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Abstract: In this paper we study the stochastic Navier–Stokes equations on the d-
dimensional torus with transport noise, which arise in the study of turbulent flows.
Under very weak smoothness assumptions on the data we prove local well-posedness
in the critical case B

d/q−1
q,p for q ∈ [2, 2d) and p large enough. Moreover, we obtain

new regularization results for solutions, and new blow-up criteria which can be seen
as a stochastic version of the Serrin blow-up criteria. The latter is used to prove global
well-posedness with high probability for small initial data in critical spaces in any di-
mensions d � 2. Moreover, for d = 2, we obtain new global well-posedness results and
regularization phenomena which unify and extend several earlier results.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Scaling and criticality . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Overview of the main results . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Statement of the Main Results . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 The Helmholtz projection and function spaces . . . . . . . . . . . . . 8
2.2 Main assumptions and definitions . . . . . . . . . . . . . . . . . . . . 9
2.3 Local existence and regularization . . . . . . . . . . . . . . . . . . . 11
2.4 Stochastic Serrin’s blow-up criteria . . . . . . . . . . . . . . . . . . . 13
2.5 Global well-posedness results . . . . . . . . . . . . . . . . . . . . . . 14

3. Maximal L p-Regularity for the Turbulent Stokes System . . . . . . . . . . 16
3.1 Assumptions and main results . . . . . . . . . . . . . . . . . . . . . 17

Antonio Agresti was partially supported by the Nachwuchsring—Network for the promotion of young
scientists—at TU Kaiserslautern. Mark Veraar was supported by the VIDI subsidy 639.032.427 of the Nether-
lands Organisation for Scientific Research (NWO). Antonio Agresti and Mark Veraar were also supported by
the VICI subsidy VI.C.212.027 of The Netherlands Organisation for Scientific Research (NWO).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-023-04867-7&domain=pdf
http://orcid.org/0000-0002-9573-2962
http://orcid.org/0000-0003-3167-7471


43 Page 2 of 57 A. Agresti, M. Veraar

3.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Proof of Lemma 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. Proofs of the Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Local well-posedness and the proof of Theorem 2.4 . . . . . . . . . . 29
4.2 Higher order regularity and the proof of Theorem 2.7 . . . . . . . . . 35
4.3 Blow-up criteria and proof of Theorem 2.9 . . . . . . . . . . . . . . . 38
4.4 Global well-posedness: Proofs of Theorems 2.11 and 2.12 . . . . . . . 39

Appendix A: Global Well-Posedness for d = 2 with L∞–Noise . . . . . . . . . 46
A.1 Assumptions and main result . . . . . . . . . . . . . . . . . . . . . . 46
A.2 Maximal L2-regularity for the turbulent Stokes system . . . . . . . . 49
A.3 Proof of Theorem A.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1. Introduction

In this paper we provide a comprehensive treatment of (analytically and probabilistically)
strong solutions to stochastic Navier-Stokes equations for turbulent incompressible flows
on the d-dimensional torus T

d :
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du = [
ν�u − (u · ∇)u −∇ p

]
dt +

∑

n�1

[
(bn · ∇)u − ∇ p̃n + gn(u)

]
dwn

t ,

div u = 0,

u(·, 0) = u0.

(1.1)

Here u := (uk)dk=1 : [0,∞) × � × T
d → R

d denotes the unknown velocity field,
p, p̃n : [0,∞) × � × T

d → R the unknown pressures, (wn
t : t � 0)n�1 a given

sequence of independent standard Brownian motions and

(bn · ∇)u :=
( d∑

j=1

b j
n∂ j u

k
)d

k=1
, (u · ∇)u :=

( d∑

j=1

u j∂ j u
k
)d

k=1
.

Actually, we will consider (1.1) in a slightly more general form (see (2.1) below). For
instance we replace ν by variable viscosity in divergence form, and we allow an additional
deterministic forcing term.

The relation between Navier–Stokes equations and hydrodynamic turbulence is one
of the most challenging problems in fluid mechanics. It is believed that the onset of the
turbulence is related to the randomness of background movement. The mathematical
study of stochastic perturbations of Navier–Stokes equations began with the work of
Bensoussan and Temam in [BT73] and it was later extended in several directions, see
e.g. [BCF91,BCF92,BF17,BP00,CP01,Cho78,FG95,IF79,WS00] and the references
therein. In the mathematical literature, usually, the random perturbation of the Navier–
Stokes equations is postulated and does not have a clear physical motivation. In [MR01,
MR04], Mikulevicius and Rozovskii found a new approach to derive the stochastic
Navier–Stokes equations. Indeed, there it is assumed that the dynamics of the fluid
particles is given by the stochastic flow

{
dX (t, x) = u(t,X (t, x)) dt + b(t,X (t, x)) ◦ dW,

X (0, x) = x, x ∈ T
d ,

(1.2)
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whereW and ◦ denote a white-noise and the Stratonovich integration, respectively. Using
Newton’s second law, in [MR04] the authors derived the stochastic Euler and Navier-
Stokes equations “for turbulent flows”, or with transport noise. Roughly speaking, (1.2)
says that the velocity field splits into a sum of slow oscillating part u dt and a fast
oscillating part b ◦ dW . As noticed in [MR04], such splitting can be traced back to
the work of Reynolds in 1880. Closely related models were proposed by Kraichnan
[Kra68,Kra94] in the study of turbulence transportation of passive scalars and then
developed further by other authors, see e.g. [GK96,GV00]. The corresponding theory
of turbulence transportation is called Kraichnan’s theory, and in the latter, one typically
assumes div bn = 0 in D ′(Td) for all n � 1, and for some small γ0 > 0,

b = ((b j
n)

d
j=1)n�1 ∈ Cγ (Td; �2(N�1;Rd)) for all γ < γ0, (1.3)

see e.g. [MR05, Section 1] and [MK99, pp. 426-427 and 436]. The reader is also re-
ferred to [GY21, Section 5] for details on the Kraichnan model. The case γ0 = 2

3 in (1.3)
is related to the Kolmogorov spectrum of turbulence, see [Agr23, Subsection 2.1] and
[MK99, pp. 426]. The reader is referred to [BF20,Fla08,MR01] for additional motiva-
tions. With this application in mind, in the current work, we consider the more general
case of b ∈ Hη,ξ (Td; �2) where H is the Bessel potential space and η > 0, ξ ∈ [2,∞)

satisfy η > d
ξ

. In light of this, the vorticity formulation of (1.1) (i.e. for the unknown
curl u) is in general not available. The reader interested in the Navier-Stokes equations
in vorticity form may consult [Fla11,Fla15,FL21,HLN21] and the references therein.

The problem (1.1) will be considered in the Itô formulation. In the literature the
Stratonovich formulation of (1.1) is also used frequently, see e.g. [DP22,FP22] where the
Navier–Stokes with transport noise in Stratonovich form is derived based on two-scale
type approximations. In the latter case for the transport term one replaces

∑
n�1[(bn ·

∇)u − ∇ p̃n] dwn
t by

∑
n�1[(bn · ∇)u − ∇ p̃n] ◦ dwn

t . In the case g ≡ 0, bn is (t, ω)-
independent and div bn = 0, at least formally,
∑

n�1

[
(bn · ∇)u −∇ p̃n

] ◦ dwn
t =

∑

n�1

[
(bn · ∇)u − ∇ p̃n

]
dwn

t

+
[
div(ab · ∇u)− 1

2

∑

n�1

div(bn ⊗∇ p̃n)−∇q
]

dt,

(1.4)

where ab := ( 1
2

∑
n�1 b

j
nbin)

d
i, j=1, q is a scalar function which can be absorbed into the

(deterministic) pressure p and div(bn ⊗∇ p̃n) = (
∑

j=1 ∂ j (b
j
n∂k p̃n))dk=1. The reader is

referred to [FL21, Subsection 1.3] for details (see also [FGL22, Section 3.1] in absence
of pressure terms). The additional deterministic term on the RHS(1.4) is referred to as the
Itô correction. As recalled before (1.3), the divergence free condition on bn is physically
justified. Since in (2.1) we will also consider the differential operators appearing in
the deterministic part of RHS(1.4), our results also cover the case of transport noise in
Stratonovich form.

It is not possible to discuss all relevant papers on stochastic Navier-Stokes equations
here, and we mostly restrict ourselves to the ones where transport noise is included.
There are several important papers concerned with martingale solutions to (1.1), see e.g.
[BM13,FG95,MR05,MR99] and the references therein. In these papers global existence
is the main point, and uniqueness is open unless d = 2. See also [HLN19] for a rough
path theory approach.
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1.1. Scaling and criticality. Before we discuss some of our main results in more detail,
we will discuss scaling and criticality in case (1.1) is considered on R

d instead of T
d as

the scaling is easier in the R
d -case. This will also motivate the function spaces and the

growth condition on g used in the manuscript. In the deterministic setting (e.g. b ≡ 0
and g ≡ 0), it is well-known that (local smooth) solutions to (1.1) are (roughly) invariant
under the map u 
→ uλ where λ > 0 and

uλ(t, x) = λ1/2u(λt, λ1/2x), (t, x) ∈ R+ × R
d . (1.5)

In the PDE literature (see e.g. [Can04,LR16,PW18,Tri13]), Banach spaces of functions
(locally) invariant under the induced map on the initial data, i.e.

u0 
→ u0,λ where u0,λ := λ1/2u0(λ
1/2·),

are called critical for (1.1). Examples of such critical spaces are the Besov space
Bd/q−1
q,p (Rd;Rd) and the Lebesgue space Ld(Rd;Rd). Indeed, the corresponding ho-

mogeneous spaces satisfy

‖u0,λ‖Ḃd/q−1
q,p (Rd ;Rd )

� ‖u0‖Ḃd/q−1
q,p (Rd ;Rd )

, ‖u0,λ‖Ld (Rd ;Rd ) � ‖u0‖Ld (Rd ;Rd ),

where the implicit constants do not depend on λ > 0.
In the stochastic case a similar behavior appears. More precisely, one can check that if

u is a (local smooth) solution to (1.1) on R
d , then uλ is a (local smooth) solution to (1.1)

on R
d , where (wn)n�1 is replaced by the scaled noise (βn·,λ)n�1 where βn

t,λ := λ−1/2wn
λt

for t � 0 and n � 1. Moreover, the scaling (1.5) also suggests that the nonlinearity gn(u)
has to growth quadratically in u in order to keep the same scaling. Indeed, suppose that
gn(u) = Gn(u, u) where Gn : R

d × R
d → R

d is bilinear. In such a case, roughly
speaking, for all λ > 0, x ∈ R

d and n � 1, it holds that
∫ t/λ

0
gn(uλ(s, x)) dβn

s,λ =
∫ t/λ

0
λGn(uλ(λs, λ

1/2x), uλ(λs, λ
1/2x)) dβn

s,λ

= λ1/2
∫ t

0
Gn(uλ(s, λ

1/2x), uλ(s, λ
1/2x)) dwn

s ,

which agrees with the scaling of the deterministic nonlinearity
∫ t/λ

0

(
uλ(s, x) · ∇

)
uλ(s, x) ds = λ1/2

∫ t

0

(
u(s, λ1/2x) · ∇)

u(s, λ1/2x) ds.

A similar scaling argument also holds for the remaining deterministic and stochastic
integrals. In particular, the b-term has the correct scaling under the map (1.5).

The above discussion shows that the stochastic perturbations of gradient/transport
type and/or of quadratic type in u respect the scaling of the deterministic Navier–Stokes
equations. In the present manuscript we will consider both situations. Furthermore, for
our results to hold, we do not need gn to be bilinear. A quadratic growth condition will
be sufficient.

Finally, we mention that our methods can be also extended to the case where gn
grows more than quadratically. However, the above scaling argument fails, and the
corresponding critical spaces change accordingly to the growth of gn (see [AV22a,
Subsection 5.2] for related results). Since we are not aware of physical motivations for
such behaviour of gn , we leave the details to the interested reader.
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1.2. Overview of the main results. The aim of this paper is to provide a first systematic
treatment of the stochastic Navier–Stokes equations (1.1) arising in study of turbulent
flows in the strong setting (more precisely Lq(Hs,q)-setting). Below we briefly list our
main results.

(a) Local well-posedness in critical spaces (Theorem 2.4).
(b) Regularization with optimal gain in the Sobolev scale (Theorems 2.4 and 2.7).
(c) Stochastic Serrin’s blow-up criteria (Theorem 2.9).
(d) Global well-posedness for small data in critical spaces (Theorem 2.11).
(e) Global well-posed in case d = 2 with rough data (Theorem 2.12).

(a): In Theorem 2.4 (see also Theorem 4.1) we show existence of strong unique solu-
tions to (1.1) for initial values u0 belonging to the critical Besov space Bd/q−1

q,p (Td;Rd),
where q varies in a certain range (depending on the smoothness of bn) and p < ∞
can be chosen as large as one wants. The embedding Ld(Td;Rd) ↪→ B0

d,p(T
d;Rd) for

p � d shows that our results also hold for the critical space Ld(Td;Rd). Let us remark
that, in all cases, we have the restriction q < 2d and therefore we allow critical spaces
with smoothness up to − 1

2 . We are not aware of the optimality of this threshold. Note
that this behavior differs from the deterministic case where q can be chosen to be large.
Next we compare the result of Theorem 2.4 to the existing literature. In [MR04] the
authors showed (local) existence of strong solutions to (1.1) on R

d for divergence free
vector field for initial values from the (non critical) space W 1,q(Rd ;Rd) with q > d
under a restrictive assumption on the regularity of b. In particular, the smoothness as-
sumption there does not satisfy (1.3) if γ0 is small. Existence of strong solutions to (1.1)
in an L p(Lq)-setting has been also considered in [DZ20,Wan20]. However, in the latter
references, the Kraichnan term (bn · ∇)u is not included.

(b): One question which will be answered in this paper is how the regularity of bn
affects the regularity of u. The term (bn · ∇)u suggests that u can gain at most one order
of smoothness compared to bn . In Theorem 2.7 we prove an optimal gain of regularity
in the Sobolev scale, i.e. for all η > 0 and ξ ∈ [2,∞) we have

(b j
n)n�1 ∈ Hη,ξ (Td; �2) �⇒ u ∈ Lr

loc(0, σ ; Hη+1,ξ (Td;Rd)) a.s.

where r ∈ (2,∞) is arbitrary and σ denotes the explosion time of u. In the Hölder scale,
by Remark 2.2 and Theorem 2.7, we prove a sub-optimal gain of regularity, i.e. for all
η > 0 and ε > 0 and θ ∈ (0, 1/2) we have

(b j
n)n�1 ∈ Cη(Td; �2) �⇒ u(t) ∈ Cθ,1+η−ε

loc ((0, σ )× T
d;Rd) a.s.

The above results are new even in the important case d = 2 where σ = ∞ a.s. Indeed,
for (b j

n)n�1 ∈ Cη(Td; �2) with η > 0 small, the regularization cannot be proved with
classical bootstrap methods, see the text below Theorem 2.12. However, in the case bn
is regular enough, (some) gain of regularity can be proved by standard methods (see e.g.
[Mik09]) or via the previously mentioned vorticity formulation of (1.1). But for rough
(b j

n)n�1 these approaches are not applicable.
(c): To the best of our knowledge, blow-up criteria for stochastic Navier–Stokes

equations have not been studied so far in the literature. In Theorem 2.9 we provide an
extension to the classical Serrin’s criteria (see e.g. [LR16, Theorem 11.2]).

(d): In Theorem 2.11 we prove existence for large times in probability of smooth
solutions to (1.1) under smallness assumptions on u0 and on the additive part of gn . In
deterministic framework this result is well-known and for H1/2-data (here d = 3) is
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due to Fujita and Kato in the seminal paper [FK64]. Later the latter was extended to
Bd/q−1
q,p -data and even to BMO−1-data by Koch and Tataru [KT01]. In the stochastic

framework, under smallness assumptions on the noise, some results in this direction can
be found in [DZ20,Kim10,KXZ21]. Note that in [DZ20,KXZ21] the transport noise
term (bn · ∇)u is not allowed, and in [Kim10] a small transport noise term can be used,
where an additional smallness condition on the data is used, but in a non critical space.
In Theorem 2.11 we are able to give an extension of the previous results, where we also
allow b to be not small and gn of quadratic type. As in (a), the smallness condition on
u0 is given in a Bd/q−1

q,p -norm with smoothness up to − 1
2 .

(e): In Theorem 2.12 we prove global existence for (1.1) for initial data which
are much rougher than data from the usual energy space L2(T2;R2). More precisely,
we prove the existence of ζ ∈ (2, 4) (depending on the smoothness of bn) such that
(1.1) is globally well-posed for data in B2/ζ−1

ζ,p (T2;R2) where p < ∞ is large. Since

L2(T2;R2) ↪→ B2/ζ−1
ζ,p (T2;R2) for p � 2, this result extends the well-known global

existence result for L2-data in two dimensions. For the reader’s convenience, we also
provide a self-contained proof of the latter result in Appendix A which also improves
and unifies several existing results, see Remark A.4. In the deterministic case similar
results have been shown in [GP02], and also for rough forcing terms in [BF09].

To prove our main results we apply the full power of the local well-posedness theory
which we recently developed in [AV22a] together with the blow-up criteria and new
bootstrapping techniques of our paper [AV22b]. In these works we completely revised
the theory of abstract stochastic evolution equations for semi- and quasi-linear parabolic
SPDEs, and is the stochastic analogue of [PSW18] by Prüss, Simonett and Wilke. One of
the main ingredients in our theory is the so-called stochastic maximal L p-regularity for
the linear part, which we prove in an Hs,q -setting. In case of the Navier-Stokes equations
this linear part is the turbulent Stokes system, for which we will prove stochastic maximal
L p-regularity in an Hs,q(Td;Rd)-setting in Sect. 3, and it can be seen as one of the main
result of our work as well.

1.3. Notation. Here we collect some notation which will be used throughout the paper.
Further notation will be introduced where needed. As usual, we write A �P B (resp.
A �P B) whenever there is a constant C only depending on the parameter P such
that A � CB (resp. A � CB). We write CP or C(P) if C depends only on P . Let
a∨b = max{a, b} and a∧b = min{a, b}where a, b ∈ R. For a (Y,dY ) a metric space,
we set BY (y, η) := {y′ ∈ Y : dY (y, y′) < η}.

For a, κ ∈ R, the weights will be denoted by wa
κ = |t − a|κ and wκ := w0

κ . For a
Banach space X , a, b ∈ R and an interval (a, b) ⊆ R+, L p(a, b, wa

κ ; X) denotes the set
of all strongly measurable maps f : (a, b)→ X such that

‖ f ‖L p(a,b,wa
κ ;X) :=

( ∫ b

a
‖ f (t)‖pX wa

κ (t) dt
)1/p

<∞.

Moreover, W 1,p(a, b, wa
κ ; X) ⊆ L p(a, b, wa

κ ; X) denotes the set of all f such that
f ′ ∈ L p(a, b, wa

κ ; X) and we set

‖ f ‖W 1,p(a,b,wa
κ ;X) := ‖ f ‖L p(a,b,wa

κ ;X) + ‖ f ′‖L p(a,b,wa
κ ;X).
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Let [·, ·]θ and (·, ·)θ,p be the complex and real interpolation functor, see e.g. [BL76,
Tri95]. For each θ ∈ (0, 1), we set

H θ,p(a, b, wa
κ ; X) := [L p(a, b, wa

κ ; X),W 1,p(a, b, wa
κ ; X)]θ .

The above spaces can also be equivalently introduced by using Fourier methods on R

and restrictions, see e.g. [ALV23, Definition 3.1] and the references therein.
For A ∈ {L p, H θ,p}, we denote by Aloc(a, b; X) (resp. Aloc([a, b); X)) the set

of all strongly measurable maps f : (a, b) → X such that f ∈ A(c, d; X) for all
a < c < d < b (resp. f ∈ A(a, d; X) for all a < d < b).

The d-dimensional torus is denoted by T
d . Form � 1 and s, r ∈ (0, 1),Cs,r

loc ((a, b)×
T
d;Rm) denotes the space of all maps v : (a, b)×T

d → R
m such that for all a < a′ <

b′ < b we have

|v(t, x)− v(t ′, x ′)| �a′,b′ |t − t ′|s + |x − x ′|r , t, t ′ ∈ [a′, b′], x, x ′ ∈ T
d .

Finally, we collect the main probabilistic notation. Through the paper, we fix a filtered
probability space (�,A , (Ft )t�0,P) and we let E[·] := ∫

�
· dP. A mapping τ : �→

[0,∞] is said to be a stopping time if {τ � t} ∈ Ft for all t � 0. For a stopping time τ
we let

[0, τ ] ×� := {(t, ω) : 0 � t � τ(ω)}.
Similar definitions hold for [0, τ ) × �, (0, τ ) × � etc. P denotes the progressive σ -
algebra on the above mentioned filtered probability space.

2. Statement of the Main Results

In this section we state our main results on the following stochastic Navier–Stokes
equations on the d-dimensional torus T

d

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du =
[
div(a · ∇u)− div(u ⊗ u) + f0(·, u) + div( f (·, u))

−∇ p + ∂h p̃ + ∂2
c p̃

]
dt

+
∑

n�1

[
(bn · ∇)u + gn(·, u)− ∇ p̃n

]
dwn

t ,

div u = 0,

u(·, 0) = u0,

(2.1)

where we have rewritten the convective term (u ·∇)u in (1.1) in the standard conservative
form div(u ⊗ u). Here u = (uk)dk=1 : [0,∞)×�× T

d → R
d is the unknown velocity

field, p, p̃n : [0,∞)×�× T
d → R the unknown pressures, (wn)n�1 is a sequence of

standard independent Brownian motions on the previously mentioned filtered probability
space (�,A , (Ft )t�0,P), u ⊗ u := (uiu j )di, j=1,

div(a · ∇u) =
( d∑

i, j=1

∂i (a
i, j∂ j u

k)
)d

k=1
, ∂h p̃ =

( ∑

n�1

d∑

j=1

h j,k
n ∂ j p̃n

)d

k=1
,

(bn · ∇)u =
( d∑

j=1

b j
n∂ j u

k
)d

k=1
, ∂2

c p̃ =
( ∑

n�1

d∑

j=1

∂ j (c
j
n∂k p̃n)

)d

k=1
,

(2.2)
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and div( f (·, u)) = ( ∑d
j=1 ∂ j ( f

k
j (·, u))

)d
k=1. Here ai j , b j

n , h
j,k
n , c jn are given functions.

As explained near (1.3) the b j
n are used to model turbulence. The ai j model a variable

viscosity term and may also take into account Itô’s corrections in case of transport noise
in Stratonovich form, see (1.4) and the discussion below it. Finally, ∂h p̃ and ∂2

c p̃ model
the effect of the turbulent part of the pressure p̃n (see [MR04, Example 1] and again
the discussion on the Stratonovich formulation near (1.4)). In case of Itô noise one can
take c jn = 0, and in case of Stratonovich noise it is natural to take c jn = − 1

2b
j
n . The

additional forcing terms f0(u) and div( f (·, u)) can be used to model the effect of gravity
or the Coriolis force. For simplicity, we do not consider lower-order terms in the leading
differential operators in (2.1), see below Theorem 3.2 for some comments.

This section is organized as follows. In Sects. 2.1 and 2.2 we fix our notation and
describe the spaces in which we consider (2.1). In Sect. 2.3 we present local existence and
regularization phenomena for solutions to (2.1) with u0 in critical spaces (see Theorem
2.4), in Sect. 2.4 we state a stochastic version of the Serrin’s criteria and in Sect. 2.5 we
state our global existence result for small initial data if d � 3, and for general rough
initial data if d = 2. The proofs will be given Sect. 4.

Let us emphasise that even in the case ai j = δi, j , f0 = 0, f = 0, hi, jn = 0, cn = 0
and with either b �= 0 or g �= 0, our well-posedness and regularity results are new:

• The wide class of initial data we can treat has not been considered before.
• New higher order regularity results are proved.

Finally, the global well-posedness result for d = 2 is also new even with the above
simplifications.

2.1. The Helmholtz projection and function spaces. For any s ∈ R, p ∈ [1,∞], q ∈
(1,∞) and integers d,m � 1, let Lq(Td;Rm), Hs,q(Td;Rm) and Bs

q,p(T
d;Rm) denote

the Lebesgue, Bessel-potential and Besov spaces on T
d with values in R

d , respectively.
The reader is referred to [ST87, Chapter 3] for details on periodic function spaces.

We denote by P the Helmholtz projection which, for f = ( f n)dn=1 ∈ C∞(Td;Rd)

and n ∈ {1, . . . , d}, is given by P f = ((P f )n)dn=1 where

(P̂ f )n(k) := f̂ n(k)−
d∑

j=1

k j kn
|k|2 f̂ j (k), k ∈ Z

d \ {0}, (P̂ f )n(0) := f̂ n(0). (2.3)

Here, f̂ (k) denotes the k-th Fourier coefficient of f . Note that div (P f ) = 0 for all
f ∈ C∞(Td;Rd), and by duality P : D ′(Td;Rd)→ D ′(Td;Rd) where D(Td;Rd) =
C∞(Td;Rd). Moreover, by standard Fourier multiplier theorems (see [HNVW16, The-
orem 5.7.11]), P restricts uniquely to a bounded linear operator

P : Hs,q(Td;Rd)→ Hs,q(Td;Rd) for s ∈ R, q ∈ (1,∞). (2.4)

For (s, q) as in (2.4) and Y ∈ {Lq , Hs,q , Bs
q,p}, we set

Y(Td) :=
{
f ∈ Y(Td;Rd) : div f = 0 in D ′(Td)

}
, ‖ f ‖Y(Td ) := ‖ f ‖Y(Td ;Rd ).

(2.5)
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Note that Y(Td) = P(Y(Td;Rd)) for Y ∈ {Lq , Hs,q , Bs
q,p} and s, q as above. By

standard interpolation theory (see [ST87, Chapter 3.6] and [Tri95, Theorem 1.2.4])

H
s,q(Td) = [Hs0,q(Td),Hs1,q(Td)]θ ,

B
s
q,p(T

d) = (Hs0,q(Td),Hs1,q(Td))θ,p,
(2.6)

for all s0, s1 ∈ R, θ ∈ (0, 1), s := (1− θ)s0 + θs1 and p, q ∈ (1,∞).

2.2. Main assumptions and definitions. Here we collect the main assumptions and def-
initions. Further hypotheses will be given where needed. Below P and B denotes the
progressive and Borel σ -algebra, respectively.

Assumption 2.1. Let d � 2. We say that Assumption 2.1(p, κ, q, δ) holds if δ ∈
(−1, 0], and one of the following two is satisfied:

• q ∈ [2,∞), p ∈ (2,∞) and κ ∈ [0, p
2 − 1);

• q = p = 2 and κ = 0,

and the following conditions hold:

(1) For all i, j ∈ {1, . . . , d} and n � 1, the mappings ai, j , b j
n , h

i, j
n , c jn : R+×�×T

d →
R are P ⊗B(Td)-measurable.

(2) There exist M > 0 and η > max{d/ξ,−δ}, with ξ ∈ [2,∞) such that, a.s. for all
t ∈ R+ and i, j ∈ {1, . . . , d},

‖ai, j (t, ·)‖Hη,ξ (Td ) + ‖(b j
n(t, ·))n�1‖Hη,ξ (Td ;�2)

+ ‖(c jn(t, ·))n�1‖Hη,ξ (Td ;�2) + ‖(hi, jn (t, ·))n�1‖Hη,ξ (Td ;�2) � M.

(3) There exists ν > 0 such that, a.s. for all t ∈ R+, ϒ = (ϒi )
d
i=1 ∈ R

d and x ∈ T
d ,

d∑

i, j=1

[
ai, j (t, x)− 1

2

( ∑

n�1

bin(t, x)b
j
n(t, x)

)]
ϒiϒ j � ν|ϒ |2.

(4) For all j ∈ {0, . . . , d} and n � 1, the maps f j , gn : R+ ×�× T
d × R

d → R
d are

P ⊗B(Td × R
d)-measurable.

(5) For all j ∈ {0, . . . , d}, f j (·, 0) ∈ L∞(R+×�×T
d;Rd), (gn(·, 0))n�1 ∈ L∞(R+×

�× T
d; �2), and a.s. for all t ∈ R+, x ∈ T

d and y, y′ ∈ R
d ,

| f j (t, x, y)− f j (t, x, y
′)| + ‖(gn(t, x, y)− gn(t, x, y

′))n�1‖�2

� (1 + |y| + |y′|)|y − y′|.
The parameter p will be used for L p-integrability in time with weight tκ dt . The

parameter q will be used for integrability in space with Sobolev smoothness 1 + δ. In
the main results below we will always use δ ∈ [− 1

2 , 0]. However, in Sect. 4 we will also
consider δ ∈ (−1, 0]. By Sobolev embeddings and Assumption 2.1(2) we have

‖ai, j‖
C
η− d

ξ (Td )
+ ‖(b j

n)n�1‖
C
η− d

ξ (Td ;�2)
�η,ξ M. (2.7)

The same also holds for (h j,k
n )n�1 and (c jn)n�1. Below, we often write b j := (b j

n)n�1

and similar for g j , hi, j , c j for convenience.
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Remark 2.2. • If Assumption 2.1 holds for δ = 0, then it also holds for some δ < 0.
• The regularity assumption on ai, j , b j in (2) also fit naturally in the case of stochastic
Navier–Stokes equations in Stratonovich form, see (1.4) and the text below it. Indeed,
if b j ∈ Hη,ξ (Td; �2) uniformly in (t, ω), then by (2.7) and [AV21, Proposition
4.1(1)] the coefficients of the divergence operator in the Itô correction satisfy ai, jb =
1
2

∑
n�1 b

i
nb

j
n ∈ Hη,ξ (Td) and (c jn)n�1 = (− 1

2b
j
n)n�1 ∈ Hη,ξ (Td; �2) both with

norm estimates uniform in (t, ω).
• Assumption 2.1 also covers the case of b j with γ -Hölder smoothness which is the
natural one as explained around (1.3). Indeed, Cγ (Td; �2) ↪→ Hη,ξ (Td; �2) for all
γ > η and ξ ∈ (1,∞). Note that typically γ ∈ (0, 1) is small in applications. A
similar remark holds for ai, j .
• The quadratic growth of f j and gn shows that we can allow nonlinearities which
are as strong as the convection term div(u ⊗ u) (see Sect. 1.1). Moreover, the proofs
show that also nonlocal nonlinearities f j and gn can be used as long as the estimates
of Lemma 4.2 hold.

To introduce the notion of solutions to (2.1) we rewrite it as a stochastic evolution
equation for the unknown velocity field u. To this end, to have a divergence free stochastic
part we need

∇ p̃n = (I − P)
[
(bn · ∇)u + gn(·, u)

]

where I is the identity operator. Therefore, letting h·,kn := (h j,k
n )dj=1 and setting f̃ :=

( f̃ k)dk=1,

f̃ k(·, u) :=
∑

n�1

[
(I − P)

[
(bn · ∇)u + gn(·, u)

]] · h·,kn

+
∑

n�1

div
(
cn

(
(I − P)

[
(bn · ∇)u + gn(·, u)

])k
)
, (2.8)

we have f̃ (·, u) = ∂h p̃ + ∂2
c p̃. As above, (·) j denotes the j-th component.

Applying the Helmholtz projection to the first equation in (2.1), at least formally, the
system (2.1) is equivalent to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du = P
[
div(a · ∇u)− div(u ⊗ u) + f0(·, u) + div( f (·, u)) + f̃ (·, u)] dt

+
∑

n�1

P
[
(bn · ∇)u + gn(·, u)

]
dwn

t ,

u(·, 0) = u0.

(2.9)

We are in position to define solutions to (2.1). We recall that the sequence of indepen-
dent Brownian motions (wn)n�1 induces uniquely an �2-cylindrical Brownian motion
W�2 (see e.g. [AV22a, Example 2.12]).

Definition 2.3. Let Assumption 2.1(p, κ, q, δ) be satisfied.

(1) Let σ be a stopping time and u : [0, σ )×�→ H
1+δ,q(Td) be a stochastic process.

(u, σ ) is called a local (p, κ, q, δ)-solution to (2.1) if there exists a sequence of
stopping times (σ j ) j�1 such that the following hold.
• σ j � σ a.s. for all j � 1 and lim j→∞ σ j = σ a.s.;
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• For all j � 1, the process 1[0,σ j ]×�u is progressively measurable;
• a.s. for all j � 1, we have u ∈ L p(0, σ j , wκ ;H1+δ,q(Td)) and

−div(u⊗u) + f0(·, u) + div( f (·, u)) + f̃ (·, u)∈L p(0, σ j , wκ ; H−1+δ,q(Td;Rd)),
(
gn(·, u)

)

n�1∈L p(0, σ j , wκ ; H δ,q(Td; �2(Rd))).

(2.10)
• a.s. for all j � 1 the following equality holds for all t ∈ [0, σ j ]:

u(t)− u0 =
∫ t

0
P
[
div(a · ∇u)− div(u ⊗ u)+ f0(·, u)+ div( f (·, u))+ f̃ (·, u)] ds

+
∫ t

0

(
1[0,σ j ]P

[
(bn · ∇)u + gn(·, u)

])

n�1 dW�2(s).

(2.11)
(2) (u, σ ) is called a (p, κ, q, δ)-solution to (2.1) if for any other local (p, κ, q, δ)-

solution (v, τ ) to (2.1) we have τ � σ a.s. and u = v a.e. on [0, τ )×�.
(3) A (p, κ, q, δ)-solution (u, σ ) is called global (in time) if σ = ∞ a.s.

Note that (p, q, δ, κ)-solutions are unique by definition. By Assumption 2.1 and
[AV21, Proposition 4.1], a.s. for all j � 1,

div(a · ∇u) ∈ L p(0, σ j , wκ ; H−1+δ,q(Td;Rd)),
(
(bn · ∇)u

)

n�1 ∈ L p(0, σ j , wκ ; H δ,q(Td; �2(Rd))).

Thus the deterministic integrals in (2.11) are well-defined as Bochner integrals with
values in H−1+δ,q(Td;Rd). The stochastic integral is well-defined as an H δ,q(Td;Rd)-
valued stochastic integral (see e.g. [NVW15, Theorem 4.7] and use the identity (4.7)
below). In case of global (p, κ, q, δ)-solutions we simply write u instead of (u, σ ).

Suppose that Assumption 2.1 holds and (p, κ, δ, q) satisfies (4.3). If one has

u ∈
⋂

θ∈[0,1/2)

H θ,p(0, σ j , wκ ;H1+δ−2θ,q(Td)) a.s. for all j � 1, (2.12)

then from Step 1 of Theorem 4.1 and [AV22a, Lemma 4.10 and 4.12], one can see that
(2.10) holds.

2.3. Local existence and regularization. The following is our main local well-posedness
result. It is formulated for the space of critical initial data. The general case is covered by
Theorem 4.1, where δ ∈ (−1, 1/2) is included as well. Global well-posedness for small
initial data will be discussed afterwards in Theorem 2.11, and the special case d = 2 is
considered in Theorem 2.12.

Theorem 2.4 (Local well-posedness). Let Assumption 2.1(p, κ, q, δ) be satisfied and
suppose that one of the following conditions holds:

• δ ∈ [− 1
2 , 0], d

2+δ < q < d
1+δ ,

2
p + d

q � 2 + δ, and κ = κc = −1 + p
2

(
2 + δ − d

q

)
;

• δ = κ = κc = 0 and p = q = d = 2.
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Then for all u0 ∈ L0
F0

(�;B
d
q−1
q,p (Td)), (2.1) has a unique (p, κc, q, δ)-solution (u, σ )

such that a.s. σ > 0 and

u ∈ L p
loc([0, σ ), wκc;H1+δ,q(Td)) ∩ C([0, σ );B

d
q−1
q,p (Td)). (2.13)

Moreover, (u, σ ) instantaneously regularizes in time and space: a.s.

u ∈ H θ,r
loc (0, σ ;H1−2θ,ζ (Td)) for all θ ∈ [0, 1/2), r, ζ ∈ (2,∞), (2.14)

u ∈ Cθ1,θ2
loc ((0, σ )× T

d;Rd) for all θ1 ∈ [0, 1/2), θ2 ∈ (0, 1). (2.15)

In case p > 2, one can check that by the conditions on p and q one has κc ∈ [0, p
2 −

1). The assertions (2.14)–(2.15) show an instantaneous regularization for solutions to
(2.1). By Sobolev embedding one can check that (2.14) implies (2.15). In particular, u
becomes almost C1 in space for rough initial data u0, rough coefficient ai j , hi j , and
rough nonlinearities f0, f and g. If η > max{d/ξ, 1/2} in Assumption 2.1, then we can
set δ = −1/2, and therefore taking q ↑ 2d it suffices to know that for some p > 2 and
ε > 0,

u0 ∈ L0
F0

(�;Bε− 1
2

2d,p(T
d)).

It would be interesting to know whether this is optimal.

Remark 2.5. (1) If p > 2, then it follows from the proof of Theorem 2.4 that the following
weighted regularity holds up to t = 0:

u ∈ H θ,p
loc ([0, σ );wκc;H1+δ,q(Td)) for all θ ∈ [0, 1/2).

(2) Similar to [AV23, Proposition 2.9], the solution provided by Theorem 2.4 depends
continuously on the initial data on a small random time interval.

(3) As in [AV23, Proposition 3.5], compatibility with respect to the parameters (p, δ, q)
holds, i.e. different choices of (p, δ, q) lead to the same solution in Theorem 2.4.

(4) (Ld -data). Setting q = d it follows from Ld(Td;Rd) ↪→ B0
d,p(T

d;Rd) for p ∈
[d,∞) that Theorem 2.4 (with δ < 0) also applies to initial data from the scaling
invariant space L0

F0
(�;Ld(Td)), see Sect. 1.1. By Remark 2.2, it is enough to know

that Assumption 2.1(p, κ, d, 0) holds where κ = −1 + p
2 (1 + δ) and p � d.

Next we consider higher order regularity. We are particular interested in studying
how the regularity of bn in the transport term (bn · ∇)u affects the regularity of u. One
could expect that u gains one order of smoothness compared to (bn)n�1, i.e. ∇u is as
smooth as (bn)n�1. The following result shows that this is indeed the case. Of course
in order to prove such a result we also need further smoothness of the nonlinearities
f0, f, g. We emphasize that we do not impose further conditions on the initial data u0.

The next assumption roughly says that f0 and ( f, gn) are C�η� and C�η+1� in the
y-variable, respectively; where η > 0 is some fixed number (here �n� := n + 1 if n is
an integer).

Assumption 2.6. Let η > 0, f0, f and gn be as in Assumption 2.1. Suppose that f0, f
and gn are x-independent. Moreover, assume that, for all n � 1 and a.e. on R+×�, the
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mappings f0 and ( f, gn) are C�η� and C�η+1� in y, respectively; and for all N � 1 there
exists CN > 0 such that, a.e. on R+ ×�,

�η�∑

j=1

|∂ j
y f0(·, y)| +

�η+1�∑

j=1

(|∂ j
y f (·, y)| + ‖(∂ j

y gn(·, y))n�1‖�2
)

� CN for |y| � N .

Theorem 2.7 (Higher order regularity). Let the assumptions of Theorem 2.4 be satisfied,
where (η, ξ) are such that Assumption 2.1(2) holds, i.e. η > max{d/ξ,−δ}, ξ ∈ [2,∞),
and there exists M > 0 such that, for all t ∈ R+ and a.s.,

‖ai, j (t, ·)‖Hη,ξ (Td ) + ‖(b j
n(t, ·))n�1‖Hη,ξ (Td ;�2)

+ ‖(c jn(t, ·))n�1‖Hη,ξ (Td ;�2) + ‖(hi, jn (t, ·))n�1‖Hη,ξ (Td ;�2) � M.

Furthermore, suppose that Assumption 2.6 holds for such η > 0. Let (u, σ ) be the
(p, κc, q, δ)-solution to (2.1) provided by Theorem 2.4. Then, a.s.,

u ∈ H θ,r
loc (0, σ ;H1+η−2θ,ξ (Td)) for all θ ∈ [0, 1/2), r ∈ (2,∞), (2.16)

u ∈ C
θ1,θ2+η− d

ξ

loc ((0, σ )× T
d;Rd) for all θ1 ∈ [0, 1/2), θ2 ∈ (0, 1). (2.17)

From the above theorem one can see how the regularity and integrability of order η
and ξ of the coefficients appear in (2.16) and (2.17). In particular, (2.16) with θ = 0
shows that the regularity of u is one order higher than the regularity of (a, b, h, c). Under
additional smoothness conditions in space, one can also allow x-dependent f0, f and
gn in the above.

Remark 2.8. If u0 ∈ L0
F0

(�;B1+η− 2
r

ξ,r (Td)) for some fixed r ∈ (2,∞), then one can
check from the proofs that the regularity result (2.16) (for the fixed r ) holds locally on
[0, σ ) instead of (0, σ ). However, this will not be used in the sequel.

2.4. Stochastic Serrin’s blow-up criteria. In this section we state some blow-up criteria
for (2.1) which can be seen as a stochastic analogue of the Serrin’s criteria for Navier-
Stokes equations (see e.g. [LR16, Theorem 11.2]).

Theorem 2.9 (Stochastic Serrin’s criteria). Let the conditions of Theorem 2.4 be sat-
isfied and let (u, σ ) be the (p, κc, q, δ)-solution to (2.1). Suppose that Assumption
2.1(p0, 0, q0, δ0) holds in one of the following cases:

• δ0 ∈ [− 1
2 , 0], d

2+δ0
< q0 <

d
1+δ0

and 2
p0

+ d
q0

� 2 + δ0;
• δ0 = 0 and p0 = q0 = d = 2.

Then for each 0 < ε < T <∞:

P
(
ε < σ < T, ‖u‖L p0 (ε,σ ;Hγ0,q0 (Td ;Rd )) <∞

)
= 0, where γ0 = 2

p0
+
d

q0
−1. (2.18)

In particular, for all 0 < ε < T <∞ the following hold:

(1) P
(
ε < σ < T, sup

t∈[ε,σ )
‖u(t)‖

B
d/q0−1
q1,∞ (Td ;Rd )

<∞
)
= 0 if q1 > q0;
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(2) P
(
ε < σ < T, ‖u‖L p0 (ε,σ ;Lq0 (Td ;Rd )) <∞

)
= 0 if p0 satisfies 2

p0
+ d

q0
= 1.

Item (2) is the stochastic version of the well–known Serrin’s criterion. It is a special
case of (2.18) where we can even allow negative smoothness. In particular, one can take
p0 = p, q0 = q and δ0 = δ, but the above formulation is much more flexible as it
allows us to transfer information on σ between different settings. An interesting choice
is p0 = q0 = 2 and δ0 = 0 in case d = 2, and will be used in Theorem 2.12 for d = 2.
Note that by (2.14)-(2.15), the paths of u are regular enough on (0, σ ) to consider any
of the above norms.

Remark 2.10. (1) Choosing q0, p0 large enough, one has 2
p0

+ d
q0

< 1 (thus γ0 < 0) and
(2.18) provides blow-up criteria in spaces of negative smoothness. The same holds
for (1) if q0 > d. To see how far one can go note that for δ0 = − 1

2 and q0 → 2d,
p0 →∞ one would obtain d

q0
− 1 →− 1

2 in (1) and γ0 →− 1
2 in (2.18).

(2) The space-time Sobolev index (keeping in mind the parabolic scaling) of the space
L p0(0, t; Hγ0,q0) appearing in (2.18) and (2) is given by − 2

p0
+ γ0 − d

q0
= −1. The

latter is equivalent to the Sobolev index of the space of initial data B
d/q−1
q,p (Td), which

means that these blow-up criteria are optimal. In contrary, the space-time Sobolev
index of L∞(0, t; Bd/q0−1

q1,p0 ) in (1) is given by d
q0
−1− d

q1
> −1 which is sub-optimal.

We do not know if (1) holds in the borderline case q1 = q0.

In the deterministic setting, blow-up criteria in the critical space L3 (here d = 3
for simplicity) are known to be valid even with quantitative growth assumption in the
L∞(ε, σ ; L3)-norm, see [Tao21, Theorem 1.4]. It would be interesting to extend Theo-
rem 2.9 into this direction by exploiting the structure of the equation (2.1).

2.5. Globalwell-posedness results. Global well-posedness for the deterministic Navier–
Stokes equations is known for small initial data. The next result is its stochastic analogue.

Theorem 2.11 (Global well-posedness for small and rough initial data). Let Assumption
2.1(p, κ, q, δ) be satisfied and suppose that one of the following conditions holds:

• δ ∈ [− 1
2 , 0], d

2+δ < q < d
1+δ ,

2
p + d

q � 2 + δ, and κ = κc = −1 + p
2

(
2 + δ − d

q

)
;

• δ = κ = κc = 0 and p = q = d = 2.

Assume that there are M1,M2 > 0 such that, a.s. for all t � 0, x ∈ T
d and y ∈ R

d ,

d∑

j=0

| f j (t, x, y)| + ‖(gn(t, x, y))n�1‖�2 � M1 + M2(|y| + |y|2). (2.19)

Fix u0 ∈ L p
F0

(�;B
d
q−1
q,p (Td)) and let (u, σ ) be the (p, κc, q, δ)-solution to (2.1) provided

by Theorem 2.4. For each ε ∈ (0, 1) and T ∈ (0,∞) there exists a constant Cε,T > 0,
independent of u0, such that the following assertions hold provided

E‖u0‖p
Bd/q−1
q,p (Td ;Rd )

+ Mp
1 � Cε,T .

(1) (u, σ ) exists up to time T with probability > 1− ε, i.e. P(σ � T ) > 1− ε.
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(2) There exists a stopping time τ ∈ (0, σ ] a.s. such that P(τ � T ) > 1− ε and

E
[
1{τ�T }‖u‖pH θ,p(0,T,wκc ;H1+δ−2θ,q (Td ;Rd ))

]
�θ E‖u0‖p

Bd/q−1
q,p (Td ;Rd )

+ M1

for all θ ∈ [0, 1
2 ), where in case p = q = d = 2 and θ > 0 the LHS of the above

estimate should be replaced by E
[
1{τ�T }‖u‖2

C([0,τ ];L2)

]
.

Recall that L
d(Td) ↪→ B

0
d,p(T

d) for all p � d, see Remark 2.5(4). Thus Theorem
2.11 also proves existence for large times with high probability under a smallness as-
sumption on u0 in the scaling invariant Lebesgue space L

d(Td) provided M1 is small
as well.

Next we turn our attention to the two-dimensional setting in which one can avoid
smallness of the initial data. A variation of a classical result for L

2-initial data can be
found in Theorem A.3 in the appendix, where the results are partly based on [AV22a].
The main new contributions in the result below are:

• We obtain global existence for initial data from B
2/q−1
q,p (T2) for suitable p ∈ [2,∞)

and q ∈ [2, 4). By Sobolev embedding the latter space contains L
2(T2). By the

restriction q < 4 below, we see that we can allow smoothness of negative order
− 1

2 + ε for any ε > 0.

• We prove arbitrary spatial regularity, and time regularity of order C
1
2−ε for any

ε > 0, where the initial data is still assumed to be irregular.

Theorem 2.12 (Global well-posedness in two dimensions with rough initial data). Let
d = 2. Suppose that Assumption 2.1(p, κ, q, δ) holds and that for all n � 1, j ∈
{1, . . . , d}

c jn = αnb
j
n for some αn ∈ [− 1

2 ,∞). (2.20)

Assume that one of the following conditions holds:

• δ ∈ [− 1
2 , 0], 2

2+δ < q < 2
1+δ ,

2
p + 2

q � 2 + δ, and κ = κc = −1 + p
2

(
2 + δ − 2

q

)
;

• δ = κ = κc = 0 and p = q = 2.

Assume that f and g additionally satisfy the following linear growth assumption: There
exists a C > 0 such that, a.s. for all t � 0, x ∈ T

2 and y ∈ R
2,

2∑

j=0

| f j (t, x, y)| + ‖(gn(t, x, y))n�1‖�2 � C(1 + |y|). (2.21)

Then for all u0 ∈ L0
F0

(�;B
2
q−1
q,p (T2)) there exists a unique global (p, q, δ, κc)-solution

u of (2.1) with

u ∈ L p
loc([0,∞), wκc;H1+δ,q(T2)) ∩ C([0,∞);B

2
q−1
q,p (T2)) a.s.

Moreover, a.s.,

u ∈ H θ,r
loc (0,∞;H1−2θ,ζ (T2)) for all θ ∈ [0, 1/2), r, ζ ∈ (2,∞),

u ∈ Cθ1,θ2
loc ((0,∞)× T

2;R2) for all θ1 ∈ [0, 1/2), θ2 ∈ (0, 1).

Furthermore, if the conditions of Theorem 2.7 hold for d = 2, then u satisfies (2.16) and
(2.17) with σ = ∞.
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In particular, note that if ai j , b j , hi j , c jn , f j , and gn satisfy the conditions of Theorem
2.7 for all η > 0 and ξ ∈ [2,∞), then a.s. the paths of u have regularity up to any order
in space:

u ∈ Cθ,∞
loc ((0,∞)× T

2;R2) a.s. for all θ ∈ [0, 1/2).

The conditions (2.20) and (2.21) are used for global well-posedness in the L2-setting,
see Appendix A. The choice αn = − 1

2 for all n � 1 corresponds to transport noise in
Stratonovich form, see (1.4).

The above regularity results of solutions to (2.1) appears to be new. It is not possible to
prove this by classical bootstrapping arguments based on L2-theory since the nonlinearity
div(u⊗u) is critical in this setting. Indeed, after one proves existence of a global solution
u for which the paths satisfy a.s. u ∈ L2(0, T ; H1,2) ∩ C([0, T ]; L2), one is tempted
to prove further regularity by analyzing the term div(u ⊗ u). Note that the following
embeddings are sharp in dimension two

L2(0, T ; H1,2) ∩ C([0, T ]; L2) ↪→ L4(0, T ; H1/2,2) ↪→ L4(0, T ; L4).

Therefore, we can only conclude div(u ⊗ u) ∈ L2(0, T ; H−1,2) a.s. which is not good
enough to bootstrap regularity. In order to prove the desired smoothness we will apply
our recent bootstrapping method from [AV22b, Sections 6.2 and 6.3] which is based on
arguments involving weights in time.

We conclude by remarking that in general, one can not improve the starting point
u ∈ L2(0, T ; H1,2)∩C([0, T ]; L2) a.s. of the above argument by using energy methods.
Indeed, as remarked in Sect. 1, our regularity assumptions on a, b, h, c, and u0 do not
allow us to reformulate (2.1) in terms of the vorticity, i.e. for the unknown curl u. Thus
besides the usual energy estimate in the space L2(0, T ; H1) ∩ C([0, T ]; L2), no other
estimates are available for solutions to (2.1) in general.

3. Maximal L p-Regularity for the Turbulent Stokes System

Before we turn to the main results on the stochastic Navier–Stokes equations with
transport noise (2.1), we analyse the linear part of the problem, which is central in
our approach. In order to be as flexible as possible in later applications we obtain
L p(s, T, ws

κ ; H1+δ,q)-regularity estimates for any p, q � 2, κ ∈ [0, p
2 − 1) and δ ∈ R.

We consider the following turbulent Stokes system on T
d :

⎧
⎪⎨

⎪⎩

du + P
(Au + Pu

)
dt = f dt +

∑

n�1

(
PBnu + gn

)
dwn

t ,

u(s) = 0.

(3.1)

Here s ∈ [0,∞), (wn)n�1 is a sequence of independent standard Brownian motion on
(�,A , (Ft )t�0,P), P denotes the Helmholtz projection, and for v = (vk)dk=1,

A(t)v = (− div(a(t, ·) · ∇vk))dk=1,

Bn(t)v =
(
(bn(t, ·) · ∇)v

)d
k=1,

P(t)v =
(
−

∑

n�1

{
div(cn[(I − P)Bn(t)v]k) + [(I − P)Bn(t)v] · h·,kn

})d

k=1
,

(3.2)
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where a, b, c, h are given and [·]k denotes the k-th component.
The results below also cover the case where in (3.1) one additional considers non-

trivial initial data and lower order terms in the leading differential operators; see the
comments below Theorem 3.2.

3.1. Assumptions and main results. In this section we employ the following conditions.

Assumption 3.1. Let d � 2, δ ∈ R and 0 � s < T < ∞. Suppose that one of the
following holds
• q ∈ [2,∞), p ∈ (2,∞) and κ ∈ [

0, p
2 − 1

)
;

• q = p = 2 and κ = 0,
and that the following conditions hold:

(1) For all i, j ∈ {1, . . . , d} and n � 1, the mappings ai, j , b j
n , c

j
n , h

i, j
n : R+×�×T

d →
R are P ⊗B(Td)-measurable.

(2) Let ξ ∈ [q ′,∞) and η > d
q be such that one of the following hold:

• δ � 0 and η > −δ;
• δ > 0, η � δ, ξ � q and η − d

ξ
� δ − d

q .
There exists M > 0 such that, a.s. for all t ∈ R+ and i, j ∈ {1, . . . , d},

‖ai, j (t, ·)‖Hη,ξ (Td ) + ‖(b j
n(t, ·))n�1‖Hη,ξ (Td ;�2)

+ ‖(c jn(t, ·))n�1‖Hη,ξ (Td ;�2) + ‖(hi, jn (t, ·))n�1‖Hη,ξ (Td ;�2) � M.

(3) There exists ν > 0 such that, a.s. for all t ∈ R+, ϒ = (ϒi )
d
i=1 ∈ R

d and x ∈ T
d ,

d∑

i, j=1

[
ai, j (t, x)− 1

2

( ∑

n�1

bin(t, x)b
j
n(t, x)

)]
ϒiϒ j � ν|ϒ |2.

By Sobolev embeddings and Assumption 3.1(2), for all i, j ∈ {1, . . . , d},
ai, j ∈ Cα(Td), and (b j

n)n�1, (h
i, j
n )n�1, (c

j
n)n�1 ∈ Cα(Td; �2), (3.3)

where α := η − d
ξ
> 0. Note that Assumption 3.1 coincides with part of Assumption

2.1(p, κ, q, δ) in the case δ ∈ (−1, 0], and of course the nonlinear parts of Assumption
2.1(4)-(5) do not play a role here. The case δ > 0 will be used to prove the higher order
regularity result of Theorem 2.7.

Under the previous assumptions, we consider the turbulent Stokes couple:

(AS, BS) : R+ ×�→ L
(
H

1+δ,q(Td),H−1+δ,q(Td)×H
δ,q(Td; �2)

)

(AS(·), BS(·))u :=
(
P[A(·)u + P(·)u], (PBn(·)u)n�1

)
, u ∈ H

1+δ,q ,
(3.4)

where H
s,q is as in (2.5) with Y = Hs,q . By Assumption 3.1(2), a.e. on R+ ×�,

‖AS(·)v‖H−1+δ,q (Td ) + ‖BS(·)v‖Hδ,q (Td ;�2)

(2.4)
� max

i, j,k

(
‖ai, j∂ jvk‖H δ,q (Td ) +

∥
∥
∥

∑

n�1

[
(I − P)[(bn · ∇)v]

]k
h j,k
n

∥
∥
∥
H−1+δ,q (Td )

+
∥
∥
∥

∑

n�1

c jn [(I − P)((bn · ∇)v)]k
∥
∥
∥
H δ,q (Td )

+ ‖(b j
n(t, ·)∂ jvk)n�1‖H δ,q (Td ;�2)

)

�δ,q M‖v‖H1+δ,q (Td ), (3.5)
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where we used [AV21, Corollary 4.2 and Proposition 4.1(3)] if δ > 0 and δ � 0,
respectively. By Assumption 3.1(1), the mapping (AS, BS) defined in (3.4) is strongly
progressively measurable.

For any stopping time τ : � → [s, T ], f ∈ L0
P (�; L1(s, τ ;H−1+δ,q(Td))), g ∈

L0
P (�; L2(s, τ ;H−1+δ,q(Td; �2)))we say thatu ∈ L0

P (�; L2(s, τ ;H1+δ,q)) is a strong
solution to (3.1) (on [s, τ ] ×�) if a.s. for all t ∈ [s, τ ]

u(t) +
∫ t

s
AS(r)u(r) dr =

∫ t

s
f (r) dr +

∫ t

s
(BS(r)u(r) + g(r)) dW�2(r),

where W�2 is the �2-cylindrical Brownian motion associated with (wn)n�1, see [AV22a,
Example 2.12]. Note that the stochastic integral is well-defined in H

δ,q(Td) due to (3.5),
[Ond04] or [NVW15, Theorem 4.7] and q � 2.

The aim of this section is to prove the following.

Theorem 3.2 (Stochastic maximal L p-regularity for the turbulent Stokes system). Sup-
pose that Assumption 3.1 holds. Then for each s ∈ [0, T ), and each progressively
measurable f ∈ L p((s, T )×�,ws

κ ;H−1+δ,q), and g ∈ L p((s, T )×�,ws
κ ;Hδ,q(�2)),

there exists a unique strong solution u to (3.1) on [s, T ] ×�. Moreover, letting

Jp,q,κ ( f, g) :=‖ f ‖L p((s,T )×�,ws
κ ;H−1+δ,q ) + ‖g‖L p((s,T )×�,ws

κ ;Hδ,q (�2)),

the following results hold, where the constants Ci do not depend on (s, f, g):

(1) in case p ∈ (2,∞), q ∈ [2,∞), θ ∈ [0, 1
2 ),

‖u‖L p((s,T )×�;ws
κ ;H1+δ,q ) � C1 Jp,q,κ ( f, g),

‖u‖L p(�;H θ,p(s,T,ws
κ ;H1−2θ+δ,q )) � C2(θ)Jp,q,κ ( f, g), θ ∈ [0, 1/2),

‖u‖
L p(�;C([s,T ];B1+δ−2(1+κ)/p

q,p ))
� C3 Jp,q,κ ( f, g),

‖u‖
L p(�;C([s+ε,T ];B1+δ−2/p

q,p ))
� C4(ε)Jp,q,κ ( f, g), ε ∈ (s, T ).

(2) in case p = q = 2 (and thus κ = 0),

‖u‖L2(�;L2(s,T ;H1+δ,2)) � C5 J2,2,0( f, g),

‖u‖L2(�;C([s,T ];Hδ,2)) � C6 J2,2,0( f, g).

By either [AV22a, Proposition 3.10] or [AV22b, Proposition 3.9], the above maximal
L p-regularity result for (3.1) extends to the case of non-trivial initial data provided

u(s) ∈ L p
Fs
(�;B1+δ−2 1+κ

p
q,p ) and the corresponding norm is taken into account in Jp,q,κ .

Similarly, by a general perturbation argument, we may allow lower order terms in the
differential operators appearing in (3.1) by using [AV21, Theorem 3.2] provided the
coefficients of such lower order terms are sufficiently regular.

Theorem 3.2 can be seen as an extension of [Mik02], where the R
d -case with q = p

was considered; see also Remark 3.3 below. The proof of Theorem 3.2 uses similar ideas
as in [AV21, Section 5] in which we combined perturbation and localization arguments
to obtain stochastic maximal regularity for parabolic problems on T

d . In the present
case, additional difficulties arise due the nonlocal nature of the Helmholtz projection P.
The R

d -case can also be covered with the same method if one imposes the following
condition:
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Remark 3.3. (The R
d -case) Theorem 3.2 also holds for (3.1) with T

d replaced by R
d if

the coefficients become constants as |x | → ∞: There exists progressively measurable
maps âi, j : [s, T ] ×�→ R, (̂b j

n)n�1 : [s, T ] ×�→ �2 such that

lim|x |→∞ ess sup
ω∈�

sup
r∈[s,T ]

(
|ai, j (r, ω, x)− âi, j (r, ω)| + ‖(b j

n(r, ω, x)− b̂ j
n(r, ω))n�1‖�2

)
= 0,

which is needed in our localization argument (see Steps 3 and 4 of the proof of Lemma
3.7). For instance, if ai, j = δi, j and (b j

n)n�1 ∈ Hη,ξ (Rd; �2) for some η > 0 and

ξ ∈ [q ′,∞) such that η > d
ξ

, then the above condition is satisfied with b̂ j
n ≡ 0.

Our methods can also be extended to the non-divergence case setting. For this one
needs to modify the assumptions on ai, j in Assumption 3.1(2). A detailed statement for
related non-divergence systems can be found in [AV21, Section 5].

Theorem 3.2 will be proved in Sect. 3.2 below. The core of the proof is the a priori
estimate on small time intervals of Lemma 3.7 which will be proven in Sect. 3.3.

3.2. Proof of Theorem 3.2. In the rest of this section, for s ∈ R and q ∈ (1,∞), we
write Lq , Hs,q and Bs

q,p instead of Lq(Td;Rd), Hs,q(Td;Rd) and Bs
q,p(T

d;Rd).
Recall that P denotes the Helmholtz projection, see (2.3). For future convenience, we

recall another construction of P. Let f ∈ D ′(Td;Rd). Consider the following elliptic
problem on T

d : {
�ψ = div f,

〈1, ψ〉 = 0,
(3.6)

where 〈·, ·〉 denotes the duality of D(Td) and D ′(Td). If we set Q f := ψ , then the
Helmholtz projection can be equivalently defined by

P f := f − ∇Q f. (3.7)

Indeed, by standard Fourier methods, one can check that (2.3) and (3.7) coincide. More-
over ∇Q is a projection (i.e. ∇Q = (∇Q)2) and Q restricts to a map

Q : Hs,q → Hs+1,q . (3.8)

Below we collect some lemmata which will be useful in the proof of the main results.
The following concerns an operator appearing several times in the proofs.

Lemma 3.4. Let s ∈ R, q ∈ (1,∞) and φ ∈ C∞(Td). For any f ∈ Hs,q(Td;Rd), we
set Jφ f := ψ , where ψ ∈ D ′(Td;Rd) is the unique solution to the following elliptic
problem on T

d: {
�ψ = ∇φ · f − 〈∇φ, f 〉,

〈1, ψ〉 = 0.
(3.9)

Then ‖Jφ f ‖Hs+2,q �s,q ‖ f ‖Hs,q .

Proof. Let us denote by�−1
N the operator defined by ̂

(�−1
N f )(0) = 0 and ̂

(�−1
N f )(k) =

1
|k|2 f̂ (k) for Z

d � k �= 0. By standard Fourier techniques, one can show that for each
s ∈ R and q ∈ (1,∞),

�−1
N : { f ∈ Hs,q : f̂ (0) = 0} → { f ∈ Hs+2,q : f̂ (0) = 0}. (3.10)

The claim follows by noticing that Jφ f = �−1
N (∇φ · f − 〈∇φ, f 〉). ��
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Next we consider an estimate for a commutator operator appearing in the main lo-
calization argument.

Lemma 3.5. (A commutator estimate) Let s ∈ R, q ∈ (1,∞) and φ ∈ C∞(Td). Let
[A, B] := AB − BA be the commutator. Then

∥
∥[∇Q, φ] f ∥∥Hs+1,q � ‖ f ‖Hs,q .

In the above and in the following, we do not distinguish between the function φ and
multiplication operator v 
→ φv.

Proof. Employing the notation used in the proof of Lemma 3.4, the construction (3.6)–
(3.8) shows that

∇Q f = ∇�−1
N div f, for f ∈ D ′(Td;Rd).

Let M the projection onto mean zero vector fields, i.e. M f := f − 〈1, f 〉 for f ∈
D ′(Td;Rd). Now note that ∇Q = ∇�−1

N Mdiv and

[∇Q, φ] = [∇, φ]�−1
N Mdiv + ∇[�−1

N M, φ]div + ∇�−1
N M[div, φ]. (3.11)

It is easy to see that [∇, φ] and [div, φ] map continuously Hs,q into itself. To conclude
it remains to estimate the second term on the RHS(3.11). In turn it suffices to show that

∥
∥[�−1

N M, φ] f ∥∥Hr,q � ‖ f ‖Hr−3,q , for all r ∈ R. (3.12)

Note that [�−1
N M, φ] f = vφ − φv where v := �−1

N M f , vφ := �−1
N M(φ f ) and

�(φv − vφ) = (�φ)v + 2∇φ · ∇v − φ〈1, f 〉 + 〈φ, f 〉. (3.13)

Hence (3.12) follows from:
∥
∥[�−1

N M, φ] f ∥∥Hr,q � ‖v‖Hr−1,q + ‖ f ‖Hr−3,q � ‖ f ‖Hr−3,q ,

where we used elliptic regularity twice and (3.13) in the first estimate. ��
The following simple extension result is taken from [AV21, Lemma 5.8 and Remark

5.6].

Lemma 3.6. (Extension operator) Let α ∈ (0, N ] and ζ ∈ (1,∞) be such that α > d
ζ
.

Let X be a separable Hilbert space. Then, for any y ∈ T
d and any r ∈ (0, 1

8 ) there
exists an extension operator

ET
d

y,r : Hα,ζ (BTd (y, r); X)→ Hα,ζ (Td; X)
which satisfies the following properties:

(1) ET
d

y,r f |BTd (y,r) = f , ET
d

y,r c ≡ c for any f ∈ Hα,ζ (BTd (y, r); X) and c ∈ X;

(2) ‖ET
d

y,r‖L (Hα,ζ (B
Td (y,r);X),Hα,ζ (Td ;X)) � Cr for some Cr independent of y;

(3) ‖ET
d

y,r‖L (C(B
Td (y,r);X),C(Td ;X)) � C for some C independent of y, r .

The above lemma also holds if X is a Banach space with the UMD property. The
reader is referred to [HNVW16, Chapter 4] for details.

The key step in the proof of Theorem 3.2 is the following a priori estimate for solutions
to (3.1) on small time intervals.
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Lemma 3.7. Let Assumption 3.1 be satisfied. Then there exist T ∗,C > 0 depending
only on the parameters q, p, κ, d, δ, ν, η, ξ,M such that for any t ∈ [s, T ), � ∈ {0, κ},
any stopping time τ : �→ [t, t (t + T ∗) ∧ T ], any

f ∈ L p
P ((t, τ )×�,wt

�;H−1+δ,q), g ∈ L p
P ((t, τ )×�,wt

�;Hδ,q(�2)) (3.14)

and any strong solution u ∈ L p
P ((t, τ )×�,wt

�;H1+δ,q) to (3.1) on [t, τ ] ×� one has

‖u‖L p((t,τ )×�,wt
�;H1+δ,q ) � C‖ f ‖L p((t,τ )×�,wt

�;H−1+δ,q ) + C‖g‖L p((t,τ )×�,wt
�;Hδ,q (�2)).

We first show how Lemma 3.7 implies Theorem 3.2.

Proof of Theorem 3.2. Below we employ the notation introduced in [AV21, Definition
2.3] for the sets of couples of operators having the stochastic maximal L p-regularity, i.e.
SMRp,κ (s, T ) and SMR•p,κ (s, T ). Here we are using X j = H

−1+2 j+δ,q(Td). Also

note that XTr
κ,p := (X0, X1)1− 1+κ

p ,p = B
1+δ−2 1+κ

p
q,p and Xθ := [X0, X1]θ = H

1+δ−2θ,q

for θ ∈ (0, 1). Since � and P commute on H
1+δ,q (see (2.3)), the Stokes operator

S := −� : H
s+2,q ⊆ H

s,q → H
s,q , is well-defined, and by the periodic version

of [HNVW17, Theorem 10.2.25] 1 + S has a bounded H∞-calculus of angle zero.
Therefore, by [AV20, Theorem 7.16] we have

S ∈ SMR•p,κ (s, T ), for all 0 � s < T <∞ (3.15)

with constant only depending on q, κ, p, d and T .
The assertions of Theorem 3.2 follow if we can prove that (AS, BS) ∈ SMR•p,�(t, t+

T ∗) (see [AV22b, Proposition 3.9]). By [AV21, Proposition 3.1], it is enough to show
that (AS, BS) ∈ SMRp,�(t, t + T ∗) for all � ∈ {0, κ}, t ∈ [0, T − T ∗] where T ∗ is
as in Lemma 3.7. To prove the latter, we use the method of continuity (see [AV22b,
Proposition 3.13]).

For any λ ∈ [0, 1] and v ∈ H
1+δ,q , we set

AS,λv := (1− λ)Sv + λASv

= −P
(
div(aλ · ∇v)

)

−
( ∑

n�1

{
div(λcn

[
(I − P)[(bn · ∇)v]

]k
) +

[
(I − P)[(bn · ∇)v]

] · λh·,kn
})d

k=1
,

BS,λv := λBSv =
(
P(λ(bn · ∇)v)

)

n�1

where ai, jλ = λδi, j + (1− λ)ai, j for all i, j ∈ {1, . . . , d}.
Note that (AS,0, BS,0) = (S, 0), and (AS,λ, BS,λ) satisfies the Assumption 3.1 uni-

formly w.r.t. λ ∈ [0, 1]. Thus Lemma 3.7 ensures that the a priori estimate (3.7) holds
for strong solutions to (3.1) on [t, τ ] ×� with C independent of λ ∈ [0, 1]. The claim
of this step follows from the method of continuity in [AV22b, Proposition 3.13] and
(3.15). ��



43 Page 22 of 57 A. Agresti, M. Veraar

3.3. Proof of Lemma 3.7. We will next prove the key estimate. In principle we use the
perturbation method of our recent work [AV21, Lemma 5.4], but due to the non-local
behavior of the Helmholtz projection, there are several complications in the proof.

Proof of Lemma 3.7 in case h = 0. The proof will be divided into several steps. More-
over, for exposition convenience, we set s = 0 and in Steps 1-6 we only consider the
case δ � 0 and in Step 7 we discuss the modifications needed for the case δ > 0.

We will use the method where we freeze the coefficients and use comparison on a
small ball. For any y ∈ T

d , r ∈ (0, 1
8 ), B(y, r) := BTd (y, r), and for v ∈ H

1+δ,q , we
set

Ay(t)v := −div(a(t, y) · ∇v), AE
y,r (t)v := −div(aE

y,r (t, ·) · ∇v),
By,n(t)v := (bn(t, y) · ∇)v, BE

y,r,n(t)v := (bE
n,y,r (t, ·) · ∇)v,

By(t)v := (By,n(t)v)n�1, BE
y,r (t)v := (BE

y,r,n(t)v)n�1,

(3.16)

where

aE
y,r :=

(
ET

d

y,r (a
i, j (t, ·))

)d

i, j=1
, bE

n,y,r :=
(

ET
d

y,r (b
j
n(t, ·))

)d

j=1
, n � 1,

and ET
d

y,r is the extension operator of Lemma 3.6. The operators Ay and By have a
“frozen coefficient at y ∈ T

d" and AE
y,r , BE

y,r are the operators whose coefficients are

the extensions of ai, j |B(y,r), b j
n |B(y,r). Similarly, for (y, r, v) as above, we set

PE
y,r (t)v := −

( ∑

n�1

div(cn(t, ·)
(∇Q[BE

y,r,n(t)v])k
))d

k=1
, (3.17)

where Q is as defined below (3.6). Note that the coefficients cn in (3.17) have not been
changed. Finally, there is no need to define the “frozen” operator Py(t) since

Q[By,n(t)v] = (bn(t, y) · ∇)[Qv] = 0, for all v ∈ H
1+δ,q , n � 1, t ∈ R+.

(3.18)

Let t ∈ [s, T ), � ∈ {0, κ} and let τ : � → [t, t∗] be a stopping time with t∗ :=
T ∧ (t + T ∗) where T ∗ > 0 will be chosen in Step 6. We use same notation as in
[AV22a, Subsection 3.3] in case (PA,PB) := (PA, (PBn)n�1) ∈ SMRp,�(t, T ) with
X j = H

−1+2 j+δ,q where j ∈ {0, 1}. The solution operator Rt,(PA,PB) associated to the
couple (PA,PB) (see (3.2)) maps

L p
P ((t, T )×�,wt

�;H−1+δ,q)× L p
P ((t, T )×�,wt

�;Hδ,q(�2))

→ L p
P ((t, T )×�,wt

�;H1+δ,q), (3.19)

where Rt,(PA,PB)( f, g) := u and u is the unique strong to (3.1) on [t, τ ]×�, and ( f, g)

are as in (3.14). In addition, we denote by K p,�
(PA,PB)(t, T ) its operator norm:

K p,�
(PA,PB)(t, T ) = ‖Rt,(PA,PB)(·, ·)‖

on the spaces indicated in (3.19). For ( f, g) as in (3.14), and for τ as above, we set

N f,g(t, τ ) := ‖ f ‖L p((t,τ )×�,wt
�;H−1+δ,q ) + ‖g‖L p((t,τ )×�,wt

�;Hδ,q (�2)). (3.20)



Stochastic Navier–Stokes Equations for Turbulent Flows in Critical Spaces Page 23 of 57 43

To abbreviate the dependencies let S = {q, p, κ, d, δ, ν, η, ξ,M}, and whenever we
wish to emphasize such dependencies we write C(S) instead of C .

Step 1: There exists C1(S) > 0 such that for each y ∈ T
d , one has (PAy,PBy) ∈

SMRp,�(t, T ) and K p,�
(PAy ,PBy)

(t, T ) � C1.

Due to (3.6)–(3.7), one can check that

PAyv = AyPv, PByv = ByPv, a.e. on [t, T ] ×� for all v ∈ H1+δ,q .

Therefore the result is immediate from [AV21, Lemma 5.4].
Step 2: There exists χ(S) > 0 for which the following holds:
If y ∈ T

d and r ∈ (0, 1
8 ) are such that a.s. for all t ∈ (0, T ), i, j ∈ {1, . . . , d},

‖ai, j (t, ·)−ai, j (t, y)‖L∞(B(y,r))+‖(b j
n(t, ·)−b j

n(t, y))n�1‖L∞(B(y,r);�2) � χ, (3.21)

then (PAE
y,r ,PBE

y,r ) ∈ SMRp,�(t, T ) and K p,�
(PAE

y,r ,PBE
y,r )

(t, T ) � C2(S).
To prove this we apply the perturbation result of [AV21, Theorem 3.2]. To this end,

we write

PAE
y,r = PAy + P(AE

y,r −Ay), PBE
y,r = PBy + P(BE

y,r − By). (3.22)

By (2.4), for each v ∈ H
1+δ,q ,

‖P(AE
y,r −Ay)v‖H−1+δ,q �

d∑

i, j=1

∥
∥
∥(ai, j (t, y)− ET

d

y,r (a
i, j (t, ·))∂ jv

∥
∥
∥
H δ,q

.

Next we estimate each term separately:

∥
∥
∥(ai, j (t, y)− ET

d

y,r (a
i, j (t, ·))∂ jv

∥
∥
∥
H δ,q

(i)=
∥
∥
∥ET

d

y,r

(
ai, j (t, y)− ai, j (t, ·))∂ jv

∥
∥
∥
H δ,q

(i i)
�

(∥
∥
∥ET

d

y,r

(
ai, j (t, y)− ai, j (t, ·))

∥
∥
∥
L∞
‖∂ jv‖H δ,q

+
∥
∥
∥ET

d

y,r

(
ai, j (t, y)− ai, j (t, ·))

∥
∥
∥
Hη,ξ

‖∂ jv‖H δ−ε,q
)

(i i i)
� χ‖v‖H1+δ,q + CrM‖v‖H1+δ−ε,q
(iv)
� 2χ‖v‖H1+δ,q + Cr,M,χ‖v‖H−1+δ,q ,

where in (i) we used Lemma 3.6(1), in (i i) [AV21, Proposition 4.1(3)] for some ε > 0
and in (i i i)Lemma 3.6(2)–(3) and (3.21). Finally, in (iv)we used a standard interpolation
inequality.

For the B-term, recall that ξ � q ′ and η > −δ. Thus employing similar arguments,
by Assumption 2.1(2) and [AV21, Proposition 4.1(3)] with H = �2, one obtains

‖P(BE
y,r − By)v‖Hδ,q (�2) � 2χ‖v‖H1+δ,q + CM,r,χ‖v‖H−1+δ,q .
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Similarly, by (3.18) and a variation of [AV21, Proposition 4.1(3)],

‖PE
y,rv‖H−1+δ,q �δ,q max

j,k

∥
∥
∥

∑

n�1

∂ j

(
c jn

(∇Q[(BE
y,r,n − By)v])k

)∥
∥
∥
H1+δ,q

�
∥
∥
(
(BE

y,r − By)v
)

n�1

∥
∥
H δ,q (�2)

� 2χ‖v‖H1+δ,q + CM,r,χ‖v‖H−1+δ,q . (3.23)

The claim of Step 2 follows from Step 1, [AV21, Theorem 3.2], the above estimates and
the arbitrariness of � ∈ {0, κ}.

Step 3: Let χ be as in step 2. There exist an integer � � 1, (yλ)�λ=1 ⊆ T
d , (rλ)�λ=1 ⊆

(0, 1
8 ), depending only on the quantities in S, such that T

d ⊆ ∪�λ=1Bλ, where Bλ :=
BTd (yλ, rλ), and a.s. for all t ∈ (0, T ), i, j ∈ {1, . . . , d},

‖ai, j (t, yλ)− ai, j (t, ·)‖L∞(Bλ) + ‖(b j
n(t, yλ)− b j

n(t, ·))n�1‖L∞(Bλ;�2) � χ.

In particular, for all λ ∈ {1, . . . , �},
(
P[AE

λ + PE
λ ],PBE

λ

) ∈ SMRp,�(t, T ), where

(AE
λ,PE

λ ,BE
λ ) := (AE

xλ,rλ ,PE
xλ,rλ ,BE

xλ,rλ),

with K p,�
(PAE

λ ,PBE
λ )
(t, T ) � C3(S).

The last claim follows from the first one and Step 2. Let α := η − d
ξ
> 0 due

Assumption 3.1(1). By Sobolev embeddings, Hη,ξ (H) ↪→ Cα(H) where H ∈ {R; �2}.
We denote by R0 the embedding constant. Thus for any y ∈ T

d ,

‖ai, j (t, y)− ai, j (t, ·)‖L∞(B(y,r)) + ‖b j (t, y)− b j (t, ·)‖L∞(B(y,r);�2)

�
([ai, j (t, ·)]Cα(B(y,r)) + [b j (t, ·)]Cα(B(y,r);�2)

)
rα � C̃M rα � χ,

where the last inequality follows by choosing r := min
{( χ

R0M

)1/α
, 1

8

}
. Sinceχ = χ(S),

it follows that r = r(S). To conclude, it remains to note that T
d can be covered by finitely

many balls of the form B(y, r).
Step 4: Let (πλ)�λ=1 be a smooth partition of the unity subordinate to the covering

(Bλ)�λ=1 (see Step 3). Let Rλ := Rt,(PAE
λ ,PBE

λ )
be the solution operator associated to

(PAE
λ,PBE

λ ) ∈ SMRp,�(t, T ). Recall that f, g are as in (3.14), τ is a stopping time
with values in [t, (t +T ∗)∧T ] and u ∈ L p

P ((t, τ )×�,wt
�;H1+δ,q) is a strong solution

to (3.1) on [t, τ ] ×�. Then for any λ ∈ {1, . . . , �} the following holds

P(πλu) = Rλ(0,Fλu,Gλu) + Rλ(0,P fλ,Pgλ), a.e. on [t, τ ] ×�,

where Jλ := Jπλ (see Lemma 3.4), gλ := (gλ,n)n�1 := (gnπλ)n�1, fλ := πλ f and

Fλu := −P[(AE
λ + PE

λ )∇Jλu] − P[πλ,A]u − P[πλ,P]u
− P[(∇πλ)Q([A + P]u)],

Gλ,nu := PBE
λ,n∇Jλu + P[πλ,Bn]u + P[(∇πλ)Q(Bnu)],

Gλu := (Gλ,nu)n�1,

(3.24)
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with Q as in (3.7), and [·, ·] denotes the commutator.
To begin, set uλ := πλu. Note that P[(A + P)u] = (A + P)u −∇Q[(A + P)u] and

P[Bnu] = Bnu − ∇Q[Bnu]. Using these identities and multiplying (3.1) by πλ, one
obtains on T

d

duλ + (A + P) uλ dr

=
(
[A, πλ]u + [P, πλ]u + ∇(πλQ[(A + P)u])− (∇πλ)Q[(A + P)u] + fλ

)
dr

+
∑

n�1

(
Bnuλ + [πλ,Bn]u − ∇(πλQ[Bnu]) + (∇πλ)Q[Bnu] + gλ,n

)
dwn

r .

(3.25)
Since supp (uλ) ⊆ Bλ, for each λ ∈ {1, . . . , �} and n � 1 one has (see (3.16)-(3.17))

A uλ = AE
xλ,rλuλ = AE

λuλ, Bnuλ = BE
n,xλ,rλuλ = BE

λ,nuλ,

Puλ = PE
xλ,rλuλ = PE

λ uλ,

where we used the notation of Step 3. The Helmholtz decomposition gives

uλ = πλu = ∇Q(πλu) + P(πλu)
(i)= ∇Jλu + Puλ. (3.26)

Here in (i) we used div u = 0 in D ′(Td), (3.9) and

div uλ = div uλ − 〈1, div uλ〉 = ∇πλ · u − 〈1,∇πλ · u〉.
Thus uλ = ∇Jλu + vλ with vλ := Puλ. Applying the operator P to (3.25), we get

dvλ + P[(AE
λ + PE

λ )vλ] dr
=

(
− P[(AE

λ + PE
λ )∇Jλu] + P[A, πλ]u + P[P, πλ]u

− P
[
(∇πλ)Q[(A + P)u]] + P fλ

)
dr

+
∑

n�1

(
PBE

λ,nvλ + PBE
λ,n∇Jλu + P[πλ,Bn]u + P[(∇πλ)Q(Bnu)] + Pgλ,n

)
dwn

r

= (
Fλu + P fλ

)
dr +

∑

n�1

(
PBE

λ,nvλ + Gλ,nu + Pgλ,n
)

dwn
r

with initial value vλ(t) = 0. Recall that by Step 3, one has (PAE
λ, (PBE

λ,n)n�1) ∈
SMRp,�(t, T ) for � ∈ {0, κ}. Thus the claim follows from [AV22a, Proposition 3.12]
and the previous displayed formula.

Step 5: There exists ε(S) ∈ (0, 1), C5(S) > 0 such that for each λ ∈ {1, . . . , �},
v ∈ H

1+δ,q and t ∈ [0, T ),
‖Fλv‖H−1+δ,q + ‖(Gλ,nv)n�1‖Hδ,q (�2) � C5‖v‖H1+δ−ε,q , a.e. on [t, T ] ×�.

First consider Fλ. Recall that � = �(S) < ∞ by Step 3. Thus it is enough to prove
suitable estimates for Fλ where λ ∈ {1, . . . , �} is fixed. Let us write Fλ := Fλ,J +Fλ,A +
Fλ,Q + Fλ,c, where

Fλ,Jv := −P[(AE
λ + PE

λ )∇Jλv], Fλ,Av := P
([A, πλ]v

)
,

Fλ,Qv := −P
[
(∇πλ)Q[(A + P)v]], Fλ,cv := P

([P, πλ]v
)
.
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Then by Lemma 3.6 and the pointwise multiplication result of [AV21, Proposition 4.1(3)]
(recall that η > −δ and ξ ∈ [q ′,∞) by Assumption 3.1(2)),

‖PAE
λ(∇Jλv)‖H−1+δ,q �δ,q max

i, j
‖ET

d

y,r (a
i, j (t, ·))∂ j∇Jλv‖H δ,q

�δ,q M max
j
‖∂ j∇Jλv‖H δ,q �δ,q M‖v‖H δ,q ,

where in the last estimate we applied Lemma 3.4. The above argument can be also
applied to estimate PPE

λ (∇Jλv). Hence

‖Fλ,Jv‖H−1+δ,q �M,δ,q ‖v‖Hs,q , for v ∈ H
1+δ,q .

To estimate Fλ,A, note that

[πλ,A]v =
d∑

i, j=1

[
∂i

(
ai, j (∂ jπλ)v

)
+ (∂ jv) a

i, j (∂iπλ)
]
, in D ′(Td).

By [AV21, Proposition 4.1(3)] we obtain

‖P[∂i (ai, j (∂ jπλ)v)]‖H−1+δ,q �δ,q ‖ai, j (∂ jπλ)v‖H δ,q �δ,q M‖v‖H δ,q .

Letting ε ∈ (0, 1) be such that η � −δ + ε, in a similar way we obtain

‖P(∂ jv ai, j∂iπλ)‖H−1+δ,q �δ,q ‖ai, j∂ jv‖H−1+δ,q

�δ,q ‖ai, j∂ jv‖H δ−ε,q

�δ,q M‖∂ jv‖H δ−ε,q �δ,q M‖v‖H1+δ−ε,q ,

(3.27)

from which we obtain the required bound for Fλ,A. By (3.8), Fλ,Q can be estimates as
follows:

‖Fλ,Qv‖H−1+δ,q � ‖Q(Av)‖H−1+δ,q � ‖ai, j∂ jv‖H−1+δ,q � ‖v‖H1+δ−ε,q ,

where the last estimate can be proved similarly as in (3.27). Next we discuss Fλ,c. For
notational convenience, set Lnv := div(cn ⊗ v) = (div(cnvk))dk=1 for v ∈ H

δ,q . Note
that the multiplication cn ⊗ v is well-defined due to [AV21, Proposition 4.1(3)] and the
regularity assumptions on (cn)n�1 in Assumption 3.1(2). Hence, for all v ∈ H1+δ,q we
have

Fλ,cv = P

[ ∑

n�1

([Ln, πλ]∇Q(Bnv) + Ln[∇Q, πλ](Bnv) + Ln[Bn, πλ]v
)]
.

Note that [Ln, πλ] and [Bn, πλ] are zero-order differential operators and [∇Q, πλ] is a
smoothing operator by Lemma 3.5. Hence, reasoning as for Fλ,A, we have‖Fλ,cv‖H−1+δ,q

� ‖v‖H1+δ−ε,q for some ε > 0 depending only on (d, η, ξ, δ). Combining the previous
estimates one obtains the claim for Fλ.

By (3.24) we have Gλ,n := Gλ,Q,n + Gλ,J,n + Gλ,B,n where

Gλ,Q,nv := P[(∇πλ)Q(Bnv)], Gλ,J,nv := PBn∇Jλv, Gλ,B,nv := P[(∂ jπλ)b j
nv]

where v ∈ H
1+δ,q and we used that [πλ,Bn]v = (∂ jπλ)b

j
nv. Now the estimate for Gλ

can be proved in a similar way as we did for Fλ.
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Step 6: Conclusion. Let (u, f, g, τ, t) be as at the beginning of the proof. By Step 3
we know that (P[AE

λ +PE
λ ],PBE

λ ) ∈ SMRp,κ (t, T ) for all λ ∈ {1, . . . , �}. Combining
the latter with Steps 4-5, one can see that there exist ε(S) ∈ (0, 1), C6(S) > 0 such that
for all λ ∈ {1, . . . , �},

‖P(πλu)‖L p((t,τ )×�,wt
�;H1+δ,q ) � C6NFλu,Gλu(t, τ ) + C6N f,g(t, τ ) (3.28)

� C5C6‖u‖L p((t,τ )×�,wt
�;H1+δ−ε,q ) + C6N f,g(t, τ )

where N f,g(t, τ ) is as in (3.20). As in (3.26), since div u = 0 inD ′(Td) a.e. on [t, τ ]×�,
one has πλu = P(πλu) + ∇Jλu. Since (πλ)

�
λ=1 is a partition of unity, we can write

u =∑�
λ=1 uλ, and hence the previous considerations yield,

‖u‖L p((t,τ )×�,wt
�;H1+δ,q )

�
�∑

λ=1

(
‖P(πλu)‖L p((t,τ )×�,wt

�;H1+δ,q ) + ‖∇Jλu‖L p((t,τ )×�,wt
�;H1+δ,q )

)

(i)
� �C6N f,g(t, τ ) + �C5C6‖u‖L p((t,τ )×�,wt

�;H1+δ−ε,q ) + �C7‖u‖L p((t,τ )×�,wt
�;H δ,q )

(i i)
� C̃6N f,g(t, τ ) +

1

4
‖u‖L p((t,τ )×�,wt

�;H1+δ,q ) + C̃6‖u‖L p((t,τ )×�,wt
�;H−1+δ,q ),

(3.29)
where in (i)we used (3.28) and Lemma 3.4 and in (i i) a standard interpolation inequality.
Since u is a strong solution to (3.1) on [t, τ ] × �, by (3.5) and [AV22a, Lemma 3.14]
there exists (ks(S))s>0 that lims↓0 ks = 0 and

‖u‖L p((t,τ )×�,wt
�;H−1+δ,q ) � kT ∗‖u‖L p((t,τ )×�,wt

�;H1+δ,q ) + kT ∗ N f,g(t, τ ) (3.30)

where we have used that τ − t � T ∗.
Combining (3.29)–(3.30), one obtains

‖u‖L p((t,τ )×�,wt
�;H1+δ,q ) � C̃6N f,g(t, τ ) +

(1

4
+ kT ∗C̃6

)
‖u‖L p((t,τ )×�,wt

�;H1+δ,q ),

By choosing T ∗(S) > 0 so that kT ∗ � 1/(4C̃6), the previous formula and (2.5) imply
the claimed a priori estimate of Lemma 3.7.

Step 7: The case δ > 0. To prove Lemma 3.7 for δ > 0, one can argue as in Steps 1-6.
The only changes appear in Steps 2 and 5, where instead of [AV21, Proposition 4.1(3)]
we use [AV21, Proposition 4.1(1)]. ��
Proof of Lemma 3.7 for general h. Let us divide the proof of this step into three cases.
In each case we use the previously obtained estimate in the case h = 0, and view the
non-zero h as a lower order perturbation. Below, for all v ∈ H

1+δ,q , we set

f̃b(t)v :=
( ∑

n�1

[
(I − P)((bn(t) · ∇)v)

]
· h·,kn

)d

k=1
.
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Case δ � 0. Pick ε ∈ (0, 1) such that η > −δ + ε. Let M be as in Assumption 3.1(2).
Note that for each v ∈ H

1+δ,q(Td),

‖P[ f̃bv]‖H−1+δ,q � max
k

∥
∥
∥

∑

n�1

[
(I − P)[(bn · ∇)v]

]
· h·,kn

∥
∥
∥
Hδ−ε,q

(i)
� max

j,k
‖(h j,k

n )n�1‖Hη,ξ (�2)‖(b j
n∂ jv)n�1‖H δ−ε,q

(i i)
� M max

j
‖(b j

n)n�1‖Hη,ξ (�2)‖∂ jv‖H δ−ε,q � M2‖v‖H1+δ−ε,q ,

where the implicit constants depend only on s, q, d. Moreover, in (i)− (i i) we used that
η > −δ, ξ � q ′ and the pointwise multiplication result of [AV21, Proposition 4.1(3)]
and the text below it.

By Young’s inequality and standard interpolation result, for all ε > 0 we have

‖v‖H1+δ−ε,q � ε‖v‖H1+δ,q + Cε‖v‖H−1+δ,q
(2.5)= ε‖v‖H1+δ,q + Cε‖v‖H−1+δ,q .

Thus the claim of this step in case δ � 0 follows by combining the above estimate with
the estimate in the case h = 0. Indeed, since u is a solution to (3.1), setting

N f,g := ‖ f ‖L p((t,τ )×�,wt
�;H−1+δ,q ) + ‖g‖L p((t,τ )×�,wt

�;Hδ,q (�2)),

the estimate for h = 0 and the above estimate for P[ f̃bu] imply

‖u‖L p((t,τ )×�,wt
�;H1+δ,q ) � CN f,g + C‖P[ f̃bu]‖L p((t,τ )×�,wt

�;H−1+δ,q )

� CN f,g + Cε‖u‖L p((t,τ )×�,wt
�;H1+δ,q )

+ C ′ε‖u‖L p((t,τ )×�,wt
�;H−1+δ,q ).

Choosing ε = 1/(2C), we get

‖u‖L p((t,τ )×�,wt
�;H1+δ,q ) � 2CN f,g + 2C ′ε‖u‖L p((t,τ )×�,wt

�;H−1+δ,q ).

Reasoning as in Step 6 of Lemma 3.7 one can also adsorb the remaining lower order
term by using τ − t � T ∗ and choosing T ∗ sufficiently small.

Case δ ∈ (0, 1]. In this case, for all v ∈ H
1+δ,q ,

‖P[ f̃bv]‖H−1+δ,q � ‖ f̃bv‖Lq

� max
i, j

(
‖(hi, jn )n�1‖L∞(�2)‖(b j

n)n�1‖L∞(�2)

)
‖∇v‖Lq

(3.3)
� ‖v‖H1,q .

Since δ > 0, ‖v‖H1,q is lower order compared to ‖v‖H1+δ,q . Thus the claim follows from
standard interpolation estimates and Young’s inequality as in the case δ � 0.

Case δ > 1. The proof goes as in the case δ � 0, where one should replace [AV21,
Proposition 4.1(3)] by [AV21, Corollary 4.2]. ��
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4. Proofs of the Main Results

4.1. Local well-posedness and the proof of Theorem 2.4. Theorem 2.4 will be derived
from a more general local well-posedness which will be proved using the methods of
[AV22a,AV22b]. For δ ∈ (−1, 0] and q ∈ [2,∞) we define

X0 = H
−1+δ,q , X1 = H

1+δ,q A(·)v = ASv, B(·)v = BSv,

F(·, v) = P
[
f0(·, v) + div( f (·, v)) + fg,h(·, v) + fg,c(·, v)

]− P(div(v ⊗ v)),

G(·, v) = (
P[gn(·, v)]

)

n�1,

(4.1)

for all v ∈ X1. Here (AS, BS) is as in (3.2) and (3.4), and

fg,h(·, v) =
( ∑

n�1

[
(I − P)

[
gn(·, v)

]] · h·,kn
)d

k=1
,

fg,c(·, v) =
( ∑

n�1

div
(
cn

[
(I − P)gn(·, u)

]k)
)d

k=1
.

Note that the linear part of f̃ (see (2.8)) is in the operator A, and the nonlinear part in
fg,h . In this way (2.9) can be formulated as the semilinear stochastic evolution equation
(see Definition 2.3 for the definition of (p, κ, q, δ)-solutions):

{
du + Au dt = F(·, u) dt + (Bu + G(u)) dW�2 ,

u(0) = u0.
(4.2)

Through this section we set

XTr
κ,p := (X0, X1)1− 1+κ

p ,p = B
1+δ−2 1+κ

p
q,p , and

Xθ := [X0, X1]θ = H
1+δ−2θ,q , for θ ∈ (0, 1),

where we used (2.6). The following is our main result on local existence and regulariza-
tion. Below we set 1/0 := ∞.

Theorem 4.1 (Local well-posedness). Let Assumption 2.1(p, κ, q, δ) hold with

δ ∈ (−1, 0], d

2 + δ
< q <

d

−δ and 2
1 + κ

p
+
d

q
� 2 + δ. (4.3)

Then for every u0 ∈ L0
F0

(�;B1+δ−2 1+κ
p

q,p (Td)), (4.2) has a (p, κ, q, δ)-solution (u, σ )
such that σ > 0 a.s. and

u ∈ L p
loc([0, σ ), wκ ;H1+δ,q(Td)) ∩ C([0, σ );B1+δ−2 1+κ

p
q,p (Td)), a.s. (4.4)

and the trace space B
1+δ−2 1+κ

p
q,p (Td) is critical for (4.2) if and only if the second part

of (4.3) holds with equality. Moreover, (u, σ ) instantaneously regularizes in time and
space in the following sense: a.s.

u ∈ H θ,r
loc (0, σ ;H1−2θ,ζ (Td)) for all θ ∈ [0, 1/2), r, ζ ∈ (2,∞), (4.5)

u ∈ Cθ1,θ2
loc ((0, σ )× T

d;Rd) for all θ1 ∈ [0, 1/2), θ2 ∈ (0, 1). (4.6)
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By Sobolev embedding it is straightforward to see that (4.5) implies (4.6). The def-
inition of criticality which we use is taken from [AV22a, Section 4.1] and some details
can be found in the proof of Theorem 4.1.

In order to prove the theorem, we first prove a lemma for the nonlinearities. For
the noise part we use the language of γ -radonifying operators for which we refer to
[HNVW17, Chapter 9]. The following identification (as sets and isomorphically) will
be used several times below:

γ (�2, Hs,q(Td)) = Hs,q(Td; �2) (4.7)

where s ∈ R and q ∈ (1,∞). The identity (4.7) follows from [HNVW17, Propo-
sition 9.3.1] and the fact that (I − �)s/2 induces uniquely an isomorphism between
Hs,q(Td; �2) and Lq(Td; �2).

By (2.4) and the ideal property of γ -spaces [HNVW17, Theorem 9.1.10], we also note
that P extends to a bounded mapping from γ (�2, Hs,q(Td;Rd)) into γ (�2,Hs,q(Td)).

To prove the theorem we will first show that the nonlinearities F and G have the right
mapping properties:

Lemma 4.2. Let Assumption 2.1(p, κ, q, δ) be satisfied and suppose that (4.3) holds.
Set β = 1

2 (1− δ
2 + d

2q ). Then there is a constant C such that for all v, v′ ∈ H
θ,q ,

‖F(·, v)− F(·, v′)‖X0 � C(1 + ‖v‖Xβ + ‖v′‖Xβ )‖v − v′‖Xβ

‖F(·, v)‖X0 � C(1 + ‖v‖2
Xβ
)

‖G(·, v)− G(·, v′)‖γ (�2,X1/2)
� C(1 + ‖v‖Xβ + ‖v′‖Xβ )‖v − v′‖Xβ .

‖G(·, v)‖γ (�2,X1/2)
� C(1 + ‖v‖2

Xβ
).

Note that β ∈ (0, 1) by the conditions on the parameters in (4.3).

Proof. Note that Xβ = H
θ,q with θ = d

2q + δ
2 . First we check the estimate for F . Let

F = F1 + F2 + F3 + F4 where

F1(·, v) = P[div(v ⊗ v)],
F2(·, v) = P[ f0(·, v) + div( f (·, v))],
F3(·, v) = P[ fg,h(·, v)],
F4(·, v) = P[ fg,c(·, v)].

(4.8)

for all v ∈ H
1+δ,q . First we estimate F1. For all v, v′ ∈ X1,

‖F1(·, v)− F1(·, v′)‖H−1+δ,q � ‖(v ⊗ v)− (v′ ⊗ v′)‖H δ,q

(i)
� ‖(v ⊗ v)− (v′ ⊗ v′)‖Lλ
� ‖v ⊗ (v − v′)‖Lλ + ‖(v − v′)⊗ v‖Lλ
� (‖v‖L2λ + ‖v′‖L2λ)‖v − v′‖L2λ

(i i)
� (‖v‖Hθ,q + ‖v′‖Hθ,q )‖v − v′‖Hθ,q ,

(4.9)

where in (i) and (i i) we have used the Sobolev embedding with − d
λ
= δ − d

q and

θ − d
q = − d

2λ . Therefore, we find θ = d
2q + δ

2 . To ensure that both Sobolev embeddings
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hold note that λ ∈ (q/2, q] and θ > 0 by (4.3). The estimate for ‖F1(v)‖X0 follows
since F1(0) = 0.

We prove a similar estimate for F2. Indeed, by Assumption 2.1, for all v, v′ ∈ X1

‖F2(·, v)− F2(·, v′)‖H−1+δ,q �
d∑

j=0

‖ f j (·, v)− f j (·, v′)‖Lλ

� ‖(1 + |v| + |v′|)|v − v′|‖Lλ
� (1 + ‖v‖L2λ + |v′‖L2λ)‖v − v′‖L2λ

� (1 + ‖v‖Hθ,q + ‖v′‖Hθ,q )‖v − v′‖Hθ,q ,

(4.10)

where λ and θ are as before. The estimate for ‖F2(·, v)‖X0 follows as well by using the
boundedness of f j (·, 0).

Before treating F3 and F4, it is convenient to prove the required estimates for G.
Recall that X1/2 = H

δ,q (see (2.6)) and let β, θ be as above. Then, Assumption 2.1 and
(4.7) yield that, for all v, v′ ∈ X1,

‖G(·, v)− G(·, v′)‖γ (�2,Hδ,q ) � ‖g(·, v)− g(·, v′)‖γ (�2,Lλ)

� (1 + ‖v‖L2λ + ‖v′‖L2λ)‖v − v′‖L2λ

� (1 + ‖v‖Hθ,q + ‖v′‖Hθ,q )‖v − v′‖Hθ,q . (4.11)

Hence G satisfies the required estimates as Xβ = H
θ,q by construction, and G(·, 0) ∈

L∞(Td; �2) by Assumption 2.1(4).
Next we consider F3. Since h j,k ∈ L∞(Td; �2) (see Assumption 2.1 and the text

below (2.7)), by Assumption 2.1(4), for all v, v′ ∈ X1,

‖F3(·, v)− F3(·, v′)‖H−1+δ,q � ‖ fg,h(·, v)− fg,h(·, v)‖Lλ
� max

j,k
‖h j,k‖L∞(�2)‖g(·, v)− g(·, v′)‖Lλ(�2)

� (1 + ‖v‖Hθ,q + ‖v′‖Hθ,q )‖v − v′‖Hθ,q . (4.12)

The estimate for ‖F3(·, v)‖X0 follows as well by using the boundedness of fg,h(·, 0).
Finally we consider F4. Arguing as in (3.23), by Assumption 2.1(2) and a variation

of [AV21, Proposition 4.1(3)], for all v, v′ ∈ H
1+δ,q ,

‖F4(·, v)− F4(·, v′)‖X0 � max
k

∥
∥
∥

∑

n�1

div
(
cn

[
(I − P)(gn(·, v)− gn(·, v′))

]k)
∥
∥
∥
H−1+δ,q

� ‖g(·, v)− g(·, v′)‖H δ,q (Td ;�2)

� (1 + ‖v‖Hθ,q + ‖v′‖Hθ,q )‖v − v′‖Hθ,q ,

where the last step follows as in (4.11) since γ (�2, H δ,q) = H δ,q(Td; �2) by (4.7). The
estimate for F4(·, v) follows since F4(·, 0) ∈ L∞(Td;Rd).

Combining the above and the estimates (4.9), (4.10) and (4.12), we obtain the required
estimate for F by the definition of β. ��

The proof of Theorem 4.1 is split into three parts. In Part (A) we prove local well-
posedness. In Parts (B) and (C) we prove (4.5) in the case [p > 2] and [q = p = d =
2, δ = 0], respectively. The proof of (4.6) follows as a simple consequence as already
mentioned before.
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Proof of Theorem 4.1 Part (A) – Local well-posedness. The proof is divided in several
steps.

Step 1: the conditions (HF) and (HG) of [AV22a, Section 4.1] hold with (4.1), and

the trace space XTr
κ,p = B

1+δ−2 1+κ
p

q,p is critical for (4.2) if and only if

2
1 + κ

p
+
d

q
= 2 + δ. (4.13)

To prove this we use Lemma 4.2 and consider two cases. Recall β = 1
2 (1− δ

2 + d
2q ).

(1) If 1 − 1+κ
p � β, one can check that (4.13) does not hold by using q > d/(2 + δ).

We prove the desired mapping properties of F and G and non-criticality. Using that
X1− 1+κ

p +ε ↪→ Xβ for each ε > 0, we get that Lemma 4.2 holds with β replaced by

1 − 1+κ
p + ε. Letting ρ j = 1, β j = ϕ j = 1 − 1+κ

p + ε for j ∈ {1, 2}, where ε > 0

is such that ε < 1+κ
2p , one can check ρ1

(
ϕ1 − 1 + 1+κ

p

)
+ β1 < 1, which means that

XTr
κ,p is not critical.

(2) If 1− 1+κ
p < β, then we set ρ j = 1, β j = ϕ j = β and by Lemma 4.2 the condition

in [AV22a, (4.2)] becomes

1 + κ

p
� ρ j + 1

ρ j
(1− β) = 1− d

2q
+
δ

2
. (4.14)

Note that (4.14) is equivalent to the second part of (4.3). Finally, the corresponding

trace space B
−1+δ−2 1+κ

p
q,p is critical for (2.1) if and only if the equality in (4.14) holds.

Step 2: Application of [AV22a, Theorem 4.8]. By Step 1 and Theorem 3.2 the condi-
tions of the latter are satisfied. Therefore, there is a (p, κ, q, δ)-solution (u, σ ) and (4.4)
holds. The assertions on criticality of the trace space also follows from Step 1. ��

Next we prove Part (B) of Theorem 4.1, i.e. we show (4.5)-(4.6) in the case p > 2.
Here we exploit the results in [AV22b, Section 6] in the following way.

• Bootstrap regularity in time via [AV22b, Proposition 6.8] (Step 1a below) and
[AV22b, Corollary 6.5] (Step 1b below).
• Bootstrap high-order integrability in space. Here we apply [AV22b, Theorem 6.3]

finitely many times in the (H−1,q j ,H1,q j , r, α)-setting with (q j ) j�1 such that q j+1−
q j � c > 0 (see Step 2).
• Bootstrap regularity in space by applying [AV22b, Theorem 6.3] on the shifted

scales Yi = H
−1+δ+2i and Ŷi = H

−1+2i (see Step 3).

Proof of Theorem 4.1 Part (B) – Proof of (4.5) in the case p > 2. Let (u, σ ) be the
(p, κ, q, δ)-solution to (4.2) provided by Part (A). In the proof below we use Theo-
rem 3.2 without further reference to obtain the required stochastic maximal regularity
in different settings.

Step 1: For all r ∈ (2,∞),

u ∈
⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+δ−2θ,q), a.s. (4.15)
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To prove this regularization effect in time, in the case κ = 0 we divide the argument into
two sub-steps. In the latter case, we will first use [AV22b, Proposition 6.8] to create a
weighted setting with a slight increase in integrability. After that we will apply [AV22b,
Corollary 6.5] to extend the integrability to arbitrary order. In the case κ > 0, Step 1a
below can be skipped.

Step 1a: If κ = 0, then (4.15) holds for some r > p. Let α > 0 be such that

Yi = Xi = H
−1+2i−δ,q , i ∈ {0, 1}, 1

p
= 1 + α

r
, and

1

r
= β1 − 1 +

1

p
,

where β1 ∈ (0, 1) is as in Part (A) of the proof. Then α < r
2 − 1. Now by Part (A) of

the proof we can apply [AV22b, Proposition 6.8] to obtain (4.15).
Step 1b: (4.15) holds for all r ∈ (2,∞). Let either [r = p and α = κ , if κ > 0]

or [r > p, α > 0 be as in Step 1a, if κ = 0]. Let r̂ ∈ [r,∞) be arbitrary and let
α̂ ∈ [0, r̂

2 − 1) be such that 1+α̂
r̂ < 1+α

r . Step 1 of the above proof Part (A) and the above
Step 1a show that [AV22b, Corollary 6.5] applies with Yi = H

−1+δ+2i,q(Td), κ , r, α and
r̂ , α̂ as above.

Step 2: For all r ∈ (2,∞) and ζ ∈ (2, d
−δ ),

u ∈
⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+δ−2θ,ζ ), a.s. (4.16)

From Step 2, we know that (4.16) holds for all r ∈ (2,∞) and ζ = q. Fix α > 0 and
choose r > p such that 2 1+α

r + d
q < 2 + δ. By Step 1 of Part (A) we know that for all

ζ ∈ [q, d/(−δ)), the assumptions (HF), (HG) in [AV22a, Section 4.1] are satisfied and
non-criticality holds in the (H−1+δ,ζ ,H1+δ,ζ , r, α)-setting. To prove the claim, it suffices
to show the existence of ε > 0 depending only on q, δ such that for any ζ ∈ [q, d/(−δ)),

u ∈
⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+δ−2θ,ζ ) a.s. �⇒ u ∈

⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+δ−2θ,ζ+ε) a.s.

(4.17)
To prove (4.17),we apply [AV22b, Theorem 6.3]. Due to the previous choice of r, α,
Step 1 of Part (A), and the left-hand side of (4.17), [AV22b, Theorem 6.3] is applicable
with

Yi = H
1+δ−2i,ζ , Ŷi = H

1+δ−2i,ζ+ε, r̂ = r, α̂ = α

where ε > 0 is chosen so that

Y Tr
r = B

1+δ− 2
r

ζ,r ↪→ B
1+δ−2 1+α

r
ζ+ε,r = Ŷ Tr

α̂,̂r .

By Sobolev embeddings, the previous display holds provided 1
ζ+ε − 1

ζ
� 2 α

dr . To satisfy
the latter, it is enough to choose ε := 2 α

dr .
Step 3: For all ζ, r ∈ (2,∞),

u ∈
⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1−2θ,ζ ), a.s. (4.18)
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If δ = 0, then (4.18) follows from (4.16). In case δ < 0 first fix ζ ∈ (d, d/(−δ)). Let
r ≥ p be so large that r > 2

1+δ and

2

r
+
d

ζ
< 2 + δ. (4.19)

This is possible since ζ > d and δ > −1. Set α̂ := r( 1
r − δ

2 ) − 1 ∈ [0, r
2 − 1).

Then by (4.19) and Step 1 of Part (A), (HF), (HG), and non-criticality hold in the
(H−1,q ,H1,q , r, α̂)-setting. Now [AV22b, Theorem 6.3] with

Xi = Yi = H
−1+δ+2i,q , Ŷi = H

−1+2i,q , r̂ = r, α = 0, α̂ as above.

gives (4.18) with the above ζ and r . To check the conditions (1)-(3) in [AV22b, Theorem
6.3], note that (1) and (2) follow from (4.16), Step 1 of Part (A) and the above choice of
Yi , Ŷi , r, r̂ , α, α̂. To check (3) note that 1+α̂

r = 1
r − δ

2 . Thus

Y Tr
r = B

1+δ− 2
r

q,r = B
1−2 1+α̂

r
q,r = Ŷ Tr

α̂,̂r .

The second part of condition (3) holds due to [AV22b, Lemma 6.2(4)] since 1+α̂
r = 1

r − δ
2 ,

Ŷ1+ δ
2
= H

1+δ,q = Y1 and Ŷ0 = H
−1,q = Y1+ δ

2
.

In order to obtain (4.18) for all ζ <∞, we can again apply (4.17) but this time with
δ = 0. ��

Next we prove Part (C) of Theorem 4.1, i.e. we show (4.5) in the case q = p = 2
and κ = 0. Here we follow the arguments in [AV22b, Section 7] employing the results
in [AV22b, Section 6], see [AV22b, Roadmap 7.4] for a strategy summary.

Proof of Theorem 4.1 Part (C) – Proof of (4.5) in the case q = p = d = 2, δ = 0. Let
(u, σ ) be the (2, 0, 2, 0)−solution to (4.2) provided by Part (A). It is enough to prove
that for all ε ∈ (0, 1

2 ) for all r ∈ (2,∞),

u ∈
⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1−ε−2θ ) a.s. (4.20)

where, to shorthand the notation, we wrote H
1−ε−2θ instead of H

1−ε−2θ,2. Indeed,
afterwards we can apply Steps 2 and 3 of Part (B) with δ = −ε and q = 2.

Step 1: (4.20) holds for some ε > 0 and r = 4. Let ε0 > 0 be such that the
Assumptions 2.1 holds for δ = −ε0 < 0, cf. Remark 2.2. Without loss of generality we
assume ε0 � 1

2 . For all ε ∈ (0, ε0), let α ∈ [0, 1) be such that

1

2
= 1 + α

4
+
ε

2
. (4.21)

Since ε < 1
2 , (4.21) yields α ∈ (0, 1) = (0, r

2 − 1) where r = 4. To conclude Step
1, it is enough to check the assumptions of [AV22b, Proposition 6.8] with p = 2,
Yi = H

−1+2i−ε and Xi = H
−1+2i . However, these follow from Step 1 of Part (A),

Theorem 3.2, and the fact that ϕ j = β j = 1
2 (1− d

2q ) = 3
4 for j ∈ {1, 2}.

Step 2: Let ε0 > 0 be as in Step 1. For each ε ∈ (0, ε0 ∧ 1
2 ), (4.20) holds with

arbitrary r > 2. Let r = 4 and α ∈ (0, r
2 − 1) be as in Step 1. Let r̂ ∈ [4,∞) be

arbitrary and let α̂ � 0 such that

Yi = H
−1−ε+2i , Xi = H

−1+2i , r̂ ∈ (4,∞),
1 + α̂

r̂
<

1 + α

r
.
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Then α̂ ∈ [0, r̂
2 − 1). It remains to apply [AV22b, Corollary 6.5]. Note that the assump-

tions follow from Step 1 of Part (A), and

Y Tr
r = B

1−ε− 2
r

2,r ↪→ L
2 = XTr

0,2,

where we used 1− ε > 2
r . ��

Proof of Theorem 2.4. It suffices to set κ = κc in Theorem 4.1. One can check that this
is admissible under the conditions on p, q, δ in (4.3). ��

In Theorem 2.4 we omitted δ ∈ (−1,− 1
2 ). The reason for this is that it does not

enlarge the class of critical spaces with smoothness > − 1
2 for the initial data for which

we can treat (2.1). Indeed, in case δ ∈ (−1,− 1
2 ), then the restrictions q < d

−δ and

2 1+κ
p + d

q � 2 + δ (see (4.3)) implies that the smoothness of the space of the initial data

satisfies 1 + δ − 2 1+κ
p > d

q − 1 > −1− δ > − 1
2 .

4.2. Higher order regularity and the proof of Theorem 2.7. For the proof of Theorem 2.7
we need the following lemma, which is the analogue of Lemma 4.2 but with δ replaced
by a higher order smoothness s > 0.

Lemma 4.3. Suppose that Assumption 2.1(p, κ, q, δ) and Assumption 2.6 holds. Let
X j = H

−1+2 j+s,q with s ∈ (0, η]. Assume that

q ∈ (d,∞), p ∈ (2,∞), κ ∈
[
0,

p

2
− 1

)
satisfy 1 + s − 2(1 + κ)

p
− d

q
> 0.

(4.22)

Then for all n � 1 there exists a constant Cn such that for all v, v′ ∈ X1 satisfying
‖v‖XTr

κ,p
, ‖v′‖XTr

κ,p
� n,

‖F(·, v)‖X0 � Cn(1 + ‖v‖XTr
κ,p
),

‖F(·, v)− F(·, v′)‖X0 � Cn‖v − v′‖XTr
κ,p
,

‖G(·, v)‖γ (�2,X1/2)
� Cn(1 + ‖v‖XTr

κ,p
),

‖G(·, v)− G(·, v′)‖γ (�2,X1/2)
� Cn‖v − v′‖XTr

κ,p
,

Note that this lemma will also imply non-criticality of F and G since using the
notation of [AV22a, Section 4.1] we can take F = FTr and G = GTr and hence the
critical parts Fc and Gc vanish.

Proof. Note that Xβ = H
s+2β,q , XTr

κ,p = B
1+s−2(1+κ)/p
q,p . Due to the last condition in

(4.22) and Sobolev embedding we have

XTr
κ,p ↪→ Cε ∩ Hs,q , for some ε > 0. (4.23)
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We prove the claimed estimate for F . The estimate for G follows similarly. Fix n � 1
and v, v′ ∈ X1 satisfying ‖v‖XTr

κ,p
, ‖v′‖XTr

κ,p
� n. As in (4.8) we write F = F1 + F2 + F3.

Note that

‖F1(·, v)− F1(·, v′)‖H−1+s,q �s,q ‖(v − v′)⊗ v‖Hs,q + ‖v′ ⊗ (v − v′)‖Hs,q

(i)
�s,q ‖v − v′‖L∞‖v‖Hs,q + ‖v‖Hs,q‖v − v′‖L∞
(4.23)
�n ‖v − v′‖XTr

κ,p

where in (i) we used [AV21, Proposition 4.1(1)] and in (i i) Sobolev embedding. The
estimate for F1(v) follows as well since F1(0) = 0.

Next we prove the estimates for F2. We only consider the div( f (·, v)) part, since the
other term is similar. Let us write

f (·, v)− f (·, v′) = �(v, v′)(v − v′),

where �(v, v′) :=
∫ 1

0
∂y f (·, (1− t)v + tv′) dt.

By repeating the argument for F1, it is enough to show that, for all v, v′ ∈ X1 satisfying
‖v‖XTr

κ,p
, ‖v′‖XTr

κ,p
� n,

‖�(v, v′)‖Hs,q � Cn .

The latter follows from Assumption 2.6, [BMS10, Theorem 1] or [Tay11, Proposition
10.2, Chapter 13] and (4.23). The estimate for F2(·, v) can be proved more directly. The
estimates for F3, F4 and G can be proved similarly. ��

After this preparation we will now be able to prove the higher order regularity by an
iteration argument based on [AV22b, Theorem 6.3].

Proof of Theorem 2.7. As usual we only prove (2.16), since (2.17) follows from (2.16)
and Sobolev embeddings.

Let η, ξ be as in Assumption 2.1. Let η0 � 0 and ξ0 ∈ (d,∞) be given by

ξ0 =
{
d + 1 if ξ ∨ q � d,

ξ ∨ q otherwise,
and η − d

ξ
= η0 − d

ξ0
.

Note that η0 ∈ (0, η] since ξ0 � ξ and η > d
ξ

. We split the proof into two steps. In the
following steps, without further mentioning it, we apply Theorem 3.2 several times in
order to check stochastic maximal regularity of (A, B) = (AS, BS). This is needed in
order to check the conditions of our bootstrapping result [AV22b, Theorem 6.3]. In case
ξ0 = ξ we also have η0 = η and Step 2 below is not needed.

Step 1: For all r ∈ (2,∞),

u ∈
⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+η0,ξ0) a.s.
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To show this fix N ∈ N so large that η0 < N . Set sk = k η0
N for k ∈ {0, . . . , N }. By

induction and (2.13) in Theorem 2.4, it is enough to prove that for each k ∈ {1, . . . , N },
u ∈

⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+sk−1−2θ,ξ0) a.s. ⇒ u ∈

⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+sk−2θ,ξ0) a.s.

(4.24)
To prove (4.24) we apply [AV22b, Theorem 6.3] with X j = H

−1+2 j+δ,q ,Y j = H
−1+sk−1,ξ0 ,

Ŷ j = H
−1+sk ,ξ0 for j ∈ {0, 1} and α = 0, r = r̂ , α̂ to be chosen below. Note that

Ŷ j ↪→ Y j ↪→ X j for all j ∈ {0, 1}. Since ξ0 > d and η0 < N , one can find r � p such
that 1 − d

ξ0
> 2

r and η0
N < 1 − 2

r . Set α̂ = r
2
η0
N ∈ [0, r

2 − 1). It remains to check the
conditions (1)–(3) of [AV22b, Theorem 6.3]. Conditions (1) and (2) are satisfied by the
induction hypothesis and Lemma 4.3 which is applicable since

1 + sk − d

ξ0
− 2

1 + α̂

r
= 1 + sk−1 − d

ξ0
− 2

r
> 0, for all k ∈ {1, . . . , N },

where we used sk−1 � 0 and 1 − d
ξ0

> 2
r . To check condition (3) note that [AV22b,

(6.1)] follows from [AV22b, Lemma 6.2(4)], Ŷ1− η0
2N
= Y1, Y η0

2N
= Ŷ0, and the choice of

the parameters. For (3) it remains to observe that

Y Tr
r = B

1+sk−1− 2
r

ξ,r = B
1+sk−2 1+α̂

r
ξ,r = Ŷ Tr

α̂,r .

Therefore, we can conclude (4.24).
Step 2: Proof of (2.16). Fix L ∈ N such that η−η0 < L . Let ηk = η0 + k η−η0

L where
k ∈ {1, . . . , L}. Define ξ0 � ξ1 � . . . ξL = ξ by

ηk − d

ξk
= η − d

ξ
, (4.25)

By induction and Step 1 it is enough to prove that for each k ∈ {1, . . . , L},
u ∈

⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+ηk−1−2θ,ξk−1) a.s. ⇒ u ∈

⋂

θ∈[0,1/2)

H θ,r
loc (0, σ ;H1+ηk−2θ,ξk ) a.s.

(4.26)
Choose r so large that η−η0

L < 1 − 2
r (this is possible since η − η0 < L). Set α̂ :=

η−η0
L

r
2 ∈ [0, r

2 − 1). As in the previous step, (4.26) follows from [AV22b, Theorem
6.3] applied with X j = H

−1+2 j+δ,q , Y j = H
−1+2 j+ηk−1,ξk−1 , Ŷ j = H

−1+2 j+ηk ,ξk and
r = r̂ , α = α̂ as above. Note that by (4.25) and Sobolev embeddings, Ŷ j ↪→ Y j ↪→ X j
for j ∈ {0, 1}. It remains to check the conditions (1)–(3) of [AV22b, Theorem 6.3].
Conditions (1)–(2) follows from Lemma 4.3, which is applicable since

1 + ηk − 2
1 + α̂

r
− d

ξk
� ηk − d

ξk

(4.25)
> 0,

where we used 1+α̂
r < 1

2 . To check condition (3) note that [AV22b, (6.1)] follows from
[AV22b, Lemma 6.2(1)], and the fact that

Y Tr
r = B

1+ηk−1− 2
r

ξk−1,r
↪→ B

1+ηk−1− 2
r

ξk ,r
↪→ B

1+ηk−2 1+α̂
r

ξk ,r
= Ŷ Tr

α̂,r ,

where we used the definition of α̂ and the fact that ξk−1 � ξk . ��
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4.3. Blow-up criteria and proof of Theorem 2.9. The proof of Theorem 2.9 is based
on the blow-up criteria given in [AV22b, Section 4] and the extrapolation result in
[AV22b, Lemma 6.10]. We begin by specializing the [AV22b, Lemma 6.10] to the
present situation. Let (u, σ ) be the (p, κc, q, δ)-solution (2.1) provided by Theorem 2.4.
Consider the following stochastic Navier-Stokes equations starting at ε > 0:

{
dv + Av dt = F(·, v) dt + (Bv + G(v)) dW�2 ,

v(ε) = 1{σ>ε}u(ε).
(4.27)

Definition 2.3 extends naturally to the problem (4.27). By either (2.14) or (2.15),

1{σ>ε}u(ε) ∈ L0
Fε

(�;B
d
q0
−1

q0,p0 (T
d)) a.s. for all p0, q0 ∈ (2,∞). (4.28)

Thus Theorem 4.1 gives the existence and uniqueness of a (p0, 0, q0, δ0)-solution (v, τ )
under conditions on the parameters.

Lemma 4.4. (Extrapolating life-span) Let Assumption 2.1(p, κc, q, δ) hold with

−1

2
� δ � 0,

d

2 + δ
< q <

d

1 + δ
,

2

p
+
d

q
� 2 + δ, κ = κc = −1 +

p

2

(
2 + δ − d

q

)
.

Let Assumption 2.1(p0, κ0, q0, δ0) hold with

δ0 ∈ (−1, 0], d

2 + δ0
< q0 <

d

−δ0
and 2

1 + κ0

p0
+

d

q0
� 2 + δ0.

Let (u, σ ) be the (p, κc, q, δ)-solution to (2.1). Fix ε > 0 and let (v, τ ) be the (p0, κ0,

q0, δ0)-solution to (4.27). Then

τ = σ a.s. on {σ > ε} and u = v a.e. on [ε, σ )×�.

Proof. The claim follows by applying [AV22b, Lemma 6.10] with X j = H
−1+2 j+δ,q(Td),

Y j = H
−1+2 j+δ0,q0(Td), Ŷ j = H

−1+2 j,̂q0(Td), r = p0, r̂ = p̂0,α = κ0 and α̂ = 0 where
p̂0, q̂0 > 2 are large enough. To check this, note that the required regularity assump-
tions are satisfied thanks to (2.14) applied to (u, σ ) and (v, τ ). The required stochas-
tic maximal regularity also holds in the (Y0,Y1, p0, κ0)-setting by Theorem 3.2 and
the conditions on the parameters. Moreover, by Lemma 4.2 the conditions (HF)-(HG)
of [AV22b, Section 4.1] hold in the (X0, X1, p, κc)-setting, (Y0,Y1, p0, κ0)-setting,
and the (Ŷ0, Ŷ1, p̂0, 0)-setting if p̂0, q̂0 are large enough. The required embeddings
Ŷ Tr
p̂0
↪→ XTr

κc,p and Ŷ1 ↪→ X1− κ
p

also hold if p̂0, q̂0 are chosen large enough. ��
Next we prove Theorem 2.9 by applying our blow-up criteria from [AV22b].

Proof of Theorem 2.9. By Definition 2.3, (2.1) is understood as a stochastic evolution
equation [AV22b, (4.1)] with the choice (4.1), X j = H

−1+2 j+δ,q , κc = −1+ p
2 (2+δ− d

q ),

and H = �2. As in the proof of Lemma 4.4, Lemma 4.2 implies that (HF)-(HG) in
[AV22b, Section 4.1] hold in the (X0, X1, p, κc)-setting with ϕ j = β j = 1

2 (1− δ
2 + d

2q ),
ρ j = 1 for j ∈ {1, 2}. The same holds with (p, κc, q, δ) replaced by (p0, κ0,c, q0, δ0)

where κ0,c := −1 + p0
2 (2 + δ0 − d

q0
) for the translated problem (4.28). By the condition

q0 <
d

1+δ0
, one can check that κ0,c <

p0
2 − 1.
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Finally note that Theorem 3.2 can be applied in these two different settings, which
will be used in Step 1 below when we apply the blow-up criteria. Below ε, T ∈ (0,∞)

are fixed.
Step 1: Proof of (2.18). [AV22b, Theorem 4.11] applied to the (p, κc,0, q0, δ0)-

solution (v, τ ) to (4.27) gives

P
(
ε < τ < T, ‖v‖L p0 (ε,τ ;Hγ0,q0 (Td ;Rd )) <∞

)
= 0,

where we used [H−1+δ0,q0 ,H1+δ0,q0 ]1− κ0,c
p0

= H
γ0,q0 and that div v = 0 on [ε, σ ) × �.

Therefore, the required result follows from Lemma 4.4.
Step 2: Proof of (1)–(2).

(1): Let q1 > q0. Since B
d
q0
−1

q1,∞ (Td;Rd) ↪→ B
d
q0
−1

q2,∞ (Td;Rd) for q2 < q1, replacing
q1 by a smaller number if necessary, we may assume q1 ∈ (q0,

d
1+δ ). Pick p1 ∈ (2,∞)

so large that

2

p1
+

d

q1
− 1 <

d

q0
− 1.

Note that Bd/q0−1
q1,∞ ↪→ Hγ1,q1 where γ1 = 2

p1
+ d

q1
− 1 and therefore

P
(
ε < σ < T, sup

t∈[ε,σ )
‖u(t)‖

B
d
q0
−1

q1,∞
<∞

)

� P
(
ε < σ < T, ‖u‖L p1 (ε,σ ;Hγ1,q1 ) <∞

)
= 0,

where in the last equality we apply (2.18) with (p0, q0, γ0) replaced by (p1, q1, γ1).
(2): Follows from (2.18). ��

4.4. Global well-posedness: Proofs of Theorems 2.11 and 2.12. We begin by deriving
Theorem 2.12 from the blow-up criterion (2.18) in Theorem 2.9 and the energy estimates
provided by Theorem A.3.

Proof of Theorem 2.12. Let (u, σ ) be the (p, κc, q, δ)-solution provided by Theorem
2.4, where κc is as in Theorem 2.12. By combining Lemma 4.4 with p0 = q0 = 2,
δ0 = 0 and Theorem A.3(2) from the appendix, we obtain that, for all ε > 0,

u ∈ L2(ε, σ ; H1,2(T2;R2)) a.s. on {σ > ε}. (4.29)

Thus, for all 0 < ε < T <∞,

P(ε < σ < T )
(4.29)= P

(
ε < σ < T, ‖u‖L2(ε,σ ;H1,2(T2;R2)) <∞

)
= 0 (4.30)

where the last equality follows from (2.18) of Theorem 2.9 with p0 = q0 = 2 andγ0 = 1.
Since σ > 0 a.s. by Theorem 2.4, from (4.30) and the arbitrariness of 0 < ε < T <∞,
it follows that P(σ <∞) = 0. Hence σ = ∞ a.s. as desired.

The remaining assertions follow from Theorems 2.4 and 2.7. ��
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Next we prove Theorem 2.11. As in the proof of [FK64, Theorem 1.4], the main idea
is to exploit the quadratic growth of the nonlinearity P[div(u⊗ u)] to obtain an estimate
where the LHS and the RHS have different scaling in u. Then the conclusion follows
by choosing the data sufficiently small so that the quadratic growth of the RHS keeps
sufficiently strong Sobolev norms of u bounded over time. The nonlinearities f0, f and
gn might contain lower order terms (see the estimate (4.40)), which need to be dealt with
as well. This can be achieved by first working on small time intervals and then combine
solutions as in [AV21, Proposition 3.1]. The case of small time intervals is the content
of the following result.

Proposition 4.5. Let Assumption 2.1(p, κ, q, δ) be satisfied and suppose that one of the
following conditions holds:

• δ ∈ [− 1
2 , 0], d

2+δ < q < d
1+δ ,

2
p + d

q � 2 + δ, and κ = κc = −1 + p
2

(
2 + δ − d

q

)
;

• δ = κ = κc = 0 and p = q = d = 2.

Assume that (2.19) holds for some constants M1,M2 > 0. Then there exists T0 ∈ (0, T ]
depending only on the parameters in Assumption 2.1 and M2 for which the following
assertion holds: For all ε0 ∈ (0, 1) there exists a constant Cε0 > 0 such that, for all

t ∈ [0, T ] and v ∈ L p
Ft
(�;Bd/q−1

q,p ) with

E‖v‖p
Bd/q−1
q,p

+ Mp
1 � Cε0 ,

the (p, κc, q, δ)-solution (ut , σt ) to (2.1) with initial data v at time t satisfies:

(1) P(σt � Tt ) > 1− ε0 where Tt := (t + T0) ∧ T .
(2) There exists a stopping time τt ∈ (t, σt ] a.s. such that P(τt � Tt ) > 1− ε0 and

E
[
1{τt�Tt }‖ut‖pH θ,p(t,t+T0,wt

κc ;H1+δ−2θ,q )

]
� Kθ (E‖v‖p

Bd/q−1
q,p

+ Mp
1 )

for all θ ∈ [0, 1
2 ), where Kθ is a constant independent of (t, v). Here in case p =

q = d = 2 and θ > 0 the LHS of the above estimate should be replaced by
E

[
1{τt�Tt }‖ut‖2

C([t,τt ];L2)

]
.

The key point in the above is the independence of T0 on t ∈ [0, T ] and ε0 > 0.
Note that (p, κc, q, δ)-solutions to (2.1) at a time t > 0 can be defined as in Definition

2.3 and their existence is ensured by Theorem 2.4 by a shift argument. In the case of pure
transport noise (i.e. f j = 0 and gn = 0), the proof of Proposition 4.5 shows that T0 = T ,
and thus the iteration argument needed to deduce Theorem 2.11 from Proposition 4.5
can be avoided.

Next we first show how Proposition 4.5 implies Theorem 2.11. We postpone the proof
of Proposition 4.5 to Sect. 4.4.1.

Proof of Theorem 2.11. We begin by collecting some useful facts. Fix T ∈ (0,∞) and
ε ∈ (0, 1). Let (T0,Cε0) be as in Proposition 4.5, set N0 := � T

T0
� and fix θ0 ∈ ( 1+κc

p , 1
2 ).

Let c0 be the norm of the embedding (see [ALV23, Theorem 1.2] and [AV22a, Proposition
2.5])

H θ0,p(0, T0;wκc; H1+δ−2θ0,q) ∩ L p(0, T0, wκc; H1+δ,q) ↪→ C([0, T0]; Bd/q−1
q,p ),

(4.31)
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and set K0 := (Kθ0 +K0)c0 where Kθ0 is as Proposition 4.5(2). Without loss of generality
we assume K0 � 1.

Below we prove the assertions of Theorem 2.11 if Cε,T is chosen as:

Cε,T := Cε0

2K N0
0

where ε0 := ε

2N0
. (4.32)

Note that Cε,T is independent of u0 and M1, since (Cε0 , T0) depends only on the param-
eters in Assumption 2.1 and M2.

We prove Theorem 2.11 by an iteration argument. Let (tn)
N0
n=0 be a partition of [0, T ]

with step � T0/2, i.e. 0 = t0 < t1 < · · · < tN0−1 < tN0 = T and |tn − tn−1| � T0/2 for
all 0 � n � N0. We claim that for all n ∈ {1, . . . , N0 − 1} there exist a stopping time
τn ∈ [0, σ ) such that, for all θ ∈ [0, 1+κc

p ),

P
(
τn > tn

)
> 1− 2n−N0ε, (4.33)

E
[
1{τn>tn}‖u(tn)‖pBd/q−1

q,p

]
+ Mp

1 � Kn−N0
0 Cε0 , (4.34)

E
[
1{τn>tn}‖u‖pH θ,p(0,tn ,wκc ;H1+δ−2θ,q )

]
�θ,n E‖u0‖p

Bd/q−1
q,p

+ Mp
1 . (4.35)

Indeed, the claims of Theorem 2.11 are equivalent to the case n = N0 of (4.33)–(4.35).
Let us begin by noticing that (4.33)–(4.35) for n ∈ {1, 2} hold due Proposition 4.5, (4.32)
and t1 � t2 � T0. Hence it remains to show that (4.33)-(4.33) hold for n + 1 whenever
they hold for n ∈ {2, . . . , N0 − 1}. To this end, set

v := 1{τn−1>tn−1}u(tn−1) ∈ L p
Ftn−1

(�; Bd/q−1
q,p ).

Note that, up to a time shift, Theorem 2.4 ensures the existence of a (p, κc, q, δ)-solution
Let (un−1, σn−1) to (2.1) with initial data v at time tn−1. Thus, Proposition 4.5 provides
a stopping time λn−1 ∈ (tn−1, σn−1] a.s. such that

P(λn−1 > tn+1) > 1− ε0 = 1− 2−N0ε, (4.36)

and for (c0, K0) as described around (4.31),

E
[
1{λn−1�tn+1} sup

t∈[σn−1,λn−1)

‖un−1(t)‖p
Bd/q−1
q,p

]

(4.31)
� c0E

[
1{λn−1�tn+1} max

θ∈{0,θ0}
‖un−1(t)‖p

H θ,p(tn−1,tn+1,w
tn−1
κ ;H1+δ−2θ )

]

� K0

(
E

[
1{τn−1>tn−1}‖u(tn−1)‖p

Bd/q−1
q,p

]
+ Mp

1

)
� Kn+1−N0

0 Cε0 . (4.37)

Arguing as in the proof of Theorem 2.9 proved in Sect. 4.3, by maximality and
instantaneous regularization of (p, κc, q, δ)-solution, we have

σ = σn−1 on {τn−1 > tn−1},
u = un−1 on [tn−1, τn−1)× {τn−1 > tn−1}. (4.38)

Set τn+1 := 1{τn−1>tn−1}λn−1 + tn−11{τn−1�tn−1}. Note that τn+1 is a stopping time since
λn−1 > tn−1. Moreover, (4.33) and (4.36) imply

P(τn+1 > tn+1) > 1− 2n−N0ε − 2−N0ε � 1− 2n+1−N0ε0.
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In addition (4.37) and (4.38) yield

E
[
1{τn+1>tn+1} sup

s∈[tn ,tn+1]
‖u(s)‖p

Bd/q−1
q,p

]
� Kn+1−N0

0 Cε0 .

Hence (4.33)–(4.34) for n + 1 are proved. Finally, (4.35) with n + 1 follows by com-
bining Proposition 4.5(2) and the fact that the restriction operator f 
→ f |[tn ,tn+1] maps
H θ,p(tn−1, tn+1, w

tn−1
κc ; H1+δ−2θ,q) into H θ,p(tn, tn+1; H1+δ−2θ,q)with norm depending

only on p, κc and |tn−1 − tn| = T0/2 see [AV22b, Proposition 2.1(1)]. ��

4.4.1. Proof of Proposition 4.5. In this subsection we use the notation introduced in

(4.1). Also recall from Lemma 4.2 that β = 1
2 (1 + δ

2 − d
2q ) and Xβ = H

d
2q + δ

2 ,q . To
simplify the notation we consider only the case t = 0. The general situation t > 0
follows verbatim as the constants in Theorem 3.2 do not depend on s ∈ [0, T ]. To prove
Theorem 2.11 we need a suitable L p-space which allows us to bound the nonlinearities
in (2.1). For each t ∈ (0,∞) it is defined as

X (t) := L2p(0, t, wκc; Xβ), where κc = −1 +
p

2

(
2 + δ − d

q

)
. (4.39)

By Lemma 4.2 the above space coincide with the abstract one introduced in [AV22a,
Subsection 4.3], where we also showed

⋂

θ∈[0,1/2)

H θ,p(0, t;wκc; X1−θ ) ⊆X (t).

In particular, the solution (u, σ ) provided by Theorem 2.4 satisfies a.s. for all t ∈ (0, σ ),
u ∈X (t).

Arguing as in Lemma 4.2 and using (2.19) one can check that we can find a constant
C0 (depending on M2) such that for all v ∈ Xβ

N (v) := ‖F(·, v)‖X0 + ‖G(·, v)‖γ (�2,X1/2)
� C0M1 + C0(‖v‖Xβ + ‖v‖2

Xβ
). (4.40)

Therefore, by Hölder’s inequality there exists a constant mt > 0 (depending only on
t, p, κc and mt in (4.40)) such that limt↓0 mt = 0 and for all v ∈X (t) a.s.

‖N (v)‖pL p(0,t,wκc )
� C p

0 M
p
1 + mt‖v‖pX (t) + C p

0 ‖v‖2p
X (t). (4.41)

Without loss of generality we assume that t 
→ mt is non-decreasing. This estimate
motivates once more the definition of X (t) and plays a crucial role in the analysis
below.

The next result is a special case of [AV22b, Lemma 5.3], and provides an a priori
estimate for the linear part of the equation based on maximal L p-regularity.

Lemma 4.6. Let Assumption 2.1(p, κc, q, δ) be satisfied. Fix T ∈ (0,∞). Let A = AS

and B = BS where (AS, BS) are as in (3.4). Then there exists K > 0 depending only
on p, q, δ and the constant C2 in Theorem 3.2 such that the following holds:

For any stopping time τ : �→ [0, T ], and any

v0 ∈ L0
F0

(�; XTr
κc,p), f ∈ L p

P ((0, τ )×�,wκc; X0),

g ∈ L p
P ((0, τ )×�,wκc; γ (�2, X1/2)),



Stochastic Navier–Stokes Equations for Turbulent Flows in Critical Spaces Page 43 of 57 43

and any (p, κc, q, δ)-solution v ∈ L p
P ((0, τ )×�,wκc; X1) to

{
dv + Av dt = f dt +

(
Bv + g

)
dW�2 ,

v(0) = v0,

on [0, τ ] ×� satisfies the following estimate

‖v‖pL p(�;X (τ ))
� K p(‖v0‖pL p(�;XTr

κc,p)
+ ‖ f ‖pL p((0,τ )×�,wκc ;X0)

+ ‖g‖p
L p((0,τ )×�,wκc ;γ (�2,X1/2))

)
.

Next we turn to the proof of Proposition 4.5.

Proof of Proposition 4.5. Throughout the proof we fix ε0 ∈ (0,∞). Recall that for
notational convenience we are assuming t = 0. We claim that there exist T0,Cε0 , r0 > 0
independent of u0 such that

E
∥
∥u0

∥
∥p

B
d
q −1
q,p (Td ;Rd )

� Cε0 �⇒ P(O) > 1− ε0, (4.42)

where

O = {‖u‖X (σ∧T0) � r0
}
.

Moreover, we obtain that T0 is independent of ε0, see (4.45) below.
We now split the proof into several steps. In Step 1 we obtain Proposition 4.5(1) from

(4.42) by applying the Serrin criterion (2.18) of Theorem 2.9, while in Steps 2 and 3 we
prove the claim (4.42). In Step 4 we show Proposition 4.5(2).

Step 1: (4.42) implies Proposition 4.5(1). By (4.41) on O we find

‖N (u)‖pL p(0,σ∧T0,wκc )
� mp

T0
(1 + r p0 ) + C0r

2p
0 =: C1.

Define the stopping time τ by τ = inf{t ∈ [0, σ ) : ‖N (u)‖pL p(0,t,wκc )
� C1 + 1} ∧ T0,

where we set inf ∅ = σ ∧ T0. Then τ = σ ∧ T0 on O.
By Theorem 3.2, (A, B) = (AS, BS) has stochastic maximal L p-regularity on [0, T0].

Since (u, σ ) is a (p, κc, q, δ)-solution to (2.1), as in [AV22a, Proposition 3.12(2)] it
follows that a.s. on [0, τ )

du + Au dt = 1[0,τ )F(·, u) dt +
(
Bu + 1[0,τ )G(·, u)

)
dW�2

andu(0) = u0. Now Theorem 3.2 with θ = κc
p givesu ∈ L p(�; H κc

p ,p(0, τ, wκc; X1− κc
p
)).

Using τ = σ ∧ T0 on O, by Sobolev embedding [AV22a, Proposition 2.7] we obtain

u ∈ H
κc
p ,p(0, σ ∧ T0, wκc; X1− κc

p
) ↪→ L p(0, σ ∧ T0; X1− κc

p
)

= L p(0, σ ∧ T0;Hγ,q(Td)) a.s. on O,
(4.43)

where γ = 1 + δ − 2 κc
p = 2

p + d
q − 1. It follows that

P
({σ < T0} ∩O) (i)= lim

s↓0
P
({

s < σ < T0, ‖u‖L p(s,σ ;Hγ,q ) <∞
}
∩O

)

� lim sup
s↓0

P
(
s < σ < T0, ‖u‖L p(s,σ ;Hγ,q ) <∞

)
(i i)= 0.

(4.44)
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Here in (i) we used σ > 0 a.s. (see Theorem 2.4) and (4.43). In (i i) we used (2.18) of
Theorem 2.9 with p0 = p, q0 = q and γ0 = γ . Therefore, σ � T0 on O and this gives
the result of the Proposition 4.5(1). Thus Step 1 is proved.

Next we turn to the proof of (4.42). Before we continue it is important to recall that
from the discussion below (4.39) a.s. for all t ∈ (0, σ ), u ∈X (t).

Step 2: Let K be as in Lemma 4.6. Let mt be as in (4.41). Fix T0 > 0 such that

K pm p
T0

� 1
2 . (4.45)

Then there exists R > 0 depending only on K and C0 such that for any N � 1 and any
stopping time μ satisfying 0 � μ � σ ∧ T0 and ‖u‖X (μ) � N a.s.,

E
[
ψR(‖u‖pX (μ)

)
]

� E‖u0‖p
B

d
q −1
q,p

+ Mp
1 , with ψR(x) = x

R
− x2.

In order to prove the assertion in Step 2 we use a localization argument. Set

σn := inf
{
t ∈ [0, σ ) : ‖u‖L p(0,t,wκc ;X1) + ‖u‖X (t) � n

}
, n � 1,

where we set inf ∅ = σ , and letμn := μ∧σn . Then limn→∞ σn = σ a.s., limn→∞ μn =
μ, and for all n � 1,

‖u‖X (σn) + ‖u‖L p(0,σn ,wκc ;X1) � n.

As in Step 1 it follows from Lemma 4.6, μn � T0 � T and (4.41) that

E‖u‖pX (μn)
� K p

(
E‖u0‖p

Bd/q−1
q,p

+ E‖F(·, u)‖pL p((0,μn)×�,wc;X0)

+ E‖G(·, u)‖pL p((0,μn)×�,wc;X1/2)

)

� K p(‖u0‖p
Bd/q−1
q,p

+ C p
0 M

p
1 )

+ K pmp
T0

E‖u‖pX (μn)
+ K pC p

0 E‖u‖2p
X (μn)

The choice (4.45) and the above estimate imply

E‖u‖pX (μn)
� 2K p(‖u0‖p

Bd/q−1
q,p

+ C p
0 M

p
1 ) + 2K pC p

0 E‖u‖2p
X (μn)

.

Letting n →∞, the desired estimate follows after division by R = 2K p(1 ∨ C p
0 ).

Step 3: (4.42) holds with T0 satisfying (4.45) and

Cε0 :=
ε0

8R2 and r0 := 1

(2R)1/p
, (4.46)

where R is as in Step 2. Let ψR be as in Step 2. It is easy to check that ψR has a unique
maximum on R+ given by 1

4R2 which is attained at x = 1
2R . With the choice in (4.46),

we have O = {‖u‖X (σ∧T0) � (2R)−1/p} and set

μ := inf{t ∈ [0, σ ) : ‖u‖X (t) � (2R)−1/p} ∧ T0, (4.47)

where inf ∅ := σ ∧ T0. To derive a contradiction suppose that

(a) E‖u0‖p
Bd/q−1
q,p

+ Mp
1 � Cε0 , and (b) P(O) � 1− ε0. (4.48)
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From the definition of O and (4.47), we find that μ < σ ∧ T0 a.s. on � \O. Moreover,

ψR(‖u‖pX (μ)
) = 1

4R2 a.s. on � \O, and ψR(‖u‖pX (μ)
) � 0 a.s. on O. (4.49)

Therefore,

E
[
ψR(‖u‖pX (μ)

)
]
= E

[
ψR(‖u‖pX (μ)

)1O
]

+ E
[
ψR(‖u‖pX (μ)

)1�\O
]

(4.49)
� P(� \O)

1

4R2

(4.48)(b)

� ε0

4R2

(4.48)(a)

� 2
(
E‖u0‖p

Bd/q−1
q,p

+ Mp
1

)
.

Since without loss of generality we can assume M1 > 0, the latter contradicts Step 2.
Thus P(O) > 1− ε0 as desired.

Step 4: Proof of Proposition 4.5(2). Let τ be stopping time defined by the following
variation of (4.47):

τ := inf
{
t ∈ [0, σ ) : ‖u‖X (t) �

(4

3
R
)−1/p}

, (4.50)

where inf ∅ := σ . Then from Step 3, one can check that τ ∧ T0 = σ ∧ T0 on O, and
thus

P(τ � T0) � P({τ � T0} ∩O) = P({σ � T0} ∩O)
(4.44)= P(σ � T0) > 1− ε0.

Also note that ‖u‖pX (τ )
� ( 4

3 R)
−1 a.s. and therefore E‖u‖2p

X (τ )
� ( 4

3 R)
−1E‖u‖pX (τ )

.
Thus Step 2 ensures that

E‖u‖pX (τ )
� R(E‖u0‖p

Bd/q−1
q,p

+ Mp
1 ) +

3

4
E‖u‖pX (τ )

and hence E‖u‖pX (τ )
� 4R(E‖u0‖p

Bd/q−1
q,p

+ Mp
1 ). Moreover,

E‖u‖2p
X (τ )

= E
[‖u‖pX (τ )

‖u‖pX (τ )

] (4.50)
� 3

(
E‖u0‖p

Bd/q−1
q,p

+ Mp
1

)
.

Now the claim follows from Theorem 3.2 and (4.41). ��
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Appendix A: Global Well-Posedness for d = 2 with L∞–Noise

The aim of this appendix is to prove global well–posedness for the stochastic Navier–
Stokes equations (2.1) in two dimensions with L

2–data and L∞-noise of transport type.
Although such result is essentially known, our approach based on maximal L2-regularity
techniques seems new and provides an improvement of several of the known results. The
reader is referred to Remark A.4 below for a comparison with other approaches.

The results presented in this appendix are used to prove Theorems 2.12 and will be
presented more or less independently of the proofs given in the paper.

Here we consider the following stochastic Navier–Stokes equations on a domain
O ⊆ R

d

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du =
[
div(a · ∇u)− div(u ⊗ u) + f0(·, u) + div( f (·, u))

−∇ p + ∂h p̃ + ∂2
c p̃

]
dt

+
∑

n�1

[
(bn · ∇)u − ∇ p̃n + gn(·, u)

]
dwn

t ,

u = 0 on ∂O,

div u = 0,

u(·, 0) = u0,

(A.1)

where u = (uk)dk=1 : [0,∞)×�×O → R
d is unknown velocity field, p, p̃n : [0,∞)×

�×O → R are the unknown pressures, (wn)n�1 is a sequence of standard independent
Brownian motions on a filtered probability space (�,A , (Ft )t�0,P), (u⊗u)i, j = uiu j

and div(a · ∇u), (bn · ∇u), div( f (·, u)), ∂h p̃, ∂2
c p̃ are as in (2.2). Here O can be either

an open set in R
d (not necessarily bounded) or a compact manifold without boundaries

(e.g. the torus T
d ). In the latter case the boundary conditions in (A.1) have to be omitted.

If O ⊆ R
d , then under suitable regularity assumptions O other boundary conditions

can be considered, e.g. perfect-slip or Navier boundary conditions (see Remark A.8
below). For brevity, this will not be pursued here. Let us remark that the no-slip condition
allows us to avoid any further regularity assumptions on O .

A.1. Assumptions and main result. We begin by listing the assumption needed in this
appendix.

Assumption A.1. Let d � 2 be an integer.

(1) For all n � 1 and i, j ∈ {1, . . . , d}, the maps ai, j , b j
n , h

j,k
n , c jn : R+ ×�× O → R

are P ⊗ B(O × R
d)-measurable and there exist M, ν > 0 such that, a.s. for all

t ∈ R+, x ∈ O and ϒ = (ϒi )
d
i=1 ∈ R

d ,

|ai, j (t, x)| +
∑

n�1

(
|b j

n(t, x)|2 + |hi, jn (t, x)|2 + |c jn(t, x)|2
)

� M,

d∑

i, j=1

[
ai, j (t, x)− 1

2

( ∑

n�1

bin(t, x)b
j
n(t, x)

)]
ϒiϒ j � ν|ϒ |2.
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(2) For all j ∈ {0, . . . , d} and n � 1, f j , gn : R+ × � × O × R
d → R

d are
P ⊗B(O ×R

d)-measurable. Moreover, f j (·, 0) ∈ L2
loc([0,∞); L2(�×O;Rd)),

(gn(·, 0))n�1 ∈ L2
loc([0,∞); L2(� × O; �2)) and, a.s. for all t ∈ R+, x ∈ T

d ,
y, y′ ∈ R

d ,

| f j (t, x, y)− f j (t, x, y
′)| + ‖(gn(t, x, y)− gn(t, x, y

′))n�1‖�2

� (cO + |y| + |y′|)|y − y′|,
where cO = 0 if O is unbounded and cO = 1 otherwise.

To formulate our main result we introduce the needed function spaces. Set

H1
0 (O) := C∞0 (O)

H1(O)
, and H1

0 (O;Rd) := (H1
0 (O))d .

Next we introduce the Helmholtz projection. For each F ∈ L2(O;Rd), let ψF be the
(up to a constant) unique distribution such that ψF ∈ L2

loc(O), ∇ψF ∈ L2(O;Rd) and
∫

O
∇ψF · ∇ϕ dx =

∫

O
F · ∇ϕ dx for all ϕ ∈ L2

loc(O) s.t. ∇ϕ ∈ L2(O;Rd). (A.2)

The existence of a solutionψF ∈ L2
loc(O) to (A.2) with ‖∇ψF‖L2(O;Rd ) � ‖F‖L2(O;Rd )

follows from the Riesz representation theorem. In case O is a bounded Lipschitz do-
main, then one can also obtain ψF ∈ L2(O). Note that ∇ψF ∈ L2(O;Rd) is uniquely
determined by F , and that (A.2) is the weak formulation of

{
�ψF = divF on O,

∂νψF = F · ν on ∂O.
(A.3)

The Helmholtz projection is given by PF := F −∇ψF . Using (A.2), one sees that P is
an orthonormal projection on L2(O;Rd). Finally, we let

L
2(O) := P(L2(O;Rd)), H

1
0(O) := H1

0 (O;Rd) ∩ L
2(O), H

−1(O) := (H1
0(O))∗.

Next we introduce L2-solutions to (2.1) which, roughly speaking, are strong in the
probabilistic sense and weak in the analytic sense. As in Sect. 2.2, we view (A.1) as a
problem for the unknown u. To this end, for h j,k

n , c jn as in Assumption A.1(1), let us set
f̃ (u) := ( f̃ k(u))dk=1 where

f̃ k(u) =
∑

n�1

[
(I − P)

[
(bn · ∇)u + gn(·, u)

]] · h·,kn

+
∑

n�1

div
(
cn(I − P)

[
(bn · ∇)u + gn(·, u)

]k
)
. (A.4)

As below (2.8), we have f̃ (·, u) = ∂h p̃ + ∂2
c p̃.

Definition A.2. Let Assumption A.1 be satisfied.

(1) Let σ be a stopping time and let u : [0, σ )×�→ H
1
0(O) be a stochastic process. We

say that (u, σ ) is an L2-local solution to (A.1) if there exists a sequence of stopping
times (σ�)��1 for which the following hold:
• σ� � σ a.s. for all � � 1 and lim�→∞ σ� = σ a.s.;
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• For all � � 1, the process 1[0,σ�]×�u is progressively measurable;
• u ∈ L2(0, σ�;H1

0(O)) ∩ C([0, σ�];L2(O)) a.s. and for all i, j ∈ {1, . . . , d}
f i0 (u) + f ij (u) + f̃ i (u)− uiu j ∈ L2(0, σ�; L2(O;Rd)) a.s.,

(
(g j

n (·, u)
)

n�1 ∈ L2(0, σ�; L2(O; �2)) a.s.
(A.5)

• a.s. for all n � 1, t ∈ [0, σ�] and ψ ∈ H
1
0(O) the following identity holds

∫

O
(uk(t)− uk0)ψ

k dx +
∫ t

0

∫

O
ai, j∂ j u

k∂iψ
k dx ds

=
∫ t

0

∫

O
(u juk + f kj (u))∂ jψ

k dx ds +
∫ t

0

∫

O
( f k0 (u) + f̃ k(u))ψk dx ds

+
∑

n�1

∫ t

0
1[0,σn ]

∫

O

(
b j
n∂ j u

k + gkn(·, u)
)
ψk dx dwn

s ,

(A.6)
where we used the Einstein summation convention for the sums over i, j, k ∈
{1, . . . , d}.

(2) An L2-local solution (u, σ ) to (A.1) is called an L2-maximal solution if for any other
local solution (v, τ ) to (A.1) one has τ � σ a.s. and v = u on [0, τ )×�.

Note that L2-maximal solutions are unique. Moreover, (A.5) ensures that all the
integrals and series appearing in (A.6) are well-defined and convergent.

Next we present the main result of this appendix.

Theorem A.3. (Global solutions in 2D) Assume that d = 2 and that O ⊆ R
2 is an

open set, or a compact d-dimensional manifold without boundary (e.g. the torus T
d).

Let Assumption A.1 be satisfied and that for all n � 1, j ∈ {1, . . . , d}
c jn = αnb

j
n for some αn ∈ [− 1

2 ,∞). (A.7)

Then for each u0 ∈ L0
F0

(�;L2(O)) there exists an L2-maximal solution (u, σ ) to (A.1)
such that σ > 0 a.s. and

u ∈ C([0, σ );L2(O)) ∩ L2
loc([0, σ );H1

0(O)) a.s. (A.8)

Moreover, if there exist � ∈ L2
loc([0,∞); L2(�×O)) and C > 0 such that, a.s. for all

j ∈ {0, 1, 2}, t ∈ R+, x ∈ O and y ∈ R,

| f j (t, x, y)| + ‖(gn(t, x, y))n�1‖�2 � �(t, x) + C |y|, (A.9)

then the following hold:

(1) The L2-maximal solution (u, σ ) to (A.1) is global in time, i.e. σ = ∞ a.s.
(2) If u0 ∈ L2(�;L2(O)), then for each T ∈ (0,∞) there exists CT > 0 independent

of u, u0 such that

E
[

sup
t∈[0,T ]

‖u(t)‖2
L2(O)

]
+ E

∫ T

0
‖∇u(t)‖2

L2(O)
dt � CT (1 + E‖u0‖2

L2(O)
).
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The proof of Theorem A.3 will be given in Sect. A.3 below. The case αn ≡ − 1
2 of

(A.7) corresponds to the Stratonovich formulation of transport noise, see the comments
around (1.4). The proof of the above result shows that the range αn ∈ [− 1

2 ,∞) can be
improved to αn ∈ (α0,∞) for some α0 < − 1

2 depending only on (ν,M) in Assumption
A.1(1). We leave the details to the reader.

Note that under further regularity conditions on the coefficients ai j , b j and hi j , the
above result can be improved and this is the content of Theorem 2.12 combined with
Theorems 2.4 and 2.7. In the following remark we give a comparison with the existing
results.

Remark A.4. The existence of L2-maximal solutions to (A.1) with nonlinearities of
quadratic growth (see Assumption A.1(2)) seems new. (2) should be compared with
[MR05, Theorem 2.2] if O = R

d and [BM13, Section 6 and Corollary 7.7] if O is
an unbounded domain. Some earlier related results appeared in [BCF91,BCF92] using
some smoothness of b. Unlike in the above references we do not need any regularity
assumption on b besides boundedness and measurability. The regularity assumption on
b are needed in [MR05,BM13] to construct martingale solutions to (A.1) for general
d � 2. The case d = 2 is only considered afterwards.

In case f and g are globally Lipschitz, Theorem A.3 also follows from the monotone
operator approach (see e.g. [LR15, Chapter 4]). The extensions to the non-Lipschitz
setting in [LR15, Chapter 5] are not applicable since transport noise is not considered
there.

Below, we write L2, H
1
0, L2(�2) instead of L2(O), H

1
0(O), L2(O; �2) etc. for brevity.

A.2. Maximal L2-regularity for the turbulent Stokes system. In this subsection we con-
sider the linear part of (A.1) and prove stochastic maximal L2-regularity estimates which
will be used for Theorem A.3. We consider the turbulent Stokes system on O ⊆ R

d :
⎧
⎪⎨

⎪⎩

du + ASu dt = f dt +
∑

n�1

(BS,nu + gn) dwn
t ,

u(s) = 0.

(A.10)

Here s ∈ [0,∞), (AS, BS) = (AS, (BS,n)n�1) : R+ ×�→ L
(
H

1
0,H

−1 × L
2(�2)

)
is

the turbulent Stokes couple, which for all v ∈ H
1
0 and ψ ∈ H

1
0, is given by

〈ψ, ASv〉 :=
d∑

i, j=1

∫

O
ai, j∂ jv

k∂iψ
k dx +

∑

n�1

d∑

j=1

∫

O
c jn

(
(I − P)[(bn · ∇)v]

)k
∂ jψ

k dx

−
∑

n�1

d∑

j=1

∫

O

[
(I − P)[(bn · ∇)v]

]
· h·, jn ψ j dx,

BS(t)v :=
(
P[(bn · ∇)v]

)

n�1, h·, jn := (hi, jn )di=1,

where 〈·, ·〉 is the pairing in the duality (H1
0)
∗=H

−1 and L
2(�2) : =P(L2(O; �2(N�1;

R
d))). Note that, if Assumption A.1(1) holds, then

‖ASv‖H−1 + ‖(BS,nv)n�1‖L2(�2) � M‖v‖
H

1
0
.
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Recall that P denotes the progressive σ -algebra. For a stopping time τ , we say that
u ∈ L2

P ((0, τ ) × �;H1
0) is a strong solution to (A.10) (on [0, τ ] × �) if a.s. for all

t ∈ [s, τ )

u(t) +
∫ t

s
AS(r)u(r) dr =

∫ t

s
f (r) dr +

∑

n�1

∫ t

s
(BS,n(r)u(r) + gn(r)) dwn

r .

Next we show that the turbulent Stokes couple (AS, BS) has stochastic maximal
L2-regularity on [s, T ].
Proposition A.5. (Maximal L2-regularity) Let d � 2. Let Assumption A.1(1) be satis-
fied. Assume that O ⊆ R

d is an open set, or a compact d-dimensional manifold without
boundary (e.g. the torus T

d). Let 0 � s < T <∞. Then for all

f ∈ L2
P ((s, T )×�;H−1), and g ∈ L2

P ((s, T )×�;L2(�2)),

there exists a unique strong solution u ∈ L2
P ((s, T )×�;H1

0)∩ L2(�;C([s, T ];L2)).
Moreover, for any stopping time τ : �→ [s, T ] and any strong solution u to (A.10) on
[s, τ ] ×� one has

‖u‖L2((s,τ )×�;H1
0)

+ ‖u‖L2(�;C([s,τ ];L2)) � ‖ f ‖L2((s,τ )×�;H−1) + ‖g‖L2((s,τ )×�;L2(�2))

where the implicit constant is independent of ( f, g).

Proof. This follows from the monotone operator approach to SPDEs (see [LR15, Theo-
rem 4.2.4]). Indeed, it suffices to check the coercivity assumption. To this end, note that,
a.s. for all t ∈ R+ and v ∈ H

1
0,

∫

O
c jn

(
(I − P)[(bn · ∇)v]

)k
∂ jv

k dx
(A.7)= αn

∥
∥(I − P)[(bn · ∇)v]

∥
∥2
L2 .

Since infn�1 αn � − 1
2 , we have, a.s. for all t ∈ R+ and v ∈ H

1
0,

− 〈v, ASv〉 +
1

2

∑

n�1

‖BS,nv‖2
L2

(i)
� −

d∑

i, j=1

∫

O
ai, j∂iv · ∂ jv dx +

1

2

∑

n�1

‖(I − P)[(bn · ∇)v]‖2
L2

+ C‖h‖L∞(�2)‖∇v‖L2‖v‖L2 +
1

2

∑

n�1

‖P(bn · ∇)v‖2
L2

(i i)
� −ν‖∇v‖2

L2 +
ν

2
‖∇v‖2

L2 + CνM‖v‖2
L2 = −ν

2
‖∇v‖2

L2 + CνM‖v‖2
L2

where in (i) we used that P is an orthogonal projection and in (i i) we used Assumption
A.1(1). Hence the coercivity assumption in [LR15, Theorem 4.2.4] is satisfied and this
concludes the proof. ��

We conclude by pointing out another proof of the above result.

Remark A.6. Instead of the monotone operator approach one can also prove Proposition
A.5 via the method of continuity for stochastic maximal regularity (see [AV22b, Propo-
sition 3.13]). Indeed, one can reason as in the proof of Theorem 3.2 and the required a
priori estimate can be obtained from Itô’s formula for u 
→ ‖u‖2

L2 .
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A.3. Proof of Theorem A.3. To estimate the nonlinearities in (A.1) we need the follow-
ing consequence of Sobolev embedding. Here [·, ·]θ denotes the complex interpolation
functor, see e.g. [BL76].

Lemma A.7. (Sobolev embeddings) Let d � 2. Assume thatO ⊆ R
d is an open set, or

a compact d-dimensional manifold without boundary (e.g. the torus T
d). Let θ ∈ (0, 1)

and q ∈ [2,∞) be such that θ − d
2 � − d

q . Then

[H−1(O),H1
0(O)] 1+θ

2
↪→ Lq(O).

Proof. From general theory on coercive forms (see [Are04, Section 5.5.2]) we obtain
[H−1,H1

0]1/2 = L
2. Therefore, by reiteration for complex interpolation (see [BL76,

Theorem 4.6.1])

[H−1,H1
0](1+θ)/2 = [L2,H1

0]θ ↪→ [L2, H1
0 ]θ .

Using the boundedness of the zero-extension operator E0 : L2(O) → L2(Rd) and
E0 : H1

0 (O)→ H1(Rd), and Sobolev embedding (see [BL76, Theorem 6.4.5]),

‖ f ‖Lq � ‖E0 f ‖Lq (Rd ) � ‖E0 f ‖[L2(Rd );H1(Rd )]θ � ‖ f ‖[L2;H1
0 ]θ � ‖ f ‖[L2,H1

0]θ .

��
Proof of Theorem A.3. The proof is divided into several steps.

Step 1: There exists an L2-maximal solutions (u, σ ) to (A.1) such that σ > 0 a.s.
and that (A.8) holds. By Definition A.2 the claim of this step follows from [AV22a,
Theorem 4.9] with the choice p = 2, κ = 0, X0 = H

−1, X1 = H
1
0, H = �2 and for

v ∈ H
1
0, ψ ∈ H

1
0,

Av = ASv, Bv = BSv, G(v) = (
P[gn(·, v)]

)

n�1,

〈ψ, F(·, v)〉 =
∫

O
(u jui + f ij (u))∂ jψ

i dx ds +
∫

O
( f i0 (u) + f̃ i (u))ψ i dx ds,

(A.11)

where AS, BS and f̃ are as below (A.10) and in (A.4), respectively. Indeed, it remains to
check the assumptions of [AV22a, Theorem 4.9]. The stochastic maximal L2-regularity
follows from Proposition A.5. Next we check hypothesis [AV22a, (HF)-(HG)]. To this
end, note that by Assumption A.1(2) we have, for all v, v′ ∈ H

1
0,

‖F(·, v)− F(·, v′)‖H−1 + ‖G(·, v)− G(·, v′)‖L2(�2)

� (cO + ‖v‖L4 + ‖v′‖L4)‖v − v′‖L4

� (cO + ‖v‖[H−1,H1
0] 3

4

+ ‖v′‖[H−1,H1
0] 3

4

)‖v − v′‖[H−1,H1
0] 3

4

(A.12)

where in the last step we used Lemma A.7 with d = 2. Thus [AV22a, (HF)-(HG)] are
satisfied with mG = mF = 1, ρ j = 1, β j = ϕ j = 3

4 where j ∈ {1, 2}. Hence the claim
of this step follows from [AV22a, Theorem 4.9].

It remains to prove (1)–(2) in Theorem A.3 in case (A.9) holds. To this end, it is
enough to show that if (u, σ ) is an L2-maximal solution to (A.1) and u0 ∈ L2(�; L2),
then for each T ∈ (0,∞)

E
[

sup
t∈[0,T∧σ)

‖u(t)‖2
L2

]
+ E

∫ T∧σ

0
‖∇u(t)‖2

L2 dt �T 1 + E‖u0‖2
L2 . (A.13)
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Indeed, if (A.13) is true, then in Step 2 we prove that (1) holds and therefore (2) follows
from (1) and (A.13).

Step 2: If (A.13) holds, then (1) is true. Recall that (2.1) is understood as a stochastic
evolution equations on H

−1 with the choice (A.11). Thus by localization we may assume
u0 ∈ L∞(�;L2) (see [AV22b, Proposition 4.13]). Hence, for all 0 < ε < T <∞,

P(ε < σ < T )
(A.13)= P

(
ε < σ < T, sup

t∈[0,σ )
‖u(t)‖L2 + ‖u‖L2(0,σ ;H1

0)
<∞

)
= 0

where in the last equality we used [AV22b, Theorem 4.10(3)]. Since 0 < ε < T < ∞
are arbitrary and σ > 0 a.s. by Step 1, the previous yields σ = ∞ as desired.

To prove (A.13), we need a localization argument. Fix T ∈ (0,∞). For each j � 1,
let σ j be the stopping time given by

σ j := inf
{
t ∈ [0, σ ) : ‖∇u‖L2(0,t;L2) + ‖u(t)‖L2 � j

} ∧ T, (A.14)

where inf ∅ := σ . By Step 1, (A.8) holds and therefore lim j→∞ σ j = σ a.s. Thus to
obtain (A.13), by Gronwall and Fatou’s lemmas, it is enough to show the existence of a
constant C > 0 independent of j, u, u0 such that

Ey(t) � C(1 + E‖u0‖2
L2) + C

∫ t

0
Ey(s) ds, t ∈ [0, T ], (A.15)

where

y(t) = sup
r∈[0,t∧σ j )

‖u(t)‖2
L2 +

∫ t∧σ j

0
‖∇u(s)‖2

L2 ds. (A.16)

In the remaining steps j � 1 is fixed and we set  := σ j .
Step 3: We apply Itô’s formula to obtain the identity (A.18) below. Let us begin by

collecting some useful facts. Note that ‖∇u‖L2(0, ;L2) + supt∈[0, ) ‖u(t)‖L2 � j a.s.
by (A.14) (recall  = σ j ), and ‖u‖L4(0, ;L4) � j a.s. by Lemma A.7 with d = 2 and
standard interpolation inequalities

L2(0, t;H1
0) ∩ L∞(0, t;L2) ↪→ L4(0, t; [L2,H1

0]1/2) ↪→ L4(0, t; L4), for t > 0.

Note that the embedding constants in the above can be made independent of t > 0.
Combining the previous observations with (A.12), we have

1[0, ]×�F(·, u) ∈ L2((0, T )×�;H−1), 1[0, ]×�G(·, u) ∈ L2((0, T )×�;L2(�2)),

(A.17)
where F and G are as in (A.11). By (A.17), Itô’s formula [LR15, Theorem 4.2.5], and
Assumption A.1(1), arguing as in the proof of Proposition A.5, one can check that, a.s.
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for all t ∈ [0, T ],

‖u (t)‖2
L2 − ‖u0‖2

L2 +
ν

2

∫ t

0
1[0, ]‖∇u‖2

L2 ds

�
∫ t

0
1[0, ]

[
2
∣
∣( f0(u), u)L2 | + 2

2∑

k=1

|( fk(u), ∂ku)L2 | + ‖g(u)‖2
L2(�2)

]
ds

+
∑

n�1

∫ t

0
1[0, ]

(
(bn · ∇)u,Pgn(u)

)

L2 ds

+ 2
∑

n�1

∫ t

0
1[0, ](gn(u), u)L2 dwn

s + 2
∑

n�1

∫ t

0
1[0, ]

(
(bn · ∇)u, u

)

L2 dwn
s

=: It + I It + I I It + I Vt

(A.18)

where u := u(· ∧  ), ( f, g)L2 =∑2
k=1

∫

O f kgk dx and we used the cancellation

2∑

i, j=1

∫

O
uiu j∂ j u

i dx = 0, for all u ∈ H
1
0. (A.19)

The above follows from div(u) = 0 and by integrations by parts and using that u · ν = 0
on ∂O due to Pu = u and (A.3), where ν denotes the outer normal vector on ∂O .

Step 4: Proof of (A.15) with C independent of u, u0, j . Recall that  := σ j . Due to
(A.9), one can readily check that there exists C > 0 independent of j, u, u0 such that,
for all t ∈ [0, T ],

E
[

sup
s∈[0,t]

|Is |
]

� ν

4
E

∫ t

0
1[0, ]‖∇u(s)‖2

L2 ds+C
(

1+E
∫ t

0
1[0, ]‖u(s)‖2

L2 ds
)
. (A.20)

By Assumption A.1(1), we have

E
[

sup
s∈[0,t]

|I Is |
]

� E
∫ t

0
1[0, ]‖(bn(s) · ∇)u(s)‖L2(�2)‖u(s)‖L2 ds

� ME
∫ t

0
1[0, ]‖∇u(s)‖L2‖u(s)‖L2 ds

� ν

4
E

∫ t

0
1[0, ]‖∇u(s)‖2

L2 + CM,νE
∫ t

0
1[0, ]‖u(s)‖2

L2 ds.

(A.21)

Therefore by taking expectations in (A.18), using E[I I It ] = E[I Vt ] = 0, and (A.20)–
(A.21), one obtains

E
∫ t

0
1[0, ]‖∇u(s)‖2

L2 ds � C
(

1 + t + E
∫ t

0
1[0, ]‖u(s)‖2

L2 ds
)

(A.22)

where C is independent of u, u0, j .
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Next we take E
[

sups∈[0,t] | · |
]

in (A.18). Due to (A.20)-(A.21), it remains to estimate
I I I and I V . By the Burkholder-Davis-Gundy inequality, for all t ∈ [0, T ],

E
[

sup
s∈[0,t]

|I I Is |
]

� E
[ ∫ t

0
1[0, ]‖(bn(s) · ∇)u(s)‖2

L2(�2)
‖u(s)‖2

L2 ds
]1/2

� ME
[(

sup
s∈[0, ∧t)

‖u(s)‖2
L2

)1/2(
∫ t

0
1[0, ]‖∇u(s)‖2

L2 ds
)1/2]

� 1

4
Ey(t) + CME

∫ t

0
1[0, ]‖∇u(s)‖2

L2 ds

(A.22)
� 1

4
Ey(t) + C ′M

(
1 + E

∫ t

0
1[0, ]‖u(s)‖2

L2 ds
)

where y is as in (A.16). A similar argument applies to I V . Indeed, by (A.9), for all
t ∈ [0, T ],

E
[

sup
s∈[0,t]

|I Vs |
]

� E
[(

sup
s∈[0, ∧t)

‖u(s)‖2
L2

)1/2(
∫ t

0
1[0, ]×�‖g(s, u(s))‖2

L2(�2)
ds

)1/2]

� 1

4
Ey(t) + C

(
1 + E

∫ t

0
1[0, ]×�‖u(s)‖2

L2 ds
)
.

Taking E
[

sups∈[0,t] | · |
]

in (A.18) and collecting the previous estimates as well as using
that u = u on [0,  )×� and  = σ j we get (A.15). ��
Remark A.8. As already mentioned at the beginning of this appendix several other bound-
ary conditions can be used in (A.1). We mention two possible choices in case ai, j = δi, j

(the Kronecker’s delta): perfect slip boundary conditions

u · ν = 0, P∂O
[
(∇u − (∇u) )ν] = 0, on ∂O,

or Navier boundary conditions

u · ν = 0, P∂O
[
(∇u + (∇u) )ν] + αu = 0, on ∂O,

where α � 0, ν is the outer normal vector field on ∂O and P∂O := I − ν ⊗ ν is the
orthogonal projection on the tangent plane of ∂O . In case O is a bounded C3-domain,
the weak formulation of the Stokes operators subject to one of the previous boundary
conditions has been given in Subsection 2.3 and 3.2 of [PW18], respectively. Using the
methods in the latter one can check that in case ai, j = δi, j and O is a C3-bounded
domain, then the results of Theorem A.3 extends to the case of perfect-slip or Navier
boundary conditions. Indeed, (A.19) still holds since u · ν = 0 on ∂O in both cases
and one can replace the use of Lemma A.7 by standard Sobolev embeddings due to the
regularity of O .



Stochastic Navier–Stokes Equations for Turbulent Flows in Critical Spaces Page 55 of 57 43

References

[Agr23] Agresti, A.: The primitive equations with rough transport noise: Global well-posedness and
regularity. arXiv preprint arXiv:2310.01193, (2023)

[ALV23] Agresti, A., Lindemulder, N., Veraar, M.C.: On the trace embedding and its applications to
evolution equations. Math. Nachr. 296(4), 1319–1350 (2023)

[AV20] Agresti, A., Veraar, M.C.: Stability properties of stochastic maximal L p-regularity. J. Math.
Anal. Appl. 482(2), 123553, 35 (2020)

[AV21] Agresti, A., Veraar, M.C.: Stochastic maximal L p(Lq )-regularity for second order systems
with periodic boundary conditions. Accepted for publication in Annales de l’Institut Henri
Poincaré—Probabilités et Statistiques, arXiv preprint arXiv:2106.01274 (2021)

[AV22a] Agresti, A., Veraar, M.C.: Nonlinear parabolic stochastic evolution equations in critical spaces
part I. Stochastic maximal regularity and local existence. Nonlinearity 35(8), 4100–4210
(2022)

[AV22b] Agresti, A., Veraar, M.C.: Nonlinear parabolic stochastic evolution equations in critical spaces
part II: Blow-up criteria and instataneous regularization. J. Evol. Equ. 22(2), Paper No. 56,
96 (2022)

[AV23] Agresti, A., Veraar, M.C.: Reaction-diffusion equations with transport noise and critical su-
perlinear diffusion: local well-posedness and positivity. J. Differ. Equ. 368, 247–300 (2023)

[Are04] Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel
estimates. In: Evolutionary equations. Vol. I, Handb. Differ. Equ., pp. 1–85. North-Holland,
Amsterdam (2004)

[BT73] Bensoussan, A., Temam, R.: Équations stochastiques du type Navier–Stokes. J. Funct. Anal.
13, 195–222 (1973)

[BL76] Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer-Verlag, Berlin (1976).
Grundlehren der Mathematischen Wissenschaften No. 223

[BF20] Bianchi, L.A., Flandoli, F.: Stochastic Navier–Stokes equations and related models. Milan J.
Math. 88(1), 225–246 (2020)

[BMS10] Bourdaud, G., Moussai, M., Sickel, W.: Composition operators on Lizorkin-Triebel spaces.
J. Funct. Anal. 259(5), 1098–1128 (2010)
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[CP01] Capiński, M., Peszat, S.: On the existence of a solution to stochastic Navier–Stokes equations.
Nonlinear Anal. 44, 141–177 (2001)

[Cho78] Chow, P.L.: Stochastic partial differential equations in turbulence related problems. In: Prob-
abilistic Analysis and Related Topics, Vol. 1, pp. 1–43. Academic Press, New York-London
(1978)

[DP22] Debussche, A., Pappalettera, U.: Second order perturbation theory of two-scale systems in
fluid dynamics. arXiv preprint arXiv:2206.07775 (2022)

[DZ20] Du, L., Zhang, T.: Local and global strong solutions to the stochastic incompressible Navier-
Stokes equations in critical Besov space. J. Math. Anal. Appl. 481, 123472 (2020)

[Fla08] Flandoli, F.: An introduction to 3D stochastic fluid dynamics. In: SPDE in hydrodynamic:
recent progress and prospects, pp. 51–150. Springer, Berlin (2008)

[Fla11] Flandoli, F.: Random Perturbation of PDEs and Fluid Dynamic Models, volume 2015 of
Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Lectures from the 40th Probability
Summer School held in Saint-Flour, (2010), École d’Été de Probabilités de Saint-Flour

http://arxiv.org/abs/2310.01193
http://arxiv.org/abs/2106.01274
http://arxiv.org/abs/2206.07775


43 Page 56 of 57 A. Agresti, M. Veraar

[Fla15] Flandoli, F.: A stochastic view over the open problem of well-posedness for the 3D Navier-
Stokes equations. In: Stochastic analysis: a series of lectures, volume 68 of Progr. Probab.,
pp. 221–246. Birkhäuser/Springer, Basel (2015)

[FGL22] Flandoli, F., Galeati, L., Luo, D.: Eddy heat exchange at the boundary under white noise
turbulence. Philos. Trans. Roy. Soc. A 380(2219), 20210096 (2022)

[FG95] Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes
equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

[FL21] Flandoli, F., Luo, D.: High mode transport noise improves vorticity blow-up control in 3D
Navier–Stokes equations. Probab. Theory Relat. Fields 180, 309–363 (2021)

[FP22] Flandoli, F., Pappalettera, U.: From additive to transport noise in 2D fluid dynamics. Stoch.
Partial Differ. Equ. Anal. Comput. 10(3), 964–1004 (2022)

[FK64] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Ration. Mech. Anal.
16, 269–315 (1964)

[GP02] Gallagher, I., Planchon, F.: On global infinite energy solutions to the Navier–Stokes equations
in two dimensions. Arch. Ration. Mech. Anal. 161(4), 307–337 (2002)

[GK96] Gawedzki, K., Kupiainen, A.: Universality in turbulence: an exactly solvable model. In: Low-
Dimensional Models in Statistical physics and Quantum Field Theory, volume 469 of Lecture
Notes in Phys., pp. 71–105. Springer, Berlin (1996)

[GV00] Gawedzki, K., Vergassola, M.: Phase transition in the passive scalar advection. Phys. D 138(1–
2), 63–90 (2000)

[GY21] Gess, B., Yaroslavtsev, I.: Stabilization by transport noise and enhanced dissipation in the
Kraichnan model. arXiv preprint arXiv:2104.03949 (2021)

[HLN19] Hofmanová, M., Leahy, J.-M., Nilssen, T.: On the Navier–Stokes equation perturbed by rough
transport noise. J. Evol. Equ. 19, 203–247 (2019)

[HLN21] Hofmanová, M., Leahy, J.-M., Nilssen, T.: On a rough perturbation of the Navier–Stokes
system and its vorticity formulation. Ann. Appl. Probab. 31(2), 736–777 (2021)

[HNVW16] Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Analysis in Banach spaces.
Vol. I. Martingales and Littlewood-Paley Theory, volume 63 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. Springer (2016)

[HNVW17] Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Analysis in Banach spaces.
Vol. II. Probabilistic Methods and Operator Theory., volume 67 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. Springer (2017)

[IF79] Inoue, A., Funaki, T.: On a new derivation of the Navier–Stokes equation. Commun. Math.
Phys. 65(1), 83–90 (1979)

[Kim10] Kim, J.U.: Strong solutions of the stochastic Navier–Stokes equations in R
3. Indiana Univ.

Math. J. 59, 1853–1886 (2010)
[KT01] Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1),

22–35 (2001)
[Kra68] Kraichnan, R.H.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids

11(5), 945–953 (1968)
[Kra94] Kraichnan, R.H.: Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett.

72(7), 1016 (1994)
[KXZ21] Kukavica, I., Xu, F., Ziane, M.: Global existence for the stochastic Navier-Stokes equations

with small L p data. Stoch. Partial Differ. Equ. Anal. Comput. 10, 160–189 (2021)
[LR16] Lemarié-Rieusset, P.G.: The Navier–Stokes Problem in the 21st Century. CRC Press, Boca

Raton (2016)
[LR15] Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext.

Springer, Cham (2015)
[MK99] Majda, A.J., Kramer, P.R.: Simplified models for turbulent diffusion: theory, numerical mod-

elling, and physical phenomena. Phys. Rep. 314(4–5), 237–574 (1999)
[Mik02] Mikulevicius, R.: On the Cauchy problem for stochastic Stokes equations. SIAM J. Math.

Anal. 34, 121–141 (2002)
[Mik09] Mikulevicius, R.: On strong H1

2 -solutions of stochastic Navier–Stokes equation in a bounded
domain. SIAM J. Math. Anal. 41(3), 1206–1230 (2009)

[MR99] Mikulevicius, R., Rozovskii, B.L.: Martingale problems for stochastic PDE’s. In: Stochastic
Partial Differential Equations: Six Perspectives, Volume 64 of Math. Surveys Monogr., pp.
243–325. American Mathematical Society, Providence (1999)

[MR01] Mikulevicius, R., Rozovskii, B.L.: On equations of stochastic fluid mechanics. In: Stochastics
in Finite and Infinite Dimensions, Trends Math., pp. 285–302. Birkhäuser Boston, Boston
(2001)

[MR04] Mikulevicius, R., Rozovskii, B.L.: Stochastic Navier–Stokes equations for turbulent flows.
SIAM J. Math. Anal. 35(5), 1250–1310 (2004)

http://arxiv.org/abs/2104.03949


Stochastic Navier–Stokes Equations for Turbulent Flows in Critical Spaces Page 57 of 57 43

[MR05] Mikulevicius, R., Rozovskii, B.L.: Global L2-solutions of stochastic Navier-Stokes equations.
Ann. Probab. 33(1), 137–176 (2005)

[NVW15] van Neerven, J.M.A.M., Veraar, M.C., Weis, L.W.: Stochastic integration in Banach spaces—
a survey. In: Stochastic Analysis: a Series of Lectures, volume 68 of Progr. Probab., pp.
297–332. Birkhäuser/Springer, Basel (2015)

[Ond04] Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes
Math. (Rozprawy Mat.) 426, 63 (2004)

[PSW18] Prüss, J., Simonett, G., Wilke, M.: Critical spaces for quasilinear parabolic evolution equations
and applications. J. Differ. Equ. 264(3), 2028–2074 (2018)

[PW18] Prüss, J., Wilke, M.: On critical spaces for the Navier-Stokes equations. J. Math. Fluid Mech.
20(2), 733–755 (2018)

[ST87] Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. A Wiley-
Interscience Publication. John Wiley & Sons Ltd, Chichester (1987)

[Tao21] Tao, T.: Quantitative bounds for critically bounded solutions to the Navier-Stokes equations.
In: Nine mathematical challenges—an elucidation, volume 104 of Proc. Sympos. Pure Math.,
pp. 149–193. American Mathematical Society, Providence [2021]© (2021)

[Tay11] Taylor, M.E.: Partial Differential Equations III. Nonlinear Equations, volume 117 of Applied
Mathematical Sciences, second edition Springer, New York (2011)

[Tri95] Triebel, H.: Interpolation theory, function spaces, differential operators, second edition Johann
Ambrosius Barth, Heidelberg (1995)

[Tri13] Triebel, H.: Local Function Spaces, Heat and Navier–Stokes Equations. EMS Tracts in Math-
ematics. European Mathematical Society (EMS), Zürich (2013)

[Wan20] Wang, W.: Global existence and analyticity of mild solutions for the stochastic Navier–Stokes–
Coriolis equations in Besov spaces. Nonlinear Anal. Real World Appl. 52, 103048 (2020)

[WS00] Weinan, E., Sinai, Y.G.: Recent results on mathematical and statistical hydrodynamics. Russ.
Math. Surv. 55(4), 635 (2000)

Communicated by M. Hairer


	Stochastic Navier–Stokes Equations for Turbulent Flows in Critical Spaces
	Abstract:
	1 Introduction
	1.1 Scaling and criticality
	1.2 Overview of the main results
	1.3 Notation

	2 Statement of the Main Results
	2.1 The Helmholtz projection and function spaces
	2.2 Main assumptions and definitions
	2.3 Local existence and regularization
	2.4 Stochastic Serrin's blow-up criteria
	2.5 Global well-posedness results

	3 Maximal Lp-Regularity for the Turbulent Stokes System
	3.1 Assumptions and main results
	3.2 Proof of Theorem t:maximalspsStokesspsTord
	3.3 Proof of Lemma l:aspspriorispsestimatesspsNS

	4 Proofs of the Main Results
	4.1 Local well-posedness and the proof of Theorem t:NSspscriticalspslocal
	4.2 Higher order regularity and the proof of Theorem t:NSspshighspsorderspsregularity
	4.3 Blow-up criteria and proof of Theorem t:NSspsserrin
	4.4 Global well-posedness: Proofs of Theorems t:globalspssmallspsdata and t:NSspsinitialspsdataspslargespstwospsdimensional

	Acknowledgement
	Appendix A: Global Well-Posedness for d = 2 with Linfty–Noise
	A.1 Assumptions and main result
	A.2 Maximal L2-regularity for the turbulent Stokes system
	A.3 Proof of Theorem t:2Dspsglobalspsroughspsnoise

	References




