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2 Amsterdam Institute for Advanced Metropolitan Solutions, Amsterdam, the Netherlands

Abstract

This study aims to evaluate the impact of different ur-
ban building geometries (six courtyards, two canyons,
two slabs) on heat mitigation and aircraft noise attenua-
tion, in order to support an evidence-based retrofit plan
for future airport neighborhoods. Using 'Pachyderm +
ENVI-met simulations + field measurements’, we found
that the slanted-roof, low-rise courtyard exhibited opti-
mal acoustic-thermal performance (SPLy;, =71.1 dB(A),
oyrcr < 5 °C), while the mid-rise canyon demonstrated
limited performance (SPLyi, = 93.4 dB(A), oyrcr > 10
°C). These findings were observed under averaged bound-
ary conditions of a 140 dB(A) aircraft sound source and a
diurnal MRT range of 60 °C on a heatwave day in July
2022.

Nomenclature
Abbr. Description Unit
CRY  Courtyard —
CYN Canyon -
FVF  Aircraft view factor n
MRT  Mean radiant temperature °C
SD Sun hour duration h
Sh Specific humidity g/kg
SLB Slab —
SPL Sound pressure level dB
SVF  Sky view factor %
Ta Air temperature °C
U Wind speed m/s
Udir Wind direction °
UTCI  Universal thermal climatic index °C
Introduction

Noise is a main topic in the west and south of Amsterdam
in the Netherlands, as the city is wedged in between flight
routes from and to Schiphol airport. Placing buildings
parallel to these routes can protect a considerable amount
of pavement from direct noise exposure, and potentially
reduce heat stress if the sun path aligns with the direction
of the sound source. A single spatial configuration can
have both desired and unfavorable outcomes for noise
and heat mitigation. For example, deep street canyons
may reduce heat stress but increase noise levels if the
facade spacing is too low (Lugten and Kang (2016)).

Conversely, open spaces, wide street canyons, and plazas
may lead to less reflective sounds but expose pedestrians
to more heat and nuisance wind. Some semi-enclosed
geometries, like courtyards, exhibit satisfactory acoustic
performance (Lugten (2023)) and favorable thermal
outcomes (Taleghani et al. (2014), Peng et al. (2023)).
This underscores the importance of careful consideration
in early-stage urban design to identify optimal spatial
strategies to reduce extreme noise and heat stress around
the airport neighbourhood. This paper builds upon an-
other contribution (Kim et al. (2023)) to BS 2023, which
verified a parametric tool, Pachyderm, using on-site
acoustic measurements. Here, we further examine the
noise-shielding capabilities of courtyards, street canyons,
and slabs that lie beyond the experimental field, as well
as investigate their potential for mitigating heat stress.

Materials and methods

We used Pachyderm and ENVI-met software to leverage
acoustic-thermal data. The acoustic properties of the con-
crete slabs and steel walls were pre-tested in Pachyderm,
and validated with eight Munisense mics in the field lab.
The Pachyderm model settings and accuracy results can
be found in Kim et al. (2023). The following section
explains the workflow of ENVI-met simulation and
spatial analysis for noise and heat mitigation (Figure 1).

In STEP 1, a 48-hour heatwave window (18-20 July
2022) was framed to observe the thermal performance of
different building types. The KNMI weather data from
Schipol airport was synchronised as boundary conditions
for the ENVI-met models (Table 1). Although the
urban weather generator is recommended for modelling
dense-urban contexts with anthropogenic heat effects
(Awino (2019)), this weather-morphing technique was
not used in this paper because the field lab constructed by
shipping containers is located next to the airport.

In STEP 2, the thermal properties of the corten steel
material were compared (Table 2), following small-scale
ENVI-met model validations with four Davis-Kestrel
sensors deployed at four locations (VO- outside, V2-
shaded, V3- central, and V4- sunlit) in the field lab. De-
fault settings were used for soil and pavement materials to
eliminate confounding effects on the differences observed
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Figure 1: Methodological framework for the integrated noise-heat study (see Appendix I for detailed GH models). Ten

GH models, including courtyards, canyons, and slabs, were selected based on their noise-shielding and solar-shading ca-

pabilities, as indicated in previous literature. These models incorporate assembly variants such as slanted roofs, elevated
walls, and aspect ratios.

between steel materials. Vegetation and water bodies
were also excluded from the model as they can potentially
complicate the acoustic model as well. The root mean
square error (RMSE) was employed to assess the accuracy
of the ENVI-met outputs including Ta, Sh, U, and MRT.
The globe temperatures (Ty) obtained through Kestrel
5400 heat stress trackers were converted to MRT as the
ground-truth observation (Equation 1). According to
Walikewitz et al. (2015); Klok et al. (2021), the emissivity
of the globe (¢) is 0.95, and its diameter (D) is 150 mm
(Kestrel’s 1-inch black globe temperature is converted to
equivalent 6-inch (150 mm) globe temperature).

T, —T,\ %
T = ((Tg+273.15)4+1.1 : 108-U°~6-m>

—273.15.
ey

Table 1: Streamlining of INX and FOX files for 48-hour
boundary condition for ENVI-met simulation

Meshing Mean Forcing Mean Max Min
X (m) 8 Ta(°C) 29.2 350 16.6
Y (m) 86  Sh(g/kg) 77 82 12
Z (m) 40 U (m/s) 2.1 41 0.0
Zielesc(m) 9 Uair () l64 220 110
Zielesc (%) 9 Cloud (8) 3.7 80 00

The optimal thermal property for the steel material was
selected for batch modelling based on the agreement

Table 2: Thermal property setting around the courtyard/-
canyon/slab: *0100ST’ corresponds to the default ENVI-
met material database.

Wall material - steel

ID Absorption  Reflection Emissivity
0100ST 0.2 0.8 0.1
0102ST 0.9 0.1 0.9
0103ST 0.7 0.3 0.9
0104ST 0.5 0.5 0.9
0105ST 0.3 0.7 0.9
Soil and pavement

ID Material Reflection Emissivity
0100LO Loamy soil 0.8 0.1
0100PL  Concrete light 0.1 0.9

between simulation and measurement data. As our study
focused on building geometry, we did not investigate the
acoustic properties but instead used the noise-absorption
coefficients from a previous study conducted by Chris-
tensen (2002). Future studies could explore how the
acoustic and thermal properties of steel materials affect
outdoor heat and noise absorption simultaneously, such
as density, thickness, and surface texture. So, the thermal
validation in our study and the acoustic validation in
K et al. (2023) used discrete steel material databases,
but share identical acoustic boundary conditions and
building typology for validation (Courtyard 1 - "CRY1’,
see Figure 5 in Appendix I).

STEP 3 comprises iterative algorithms that enable the
automation of batch processing 48-hour ENVI-met sim-
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ulations via a grasshopper plug-in, Dragonfly (the legacy
version of Morpho). The second 24-hour time-series data
were kept for the following spatial analysis. On a DELL
workstation, the total simulation of a single building
block took approximately 20 hours to complete (12th
Gen Intel Core 19-12900K, 3.19 GHz, RAM 64 GB). The
simulation time per case for Pachyderm is approximately
10 to 20 minutes, which cannot be automated for batch
simulation at this time. The sound pressure level (SPL)
results were internalised as data components following
each round of Pachyderm simulation.

In STEP 4, we combined the thermal and acoustic layers
to analyse them at both grid and surface levels. The
building-geometrical effects were explored using widely
acknowledged spatial variables related to degree of
enclosure, such as sky view factor (SVF) and sun hour
duration (SD), which can be calculated using the ladybug
components. A novel aircraft view factor (FVF) was
introduced to measure the unobstructed rays between
the grid and sound source. In our study, the maximum
FVF value was 9, based on nine sound source positions
(P3 to 15) anchored on three flight routes (low, mid, and
high, see Figure 5 in Appendix I). To calculate the FVE,
simply replace the sun vectors with the noise vectors
that are input into the ’sun hour analysis’ component in
Grasshopper. Notebly, FVF only considers direct sound
vectors, excluding reflected ones from opposite building
facades. The heat and noise visualisations presented in
this paper remain exploratory and descriptive to guide
further patch analysis, which may require advanced
geo-analytical tools for assessing cool-quiet coverage,
locations, and variability (not investigated here).

Results

ENVI-met validation

The study found that the radiation results from ENVI-met
are sensitive to the four predefined steel materials with
different thermal properties (Figure 2). High-absorptive
steel (0102ST) maintained the MRT in the shade (di-
urnal mean MRT > 30 °C), while high-reflective steel
(0105ST) caused an overshoot of the MRT under sunlit
circumstances (diurnal mean MRT > 50 °C) due to the
reflection of short-wave radiation. The closer the grid
was to the steel wall, the greater the influence on MRT.
The material’s influence on MRT was not as significant
at VO, outside of the courtyard. Therefore, we selected
the high-absorptive steel (0102ST) for the subsequent
batching ENVI-met modelling as it exhibited the lowest
RMSE:s across four validation positions. The differences
in RMSET, (< 2 °C), RMSERy, (< 7 %), and RMSEy
(< 0.7 m/s) are not significant between different steel
materials. These results align with previous studies that
reported over-/underestimations between sun and shade
using Kestrel 5400 (Klok et al. (2021)).
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Figure 2: Validation of mean radiant temperature (MRT)
for various steel materials at four measurement points
(red ’X’) in CRY-1 typology. The red lines represent
smoothed data derived from Kestrel 5400 data points
(ground-truth data in black dots)
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Thermal-spatial regression

Linear regression analyses were performed across all
grids in all building types, which have unique time series
history of universal thermal climatic index (UTCI) that
explains the overall heat stress affected by temperature,
humidity, radiation and air flow during day and night
(Equation 2).

UTCI = f(Ta,Sh,MRT,U on). )

Where Ujgn, the air speed at 10 m height, requires a
logarithmic conversion from the ground measurement,
which ENVI-met can automate. Although UTCI is not
directly available in ENVI-met outputs, it can be calcu-
lated in BIO-met using a simplified regression model by
Blazejczyk et al. (2013). Next, two statistical metrics are
used to explain the intensity and variability of heat stress
at each single grid. On the one hand, the diurnal mean
UTCI (Myrcy) is used to benchmark the heat stress level
between different building typologies. On the other hand,
the UTCI swing was introduced by redeveloping the Ta
swing indices earlier proposed by Steemers et al. (2004).
The UTCI swing was calculated based on the standard
deviation of twenty-four UTCI data points (oyrcr) to
evaluate the diurnal thermal range.

The grid-level analysis between diurnal Myrcy and oy ey
indicates that the sky view factor (SVF) can have a
significant effect on heat stress around the courtyards/-
canyons/slabs. The higher the visibility of the sky, the
more likely a grid will be exposed to heat extremes and
experience a larger diurnal thermal range. The results of
Ta also align with UTCI, indicating that a higher degree
of enclosure (grids with lower SVF, e.g., CRY6 & CYNS
with double heights) can reduce air flow and trap more
cold air from the early morning, resulting in a smaller
diurnal thermal range (Figure 3-b).

(a) uTCl
125 Geometry
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10.04 t x
CRY3 CRY4
~ <& v
8 CRY5 CRY6
S = *
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Figure 3: Grid-level analysis of geometric effect based on

UTCI (a) and air temperature (b), with color gradients

indicating sky exposure of all grids across all building ty-
pologies

The thermal regression is corroborated by the surface-
level UTCI analysis, which shows that courtyards have a
much higher degree of enclosure than canyons and slabs.
This is evident from the darker pixels in the bottom-left
corner (much lower oy7¢r ) among CRY 1 to 6 compared
to higher oyrc; among CYN 7 & 8 and SLB 9 & 10
(see Figure 5-b in Appendix I). The lower diurnal UTCI
range can be interpreted as thermal-tempering effects
(Peng et al. (2023)), corroborated by many micro-climate
and comfort studies in courtyards, especially in warm
climates (Rivera-Gémez et al. (2019)).

Acoustic-spatial regression

All grids across all building types have unique A-weighted
sound pressure levels (SPLs) from the Pachyderm simu-
lation (Figure 4). The SPL results can be plotted based
on nine different aircraft positions, similar to how sun
positions can cast different UTCI patterns at different
times of the day within the courtyard (See Figure 6 in
Appendix II).

The acoustic spatial regressions, while not highly fit,
revealed underlying relationships between FVF (non-
linear), SVF (linear) and SPLs. Unlike UTCI, the grid
with lowest SPL does not correspond to the ones with
lowest FVF or SVF. This means that decreasing the
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FVF can only reduce noise to a certain extent, as it also
depends on reflected rays from opposite walls (e.g., CRY6
& CYNS8 with double heights). Some geometries with
higher FVFs and SVFs show significant scattering effects
due to slanted roofs (CRY1). There seems to be a lesser
reduction of SPL before semi-elevated walls (CRY4),
despite Pachyderm not accounting for the diffraction
effect under the wall. The noise-shielding effects are
especially pronounced in slab typologies with no reflected
sound from the opposite side (SLB9 & 10).

The regression fit between SVF and SPL show a much
weaker, scattered regression fit (Figure 4-c, d) than
that observed between FVF and SPL (Figure 4-a, b),
suggesting a weaker impact from the sky than direct
sound sources, particularly under high SPL conditions.
Despite the challenges, we attempted to establish a
partial-regression fit between SVF and low SPL (<80
dBA). The findings suggest that increased sky exposure
under low SPL conditions, assumed as situations without
direct sound exposure, has the potential to enhance
noise attenuation potentials. Note that outdoor sound
propagation can be greatly affected by edge refraction
and air attenuation. The conclusions of this study and
Kim et al. (2023) should be taken with caution since
the Grasshopper-Pachyderm algorithms only considered
no-wind scenarios and did not account for complicated
atmospheric effects, including noise reflections between
low clouds and surrounding land cover. Therefore, the
lesser impact of SVF only applies to our hypothetical
Pachyderm model based on nine aircraft positions an-
chored on three flight routes.

Another interesting finding is the correlation between
FVF and SD. The alignment of the three flight routes and
the sun path causes noise and heat sources to accumulate,
resulting in higher aircraft sound pressure in sunlit areas.
This is especially evident in canyons and slabs compared
to courtyards. Our study confirms that static FVF estima-
tion is a valid method for rapidly mapping sound shadow
and noise-prone areas caused by aircraft. This simplified
estimation can be achieved by replacing sun vectors
with sound sources in grasshopper-ladybug, especially
for larger urban areas beyond the simulation capacity
of Pachyderm. However, this method is unsuitable for
hyper-dense areas where noise patterns on the ground
level can be dominated by reflected sound rays between
closely spaced facades.

Conclusions

Our study on integrated noise and heat in airport neigh-
borhoods has revealed a simulation workflow using
Pachyderm-ENVI-met that can assist in decision-making
for design and planning. The following are the four main
conclusions drawn from our study:

1. The six selected courtyard typologies provide bet-
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Figure 4: Grid-level analysis of acoustic exposure for

courtyards (a) and (c) versus canyons and slabs (b) and

(d), with color gradients indicating the diurnal sun dura-
tion on 20 July in Amsterdam.
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ter heat-mitigating potentials (more shaded area) but
worse noise attenuation (trapping reflected sound
rays) than canyons and slabs.

2. Mid-rise buildings reduce heat stress (over 1.5°C re-
duction in Myrcy) due to mutual shading effects, but
compromise noise (over 10 dB(A) increase in Mgpy )
due to more sound reflections between facades.

3. The slanted roof that scatters direct sound towards
the sky is a more effective strategy for noise attenu-
ation than elevating ground floors to reduce the area
of sound-facing facades. Therefore, courtyard typolo-
gies with slanted roofs remain the optimal choice for
achieving good acoustic and thermal performance si-
multaneously.

4. The study corroborates the acoustic findings of Kim
et al. (2023) that the sound source facing direction
primarily determines the SPL differences across all
building typologies. Pachyderm may underestimate
SPLs in shielded areas that receive more bounces in
reality.

Last but not least, caution should be taken by architects
and landscape designers in applying our conclusions in
practise due to the lack of contextualisation of both the
simulation models and container field lab in real urban
contexts. The further step involves analysing noise and
heat in real neighbourhood, taking into account various
factors such as building clusters, tree canopies, water
bodies, vehicular noise and anthropogenic heat.
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Figure 5: Isometric view from the south showing sun path and flight paths (a), SPL and UTCI maps at a height of 1.5 m
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Figure 6: Sectional analysis (Y-Z plane) of UTCI and SPL across ten building typologies,

including courtyards, canyons
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