

Delft University of Technology

Unknown object grasping by using concavity

Lei, Qujiang; Wisse, Martijn

DOI
10.1109/ICARCV.2016.7838637
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings 2016 14th International Conference on Control, Automation, Robotics and Vision

Citation (APA)
Lei, Q., & Wisse, M. (2016). Unknown object grasping by using concavity. In Proceedings 2016 14th
International Conference on Control, Automation, Robotics and Vision Article 7838637 IEEE.
https://doi.org/10.1109/ICARCV.2016.7838637

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICARCV.2016.7838637
https://doi.org/10.1109/ICARCV.2016.7838637

Unknown Object Grasping by Using Concavity

Qujiang Lei
TU Delft Robotics Institute

Delft University of Technology
Delft, The Netherlands

q.lei@tudelft.nl

Martijn Wisse
TU Delft Robotics Institute

Delft University of Technology
Delft, The Netherlands

m.wisse@tudelft.nl

Abstract— Reducing the grasp candidates for unknown object
grasping while maintaining grasp stability is the goal of this
paper. In this paper, we propose an efficient and straight forward
unknown object grasping method by using concavities of the
unknown objects to significantly reduce the grasp candidates.
Shortest path concavity is first employed to work out the
concavity value for every vertex of the unknown objects followed
by concavity extraction to obtain the most salient concave areas.
Grasp candidates are then generated on the most salient concave
areas and evaluated by using force balance computation. Grasp
candidates are ranked according to the result of force balance
computation and the manipulability of every grasp candidate.
The grasp with the best force balance and manipulability is
chosen as the final grasp. In order to verify the effectiveness of
our algorithm, some unknown objects commonly used by other
papers about unknown object grasping are used to do simulations
and favorable performance is obtained.

Keywords-unknown object grasping; concavity; oriented
bounding box; robot

I. INTRODUCTION

Grasping of unknown objects with neither appearance data
nor object models given in advance is very important for robots
that work in an unfamiliar environment. Vast research has been
conducted on the problem of unknown object grasping and
many achievements have been obtained in the previous years.
However, unknown object grasping is still a challenging task
that has not yet been solved in a general manner.

[1] gives a profound survey about unknown object grasping.
The existing unknown object grasping algorithms can be
divided into two main categories, that is, using partial model
and using full model.

In order to accelerate the grasping process of unknown
objects, partial information of an object may be used to realize
the grasping. [2] uses partial object geometry to achieve a
semantic grasp. This algorithm needs predefined example
grasps and cannot deal with the grasping task of symmetric
objects since multiple views of a symmetric object could have
the same depth images. [3] proposes a data-driven grasp
planner that requires partial sensor data. Matching and
alignment methods were used for grasping after obtaining the
Columbia Grasp Database. [4] uses local descriptors from
several images to construct the 3D model of an object. Object
registration was conducted by using a set of training images. [5]
installs a 2D range sensor on the robot at an inclined angle to
acquire partial shape information of the unknown objects. Two
straight lines are extracted directly from this partial shape

information as the two grasp sides for a parallel jaw gripper. [6]
uses binocular vision to recover the partial 3D structure of
unknown objects. Then process the incomplete 3D point clouds
searching for good grasp candidate for a three finger robot hand
according to a function that accounts for both the feasibility
and the stability.

The second method is building a full 3D model using many
images or point clouds of the target object. In [7], the full 3D
model is fit and split into many minimum volume bounding
boxes and a grasp is found on these bounding boxes. In [8],
two flat, parallel surfaces are found on the 3D model to realize
the grasping task with a gripper. In [9], the center of mass and
axes of inertia of the target object are calculated from the 3D
model, and then a grasp on the center or along the axes is found.
[10] uses a genetic algorithm to search for grasping points on a
3D model of the target object. [11] uses a cost function to
analyze the 3D model to obtain grasping points. In [12], the 3D
model is simplified into some shape primitives (boxes or
cylinders). Then grasping points which are assigned offline to
these shape primitives are selected for the corresponding shape.

The best way to find a good grasp is said to use full 3D
model to do grasp candidate simulation [13]. GraspIt which
was first introduced in [13] established a benchmark for the
object grasping community. However, there is a big problem
we must face if we want to use GraspIt on unknown object
grasping, that is how to deal with large number of grasp
candidates promptly. After GraspIt, OpenGRASP [14] is
invented on the base of the OpenRAVE [15], which made a
progress comparing with GraspIt. OpenGRASP uses the
normal of the object as the approaching vector of the robot
hand, which can greatly reduce the number of grasp candidates.
However, [16] states that depending on the choice of the
parameters, the time of using OpenGRASP to simulate all the
corresponding grasp candidates for a common object can vary
from a few minutes to more than an hour. And then [16] uses
[17] to do sampling to further reduce the grasp candidates.
However, it still needs about one minute to find a good grasp
for the unknown object, which is pretty time consuming. That
is why the above 3D model based grasping algorithms try to
use shape primitive or boxes to simplify the unknown objects.

The reason that using partial information for unknown
object grasping is becoming popular is that it requires less data
comparing with using full 3D model. In another word, using
partial model can be quicker than using full 3D model.
However using full 3D model can achieve a better stable grasp,
especially when GraspIt or OpenGRASP is used even though it
is time consuming. Can we combine the merits of these two

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted Author Manuscript. Link to published article (IEEE): Proceedings 2016 14th International Conference on Control, Automation,
Robotics and Vision, http://dx.doi.org/10.1109/ICARCV.2016.7838637

methods together? What if we have a 3D model first and then
we just use part of the 3D model to synthesize a stable grasp.

In our previous works [18, 19], we employed the principal
axis of the unknown object to accelerate the grasp searching
process and good results are obtained. In this paper, inspired by
using curvature on unknown object grasping in [20] and using
downsampling to reduce the number of grasp candidates in [16],
we propose to use concavity of the unknown object to reduce
grasp candidates to accelerate the generation of grasp
candidates for the unknown objects. The concavity we said is
different from the 2D curvature used in [20]. There is a
significant difference between 2D curvature and 3D curvature
regarding geometry properties. As can be seen from Fig.1 (a),
the two blue points mean the maximum curvatures of the green
silhouette of the spray bottle. Apparently, 2D curvature has a
good performance to help searching a good grasp for robots.
However, the situation for 3D curvature is different. As can be
seen from Fig.1 (b), the blue in the red circles stands for the
Gaussian curvature (3D curvature), which actually cannot give
much clue for robot grasping. Fortunately, [21] and [22] give
us inspiration about using concavity on unknown object
grasping. Fig.1 (c) shows an example of the concavity that we
mentioned. Specifically, the red area of the bunny represents
the most concave area. Obviously, the concavities of the
unknown object have a higher possibility to form a more stable
force closure grasp. Our motivation is to generate grasp
candidates on concavities and choose the best grasp by
evaluating every grasp candidate.

 (a) (b) (c)

Fig. 1 Curvature versus concavity: (a) 2D curvature (the two blue points stands
for the maximum curvature of the silhouette of the spray bottle), (b) 3D
curvature (the blue in the red circles mean the Gaussian curvature of the bunny),
(c) an example of concavity (the red represents the most salient concavity).

The overview of our grasping algorithm is as follows. First,
the 3D model (point cloud or meshed model) is input and the
concavity of the unknown object is worked out as Fig.2 shows.
Then the most salient concavities are extracted according to the
concavity intensity. After that, grasp candidates are generated
followed by the evaluation of every grasp candidate. Finally,
the grasp with best force balance and manipulability will be
chosen as the final grasp to execute.

This paper is organized as follows. Section II contains a
detailed explanation of our algorithm, Sections III shows the
simulation results, and section IV is the conclusion of this
paper.

II. DETAILED ALGORITHM

A. Concavity calculation
Concavity calculation is carried out directly on the meshed

model of the target object. The meshed model can be obtained
by fast triangulating the full point cloud of the target object.
Take the bear as example, Fig.3 (a) is its full point cloud and
Fig.3 (b) is its meshed model. Then a proper outer convex hull
is computed (shown as the Fig.3 (c)). The free space between
the meshed model and the proper outer convex hull is used to
compute the concavity. First, the stable Constrained Delaunay
Tetrahedralization is used to discretize the free space. The
corresponding discretized space is shown as Fig.3 (d). Then
Fast Marching Method is employed to compute the shortest
path distance by using the discretized free space. The shortest
path distance between the meshed model and the convex hull is
returned as the concavity value of every vertex of the meshed
model. Fig.3 (e) shows the concavity computation result, as can
be seen, the original concavity value is in disorder. In order to
have a better view of the concavity computation result, the
concavity value is rendered by color according to its intensity
from the maximum concavity value to the minimum concavity
value (the red means the maximum concavity and the blue
means the minimum concavity). Fig.3 (f) shows the result of
the rendered concavity.

 (a) (b) (c)

 (d) (e) (f)
Fig. 3 The process to compute the concavity for a bear, (a) The point cloud of
the bear, (b) the meshed model of the bear, (c) the convex hull of the bear, (d)
discretization of the free space between the bear and the convex hull, (e) the
original concavity computation result for every point in (a), (f) the result of the
rendered concavity.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2 An over view of our algorithm: (a) the input model, (b) concavity
computation, (c) the most salient concavities are extracted (the red stands
for the most salient concavities), (d) concavity analysis, (e) the returned
best grasp, (f) the execution of the best grasp.

B. Concavity extraction
As can be seen from Fig.3 (f), the red stands for the most

concave areas and the blue represents the least concave areas.
In order to make it convenient to do further analysis on the
point cloud with the concavity value of every point, the most
concave areas are extracted. The red in Fig.4 (a) means the
most concave areas. It is extracted out from the whole point
cloud to be shown as the Fig.4 (b). After that, the Euclidean
cluster extraction is employed to separate the concavity with
each other (shown as the Fig.4 (c)). Further grasping analysis
will carried out on the separated concavity point clouds.
Specifically, the separated point clouds of the concavity will be
used to generate grasp candidates.

 (a) (b) (c)

Fig. 4 The extraction and separation of the bear concavity. (a) and (b)
demonstrate the extraction of the most salient concavities (the red areas), (c)
the most salient concavities are separated into every single concavity.

C. Construct the concavity coordinate system
The concavity in the red dashed circle in Fig.4 (c)) is used

to explain our following algorithm. After we get the point
cloud of the every single concavity, we can use the principle of
OpenGRASP. The grasp candidates can be generated by using
the normal of the point cloud. But one important fact we must
notice is that there are still a lot of grasp candidates even
though we downsampled the normal of the point cloud. The
reason is that the normal can only decide the approaching
direction of the robot hand. The robot hand can rotate around
the normal, which means a lot of grasp candidates can be
generated. In order to effectively decrease the number of grasp
candidates. We propose to use oriented bounding box to reduce
the grasp searching, which will be explained later.

Let’s first look at what the oriented bounding box is and
how to get the oriented bounding box. There are two common
ways to obtain a bounding box, that is the axis-aligned
bounding box (AABB) and the oriented bounding box (OBB).
The axis-aligned bounding box for a given point set is its
bounding box subject to the constraint that the edges of the box
are parallel to the Cartesian coordinate axes. It is simply the
Cartesian product of N intervals each of which is defined by
the minimal and maximal value of the corresponding
coordinate for the points. The oriented bounding box is the
bounding box calculated subject to no constraints as to the
orientation of the result. By using the eccentricity and moment
of inertia, a position vector and a rotation transform matrix can
be obtained. And then, each vertex of the given AABB must be
rotated with the given rotation transform matrix and then
positioned to get the OBB. Therefore, the OBB is much more
generous and better suitable for concavities analysis. The green
and red rectangular parallelepiped frames in Fig.5 respectively
demonstrate the axis-aligned bounding box and the oriented

bounding box. The blue, green and red straight lines in Fig.5 (b)
respectively stand for the X, Y and Z axis of the concavity
coordinate system.

After the oriented bounding box is obtained, the algorithm
will analyze which two parallel planes of the rectangular
parallelepiped frames have the higher possibility to be grasped
by robot hand without collision with the object. For the
concavity shown in Fig.5 (a), an oriented bounding box is
obtained as Fig.5 (b) shows. The oriented bounding box can be
divided into three pairs of parallel planes. The pair of the front
and the back planes has the less possibility to collide with the
bear. Therefore, the following grasp analysis will be carried out
in XOY plan of the concavity coordinate system.

 (a) (b)

Fig. 5 The oriented bounding box and its corresponding Cartesian coordinate
system. The blue and the red rectangular parallelepiped frames respectively
stand for the axis-aligned bounding box and the oriented bounding box.

D. Analyze concavity and generate grasp candidates
In the above section, the oriented bounding box and its

corresponding Cartesian coordinate system have been obtained.
Actually, the three axis of the Cartesian coordinate system
respectively sand for the major eigenvector, the middle
eigenvector and the minor eigenvector. According to the
analysis in section C, the major and middle vector will be used
to generate the grasp candidates. First, the point cloud of the
concavity is projected to the XOY plane of the OBB coordinate
system (shown as the Fig. 6).

 (a) (b)

Fig. 6 The point cloud of concavity in the OBB coordinate system and the
projected point cloud, (a) the point cloud of the concavity in the OBB
coordinate system, (b) the projected point cloud of the concavity.

After that, we need to extract the concavity outer layer on
the projected point cloud. The outer layer boundary (shown as
the purple points in Fig.6 (b)) of the projected point cloud will
be used to configure the grasp candidates. We first obtain the
concave hull of the projected point cloud (shown as the Fig.7).
The concave hull can be divided into two parts, one part is
inside the object, and the other part is on the boundary.
Usually, the point density is employed to judge whether a two
dimensional point is on the boundary or not, therefore, an
enlarged point cloud is extracted by adding more less concave
areas (shown as the Fig.8 (a)). Then the enlarged point cloud is
downsampled shown as the red points in the Fig. 8 (b).

Fig. 7 Concave hull of the projected point cloud of the concavity.

 (a) (b)

Fig. 8 An enlarged point cloud and its projected point cloud, (a) the blue points
mean the concavity point cloud shown in Fig. 6 (a), the red points mean the
enlarged point cloud by add more less concavity area, (b) the enlarged point
cloud is projected and downsampled shown as the red points.

Originally, we tried to compare the point density of every
point (the blue points in Fig. 9) on the concave hull of the
concavity point cloud. By introducing a circle with the radius
of R (the green and the black circle in Fig. 9), we can get the
number of the points within the circle. Apparently, the point on
the boundary will have a low point density. However, all the
blue points are pretty close to the boundary and the
downsampled enlarged point cloud is sparse, comparing the
density of every point on the concave hull of the projected
concavity point cloud is not robust, especially for the blue
points in the green rectangular.

Fig. 9 Extract the boundary points by compare the point density of every blue
point.

Considering the instability of comparing point density, we
come up with a method to extract boundary point more stably.
Specifically, two concave hulls of the concavity point cloud
and the enlarged point cloud are used. By observing the two
concave hulls shown in Fig.10 (a), it is pretty obvious that the
boundary points on the concave hull of the concavity point
cloud are almost the same or pretty near to the points on the
concave hull of the enlarged point cloud. Therefore, the
distance between every blue point and the green line (shown as
the Fig.10 (b)) is used to judge whether a point is on the
boundary or not. One important fact we can use is that points
on concave hull is generated in sequential order, as can be seen,
the blue point on the upper red line of Fig.10 (b) is in order as
n-1, n and n+1. A vector can be used to store all the straight
lines between the two adjacent red points of the concave hull of
the enlarged point cloud. For every blue point, A vertical
straight line to the straight lines constructed by the two adjacent
red points can be obtained. If the intersection point between the
vertical line and the straight line is lying between the two red

points, then that intersection point is recorded. The orange
point in Fig.10 (b) is an example of the intersection point and it
satisfies the equation (1). A distance threshold (thresholdd) is
given by the system to decide whether the blue point (point n)
is on the boundary or not, if the distance thresholdd d< , the point
is considered as the boundary point. Using above method to go
through all blue points can get the boundary point cloud shown
as the orange points in Fig.11.

 (a) (b)

Fig. 10 (a) is the two concave hulls of the projected concavity point cloud and
the enlarged point cloud, (b) is the enlarged image of the points in the purple
rectangular in (a).

int_orange 1

1 int_orange

m po m

m po m

x x x
y y y

−

−

< <
 < <

 (1)

Fig. 11 Orange points mean the boundary points of the concavity point cloud.

E. generate grasp candidates
After we get the boundary point cloud, the points are not in

order. The first thing to do is to make all the boundary points
into order. We first find the point with minx and store it into a
vector (_ _boundary in orderV). Then sequentially find the closest point
and add it into the vector. Fig.12 shows an example of the
boundary points, which are in sequential order as 0,1,2,3,4,5,
till 8.

After the boundary point cloud in order is obtained, the next
to do is to calculate a series step points. Step points are used to
configure the grasp candidates. It means the robot will search
along the boundary with a step. Searching process of the step
points will start from the point 0 (_ _boundary in orderV [0]). And then
search along the boundary to find any two adjacent points,
which can construct a straight line and have intersection point
with a circle with a radius equal the searching step. If the step
is give as r and the two adjacent points are point n and point

1n + , the distance between the point 0 and point n is defined
as 0 _ nd and the distance between the point 0 and point 1n + is
defined as 0 _ 1nd + .

If the distance between the start point and the two adjacent
points satisfies anyone of the equation (2), there must be an
intersection point between the boundary and the step circle.
Fig.12 shows an example of searching the step points. The
purple curve stands for the searching circle with the radius

equaling the searching step. The purple curve has an
intersection point with the straight line between point 4 and
point 5. Giving the coordinate value of point 0 , point n , point

1n + and the step length (r), using equation (3) can get the
coordinate value of the intersection point P (shown as the red
point in Fig.12 (b)). After we get the first step point, all the
points from the point 0 to point n will be removed from the
current boundary point cloud to form a new point cloud. The
new point cloud is shown as the Fig.13 (b). Then, the maxd is
checked to see whether it is bigger than the robot hand width. If
yes, then the algorithm will repeat the way of finding the first
step point to find the second step point. The above steps are
repeated until maxd is smaller than the robot hand width (shown
as the Fig.13 (a)).

0 _ 0 _ 1

0 _ 1 0 _

n n

n n

d r d
d r d

+

+

< <
 < <

 (2)

1

1

1 1

2 2 2 2 2
0 0 0

2

1 1

. .

. .
. .

2 . 2 (2 . 2) 4(1)(.)
.

2(1)
. . .

n n

n n

n n

n n

p x p xm
p y p y

w p x mp y

p y mw p y mw m p y w r
p y

m
p x my p x mp y

+

+

+ +

+ +

− = −
 = −


+ ± + − + + − = +


= + −

(3)

 (a) (b)

Fig. 12 The step point searching

 (a) (b)

Fig. 13 The way to find all the step points, if a step point is found, the points
out of the searching circle will form a new point cloud as (b).

Fig.14 shows the step searching result with different step
length. The blue points stands for the boundary point cloud of
the concavity. The red points represent all the step points.
Fig.14 (a) and (b) respectively show the result of step searching
with a small and a big step length.

 (a) (b)

Fig. 14 The step points obtained by using different steps length. The blue points
are the boundary points of the concavity. Every green line stands for a step.
Every red point represents a step point. (a) shows the result of step searching
with a small step. (b) demonstrates the result of step searching with a big step.

After all the step points are obtained, the way to work out
the step point can be used to work out the hand configuration.
In Fig.12, if point 0 is a step point and the length of the brown
line equals the robot hand width, using method shown in Fig.12
(b) can work out the intersection point Q. A grasp candidate
can be configured between point 0 and point Q (in Fig.12 (a)).
The purple lines in Fig.15 stand for all the grasp candidates.
Fig.15 (a) and (b) respectively show all the grasp candidates
corresponding to Fig.14 (a) and (b).

 (a) (b)

Fig. 15 The grasp candidates obtained by using a small step and a big step. The
purple lines stand for the grasp candidates. Blue points, green lines and red
points are the same as Fig.14.

After all the grasp candidates are obtained, middle vertical
lines to every grasp candidate are work out shown as blue lines
in the Fig.16. On every grasp candidate, a local Cartesian
coordinate system is established by using purple lines as the X
axis and the blue lines as the Z axis. Using cross product of the
Z axis and the X axis can get the Y axis. Then point cloud for
every grasp candidate is extracted and transformed to the local
coordinate system. Fig.17 shows 3 example grasp candidates in
their own local coordinate system.

Fig. 16 The construction of local coordinate system, the purple lines represent
the grasp candidates and work as the X axis of the local coordinate system. The
middle vertical lines (blue lines) work as the Z axis.

Fig. 17 Three grasp candidates and their coordinate system

F. Force balance computation and manipulability analysis
Force balance analysis is carried out on every grasp

candidate to evaluate the stability of the grasp candidate. Fig.
18 is one grasp candidate from the 16 grasp candidates shown
in Fig.15 (a). This grasp candidate will be used to explain the
way of doing force balance analysis.

Fig. 18 One example grasp candidate

At first, the point cloud of the grasp candidate is projected
to the XOY plane (made of the red and green lines in Fig.18).
The projected point cloud can be seen as the green points in
Fig.19 (a). Then the concave hull (the blue points in Fig. 19(a))
of the projected point cloud is abstracted. The two grasp sides
are extracted shown as the red points and the green points in
the Fig.19 (b). After we get the points of the two grasp sides, a
straight line fitting method is employed to do line fitting for the
two grasp sides. If a straight line is defined as y kx b= + ,
equation (4) can be used to work out k and b . The purple line
on the left in Fig.19 (b) stands for the fitting line for the red
points. Correspondingly, the red line on the right in Fig.19 (b)
represents the fitting line for the green points. The angle (β)
between the purple line and the red line is used to evaluate the
grasping stability of this grasp candidate. Fig.20 shows the
result of force balance computation of the 16 grasp candidates.

 (a) (b)

Fig. 19 (a) shows the projected point cloud (green points) of the grasp
candidate, the blue points mean the concave hull of the projected point cloud.
(b) is force balance analysis of the two grasp sides by using line fitting.

1 1 1

2

1 1 1

1 1

1

1

1 1

n n n

i i i i
i i i

n n n

i i i
i i i

n n

i i
i i

x y x y
nk

x x x
n

b y k x
n n

= = =

= = =

= =


−

 =
 −



= −


∑ ∑ ∑

∑ ∑ ∑

∑ ∑

 (4)

Fig. 20 The result of force balance computation of the 16 grasp candidates
shown in Fig.15 (a)

As can be seen from Fig.20, both grasp candidate 1 and 7
have good force performance. Because all grasp candidates are
generated on concavity of the target object. That means when
the robot tries to execute the grasp action, the robot may collide
with the object. Therefore, it is necessary to analyze the
manipulability of every grasp candidate which has good force
balance. Fig.21 shows the grasp 1 and grasp 7. When the robot
executes the grasp, it will approach the object along the red
arrow. If the length of the end-effector of the robot is longer
than L shown in Fig.21, the robot should not grasp in this
configuration. The width of the end-effector should also take
into consideration. If the two red lines in Fig.21 means the
width of the end-effector, the collision between the red lines

should be considered. If the collision is OK with robot, then the
robot will choose the grasp with best force balance. Here, grasp
7 is chosen as the best grasp for this concavity. After finishing
the grasping analysis of the example concavity shown in
dashed circle in Fig.4 (c), the algorithm will repeat the above
concavity analysis on other four concavities shown in Fig.4 (c).
A best grasp is returned for every concavity; then, the best
grasp from every concavity is compared with each other in the
aspects of force balance and manipulability, and then the best
one is chosen as the final grasp execution.

 (a) (b)
Fig. 21 The comparison of two grasps with good force balance.

III. SIMULATION
In order to verify our grasping algorithm, several objects in

different geometry shapes are chosen to do simulations. All the
tested objects can be seen in the first column in Fig.22. The
second and third column shows the results of concavity
computation and concavity extraction. The fourth column is the
results of force balance computation of grasp candidates on one
concavity of the object. The best grasps for the objects of the
first column is shown in the fifth column. Fig.23 shows the
execution of the best grasp returned from the algorithm. The
returned best grasp for each object has good force balance and
manipulability. The concavity computation for these objects
can be finished within ten seconds. Concavity analysis, grasp
candidate generation and force balance analysis can be
completed within 2 seconds. Therefore, the whole grasping
computation from computing the concavity to obtaining the
best grasp is within 12 seconds, which is much faster than [16].
[16] uses OpenGRASP and downsampling of the grasp
candidates, but the time for an common object still needs about
one minute. In summary, the simulations demonstrated our
improvement over other grasping algorithms which also use
full 3D model.

IV. CONCLUSION
In this paper, a novel grasping algorithm for unknown

objects is presented. Concavity is first introduced to unknown
object grasping in this paper. Oriented bounding box is used to
construct the coordinate system for every concavity followed
by grasp candidate generation on every concavity. Force
balance analysis and manipulability analysis are employed to
evaluate every grasp candidate and the grasp with best force
balance and manipulability is returned as the final grasp. In
order to verify the effectiveness of our algorithm, several
objects commonly used by other grasping algorithms with
different geometric shapes are used to do simulations and
successful results are obtained. Our algorithm can quickly
finish the whole grasping computation from calculating
concavity to obtaining the best grasp within 12 seconds, which
is much faster than [16]. [16] uses OpenGRASP and
downsampling of the grasp candidates, however, the time for

an common object grasping needs about one minute. In
summary, our algorithm shows improvement over other
grasping algorithms which also use full 3D model. Our
algorithm has a much better performance in time efficiency and
grasping stability.

ACKNOWLEDGMENT

The work leading to these results has received funding from
the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n° 609206.

Fig. 23 Execution of the best grasp returned from the algorithm.

Fig.22 simulation results

REFERENCE
[1] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven

graspsynthesis—a survey,” IEEE Transactions on Robotics, VOL. 30,
NO. 2, pp. 289–309, 2014.

[2] Hao Dang and Peter K. Allen, “Semantic Grasping: Planning Robotic
rasps Functionally Suitable for An Object Manipulation Task,” in IROS,
pp. 1311-1317, 2012.

[3] Goldfeder C, Ciocarlie M, Peretzman J, Dang H, Allen PK, “Data-driven
grasping with partial sensor data,” in IROS, pp. 1278–1283, 2009.

[4] Collet A, Berenson D, Srinivasa SS, Ferguson D, “Object recognition
and full pose registration from a single image for robotic manipulation,”
in ICRA, pp. 3534–3541, 2009.

[5] Zhaojia Liu, Lounell B. Gueta, and Jun Ota, “Feature Extraction from
Partial Shape Information for Fast Grasping of Unknown Objects,” in
ROBIO, pp. 1332–1337, 2011.

[6] I. Gori, U. Pattacini, V. Tikhanoff, and G. Metta, “Three-finger precision
grasp on incomplete 3D point clouds,” in ICRA, pp. 5366–5373, 2014.

[7] Hubner K, Kragic D, “Selection of robot pre-grasps using box-based
shape approximation,” in IROS, pp. 1765–1770, 2008.

[8] Bone GM, Lambert A, Edwards M, “Automated modeling and robotic
grasping of unknown three dimensional objects,” in ICRA, pp. 292–298,
2008.

[9] E. Lopez-Damian, D. Sidobre, and R. Alami, “A grasp planner based on
inertial properties,” in ICRA, pp. 754–759, 2005.

[10] H.-K. Lee, M.-H. Kim, and S.-R. Lee, “3D optimal determination of
grasping points with whole geometrical modeling for unknown objects,”
Sensors and Actuators, vol. 107, pp. 146–151, 2003.

[11] K. Yamazaki, M. Tomono, and T. Tsubouchi, “Picking up an Unknown
Object through Autonomous Modeling and Grasp Planning by a Mobile
Manipulator,” Field and Service Robotics, Springer Tracts in Advanced
Robotics, vol. 42, pp. 563–571, 2008.

[12] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
grasp planning using shape primitives,” in ICRA, pp. 1824–1829, 2003.

[13] Andrew Miller and Peter K. Allen, “Graspit!: A Versatile Simulator for
Robotic Grasping,” IEEE Robotics and Automation Magazine, vol. 11,
no. 4, pp.110–122, 2004.

[14] B. Le´on, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A.
Morales,T. Asfour, S. Moisio, J. Bohg, J. Kuffner, and R. Dillmann,
“OpenGRASP: A toolkit for robot grasping simulation,” in SIMPAR
’10:Proceedings of the 2st International Conference on Simulation,
Modeling, and Programming for Autonomous Robots, pp. 109–120,
2010.

[15] R. Diankov and J. Kuffner, “Openrave: A planning architecture
forautonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech.
Rep.CMU-RI-TR-08-34, 2008.

[16] J. Bohg, M. Johnson-Roberson, B. Leon, J. Felip, X. Gratal, N.
Bergstrom, D. Kragic, and A. Morales, “Mind the gap–robotic grasping
under incomplete observation,” in ICRA, pp. 686–693, 2011.

[17] M. Richtsfeld and M. Vincze, “Grasping of Unknown Objects from a
Table Top,” in ECCV Workshop on ’Vision in Action: Efficientstrategies
for cognitive agents in complex environments’, Marseille,France, 2008.

[18] Qujiang Lei, Martijn Wisse, “Fast grasping of unknown objects using
force balance optimization”, in IROS, 2014, pp. 2454–2460.

[19] Qujiang Lei, Martijn Wisse, “Unknown object grasping using force
balance exploration on a partial point cloud”, in AIM, 2015, pp. 7–14.

[20] B. Calli, M. Wisse, and P. Jonker, “Grasping of unknown objects
viacurvature maximization using active vision,” in IROS, pp. 995–1001,
2011.

[21] J. ming Lien and N. M. Amato, “Approximate convex decomposition of
polygons,” in SoCG, pp. 17–26, 2004.

[22] H. Zimmer, M. Campen, L. Kobbelt, “Efficient computation of shortest
path-concavity for 3D meshes,” in CVPR, pp. 2155–2162, 2013.

