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Abstract— Reducing the grasp candidates for unknown object 
grasping while maintaining grasp stability is the goal of this 
paper. In this paper, we propose an efficient and straight forward 
unknown object grasping method by using concavities of the 
unknown objects to significantly reduce the grasp candidates. 
Shortest path concavity is first employed to work out the 
concavity value for every vertex of the unknown objects followed 
by concavity extraction to obtain the most salient concave areas. 
Grasp candidates are then generated on the most salient concave 
areas and evaluated by using force balance computation. Grasp 
candidates are ranked according to the result of force balance 
computation and the manipulability of every grasp candidate. 
The grasp with the best force balance and manipulability is 
chosen as the final grasp. In order to verify the effectiveness of 
our algorithm, some unknown objects commonly used by other 
papers about unknown object grasping are used to do simulations 
and favorable performance is obtained. 

Keywords-unknown object grasping; concavity; oriented 
bounding box;  robot 

I. INTRODUCTION

Grasping of unknown objects with neither appearance data 
nor object models given in advance is very important for robots 
that work in an unfamiliar environment. Vast research has been 
conducted on the problem of unknown object grasping and 
many achievements have been obtained in the previous years. 
However, unknown object grasping is still a challenging task 
that has not yet been solved in a general manner.  

[1] gives a profound survey about unknown object grasping.
The existing unknown object grasping algorithms can be 
divided into two main categories, that is, using partial model 
and using full model.  

In order to accelerate the grasping process of unknown 
objects, partial information of an object may be used to realize 
the grasping. [2] uses partial object geometry to achieve a 
semantic grasp. This algorithm needs predefined example 
grasps and cannot deal with the grasping task of symmetric 
objects since multiple views of a symmetric object could have 
the same depth images. [3] proposes a data-driven grasp 
planner that requires partial sensor data. Matching and 
alignment methods were used for grasping after obtaining the 
Columbia Grasp Database. [4] uses local descriptors from 
several images to construct the 3D model of an object. Object 
registration was conducted by using a set of training images. [5] 
installs a 2D range sensor on the robot at an inclined angle to 
acquire partial shape information of the unknown objects. Two 
straight lines are extracted directly from this partial shape 

information as the two grasp sides for a parallel jaw gripper. [6] 
uses binocular vision to recover the partial 3D structure of 
unknown objects. Then process the incomplete 3D point clouds 
searching for good grasp candidate for a three finger robot hand 
according to a function that accounts for both the feasibility 
and the stability.  

The second method is building a full 3D model using many 
images or point clouds of the target object. In [7], the full 3D 
model is fit and split into many minimum volume bounding 
boxes and a grasp is found on these bounding boxes. In [8], 
two flat, parallel surfaces are found on the 3D model to realize 
the grasping task with a gripper. In [9], the center of mass and 
axes of inertia of the target object are calculated from the 3D 
model, and then a grasp on the center or along the axes is found. 
[10] uses a genetic algorithm to search for grasping points on a
3D model of the target object. [11] uses a cost function to
analyze the 3D model to obtain grasping points. In [12], the 3D
model is simplified into some shape primitives (boxes or
cylinders). Then grasping points which are assigned offline to
these shape primitives are selected for the corresponding shape.

The best way to find a good grasp is said to use full 3D 
model to do grasp candidate simulation [13]. GraspIt which 
was first introduced in [13] established a benchmark for the 
object grasping community. However, there is a big problem 
we must face if we want to use GraspIt on unknown object 
grasping, that is how to deal with large number of grasp 
candidates promptly. After GraspIt, OpenGRASP [14] is 
invented on the base of the OpenRAVE [15], which made a 
progress comparing with GraspIt. OpenGRASP uses the 
normal of the object as the approaching vector of the robot 
hand, which can greatly reduce the number of grasp candidates. 
However, [16] states that depending on the choice of the 
parameters, the time of using OpenGRASP to simulate all the 
corresponding grasp candidates for a common object can vary 
from a few minutes to more than an hour. And then [16] uses 
[17] to do sampling to further reduce the grasp candidates.
However, it still needs about one minute to find a good grasp
for the unknown object, which is pretty time consuming. That
is why the above 3D model based grasping algorithms try to
use shape primitive or boxes to simplify the unknown objects.

The reason that using partial information for unknown 
object grasping is becoming popular is that it requires less data 
comparing with using full 3D model. In another word, using 
partial model can be quicker than using full 3D model. 
However using full 3D model can achieve a better stable grasp, 
especially when GraspIt or OpenGRASP is used even though it 
is time consuming. Can we combine the merits of these two 
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methods together? What if we have a 3D model first and then 
we just use part of the 3D model to synthesize a stable grasp.  

In our previous works [18, 19], we employed the principal 
axis of the unknown object to accelerate the grasp searching 
process and good results are obtained. In this paper, inspired by 
using curvature on unknown object grasping in [20] and using 
downsampling to reduce the number of grasp candidates in [16], 
we propose to use concavity of the unknown object to reduce 
grasp candidates to accelerate the generation of grasp 
candidates for the unknown objects. The concavity we said is 
different from the 2D curvature used in [20]. There is a 
significant difference between 2D curvature and 3D curvature 
regarding geometry properties. As can be seen from Fig.1 (a), 
the two blue points mean the maximum curvatures of the green 
silhouette of the spray bottle. Apparently, 2D curvature has a 
good performance to help searching a good grasp for robots. 
However, the situation for 3D curvature is different. As can be 
seen from Fig.1 (b), the blue in the red circles stands for the 
Gaussian curvature (3D curvature), which actually cannot give 
much clue for robot grasping. Fortunately, [21] and [22] give 
us inspiration about using concavity on unknown object 
grasping. Fig.1 (c) shows an example of the concavity that we 
mentioned. Specifically, the red area of the bunny represents 
the most concave area. Obviously, the concavities of the 
unknown object have a higher possibility to form a more stable 
force closure grasp. Our motivation is to generate grasp 
candidates on concavities and choose the best grasp by 
evaluating every grasp candidate. 

                 
             (a)                       (b)                (c) 

Fig. 1 Curvature versus concavity: (a) 2D curvature (the two blue points stands 
for the maximum curvature of the silhouette of the spray bottle ), (b) 3D 
curvature (the blue in the red circles mean the Gaussian curvature of the bunny), 
(c) an example of concavity (the red represents the most salient concavity). 

The overview of our grasping algorithm is as follows. First, 
the 3D model (point cloud or meshed model) is input and the 
concavity of the unknown object is worked out as Fig.2 shows. 
Then the most salient concavities are extracted according to the 
concavity intensity. After that, grasp candidates are generated 
followed by the evaluation of every grasp candidate. Finally, 
the grasp with best force balance and manipulability will be 
chosen as the final grasp to execute.   

This paper is organized as follows. Section II contains a 
detailed explanation of our algorithm, Sections III shows the 
simulation results, and section IV is the conclusion of this 
paper. 

II. DETAILED ALGORITHM 

A. Concavity calculation 
Concavity calculation is carried out directly on the meshed 

model of the target object. The meshed model can be obtained 
by fast triangulating the full point cloud of the target object. 
Take the bear as example, Fig.3 (a) is its full point cloud and 
Fig.3 (b) is its meshed model. Then a proper outer convex hull 
is computed (shown as the Fig.3 (c)). The free space between 
the meshed model and the proper outer convex hull is used to 
compute the concavity. First, the stable Constrained Delaunay 
Tetrahedralization is used to discretize the free space. The 
corresponding discretized space is shown as Fig.3 (d). Then 
Fast Marching Method is employed to compute the shortest 
path distance by using the discretized free space. The shortest 
path distance between the meshed model and the convex hull is 
returned as the concavity value of every vertex of the meshed 
model. Fig.3 (e) shows the concavity computation result, as can 
be seen, the original concavity value is in disorder. In order to 
have a better view of the concavity computation result, the 
concavity value is rendered by color according to its intensity 
from the maximum concavity value to the minimum concavity 
value (the red means the maximum concavity and the blue 
means the minimum concavity). Fig.3 (f) shows the result of 
the rendered concavity.  

            
       (a)              (b)            (c) 

                    
        (d)                (e)                                 (f) 
Fig. 3 The process to compute the concavity for a bear, (a) The point cloud of 
the bear, (b) the meshed model of the bear, (c) the convex hull of the bear, (d) 
discretization of the free space between the bear and the convex hull, (e) the 
original concavity computation result for every point in (a), (f) the result of the 
rendered concavity.  

 
(a) 
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(f) 

Fig. 2 An over view of our algorithm: (a) the input model, (b) concavity 
computation, (c) the most salient concavities are extracted (the red stands 
for the most salient concavities), (d) concavity analysis, (e) the returned 
best grasp, (f) the execution of the best grasp.  

 

 



                                                                                        
 

B. Concavity extraction 
As can be seen from Fig.3 (f), the red stands for the most 

concave areas and the blue represents the least concave areas. 
In order to make it convenient to do further analysis on the 
point cloud with the concavity value of every point, the most 
concave areas are extracted. The red in Fig.4 (a) means the 
most concave areas. It is extracted out from the whole point 
cloud to be shown as the Fig.4 (b). After that, the Euclidean 
cluster extraction is employed to separate the concavity with 
each other (shown as the Fig.4 (c)). Further grasping analysis 
will carried out on the separated concavity point clouds. 
Specifically, the separated point clouds of the concavity will be 
used to generate grasp candidates. 

                
    (a)                                      (b)                     (c) 

Fig. 4 The extraction and separation of the bear concavity. (a) and (b) 
demonstrate the extraction of the most salient concavities  (the red areas), (c) 
the most salient concavities are separated into every single concavity.  

C. Construct the concavity coordinate system 
The concavity in the red dashed circle in Fig.4 (c)) is used 

to explain our following algorithm. After we get the point 
cloud of the every single concavity, we can use the principle of 
OpenGRASP. The grasp candidates can be generated by using 
the normal of the point cloud. But one important fact we must 
notice is that there are still a lot of grasp candidates even 
though we downsampled the normal of the point cloud. The 
reason is that the normal can only decide the approaching 
direction of the robot hand. The robot hand can rotate around 
the normal, which means a lot of grasp candidates can be 
generated. In order to effectively decrease the number of grasp 
candidates. We propose to use oriented bounding box to reduce 
the grasp searching, which will be explained later.  

Let’s first look at what the oriented bounding box is and 
how to get the oriented bounding box. There are two common 
ways to obtain a bounding box, that is the axis-aligned 
bounding box (AABB) and the oriented bounding box (OBB). 
The axis-aligned bounding box for a given point set is its 
bounding box subject to the constraint that the edges of the box 
are parallel to the Cartesian coordinate axes. It is simply the 
Cartesian product of N intervals each of which is defined by 
the minimal and maximal value of the corresponding 
coordinate for the points. The oriented bounding box is the 
bounding box calculated subject to no constraints as to the 
orientation of the result. By using the eccentricity and moment 
of inertia, a position vector and a rotation transform matrix can 
be obtained. And then, each vertex of the given AABB must be 
rotated with the given rotation transform matrix and then 
positioned to get the OBB. Therefore, the OBB is much more 
generous and better suitable for concavities analysis. The green 
and red rectangular parallelepiped frames in Fig.5 respectively 
demonstrate the axis-aligned bounding box and the oriented 

bounding box. The blue, green and red straight lines in Fig.5 (b) 
respectively stand for the X, Y and Z axis of the concavity 
coordinate system. 

After the oriented bounding box is obtained, the algorithm 
will analyze which two parallel planes of the rectangular 
parallelepiped frames have the higher possibility to be grasped 
by robot hand without collision with the object. For the 
concavity shown in Fig.5 (a), an oriented bounding box is 
obtained as Fig.5 (b) shows. The oriented bounding box can be 
divided into three pairs of parallel planes. The pair of the front 
and the back planes has the less possibility to collide with the 
bear. Therefore, the following grasp analysis will be carried out 
in XOY plan of the concavity coordinate system. 

         
     (a)                                                   (b) 

Fig. 5 The oriented bounding box and its corresponding Cartesian coordinate 
system. The blue and the red rectangular parallelepiped frames respectively 
stand for the axis-aligned bounding box and the oriented bounding box. 

D. Analyze concavity and generate grasp candidates 
In the above section, the oriented bounding box and its 

corresponding Cartesian coordinate system have been obtained. 
Actually, the three axis of the Cartesian coordinate system 
respectively sand for the major eigenvector, the middle 
eigenvector and the minor eigenvector. According to the 
analysis in section C, the major and middle vector will be used 
to generate the grasp candidates. First, the point cloud of the 
concavity is projected to the XOY plane of the OBB coordinate 
system (shown as the Fig. 6). 

     
                  (a)                                                           (b) 

Fig. 6 The point cloud of concavity in the OBB coordinate system and the 
projected point cloud, (a) the point cloud of the concavity in the OBB 
coordinate system, (b) the projected point cloud of the concavity.  

After that, we need to extract the concavity outer layer on 
the projected point cloud. The outer layer boundary (shown as 
the purple points in Fig.6 (b)) of the projected point cloud will 
be used to configure the grasp candidates. We first obtain the 
concave hull of the projected point cloud (shown as the Fig.7). 
The concave hull can be divided into two parts, one part is 
inside the object, and the other part is on the boundary. 
Usually, the point density is employed to judge whether a two 
dimensional point is on the boundary or not, therefore, an 
enlarged point cloud is extracted by adding more less concave 
areas (shown as the Fig.8 (a)). Then the enlarged point cloud is 
downsampled shown as the red points in the Fig. 8 (b). 



                                                                                        
 

 
Fig. 7 Concave hull of the projected point cloud of the concavity. 

 
                      (a)                                         (b) 

Fig. 8 An enlarged point cloud and its projected point cloud, (a) the blue points 
mean the concavity point cloud shown in Fig. 6 (a), the red points mean the 
enlarged point cloud by add more less concavity area, (b) the enlarged point 
cloud is projected and downsampled shown as the red points. 

Originally, we tried to compare the point density of every 
point (the blue points in Fig. 9) on the concave hull of the 
concavity point cloud. By introducing a circle with the radius 
of R (the green and the black circle in Fig. 9), we can get the 
number of the points within the circle. Apparently, the point on 
the boundary will have a low point density. However, all the 
blue points are pretty close to the boundary and the 
downsampled enlarged point cloud is sparse, comparing the 
density of every point on the concave hull of the projected 
concavity point cloud is not robust, especially for the blue 
points in the green rectangular.    

 
Fig. 9 Extract the boundary points by compare the point density of every blue 
point. 

Considering the instability of comparing point density, we 
come up with a method to extract boundary point more stably. 
Specifically, two concave hulls of the concavity point cloud 
and the enlarged point cloud are used. By observing the two 
concave hulls shown in Fig.10 (a), it is pretty obvious that the 
boundary points on the concave hull of the concavity point 
cloud are almost the same or pretty near to the points on the 
concave hull of the enlarged point cloud. Therefore, the 
distance between every blue point and the green line (shown as 
the Fig.10 (b)) is used to judge whether a point is on the 
boundary or not. One important fact we can use is that points 
on concave hull is generated in sequential order, as can be seen, 
the blue point on the upper red line of Fig.10 (b) is in order as 
n-1, n and n+1. A vector can be used to store all the straight 
lines between the two adjacent red points of the concave hull of 
the enlarged point cloud. For every blue point, A vertical 
straight line to the straight lines constructed by the two adjacent 
red points can be obtained. If the intersection point between the 
vertical line and the straight line is lying between the two red 

points, then that intersection point is recorded. The orange 
point in Fig.10 (b) is an example of the intersection point and it 
satisfies the equation (1). A distance threshold ( thresholdd ) is 
given by the system to decide whether the blue point (point n) 
is on the boundary or not, if the distance thresholdd d< , the point 
is considered as the boundary point. Using above method to go 
through all blue points can get the boundary point cloud shown 
as the orange points in Fig.11.  

      
                    (a)                                            (b) 

Fig. 10 (a) is the two concave hulls of the projected concavity point cloud and 
the enlarged point cloud, (b) is the enlarged image of the points in the purple 
rectangular in (a). 

int_orange 1

1 int_orange

m po m

m po m

x x x
y y y

−

−

< <
 < <

                    (1) 

 
Fig. 11 Orange points mean the boundary points of the concavity point cloud. 

E. generate grasp candidates 
After we get the boundary point cloud, the points are not in 

order. The first thing to do is to make all the boundary points 
into order. We first find the point with minx  and store it into a 
vector ( _ _boundary in orderV ). Then sequentially find the closest point 
and add it into the vector. Fig.12 shows an example of the 
boundary points, which are in sequential order as 0,1,2,3,4,5, 
till 8.  

After the boundary point cloud in order is obtained, the next 
to do is to calculate a series step points. Step points are used to 
configure the grasp candidates. It means the robot will search 
along the boundary with a step. Searching process of the step 
points will start from the point 0 ( _ _boundary in orderV [0]). And then 
search along the boundary to find any two adjacent points, 
which can construct a straight line and have intersection point 
with a circle with a radius equal the searching step. If the step 
is give as r and the two adjacent points are point n   and point 

1n + , the distance between the point 0 and point n  is defined 
as 0 _ nd  and the distance between the point 0 and point 1n + is 
defined as 0 _ 1nd + . 

If the distance between the start point and the two adjacent 
points satisfies anyone of the equation (2), there must be an 
intersection point between the boundary and the step circle. 
Fig.12 shows an example of searching the step points. The 
purple curve stands for the searching circle with the radius 



                                                                                        
 

equaling the searching step. The purple curve has an 
intersection point with the straight line between point 4 and 
point 5. Giving the coordinate value of point 0 , point n , point 

1n +  and the step length (r), using equation (3) can get the 
coordinate value of the intersection point P (shown as the red 
point in Fig.12 (b)). After we get the first step point, all the 
points from the point 0 to point n will be removed from the 
current boundary point cloud to form a new point cloud. The 
new point cloud is shown as the Fig.13 (b). Then, the maxd  is 
checked to see whether it is bigger than the robot hand width. If 
yes, then the algorithm will repeat the way of finding the first 
step point to find the second step point. The above steps are 
repeated until maxd  is smaller than the robot hand width (shown 
as the Fig.13 (a)).  
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                   (a)                                     (b) 

Fig. 12 The step point searching 

  
                (a)                                                             (b) 

Fig. 13 The way to find all the step points, if a step point is found, the points 
out of the searching circle will form a new point cloud as (b).  

Fig.14 shows the step searching result with different step 
length. The blue points stands for the boundary point cloud of 
the concavity. The red points represent all the step points. 
Fig.14 (a) and (b) respectively show the result of step searching 
with a small and a big step length. 

 
                   (a)                                        (b) 

Fig. 14 The step points obtained by using different steps length. The blue points 
are the boundary points of the concavity. Every green line stands for a step. 
Every red point represents a step point. (a) shows the result of step searching 
with a small step. (b) demonstrates the result of step searching with a big step. 

After all the step points are obtained, the way to work out 
the step point can be used to work out the hand configuration. 
In Fig.12, if point 0 is a step point and the length of the brown 
line equals the robot hand width, using method shown in Fig.12 
(b) can work out the intersection point Q. A grasp candidate 
can be configured between point 0 and point Q (in Fig.12 (a)). 
The purple lines in Fig.15 stand for all the grasp candidates. 
Fig.15 (a) and (b) respectively show all the grasp candidates 
corresponding to Fig.14 (a) and (b). 

 
                      (a)                                         (b) 

Fig. 15 The grasp candidates obtained by using a small step and a big step. The 
purple lines stand for the grasp candidates. Blue points, green lines and red 
points are the same as Fig.14. 

After all the grasp candidates are obtained, middle vertical 
lines to every grasp candidate are work out shown as blue lines 
in the Fig.16. On every grasp candidate, a local Cartesian 
coordinate system is established by using purple lines as the X 
axis and the blue lines as the Z axis. Using cross product of the 
Z axis and the X axis can get the Y axis. Then point cloud for 
every grasp candidate is extracted and transformed to the local 
coordinate system. Fig.17 shows 3 example grasp candidates in 
their own local coordinate system. 

 
Fig. 16 The construction of local coordinate system, the purple lines represent 
the grasp candidates and work as the X axis of the local coordinate system. The 
middle vertical lines (blue lines) work as the Z axis. 

                
Fig. 17 Three grasp candidates and their coordinate system 

F. Force balance computation and manipulability analysis 
Force balance analysis is carried out on every grasp 

candidate to evaluate the stability of the grasp candidate. Fig. 
18 is one grasp candidate from the 16 grasp candidates shown 
in Fig.15 (a). This grasp candidate will be used to explain the 
way of doing force balance analysis. 

 
Fig. 18 One example grasp candidate 



                                                                                        
 

At first, the point cloud of the grasp candidate is projected 
to the XOY plane (made of the red and green lines in Fig.18). 
The projected point cloud can be seen as the green points in 
Fig.19 (a). Then the concave hull (the blue points in Fig. 19(a)) 
of the projected point cloud is abstracted. The two grasp sides 
are extracted shown as the red points and the green points in 
the Fig.19 (b). After we get the points of the two grasp sides, a 
straight line fitting method is employed to do line fitting for the 
two grasp sides. If a straight line is defined as y kx b= + , 
equation (4) can be used to work out k and b . The purple line 
on the left in Fig.19 (b) stands for the fitting line for the red 
points. Correspondingly, the red line on the right in Fig.19 (b) 
represents the fitting line for the green points. The angle ( β ) 
between the purple line and the red line is used to evaluate the 
grasping stability of this grasp candidate. Fig.20 shows the 
result of force balance computation of the 16 grasp candidates. 

 
               (a)                                                      (b) 

Fig. 19 (a) shows the projected point cloud (green points) of the grasp 
candidate, the blue points mean the concave hull of the projected point cloud. 
(b) is force balance analysis of the two grasp sides by using line fitting. 
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Fig. 20 The result of force balance computation of the 16 grasp candidates 
shown in Fig.15 (a)  

As can be seen from Fig.20, both grasp candidate 1 and 7 
have good force performance. Because all grasp candidates are 
generated on concavity of the target object. That means when 
the robot tries to execute the grasp action, the robot may collide 
with the object. Therefore, it is necessary to analyze the 
manipulability of every grasp candidate which has good force 
balance. Fig.21 shows the grasp 1 and grasp 7. When the robot 
executes the grasp, it will approach the object along the red 
arrow. If the length of the end-effector of the robot is longer 
than L shown in Fig.21, the robot should not grasp in this 
configuration. The width of the end-effector should also take 
into consideration. If the two red lines in Fig.21 means the 
width of the end-effector, the collision between the red lines 

should be considered. If the collision is OK with robot, then the 
robot will choose the grasp with best force balance. Here, grasp 
7 is chosen as the best grasp for this concavity. After finishing 
the grasping analysis of the example concavity shown in 
dashed circle in Fig.4 (c), the algorithm will repeat the above 
concavity analysis on other four concavities shown in Fig.4 (c).  
A best grasp is returned for every concavity; then, the best 
grasp from every concavity is compared with each other in the 
aspects of force balance and manipulability, and then the best 
one is chosen as the final grasp execution.  

                
                              (a)                                   (b) 
Fig. 21 The comparison of two grasps with good force balance. 

III. SIMULATION 
In order to verify our grasping algorithm, several objects in 

different geometry shapes are chosen to do simulations.  All the 
tested objects can be seen in the first column in Fig.22. The 
second and third column shows the results of concavity 
computation and concavity extraction. The fourth column is the 
results of force balance computation of grasp candidates on one 
concavity of the object. The best grasps for the objects of the 
first column is shown in the fifth column. Fig.23 shows the 
execution of the best grasp returned from the algorithm. The 
returned best grasp for each object has good force balance and 
manipulability. The concavity computation for these objects 
can be finished within ten seconds. Concavity analysis, grasp 
candidate generation and force balance analysis can be 
completed within 2 seconds. Therefore, the whole grasping 
computation from computing the concavity to obtaining the 
best grasp is within 12 seconds, which is much faster than [16]. 
[16] uses OpenGRASP and downsampling of the grasp 
candidates, but the time for an common object still needs about 
one minute. In summary, the simulations demonstrated our 
improvement over other grasping algorithms which also use 
full 3D model.  

IV. CONCLUSION 
In this paper, a novel grasping algorithm for unknown 

objects is presented. Concavity is first introduced to unknown 
object grasping in this paper. Oriented bounding box is used to 
construct the coordinate system for every concavity followed 
by grasp candidate generation on every concavity. Force 
balance analysis and manipulability analysis are employed to 
evaluate every grasp candidate and the grasp with best force 
balance and manipulability is returned as the final grasp. In 
order to verify the effectiveness of our algorithm, several 
objects commonly used by other grasping algorithms with 
different geometric shapes are used to do simulations and 
successful results are obtained. Our algorithm can quickly 
finish the whole grasping computation from calculating 
concavity to obtaining the best grasp within 12 seconds, which 
is much faster than [16]. [16] uses OpenGRASP and 
downsampling of the grasp candidates, however, the time for 



                                                                                        
 

an common object grasping needs about one minute. In 
summary, our algorithm shows improvement over other 
grasping algorithms which also use full 3D model. Our 
algorithm has a much better performance in time efficiency and 
grasping stability.  
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Fig. 23 Execution of the best grasp returned from the algorithm. 

   
  

    
 

   

 

 

     

   

 

 
Fig.22 simulation results 
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