposed in this
paper is by itself no more computationally expensive than standard
discretizations of the basic model, the inclusion of surface tension does
place an additional restriction on the time step set in the explicit time
integration method. For the basic model the time step only has to
satisfy a CFL condition, giving the time step a bound that scales linearly
with grid resolution. The addition of surface tension results in a higher
19

order restriction, with an exponent between 1 and 2. Therefore, the t
addition of surface tension increases the computational effort required
for the fully discrete computational model, particularly at higher grid
resolutions.
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ppendix A. Geometric relations

The equations are written in terms of the cross-sectional areas
ccupied by each fluid, which in general can be defined to be related
o the interface height 𝐻𝐿 via

𝐿 = ∫

𝐻𝐿

0
𝑤(ℎ) dℎ, 𝐴𝑈 = ∫

𝐻

𝐻𝐿

𝑤(ℎ) dℎ, (A.1)

ith 𝑤(ℎ) the local duct width. Note that 𝑤(𝐻𝐿) = 𝑃int , where 𝑃int is

he (generalized) interface perimeter which is shown for a circular pipe
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geometry in Fig. 1. For the 2D channel geometry, 𝑤(ℎ) = 1, and the
cross-sections 𝐴𝐿 and 𝐴𝑈 are identical to the fluid heights 𝐻𝐿 and 𝐻𝑈 .

The geometric quantities 𝐻̂𝐿 and 𝐻̂𝑈 which appear in the governing
equations of the two-fluid model, also have general definitions:

𝐻̂𝐿 ∶= ∫

𝐻𝐿

0
(ℎ −𝐻𝐿)𝑤(ℎ) dℎ, 𝐻̂𝑈 ∶= ∫

𝐻

𝐻𝐿

(ℎ −𝐻𝐿)𝑤(ℎ) dℎ. (A.2)

Besides 𝐻̂𝐿 and 𝐻̂𝑈 , the following geometric quantities are used in the
energy definition:

𝐻̃𝐿 ∶= ∫

𝐻𝐿

0
ℎ𝑤(ℎ) dℎ = 𝐻̂𝐿 +𝐻𝐿𝐴𝐿,

𝐻̃𝑈 ∶= ∫

𝐻

𝐻𝐿

ℎ𝑤(ℎ) dℎ = 𝐻̂𝑈 + (𝐻 −𝐻𝑈 )𝐴𝑈 .
(A.3)

We can apply Leibniz’ rule to (A.1) (see Buist et al. (2022)) to obtain
d𝐴𝐿
d𝐻𝐿

= 𝑃int ,
d𝐴𝑈
d𝐻𝑈

= 𝑃int ,

here we have used 𝐻𝐿 + 𝐻𝑈 = 𝐻 . Applying the same technique to
(A.2) and (A.3) yields

d𝐻̂𝐿
d𝐻𝐿

= −𝐴𝐿,
d𝐻̂𝑈
d𝐻𝑈

= 𝐴𝑈 ,

d𝐻̃𝐿
d𝐻𝐿

= 𝐻𝐿𝑃int ,
d𝐻̃𝑈
d𝐻𝑈

= (𝐻 −𝐻𝑈 )𝑃int ,

hich leads to
d𝐻̂𝐿
d𝐴𝐿

=
d𝐻̂𝐿
d𝐻𝐿

[

d𝐴𝐿
d𝐻𝐿

]−1
= −

𝐴𝐿
𝑃int

,
d𝐻̂𝑈
d𝐴𝑈

=
d𝐻̂𝑈
d𝐻𝑈

[

d𝐴𝑈
d𝐻𝑈

]−1
=

𝐴𝑈
𝑃int

, (A.4)

d𝐻̃𝐿
d𝐴𝐿

=
d𝐻̃𝐿
d𝐻𝐿

[

d𝐴𝐿
d𝐻𝐿

]−1
= 𝐻𝐿,

d𝐻̃𝑈
d𝐴𝑈

=
d𝐻̃𝑈
d𝐻𝑈

[

d𝐴𝑈
d𝐻𝑈

]−1
= 𝐻 −𝐻𝑈 . (A.5)

A similar calculation, in which we assume that 𝐻 is constant, yields

𝜕𝐻̂𝐿
𝜕𝑠

= −𝐴𝐿
𝜕𝐻𝐿
𝜕𝑠

,
𝜕𝐻̂𝑈
𝜕𝑠

= −𝐴𝑈
𝜕(𝐻 −𝐻𝑈 )

𝜕𝑠
.

inally, comparison to (A.5) yields

𝜕𝐻̂𝐿
𝜕𝑠

= −𝐴𝐿
𝜕
𝜕𝑠

(

d𝐻̃𝐿
d𝐴𝐿

)

,
𝜕𝐻̂𝑈
𝜕𝑠

= −𝐴𝑈
𝜕
𝜕𝑠

(

d𝐻̃𝑈
d𝐴𝑈

)

, (A.6)

and these geometric relations are critical to deriving the local energy
conservation equation.

The general geometric quantities 𝐻̂𝐿 and 𝐻̂𝑈 can be evaluated for
specific geometries. For a 2D channel geometry, (A.2) evaluates to

𝐻̂𝐿 = −1
2
𝐻2

𝐿, 𝐻̂𝑈 = 1
2
𝐻2

𝑈 ,

where we have substituted 𝐻𝐿 = 𝐻 −𝐻𝑈 . For the pipe geometry, the
results of the integrals are given by (Sanderse et al., 2017):

𝐻̂𝐿 =
[

(𝑅 −𝐻𝐿)𝐴𝐿 − 1
12

𝑃 3
int

]

, 𝐻̂𝑈 = −
[

(𝑅 −𝐻𝑈 )𝐴𝑈 − 1
12

𝑃 3
int

]

.

The general geometric quantities that appear in the energy defini-
ion also have specific forms for different geometries. For the channel
eometry, the general expressions (A.3) evaluate to

̃𝐿 = 1
2
𝐻2

𝐿, 𝐻̃𝑈 = 1
2
𝐻2

𝑈 +𝐻𝑈𝐻𝐿.

For the pipe geometry the results are

𝐻̃𝐿 =
[

𝑅𝐴𝐿 − 1
12

𝑃 3
int

]

, 𝐻̃𝑈 =
[

𝑅𝐴𝑈 + 1
12

𝑃 3
int

]

.

ppendix B. Friction closure relations

The wall and interface stresses of the two-fluid model are typically
odeled in the following manner (Taitel and Dukler, 1976):

𝜏𝐿 = −1
2
𝑓𝐿𝜌𝐿𝑢𝐿|𝑢𝐿|, 𝜏𝑈 = −1

2
𝑓𝑈𝜌𝑈 𝑢𝑈 |𝑢𝑈 |,

= −1𝑓 𝜌
(

𝑢 − 𝑢
)

|𝑢 − 𝑢 |,
20

int 2 int 𝑈 𝑈 𝐿 𝑈 𝐿 T
in which 𝑓𝐿, 𝑓𝑈 , and 𝑓int are the Fanning friction factors, which require
further closure relations. The friction factors depend on the Reynolds
numbers

Re𝐿 =
|𝑢𝐿|𝐷𝐿
𝜈𝑚,𝐿

, Re𝑈 =
|𝑢𝑈 |𝐷𝑈
𝜈𝑚,𝑈

,

with hydraulic diameters

𝐷𝐿 =
4𝐴𝐿
𝑃𝐿

, 𝐷𝑈 =
4𝐴𝑈

𝑃𝑈 + 𝑃int
.

In this work we use the Taitel and Dukler friction model (Barnea and
Taitel, 1993; Taitel and Dukler, 1976)

𝑓𝐿 = 𝐶
Re𝑛𝐿

, 𝑓𝑈 = 𝐶
Re𝑛𝑈

, 𝑓int = max
(

𝑓𝑈 , 0.014
)

,

with coefficients 𝐶 = 0.046 and 𝑛 = 0.2 (valid for turbulent flow).

Appendix C. Linear stability analysis

We conduct a linear stability analysis of the (continuous) model,
following Fullmer et al. (2014b), Liao et al. (2008) and López de Berto-
dano et al. (2017). The analysis starts by writing (10) in quasilinear
matrix form, which can be done by substituting the volume constraint
and assuming the solution is smooth:

𝐀(𝐰) 𝜕𝐰
𝜕𝑡

+ 𝐁(𝐰) 𝜕𝐰
𝜕𝑠

+ 𝐄(𝐰) 𝜕
2𝐰
𝜕𝑠2

+𝐆(𝐰) 𝜕
3𝐰
𝜕𝑠3

= 𝐜(𝐰), (C.1)

ith

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1
𝑤2
𝑤3
𝑤4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝐿
𝑢𝐿
𝑢𝑈
𝑝

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐀 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
−1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑤2 𝑤1 0 0

−𝑤3 0 𝐴 −𝑤1 0

− 𝑔𝑛
𝑤1

d𝐻̂𝐿

d𝐴𝐿
𝑤2 −

1
𝑤1

𝜕
𝜕𝑠

(

𝜈eff ,𝐿𝑤1
)

0 1∕𝜌𝐿
𝑔𝑛

𝐴−𝑤1

d𝐻̂𝑈

d𝐴𝑈
0 𝑤3 −

1
𝐴−𝑤1

𝜕
𝜕𝑠

(

𝜈eff ,𝑈 (𝐴 −𝑤1)
)

1∕𝜌𝑈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

− 1
𝜌𝐿

𝜕𝑝body
𝜕𝑠 + 𝜏𝐿𝑃𝐿

𝜌𝐿𝑤1
− 𝜏int𝑃int

𝜌𝐿𝑤1
− 𝑔𝑠

− 1
𝜌𝑈

𝜕𝑝body
𝜕𝑠 + 𝜏𝑈𝑃𝑈

𝜌𝑈 (𝐴−𝑤1)
+ 𝜏int𝑃int

𝜌𝑈 (𝐴−𝑤1)
− 𝑔𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐄 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0

𝜎
𝜌𝐿

1
𝑃 2
int

d𝑃int
d𝐴𝐿

𝜕𝑤1
𝜕𝑠 −𝜈eff ,𝐿 0 0

0 0 −𝜈eff ,𝑈 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0

− 𝜎
𝜌𝐿

1
𝑃int

0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Here we have used the second expression in (26) for the surface tension,
which can be applied to both the 2D channel and the circular pipe
geometries.

A general method for the linearization of systems of quasilinear
partial differential equations is given by Prosperetti and Tryggvason
(2007). The general solution is decomposed into 𝐰 = 𝐰̄ + 𝛥𝐰 with
𝐰 a small disturbance (𝛥𝐰 ≪ 𝐰̄), and 𝐰̄ a base state that is itself
lso a solution to the equations. Additionally, we assume that the base
tate is a uniform steady state (its derivatives to 𝑠 and to 𝑡 are zero).
hen, neglecting terms that are higher order in 𝛥𝐰, and subtracting the
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equation for the base state (which is satisfied by definition), a system
of the form (C.1) can be approximated by

𝐀(𝐰̄) 𝜕𝛥𝐰
𝜕𝑡

+ 𝐁(𝐰̄) 𝜕𝛥𝐰
𝜕𝑠

+ 𝐄(𝐰̄) 𝜕
2𝛥𝐰
𝜕𝑠2

+𝐆(𝐰̄) 𝜕
3𝛥𝐰
𝜕𝑠3

= 𝐃𝐶 (𝐰̄)𝛥𝐰, (C.2)

with

𝐃𝐶 (𝐰̄) =
𝜕𝐜(𝐰̄)
𝜕𝐰̄

.

Here, 𝐃𝐶 is a Jacobian matrix. Due to the assumption of the uniform
base state, and the neglecting of higher order terms, the terms in 𝐁(𝐰̄)
and 𝐄(𝐰̄) involving partial derivatives to 𝑠 drop out.

We write 𝛥𝐰 as a Fourier series and substitute an arbitrary Fourier
mode

𝛥𝐰 = 𝛥𝐰̂ exp [𝑖 (𝑘𝑠 − 𝜔𝑡)] ,

ith 𝛥𝐰̂ the amplitude, 𝑘 the wavenumber, and 𝜔 the angular fre-
uency, into (C.2). This yields the following linear system (Fullmer
t al., 2014b):

−𝜔𝐀(𝐰̄) + 𝑘𝐁(𝐰̄) + 𝑖𝐃(𝐰̄) + 𝑖𝑘2𝐄(𝐰̄) − 𝑘3𝐆(𝐰̄)
]

𝛥𝐰̂ = 𝟎. (C.3)

or nontrivial solutions to exist, the determinant of the term between
rackets must be zero, and solving for this yields two dispersion rela-
ions 𝜔(𝑘).

The perturbation amplitudes 𝛥𝐰̂ corresponding to the found disper-
ion relations can be found by substituting these in (C.3) and solving
or 𝛥𝐰̂. This can be understood as, for each dispersion relation, finding
he null space of the term between brackets in (C.3), which will
onsist of one vector. The associated phase angles can be calculated
omponent-wise:

= arctan [Im(𝛥𝐰̂)∕Re(𝛥𝐰̂)],

here each component of 𝜽 has a range [−𝜋, 𝜋] (use the four-quadrant
nverse tangent).

This makes it possible to write the evolution in time of a perturba-
ion as

𝐰 =
∑

𝑗

|

|

|

𝛥𝐰̂𝑗
|

|

|

eIm
{

𝜔𝑗
}

𝑡 cos
(

𝑘𝑠 − Re
{

𝜔𝑗
}

𝑡 + 𝜽𝑗
)

, (C.4)

here we take the sum over the different solutions for 𝜔 for a given
, and the associated amplitude vectors. If a sinusoidal perturbation is
nitialized with a given wavenumber 𝑘, and an amplitude vector exactly
orresponding to one of the two angular frequencies 𝜔(𝑘), then the sum
n (C.4) can be left out and the perturbation will propagate as a single
ave with speed Re {𝜔} and growth rate Im {𝜔}. This holds exactly for

he linearized system, but solutions to the full nonlinear system will
eviate from this solution over time.
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