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Optimizing freeform lenses for extended
sources with algorithmic differentiable ray
tracing and truncated hierarchical B-splines
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1Optics Research Group, Faculty of Applied Physics, Delft University of Technology, Lorentzweg 1, Delft,
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2Numerical Analysis, Faculty of Applied Mathematics, Delft University of Technology, Mekelweg 4, Delft,
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Abstract: We propose a method for optimizing the geometry of a freeform lens to redirect
the light emitted from an extended source into a desired irradiance distribution. We utilize
a gradient-based optimization approach with MITSUBA 3, an algorithmic differentiable non-
sequential ray tracer that allows us to obtain the gradients of the freeform surface parameters with
respect to the produced irradiance distribution. To prevent the optimizer from getting trapped in
local minima, we gradually increase the number of degrees of freedom of the surface by using
Truncated Hierarchical B-splines (THB-splines) during optimization. The refinement locations
are determined by analyzing the gradients of the surface vertices. We first design a freeform
using a collimated beam (zero-etendue source) for a complex target distribution to demonstrate
the method’s effectiveness. Then, we demonstrate the ability of this approach to create a freeform
that can project the light of an extended Lambertian source into a prescribed target distribution.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Various optical elements can control the light emitted by a source and redirect it into a particular
irradiance or intensity distribution. One element, in particular, freeform lenses and reflectors, is of
great interest to optical designers as it allows for more flexibility in creating compact illumination
systems. However, determining the ideal geometry of a freeform capable of generating a desired
irradiance distribution is a complex problem. It has been thoroughly researched, assuming
the source is zero-étendue. The problem of finding a suitable freeform geometry can then be
formulated as a Monge-Kantorovich mass transport problem, which is then typically solved using
the Monge-Ampere equation [1–5], ray mapping methods [6,7], or optimization methods such as
the supporting quadratic method [8].

However, the methods are not capable of designing freeforms for extended or finite étendue
sources. This issue is often solved by treating it as a perturbation of the zero-étendue problem.
This leads to feedback-type methods, which iterate between designing the freeform using zero-
etendue design techniques and adjusting the target irradiance or intensity distribution to get
closer to the desired irradiance distribution [9–11]. Alternatively, a design can be sought through
optimization of the lens geometry directly [12–14].

In this manuscript, we present a gradient-based optimization method capable of designing
freeform optics for extended sources without needing the target distribution to be iteratively
updated. Furthermore, it avoids local minima by gradually increasing the number of degrees
of freedom of the surface. To get the gradients of the lens parameters, we use Algorithmic
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Differentiable ray tracing (AD ray tracing), a new paradigm in lens design that has been
successfully applied in imaging [15–18] and illumination applications [19–21]. It offers a simple
way to compute the gradient of the parameters describing the optical system without requiring
lengthy derivations to obtain a symbolic description or run numerous simulations to calculate
the gradients of the lens parameters numerically. It also allows for easier development of new
optimization procedures for designing complex optical systems with the outlook of combining
the physical simulation in a network training loop [15,16].

In our previous work [19], we demonstrated the effectiveness of non-sequential ray tracing
for zero-étendue, yet the proposed method had problems optimizing for finite étendue sources.
In addition, we make use of a new ray tracer: Mitsuba 3 [22], an open-source physics-based
differentiable ray tracer that performs non-sequential ray tracing with Monte Carlo ray sampling
that is GPU compatible and is used to trace the rays from the source to the target and to estimate
the radiometric quantities. In non-sequential ray tracing, the path of many rays is traced, and
the objects they will interact with are not known beforehand. At every interface of an object
the ray interacts with, the ray can be split, meaning that for specular interactions, the ray can
be reflected or refracted. Additionally, the Monte Carlo sampling technique randomly selects
the initial positions and directions of the rays to obtain an unbiased estimate of the radiometric
quantities. This differs from sequential ray tracing, where a limited amount of rays are traced
from surface to surface in a predetermined order to eventually calculate the system’s aberration
coefficients.

B-splines and the nonuniform rational variant NURBS are popular for describing freeform
surfaces as they allow local changes to the geometry. However, when creating complex irradiance
distributions, freeforms require many degrees of freedom, which can cause the optimizer to get
stuck in undesirable local minima.

To address this issue, new degrees of freedom can gradually be added during optimization,
such as proposed by Wang et al., [20], who use knot insertion [23]. However, when a knot is
added, a decision must be made about whether a whole row or column of the knot span is refined.
This adds extra degrees of freedom in areas where none are needed. To refine a single knot span,
alternative spline descriptions can be used, such as LR [24], HB [25], THB [26], U [27] and
T-splines [28]. T-splines having been proposed in the context of freeform design [29,30]. We
make use of Truncated Hierarchical B-spline (THB-splines) [26,31].

With these new local refinement possibilities, strategies must be developed to determine where
the surfaces should be refined. We present such a method that determines the optimal locations
for refinement based on the gradient of the vertices of the surface, which can easily be obtained
using algorithm differentiation.

The presented gradient-based optimization scheme can design freeform optics for extended
sources and consists of three components: AD ray tracing, THB-splines, and the refinement
strategy. AD ray tracing is used to obtain the gradients of the control points of the spline, THB-
splines allow local refinement of the surface, and the refinement strategy determines where new
degrees of freedom should be added. We first present the systems we are optimizing, followed by
an overview of the fundamentals of AD ray tracing, THB-splines, and the optimization procedure.
We demonstrate the workings of the method by first designing a freeform for a complex irradiance
distribution with a zero-étendue source. Finally, we demonstrate its effectiveness in the design of
a freeform using an extended source.

2. Methods

2.1. System definition

The system under consideration is depicted in Fig. 1(a); it consists of a freeform lens with a
refractive index of n, a source, and a target plane where the irradiance is measured; the overview
of the parameters used to fully define the system are depicted in Fig. 1(b). The source can be
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either a collimated bundle of light or an extended rectangular source with Lambertian emission
with its centroid on the optical axis and a normal perpendicular to it. The distance from the
source to the origin of the first lens surface (Ofront) is given by d0, the distance between the
origins of the front and the rear surface (Orear) by d1, and the distance between the origin of the
rear surface and the target plane by d2. The surfaces of the lens are described in terms of local
coordinates (u, v) and consist of a base conic and a sag given by a B-spline:

zsurface(u, v) = zconic(R, K, u, v) + zB-spline(C, u, v). (1)

The base conic zconic depends on its radius of curvature R and conic constant K. A B-spline
surface is defined using B-spline basis functions Ni,p(u) and Nj,q(v) which require a specified
degree p and q and knot vectors U = {u0, . . . , uNu−1} and V = {v0, . . . , vNv−1} with Nu and Nv
denoting the number of knots in the u and v directions. The Cox-The Boor relations [23, Eq.
(2.5)] are used to calculate the B-spline basis functions which span the spline spaces U and V.

Fig. 1. (a) 3D model of the system consisting of a source, freeform lens, and a target
plane where the irradiance is measured; (b) Simplified, 2D view of the system depicting the
different parameters used to define the system.

To construct the B-spline surface, the splines control points ci,j,k =
[︂
cx

i,j,k cy
i,j,k cz

i,j,k

]︂T
have

to be specified, with i ∈ {0, . . . , Nu + p− 1} and j ∈ {0, . . . , Nv + q− 1} and k ∈ {front, rear}. By
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collecting B-spline basis functions in a vector Np(u) =
[︂
N0,p(u) N1,p(u) . . . NNu+p−1,p(u)

]︂T

we can write B-spline surface as a tensor product [23, Eq. (3.11)]:

zB-spline(u, v) = Np(u)TCNq(v), (2)

with

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,0 c0,1 . . . c0,Nu+p−1

c1,0 c1,1
. . .

...
...

. . . . . .
...

cNv+q−1,0 cNv+q−1,1 . . . cNv+q−1,Nu+p−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

In this manuscript, without loss of generality, the B-spline surfaces are of degree p in both u
and v direction, and therefore, the degree of the spline will be omitted from the notation from
now on. The whole system can then be described using the set of parameters

π = {rsource, rfront, rrear, rtarget, d0, d1, d2, n, Rfront, Kfront, Cfront, pfront, Rrear, Krear, Crear, prear}.
(4)

2.2. Differentiable ray tracing background

To determine the irradiance at the target plane, we first calculate the trajectory of Nk rays
emitted by a planar source with a radiance Lsource at a point (x, y) on its surface in a direction
(θ, ϕ). These spatial and angular coordinate pairs are combined into a 4D ray coordinate
x = (x, y, θ, ϕ). After propagating through the system N ′

k rays end up on the target screen with a
radiance value Ltarget at the target ray coordinate x′ = (x′, y′, θ ′, ϕ′). The irradiance values are
then obtained by discretizing the target plane by placing a grid of Nt × Mt pixels at the points
Pn,m = {(2n/Nt − 1)rtarget, (2m/Mt − 1)rtarget}, where n ∈ {0, . . . , Nt} and m ∈ {0, . . . , Mt}. The
value of each pixel is determined by summing the radiance values of the rays intersecting the
target screen in an area A around the pixel. The pixel measurement function or reconstruction
filter W(x′) determines this area and the weight attributed to a ray. Common choices are box- and
Gaussian filters, depicted in Fig. 2(a1 and a2). The pixel’s value is then determined by weighting
all the rays to the pixel’s measurement function as shown in Fig. 2(b1 and b2) and summing them
together as shown in Fig. 2(c1 and c2)

En,m(π) =
∑︂

k∈An,m

L(x′k, y′k, π)Wn,m(x′k, y′k). (5)

All irradiance values are then combined to give the irradiance matrix E(π) ∈ RNt×Mt . To
achieve the desired irradiance distribution Edesired, we need to optimize the system parameters π.
This is done by comparing the irradiance distribution produced by the system E with the desired
one with a metric L. To determine how the system parameters should be changed, we calculate
the gradient of L with respect to a parameter πk. This gradient is obtained by applying the chain
rule, resulting in the following gradient for the n, m-th irradiance value:

∂

∂πk
L (E(πk)) =

Nt∑︂
n=1

Mt∑︂
m=1

∂L (E(πk))
∂En,m

∂En,m

∂πk
. (6)

Gradients can be evaluated in different ways, e.g., using numerical or algorithmic differentiation.
To evaluate the derivative of Eq. (7) using numerical differentiation [32, Chapter 8.1], we can use
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central differences to obtain a second-order accurate approximation

∂L
∂πi

(π) = L(π + εei) − L(π)
ε

+ O(ε2). (7)

A total of n+1 function evaluations are required to evaluate Eq. (5) when a total of n parameters
are used. This becomes unreasonable for a large number of degrees of freedom; for instance,
calculating the gradient for a lens with 10 × 10 control points would require 101 ray tracing
simulations. Alternatively, algorithmic differentiation can be used. It is based on two core
concepts. First, most functions can be expressed using simple operations of one or two variables,
such as addition, multiplication, logarithms, powers, or geometric identities. The second is the
chain rule, which states that if h is a function of a vector y ∈ Rm, which itself is a function of
x ∈ Rn we can calculate the derivative of h with respect to x as:

∇h(y(x)) =
m∑︂

i=1

∂h
∂yi

∇yi(x). (8)

Unlike numerical differentiation, algorithmic differentiation only requires a ray tracing
simulation, during which a computational graph is constructed, and is used to evaluate the
gradient. For a detailed overview of the topic of algorithmic differentiation, the reader is referred
to [33] and [32, Chapter 8.2]. The particular combination of AD with ray tracing is discussed in
more detail in [22,34].

with

C =



c0,0 c0,1 . . . c0,𝑁𝑢+𝑝−1

c1,0 c1,1
. . .

...

...
. . .

. . .
...

c𝑁𝑣+𝑞−1,0 c𝑁𝑣+𝑞−1,1 . . . c𝑁𝑣+𝑞−1,𝑁𝑢+𝑝−1


. (3)

In this manuscript, without loss of generality, the B-spline surfaces are of degree 𝑝 in both 𝑢 and
𝑣 direction, and therefore, the degree of the spline will be omitted from the notation from now on.
The whole system can then be described using the set of parameters

𝝅 = {𝑟source, 𝑟front, 𝑟rear, 𝑟target, 𝑑0, 𝑑1, 𝑑2, 𝑛, 𝑅front, 𝐾front,Cfront, 𝑝front, 𝑅rear, 𝐾rear,Crear, 𝑝rear}.
(4)

2.2. Differentiable ray tracing background

To determine the irradiance at the target plane, we first calculate the trajectory of 𝑁𝑘 rays
emitted by a planar source with a radiance 𝐿source at a point (𝑥, 𝑦) on its surface in a direction
(𝜃, 𝜙). These spatial and angular coordinate pairs are combined into a 4D ray coordinate
x = (𝑥, 𝑦, 𝜃, 𝜙). After propagating through the system 𝑁 ′

𝑘
rays end up on the target screen with a

radiance value 𝐿target at the target ray coordinate x′ = (𝑥′, 𝑦′, 𝜃′, 𝜙′). The irradiance values are
then obtained by discretizing the target plane by placing a grid of 𝑁𝑡 × 𝑀𝑡 pixels at the points
𝑃𝑛,𝑚 = {(2𝑛/𝑁𝑡 − 1)𝑟target, (2𝑚/𝑀𝑡 − 1)𝑟target}, where 𝑛 ∈ {0, . . . , 𝑁𝑡 } and 𝑚 ∈ {0, . . . , 𝑀𝑡 }.
The value of each pixel is determined by summing the radiance values of the rays intersecting
the target screen in an area around the pixel. The pixel measurement function or reconstruction
filter𝑊 (x′) determines this area and the weight attributed to a ray. Common choices are box-

P1 P4P2 P3 P5

P1 P4P2 P3 P5

P1 P4P2 P3 P5

P1 P4P2 P3 P5

P1 P4P2 P3 P5

P1 P4P2 P3 P5

a1

b1

c1

a2

b2

c2

Fig. 2. Process of determining pixel values for a box filter and Gaussian filter: (a1 - a2)
pixels with corresponding measurement functions and rays; (b1 - b2) rays contributing
to pixel 𝑃2 with corresponding measurement function; (c1 - c2) final pixel weight
obtained by adding ray contributions.

and Gaussian filters, depicted in Figures. 2(a1 and a2). The pixel’s value is then determined by
weighting all the rays to the pixel’s measurement function as shown in Figures. 2(b1 and b2) and

Fig. 2. Process of determining pixel values for a box filter and Gaussian filter: (a1 - a2)
pixels with corresponding measurement functions and rays; (b1 - b2) rays contributing to
pixel P2 with corresponding measurement function; (c1 - c2) final pixel weight obtained by
adding ray contributions.

2.3. B-splines refinement and truncated hierarchical B-splines (THB-splines)

To increase the degrees of freedom in a B-spline, knot insertion or refinement can be used
[23, Chapter 5.2 and 5.3]. These operations add one or multiple knots into the knot vector,
enabling the addition of new control points. These refinement procedures are possible because the
B-spline basis functions are refinable, meaning that they can be written as a linear combination
of basis functions with smaller support. To refine a B-spline surface through knot insertion, a
refinement matrix Ru ∈ RNu+p−1×Nu+p and Rv ∈ RNv+p−1×Nv+p are constructed, which relate the



Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 9735

B-spline basis functions with smaller support ˜︁N(u) ∈ RNu+p and ˜︁N(v) ∈ RNv+p to the original
basis functions N(u) ∈ RNu+p−1 and N(v) ∈ RNv+p−1:

N(u) = Ru˜︁N(u), N(v) = Rv˜︁N(v) (9)

The refined surface with the new B-spline basis can then be written as

zB-spline(u, v) = ˜︁N(u)T˜︁C˜︁N(v), (10)

where ˜︁C = RT
u CRv. Inserting a knot into the knot vector V will add a control point in the v

direction, except when a knot is inserted at a position where a knot already exists. However, this
introduces Nu + p − 1 control points in the u direction and can lead to over-refinement of the
B-spline surface. To illustrate this problem, let us consider a B-spline surface of bi-degree 3 with
knot vectors U = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} and V = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}.
The dimension of the B-spline basis vectors N(u) and N(v) are both 6. Therefore, the number of
control points required is 36. The knot spans generated by the knot vectors U and V are shown in
Fig. 3. Suppose we want to refine the elements [0, 0.25) × [0, 0.25) and [0.25, 0.5) × [0.5, 0.75),
which are highlighted in red in Fig. 3(a-c). One way to achieve this refinement is by inserting a
knot˜︁u = 0.4 into the knot vector U, which increases the dimension of N(u) to 7, and thus the
number of control points becomes 42. Subsequently, a knot˜︁v = 0.1 can be inserted into the knot
vector V , raising the number of required control points to 49. While we only wanted to refine
two knot spans, seven have been refined, adding 13 degrees of freedom. In addition, as knot
insertion refines along rows or columns, there are numerous ways in which the two knot spans
can be refined. This issue is solved by using HB-splines [25] and THB-splines [26,31], which
allow a single knot span to be refined by adjusting the basis functions, which are not contained in
the knot spans which are to be refined.

To construct truncated hierarchical B-splines a sequence of nested spline spaces is required of
levels ℓ ∈ {0, 1, . . . , L}, V0 ⊂ V1 ⊂ . . . ⊂ VL defined on a domain Ω0

v ∈ [0, 1]. Starting with a
knot vector of level ℓ = 0, the knot vectors generating these spline spaces of any level ℓ

Vℓ =
{︁
vℓ0, . . . , vℓm

}︁
, (11)

can be obtained by bisecting the knot vector of level ℓ to obtain the knot vector of level ℓ + 1

Vℓ+1 =

{︃
vℓ+1

0 = vℓ0, vℓ+1
1 =

vℓ0 + vℓ1
2

, vℓ+1
2 = vℓ1, . . . , vℓ+1

2m−2 = vℓm−1, vℓ+1
2m−1 =

vℓm−1 + vℓm
2

, vℓ+1
2m = vℓm

}︃
.

(12)
We denote the vector of B-spline basis functions of level ℓ as Nℓ and using knot insertion

(Eq. (9)) we can relate the B-spline basis vector of levels ℓ and ℓ + 1 using a refinement matrix
Rℓ+1

u ∈ R2ℓ (Nu+p−1)×2ℓ+1(Nu+p−1)

Nℓ(u) = Rℓ+1
u Nℓ+1(u). (13)

To indicate where on the lens domain Ω0 = Ω0
u ×Ω0

v the higher levels should be, we use nested
domains Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩL. In Figs. 4(a2-c2), an example nested domain is shown, with the
lens domain Ω0 shown in Fig. 4(a2), together with the knot lines, indicating where in Ωu and Ωv
the knots are located. We get the lens’ hierarchical mesh by overlaying all these domains, as
shown in Fig. 4(a1). We define a characteristic matrix Xℓ

u and Xℓ
v of N(u)ℓ and N(u)ℓ which are

used to relate Ωℓ with Ωℓ+1 as follows:

Xℓ
u = diag(xℓu,i), xℓu,i =

{︄
1, if supp N(u)ℓi ⊆ Ωℓ

u and supp N(u)ℓi ⊈ Ωℓ+1
u ,

0, otherwise.
(14)

The elements of the characteristic matrix are set to one when the support of a B-spline basis
function is fully contained within a domain Ωℓ and does not fall within Ωℓ+1. Otherwise, it is set
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to zero. Then, we can define the truncation matrix [31] as

Tℓ
u = Rℓ

u(Iℓ − Xℓ
u), (15)

with I the identity matrix. Using Eq. (15) we can recursively determine the THB-coefficient
matrix Dℓ

Dℓ = TℓT
u Dℓ−1Tℓ

v + XℓT
u CℓXℓ

v , (16)

starting with D0 = C. Finally, a THB-spline with highest refinement level L can then be expressed
in terms of NL:

zTHB-spline(u, v) = NL(u)TDLNL(v). (17)

In Fig. 4(b1) an THB-spline of the hierarchical mesh in Fig. 4(a1). It shows how areas with
higher refinement levels can incorporate finer details into the surface. For a more detailed
discussion on the construction of the THB-basis functions, the reader is referred to Section 2 of
the Supplement 1.

The refined surface with the new B-spline basis can then be written as

𝑧B-spline (𝑢, 𝑣) = Ñ(𝑢)𝑇 C̃Ñ(𝑣), (10)

where C̃ = R𝑇
𝑢CR𝑣 . Inserting a knot into the knot vector 𝑉 will add a control point in the 𝑣

direction, except when a knot is inserted at a position where a knot already exists. However, this
introduces 𝑁𝑢 + 𝑝 − 1 control points in the 𝑢 direction and can lead to over-refinement of the
B-spline surface. To illustrate this problem, let us consider a B-spline surface of bi-degree 3 with
knot vectors𝑈 = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} and𝑉 = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}.
The dimension of the B-spline basis vectors N(𝑢) and N(𝑣) are both 6. Therefore, the number of
control points required is 36. The knot spans generated by the knot vectors𝑈 and 𝑉 are shown in
Figure 3. Suppose we want to refine the elements [0, 0.25)×[0, 0.25) and [0.25, 0.5)×[0.5, 0.75),
which are highlighted in red in Figures. 3(a-c). One way to achieve this refinement is by inserting
a knot �̃� = 0.4 into the knot vector𝑈, which increases the dimension of N(𝑢) to 7, and thus the
number of control points becomes 42. Subsequently, a knot �̃� = 0.1 can be inserted into the knot
vector 𝑉 , raising the number of required control points to 49. While we only wanted to refine
two knot spans, seven have been refined, adding 13 degrees of freedom. In addition, as knot
insertion refines along rows or columns, there are numerous ways in which the two knot spans
can be refined. This issue is solved by using HB-splines [25] and THB-splines [26,31], which
allow a single knot span to be refined by adjusting the basis functions, which are not contained in
the knot spans which are to be refined.

a b c

Fig. 3. Knot spans of the B-spline surface at different refinement steps, the areas which
should be refined are highlighted in red, orange areas indicate the knot spans which
have been refined once, the purple areas indicate the knot spans which have been refined
twice: (a) Original knot span; (b) Knot span after the knot �̃� = 0.4 is inserted; (c) Knot
span after the knot �̃� = 0.1 is inserted;

To construct truncated hierarchical B-splines a sequence of nested spline spaces is required of
levels ℓ ∈ {0, 1, . . . , 𝐿}, V0 ⊂ V1 ⊂ . . . ⊂ V𝐿 defined on a domain Ω0

𝑣 ∈ [0, 1]. Starting with
a knot vector of level ℓ = 0, the knot vectors generating these spline spaces of any level ℓ

𝑉ℓ =
{
𝑣ℓ0, . . . , 𝑣

ℓ
𝑚

}
, (11)

can be obtained by bisecting the knot vector of level ℓ to obtain the knot vector of level ℓ + 1

𝑉ℓ+1 =

{
𝑣ℓ+1

0 = 𝑣ℓ0, 𝑣
ℓ+1
1 =

𝑣ℓ0 + 𝑣ℓ1
2

, 𝑣ℓ+1
2 = 𝑣ℓ1, . . . , 𝑣

ℓ+1
2𝑚−2 = 𝑣ℓ𝑚−1, 𝑣

ℓ+1
2𝑚−1 =

𝑣ℓ
𝑚−1 + 𝑣ℓ𝑚

2
, 𝑣ℓ+1

2𝑚 = 𝑣ℓ𝑚

}
.

(12)
We denote the vector of B-spline basis functions of level ℓ as Nℓ and using knot insertion
(Eq.( 9)) we can relate the B-spline basis vector of levels ℓ and ℓ + 1 using a refinement matrix
Rℓ+1
𝑢 ∈ R2ℓ (𝑁𝑢+𝑝−1)×2ℓ+1 (𝑁𝑢+𝑝−1)

Nℓ (𝑢) = Rℓ+1
𝑢 Nℓ+1 (𝑢). (13)

Fig. 3. Knot spans of the B-spline surface at different refinement steps, the areas which
should be refined are highlighted in red, orange areas indicate the knot spans which have
been refined once, the purple areas indicate the knot spans which have been refined twice:
(a) Original knot span; (b) Knot span after the knot˜︁u = 0.4 is inserted; (c) Knot span after
the knot˜︁v = 0.1 is inserted;

2.4. Optimization procedure

At the beginning of the optimization, the B-spline surfaces control points ci,j,k are uniformly
distributed over the surface. Of these control points, the x and y coordinate cx

i,j,k and cy
i,j,k are

fixed, while only cz
i,j,k is variable. This ensures that the control points cannot move into positions

such that the B-spline surface would intersect itself. To limit the maximum deviation, we choose
to optimize a weight wi,j,k ∈ R, with the set of all weight denoted by W = {wi,j,k}. These weights
are directly related to the z-postion of the control points by:

ci,j,k
z = arctan

(︃
wi,j,k

zfreedom

)︃
. (18)

Using the arctangent, we can restrict the maximum deviation of cz
i,j,k to zfreedom. These weights

are then used to minimize the Frobenius norm of the difference between the irradiance measured

https://doi.org/10.6084/m9.figshare.25249783
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Fig. 4. (a1) Hierarchical mesh; (b1) surface plot of the THB-spline with randomly
𝑧-positions of the control points; (a2-c2) the nested domains Ω0,Ω1,Ω2 with the
colored areas indicating where the nested domains are active.

To indicate where on the lens domain Ω0 = Ω0
𝑢 ×Ω0

𝑣 the higher levels should be, we use nested
domains Ω0 ⊇ Ω1 ⊇ . . . ⊇ Ω𝐿 . In Figures 4(a2-c2), an example nested domain is shown, with
the lens domain Ω0 shown in Figure 4(a2), together with the knot lines, indicating where in Ω𝑢

and Ω𝑣 the knots are located. We get the lens’ hierarchical mesh by overlaying all these domains,
as shown in Figure 4(a1). We define a characteristic matrix Xℓ

𝑢 and Xℓ
𝑣 of N(𝑢)ℓ and N(𝑢)ℓ

which are used to relate Ωℓ with Ωℓ+1 as follows:

Xℓ
𝑢 = diag(𝑥ℓ𝑢,𝑖), 𝑥ℓ𝑢,𝑖 =

{
1, if supp 𝑁 (𝑢)ℓ

𝑖
⊆ Ωℓ

𝑢 and supp 𝑁 (𝑢)ℓ
𝑖
⊈ Ωℓ+1

𝑢 ,

0, otherwise.
(14)

The elements of the characteristic matrix are set to one when the support of a B-spline basis
function is fully contained within a domain Ωℓ and does not fall within Ωℓ+1. Otherwise, it is set
to zero. Then, we can define the truncation matrix [31] as

Tℓ
𝑢 = Rℓ

𝑢 (Iℓ − Xℓ
𝑢), (15)

with I the identity matrix. Using Eq. 15 we can recursively determine the THB-coefficient matrix
Dℓ

Dℓ = Tℓ𝑇
𝑢 Dℓ−1Tℓ

𝑣 + Xℓ𝑇
𝑢 CℓXℓ

𝑣 , (16)
starting with D0 = C. Finally, a THB-spline with highest refinement level 𝐿 can then be expressed
in terms of N𝐿:

𝑧THB-spline (𝑢, 𝑣) = N𝐿 (𝑢)𝑇D𝐿N𝐿 (𝑣). (17)
In Figure 4(b1) an THB-spline of the hierarchical mesh in Figure 4(a1). It shows how areas
with higher refinement levels can incorporate finer details into the surface. For a more detailed
discussion on the construction of the THB-basis functions, the reader is referred to Section 2 of
the supplementary materials.

Fig. 4. (a1) Hierarchical mesh; (b1) surface plot of the THB-spline with randomly z-
positions of the control points; (a2-c2) the nested domains Ω0,Ω1,Ω2 with the colored areas
indicating where the nested domains are active.

at the target plane EW
target which is a variable of the weights W and the desired irradiance Edesired:

L(W) =
⌜⃓⎷ N∑︂

n=1

M∑︂
m=1

|︁|︁|︁EW
target[n, m] − Edesired[n, m]

|︁|︁|︁2. (19)

To minimize Eq. (19), we utilize a gradient-based optimization approach by making use of the
PyTorch toolbox [35] and the ADAM optimizer [36]. The gradient with respect to the weight W
is obtained using algorithmic differentiable ray tracing.

We start the optimization by initializing the surface with a low number of control points and
perform optimization for a fixed set of iterations. Once finished, we identify areas where the
surface requires refinement by examining how changes in the vertex positions affect the irradiance
distribution. These vertices are located on a grid G withing the domain Ω = [0, 1]2 with the x
and y positions of the points:

Gi,j =

(︃
i

Ng − 1
,

j
Mg − 1

)︃
with i, j ∈ N, 0 ≤ i ≤ Ng − 1, 0 ≤ j ≤ Mg − 1. (20)

These vertices fall with knot span products, which are domains between adjacent knots
represented by Cℓ

r,s = [ul
r,s, ul

r+1,s) × [vl
r,s, vl

r,s+1) which subdivided the surface. Each knot span
product is identified by its index rs and its refinement level ℓ. To determine which knot spans
need refinement, we calculate the gradients of the z-positions of the vertices, denoted as Zi,j,
within a knot span product and sum the absolute values, given by

Zℓ
r,s =

∑︂
i,j∈Cℓ

r,s

|︁|︁|︁|︁∂L(Zi,j)
∂Zi,j

|︁|︁|︁|︁ . (21)
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If the absolute sum of the vertex gradients with a knot span exceeds the average absolute
gradient by a threshold value α:

Zℓ
r,s>

α

2ℓ(Nu + p − 1)2
∑︂
r′,s′

Zℓ
r′,s′ , (22)

the cell is refined, and a new optimization batch is started. We repeat this process of optimization
and refinement until the finest refinement level L of the THB-surface is reached.

Section 3 of the Supplement 1 demonstrates the method by fitting a THB-spline to a height
map.

3. Results

We demonstrate the working of the proposed optimization method with two design examples.
The first design is a freeform, illuminated by a collimated beam of light that projects the image
of the "Girl with the Pearl Earring." The second design projects a smooth, curved irradiance
distribution with an extended source close to the front surface. All simulations were done on a
desktop computer with an Intel Xeon CPU E5-1620 v3 and NVIDIA RTX 2080 Ti GPU.

A Gaussian measurement function is used to ensure the stability of the gradient calculations of
the surface control points. This is because the Gaussian measurement functions of neighboring
pixels slightly overlap, preventing rays from suddenly jumping from one pixel to another. In
addition, the standard deviation of the Gaussian was tuned to smooth out the vertex gradients.
This was necessary as small standard deviations produced noisy gradients, making the refinement
procedure unstable. MITSUBA 3 does not provide a direct method of measuring irradiance
values for a grid of pixels. Therefore, the light redirected by the freeform is projected onto the
target screen and imaged by a pinhole camera, giving an unaberrated image of the irradiance
distribution used in the optimization. More details are found in the Section 4 of the Supplement 1.

It is also possible to design freeforms with B-splines with a static number of degrees of
freedom. In Section 1 of the Supplement 1 we compare results for a simple top-hat distribution
and the image of the girl with the pearl earring with B-splines with various static numbers of
degrees of freedom. We learn from these examples that large degrees of freedom with large
step sizes lead to highly irregular lenses. This can be mitigated to some extent by choosing a
smaller step size, leading to a longer optimization time, thus, giving a trade-off between the
number of degrees of freedom and the total optimization time. In addition, for the zero-etendue
example, we compare THB-splines with regular B-spline refinement, where all knot spans are
refined after a fixed number of iterations. All results are compared to LightTools [37], in which
the system is recreated and simulated. A detailed description of how the systems are modeled
in both MITUSBA and LightTools is presented in Section 4 of the Supplement 1, and the lens
before and after optimization and the corresponding LightTools models are shown in Section 5
of the Supplement 1. Finally, we look at the size of the knot spans as their size indicates whether
or not diffraction due to small details on the lens could be problematic [38].

3.1. THB-spline freeform lens optimization zero-étendue

We optimize the rear surface of the freeform lens, which is illuminated by a uniform collimated
beam of light, with all rays having the same radiance, to generate the girl with the pearl earring
(Fig. 5(a1)) at a distance of 300 mm of the lens. A radius of 100 mm and a conic constant of −1
were chosen for the base conic surface such that the initial irradiance distribution was slightly
smaller than the desired target distribution. The spline surface was initialized as a B-spline of
degree 3, and a control net of 10 × 10 and zfreedom was chosen to be a quarter of the thickness of
the lens. The values of all other system parameters can be found in Table 1.

Figure 5(b1) shows the chosen learning rates and refinement parameters used during optimiza-
tion batches. The learning rates were selected to minimize the number of iterations required

https://doi.org/10.6084/m9.figshare.25249783
https://doi.org/10.6084/m9.figshare.25249783
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Fig. 5. Results using THB-refinement strategy (a1) Desired irradiance distribution; (b1) Plot
of loss through optimization with refinement parameters and learning rates and LightTools
loss at the end of each batch; (c1) Irradiance obtained from LightTools; (a2-f2) The difference
in the surface between subsequent optimization steps; (a3-f3) Surface at the end of each
optimization step; (a4-f4) Hierarchical mesh of the THB-spline, showing which knot span
products are refined; (a5-f5) Gradients of the vertices of the surface; (a6-f6) Obtained
irradiance after every optimization batch.

Table 1. System parameters for collimated by light with girl with the
pearl earring as target distribution

System Parameters Surface parameters

rsource 47.5 mm d0 N/A mm Rfront ∞ mm Nu, Mv 14

rfront 50 mm d1 20 mm Kfront 0 p, q 3

rrear 50 mm d2 300 mm Rrear 100 mm Ng, Mg 449

rtarget 100 mm Nt , Mt 256 Krear -1 L 5

W Gaussian σW 1 zfreedom 5 mm n 1.5
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for the optimization to converge and to be small enough to avoid instability. Furthermore, the
refinement parameters were chosen first to refine the whole lens surface and then prioritize
areas of high vertex gradients in later stages to correct the fine details in the desired irradiance
distribution. It took 7 minutes and 31 seconds to optimize the lens. When analyzing the changes
in the irradiance distribution after each optimization batch, as expected, the rough contour is
shaped. With increasing refinement level of the THB-spline, finer details are filled in in the
irradiance. However, the first two refinement steps do not significantly reduce the total loss, as
seen in the minor changes in the irradiance distributions in (Figs. 5(b6 and c6)) compared to the
initial optimization batch. Examining the vertex gradients, in which we can recognize a distorted
version of the target distribution, reveals that vertex gradients remain mostly unchanged until the
third refinement step Figs. 5(a5-c5). This is because the high vertex gradients vary with a small
area, requiring a high refinement level to eliminate them. As can be seen in the hierarchical
meshes shown in Figs. 5(a4-f4), it is precisely around these areas that the THB-spline has the
highest refinement level.

One area where the optimizer has an issue is the dark area between the chin and the dress.
Initially, it attempts to move the light off the target plane to prevent it from contributing to the
irradiance distribution. However, upon close examination, we see that the size of this area is
reduced, as in the distorted image which can be seen in the vertex gradients Figs. 5(a4-e4), the
chin and the dress move closer toward each other, causing the size of the area which discards
light to decrease.

Fig. 6 shows the results for the B-spline. No significant differences can be noticed either in
the surface or irradiance distributions. Comparing the loss values shown in Fig. 7, we see they
both end up at comparable loss values. However, we observe that the THB-spline results were
obtained using fewer degrees of freedom than the B-spline Table 2.

Table 2. Numbers of degrees of freedom at the end of
each optimization batch for both B- and THB-splines

250 500 750 1000 1250 1500

THB-spline 100 161 387 1297 3818 11955

B-spline 100 289 961 3481 13225 51529

We can see that the results obtained in MITUSBA 3 (Fig. 5(f6)) and the verification in
LightTools (Fig. 5(c1)) are visually consistent with each other. The way the LightTools loss
decreases compared with the MITUSBA loss is shown in Fig. 5(b1) and Fig. 6(b1). For the
first three batches, the LightTools loss matches the MITSUBA loss. However, for the final three
batches, the difference in the loss increases. As this difference increases during the final batches,
the mismatch is likely caused by errors introduced by importing the THB surface into LightTools.

Of the total power emitted by the source (1 Watt), 0.92 Watts end up in the final distribution.
At the highest refinement, a knot span has a size of 156 × 156 µm2. As we work with degree-3
splines, the smallest change in the lens surface has a support of 468 × 468 µm2, which is roughly
one thousand times larger than the wavelength size. This allows us to disregard diffraction effects.

3.2. THB-spline freeform lens optimization finite-étendue

To demonstrate the effectiveness for an extended source, a smooth curved target distribution,
depicted in Fig. 8(a1). The reasoning behind the simpler target compared to the zero-etendue
example is that the use of a finite étendue source limits the details that can be achieved [39–41].
The basic conics of the front and rear surfaces are set such that the initial irradiance distribution
was of similar size to the desired distribution, and the B-spline of the rear surface was initialized
with 5 × 5 control points while the front surface is left unchanged throughout the optimization
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Fig. 6. Results by using B-spline refinement strategy (a1) Desired irradiance distribution;
(b1) Plot of loss through optimization with refinement parameters and learning rates and
LightTools loss at the end of each batch; (c1) Irradiance obtained from LightTools; (a2-f2)
The difference in the surface between subsequent optimization steps; (a3-f3) Surface at
the end of each optimization step; (a4-f4) Hierarchical mesh of the THB-spline, showing
which knot span products are refined; (a5-f5) Gradients of the vertices of the surface; (a6-f6)
Obtained irradiance after every optimization batch.
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Fig. 7. Loss comparison between THB and B-splineFig. 7. Loss comparison between THB and B-spline.

and zfreedom was chosen to be roughly a quarter of the thickness of the lens. An overview of all
the system parameters can be found in Table 3.

Table 3. System parameters: extended source with curved uniform
target distribution

System parameters Surface parameters

rsource 0.5 mm d0 2 mm Rfront −5 mm Nu, Mv 9

rfront 5 mm d1 5 mm Kfront -1 p, q 3

rrear 8 mm d2 1000 mm Rrear -10 mm Ng, Mg 450

rtarget 2000 mm Nt , Mt 256 Krear -1 L 5

W Gaussian σW 1 zfreedom 1.5 mm n 1.5

The learning rates and refinement parameters are shown in Fig. 8(b1). The learning rates
were again chosen to balance the number of iterations to the stability of the optimization. The
refinement parameters were chosen to ensure that the mirror symmetry of the hierarchical mesh
was maintained as long as possible throughout the refinement process. The preservation of
symmetry was critical in the earlier stages, as breaking it would result in different areas of the
lens being optimized at different refinement levels, leading to worse-performing lenses. It took
29 minutes and 23 seconds to optimize the lens. At the end of each batch, the number of control
points is 25, 49, 70, 253, 637, and 2180.

The graph depicting the loss shows that each refinement significantly reduces the loss. Why
this is the case can be understood by analyzing the vertex gradients. In Figs. 8(a5-d5), we can
identify two distinct gradient areas: a large area in the center with a structured pattern and a ring
surrounding it. It is important to note that although these areas seem disconnected, they are
connected. This is due to the chosen standard deviation of the Gaussian measurement function,
which causes the gradients in this intermediate area to be much smaller than in the ring or
central parts of the vertex gradients when blurred. During the first four optimization batches,
the structured details in the central area gradually decrease in size (Figs. 8(a5-d5)), shaping the
central, uniform part of the irradiance distribution (Figs. 8(a6-d6)). However, after the fifth
optimization batch, unstructured and low-valued gradients dominate the central domain, while
the edges show large gradients, as seen in Fig. 8(e4). In the final optimization batch, the area of
the rear surface, which corresponds to the edges in the vertex gradients, is used to correct the
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Fig. 8. (a1) Desired irradiance distribution; (b1) Plot of loss through optimization with
refinement parameters and learning rates; (c1) Irradiance obtained from LightTools; (a2-f2)
The difference in the surface between subsequent optimization steps; (a3-f3) Surface at
the end of each optimization step; (a4-f4) Hierarchical mesh of the THB-spline, showing
which knot span products are refined; (a5-f5) Gradients of the vertices of the surface; (a6-f6)
Obtained irradiance after every optimization batch.
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thin lines of light protruding from the center of the distribution Fig. 8(e6). These corrections
can also be seen when looking at the changes made to the freeform surface during optimization,
Fig. 8(f1). The central area is largely left unchanged. Thus, the lower THB levels fill the uniform
distribution, while the distribution edges are corrected at the higher level.

During later stages, large changes to the surface occur, as seen in Figs. 8(e2,f2). However,
these areas no longer affect the measured irradiance as they either do not receive any light or the
light refracted by this part of the lens fails to reach the target screen.

The final results of MITSUBA (Fig. 8(f6)) and LightTools (Fig. 8(c1)), appear visually very
similar. However, we see a structural offset in the LightTools loss shown in Fig. 8(b1). The loss
decreases similarly for both ray tracers, though their difference increases in the final batches,
similar to the zero-étendue case. Using an extended source emitting a total flux of 1 W, a total
of 0.84 W gets through the lens, considering Fresnel losses of which 0.74 W ends up in the
target distribution. The 0.16 W, which does not go through the lens, is reflected in the source as
discussed in Section 5C of the Supplement 1.

At the highest refinement level, the size of a knot span is 31.25× 31.25 µm2. As we use splines
of degree 3, the basis functions are three times the knot span. Therefore, the smallest change in
the surface is approximately 95 × 95 µm2, which is 160 times larger than the wavelength of the
light is 0.55 µm. Therefore, we can assume that diffraction effects will be negligible.

4. Conclusions

We demonstrated a technique to optimize freeform lenses for both zero-étendue sources and finite
étendue sources. We accomplished this by utilizing the algorithmic differentiable non-sequential
ray tracer MITSUBA 3, giving us access to gradients of the parameters of the freeform surface.
This, combined with THB-splines, allows us to gradually increase the degrees of freedom to
avoid getting trapped in undesirable local minima. The L1 norm of the gradient of the vertices
within a knot span was used to determine where refinement was necessary.

The method can find a freeform to accurately generate a prescribed target distribution for zero-
and finite étendue sources. However, it is not as effective in finding solutions for zero-étendue
sources as dedicated zero-etendue solves such as those which solve the Monge-Ampere equation
[3]. These are capable of finding similar solutions in a much shorter time. The method excels
in its adaptability, as it does not require significant changes to the algorithm to optimize for
extended sources.

It is shown that a refinement strategy can significantly improve the design stability compared
to simply initiating a freeform with many control points. In addition, using THB-splines allows
the designer to keep control over where, on the freeform, new degrees of freedom can be added
and obtain similar results to classical B-spline refinement with fewer degrees of freedom.

While optimizing the freeform, the gradient vertexes show interesting information, allowing
us to understand how the optimization changes the surface and identify sensitive areas of the
freeform.

Future work will focus on further developing the refinement strategy, such as investigating
other metrics to determine which knot spans should be refined and a more efficient way to
determine the refinement parameters. More freedom in modeling the freeform should be added
so that it is not limited to a rectangular optimization domain. Having a more accurate way to
transfer the THB-description between programs by using standardized file formats supported by
LightTools, such as STEP or IGES.
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