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A B S T R A C T   

This article presents the use of second-order adaptive network models of hospital teams consisting of doctors and 
nurses, interacting together. A variety of scenarios are modelled and simulated, in relation with respiratory 
distress of a neonate, along with the integration of an AI-Coach for monitoring and support of such teams and of 
organizational learning. The research highlights the benefits of introducing a virtual AI-Coach in a hospital 
setting. The practical application setting revolves around a medical team responsible for managing neonates with 
respiratory distress. In this setting an AI-Coach act as an additional team member, to ensure correct execution of 
medical procedure. Through simulation experiments, the adaptive network models demonstrate that the AI- 
Coach not only aids in maintaining correct medical procedure execution but also facilitates organizational 
learning, leading to significant improvements in procedure adherence and error reduction during neonatal care.   

1. Introduction 

Organizations face the ongoing challenge of continual development 
and learning not only at personal but also at the team level. They 
encompass strategic management objectives which aim at creating 
better working conditions and structures that enhance employees’ 
willingness and ability to learn, thereby improving organizational pro
cesses of adjustment and adaptation. Safety culture in healthcare needs 
perception, competency, and attitude of an individual and whole orga
nization to take responsibility of their actions. However, actions without 
adequate training or the implementation of new processes may intro
duce the possibility of malfunction or errors and necessitate adjustments 
and modifications (Keith & Frese, 2011). 

One approach that holds promise in this regard is ‘organizational 
learning’. Organizational learning encompasses the process by which an 
organization acquires, interprets, and applies knowledge to improve its 
performance and adapt to changing circumstances. It involves capturing 
lessons learned, sharing information, fostering a learning culture, and 
implementing effective feedback mechanisms within the organization 
(Saadat & Saadat, 2016). By leveraging the principles of organizational 
learning, teams can promote their performance by enhancing their 
shared mental models. Through continuous learning, teams can identify 

and rectify deficiencies in their mental models, fostering a shared un
derstanding of the tasks, roles, and interdependencies (Jonker et al., 
2011). 

This paper showcases the application of the adaptive network- 
oriented modelling approach from (Treur, 2020), coupled with the 
cognitive architecture for usage, adaptation and control of mental 
models described in (Van Ments & Treur, 2021; Treur & Van Ments, 
2022). This study primarily aims to develop and analyze adaptive 
network models, honing in on the decision-making and mental processes 
of medical staff in neonatal respiratory distress scenarios. This is 
accomplished by modeling the mental processes of the medical staff on 
the floor, which are second-order adaptive and incorporating an AI- 
Coach to monitor and support these processes. 

The integration of an AI-Coach in healthcare is a crucial advance
ment with significant implications, contributing to the wider context of 
AI support in the health area, e.g., (Abdi, Bagherzadeh, Gholami, & 
Tajbakhsh, 2021; 8. Catania, 2021; Jayachitra, Prasanth, Hariprasath, 
Benazir Begam, & Madiajagan, 2023; Kavitha, Roobini, Prasanth, & 
Sujaritha, 2023; Sitterding, Raab, Saupe, & Israel, 2019). It marks a 
critical step in improving patient care quality and safety, especially in 
critical environments like neonatal intensive care units. By enhancing 
medical team decision-making and reducing errors, an AI-Coach not 
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only betters patient outcomes but also aids healthcare professionals in 
their vital roles. This research offers valuable insights into integrating 
technology in healthcare, emphasizing patient safety and staff 
efficiency. 

Specifically, it illustrates how an AI-Coach can enhance the knowl
edge within the mental processes of medical team members. Uniquely, 
this study applies an adaptive network-oriented model to the intricate 
context of neonatal respiratory distress. It allows for a comprehensive 
analysis of how an AI-coach can effectively drive organizational learning 
in such specialized scenarios. Through simulation experiments, the 
models illustrate the dual role of the AI-Coach in both ensuring accurate 
medical procedure execution and fostering organizational learning. This 
facilitation by the AI-Coach leads to notable enhancements in adherence 
to procedures and a reduction of errors within neonatal care, under
pinning the importance of technological support in critical healthcare 
settings. In Section 2, a comprehensive introduction and background are 
provided, encompassing topics such as respiratory distress, mental 
models, and organizational learning. Section 3 outlines the general 
approach used in designing the adaptive network models. The subse
quent section, Section 4, presents the various scenarios to be examined 
in the study. Section 5 details the second-order models for each scenario, 
elucidating their design principles. Thereafter, Section 6 presents the 
simulations conducted, and the paper concludes with a conclusion and 
discussion in Section 7. 

2. Background literature 

The following section provides a comprehensive overview of the 
background literature. It begins by elucidating the concept of respira
tory distress in neonates, including its clinical manifestations and 
observable signs. Additionally, we delve into the significance of mental 
models, shared mental models, and organizational learning in this 
context. 

2.1. Respiratory distress in neonates 

Section 2.1 presents the critical aspects of neonatal respiratory 
distress, including its prevalence, causes, clinical signs, and diagnostic 
approaches. This overview establishes a context for the advanced in
terventions explored in the following sections. 

2.1.1. Introduction to respiratory distress in neonates 
Respiratory distress in neonates refers to a condition where newborn 

experience difficulty in breathing or inadequate oxygenation. It is a 
significant concern in clinical practice as it can be a marker of under
lying respiratory disorders or other medical conditions. Prompt recog
nition and appropriate management are crucial to prevent 
complications and ensure optimal outcomes for neonates. Common 
respiratory disorders observed include Respiratory Distress Syndrome 
(RDS), Transient Tachypnea of the Newborn (TTN), and Meconium 
Aspiration Syndrome (MAS) (Swarnkar & Swarnkar, 2015). 

2.1.2. Understanding the varied prevalence and factors influencing 
respiratory distress in neonates 

The prevalence of respiratory distress among neonates can vary 
depending on various factors such as gestational age, birth weight, and 
underlying medical conditions such as sepsis and congenital malfor
mations. Premature infants, in particular, are more susceptible to res
piratory distress due to prematurity. Studies have shown that respiratory 
distress syndrome affects approximately 50–60 % of infants born before 
28 weeks of gestation, while the prevalence decreases with increasing 
gestational age (Sweet et al., 2017). As mentioned before, specific res
piratory disorders commonly observed in neonates include RDS, TTN, 
and MAS. RDS is one of the most prevalent respiratory disorders among 
premature infants, especially those born before 32 weeks of gestation 
(Saboute et al., 2015). TTN typically affects near-term and full-term 

infants, with an incidence of around 1–2 % of all deliveries. MAS, 
although less common, can occur when the baby inhaled meconium- 
stained amniotic fluid during or before birth. 

2.1.3. Recognizing and assessing clinical manifestations of respiratory 
distress in Neonates: Diagnostic approaches and indicators 

Clinical manifestations of respiratory distress in neonates can vary 
depending on the underlying cause and severity of the condition. 
Common signs include tachypnea, which is characterized by rapid 
breathing with an increased respiratory rate above the normal range for 
the infant’s gestational age. Retractions, observed as inward movement 
of the chest wall during inspiration, indicate increased work of breath
ing. Nasal flaring, where the nostrils dilate during inspiration, is another 
common manifestation. Grunting, a sound produced by the infant dur
ing expiration, signifies an attempt to maintain lung volume and 
improve oxygenation. Cyanosis, a bluish discoloration of the skin, lips, 
or mucous membranes, may also occur due to inadequate oxygenation 
(Machogu & Gaston, 2021). 

To assess and confirm respiratory distress in neonates, healthcare 
professionals employ diagnostic approaches such as physical examina
tion, pulse oximetry, chest X-rays, blood gas analysis, and other in
vestigations (Bass et al., 2015). Bed-side lung ultrasound is another 
diagnostic technique that is now increasingly used. Physical examina
tion involves a thorough assessment of the infant’s respiratory effort, 
chest movement, breath sounds, and signs of distress. Pulse oximetry, a 
non-invasive method, measures the oxygen saturation level in the in
fant’s blood, providing information about oxygenation adequacy. Chest 
X-rays are used to identify abnormalities like lung consolidations, fluid 
accumulation, or signs of RDS (Copetti et al., 2008). Blood gas analysis 
helps evaluate the acid-base status, oxygenation, and ventilation in ne
onates with respiratory distress. Additionally, SpO2 (oxygen saturation) 
and FiO2 (fraction of inspired oxygen) are evaluated to examine the 
oxygenation. Depending on the clinical presentation and suspected un
derlying cause, additional tests such as blood tests, respiratory viral 
panels, or echocardiography may be conducted. 

2.2. Mental models and associated mental processes 

Understanding the complexity of the brain poses a significant chal
lenge due to the presence of cyclic patterns, recursion, and the absence 
of linear causality. As aptly stated by Scherer (2009), the conventional 
notion of linear causality cannot be applied to these mechanisms, pri
marily due to their constant recursion. This feature aligns with the 
characteristics typically found in self-organizing systems, where a sim
ple and unidirectional sense of causality is absent. Also Nigg (2017, 
2023) emphasizes that often several kinds of self-regulation play an 
important role in mental processes, which are typically cyclic processes 
without linear causality. 

These phenomena observed within the brain share similarities with 
network structures, further supporting the idea that networks can serve 
as a suitable framework for describing such complex mental processes. 
Within their complex mental processes, humans often make use of 
mental models (Craik, 1943). According to Kim (1997), mental models 
serve as representations of an individual’s perspective on the world. 
They provide the necessary context for understanding and interpreting 
new information. In essence, mental models act as cognitive frameworks 
through which individuals make sense of their experiences. Similarly, 
Jonker et al. (2011) describe mental models as internal representations 
that enable humans to interact with the world. These representations, 
known as mental models, consist of knowledge about physical systems 
and their behaviors. Mental models encompass an understanding of the 
system’s structure, overall behavior, and the impact of disturbances on 
the system. By possessing these mental models, individuals can effec
tively engage with and navigate the systems they encounter. For more 
information and reviews about mental models, see (Van Ments, Treur, 
Klein, & Roelofsma, 2021; Van Ments & Treur, 2021; Treur & van Ments, 
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2022). 
By combining these perspectives, it becomes clear that mental 

models play a crucial role in shaping our understanding of the world. 
They serve as internal constructs that enable individuals to navigate 
their surroundings and make sense of new information based on pre- 
existing knowledge and cognitive frameworks. To get the idea, mental 
models are like maps in our minds, connecting ideas like streets on a city 
map. They guide us in understanding new information, much like using 
a map to navigate a new place and to make informed decisions based on 
this information. 

Mental models have proven valuable not only in elucidating human 
interactions with complex physical systems that require comprehension 
and control but also in the realm of teamwork. In the study conducted by 
Cannon-Bowers et al. (1993), the concept of a shared mental model is 
defined as knowledge structures collectively held by team members, see 
also further work in (Stout, Cannon-Bowers, & Salas, 2017). These 
structures enable accurate explanations and expectations regarding the 
task, facilitating coordinated actions and adaptive behavior in response 
to task demands and the presence of other team members. By this, a 
shared mental model adds valuable insights to the understanding of the 
tasks described by it and the impact on expert team decision making. 

2.3. Organizational learning 

Importance of seeking consultation and developing effective pro
cedures through adaption is highly emphasized to effectively respond to 
the organizational challenges in order to optimize their performance 
(Wilden et al., 2018). 

Organizational learning encompasses a multidisciplinary approach, 
drawing upon various fields such as information processing, organiza
tional culture, and strategy implementation, resulting in a diverse range 
of conceptualizations (Crossan et al., 1999; Wiewiora, Smidt, & Chang, 
2019; Wiewiora, Chang, & Smidt, 2020). According to García-Morales 
et al. (2012), organizational learning refers to an organization’s capacity 
to preserve and enhance its performance through the utilization of 
previous experiences. This involves transitioning from tacit and explicit 
knowledge to the sharing and application of knowledge within the or
ganization. For example, in a healthcare setting, when a hospital faces a 
surge in patient admissions during flu season, it learns from past expe
riences to adjust staffing and resources efficiently. In a similar vein, 
Saadat et al. defines organizational learning as an ongoing process of 
identifying errors and mistakes and subsequently resolving and recti
fying them. This continuous process is facilitated by acquiring knowl
edge and improving performance over time (Hosseini, Kucharska, & 
Treur, 2023; Kucharska and Bedford, 2020; Kucharska and Rebelo, 
2022; Saadat & Saadat, 2016). Consider an example case where a 
healthcare facility identifies a recurring issue in patient data entry er
rors, leading to billing discrepancies. Through organizational learning, 
the facility not only addresses the immediate errors but also implements 
training programs and improved data entry protocols to prevent future 
mistakes. Altman and Iles (1998) identified four significant theoretical 
advancements that contribute to the formation of the concept of orga
nizational learning:  

1. Strategic Management: This theoretical progression focuses on the 
internal processes and procedures within an organization. It recog
nizes the importance of aligning organizational goals and strategies 
with the external environment. Strategic management plays a vital 
role in shaping the understanding and implementation of organiza
tional learning.  

2. Systems Theory: This framework has played a crucial role in the 
development of the concept of organizational learning. Systems 
theory provides a holistic perspective that examines the in
terconnections and interdependencies within an organization. It 
helps to conceptualize how learning progress over the time, and how 

it influences the overall functioning and effectiveness of the 
organization.  

3. Social Learning: Social learning theory encompasses a set of concepts 
that delve into learning at various levels within the organization. It 
emphasizes the role of interactions, social networks, and knowledge 
sharing in the learning process. Social learning theory recognizes 
that learning is not limited to individuals but also flourish through 
social interactions and collective experiences among a team.  

4. Theoretical Approaches: This theoretical progression pays attention 
to organizational backgrounds, considering factors such as organi
zational culture and structure. It provides a fourth theoretical foun
dation for understanding organizational learning. By examining the 
organizational context, this approach sheds light on how factors like 
culture, structure, and processes influence the learning capabilities 
of the organization. 

For the integration of these different perspectives on organizational 
learning mental models can be used as a crucial factor. Individual 
learning of mental models serves as the foundation for the formation of 
shared mental models within the organization, thereby facilitating 
organizational learning (Canbaloğlu et al., 2023a; Canbaloğlu et al., 
2023b). By embracing and actively cultivating these mental models, 
organizations can develop a mechanism for continuous learning and 
improvement at all levels. 

3. The Network-Oriented modeling approach 

3.1. Network-Oriented Modelling: Capturing dynamics and 
interconnected causal processes in complex systems 

In the field of modelling complex systems, a technique has emerged 
known as network-oriented modelling. This approach captures the 
intricate interplay of interconnected causal processes with temporal 
nature. Building upon the fundamental understanding of the direct 
relationship between dynamics and causal relations, network-oriented 
modelling integrates the dynamic aspects into the network structure 
which leads to a more comprehensive and accurate representation of the 
underlying phenomena (Treur, 2016). Thus, one key aspect of network- 
oriented modelling is its ability to model dynamic, temporal-causal 
networks. These networks operate on a continuous time dimension, 
enabling the modelling of cyclic causal networks and timing of causal 
effects. Consequently, this approach opens up possibilities for modelling 
a wide range of networks. In this modelling framework, the nodes within 
the networks represent state variables, while the connections between 
them represent causal relations that exert influence. This interconnec
tedness allows for a holistic depiction of the system’s behavior, 
capturing the intricate cause-and-effect relationships between different 
components (Treur, 2020). 

3.2. Modelling mental processes and adaptive networks 

A temporal-causal network model includes various characteristics 
represented by causal states connected to each other. For example, states 
X and Y, are interconnected through weighted connections ωX,Y in a 
model. These connections enable the transmission of impacts ωX,YX(t)
from state X  to Y. To aggregate the impact of all states connected to Y, a 
combination function cY(⋯) is applied to state Y, determining how the 
impacts from incoming connections from states X to Y are aggregated. 
Table 1 provides an overview of the specific combination functions 
utilized in this article. Furthermore, each state Y possesses a speed factor 
ηY , which governs the rate at which it undergoes change in response to a 
causal impact. Together, these characteristics—connectivity, aggrega
tion, and timing—form the foundation of the temporal-causal network 
model. The difference equation used to compute the change of all states 
from time t to a later time t+Δt is: 
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Y(t + Δt) = Y(t) + ηY
[
cY
(
ωX1 ,Y X1(t),⋯,ωXk ,Y Xk(t)

)
− Y(t)

]
Δt (1)  

In Eq. (1), at the current time t, we have a state value Y(t). This repre
sents the current value of state Y. The equation determines how this 
state Y(t) will change in the future, specifically at time t + Δt. To 
calculate this change, the concept of a speed factor is introduced, 
denoted as ηY , which characterizes how rapidly state Y responds to 
impacts from its environment. A higher ηY implies quicker change. In 
addition to the speed factor, the influences from other states are 
considered, denoted as X1 to Xk, which are interconnected toward state 
Y. These influences are modulated by weighted connections with 
weights ωX1 ,Y to ωXk ,Y . These weights modulate the strength of the 
impact that each state X has on Y by multiplying each state value Xi(t) by 
ωXi ,Y , thus obtaining impact ωXi ,YXi(t). Importantly, the current state 
values of these influencing states at time t, which are X1(t) and Xk(t), 
need to be known at this point. These states represent where X1 and Xk 
are at the present moment. The next step involves a combination func
tion cY(⋯), which takes into account all the incoming influences from 
states X1 to Xk. This function aggregates the impacts ωXi ,YXi(t) and de
termines how they collectively affect the change in state Y. Finally, the 
aggregated impact is multiplied by a small time interval Δt and in
corporates this to obtain the future state value Y(t+Δt) following state 
Y(t): this calculation results in the prediction of this future state value 
Y(t + Δt). These calculations were computed by the network engine 
implemented within the dedicated software environment in MATLAB 
and described in detail in (Treur, 2020), Ch 9. 

In summary, this difference equation serves as a valuable tool for 
both simulation and analysis within temporal-causal networks as it 
captures the dynamics and behaviors exhibited by the interconnected 
states within the network. 

A self-modelling network, also known as a reified network, offers a 
powerful framework for conceptualizing adaptive networks using 
mathematically defined functions and relations. By introducing self- 
model states, it becomes possible to represent and capture the adap
tive network characteristics of a network model. These self-model states 
are visualized at a higher level referred to as the self-model level or 
reification level, while the original network structure remains at the 
base level. For example, the weight ωX,Y of a connection between two 
states, X and Y, can be represented at the self-model level by introducing 
a self-model state named WX,Y . By changing the activation values of such 
self-model states over time, the related network characteristic becomes 
adaptive. Similarly, other network characteristics can also be made 
adaptive by incorporating corresponding self-model states. The process 
of network reification not only enhances the representation of adaptive 
networks but also generates a temporal-causal network model itself. 
This enables the iterative application of the self-modelling network 
construction, resulting in the creation of multiple orders of self-models 
at different self-model levels. Each subsequent level builds upon the 
previous one, further enriching the modelling capabilities and capturing 
the complex dynamics and adaptability within network systems (Treur, 
2020). This allows modeling of higher-order adaptivity. 

To illustrate self-modeling networks, consider their application in 
healthcare, specifically in neonatal care. In a neonatal intensive care 
unit, optimizing oxygen delivery to premature infants facing respiratory 

distress is critical. A self-modeling network can be used to achieve this. 
At the base level, the network represents components like sensors, ox
ygen sources, and monitors, with connection weights based on pro
tocols. At the self-model level, we introduce self-model states for 
connection weights like. 

WSensor, ControlUnit 

which adapt connection behaviors. By adjusting the values of these 
self-model states, the control system can autonomously optimize oxygen 
delivery in real-time based on individual patient needs. This adaptability 
enhances healthcare systems like the neonatal intensive care unit, 
ensuring optimal care for infants. 

4. Description of the scenarios 

In this paper, three distinct scenarios for simulation experiments will 
be presented. While each scenario presents a unique storyline, the cen
tral focus remains on the collaborative efforts of a doctor and a nurse in a 
hospital setting. Together, they form a cohesive team, utilizing their 
specialized knowledge, skills, and dedication to ensure the best possible 
care for neonates facing respiratory distress. The scenarios are designed 
to provide a narrative that illustrates the sequence of medical proced
ures in neonatal care, offering a storyline that brings the context to life. 
It is important to note that these scenarios are merely illustrative and 
serve as representations rather than being definitive. 

4.1. The roles and responsibilities of the nurse and doctor in managing 
respiratory Distress: Scenario 1 

Scenario 1 has two subvariants, namely 1a and 1b, which intricately 
illustrate the separate roles and responsibilities assumed by both the 
nurse and the doctor. This division is critical in delineating and 
emphasizing the distinct responsibilities involved in providing care for 
neonates experiencing respiratory distress in a hospital setting. In both 
scenarios 1a and 1b, the team members share a perfect team mental 
model. As a result, there are no differing individual instances of the team 
mental model, as all team members have the same understanding of 
their roles, responsibilities, and goals. 

4.1.1. Nurse-led assessment and Intervention: Scenario 1a 
A premature baby of 31 weeks of gestational age at birth is delivered 

with the assistance of a doctor. After birth there was a delay in the 
clearance of the fetal lung fluid. The nurse assumes responsibility for 
assessing the baby’s respiratory vital signs. The nurse’s duties include:  

• monitor respiratory rate  
• measuring oxygen saturation level  
• observing for grunting  
• observing for chest retractions  
• observing for cyanosis 

Upon completing the assessment and obtaining good results, the 
nurse permits the baby to bond with their mother by kangaroo care 
which involves skin-to-skin contact. However, if the assessment yields 

Table 1 
Combination functions used in the network models.  

Function Notation Formula Parameters 

Alogistic – advanced logistic sum alogisticσ,τ(V1,..,Vk) 
[

1
1 + e− σ(V1+⋯+Vk − τ) −

1
1 + eστ)](1 + e− στ) 

steepness σthreshold τ 

Steponce – 
one period of activation 

steponceα,β(V1,⋯,Vk) timet1ifα ≤ t ≤ βelse0 start time αend time β 

Stepmod – step modulo stepmodδ,τ(V1,⋯,Vk) timet0ifmod(t, ρ) < δ else1 repeated time duration ρtipping point δ 
Scalemap – mapping activation scale scalemapλ,υ(V) λ + (υ − λ)V lower bound λupper bound υ 
Max with Hebbian 

Learning 
maxhebbμ(V1,⋯,Vk) max(hebbμ

(
V1,V2,V3

)
,V4,⋯,Vk)wherehebbμ

(
V1,V2,V3

)
= V1V2(1 − V3)+

μV3 

persistence factor μ  

N. Mokadem et al.                                                                                                                                                                                                                              



Cognitive Systems Research 86 (2024) 101231

5

poor results, the nurse will contact the doctor for advice. In such cases, 
the nurse may provide:  

• supplemental oxygen;  
• respiratory support;  
• transfers neonate to a NICU (a premature baby is always transferred 

to a NICU) 

4.1.2. Nurse-led intervention with subsequent Doctor’s Intervention: 
Scenario 1b 

In the previous Scenario 1a, the nurse assesses the baby’s respiratory 
vital signs and seeks the doctor’s advice if respiratory distress is 
observed. In this case, the nurse administers supplemental oxygen 
without consulting the doctor. When the baby does not improve and 
enters a critical state a few hours later, the nurse contacts the doctor for 
immediate intervention. This makes the family of the baby emotionally 
distressed. The doctor’s duties include:  

• prepare medical procedure  
• take X-ray and other evaluations  
• providing treatment  
• give advice 

4.2. Collaborative adaptation and learning in nurse-led intervention and 
impact of a fatigued Doctor: Scenario 2 

Scenario 2 is a variant of Scenario 1. This implies that Scenario 2 
exhibits certain similarities with Scenario 1, while also introducing 
notable variations. 

The nurse independently administers supplemental oxygen without 
consulting the doctor. The baby’s condition does not improve and enters 
a critical state. Subsequently, the nurse seeks help, and the doctor’s 
responsibilities encompass preparing medical procedures, conducting 
evaluations such as X-rays, providing suitable treatment, and offering 
guidance and advice to address the critical situation. However, in this 
scenario, the doctor experiences symptoms of fatigue, affecting his 
ability to perform optimally. Moreover, the team members do not 
possess a flawless team mental model. Consequently, individual in
stances of the team mental model differ, as team members hold varying 
understandings of their roles, responsibilities, and objectives. This sit
uation fosters a learning environment for both the doctor and nurse. 
They observe real-world events, which impact their mental models, 
leading to an exchange of knowledge and an evolution of their 
understanding. 

4.3. Collaborative adaptation and learning in nurse-led intervention with 
subsequent Doctor’s intervention and the role of an AI-Coach: Scenario 3 

Scenario 3 is a variant of Scenario 2, introducing additional factors 
such as workplace stress and the presence of an underlying congenital or 
genetic condition in the baby. Despite the doctor’s illness and the critical 
state of the baby, the doctor’s responsibilities remain unchanged. 

A key difference is the introduction of a virtual AI-Coach in Scenario 
3. This AI-Coach serves as a monitoring system during the medical 
procedure, signalling any deviations from the expected course. With its 
comprehensive mental model and vast knowledge, the AI-Coach pro
vides guidance and support to both the doctor and the nurse. It 
continuously monitors the situation and activates its decision and 
communication features in the event of a mistake occurring in the real- 
world setting. 

5. The adaptive network models 

Every scenario is addressed its own network model, which invariably 
comprises a base level and for Scenarios 2 and 3 additional levels of 
reification. In the 3D format used to depict these models, the oval shapes 

represent the states, while the arrows signify the influences of one state 
on another. Each section will provide a comprehensive explanation of 
these 3D pictures. The detailed exploration of these models is critical to 
achieving the research objectives, as it allows for the simulation and 
analysis of the dynamic interactions within medical teams and the 
impact of an AI-Coach on decision-making and learning processes in a 
neonatal care context. 

5.1. The roles and responsibilities of the nurse and doctor in managing 
respiratory Distress: The Computational models for Scenario 1 

Scenario 1a and 1b solely comprise a base level as there is no 
requirement for additional levels of reification. This is due to the 
absence of any learning needs in both scenarios, as all team members 
possess flawless mental models, signifying perfect knowledge. Given the 
numerous similarities between the two models, it is justified to explain 
them together within a single section. 

5.1.1. Base level Scenario 1a and 1b: Overview 
Within the base planes, the world states indicating the actual steps in 

the world for the Scenarios 1a and 1b are depicted in Figs. 1 and 2 
respectively by the green nodes with their connections in the middle 
area of the base plane. A few of these world states have a lighter green 
node because they are not directly influenced by the other world states. 
The actor is indicated within a world state name by D for doctor or N for 
nurse. 

In both cases the base levels consist of two mental models, one of the 
nurse and one for the doctor. These mental models reflect the structure 
of the medical procedure explained in Sect. 4.1.1 and 4.1.2. The nodes of 
the mental model of the doctor are depicted by the orange ovals and the 
nodes of the nurse by pink ovals. 

In order for the doctor and the nurse to determine their actions in the 
world, they rely on their individual mental models which in turn acti
vate action ownership states. The doctor’s action ownership states are 
visually depicted in a light orange colour, while the nurse’s states are 
represented in light pink. These states incorporate input from the 
respective mental models and enable a form of mediation from the 
mental model to the real world by initiating the execution of the 
designated actions. Therefore, these states act as decision states to 
perform certain action by both of the actors in the real world, resulting 
from a shared mental model. By mutually observing each others’ actions 
or by accompanying verbal comments about them, the nurse and doctor 
interact. 

In Fig. 1, two contextual factors are depicted as nodes, with one in 
yellow and the other in dark orange. The yellow node signifies that the 
baby is born prematurely, while the dark orange node indicates that 
there was a delay in the clearance of fetal lung fluid. Within Fig. 2, the 
two contextual factors can be observed through a yellow node, sym
bolizing the critical state of the baby, and a grey shade, indicating 
emotional distress experienced by the family. 

In the case of the model for Scenario 1a, Table 2 provides an over
view encompassing the world states, the mental model states for both 
the doctor and nurse, their ownership states, and contextual factors, 
each accompanied by an explanation. A similar overview of the model of 
Scenario 1b can be found in Table 3. 

Black arrows are used to denote the influence of one world state on 
another. Blue lines indicate the connection between ownership states 
and world states. The yellow lines represent observation arrows, indi
cating that the nurse and doctor observe events occurring in the world 
and activate the corresponding states in their mental models. Observa
tion lines are selectively included from particular world states to the 
mental states only when those specific world states indicate observa
tions, such as “Baby has a respiratory rate under 60 breaths per minute”. 
Solid arrows originating from the context factors signify the strength
ening of specific world states, while dotted arrows indicate the weak
ening of world states. 
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The alogistic combination function stands for advanced logistic sum 
and includes a steepness and threshold parameter. The steepness 
parameter in the alogistic function determines how quickly the output 
changes in response to changes in the (weighted) sum of inputs. The 
threshold parameter in the alogistic function defines the input value at 
which the output starts to change significantly. Inputs below the 
threshold have minimal impact on the output, while inputs above the 
threshold cause the output to respond more significantly. The threshold 
essentially sets a boundary or activation point that triggers the transition 
in the output. On the other hand, the steponce combination function 

operates by encompassing a specific period of activation. It takes one 
period of activation from α to β, in which α stands for the start time and 
β for the end time. The combination functions utilized in the network 
model are the alogistic function for all the world states, mental model 
states, and ownership states. For the context factors, the stepmod 
function is used (see Table 1). This function is a stepmod function which 
takes as repeated time duration and a tipping point. The tipping point 
represents the critical point at which the output of the stepmod function 
changes its value based on the repeated time duration specified by its 
parameter. 

Fig. 1. Computational model for Scenario 1a.  

Fig. 2. Computational model for Scenario 1b.  
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5.2. Collaborative adaptation and learning in nurse-led intervention and 
impact of a fatigued Doctor: The Computational model for Scenario 2 

Scenario 2 diverges from the foundation established in Scenario 1, 
presenting itself as an extensive variant rather than a direct extension. 
The model for Scenario 2 introduces two adaptation levels (for first- 
order and second-order adaptation) on top of the base level. Each of 
these levels will be addressed in a separate section, providing a 
comprehensive explanation of their intricacies and details. In Scenario 
2, the central concept revolves around different periods. The upcoming 
section will delve into the role of breaks and how they come into play. 
This is where the factors pertaining to periods and contextual states will 
be thoroughly explained to provide a more comprehensive 
understanding. 

5.2.1. Base level for Scenario 2: Overview 
Once more, the world states are depicted by green nodes with their 

connections in the middle area of the base plane (see Fig. 3). As usual, 
the lighter green nodes indicate that these nodes are not directly influ
enced by the other world states. In this case, there are again two mental 
models for the two actors, and these reflect the structure of the medical 
procedure explained in Sect. 4.1.3. The nodes of the mental model of the 
doctor are depicted by the orange nodes and the nodes of the nurse by 
pink nodes. 

Also in this case, the doctor and nurse have certain actions that they 
have to do in the world. To determine at specific time points their ac
tions, they again rely on their individual mental models and use action 
ownership states to initiate actions accordingly. The doctor’s action 
ownership states are visually depicted in a light orange colour, while the 
nurse’s states are represented in light pink. 

In the model for Scenario 2, in total three contextual factors are at 

Table 2 
Overview of states for Scenario 1a: the world states, mental states, ownership 
states and context factors.  

World, 
Doctor, 
Nurse, 
Context    

Explanation 

C1   Context Baby is born prematurely 
C2   Context Delay in clearance of fetal lung 

fluid 
WS1 NS1 DS1  Preparing to assess respiratory vital 

signs 
WS2 NS2 DS2  Nurse monitors baby’s respiratory 

rate 
WS3 NS3 DS3  Baby has a respiratory rate under 

60 breaths/minute 
WS4 NS4 DS4  Baby has a respiratory rate above 

60 breaths/minute (bad) 
WS5 NS5 DS5  Nurse uses pulse oximeter to 

measure baby’s oxygen saturation 
level 

WS6 NS6 DS6  Baby has an oxygen saturation 
level above 89 % 

WS7 NS7 DS7  Baby has an oxygen saturation 
level below 89 % (bad) 

WS8 NS8 DS8  Nurse listens to baby’s breathing 
and observes for grunting 

WS9 NS9 DS9  Baby makes no grunting sounds 
WS10 NS10 DS10  Baby makes grunting sounds (bad) 
WS11 NS11 DS11  Nurse observes baby’s chest for 

retractions 
WS12 NS12 DS12  Baby shows no chest retractions 
WS13 NS13 DS13  Baby shows chest retractions (bad) 
WS14 NS14 DS14  Nurse observes baby’s colour for 

signs of cyanosis 
WS15 NS15 DS15  Baby has no discoloration of skin, 

lips, or mucous membranes 
WS16 NS16 DS16  Baby has discoloration of skin, lips, 

or mucous membranes (bad) 
WS17 NS17 DS17  Nurse calls for doctor’s help 
WS18 NS18 DS18  Nurse provides supplemental 

oxygen, respiratory support, or 
transfers the baby to a NICU 

WS19 NS19 DS19  Nurse allows the baby to bond with 
the mother 

WS20 NS20 DS20  Doctor gives advice 
NOS1    Ownership state for the action of 

preparing to assess respiratory vital 
signs 

NOS2    Ownership state for the action of 
nurse monitors baby’s respiratory 
rate 

NOS5    Ownership state for the action of 
nurse uses pulse oximeter to 
measure baby’s oxygen saturation 
level 

NOS8    Ownership state for the action of 
nurse listens to baby’s breathing 
and observes for grunting 

NOS11    Ownership state for the action of 
nurse observes baby’s chest for 
retractions 

NOS14    Ownership state for the action of 
nurse observes baby’s colour for 
signs of cyanosis 

NOS17    Ownership state for the action 
nurse calls for doctor’s help 

NOS18    Ownership state for the action of 
nurse provides supplemental 
oxygen, respiratory support, or 
transfers the baby to a NICU 

NOS19    Ownership state for the action of 
nurse allows the baby to bond with 
the mother 

DOS20    Ownership state for the action of 
doctor gives advice  

Table 3 
Overview of states for Scenario 1b: the world states, mental states, ownership 
states and context factors.  

World, Doctor, Nurse, Context Explanation 

C1   Context Baby is in critical state 
C2   Context Family is emotionally distressed 
WS1 NS1 DS1  Nurse alarms doctor 
WS2 NS2 DS2  Doctor preparing necessary equipment and 

supplies for a medical procedure 
WS3 NS3 DS3  Doctor takes an X-ray and other medical 

evaluations 
WS4 NS4 DS4  X-ray and other evaluations show lung 

expansion, airway obstruction, 
pneumothorax, infiltrates, or/and 
cardiomegaly 

WS5 NS5 DS5  X-ray and other evaluations do not show 
anything abnormal 

WS6 NS6 DS6  Doctor provides oxygen therapy, 
medications, re-expands lung, surgery or 
other treatments 

WS7 NS7 DS7  Treatment works 
WS8 NS8 DS8  Treatment does not work 
WS9 NS9 DS9  Doctor advises to let neonate rest 
WS10 NS10 DS10  Nurse informs family about doctor’s advice 
NOS1    Ownership state for the action of nurse 

alarms doctor 
NOS10    Ownership state for the action of nurse 

informs family about doctor’s advice 
DOS2    Ownership state for the action of doctor 

preparing necessary equipment and supplies 
for a medical procedure 

DOS3    Ownership state for the action of doctor 
takes an X-ray and other medical 
evaluations 

DOS6    Ownership state for the action of doctor 
provides oxygen therapy, medications, re- 
expands lung, surgery or other treatments 

DOS9    Ownership state for the action of doctor 
advises to let neonate rest  
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play. The first one, represented by the colour yellow, signifies that the 
baby is in a critical condition, causing both the nurse and doctor to 
experience stress. The second factor, depicted as a brown–red node, 
indicates that the doctor is personally unwell. As shown in Fig. 3, this 
particular context factor strengthens WS6. While it may initially seem 
illogical for it to strengthen the action of “Doctor gives treatment,” there 
is a logical explanation behind it. Despite being sick, the doctor is 
making an effort to stay focused and provide the necessary treatment. 
Lastly, the third factor (represented by grey node) represents the pre
mature birth of the baby, which diminishes the likelihood of favourable 
results in X-ray and other evaluations. Consequently, this also slightly 
weakens the doctor’s ability to provide advice and the nurse’s ability to 
communicate that advice to the family. 

In addition to the three context factors mentioned earlier, there are 
three more states that are not included in the base level of the model. 
These states are part of the medical procedure and serve to represent 
different periods within the care process. They are intentionally 
designed to create pauses or breaks in the workflow. For instance, there 
is a state that weakens every world state during a specific time interval 
when there is no baby requiring immediate attention. Conversely, after a 
certain period, a new baby arrives, indicating a shift in the workload and 
responsibilities. These states are not considered contextual factors in the 
standard sense and therefore are not visually incorporated into the base 
level of the model. However, it is important to note that these states are 
included during the model’s construction and used within the computer 
simulations. These states can be observed in Table 4, along with an 
explanation of their purpose and impact within the medical procedure. 
Moreover, Table 4 also provides an overview encompassing the world 
states, the mental model states for both the doctor and nurse, ownership 
states, and contextual factors, each accompanied by an explanation. 

As mentioned earlier in Section 5.1.1, black arrows are utilized to 
illustrate the influence of one world state on another. Blue lines, on the 
other hand, establish connections between ownership states and world 
states. The presence of yellow lines signifies observation arrows, indi
cating that the nurse and doctor actively observe events taking place in 
the world and integrate the obtained information into their mental 
models. Arrows originating from the context factors indicate strength
ening effects of them on specific world states. Conversely, dotted arrows 
are used to represent negative connection weights which denote the 
weakening effect on certain world states. There are also red downward 
arrows incoming, but their explanation will be provided in next section. 
Furthermore, there are outgoing lines (blue and orange), which will be 
elaborated on in Section 5.2.3. 

5.2.2. Middle level for Scenario 2: Adaptation and plasticity of the mental 
models 

The blue plane focuses on the cognitive processes associated with 
learning and forgetting of mental models. Specifically, there are two 
distinct processes, one for the doctor and another one for the nurse. For 
the doctor, this represents the weights of the connections within their 
mental model, linking the state for “X-ray and other evaluations show 
something abnormal” to the state for “Doctor provides treatment”, i.e., 
self-model state WDS4,DS6. From this W-state a downward adaptation 
effectuation link points to the state “Doctor provides treatment” within 
the doctor’s mental model which is indicated by a red arrow. The nurse 
undergoes a similar process with their respective mental model and 
connections. Furthermore, the mental models of both the doctor and 
nurse mutually influence each other as a form of social learning: they 
learn from one another by communicating, modeled by an interplay of 
their respective W-states. 

Fig. 3. Computational model for Scenario 2.  
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The other type of learning covered is individual learning modeled by 
Hebbian Learning (see Table 1). The Hebbian learning combination 
function is commonly used to update on the fly the connection weights 
between neurons in neural networks when both neurons are often 
activated together. To integrate the social learning and the individual 
Hebbian learning processes, the maxhebbμ combination function is 
used which combines the regular Hebbian function with the max func
tion. The maxhebbμ function selects the highest value of the incoming 
connections including the value by Hebbian learning. This approach 
ensures that the influence of the most significant connection is preserved 
while minimizing the impact of less relevant connections. 

Like the standard Hebbian learning, the maxhebbμ function in
corporates a persistence factor μ, which quantifies the fraction of the 
learned value that remains over each unit of time. By including this 
factor, Hebbian learning accounts for the phenomenon of extinction or 
forgetting. The persistence factor μ determines the extent to which the 
learned value is retained or forgotten over time. A value of μ between 
0 and 1 represents the fraction of the learned value that persists per time 
unit. A higher value of μ indicates a slower rate of forgetting, meaning 
that the learned associations will persist for a longer duration. On the 
other hand, a lower value of μ accelerates the rate of forgetting, leading 
to a more rapid extinction of the learned associations. 

5.2.3. Upper level for Scenario 2: Meta-Plasticity of the mental models 
The adaptivity of the first-order self-model within the network is 

captured by incorporating a second-order self-model, represented by the 
MW-state, in the upper-level plane. The presence of the MW-state within 
the upper-level plane effectively captures the adaptive nature of the 
persistence factor μ. It enables dynamic adjustments and responses to 
changing conditions or contexts, ensuring that the network can adap
tively modify the extent of persistence as needed. In the given scenario, 
it is assumed that when the baby is in a critical state, causing stress for 
both the doctor and nurse, the value of the MW-state decreases. This 
modelling approach captures the concept of forgetting under stressful 
circumstances. More precisely, the relationship described involves up
ward connections from the context state C1 in the base level to the MW- 
states, as well as downward connections from the MW-states to the W- 
states. These MW-states are modelled with the help of the combination 
function scalemap (see Table 1) which maps activation scale [0,1] to 
scale [λ,υ] with λ as lower bound and υ as upper bound. The scalemap 
function enables flexible manipulation and control of the MW-state 
activation levels, allowing them to effectively contribute to the model’s 
behaviour and outcomes. By applying this function, the activation 
values of the MW-states can be effectively scaled to match the desired 
range of values which in this case is from 1.0 to 0.5. 

5.3. Collaborative adaptation and learning in nurse-led intervention with 
subsequent Doctor’s intervention and the role of an AI-Coach: The 
Computational model for Scenario 3 

While Scenario 3 is a variant of Scenario 2, it introduces numerous 
significant changes that will be extensively examined in the following 
sections. In order to provide a clearer explanation of the models, each 
section focuses on different aspects of the overall model. As a result, 
multiple figures depicting the same model are presented throughout the 
various sections. 

5.3.1. Base level for Scenario 3: Overview 
In the base plane (see Fig. 4), the world states are once again rep

resented by green nodes, with their corresponding connections situated 
in the middle region of the base plane. As usual, the lighter green nodes 
indicate that they are not directly influenced by other world states. 

In this particular scenario, an additional mental model has been 
introduced at the base level. Alongside the mental models of the doctor 
and nurse, which reflect the structure of the medical procedure they 
follow, there is now a mental model of the virtual AI-Coach as well. The 
nodes of the AI-Coach’s mental model are depicted as yellow nodes. 

However, there are some distinctions in this case. While the doctor 
and nurse have specific actions to perform in the world, relying on their 
individual models mental and utilizing action ownership states to 
initiate their actions, the AI-Coach does not possess such action 
ownership states. This is because the AI-Coach does not directly interact 
with the physical world or execute real actions. Instead, its primary 
function revolves around observing each world state and initiating 
communication to the others. These observations by the AI-Coach are 
crucial for the monitoring and communication functions performed by 
it. Further elaboration on this function will be provided in the subse
quent section, focusing on the middle level of the model. 

Within this network model, four contextual factors come into play. 
The first factor, represented by the colour yellow, signifies the presence 
of stress experiences. The second factor, depicted as a grey node, in
dicates that the baby is in a critical state. The dark green colour repre
sents the presence of an underlying congenital or genetic condition in 
the baby, while the brown factor denotes that the doctor is feeling ill 
themselves. 

In the base level, the colours of the arrows remained the same. Black 
arrows depict the influence of one world state on another, while blue 
lines connect ownership states to world states. Yellow lines represent 
observation arrows, indicating active observation by the nurse, doctor, 

Table 4 
Overview of the states for Scenario 2: the world states, mental states, ownership 
states, context factors, periods, and first- and second-order adaptation states (for 
the complete table, see the appendix).  

World, Doctor, Nurse, and Context Explanation Level 

C1   Context Baby is in critical state Base Level 
C2   Context Doctor is feeling sick 

himself 
C3   Context Baby is born 

prematurely 
P1   Period Period in which there is 

no critical ill baby to 
take care of 

P2   Period Doctor takes a break 
P3   Period Doctor is back doing 

their job 
WS1 NS1 DS1  Nurse alarms doctor 
…… …… ……   
WS10 NS10 DS10  Nurse informs family 

about doctor’s advice 
NOS1    Ownership state for the 

action of nurse alarms 
doctor 

…… …… ……   
DOS9    Ownership state for the 

action of doctor advises 
to let neonate rest 

WDS4,DS6    First-order self-model 
state for the doctor’s 
weight of the 
connection from DS4 to 
DS6 

First-Order 
Adaptation 
Level 

WNS4,NS6    First-order self-model 
state for the nurse’s 
weight of the 
connection from NS4 to 
NS6 

MWDS4, DS6    Second-order self- 
model state for the 
persistence factor of 
the doctor’s weight of 
the connection from 
DS4 to DS6 

Second-Order 
Adaptation 
Level 

MWNS4, NS6    Second-order self- 
model state for the 
persistence factor of 
the nurse’s weight of 
the connection from 
NS4 to NS6  
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and this time also by the AI-Coach. Solid arrows from context factors 
strengthen specific world states, while dotted arrows weaken certain 
world states. 

The alogistic function is employed once more for the states at the 
base level, encompassing world states, mental model states, and 

ownership states. Context factors, on the other hand, make use of the 
stepmod function (see Tables 1 and 5). 

Fig. 4. Base Level for Scenario 3: World states, Mental model states, Ownership states, Context states.  

Table 5 
Overview the states for Scenario 3: the world states, mental states, ownership states, context factors, and first- and second-order states (for the complete table, see the 
appendix).  

World, Doctor, Nurse, AI-Coach, Context Explanation Level 

C1    Context Experiences of stress Base Level 
C2    Context Baby is in critical state 
C3    Context Underlying congenital or genetic condition 
C4    Context Doctor is feeling sick himself 
WS1 NS1 DS1 AI1  Nurse alarms doctor 
…… …… …… …..   
WS10 NS10 DS10 AI10  Nurse informs family about doctor’s advice 
NOS1     Ownership state for the action of nurse alarms doctor 
…… …… …… ……   
DOS9     Ownership state for the action of doctor advises to let neonate rest 
WDS1,DS2     First-order self-model state for the doctor’s weight of the connection DS1,DS2 First-Order Adaptation 

Level ….. ….. ….. …..   
WDS9,DS10     First-order self-model state for the doctor’s weight of the connection DS9,DS10 
WNS1,NS2     First-order self-model state for the nurse’s weight of the connection NS1,NS2 
….. ….. ….. …..   
WNS9,NS10     First-order self-model state for the doctor’s weight of the connection NS9,NS10 
WAI1,AI2     First-order self-model state for the nurse’s weight of the connection AI1,AI2 
….. ….. ….. …..   
WAI9,AI10     First-order self-model state for the doctor’s weight of the connection between AI9,AI10 
Monitor WS2     Monitor feature of the AI-Coach to monitor doctor preparing necessary equipment and supplies 

for medical procedure 
….. ….. ….. …..   
Monitor WS10     Monitor feature of the AI-Coach to monitor nurse informing family about doctor’s advice 
Decision WS2     Decision feature of the AI-Coach to decide to signal about doctor preparing necessary 

equipment and supplies for medical procedure 
….. ….. ….. …..   
Decision WS10     Decision feature of the AI-Coach to decide to signal about nurse informing family about 

doctor’s advice 
CS2     Communication feature of the AI-Coach to signal/communicate about doctor preparing 

necessary equipment and supplies for medical procedure 
Second-Order 
Adaptation Level 

….. ….. ….. …..   
CS10     Communication feature of the AI-Coach to signal/communicate about nurse informing family 

about doctor’s advice 
WWAI1,AI2 ,WDS1,DS2     Second-order self-model state representing connection weight for WDS1,DS2 

….. ….. ….. …..   
WWAI7,AI9 ,WDS7,DS9     Second-order self-model state representing connection weight WDS7,DS9 

WWAI9,AI10 ,WNS9,NS10     Second-order self-model state representing connection weight for WNS9,NS10  
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5.3.2. Middle level for Scenario 3: Adaptation and plasticity of the mental 
models 

The middle level, denoted by the colour blue, exhibits significant 
differences compared to Scenario 2. At this level, numerous crucial 
processes of the AI-Coach take place. As previously mentioned, the AI- 
Coach possesses comprehensive knowledge and by observing the ac
tions and states in the world is at each point in time is already aware of 
all relevant information. More specifically, it can observe each step of 
the medical procedure in the world, and this information is conveyed to 
the monitor states, represented by dark red nodes. Subsequently, this 
information is fed into the AI-Coach’s decision-making states for per
forming signalling actions through communication, indicated by lighter 
red nodes. However, these decision states are suppressed by the world 
states if the medical procedure is progressing as intended, thereby 

eliminating the need for the AI-Coach to perform any signalling actions 
(see Fig. 5). 

Nevertheless, if the AI-Coach’s decision-making state becomes partly 
activated, it initiates its communication action, which resides in the 
upper level of the model (see Section 5.3.3). The communication states 
serve the purpose of signalling the correct W-state of either the doctor or 
nurse, depending on which step deviates from the expected course and 
who is responsible for that particular step. For instance, if the AI-Coach 
detects that WS6 has not occurred, it will decide to communicate this 
discrepancy to the doctor, as the doctor is responsible for administering 
the treatment. This signalling mechanism assists the team members in 
the process by helping to prevent mistakes. 

Additionally, team members can enhance their accuracy by 
leveraging organizational learning. The AI-Coach, assumed to have 

Fig. 5. Middle Level for Scenario 3: W-states, Monitor states, and Decision states.  
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perfect knowledge, establishes connections between the W-states of it
self and the corresponding W-states of the doctor and nurse. This enables 
the transfer of knowledge, aiding the team members in their decision- 
making processes and reducing the likelihood of errors. 

In this specific scenario, Hebbian Learning is not employed. Instead, 
the alogistic function is utilized for each W-state. The alogistic func
tion’s characteristic of being suitable for modelling states that require a 
smooth transition between different values makes it an appropriate 
choice. Therefore, the alogistic function is chosen to ensure the 
appropriate handling of the W-states, as well as the monitor, decision, 
and communication states, maintaining consistency throughout the 
system. 

5.3.3. Upper level Scenario 3: Meta-Plasticity of the mental models 
The upper level, represented by the colour purple, contains second- 

order self-model states that determine the weight of connections from 
the AI Coach’s W-states to individual mental model connection weight 
self-model states in the middle level (see Fig. 6). These higher order W- 
states are distinct from the MW-states utilized in the model of scenario 2. 
The WWW-states, in particular, specify the weights of connections from 
the AI Coach’s W-states to the individual W-states of doctor or nurse and 
vice versa, enabling the initiation and control of shared organizational 
mental model learning by individuals. As previously mentioned, the 
communication states are situated in the upper level. This arrangement 
is necessary because the influence of the communication states needs to 
be adaptation of the W-states in the middle level. The communication 
states employ the alogistic function as their combination function, 
while the WWW-states are modelled using the scalemap function (see 

Table 1). 

6. Simulation experiments 

Each scenario has its own set of simulation results. Scenario 1a and 
1b will be discussed together in one section, while the remaining sce
narios will each have their dedicated sections. In Scenario 1 and 2, the 
analysis primarily focuses on the world states. However, for Scenario 3, 
additional aspects such as mental states, ownership states, and W-states 
are analyzed. These elements are of particular interest as they contribute 
to the complexity of the processes under examination. Notably, the 
simulations in the third scenario hold significant importance as the ul
timate goal is to create a scenario featuring an AI-Coach. Hence, thor
ough analysis of these simulations is crucial as it represents the 
culmination of the scenario-building efforts. The purpose of the graphs is 
to provide a visual representation of the sequential order or progression 
of the processes rather than to provide specific temporal details. The 
horizontal axis of the graphs represents an abstracted dimensionless 
time scale, denoting the sequence of events without a specific unit of 
time such as seconds or minutes, while the vertical axis quantifies the 
occurrence of a state, by an activation level ranging from 0 (absent) to 1 
(fully present). 

6.1. The roles and responsibilities of the nurse and doctor in managing 
respiratory Distress: Results of Scenario 1 

6.1.1. Nurse-led assessment and Intervention: Results of Scenario 1a 
Fig. 7 displays the simulation output representing the world states, 

Fig. 6. Upper-Level for Scenario 3: WWW-states and Communication states.  
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providing an overview of the actual progression of events in the simu
lated scenario. The figure illustrates the medical procedure, starting 
with the nurse preparing to assess the baby’s respiratory vital signs, as 
indicated by the orange line (WS1). Subsequently, the yellow line rep
resents the nurse’s monitoring of the baby’s respiratory rate (WS2). The 
green line (WS4) reaching a value of 1 and remaining constant signifies 
that the baby has a respiratory rate above 60 breaths per minute, while 
the purple line remains at zero, indicating the absence of a healthy 
respiratory rate (WS3). Following this, the purple line (WS17) shows 
that the nurse requests assistance from the doctor, triggered by the state 
where the baby has a respiratory rate that is too high. The nurse 
promptly notified the doctor as a high respiratory rate in the baby is 
undesirable and requires attention. The doctor promptly provides 
advice, represented by the dark green line (WS20). Additionally, the 
light blue line (WS5) depicts the nurse using a pulse oximeter to measure 
the baby’s oxygen saturation level. The dark blue line at 0 indicates that 
the oxygen saturation level is below 89 % (WS7), while the absence of a 
red line above 89 % suggests a healthy saturation level (WS6). 
Continuing further, the light cyan line (WS8) represents the nurse’s 
assessment of the baby’s breathing, particularly for grunting sounds. 
The yellow line (WS9) at 0 indicates the absence of grunting sounds, 
while a non-zero value on the yellow line would indicate the presence of 
grunting. This is corroborated by the pink line (WS10) reaching a level 
of 0.35, indicating minimal grunting sounds. However, considering the 
earlier observations of poor oxygen levels and respiratory distress, the 

presence of even minimal grunting supports the notion that the baby is 
experiencing respiratory distress. The medical procedure proceeds with 
the nurse monitoring for chest retractions, as depicted by the light grey 
line (WS11). The bordeaux red line (WS13) suggests that the baby is 
indeed experiencing chest retractions, while the light blue line (WS12) 
at 0 indicates the absence of chest retractions. Next, the nurse observes 
the baby’s colour for signs of cyanosis, represented by the neon green 
line (WS14) in the graph. The red line (WS16) indicates the presence of 
skin, lip, or mucous membrane discoloration, suggesting the baby is 
experiencing cyanosis. Finally, based on the observations made, the 
nurse may provide supplemental oxygen, respiratory support, or transfer 
the baby to a Neonatal Care Intensive Unit, as shown by the brown line 
(WS18). The last light blue line signifies that the baby is allowed to bond 
with the mother (WS19). 

6.1.2. Nurse-led intervention with subsequent Doctor’s Intervention: Results 
of Scenario 1b 

Fig. 8 reveals the presence of two context factors: the baby being in a 
critical state from t = 1 to 50 and the family experiencing emotional 
distress from t = 1 to 80. The initial light blue line (WS1) indicates the 
nurse alarming the doctor. Subsequently, the bordeaux red line (WS2) 
represents the doctor preparing the necessary equipment and supplies 
for a medical procedure, followed by the dark blue line (WS3) indicating 
that the doctor performs an X-ray and other evaluations. The orange line 
(WS4) demonstrates that the X-ray and other evaluations indeed reveal 

Fig. 7. Results Scenario 1a: the World States.  

Fig. 8. Results Scenario 1b: the World States.  
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lung expansion, airway obstruction, pneumothorax, infiltrates, and/or 
cardiomegaly. It is worth noting a slight decrease at t = 50, as the period 
of the baby being in a critical state has ended, making it slightly less 
likely for the X-ray and other evaluations to indicate an abnormality. 
Afterward, the doctor provides oxygen therapy, medications, re-expands 
the lung, performs surgery, or administers other treatments (WS6). From 
t = 50 onward, the yellow line (WS5) illustrates a rapid increase in the 
state “X-ray and other evaluations do not show anything abnormal”. 
This indicates that during the period when the baby was in a critical 
state, we observed abnormalities in the X-ray and other evaluations. 
However, after treatment was administered, the state “X-ray and other 
evaluations do not show anything abnormal” starts increasing because 
the treatment was effective, as evidenced by the green line (WS7). The 
light purple line (WS8) remains constant at 0, indicating that the 
treatment is not ineffective. The pink line (WS9) signifies the doctor 
providing advice, while the nurse only informs the family about this at t 
= 80, as indicated by the grey line (WS10). This timing is chosen because 
it aligns with the point when the family’s emotional distress subsides, 
making it an appropriate moment for the nurse to communicate with 
them. 

6.2. Collaborative adaptation and learning in nurse-led intervention and 
impact of a fatigued Doctor: Results of Scenario 2 

This scenario incorporates multiple distinct periods occurring be
tween t = 0 and t = 1000. It is important to note that the world steps 
progress rapidly, causing them to have slightly different time values but 
appearing on the same timeline in the graph (Fig. 9). 

The first period takes place between t = 0 and t = 150. During this 
time, the nurse contacts the doctor for assistance, as depicted by the light 
blue line (WS1). The doctor promptly prepares the necessary equipment 
and supplies for a medical procedure, indicated by the bordeaux red line 
(WS2). Following this preparation, the doctor conducts an X-ray and 
other medical evaluations, as shown by the dark blue line (WS3). These 
evaluations reveal an abnormality (orange line, WS4), leading the doc
tor to proceed with treatment (purple line, WS6). However, due to the 
doctor being sick himself, errors occur during the administration of the 
treatment, resulting in even worse X-ray and evaluation results, as 
indicated by the increasing orange line. In an attempt to address the 
situation, the doctor switches to a different treatment (referred to as 
treatment 2). Unfortunately, this alternative treatment does not appear 
to be effective, and the doctor makes mistakes during the process, as 
evidenced by the green line (WS7). Consequently, the doctor reverts 
back to treatment 1 (purple line), which proves successful this time. The 

improved X-ray and evaluation results are depicted by the yellow line 
(WS5), while the decrease in the orange line signifies a positive 
outcome. Furthermore, the doctor advises the nurse to ensure that the 
neonate gets plenty of rest indicated by the red line (WS9). The nurse 
promptly conveys this information to the baby’s family, depicted by the 
dark blue line (WS10). 

Between t = 150 and t = 300, there are no critically ill babies 
requiring immediate attention. As a result, both the doctor and nurse get 
a break from their duties. However, between t = 300 and t = 450 the 
results show that the nurse reaches out to the doctor once more to help 
with a new baby. The doctor proceeds to prepare the required equip
ment and follow the usual steps, but unfortunately, he repeats the same 
mistakes as before. It’s apparent that he is not feeling well, and this is 
reflected in his incorrect actions. The results show that he has already 
failed to administer the appropriate treatment to two babies due to his 
condition. Between t = 450 and t = 900, the doctor takes a significant 
break to recuperate and overcome his illness, with the aim of performing 
his duties more effectively once he returns to work. 

After t = 900, the figure shows that once more, the nurse reaches out 
to the doctor for assistance with baby 3. The doctor follows the same 
steps as before, but this time, the results indicate that he has performed 
his duties accurately. He administers the treatment correctly on the first 
attempt, which proves to be effective, and he avoids any further errors. 
The break he took before did him good. 

6.3. Collaborative adaptation and learning in nurse-led intervention with 
subsequent Doctor’s intervention and the role of an AI-Coach: Results of 
Scenario 3 

As mentioned earlier, Scenario 3 incorporates a virtual AI-Coach. 
This coach can monitor and signal when mistakes are made during the 
medical procedure. However, the coach can also provide the doctor and 
nurse with its perfect knowledge, facilitating organizational learning. 
Hence, there will be a differentiation between two cases: one in which 
organizational learning plays a big role and another in which the 
communication feature is important. 

6.3.1. Case 1: Organizational learning 
At the first-order adaptation level, specific W-states of the doctor and 

the nurse receive inputs from the W-states generated by the AI-Coach. 
This arrangement facilitates a comprehensive learning and recalling 
experience for the doctor and nurse, as the AI-Coach possesses a flawless 
mental model and imparts knowledge to them. In both cases, the WWW- 
states won’t be further explored in detail since these states remain 

Fig. 9. Results Scenario 2: the World States.  
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constant at 1 with no speed and exhibit no variation. 

6.3.1.1. The world states in case 1. As Fig. 10 depicts, the usual medical 
procedure happens by the nurse alarming the doctor (light blue line, 
WS1). This is followed by a bordeaux line (WS2) which means the doctor 
is preparing necessary equipment and supplies for the medical proced
ure. The dark blue line (WS3) shows that the doctor takes an X-ray and 
other evaluations, and the orange line (WS4) shows that the evaluations 
show that there indeed is something abnormal. While the yellow line 
(WS5) first started growing too because it seemed that there was nothing 
wrong, but eventually quickly went to zero because both states cannot 
happen at the same time; if the X-ray and other evaluations show there is 
something abnormal, it cannot show that there is nothing wrong. After 
this, the doctor already advises to let the neonate rest as much as 
possible because rest is needed for recovery (WS9). After this, the purple 
line (WS6) shows that the doctor is giving treatment with the green line 
(WS7) indicating that the treatment is working. In the end, the dark 
green line (WS10) shows that the nurse informs the family when the 
medical procedure is done. 

6.3.1.2. Example WS2 in case 1: Learning state, mental state, ownership 
state, world state, and communication state. For instance, consider the 
graph (Fig. 11) below that illustrates the process behind WS2, which 
involves the doctor preparing necessary equipment and supplies for a 
medical procedure. The doctor’s learning curve, represented by the blue 
line for adaptation state WDS1,DS2, experiences an immediate rise as the 
knowledge provided by the AI-Coach is assimilated. The orange line 
represents DOS2, the ownership state triggered by the mental model 
state DS2 (bordeaux red line), followed by the neon green line (WS2), 
which signifies the actual occurrences in the real world. Furthermore, 
there is a temporary spike in learning as the AI-Coach briefly commu
nicates (depicted by the light blue line, Communication WS2), but this 
interaction quickly diminishes because the need for continuous signal
ling from the AI-Coach diminishes as WS2 actively unfolds, resulting in a 
swift cessation of communication. The doctor’s learning journey reaches 
a sustained level of approximately 0.7 instead of reaching a perfect score 
of 1. This is because even with the invaluable knowledge provided by the 
AI-Coach, it is impossible for the doctor to retain and recall every piece 
of information; in this case, the doctor retains around 70 % of what the 
AI-Coach imparts, resulting in the learning curve plateauing at this level. 
Therefore, in this particular scenario, the need for frequent communi
cation by the AI-Coach is not significant, thanks to the presence of 
organizational learning that ensures the seamless advancement of 

medical procedures within the hospital. 
This behaviour is applicable to all other states in this particular case. 

The learning states consistently increases, ensuring the correct pro
gression of all subsequent states and rendering the communication 
function of the AI-Coach unnecessary. 

6.3.1.3. Understanding the learning states of the doctor in case 1: A 
comprehensive exploration. Within the model, there are three key actors: 
the doctor, the nurse, and the AI-Coach. Each of these actors exhibits a 
distinct process in their learning states. Consideration should be given to 
the fact that the learning states of the doctor are here taken as an 
example, and a similar exploration of learning states could have been 
conducted for the nurse, for instance. 

Fig. 12 illustrates the learning states of the doctor. At the beginning, 
all W-states demonstrate a comparable pattern of learning, character
ized by a gradual increase, followed by a noticeable spike, and then a 
slight decline indicating some degree of forgetting. However, the 
learning process is consistently supported by the AI-Coach’s impeccable 
knowledge, preventing the knowledge states from ever reaching zero. As 
a result, a stable level of knowledge is maintained, ensuring a contin
uous learning experience throughout the process. However, it is worth 
noting that WDS9,DS10 follows a different trajectory. This learning state 
decreases to 0 since it is not triggered by the communication state of the 
AI-Coach. This is due to the fact that the doctor is not involved in the 
final step of the medical procedure, which involves informing the fam
ily, a responsibility undertaken by the nurse. 

6.3.2. Case 2: AI-Coach’s monitoring and communication functions 
In the previous case, at the initial reification level, the W-states of the 

doctor and nurse are influenced by the W-states generated by the AI- 
Coach. However, in cases where these links are not present, the AI- 
Coach can still contribute to the improvement of the nurse and doc
tor’s knowledge in a different manner. This is achieved through the AI- 
Coach’s monitoring and communication feature, which enables it to 
identify and address mistakes (Fig. 14). 

6.3.2.1. The world states in case 2. In this case (Fig. 13), the process of 
the world states is significantly different from that of case 1. It is 
important to present these world states too to provide a comprehensive 
view of the entire story, ensuring that no crucial details are overlooked. 

As usual, the nurse initially alarms the doctor (light blue line, WS1), 
prompting the doctor to prepare the necessary equipment and supplies 
(bordeaux line, WS2). Subsequently, the doctor performs X-ray and 

Fig. 10. Results Scenario 3: the World States during case 1.  
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other evaluations (dark blue line, WS3), which confirm the presence of 
an abnormality (orange line, WS4). The yellow line (WS5) briefly sug
gests no issue, but it quickly returns to zero as the abnormal and normal 
X-ray and other evaluations results cannot coexist simultaneously. The 
doctor advises providing ample rest for the neonate’s recovery (WS9). 

Treatment is then administered (purple line, WS6) and proves effective 
(green line, WS7). Finally, the nurse informs the family when the 
medical procedure is completed (dark green line, WS10). 

However, when compared to case 1, it is evident that in this partic
ular scenario the word states experience a decline instead of remaining 

Fig. 11. Results Scenario 3: example WS2 during case 1.  

Fig. 12. Case 1 Results Scenario 3: learning done by doctor.  

Fig. 13. Results Scenario 3: the World States during Case 2.  
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constant. This decline signifies the occurrence of mistakes during the 
medical procedure, which were uncommon in the case where organi
zational learning was present. However, it is important to note that these 
world states never fully reach zero, except for cases where it is necessary 
for them to be zero, such as when “X-ray and other evaluations show 
nothing abnormal.” The world states never reach zero because the 
communication feature of the AI-Coach promptly signals the mistakes, 
causing the lines to increase again, indicating that the doctor/nurse is 
aware of their error. 

6.3.2.2. Example WS2 in case 2: Learning state, mental state, ownership 
state, world state, and communication state. As previously mentioned, in 
the initial reification level, certain W-states of the doctor and nurse 
receive inputs from the W-states generated by the AI-Coach, resulting in 
optimal knowledge for both. However, if these inputs were hindered and 
the connections between the W-states of the AI-Coach and the nurse/ 
doctor were disrupted, a different outcome would occur. In such a sce
nario, the ‘communication’ feature provided by the AI-Coach becomes 
valuable. 

The following graph illustrates the same WS2 state but with a delay 
in the learning state receiving input from the AI-Coach’s learning state. 
Consequently, the learning first decreases and when the AI-Coach de
tects forgetfulness, it signals accordingly. The graph depicts a dark blue 
line for adaptation state WDS1,DS2 representing the learning process. It is 
evident that the doctor initially begins to forget, prompting the AI-Coach 
to initiate communication to indicate that WS2 should be taking place 
(light blue line, Communication WS2). Subsequently, the orange line 

representing DOS2 gets triggered by the mental model state DS2 which 
is indicated by the bordeaux red line. Eventually, the occurrence of the 
neon line indicates the manifestation of WS2 in the real world. As a 
result, the need for the AI-Coach to communicate and signal the ne
cessity of WS2 diminishes. Subsequently, there is a subsequent occur
rence of forgetfulness, resulting in a decline in the mental model state, 
action state, and world state. This prompts the AI-Coach to signal once 
more, indicating the need for further learning. As a response, the doctor 
resumes the learning process, striving to enhance their understanding 
and proficiency. Thus, it becomes apparent that the communication 
feature is particularly useful when the doctor and nurse lack perfect 
knowledge and experience forgetfulness. 

6.3.2.3. Understanding the learning states of the doctor in case 2: A 
comprehensive exploration. Fig. 15 illustrates the learning states of the 
doctor. Initially, all W-states exhibit a similar pattern of forgetting, 
followed by subsequent learning, and eventually a big decrease indi
cating forgetting again. 

This learning process is facilitated by the AI-Coach’s signalling when 
something goes wrong. Thus, when the big decrease in learning hap
pens, the AI-Coach signals this and helps the doctor in increasing their 
knowledge again. However, it is worth noting that WDS9, DS10 follows a 
different trajectory. This learning state decreases to 0 since it is not 
triggered by the communication state of the AI-Coach. This is due to the 
fact that the doctor is not involved in the final step of the medical pro
cedure, which involves informing the family, a responsibility under
taken by the nurse. 

Fig. 14. Results Scenario 3: example WS2 during Case 2.  

Fig. 15. Case 2 Results Scenario 3: learning by doctor.  
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In this particular case, the example focuses on the doctor; however, it 
is important to note that similar processes of learning and forgetting 
occur with the nurse as well. Both the doctor and the nurse experience 
the same patterns of learning and forgetting within their respective 
roles. Additionally, it is worth highlighting that the learning states of the 
AI-Coach consistently maintain a constant line at 1. This is due to the AI- 
Coach possessing perfect knowledge from the outset and not requiring 
any further learning itself. 

7. Conclusion and discussion 

This study introduces adaptive computational network models that 
examine the processes involved in the execution of a medical procedure 
related to respiratory distress in a hospital setting. The development of 
these models incorporates the adaptive network-oriented modelling 
approach (Treur, 2020) in combination with the specialized software 
written in MATLAB. The full specifications by role matrices of all models 
can be found as Linked Data at. 

https://www.researchgate.net/publication/371986708 

Initially, the study presents models that include the mental models of 
a doctor and a nurse. Subsequently, it explores the integration of a 
mental model and the utilization of a virtual AI-Coach. This AI-Coach 
possesses advanced capabilities, employing a monitoring system to 
assess whether it should provide alerts or not. The initial simulation 
results highlight the progression of the first two scenarios without the 
presence of the AI-Coach. However, subsequent simulations demon
strate that the AI-Coach can provide significant benefits in two distinct 
ways. Firstly, by leveraging organizational learning, the AI-Coach edu
cates team members about each step of the medical procedure, effec
tively reducing the likelihood of errors in the workplace. This approach 
ensures that team members have a comprehensive understanding of the 
procedure, minimizing the occurrence of mistakes. Secondly, the 
monitoring feature of the AI-Coach plays a crucial role. It promptly 
alerts team members whenever it detects deviations or delays in the 
procedure. This vigilance helps mitigate forgetfulness among nurses and 
doctors, enabling them to relearn and operate without making mistakes. 
It is important to note that organizational learning, as observed in case 
1, has a superior effect compared to the communication feature alone. In 
case 1, learning consistently increased and reached a constant state, 
indicating the correct execution of the medical procedure. On the other 
hand, in case 2, learning increased only when the AI-Coach signalled an 
issue. Furthermore, in case 2, the world states decreased, while in case 1, 
these word states remained constant, indicating a successful medical 
procedure. However, despite the effectiveness of organizational learning 
facilitated by the AI-Coach, the communication feature played a crucial 
role in averting critical mistakes. When something went wrong, the AI- 
Coach’s communication feature promptly addressed the issue, ensuring 
timely resolution. In conclusion, while organizational learning via the 
AI-Coach resulted in better outcomes, the communication feature 
proved essential in preventing fatal mistakes by swiftly identifying and 
rectifying issues as they arose. 

Xu et al. (2022) demonstrated a model of doctors and nurses assisting 
a distressed newborn with breathing. The case they addressed is whether 
the equipment is used effectively. Also, their findings demonstrated an 
AI-coach that prevents errors. This is consistent with the findings in this 
article, which show that an AI-coach enables organizations to identify 
and reduce errors, ultimately improving performance. An adaptive 
model for communication in labour and delivery rooms, including 
doctor-nurse communication, was developed by Doornkamp et al. 
(2023). This doctor-nurse communication was also done with observa
tion arrows in this article. However, one significant difference is that 
their study encourages a doctor to speak up when problems arise, 
whereas this article focuses on how an AI-coach monitors and warns 
doctors and nurses about mistakes. Weigl et al. (2023) investigated 
computational network models depicting communication between 

fathers and healthcare providers during childbirth. They discovered that 
organizational learning promotes knowledge growth and communica
tion. This is consistent with this article, which emphasizes how orga
nizational learning improves the knowledge of the medical team and the 
overall procedure. However, in this article, a distinction was made be
tween two scenarios: one involving organizational learning facilitated 
by the AI-Coach, and another involving only the AI-Coach’s monitoring 
and warning function. This enabled a thorough examination of the dif
ferences in their impact. 

The differences between their work and this article vary not only in 
scope but also in models. In the upper level of their work, Xu et al. used 
MW-states; Scenario 2 of this paper also used MW-states but Scenario 3 
used WWW-states. This decision was made with the intention of facili
tating individual learning of shared organizational mental models, as 
WWW-states define connections between AI-Coach’s W-states and a 
doctor’s or nurse’s individual W-states. In order to maintain the stron
gest connection, this study used the maximum Hebbian function in 
Scenario 2 as opposed to Xu et al. who used the Hebbian combination 
function for W-states. In the papers of Doornkamp et al. and Weigh et al., 
no Hebbian learning was used, whereas here, two different versions of 
learning are used: Hebbian learning in Scenario 2 and the alogistic 
function for the W-states in Scenario 3. Furthermore, whereas Door
nkamp et al.’s model focuses on fear of repercussions, this paper takes 
into account a variety of contextual factors. The AI-Coach process differs 
significantly between the three papers and this paper. In this study, the 
AI-Coach observes what happens in the world and this information is 
sent to the monitoring state, which then activates the decision states. If 
everything goes well, the decision states are suppressed, but if they 
activate, the upper-level communication states are activated. The papers 
by Xu et al., Doornkamp et al., and Weigh et al. do not address this 
specific process. 

The primary limitation of the models is their narrow focus on neo
nates in respiratory distress, which limits their applicability to other 
medical conditions and patient populations. Future research should 
prioritize validating and adapting the model to encompass a wider range 
of healthcare scenarios, enhancing its versatility and effectiveness across 
diverse medical contexts. Moreover, expanding the communication ca
pabilities of the AI-Coach beyond signalling the doctor and nurse to 
include other stakeholders, such as patients and their families, has the 
potential to enhance the overall functioning of the hospital work floor. 
By establishing communication channels with these additional stake
holders, the AI-Coach can improve coordination, collaboration, and 
overall efficiency within the healthcare environment. Additionally, it is 
essential to explore strategies that promote effective collaboration and 
trust between healthcare professionals and the AI-Coach. Developing 
methodologies that position the AI-Coach as a supportive tool, rather 
than a substitute for human expertise, is crucial. By fostering collabo
ration and trust, healthcare professionals can effectively leverage the 
capabilities of the AI-Coach while maintaining their essential roles in 
decision-making and patient care. Furthermore, future work will extend 
to validating these models against clinical outcomes from neonatal care, 
adjusting them based on empirical data to improve their predictive 
power and practical application. Engaging with healthcare professionals 
will be essential to this validation process to ensure the models’ effec
tiveness in real-world settings. 
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