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The flow around different prolate (needle-like) and oblate (disc-like) spheroids is stud-
ied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag
coefficient CD,φ at different incident angles φ for a wide range of Reynolds numbers (Re).
We show that the sine-squared drag law CD,φ = CD,φ=0◦ + (CD,φ=90◦ − CD,φ=0◦) sin

2 φ
holds up to large Reynolds numbers Re = 2000. Further, we explore the physical origin
behind the sine-squared law, and reveal that surprisingly, this does not occur due to
linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure
distribution contributing to the drag at higher Re for different incident angles. The
present results demonstrate that it is possible to perform just two simulations at φ = 0◦

and φ = 90◦ for a given Re and obtain particle shape specific CD at arbitrary incident
angles. However, the model has limited applicability to flatter oblate spheroids, which
do not exhibit the sine-squared interpolation, even for Re = 100, due to stronger wake-
induced drag. Regarding lift coefficients, we find that the equivalent theoretical equation
can provide a decent approximation, even at high Re, for prolate spheroids.

1. Introduction

Industrial applications and real life cases often involve suspensions of non-spherical
particles, of either regular or irregular shapes. Prolate (needle-like) spheroids can be
used to describe milled biomass particles, fibrous suspensions, and submarine hulls. On
the other hand, oblate (disc-like) particles can be approximated to represent red blood
cells. El Khoury et al. (2010, 2012) performed direct numerical simulations (DNS) with
the flow perpendicular to the spheroid’s symmetry axis and investigated the wakes behind
a prolate spheroid of ratio 6:1. Hölzer & Sommerfeld (2009) and Zastawny et al. (2012)
investigated different non-spherical particles at different flow incident angles at different
Re, albeit limiting mainly to the steady flow regime. Very recently, Ouchene et al. (2016)
proposed force correlations for prolate spheroids upto aspect ratio of 32, again limited to
steady flows with Re 6 240. They report an interesting finding that the drag coefficient
CD of the prolate spheroids follows a sine-squared interpolation between its extreme CD
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Figure 1: Top: The normalized drag coefficient
CD,φ−CD,φ=0◦

CD,φ=90◦−CD,φ=0◦
plotted against incident

angle φ. The solid line indicates sin2 φ. Data include (a) prolate spheroid (+) and (b)
oblate spheroid (×), both of aspect ratio 5/2, both for Re=0.1, 10, 100, 1000 and 2000,
(c) prolate spheroid of aspect ratio 4 (△) for Re=2000. Averaged CD values are used for
cases with vortex shedding occurring at high Re. Bottom: Difference between normalized
drag coefficient and sin2 φ.

values for Re 6 240 for the reported aspect ratios. In this paper, we investigate this
phenomenon more deeply and to higher Re.

Some authors define the Reynolds number Red based on the minimum thickness of the
particle dmin. For this work, the Reynolds number is defined as Re = |u∞|deq/ν, where
u∞ is the uniform inlet velocity, ν is the kinematic viscosity of the fluid, and deq is the
diameter of the volume-equivalent sphere given by deq = (6Vp/π)

1/3 with Vp being the
particle volume. The drag coefficient is defined as CD = |FD|/(12ρ|u∞|2 π

4d
2
eq). Here, FD

is the drag force acting on the particle and ρ is the fluid density. For any particle in the
Stokes regime (Happel & Brenner 1983), based on linearity of the Stokes equations, the
drag coefficient at different incident angles φ interpolates as

CD,φ = CD,φ=0◦ + (CD,φ=90◦ − CD,φ=0◦) sin
2 φ. (1.1)

Here, the subscript φ implies the value at that particular incident angle φ.

To motivate the reader, the drag on different spheroids is tested upto Re = 2000 and
the mean CD are plotted in figure 1. Surprisingly, the investigated particles follow sine-
squared interpolation very well for both steady and unsteady regimes, even for Re as
high as 2000. This interesting phenomenon appears to be similar to the Stokes regime
prediction (equation 1.1) as mentioned by Ouchene et al. (2016). We investigated the
phenomenon in detail and found a plausible reason and also the limitations of the sine-
squared behaviour. Our findings at high Re, in combination with observations of Ouchene
et al. (2016) for prolate spheroids upto aspect ratio 32, extends the validity of the drag
law to both high aspect ratio prolate spheroids and high Re. This implies that in many
situations, the mean drag coefficient at any incident angle CD,φ for a given Re can be
obtained by just knowing two values: CD,φ=0◦ and CD,φ=90◦ .
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Figure 2: For a sphere, the normalized CD as a function of diameter d in lattice cells for
different Re, showing convergence of the method. The normalization is done with respect
to the highest resolution CD.

2. Numerical method

2.1. Lattice Boltzmann method

The fluid flow is simulated using a D3Q19, multi-relaxation time (MRT) lattice
Boltzmann method (d’Humières et al. 2002). The MRT-LBM scheme solves the evolution
of particle distribution function |f〉

|f(r + eα∆t, t+∆t)〉 = |f(r, t)〉 − M
−1

Ŝ(|m(r, t)〉 − |m(eq)(r, t)〉), (2.1)

for position r with discrete velocities eα in directions α = 1, 2..., 19. M is a 19 × 19
transformation matrix used to transform |f〉 from velocity space to moment space |m〉
with |m〉 = M · |f〉. Here, the ket vector |·〉 implies a column vector. The relaxation

matrix Ŝ = M ·S ·M−1 is a 19×19 diagonal matrix. Ŝ utilizes different, optimally chosen
relaxation rates for different moments, thereby providing better stability compared to
the single-relaxation-time LBM scheme (d’Humières et al. 2002). The matrices M and

Ŝ are similar to Huang et al. (2012). The kinematic viscosity of the fluid is set by the
relaxation time τ as ν = c2s(τ − 1/2)∆t, and the pressure p is related to the density
by p = ρc2s. Uniform velocity in the z-direction is prescribed at the inlet boundary
based on Hecht & Harting (2010). The side walls are prescribed with free-slip boundaries
rather than periodic boundary conditions, which could cause the flow to deflect either
up or down based on inclination of the non-spherical particle (Hölzer & Sommerfeld
2009). The downstream (outlet) is specified with axial-stress-free boundary condition
with ∂uz/∂z = 0 (Aidun et al. 1998). We use the linearly interpolated bounce back
scheme (Bouzidi et al. 2001; Lallemand & Luo 2003) to accurately consider the curved
geometry of the particle. The improvement in solution accuracy is negligible between
linear and quadratic interpolation schemes, provided sufficient resolution is used (Pan
et al. (2006); Kruggel-Emden et al. (2016)).

2.2. Influence of grid resolution

The influence of the grid resolution is tested with the flow around an isolated sphere.
The normalized CD is plotted in figure 2. Three different regimes are tested (i) Stokes
flow, (ii) intermediate Reynolds number at Re = 100 with a steady wake, and (iii) high
Reynolds number Re = 1000 exhibiting a complex, unsteady wake and therefore themean

drag coefficient is shown. The influence of the resolution is stronger with increasing Re

as seen in figure 2. For Re = 1000, the observed CD at resolution deq = 40 is 0.456 and
is in good agreement with literature results: CD = 0.464 from Vakarelski et al. (2016)
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Figure 3: The local coordinate system (ξ, η) of the ellipsoidal section. s is the normalized
distance along the circumference. n is the inward facing, local unit normal vector. The
simulations are performed in a rectangular domain with particle rotated for different
incident angles. For clarity and consistency, the results are analysed in the local
coordinate system of the section (ξ, η).

and CD = 0.48 from Ploumhans et al. (2002). This resolution information is considered
in maintaining the minimum thickness dmin of our non-spherical particles at different
Re. Due to the non-sphericity, the other dimension is always larger than the minimum
thickness and therefore a good particle resolution is ensured.

3. Test of linearity for pressure and velocity fields

The drag law for Stokes flow (equation 1.1) for non-spherical particles is based on
the linearity of the Stokes equations in the creeping flow limit. As figure 1 shows, we
observe that the mean CD follows the same sine-squared behaviour even in regimes with
a complex unsteady wake at Re as high as 2000. It has to be noted that all the investigated
geometries are axi-symmetric, smooth and rounded. Though non-linear effects dominate
at higher Re, we first investigate if the inherent smooth nature of the geometries results
in cancellation of non-linearity effects in the region close to the particle surface. In other
words, we test whether the velocity and pressure fields for an arbitrary particle at incident
angle φ obey the following conditions sufficiently close to the surface:

uφ = uφ=0◦ cosφ+ uφ=90◦ sinφ, (3.1)

pφ − p∞ = (pφ=0◦ − p∞) cosφ+ (pφ=90◦ − p∞) sinφ. (3.2)

Here, uφ is the velocity field and pφ is the pressure field around the particle, based on the
incoming flow u∞ oriented at angle φ, as shown in figure 3. If equations 3.1 and 3.2 are
true, the corresponding drag components, i.e. the viscous drag CDν,φ and the pressure
drag CDp,φ, also follow the sine-squared law.
Throughout this paper, from the three-dimensional simulations, the flow fields are

analysed along the meridional plane. The meridional plane contains the axis of symmetry
of the particle at different incident angles and the inflow velocity vector u∞. Of the
different particles tested, we consider the prolate spheroid of aspect ratio 5/2 for the
linearity study. A special case of φ = 30◦ is tested along the meridional plane. The
velocity and pressure fields from the theoretical linear combination in equations 3.1 and
3.2 are compared with the actual flow field from the simulations. Two cases, one for
the Stokes flow at Re = 0.1 and another exhibiting steady flow, yet sufficiently large Re

compared to the Stokes regime, Re = 100, are considered. The velocity fields based on the
theory and the actual flow are given in figure 4. For Stokes flow, the linear superposition
of velocity fields result in attached flow around the particle. There is a good match
between the theoretical and actual fields with deviations upto 2%. At Re = 100, the flow
field exhibits attached flow for φ = 0◦ due to streamlining and a strong recirculation for
φ = 90◦. In figure 4(d), the linear combination of them for φ = 30◦ still appears attached,
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Figure 5: (▽) Viscous and (�) pressure components of the drag coefficient as a function
of incident angle φ at (a) Re = 0.1, (b) Re = 10, and (c) Re = 100.

whereas the actual flow field as shown in figure 4(e) exhibits recirculation in the wake of
the particle. There is a strong mismatch between the fields, as shown in figure 4(f) with
deviations upto 60%.
At the same time, it is interesting to note that the viscous drag force resulting from

the velocity field becomes increasingly independent of incident angle φ at higher Re.
Figure 5 shows the viscous and pressure drag components at Re=0.1, 10 and 100 for
the prolate spheroid of aspect ratio 5/2. Indeed, it is observed that the viscous effects
become weakly dependent on incident angle φ at Re = 10. Eventually at Re = 100, the
viscous drag becomes independent of φ compared to change in the pressure drag, with
CDν,φ ≈ CDν,φ=0◦ ≈ CDν,φ=90◦ . This implies that the dependence of the drag on the
particle’s incident angle φ, at higher Re, is purely coupled to the φ-dependence of the
pressure drag. Therefore, we next focus on the pressure coefficient on the surface of the
meridional plane section.
The pressure coefficient is defined as Cp = (p − p∞)/(1/2ρ|u∞|2) with pressure p

measured on the surface and p∞ the pressure at the far field. Cp is plotted as a function
of the distance s along the circumference of the meridional section, normalized with the
section circumference, as shown in figure 3. The Cp distributions on the section along the
spheroid’s meridional plane are plotted for Re = 0.1 and Re = 100 in figures 6(a) and
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the meridional section for (a) Re = 0.1 and (b) Re = 100; (c) surface normal projections
û · n for different incident angles φ. Note the linearity theory matches perfectly with
simulations for Re = 0.1 and shows strong mismatch for Re = 100. For the different φ
shown, note the matching trends of Cp at Re = 0.1 with û · n.

(b), respectively. Referring to figure 3, the u∞ at φ = 0◦ is along the +ξ axis and the Cp

peaks are observed near s = 0.5 in figures 6(a) and (b), which is at the leading edge of
the spheroid for that incident angle. At Re = 0.1, we observe an exact match between
Cp using the linearity theory (equation 3.2) and the actual simulation for φ = 30◦. At
Re = 100, the actual Cp distribution for φ = 30◦ is different compared to the distribution
based on linearity theory as seen in figure 6(b). Therefore, it can be concluded that it is
not due to linearity that the drag law shows sine-squared behaviour at higher Re.

4. Reason for sine-squared drag law at higher Re

Again we consider the meridional section of the prolate spheroid of aspect ratio 5/2
for this study. We hypothesize that the Cp distribution takes the form

Cp = −m+ (1 +m)(û · n)k. (4.1)

Here, m and k are constants, û = u∞/|u∞| is the orientation of the far-field flow
direction, and n is the inward facing local unit normal vector, as in figure 3. The above
form −m + (1 + m)(û · n)k is inspired from the inviscid flow around a sphere, where
Cp = 1 − c sin2 θ with c = 9/4 and the θ measured from the stagnation point. For a
sphere, û · n = cos θ and rearranging terms with m = c − 1, the Cp distribution for a
sphere becomes Cp = −m + (1 +m)(û · n)2. A more general form is considered in our
case with an arbitrary exponent k.
The term −m acts as a negative offset and the term (1+m) acts as a scaling factor, such

that Cp = 1 at the stagnation point (û · n = 1), as would be expected from Bernoulli’s
law at the point where u = 0. For increasing Re, the high pressure region localizes more
around the stagnation point and this can be confirmed by comparing the Cp distribution
for φ = 0◦ at Re=0.1 and 100 in figure 6(a) and (b), respectively. Also for Re >> 1,
figures 7(a) and (b) show that the dominant part of the pressure drag originates from
the particle’s front side (û ·n > 0, see figure 6(c)) and therefore we focus on this region.
For Re >> 1, we choose k = 2. The value k = 2 is inspired by inviscid irrotational flow
theory as discussed above, although the flow is not exactly inviscid. The distributions of
Cp for Re = 100, Re = 2000 (time averaged), and (û · n)2H(û · n) are given in figures
7(a), (b) and (c) respectively. Here, H is the Heaviside step function given by

H(x) =

{

1 if x > 0,

0 otherwise.
(4.2)
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(û

·
n
)

Figure 8: Distributions of Cp,drag at (a) Re = 100, (b) Re = 2000 (time averaged), and
(c) third power surface normal projections (û·n)3H(û ·n) versus the normalized distance
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influence of the value of m is weaker for Cp,drag compared to Cp.
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wake side drag cdw,φ (×), together with their corresponding sine-squared interpolating
curves. Note that the trends of b3,φ and cdu,φ are similar, both under their respective
sine-squared curves.

The term H(û · n) is introduced above to consider only the front side of the particle
projected to the inflow.
It can be observed that the maximum values of Cp for different φ are nearly the same

and close to 1, as expected at the stagnation point in inviscid flow. Also, the overall
trend of the Cp curves in figures 7(a) and (b), and the (û · n)2H(û · n) in figure 7(c)
are almost similar, including the trends of curvature. Actually for the pressure drag, we
specifically need to look at the surface projection of Cp along the flow direction, i.e.
Cp,drag = Cpû ·n. The similarity between Cp,drag and (û ·n)3 for different angles can be
observed in figures 8(a), (b) and (c). The trends agree well for different incident angles.
Further, the Cp and Cp,drag distributions for Re = 100 and Re = 2000 indicate that
they are self-similar and independent of Re, at least for the front side of the particle
(û ·n > 0). Note that the influence of the offset m is less significant for Cp,drag than it is
for Cp. Also, the precise value of m may be position and incident angle dependent, but
its variation is negligible compared to the overall variation in the pressure drag. This is
shown explicitly in figure 9, where the measured Cp distributions are compared with our
proposed Cp form computed as: Cp = −m + (1 + m)(û · n)2H(û · n) and the Cp,drag

accordingly. It can be observed that the value m influences Cp considerably. However, its
influence on Cp,drag is much weaker and therefore, we proceed with m = 0 in upcoming
steps.
Cp,drag corresponds to the local contribution of pressure to the sectional pressure drag.

Therefore, we require integrals to compute the total pressure drag due to this section.
We define the integral of kth power of projection û ·n for the front side of the section as

bk =

∫ 1

0

(û · n)kH(û · n) ds. (4.3)

An interesting property is that the integral of the second power of projection, b2, exactly
obeys sine-squared behaviour for different φ. This can be written as b2,φ = b2,φ=0◦ +
(b2,φ=90◦ − b2,φ=0◦) sin

2 φ and is shown in figure 10(a). This law holds for the family of
ellipsoidal sections and is independent of aspect ratio. This can also be confirmed from
the fact that the Cp distribution is proportional to û · n in Stokes flow (see figures 6(a)
and (c)) and therefore Cp,drag = Cpû · n is proportional to (û · n)2.
As per our earlier observation, at higher Re, the Cp,drag distribution is proportional
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is based on our results and the data of Ouchene et al. (2016) for prolate spheroids upto
aspect ratios 32 and Re = 240 (◦). The ratio a/b is the ratio of lengths parallel and
orthogonal to the axis of rotation.

to (û · n)3. However, the integral b3,φ does not exactly hold sine-squared behaviour, as
shown in figure 10(a). It trends slightly below the sine-squared curve. The equivalent
of b3,φ is the sectional pressure drag from the upstream side of the section, which we
compare in the upcoming steps. We define sectional pressure drag integrated over the
circumference of an ellipsoidal section as

cd =

∫ 1

0

Cp,drag ds. (4.4)

We then decompose cd into upstream side (cdu) and wake side (cdw), respectively, as

cdu =

∫ 1

0

Cp,dragH(û · n) ds, and cdw =

∫ 1

0

Cp,dragH(−û · n) ds.

The above integrals for different incident angles φ, i.e. cdu,φ and cdw,φ, for Re = 2000
are plotted in figure 10(b) and their corresponding sine-squared interpolation curves
based on the end values. As seen from figures 10(a) and (b), the upstream drag cdu,φ
trend is very similar to b3,φ and both are slightly below their respective sine-squared
curves. At the same time, the wake induced drag component cdw,φ values are slightly
above their respective sine-squared curve at the intermediate angles, i.e. 0◦ < φ < 90◦.
Therefore, the wake drag adequately compensates the upstream drag proportionately at
the intermediate angles and thereby making the total section drag appear to scale in a
sine-squared manner. The normalized, sectional pressure drag cd,φ for different angles
for Re = 2000 itself follows near sine-squared pattern as shown in figure 10(a). The
spheroid by itself is made of different such ellipsoidal sections, each obeying sine-squared
behaviour of different scales and altogether giving the total drag sine-squared behaviour.
We have tested the reasoning in this section for different aspect ratio prolate spheroids,
and found similar dependencies of Cp,drag with (û · n)3H(û · n) for different φ.

4.1. Limitations and comments

In the introduction, we showed results of prolate spheroids of different aspect ratios and
an oblate spheroid of ratio 5/2. However, increasing the aspect ratio for an oblate spheroid
results in an increasing digression from the sine-squared drag law, even at moderate Re.
The CD results of oblate spheroid of aspect ratio 4 at Re = 100 are presented in figure
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11(a). Clearly, a non-monotonic dependence of CD on the incidence angle φ is observed.
The observed maximum deviation is around 10% at φ = 60◦ against the sine-squared
curve. The reason why the drag law fails for flatter discs can be explained from our
earlier observation that the wake has a higher drag contribution at intermediate angles
0◦ < φ < 90◦ (see cdw in figure 10(b)), when compared with the sine-squared curve. The
flat-disc like geometry experiences a stronger wake, amplifying the effect strongly. If we
assume a 10% deviation to be the limit of applicability, the oblate spheroid of aspect ratio
4 is at the bounding limit for the drag law. On the other hand, prolate spheroids of larger
aspect ratio, as shown in the introduction, still obey the sine-squared behaviour even at
Re = 2000, due to the weaker wake side drag. A sketch of the plausible valid region of
the sine-squared behaviour is shown in figure 11(b). We have also tested a capsule-like
spherocylinder of aspect ratio 4 and it also exhibits sine-squared drag scaling at high
Re, due to closer resemblance to prolate spheroid. The CD results from this work will be
published as correlations dependent of Re and φ in a separate paper. Since the prolate
spheroid of aspect ratio 4 is simulated only for Re = 2000, the corresponding results are
given here, with CD,φ=0◦ = 0.147 and CD,φ=90◦ = 1.105.
The Re = 2000 limit for the tested particles is rather limited by the LBM solver and

not by the flow physics itself. We believe that the drag law might hold to even higher
Re. However, flow fields are indeed complex for high Re and the extent to which the
drag law is valid needs further investigation. For example, Jiang et al. (2015) simulated
flow around a 6:1 prolate spheroid at φ = 45◦ at Re = 3000 based on minor diameter.
They reported a side force, almost 75% in magnitude of the drag force, perpendicular to
the meridional plane. This indicates the flow is highly asymmetric about the meridional
plane. However, they do not investigate the incident angle dependence of the drag force.
To which extent their reported flow asymmetries might influence the sine-squared drag
behaviour is not yet known and therefore needs further investigation.

5. Lift forces

Besides drag, any non-spherical particle at an inclination with respect to a uniform
flow will experience lift. Here, we provide a concise section with interesting observations
and comments regarding the lift forces.
We define the lift coefficient as CL = |FL|/(

1
2ρ|u∞|2 π

4 d
2
eq) with FL being the measured

lift force. For a particle in the Stokes regime, based on linearity theory, the CL at an
incident angle φ is

CL,φ = (CD,φ=90◦ − CD,φ=0◦) sinφ cosφ. (5.1)

From our experience of the different non-spherical particles tested, equation 5.1 is still
a decent approximation in the complete absence of CL data for prolate spheroids, even at
high Re, as seen in figure 12(a). The average of the absolute deviations between CL,φ from
the simulations and the equation 5.1 is less than 15% for the tested prolate spheroids at
different Re. For oblate spheroids, with increasing aspect ratios, the deviations increase
more, as seen in figure 12(b). For the oblate spheroid of aspect ratio 4 at Re = 100, the
simulated CL is much larger, by around 60%, than the theory for the reasons already
observed in figure 10(b). Similar to the drag, the wake induced force is also contributing
strongly to the lift and thereby making the observed CL much larger than the theory at
intermediate incident angles.
There are different reasons the incident angle dependence of the lift coefficient CL

cannot be exactly quantified in a predictable fashion like that of CD. The lift coefficient’s
order of magnitude depends on the difference of CD at two extreme incident angles, i.e.
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Figure 12: The normalized lift coefficient
CL,φ

CD,φ=90◦−CD,φ=0◦
plotted against incident angle

φ. The solid line indicates sinφ cosφ. (a) prolate spheroid of aspect ratio 5/2 for Re=0.1,
10, 100, 1000 and 2000 (+); prolate spheroid of aspect ratio 4 at Re=2000 (△), and (b)
oblate spheroid of aspect ratio 5/2 for Re=0.1, 10, 100, 1000 and 2000 (×); oblate spheroid
of aspect ratio 4 atRe = 100 (▽). Note that the oblate spheroids are experiencing stronger
deviations compared to prolate spheroids.

(CD,φ=90◦ − CD,φ=0◦) and goes to zero at the extreme ends of incident angles, i.e. at
φ = 0◦, 90◦. However for CD at different incident angles φ, apart from the CD difference
term, there is an additional term giving a constant offset, i.e. CD at φ = 0◦. This implies
that the variation of CL,φ is much more sensitive than that of CD,φ. Therefore, any
variation in pressure distribution at higher Re would be more amplified for CL than for
CD. The CL results from this work will be published as correlations dependent of Re and
φ in a separate paper.

6. Conclusion

The flow around prolate and oblate spheroids of different aspect ratios was studied.
We explored the sine-squared drag law in detail with a prolate spheroid of aspect ratio
5/2. We found that the reason for the drag law at high Re is not due to linearity theory,
which results in an identical drag law in the Stokes regime. At high Re, the viscous drag
becomes almost independent of incident angle φ and the pressure drag is the only factor
influenced by incident angle φ. At high Re, the pressure distribution contributing to the
drag shows a dependency of the surface normal’s orientation with the incoming flow in a
consistent pattern as discussed. Prolate spheroids of higher aspect ratios follow the sine-
squared pattern even at Re = 2000. Oblate spheroids of aspect ratio 4 or larger do not
exhibit sine-squared pattern due to strong wake induced drag. Regarding lift coefficients,
we find that the theoretical CL equation can provide a decent approximation, even at
high Re, for prolate spheroids.
Both the drag law, valid at high Re for the prolate spheroids and low aspect ratio oblate

spheroids, and the lift law for the prolate spheroids, hold good potential for different
applications. For example, they are very useful for Euler-Lagrangian flow simulations of
non-spherical particles. Any particle shape-specific CD and CL for a given Re at different
φ, even at high Re, can be obtained by performing just two simulations: CD at φ = 0◦

and φ = 90◦.
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