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Wriggling in the crowd: An inquiry into the interactions between electric 
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A B S T R A C T   

Shared spaces for active mobility aim to offer safe and comfortable mobility for vulnerable road users by 
separating them from motorised vehicles. However, the distinct navigation characteristics of these users may 
increase the complexity of their interactions. The emergence of e-bikes which are faster and heavier than regular 
bikes has further increased this complexity. This study aims to shed light on the interdependency of e-bikes and 
pedestrians behaviours in shared spaces, and investigate how they influence each other’s navigation. Through a 
controlled experiment in Lund, Sweden, data were collected on a total of 1520 trajectories of e-bike and pe
destrians, their demographics and cycling experience. A simultaneous equation model was used to quantify the 
interactions between the participants. Results demonstrate significant correlations among variables, highlighting 
the model’s capacity to effectively capturing the hypothesized interdependencies. The findings can inform the 
development of level-of-service indices and surrogate safety measures for shared spaces.   

1. Introduction 

Car dependency has contributed to a range of pressing societal issues, 
encompassing environmental impacts, traffic congestion, noise pollu
tion, and a sedentary lifestyle (Abolhassani et al., 2019; Carroll et al., 
2021; Haghaniet al., 2023). Active mobility plays a pivotal role in 
driving the transition towards sustainable cities by offering a viable and 
eco-friendly transport system that effectively addresses these challenges 
(Kazemzadeh et al., 2021; Nikiforiadis & Basbas, 2019). While cycling1 

and walking form the foundation of active transport, their applicability 
for specific trip purposes can be constrained by factors such as steep 
terrain, physical limitations, and the need for long-distance planning 
(Bigazzi et al., 2022; Fitch et al., 2022). However, with the emergence of 
electric bikes (e-bikes), cyclists have access to an additional propulsion 
force that allows them to achieve higher speeds and conquer hills with 
less effort (Mohamed & Bigazzi, 2019). E-bikes also empower older 
adults to engage in active mobility and undertake long-distance trips 
(Kazemzadeh & Koglin, 2021; Van Cauwenberg et al., 2019). They also 
alleviate the physical strain associated with navigating steep roads, 
thereby enhancing the overall cycling experience through electrically 

assisted riding and improved mobility functionality (Handy & Fitch, 
2022). 

The benefits of e-bikes have contributed to a rapid growth in the 
global e-bike market, projected to reach 48 billion dollars by 2028. In 
2023, over 300 million e-bikes were operated worldwide (Jenkins et al., 
2022). E-bikes, particularly pedelec types, are classified as bikes in 
several European countries such as Sweden and Norway, allowing them 
to be used in bike lanes and shared spaces2 alongside cyclists and pe
destrians (Fishman & Cherry, 2016; Fyhri & Fearnley, 2015). However, 
e-bikes exhibit different navigation characteristics compared to other 
vulnerable road users, including variations in speed regime, accelera
tion, and braking systems (Hung & Lim, 2020). Notably, e-bikes and 
pedestrians experience the highest speed differences in shared spaces, 
necessitating careful analysis of their interactions to ensure the safety 
and comfort of all users (Zhou et al., 2023). Understanding the dynamics 
of e-bike-pedestrian interactions and how they influence one another in 
shared spaces is essential to ensure that the benefits of e-bikes are not 
compromised at the cost of their safety (Kazemzadeh, Laureshyn, Ron
chi, et al., 2020). 

Despite the widespread use and significant presence of e-bikes in the 
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transport system, there is a noticeable lack of conceptual and empirical 
research with a focus on analysing the interactions between e-bikes and 
pedestrians (Fu et al., 2023). Existing studies have primarily concen
trated on investigating the impact of pedestrians on e-bike navigation 
characteristics (Kazemzadeh & Bansal, 2021b; Lee et al., 2021). How
ever, understanding the dynamics and interactions between e-bikes and 
pedestrians in shared spaces are less known. 

To address this research gap, our study aims to investigate the 
mutual influence and interactions between e-bikes and pedestrians 
through a controlled laboratory experiment. By examining the interde
pendency between these two road user groups, we aim to gain valuable 
insights into the complex dynamics that govern their behaviours, 
decision-making processes, and interactions. Specifically, our research 
seeks to understand the discomfort experienced from the perspectives of 
both e-bike riders and pedestrians, thus contributing to the development 
of shared spaces that effectively accommodate both groups. Ultimately, 
this knowledge may promote harmonious interactions, enhance safety, 
and create a more enjoyable experience for all road users. 

The paper is structured as follows: Section 2 provides an overview of 
the contextual literature, highlighting relevant studies in the field. 
Section 3 outlines the data and methodology employed in this study. The 
findings and discussions are presented in Section 4, offering a compre
hensive analysis of the results. The practical relevance of this study is 
provided in Section 5. Finally, Section 6 concludes the paper, summa
rising the key findings, limitations, and future research directions. Fig. 1 
represents the workflow of this study: 

2. Background 

This section provides a brief overview of the contextual literature 
pertaining to i) types of interactions between cyclists and other 
vulnerable road users, ii) observational and experimental studies on 
those interactions, iii) simulation studies around e-bikes and pedestrian 
interactions, and iv) knowledge gaps and research needs. 

2.1. Type of interactions 

In the field of cycling research, the interactions between cyclists and 
other vulnerable road users are commonly categorised based on the 
direction of encounters. Passing events involve same-direction encoun
ters, while meeting events entail opposite-direction approaches (Niki
foriadis et al., 2020). This classification aims to capture the underlying 
mechanisms related to safety and comfort issues and experienced 
discomfort associated with each type of encounter. In passing events, 
cyclists evaluate the situation and plan their manoeuvres accordingly, 
whereas in meeting events, both parties are involved in planning the 
interaction (HCM, 2016). 

Furthermore, research has delved into uncovering the distinct 
characteristics of passing and meeting events. Various types of in
teractions, such as active passing, paired passing, delayed passing, and 
meeting, have been considered for estimating user comfort (Hummer 
et al., 2006). For example, delayed passing refers to a situation where a 

faster cyclist desires to overtake but must wait for a suitable opportunity 
(Nikiforiadis et al., 2020). The aim is to replicate the real-world char
acteristics of road users as they interact in different situations, allowing 
for the evaluation of their perceived discomfort and safety levels 
(Kazemzadeh & Bansal, 2021a). 

2.2. Observational and experimental studies 

Observational and experimental studies have played a significant 
role in analysing the interaction between e-bikes/bikes, pedestrians, and 
other road users in various settings. The foundational study by Botma 
and Papendrecht (1991) examined the passing and paired riding in
teractions of bikes and mopeds on bike paths in the Netherlands. Their 
work collected data on speed, volume, and lateral positions using tape 
switches and video cameras. This study highlighted the limitations of 
using mean speed as a level of service (LOS) indicator and emphasised 
the influence of interactions on facility LOS. Building upon this research, 
Botma (1995) extended the concept of hindrance and developed a letter- 
based LOS classification based on the frequency of passing and meeting 
events over time. 

Subsequent studies have addressed and expanded upon the limita
tions of Botma’s framework. Hummer et al. (2006) developed a 
hindrance-based concept to estimate bike LOS in various facilities, 
considering factors such as delayed passing, path width, and the pres
ence of a centreline. Li et al. (2013) classified passing data into free, 
adjacent, and delayed passing positions based on lateral displacement, 
while HCM (2016) classified interactions as active passing, delayed 
passing, and meeting for BLOS estimation. Nikiforiadis et al. (2020) 
considered different types of events, including delayed passing, and 
proposed a weighted frequency of events as a new LOS indicator based 
on user surveys and analytic hierarchy process analysis. These studies 
demonstrate the evolution of methodologies and variables used to 
analyse interactions and estimate LOS in bike-pedestrian facilities. 

2.3. Simulation studies 

Simulation studies have been employed to understand user in
teractions in the context of active mobility. While microsimulation 
models are commonly used for analysing interactions on highways, their 
direct application to active transport modes is challenging due to the 
unique riding, flow, and physical characteristics of these modes. 
Therefore, alternative modelling approaches have been developed. 

Cellular automata (CA) models have been used in recent studies to 
simulate the mixed traffic flow of bikes. Jia et al. (2007) and Jiang et al. 
(2004) utilised a Burger CA (BCA) model for a mixture of slow and fast 
bikes, generating fundamental diagrams to assess the quality of service 
(QOS) for cycling facilities. However, these models were not calibrated 
with real-world data. Xue et al. (2017) extended the BCA model to 
improve the representation of mixed bike flow by ensuring a smooth 
transition from free flow to congested states and more realistic estimates 
of critical density. They calibrated and validated the model through 
experimental studies. It is important to note that existing BCA models do 
not account for lane-changing behaviour. 

In a study by Gould and Karner (2009), a CA model for heteroge
neous multi-lane bike flow was proposed, considering the lane-changing 
behaviour of cyclists. The model enabled simulation of different facility 
scenarios, taking into account user profiles and traffic volume, which is 
valuable for LOS analysis. Although the model was calibrated with 
observational data from the UC Davis campus, it had limitations as the 
observed bike flows did not exceed capacity. 

2.4. Knowledge gap and research needs 

While research on the interaction of vulnerable road users in shared 
spaces has advanced in the past decade, there are still significant gaps 
that need to be addressed. Firstly, there is a lack of understanding Fig. 1. The adopted workflow of the study.  
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regarding the interaction between e-bikes and pedestrians in shared 
spaces, hindering the seamless and safe integration of e-bikes into active 
mobility infrastructure. Secondly, the mutual influence and dynamics of 
e-bikes and pedestrians during their interactions remain unknown, 
limiting our comprehension of traffic flow characteristics among 
vulnerable road users in shared spaces. Lastly, there is a need for 
research focused on developing metrics for assessing the LOS for e-bikes 
and pedestrians in shared spaces. Such metrics would serve as valuable 
tools for planners and policymakers in evaluating the quality of these 
facilities from the user’s perspective. 

To address these knowledge gaps, this study aims to investigate the 
inter-dependency between the movement behaviours of e-bikes and 
pedestrians in shared spaces. A controlled experiment was conducted to 
gather data on their interactions. It is hypothesised that the interaction 
between e-bikes and pedestrians is bi-directional, where pedestrians’ 
movement behaviour is influenced by their perceived risk caused by e- 
bikes, while e-bikes’ mobility behaviour is influenced by the available 
space for manoeuvring that is not occupied by pedestrians (Kazemzadeh 
et al., 2020). The study contributes to the advancement of knowledge in 
the field of shared space interactions between e-bikes and pedestrians, 
providing insights into their mutual influence and behaviours. 

3. Methodology 

3.1. Data 

Video data were collected in a controlled experiment in Lund, Swe
den on March 21, 2018. The experiment took place during daytime 
under sunny weather conditions. Participants were recruited from the 
university network at Lund University and received compensation of 
120 SEK (Swedish Krona) per hour for their participation. The experi
ment was specifically designed to capture detailed data on the in
teractions between e-bike riders and pedestrians.3 Same-direction 
encounters (passing) and opposite-direction encounters (meeting) 
were defined based on the navigation of e-bikes through pedestrian 
areas during each run of the experiment. To ensure a diverse range of 
interactions, the roles of the e-bike rider and pedestrians were alternated 
in each run. The experiment was conducted approximately 60 times, but 
only 40 runs were selected for further analysis due to process failures in 
certain runs. 

In this experiment, a comprehensive data collection approach was 
employed. The collection of road users’ trajectories involved the use of 
four stationary cameras strategically positioned along a 3.5 m wide 
track, with a straight section of 120 m. These cameras covered both sides 
of the track and were carefully overlapped to ensure smooth tracking of 
the agents. The T-Analyst software, a semi-automated tool, was utilized 
to generate trajectories based on the images captured by the stationary 
cameras. The positions of the agents were manually marked at a fre
quency of two times per second for pedestrians and four times per sec
ond for cyclists, allowing for accurate interpolation and speed 
estimations. This process resulted in a resolution of 15 Hz, which has 
been validated in a previous study for similar experiments (Laureshyn & 
Nilsson, 2018). Fig 24 showcases a screenshot of the T-Analyst software 
during the process of generating trajectories for road users. 

To complement the trajectory data, a questionnaire-based survey 
was conducted to collect demographic characteristics of the partici
pants. Additionally, an action camera was mounted on the handlebar of 
the e-bike to capture more detailed interactions between the e-bike and 
pedestrians. The high-definition quality of the action camera provided a 
dataset with rich information on pedestrian behaviours during 

interactions. Fig. 3 illustrates the view captured by the action camera, 
showcasing its detailed perspective. 

The analysis phase involved matching the trajectory data with 
sociodemographic characteristics of the participants. This was achieved 
by simultaneously analysing the action camera footage and question
naire datasets. By manually comparing the images of individuals 
captured by the stationary cameras and the action camera, corre
sponding trajectory data and respective traffic variables were identified 
and linked with the participants’ sociodemographic information. 

The merging of datasets significantly enhanced the richness of the 
traffic data, incorporating valuable behavioural information. Given that 
the derived dataset encompasses multi-dimensional measurements over 
time, it presents an opportunity for panel data analysis. To facilitate data 
analysis and modelling, the collected data, which was originally based 
on the frame of the camera, was aggregated using fixed distance- 
intervals along the path. To ensure accurate discretisation of the path, 
factors such as the length of the e-bike and the configuration of pedes
trians were considered. Consequently, a zone length of 5 m and a path 
width of 3.5 m (reflecting its actual dimensions) were chosen. While the 
total path length was 120 m, the middle 60 m were selected for analysis, 
as the beginning and end portions of the path could introduce biases due 
to warm-up and cool-down riding phases. Each experimental run 
involved the definition of 12 zones based on the zone dimension. For the 
identification of passing and meeting events within the aggregated 
datasets, a binary variable was introduced, with passing represented as 1 
and meeting as 0. 

In this study, the variables were classified into two categories: 
endogenous and exogenous variables. Previous models of bike and 
pedestrian interactions have considered factors such as lateral distance, 
longitudinal distance, and interaction angle as endogenous variables 
(Alsaleh & Sayed, 2020; Liang et al., 2012; Mohammed et al., 2019). 
Based on the extracted trajectories, specific traffic variables were 
calculated within the discretised path. These included pedestrian 
crowds, e-bike speed, and e-bike lateral distance. Pedestrian crowds 
were quantified by determining the number of pedestrians within each 
zone. The lateral distance referred to the absolute distance between the 
start and endpoint of each zone, perpendicular to the direction of e-bike 
movement. E-bike speed was computed as the average of the instanta
neous speeds within each zone. These endogenous variables provide 
crucial information about the dynamics of interactions between road 
users. 

On the other hand, exogenous variables such as age, sex, and riding 
experience were extracted from the questionnaire datasets for all par
ticipants. This demographic data was then matched with the endoge
nous variables dataset. In the model, a combination of these variables 
was employed to assess their statistical significance. The final model 
identified e-bike rider experience, pedestrian age, and sex as significant 
factors, contributing to a comprehensive understanding of the factors 
influencing bike and pedestrian interactions in the study. 

3.2. Simultaneous equation model 

Defining a cause-effect relationship between variables underlying 
the interaction of e-bikes and pedestrians can be challenging because 
these variables are often inter-related. For example and in a situation 
where an e-bike and a pedestrian approach one another in an opposite 
direction, it is difficult to indicate whether the pedestrian’s kinematics 
cause the e-bike to accelerate/decelerate or the e-bike’s kinematics 
cause the pedestrian to adjust his/her speed. 

Classical regression models are often employed to explore such re
lationships between a dependent variable and independent variables. 
However, a fundamental assumption of these models is that the inde
pendent variable must be exogenous i.e. must not be influenced by the 
dependent variable. When this assumption is violated (e.g. in the above 
example), the variables are said to be endogenous and classical regres
sion models produce biased estimates of their effect on one another. To 

3 For additional information, such as details about the experiment design, 
survey design, trajectory extraction, and sample size, readers refer to a recent 
publication by Kazemzadeh and Bansal (2021).  

4 Figure 1 and Fig. 2 image credit: Kazemzadeh and Bansal (2021). 
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address this issue, simultaneous equation modelling approach can be 
utilised, considering the joint dependency among variables (Washington 
et al., 2020). 

Let y1, y2 and y3 be the three dependent variables in this study 
(representing e-bike’s speed, e-bikes lateral distance, and pedestrian 
crowdedness, respectively). In simultaneous equation modelling, a sys
tem of structural equations is defined as follows (Eq1): 

y1 = β1X1 + γ2y2 + γ3y3 + ε1
y2 = β2X2 + γ1y1 + γ3y3 + ε2
y3 = β3X3 + γ1y1 + γ2y2 + ε3

(1)  

where Xi are exogenous (independent) variables, βi and γi are model 
parameters, and εi are error terms. To address the above endogeneity, it 
is assumed that the error terms of the above equations are correlated 

with an expected value of 0 (E(ε) = 0) and a variance–covariance matrix 
Σ: 

Σ =

⎡

⎣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤

⎦ (2)  

where the error terms are further assumed to follow a multivariate 
distribution (e.g., multivariate normal distribution). This system of 
equations can be solved using Three-Stage Least Squares (3SLS) esti
mation approach in which, the endogenous variables are first instru
mented on one or more exogenous variables (denoted by Zi): 

Fig. 2. A screenshot of T-Analyst software. (E-bike and pedestrians inside red and yellow boxes respectively).  

Fig. 3. Meeting (left picture) and Passing (right picture) conditions seen from the action camera placed on the e-bike representing the rider’s perspective.  
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ŷ1 = α1Z1
ŷ2 = α2Z2
ŷ3 = α3Z3  

where ŷ1 are predicted values of the instrumented variables and αi are 
estimable parameters. These parameters are estimated using Ordinary 
Least Squares (stage 1): 

min
[∑

(yi − ŷi )
2
]

The predicted values of the instrumented variables (ŷi) from stage 1 are 
then used in the original system of equations and the estimated equa
tions are used to compute the residuals from which cross-equation error 
term correlations are calculated (stage 2):. 

y1 = β1X1 + φ2 ŷ2 + φ3 ŷ3 + ε1
y2 = β2X2 + φ1 ŷ1 + φ3 ŷ3 + ε2
y3 = β3X3 + φ1 ŷ1 + φ2 ŷ2 + ε3  

Finally, generalized least squares (GLS) approach is used to estimate the 
original model parameters (stage 3) (Washington et al., 2020). The 
newly employed (instrumented) variables are not subject to endogeneity 
anymore since they are predicted using exogenous covariates. However, 
finding strong exogeneous covariates to predict the endogenous vari
ables can be challenging. 

4. Results and discussions 

A total of 18 individuals participated in the study, with an average 
age of 28 years (ranging from 18 to 38 years). Among the participants, 
56 % were female, 88 % were regular cyclists, and 33 % had prior 
experience with e-bike riding. Table 1 provides a summary statistics of 
the variables included in this study. 

Several 3SLS models were estimated using various specifications and 
their statistical fit was compared to determine the optimal model. We 
introduced variables into the models through a stepwise variable se
lection criterion. Additionally, we conducted tests for multicollinearity 
among explanatory variables by calculating Pearson correlation co
efficients. Variables displaying unacceptably high correlation co
efficients (>0.7) were excluded from the models. For brevity, we omit 
the detailed results of different modelling specifications, but we provide 
the specifications of the superior models in Table 2. In addition, we 
conducted simultaneous modelling of passing and meeting experiment 
data to enhance statistical robustness and uncover differences in re
lationships between both experiments. This was achieved by incorpo
rating interactions of the passing indicator with covariates. 

4.1. First stages of the 3SLS regression model 

Within the first stage of 3SLS model, demographic attributes (age 
and sex) and prior cycling experience were used as exogenous variables 
to predict the endogenous variables. These external variables are 

essential in controlling for potential endogeneity. Tables summarizes the 
results of this model. 

The constant term in Equation (1) (for the e-bike speed) suggests that 
e-bikes travel at an average speed of approximately 1.992 m per second 
(m/s) when all other variables are held constant. Notably, the “Passing” 
variable has a significant negative parameter (-0.134), indicating that 
passing events have a slight dampening effect on e-bike speeds. Sex 
(female) exhibits a statistically significant negative parameter (-0.494), 
suggesting that, on average, female e-bike riders tend to have slightly 
lower speeds compared to their male counterparts. On the other hand, 
the parameter of having cycling experience on e-bike speed is not sta
tistically significant, implying that prior cycling experience does not 
significantly affect e-bike speeds. Age has a significant positive param
eter (0.081), implying that, older e-bike participants are more likely to 
maintain higher speeds. These results offer further insight into how 
external factors interplay with the e-bike speed. The negative impact of 
passing events suggests that manoeuvring around other objects or ve
hicles may lead to reduced speeds. Additionally, the sex differences in e- 
bike speeds may be influenced by various factors, such as riding style or 
comfort level. The positive relationship with age suggests that older 
individuals tend to ride e-bikes at higher speeds, which could be 
attributed to their experience or riding habits. 

The parameter estimates within Equation (2) (lateral distance) re
veals intriguing findings too. The constant term does not show a sta
tistically significant impact (-0.262), indicating that, on average, lateral 
distance does not significantly vary under typical conditions. The 
“Passing” variable demonstrates a significant positive parameter 
(0.176), suggesting that e-bikes tend to maintain a larger lateral distance 
when passing pedestrians. Sex (female) exhibits a statistically significant 
negative parameter (-0.165), indicating that, on average, female e-bike 
riders tend to maintain a slightly smaller lateral distance compared to 
their male counterparts. However, both having cycling experience and 
age show non-significant effects on lateral distance. These findings shed 
light on the factors influencing lateral distance during e-bike rides. The 
positive effect of passing events on lateral distance suggests a cautious 
approach to ensure pedestrian safety. Sex differences in lateral distance 
may reflect varying comfort levels or riding styles, with females tending 
to maintain shorter distances. The non-significant impact of cycling 
experience and age implies that these factors do not significantly in
fluence lateral distance. 

Finally and within Equation 3 (for pedestrian crowdedness), the 

Table 1 
Summary statistics of the variables used in the study.  

Variable Mean SD Min  Max 

Traffic variables      
E-bike speed (metre/sec) 3.93 1.26 0  6.21 
E-bike lateral distance (metre) 0.51 0.65 0  3.33 
Pedestrian crowds (count) 1.8 0.89 0  4 
Passing event (percentage) 52 – –  – 
Socio-demographic variables      
Age 28 4.82 18  38 
Sex (1: female, 0: male) (percentage) 56 – –  – 
Cycling regularly (1: being a regular cyclist, 

0: otherwise) (percentage) 
88 – –  – 

E-bike riding experience (1: with prior 
experience, 0: no experience) (percentage) 

33 – –  –  

Table 2 
Estimation results of the first stage within the 3SLS regression model (N = 876).  

Variable Estimates Standard 
error 

t-stat [95 % Conf. 
Interval] 

Eq (1): E-bike’s speed as the dependent variable 
Constant 1.992*** 0.716 2.78 0.586 3.398 
Passing − 0.134* 0.086 − 1.55 − 0.304 0.036 
Sex (Female) − 0.494** 0.194 − 2.54 − 0.876 − 0.112 
Cycling experience (1 
= Yes) 

− 1.110a 0.087 − 1.25 − 0.282 0.062 

Age 0.081** 0.026 3.06 0.028 − 0.132 
Eq (2): E-bike’s lateral distance as the dependent variable 
Constant − 0.262a 0.373 − 0.70 − 0.995 0.469 
Passing 0.176*** 0.045 3.88 0.086 0.264 
Sex (Female) − 0.165* 0.101 − 1.63 − 0.364 0.034 
Cycling experience (1 
= Yes) 

− 0.007a 0.046 − 0.15 − 0.096 0.083 

Age 0.012a 0.014 0.85 − 0.015 0.469 
Eq 3: Pedestrian crowdedness as the dependent variable 
Constant 1.695*** 0.507 3.34 0.699 2.692 
Passing − 0.025a 0.062 − 0.41 − 0.146 0.095 
Sex (Female) − 0.341** 0.138 − 2.47 − 0.612 − 0.071 
Cycling experience (1 
= Yes) 

− 0.053a 0.062 − 0.84 − 0.174 0.069 

Age − 0.021a 0.019 − 1.12 − 0.058 0.016 

Note: *p < 0.1; **p < 0.05; ***p < 0.01; a: not statistically significant. 
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constant term does not yield a statistically significant parameter sug
gesting that crowdedness remains relatively consistent under typical 
conditions. The “Passing” variable and variables related to having 
cycling experience, age, and passing events do not yield statistically 
significant parameters either. However, sex (female) shows a statisti
cally significant and negative parameter (-0.341), indicating that, on 
average, female e-bike riders are more likely to encounter slightly less 
crowded pedestrian areas. These results imply that pedestrian crowd
edness remains relatively stable, with minor variations under typical 
conditions. The impact of passing events, cycling experience, age, and 
passing events on crowdedness appears to be non-significant. In 
contrast, the significant negative effect of sex suggests that female e-bike 
riders tend to navigate slightly less crowded pedestrian areas, which 
may be attributed to riding preferences or route choices. 

4.2. Second and third stages of the 3SLS regression model 

Within the second and the third stages of the 3SLS model, e-bike 
speed, e-bike lateral distance, and pedestrian crowdedness were used as 
endogenous variables and their impact on one another was determined. 
Table 3 summarizes the results of this model. 

4.2.1. E-bike’s speed as a dependent variable 
In this equation, we posit that e-bike speed is influenced by two key 

factors: e-bike lateral distance and pedestrian crowds. This equation 
describes how the strategic speed of an e-bike rider varies in response to 
changes in these variables. Equation (4) illustrates the relationship be
tween e-bike speeds and other endogenous variables (Eq (4)): 

E-bike speed = 5.195 + 4.809 lateral distance − pedestrian crowds

− 1.009 passing (4) 

The coefficient for lateral distance (4.809) is both positive and sta
tistically significant. This positive parameter signifies that increased 
lateral distance is associated with higher e-bike speeds. Conversely, the 
parameter for pedestrian crowds (-1.221) exhibits a negative correlation 
with e-bike speed, all other factors being equal. This suggests that as 
pedestrian crowds intensify, e-bike speeds decrease. Additionally, the 
negative parameter for the passing indicator (-1.009) highlights a 
negative correlation between passing encounters and e-bike speeds. In 
contrast with meeting scenarios, passing leads to speed reductions for e- 
bike riders. Finally, the statistically significant constant (5.195) plays a 
pivotal role in our simultaneous equation model, representing the 
baseline e-bike speed when all other variables are held constant. 

These estimation results are aligned intuitively with the following 
interpretations: As e-bike riders aim to maintain higher speeds, they 
must increase lateral distance to avoid collisions with pedestrians, 
leading to a positive correlation between lateral distance and speed. 
Conversely, as pedestrian crowds grow, e-bike riders reduce speed to 
enhance safety, allowing for better maneuverability amidst higher 
congestion. However, this adjustment may result in a reduction in LOS 
as riders must slow down to navigate obstacles, in this case, pedestrians. 

The negative passing parameter indicates a speed reduction trend 
during same-direction encounters. This trend arises because in passing 
situations, e-bike riders have sole control over adjusting their strategic 
route. In contrast, during meeting encounters, both parties (e-bike riders 
and pedestrians) participate in decision-making, utilising non-verbal 
communication to adjust their positions and consequently reduce 
lateral distances. The disparity in parameters between passing and 
meeting emphasises the significance of considering discomfort weights 
for different encounter directions in LOS studies for e-bike riders in 
various conditions. This equation/model may not fully explain the 
variations in perceived LOS across different encounters. Furthermore, 
the positive intercept underscores the increasing trend in e-bike riding 
speed strategies. This trend may be linked to the nature of the power- 
assisted system in e-bikes, which provides assistance to riders, facili
tating their travel. 

4.2.2. E-bike lateral distance as a dependent variable 
Equation (5) characterises variations in e-bike lateral distance based 

on e-bike speed and pedestrian crowds. It demonstrates how pedestrian 
crowds and e-bike speed, particularly during passing events, influence 
the strategic lateral distance of e-bike riding. Equation (5) elucidates the 
relationship between e-bike lateral distance and e-bike speed, pedestrian 
crowds, and passing events (Eq (5): 

Lateral distance = − 1.080+ 0.207 e-bike speed + 0.254 pedestrian crowds
+ 0.209 passing

(5) 

Analysis of Equation (5) reveals several key insights. The positive 
coefficient for e-bike speed (0.207) signifies that as e-bike speed in
creases, so does the lateral distance. A similar trend is observed with 
pedestrian crowds, where a positive coefficient (0.254) indicates that as 
crowd levels rise, e-bike lateral distance also increases. Moreover, the 
passing indicator, represented by a positive coefficient (0.209), implies a 
correlation between passing events and greater lateral distance. 
Conversely, the intercept in this equation is notable for its negative 
value (-1.080). This negative intercept signifies a baseline decrease in 
lateral distance in the absence of other influencing variables. Essentially, 
when none of the other factors are in play, there is a tendency for a 
reduction in lateral distance. 

An examination of these results reveals that e-bike lateral distance 
exhibits a positive correlation with riding speed. This suggests that 
riders prefer to maintain greater lateral distance rather than reducing 
speed and using the brakes. This behaviour could stem from the riding 
tendencies of participants, who may find it easier to adjust their e-bike’s 
position through lateral distance rather than slowing down and entering 
a slower speed regime. The positive relationship between crowd levels 
and lateral distance can be interpreted similarly to the speed-lateral 
distance relationship. In shared spaces, riders must either decrease 
speed (or stop) or adjust lateral distance to avoid conflicts and collisions. 
The positive trends in both speed and pedestrian crowds with lateral 
distance imply that riders generally opt for adjustments rather than 
reducing speed and potentially coming to a halt due to the presence of 
obstacles like pedestrians. 

The positive coefficient for passing in this equation indicates that e- 
bike riders maintain greater lateral distance during passing situations 
compared to meeting scenarios. While this passing trend differs from 
that in Equation (4), both equations lead to the same trend in e-bike 

Table 3 
Estimation results of the second and third stages within the 3SLS regression 
model (N = 876).  

Variable Estimates Standard 
error 

Z- 
score 

[95 % Conf. 
Interval] 

Eq (1): E-bike’s speed as the dependent variable 
Constant 5.195 0.313 16.58 4.581 5.810 
E-bike lateral distance 4.809 0.567 8.48 3.697 5.921 
Pedestrian crowds − 1.221 0.273 − 4.47 − 1.758 − 0.686 
Passing − 1.009 0.253 − 3.98 − 1.506 − 0.512 
Eq (2): E-bike’s lateral distance as the dependent variable 
Constant − 1.080 0.097 − 11.09 − 1.271 − 0.889 
E-bike speed 0.207 0.022 9.10 0.163 0.252 
Pedestrian crowds 0.254 0.042 5.95 0.170 0.338 
Passing 0.209 0.048 4.32 0.114 0.304 
Eq 3: Pedestrian crowdedness as the dependent variable 
Constant 4.235 0.804 5.27 2.659 5.812 
E-bike lateral distance 3.925 0.767 5.12 2.422 5.429 
E-bike speed − 0.814 0.197 − 4.12 − 1.201 − 0.427 
Passing − 0.823 0.242 − 3.39 − 1.299 − 0.347 

Note: p < 0.01 
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riding decisions. This underscores the significance of e-bike rider de
cisions in passing scenarios. As the sole decision-maker in this context, 
the evolution of e-bike riding strategies becomes crucial in safety anal
ysis. In contrast to passing, during meetings, both users can communi
cate nonverbally, resulting in fewer impacts on e-bike lateral 
displacement. The negative intercept value represents the general 
pattern of decreasing e-bike lateral distance. This occurs because, in the 
absence of other variables influencing intentions, riders tend to follow 
their strategic path with minimal deviations from their intended route. 

4.2.3. Pedestrian crowds as a dependent variable 
In this phase of our analysis, we delve into the influence of e-bike 

movements on pedestrian crowd levels within different zones. We 
postulate that e-bike lateral distance and speed can elucidate variations 
in crowd levels, contributing to a more comprehensive understanding of 
their interactions. Equation (6) advances our understanding of these 
relationships: 

Pedestrian crowds = 4.235 + 3.925 lateral distance − 0.814 e-bike speed
− 0.823 passing

(6) 

The positive coefficient for lateral distance (3.925) reveals an 
intriguing connection: increased lateral distance corresponds to higher 
levels of pedestrian crowds. This relationship can be attributed to lateral 
distance serving as a tangible indicator of obstacles within the strategic 
path of the e-bike rider. In settings with limited crowds, the need for 
substantial lateral distance diminishes, allowing pedestrians to move 
freely. Conversely, as crowd levels intensify, the demand for greater 
lateral distance becomes apparent, aligning with the observed trend. 

Conversely, the negative correlation between e-bike speed (-0.814) 
and pedestrian crowds uncovers an intriguing dynamic. As e-bike speed 
decreases, pedestrians seem to feel safer and more at ease, resulting in a 
reduction in crowd levels. This suggests that e-bike riders tend to adapt 
their speed to maintain a consistent crowd environment. The negative 
coefficient for the passing parameter (-0.823) indicates a unique pattern 
during passing situations. This trend could be attributed to pedestrians’ 
ability to visually perceive the approaching e-bike during encounters, 
prompting them to adjust their positions. This behaviour potentially 
leads to higher pedestrian counts compared to passing scenarios where 
pedestrians cannot visually detect the e-bike. However, interpreting this 
parameter presents challenges, given potential influences from factors 
such as visibility and experimental design. Finally, the positive intercept 
value (4.235) underscores the baseline level of pedestrian crowds in the 
absence of e-bike activity. This baseline highlights the inherent tendency 
for pedestrians to occupy the analysed zones when there are no e-bike 
traffic characteristics at play. 

4.3. Statistical fit of the 3SLS regression model 

Table 4 presents the goodness of statistical fit for the final 3SLS 
model. The RMSE values for all three equations indicate that the models 
are providing reasonably accurate predictions, as the average errors are 
not excessively high. The “E-bike lateral distance” equation has the 
lowest RMSE, indicating the most accurate predictions among the three 
equations. 

5. Practical implications and policy recommendations 

Our findings have practical implications for both the research com
munity and planners and policymakers. The choice of bidirectional or 
unidirectional sharing policies in shared spaces can significantly impact 
the perceived comfort of both user groups. The passing parameter pri
marily leads to more speed and lateral position changes, which could 
either be associated with user discomfort or reflect the user’s riding 
strategy to navigate crowded areas without reducing speed or coming to 
a halt. This finding suggests that unidirectional mixed flows of users 
with substantial speed differences can introduce significant discomfort 
for users with higher speeds, while bidirectional flows may alleviate this 
issue. Given the limited available infrastructure, especially for active 
mobility, considering user discomfort in different scenarios can guide 
planners to make informed decisions. 

Although shared spaces are designed to accommodate vulnerable 
road users, it is essential to recognise that some users are more vulner
able than others, and shared spaces should not compromise user safety. 
Our study shows that e-bike riders in overtaking scenarios tend to adjust 
their speed and position rather than stopping, and overtaking often 
occurs. This behaviour can increase the risk of conflicts and collisions. 
Considering the high speed and agility of e-bikes, navigation in some 
cases can be challenging. While e-bikes generally have a speed limit of 
25 km/h in several countries, there may be a need for more specific 
speed limits in congested areas with narrow roads. 

In addition, our study provides empirical evidence showing that the 
interaction between e-bike riders and pedestrian crowds is mutual. 
When pedestrian crowds intensify, the need for greater lateral distance 
becomes apparent, aligning with observed trends. These findings sug
gest that implementing strategies such as dedicated infrastructure 
markings for pedestrians, even in shared spaces, could enhance e-bike 
navigation and contribute to the safety of all road users. 

The global efforts led by planners and policymakers to enhance the 
viability of e-bikes as sustainable transport alternatives to motorised 
vehicles are commendable. Noteworthy initiatives such as trial e-bike 
programs and financial incentives for e-bike acquisitions have been 
documented in the literature (Kazemzadeh and Ronchi, 2022). How
ever, there is an urgent imperative to enhance the experience of e-bike 
users within existing infrastructure and consequently enhance user 
comfort and safety within the transport domain. Our findings under
score the pivotal role of dedicated infrastructure and sharing policies in 
shaping the comfort and experience of e-bike riders, ultimately influ
encing the sustainability of e-bikes as viable alternatives to car trips 
across urban and rural landscapes. Hence, collaborative efforts among 
stakeholders are indispensable in augmenting available infrastructure 
for e-bike riders, fortifying the role of e-bikes in the sustainable transport 
agenda. 

Furthermore, our research highlights discernible disparities in road 
user behaviour based on gender, with female riders exhibiting a more 
cautious approach. This insight holds significant implications for policy 
formulation, emphasising the persistence of gender gaps in comfort 
perceptions, even within dedicated cycling facilities. In alignment with 
broader literature indicating women as underrepresented constituents of 
active mobility, this underscores the imperative of concerted efforts 
toward fostering inclusivity and comfort in cycling environments 
beyond mere infrastructure provision. While dedicated infrastructure is 
crucial for improving overall comfort and safety, addressing gender 
disparities requires additional measures such as targeted education, 
outreach, and community engagement initiatives to ensure that cycling 
environments are inclusive for all users (AitBihiOuali & Klingen,2022). 

Overall, our findings suggest that improving the safety and comfort 
of both e-bike riders and pedestrians in shared spaces, while separating 
them from motorized vehicles, is imperative. The LOS metric plays a 
crucial role in achieving this goal, as it gauges user comfort from the 
perspective of each road user. Our study sheds light on how various 
factors, such as user speed and lateral position, are associated with user 

Table 4 
Model evaluation statistics for the final model specification (N = 876).  

Equation RMSE Chi2 

Eq1: E-bike’s speed as the dependent variable  3.608  72.71 
Eq (2): E-bike’s lateral distance as the dependent variable  0.750  164.91 
Eq 3: Pedestrian crowdedness as the dependent variable  2.945  26.32 

Note: p < 0.01. 
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comfort, offering insights for the development of LOS standards tailored 
to shared spaces. 

6. Overall discussion 

Several studies have explored various facets of e-bikes as a mode of 
transport over recent decades, including modal substitution factors, 
comfort variables, user demographics, and safety concerns (Cherry & 
Cervero, 2007; Fukushige et al., 2021; Soren,2013). However, the 
evaluation of e-bike interactions with other road users remains an area 
necessitating further investigation. It is particularly critical to compre
hend how e-bikes interact with pedestrians during overtaking or 
meeting events, given pedestrians’ lower speeds and vulnerability to 
potential conflicts (Kazemzadeh & Bansal, 2021b). 

This research contributes to the existing literature by meticulously 
analysing the interaction dynamics between e-bikes and pedestrians, 
elucidating the distinct riding and interaction behaviours exhibited by 
different demographic groups. Our findings reveal notable disparities, 
with female riders often exhibiting slightly lower speeds and main
taining smaller lateral distances compared to their male counterparts. 
These insights underscore the significance of demographic consider
ations in facility design and improvement initiatives. While prior 
research has acknowledged gender-based differences in riding behav
iour, our study further underscores and expands upon these disparities 
(Fyhri & Fearnley, 2015). 

Moreover, this study lays the groundwork for the development of 
LOS metrics tailored to e-bikes, offering insights into the interplay be
tween e-bikes and pedestrians. A notable strength of our study in this 
regard lies in its comprehensive consideration of detailed traffic char
acteristics, demographic factors, and riders’ experiences. The classifi
cation of road user interactions based on encounter direction aligns with 
established methodologies for developing LOS metrics, thus offering a 
robust foundation for the formulation of e-bike-specific LOS standards 
(HCM, 2016; Kazemzadeh (2021)). 

Furthermore, our findings can significantly contribute to advancing 
microsimulation research on e-bikes. Specifically, they can facilitate the 
estimation of LOS for new cycling facilities and the evaluation of po
tential impacts resulting from facility improvements. Microsimulation 
models, renowned for their ability to simulate traffic dynamics under a 
myriad of scenarios, offer a powerful tool for predicting how different 
infrastructure configurations and interventions may affect the flow of 
traffic, including e-bikes. By integrating our empirical data into these 
models, researchers can enhance their accuracy and reliability, ulti
mately enabling more informed decision-making in urban planning and 
transport management. 

Moreover, the field validation provided by our study lends further 
credibility to microsimulation models. By comparing the outputs of 
these models with real-world data collected in our experiments, we can 
verify the models’ ability to accurately replicate e-bike interactions in 
shared spaces. This validation process not only enhances the confidence 
in the predictive capabilities of microsimulation models but also un
derscores the practical relevance and applicability of our research 
findings. 

In summary, our research advances the understanding of e-bike in
teractions with pedestrians and lays the groundwork for developing 
tailored LOS metrics and informing microsimulation studies. By 
addressing critical gaps in the existing literature and providing empirical 
insights, our study contributes to the ongoing discourse on enhancing 
the safety, comfort, and efficiency of e-bike transportation within urban 
environments.. 

7. Conclusion and outlook 

The evaluation of simulated interactions, coupled with the consid
eration of joint dependencies among variables, has provided a deeper 
understanding of the complexities of interactions in shared spaces. 

Structural Equation Modelling has offered a holistic view of variables 
when clear cause-effect relationships are not apparent within the model. 
This study takes the initial steps to comprehensively understand how e- 
bikes and pedestrians interact within shared spaces. By conducting a 
controlled experiment, we extracted trajectories of e-bikes and pedes
trians, quantifying their mutual influence during shared space in
teractions. In this model, e-bike speed, e-bike lateral distance, and 
pedestrian crowdedness served as endogenous variables, while pedes
trian age, sex, and e-bike rider experience acted as exogenous variables. 
We considered both same-direction and opposite-direction scenarios to 
compare e-bike-pedestrian interactions comprehensively. It is evident 
that all combinations of considered variables yielded statistically sig
nificant findings, both in the equation-by-equation analysis and in the 
holistic view. 

This study holds practical applications in the realms of safety, 
interaction modelling, and LOS analysis. The findings contribute to a 
better understanding of e-bike and pedestrian interactions, potentially 
aiding in the calibration of microsimulation models. Furthermore, the 
results can inform the calculation of discomfort weights for passing and 
meeting events, facilitating the development of LOS indices tailored to 
shared spaces. 

This study is not without limitations. Firstly, the experiment was 
designed to minimize the influence of confounding variables, such as 
complex road geometry, pavement conditions, and weather, which 
should be considered when generalizing the results. Secondly, this study 
assumes static segments to estimate e-bike and pedestrian characteris
tics, limiting insight into the dynamics of their movements over shorter 
distances. Thirdly, the study only considers the presence of e-bikes and 
pedestrians, overlooking the complexity of shared spaces that also 
accommodate other road users, such as cyclists and e-scooter riders. 
Lastly, while this study primarily focused on analysing interactions from 
a comfort perspective, it is essential to note that these interactions also 
carry safety implications. For instance, analysing interactions could 
contribute to developing surrogate safety measures and facilitate con
flict analysis. However, this study did not comprehensively address 
these safety-related aspects. 

Future research should encompass the presence of emerging trans
port modes like e-scooters in shared spaces and analyse how they impact 
interactions among road users in these facilities (Kazemzadeh et al., 
2023). Additionally, there is a pressing need for the development of LOS 
indices for shared spaces, aiding planners and policymakers in priori
tising improvements and maintenance while informing the design of 
new facilities. Furthermore, detailed experiments are required to un
derstand how factors such as horn usage, the sound of e-bike engines, 
and the perception of high e-bike speeds influence pedestrians’ decisions 
to alter their speed and direction, ultimately affecting their comfort and 
safety. Furthermore, future investigations should broaden their scope to 
include other emerging transport modes, such as e-scooters, within the 
transport network — an aspect that was not addressed in our analysis 
(Kazemzadeh and Sprei, 2024). Exploring the complex interactions 
among multiple transport modes presents a promising research avenue, 
offering insights into the evolving urban mobility landscape and guiding 
future policy intervention. 

This study marks a significant step towards enhancing our compre
hension of shared space dynamics, laying the groundwork for future 
research and practical applications in the field of active mobility and 
transportation planning. 
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