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Generalized Belief Propagation Algorithms for Decoding of

Surface Codes

Josias Old!2 and Manuel Rispler!:?3

Ynstitute for Quantum Information, RWTH Aachen University, Aachen, Germany

2Institute for Theoretical Nanoelectronics (PGI-2), Forschungszentrum Jiilich, Jiilich, Germany
3QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Belief propagation (BP) is well-known
as a low complexity decoding algorithm
with a strong performance for important
classes of quantum error correcting codes,
e.g. notably for the quantum low-density
parity check (LDPC) code class of ran-
dom expander codes. However, it is also
well-known that the performance of BP
breaks down when facing topological codes
such as the surface code, where naive BP
fails entirely to reach a below-threshold
regime, i.e. the regime where error cor-
rection becomes useful. Previous works
have shown, that this can be remedied by
resorting to post-processing decoders out-
side the framework of BP. In this work,
we present a generalized belief propagation
method with an outer re-initialization loop
that successfully decodes surface codes,
i.e. opposed to naive BP it recovers
the sub-threshold regime known from de-
coders tailored to the surface code and
from statistical-mechanical mappings. We
report a threshold of 17% under indepen-
dent bit-and phase-flip data noise (to be
compared to the ideal threshold of 20.6%)
and a threshold value of 14% under de-
polarizing data noise (compared to the
ideal threshold of 18.9%), which are on par
with thresholds achieved by non-BP post-
processing methods.

1 Introduction

Quantum computing devices suffer from opera-
tional errors and decoherence. Methods to keep
errors in check and advance towards fault-tolerant
Josias Old: j.old@fz-juelich.de

Manuel Rispler: rispler@physik.rwth-aachen.de

quantum computing involve quantum error cor-
recting codes. A code is formally defined as a
k-dimensional subspace of some n-dimensional
Hilbert space. In quantum error correcting codes
called (quantum) stabilizer codes, the error cor-
rection procedure consists of three main elements:
the (non-destructive) measurement of stabilizer
operators, the decoding of this measurement to
obtain a suitable recovery operation, and the ap-
plication of the latter to correct the errors on the
codestate. In order to achieve fault-tolerant quan-
tum computation, all three stages have to be done
in a fast and efficient way to avoid the accumula-
tion of errors.

A class of codes which recently received a lot
of attention are Quantum Low-Density Parity-
Check codes (QLDPC codes) [1]. Given an asymp-
totically constant rate r = %, they are proven to
achieve fault-tolerance with only constant over-
head. That is, the ratio of total number of qubits
used in the fault-tolerant protocol to the number
of qubits in a non-fault tolerant circuit is asymp-
totically constant for increasing code size [2]. An
important quantity for error correction is the
minimum distance. It is the minimum weight (i.e.
the number of qubits involved) of a logical oper-
ation on the codespace. Naturally, a large dis-
tance implies a better protection against errors.
Quantum error correcting codes are called good if
their rate is constant and the minimum distance
scales linearly with increasing code size. The ex-
istence of such codes, however non-qLDPC, has
been proven for a long time [3, 4]. In a recent sem-
inal work, Panteleev and Kalachev showed that
it is actually possible to construct asymptotically
good qLDPC codes [5]. Shortly after that break-
through, several other constructions achieved a
similar scaling behavior |6, 7].

A key ingredient of a fault-tolerant protocol,
which will be the focus of this work, is an efficient
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decoding algorithm. Proofs of fault-tolerance of-
ten consider the classical processing of the error
correction cycle as free. In practice, this is not
the case and decoders should be fast enough to
prevent additional errors from occurring. This
typically results in a trade-off between decoder
accuracy, i.e. how well the decoding algorithm
finds a good, ideally the most likely correction
and decoder computational complexity, i.e. how
fast the algorithm can be executed as a function
of the input size. There are a variety of decoders
that are highly adapted to the quantum code in
use. In this paper, we consider a generalization of
a classical decoding algorithm called belief propa-
gation (BP) or sum-product algorithm. For clas-
sical LDPC codes, it is among the best practi-
cal decoding algorithms: it allows to achieve er-
ror correction close the theoretical upper bound
on the information transfer, the Shannon capac-
ity [8], while remarkably maintaining low algo-
rithmic complexity. In principle, any classical de-
coding algorithm can be used to decode quantum
codes, which stems from the fact that any quan-
tum code can be formulated as a so-called CSS
(Calderbank-Shor-Steane) code, which decouples
into two classical codes that can (in principle) be
decoded independently. However, this has many
pitfalls. The most relevant one for us here is the
observation that belief propagation on the surface
code can completely fail to converge or converge
to decoding decisions that do not remove the er-
ror. This is thought to be the underlying reason
for the observation that the surface code produces
no sub-threshold regime (the regime of error rate,
where the logical error rate can be arbitrarily sup-
pressed by increasing the code size) when decod-
ing with BP [9]. This is in stark contrast to tai-
lored quantum decoders such as minimum weight
matching, under which the surface code is typi-
cally celebrated for its high threshold value [10].
Recently introduced post-processing methods to
BP showed that these can in principle decode var-
ious types of qLDPC codes [11, 12]. We will focus
on a single decoder that achieves the same at a
lower complexity. The Generalized Belief Prop-
agation (GBP) algorithm was previously consid-
ered in the context of decoding quantum bicycle
codes [13].

This paper is structured as follows. First, we
review the basics of stabilizer error correction and
quantum LDPC codes. In Section 2 we show the

relation of GBP to standard BP and adapt it for
the decoding of quantum codes. Section 3 ap-
plies GBP to surface codes and shows numerical
evidence of the emergence of a threshold.

1.1 Stabilizer Codes

Stabilizer codes are defined by an Abelian sub-
group of the Pauli group, § C P, with —1 ¢
S. The (commuting) elements of the group are
the stabilizers or parity checks S € S. The
codespace Q is then defined as the subspace of
the Hilbert space H" that is stabilized by S.
For any codestate [|¢) it therefore holds that
Sly) = )y VS € S. If there are n — k inde-
pendent generators for S, [(S)| = n — k, then the
codespace is k-dimensional and encodes k qubits.

Consider a Pauli error E € P, occurring on
a codestate, |¢)) — FE|¢). Such an error can
be detected by measuring all stabilizer genera-
tors, if any of those anticommute with the er-
ror, SE |¢p) = —ES |¢) for some S € S. The
binary outcome of all stabilizer measurements
is also called the syndrome or syndrome vector
s € GF(2)"* with

0 if [E,S]=0,

1 if {E,S.}=0. W)

se =(E,S;) = {

Here, s. denotes the measurement outcome of sta-
bilizer generator S, for ¢ = 1,...,n, = n — k.
This gives rise to three different scenarios. We
say there occurred a

1. detectable error if s # 0,
2. trivial error if s =0 and E € S,
3. logical error if s=0and E ¢ S.

The last case represents the operators that map
non-trivially between codestates, the logical op-
erators. They can formally be defined using the
centralizer of S in P, Cp(S) = {L : LS =
SL VS € S} , such that the logical operators
are L = Cp(S)\ S. The (minimum) distance of
the stabilizer quantum code then corresponds to
the minimal weight of a logical operator,

= min |L|. 2
d = min |L| (2)
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1.2 Decoding of Stabilizer Codes

The decoding problem refers to the inference of a
suitable correction from the measured syndrome.
Because trivial errors have zero syndrome, they
define an equivalence class for every detectable er-
ror. This feature called degeneracy implies that
corrections only need to be found up to a trivial
error. Due to the linearity of the codes, errors up
to weight ¢ = L%J can be uniquely matched to
a codestate and hence be corrected for. A sim-
ple decoder involves a lookup-table which stores a
suitable correction, for example the lowest-weight
error matching each measured syndrome. Mak-
ing assumptions on the error probabilities can im-
prove this approach.

To that end, we consider Pauli error channels,

E(p) = > p(E)EpE". (3)
EePy

Furthermore, we assume that the qubits are mem-
oryless and suffer from errors independently,

p(E) =[] p(E,). (4)

We can write the probability of errors conditioned
on the observation of a syndrome using Bayes’
rule and the fixed "evidence" p(s) =1 as

p(E|s) = p(E)p(s|E) (5)
= H p(Ey) H 5((E,Sc) =sc).  (6)
q=1 c=1

By 6(i = j) we denote the Kronecker delta d;;. It
assigns zero probability to all error configurations
FE that have a commutation relation inconsistent
with the measurements.

In quantum error correction, the ideal decoder
returns an error guess, which is in the most likely
error class, specified by all errors that are equiv-
alent up to an element of the stabilizer group.
Given a syndrome, this maximum likelihood de-
coding identifies

E* € argmax p(ES|s) = arg max Z p(ES|s).
ES Ses
(7)

Note, however, that directly calculating the
probabilities for an error class (or even just stor-
ing the lookup-table) quickly becomes intractable
since there are 2("%) different syndromes. For

example, storing all syndromes of a code defined
by 42 independent stabilizer generators requires
approximately 550GB of memory.

Possibly more efficient decoding strategies rely
on relaxed constraints such as finding the

e most likely error, i.e. identifying

E* = argmax p(E|s) (8)
EePn

or the
e qubit-wise most likely error, i.e. identifying

E* = {arg maqu(Eq|S)}Zil, (9)
EqeP

where py(Eyls) = >, p(Els) are the single-
qubit marginal probabilities.

Note that these equations are agnostic of the
quantum nature of the underlying problem and
have been studied extensively in various settings
including classical decoding. Finding the most
likely error is already less involved than find-
ing the most likely error class, but is in gen-
eral still NP-complete [14]|. Calculating p(E|s)
directly and even inferring the marginal probabil-
ities pq(Ey|s) still involves an exponential number
of components. However, there exist algorithms
that can - under certain conditions - calculate the
marginals in linear complexity O(n). This comes
at the cost that the qubit-wise most likely error
might globally be inconsistent with the observed
syndrome. Before introducing such an algorithm,
the belief propagation algorithm, we fix the nota-
tion and graphical representations used through-
out this paper.

1.3 Representation of Stabilizer Codes

Algebraic representation The stabilizer
group and most operations used in stabilizer
error correction can be mapped from the Pauli
group to vector spaces over finite fields (or Galois
Fields), denoted by GF(q) with ¢ = {2,4} [15].

In both cases, the Pauli word F is mapped to
a vector e € GF(q) of length (3 —2)n. The group
operation is mapped to element-wise addition on
the finite fields, EE’ — e + €. Commutation of
two Paulis E, E' can be checked using the sym-
plectic product denoted by x,

(E,E") — exée. (10)
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Figure 1: Tanner graph representation of the Steane
code in binary (left) and quaternary (right) representa-
tion. Purple circles correspond to qubits, green squares
to parity checks. In the quaternary representation, blue
edges correspond to X-type checks and red edges to
Z-type checks. Note that since the Steane code is a
CSS-code, the binary Tanner graph splits into two dis-
joint graphs 7 = Tx U 75.

The stabilizer generators are put in a parity
check matric H € GF(2)"F)x2n o H ¢
GF(4)(»=%)*"_such that the measurement of all
stabilizers can be represented by the symplectic
matrix-vector product

Hxe=:s. (11)

The actual implementation in the binary and
quaternary framework can be found in App. B.

Tanner graph representation Stabilizer
codes can be graphically represented as Tanner
graphs, similar to classical codes [16]. These
are bipartite graphs with two vertex sets () and
C' representing the qubits and the stabilizer
measurements/ parity checks respectively. The
edge set E consists of edges e = (g¢,¢) drawn
between vertices ¢ € @ and ¢ € C if qubit ¢ is
involved in the parity-measurement of stabilizer
c. Different types of Paulis can be distinguished
by coloring the edges. With this correspondence,
the parity-check matrix H is the biadjacency
matriz or reduced adjacency matriz of the Tanner

graph 7 = (QUC, E).

Example: The Steane Code The Steane
code [17] is a [[7, 1, 3]]- quantum code with stabi-
lizer generators

(S) = {XoX1 X2 Xy, X1 X0 X35X5, X0 X4 X5XG,
(12)
2070 ZaZa, 21 Za 23 T, ZaZaZs Zs}. (13)

In the algebraic representations, the parity
check matrices are

0111010

HGFZZHX 0 _|oo010111
@~ 0 Hg 0111010
0010111
(14)

and
s110808
Hx

H — — | 0010111 15
R PV R E R

O0wlwww

and Tanner graphs are shown in Fig. 1.

1.4 Low-Density Parity-Check Codes

Low-Density Parity-Check (LDPC) codes are
families of classical codes with a sparse parity-
check matrix. The most successful classi-
cal LDPC codes rely on random or pseudo-
random constructions of the parity-check ma-
trix, most notably Sipser and Spielman’s FEz-
pander Codes [18].
constant rate, a linear distance and efficient de-
coders, which is often referred to as good code [19].
This has led to try and construct quantum ver-
sions of LDPC codes (qLDPC codes) in the hope
of obtaining good quantum codes with a constant
rate and distance linear in the number of qubits.
In addition to having good decoding properties,
it was famously shown by Gottesman that such
codes, if they exist, enable fault-tolerant quantum
computation with only constant overhead [2].

In general, qLDPC codes can be defined sim-
ilarly to classical LDPC codes as codes with a
sparse parity check matrix. This corresponds to
quantum stabilizer codes with stabilizer genera-
tors of low weight that is upper bounded by a
constant. In particular, a (d.,d,;)-qLDPC code
ensemble has parity checks measuring at most d.
qubits and every qubit is involved in at most d,
syndrome measurements. This broad definition
includes a range of well known codes like the sur-
face codes. They are defined on a lattice, there-
fore exhibit a high degree of symmetry and have
only nearest-neighbor interaction [20]. They have
a minimum distance d x y/n but suffer from a
vanishing rate r — 0 as the number of qubits
n — 0o. A more general construction, the hyper-
graph product (HGP) codes, can achieve a con-
stant rate r — 1 — g—;, when based on good (e.g.

Their properties include a

random) classical codes [21].
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Very recently, a construction that builds on
a G-lifted product of expander codes over non-
abelian groups G by Panteleev and Kalachev were
proven to achieve constant rate and linear dis-
tance [5]. Similar constructions like the Quantum
Tanner Codes or codes from balanced product of
lossless expanders achieve the same [6, 7].

The advantageous properties of good qLDPC
codes manifest at large qubit numbers. For near
future applications, a moderate number of qubits
in the order of a few hundred is realistic. It is
therefore reasonable to focus on the less intricate
hypergraph product construction, which we will
briefly recap in the following.

Hypergraph Product Codes The hyper-
graph product construction uses graph based ar-
guments to derive quantum codes from classical
codes. For details refer to [21], in the following
considerations the construction rule for the parity
check matrices shall be sufficient.

Let H; € GF(2)™*™ Hy € GF(2)™2*"2  be
parity check matrices of classical codes C1,Co with
dimension k1 and k2. The Hypergraph Product
(quantum) Code Q@ = HGP(Cy,Cq) with parity
check matrix H is a quantum CSS code with pa-
rameters

[[ning + (n1 — k1)(n2 — k2), k1kz, min(dy, d2)]]
(16)

which has its parity check matrix constructed
from the classical parity check matrices as

_(Hx 0
- () (1)
Hy = (1, ®Hy H{®1n,), (18)
Hz = (Hi©1, 1, @H). (19)

If we choose the base codes to have minimum
distance linear in its length, the HGP construc-
tion gives quantum codes with minimum distance
Q(y/n). The construction trivially preserves spar-
sity and therefore translates a classical LDPC
property to a quantum LDPC property. Some
choices of base codes give well known quantum
codes.

e Taking the classical (cyclic) repetition codes
as base gives the topological (toric) surface
codes [20]. They have vanishing rate and a
distance d o< y/n. The graph based construc-
tion is shown in Fig. 2.

Figure 2:

Graphical representation of the hypergraph
product construction.The Cartesian graph product of the
Tanner graphs of two repetition codes (left) yields the
distance-3 surface code (right) using the rules shown in
the middle and explained in app. C

e Taking the product of two (good) classi-
cal expander codes yields the quantum ex-
pander codes |22]. These codes have constant
rate and a minimum distance d o /n. A
slightly simplified version uses random clas-
sical codes that with, some known probabil-
ity, have specific expansion properties. For
such codes, a well known and widely used
method for decoding is belief propagation.

2 Generalized Belief Propagation

We now introduce Generalized Belief Propagation
due to Yedidia, Freeman and Weiss (YFM) [23].
We then show how a decoder for quantum codes
can be constructed from that.

The Tanner graph introduced in Sec. 1.3 can
also be thought of as an instance of a factor graph
representing a joint probability distribution over
factors f [24],

p) = 5 T felxo) (20)
c=1

In a physical system in thermal equilibrium,
Boltzmann’s Law gives the probability of a state,

1

_BE(x . —BE(x
p(x) Zeﬁ() with Z:Zeﬁ().

xeP
(21)

P is the space of all possible states x and £ the
inverse temperature which we set to 1 in the fol-
lowing. A connection between the two can be
drawn by identifying the probability distributions
and therefore defining an energy F(x) of a state
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x of the factor graph to be
— Z In fo(x.). (22)
c=1

The ultimate goal in quantum decoding is to
maximize the probability distribution of the er-
rors, which can be seen to correspond to finding
the minimum free energy configuration. While
this generally will be computationally unfeasible,
one can construct a tractable variational ansatz.
In the following, we will present GBP appealing
to a general intuition for variational methods and
refer the reader to the appendix A for background
on variational methods and a detailed derivation

of GBP.

2.1 Derivation of the GBP Algorithm

Generalized Belief Propagation relies on region-
based approximations to the free energy. These
are a class of approximations to F'(b), where the
approximate free energy is a function of beliefs
over sets of variables, called regions. From now
on, we will call the factor graph the Tanner graph,
the factors check nodes and variables qubit nodes,
to facilitate the transition to the decoder based
on GBP.

We can define a region r of a Tanner graph as
a set of qubit nodes @, and a set of check nodes
C, such that if a check node c is in C,, then all
neighboring qubit nodes {I'(c)} are in Q,. The
general idea is to define regions of the factor graph
and then approximate the overall free energy with
the sum of the free energies of all the regions,
subject to the conditions ensuring validity which
are shown in the following.

The thermodynamic quantities of a region are
defined as

e region energy

- Z In[fe(xc)] — Z In[p(z4)]
cEC,« qEQr
(23)
e region average energy and region entropy

br) = Zbr(xr)Er(xr) (24)
- Z by (%) In[br (xr)] (25)

e region free energy

Fo(by) = Up(b,) — Se(by).  (26)

When constructing regions, every check and
qubit node should be contained in some region.
Since check and qubit nodes might appear in mul-
tiple regions, it is necessary to introduce counting
numbers ¢, in order to ensure that every check
and qubit is only counted once when summing
over regions. They need to be chosen such that
for a set of regions R of a Tanner graph

ZCT(S(CECT):l\V/C, ZCT(s(qGQT):qu.
reR reR
(27)

The overall, region-based approximate thermody-
namic quantities are then given by

e region-based average energy and region-
based entropy

r({0:}) =Y e Un({br}), (28)

reR

r({0:}) =D & Sr({br}), (29)

reR

e region-based free energy

Fr({br}) = Ur({br}) — Sr({br}).  (30)

Note that not for every choice of regions, a valid
set of counting numbers can be found. To un-
derstand that, consider a valid choice of regions
V = {r;} with the corresponding counting num-
bers {¢;}, such that for qubit ¢, Eq. 27 holds.
Now adding any qubit ¢ to a region 7’ with count-
ing number ¢, and ¢ ¢ r’ results in

d o dlge Q) =1+cp, (31)
reR
which is only true iff ¢,» = 0. Also note that dif-
ferent choices of regions can yield approximations
of different quality [25].

2.1.1 Region graph

Similarly to the Tanner graph, the relations of
different regions can be formalized in a graph
theoretical framework. To that end, YFM in-
troduce the region graph (RG). It is a labeled,
directed graph G = (R, &, L) in which each ver-
tex corresponds to a region r € R. A directed
edge e € & may exist from region r, to r. if
(Q(re)UC(re)) C (Q(rp)UC(1p)), i.e. if the set of
constituents of the child is a subset of the parents
constituents. An example of a valid region graph
for the Steane code is shown in Fig. 3.
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Figure 3: Example of a region graph for one part of the
Steane code (corresponding to the classical Hamming
code). Green and violet numbers represent checks and
qubits respectively, counting numbers of the regions at
top left corner. The "shadow" of the red bordered region
containing qubits 0,1 is shaded in blue, the "blanket"
in orange. See 2.1.2 for the definitions of shadow and
blanket.

2.1.2 Notation

We adopt the notation from [26] (which differs
slightly from YFM [23|) and adapt it to the error
correction setting,

e R: set of all vertices (=regions) of the region
graph,

e &: set of all (directed) edges of the region
graph,

e P(r),C(r),A(r),D(r): set of all parents,
children, ancestors, descendants of region r,

e Q. C,: qubits and checks in region r,
e S(r) = D(r)Ur: "shadow" of the region r,
e B(r) =P (S(r))\ S(r): "blanket" of the re-
gion 7.
2.1.3 Algorithm

We can recover the beliefs as approximations of
the true marginal probabilities by minimizing the
region-based free energy Fr({b,}). To that end,
a Lagrangian is constructed with the constraint
that the beliefs shall be consistent between every
parent and child region, ¢.e.

Vrope R,r Cp = Z b,(xp) = b, (x;),

Xp\Xr
(32)
and a normalization constraint
VreRr, > bu(x,) =1 (33)

Xr

Setting the derivatives of the Lagrangian with re-
spect to the beliefs equal to zero gives implicit
equations for the Lagrange multipliers and the
beliefs, as shown in [27]. They can be solved iter-
atively and for that reason, the Lagrange multi-
pliers (or functions thereof) are often called mes-
sages and the corresponding algorithms are re-
ferred to as message-passing algorithms [19].

In the following we show a more intuitive ap-
proach. For that, assume that a belief of a region
first contains all local factors in that region. Mes-
sages from parent regions p into child regions r
will be of the form my,_,,(x,). In order to catch all
possible dependencies, we consider all messages
that include some variables that are contained in
that region. However, over-counting of factors
should be prevented. This can be achieved by
first considering all messages from parents into r.
Secondly, we take into account all messages from
regions which are not descendants of r but point
into its descendants D(r). This corresponds to
the shadow and blanket of a region, such that an
ansatz for the belief of a region r can be written
as

br(Xr)O( H pq(xq) H fc(Xc) H ma%b(xb)-

qeQr ceCr aeB(r),
beS(r)

(34)

By x. we denote the variables in the support
of check ¢. The message update rules follows
from demanding consistency between parent and
child regions (Eq. 32), giving the Parent-to-Child-
Algorithm. In the following, the upper index ()
denotes the iteration step in order to formalize
the iterative procedure. Note that with a uni-
form initialization of the messages, the beliefs of
parent- and child regions p, r are incompatible at
step ¢ = 0. We therefore update the message from
p to r by that mismatch,

Z b;(j)(xp)
(i+1) ) p\&
= my L (%) = my?, (%) b0 ()
(36)

The overlap of messages in the numerator and
denominator can then be canceled out to reduce
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Figure 4: Belief Propagation decoding procedure.
Shown is the X-Tanner graph of the [[7,1, 3]]-Steane
code. An error on the first qubit violates parity check
1. Messages are indicated as arrows. From left to right:
qubit to check messages based on incoming messages,
check to qubit messages, marginal probabilities or belief
and hard decision.

the number of calculations. In that form, it be-
comes clear that consistent beliefs correspond to
converged messages.

2.2 GBP as a Decoder for Quantum Codes

In order to draw the connection to quantum de-
coding, we identify the variables with the qubits.
The factors, i.e.
qubits correspond to Kronecker delta tensors with
entries according to the measured syndrome out-
comes,

functional relations between

fe(xe) = 0[He *xxc = s (37)

The state of the system x coincides with the
Pauli error £ such that in the binary represen-
tation x = (z1,22,...,%2,,) € GF(2)*" with
zq € {0,1}. In the following, we denote the errors
by x in order to avoid confusion with the energy.

Note that the algorithm introduced above in-
cludes both an implementation separating the X-
and Z- part of a CSS quantum code (GF(2)) and
a combined (GF(4))- implementation. The differ-
ences then lie in the length of the vectors, the set
of messages used to calculate region beliefs and
in the syndrome function. The latter uses im-
plementations of the symplectic product Eq. 53
and Eq. 57 in the GF(2)- and GF(4)- framework
respectively.

At each iteration, the parent-to-child algo-
rithm defined by Eq. 36 gives an estimate of
the marginal probability distribution of region r.
These beliefs can be used to infer a guess of the
error inflicted on the qubits.

2.2.1 How to make a hard decision

The argumentum maximum (argmax) of the be-
lief of a region gives the most probable error on
the region’s qubits. This is often referred to as
making a hard decision. In the end, a hard deci-
sion has to be taken for every qubit individually,
whereas every qubit might be part of multiple re-
gions. Consistency of hard decisions from differ-
ent regions is only guaranteed if all messages are
converged. This is in general not the case while it-
erating and also not guaranteed to happen at all.
We therefore have to find a strategy to combine
the different contributions from the region beliefs
to the overall hard decision. A straightforward
strategy to choose a hard decision is to focus on
the highest level regions Ry : {r € R : ¢, = 1}
and make a hard decision as

£ = U arg max b("(x,.). (38)
r€Ro xr

Naturally if the region-beliefs are not compatible,
the overall error guess will not be consistent with
the observed syndrome. In order to improve upon
that, we find a more promising strategy. When-
ever the error guesses from different regions on
a single qubit are incompatible, we compare the
beliefs of their respective regions and settle for
the one with the largest belief. This corresponds
to decoding as

X0 — (=),
ﬁ((]i) = max argmaxb(?(x,). (39)
xqeb(rl)(xr) Xr
In the following, we first show how standard
Belief Propagation can be recovered from this
more general approach and then show two dif-
ferent strategies to cope with further obstacles.

2.2.2 Bethe approximation

One choice of regions called Bethe approxima-
tion gives an approximation equivalent to the
standard BP algorithm. It was originally in-
troduced as sum-product decoding for (classical)
LDPC codes by Gallager [28]. Later it was inde-
pendently rediscovered by Pearl as a method to
efficiently calculate single variable marginals on
factor trees [29]. Poulin and Chung first applied
BP to the decoding of quantum codes [30]. For an
introduction on the BP algorithm, see for exam-
ple [31, 12]. Here, we show how to get the stan-
dard BP equations from the generalized ansatz.
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For this purpose, construct two types of re-
gions, large and small. The large regions each
contain a single check node and its neighboring
qubit nodes. The small regions comprise single
qubit nodes such that all qubit nodes that have
more than one parent have their own small re-
gion. The counting numbers are ¢, jarge = 1 and

Crsmall = 1 — 3 .co, |[P(q)]- The beliefs of small

regions {/;} and large regions {L;} are given by

bce{Li}(Xc)O(H Pq(24)0[Hexx =5 H Masp(p)
9€Qe a€P[C(c)]\c
beC(c)

[T mesa(q)-

c€P(q)

by i3 (24q) o pe(zq)

Using the consistency constraint Eq. 36 we find
for the message updates

mgﬁ;) (zq) = mc(:iq(ivq)

Z H py (zq)0lo(xg,) = s m((zllb(l‘b)
xc\2q ¢'€Qc aEP[C(c)]\c,bGC(c) (42)
H ma—>q Tq)
aGP(q)
S I pelpldlotxa)=sd T m )
_ xe\zq ¢'€Qc\q o a€P[C(c)]\e,beC(c) (43)
H ma%q(xq)
a€P(q)\c
Z H dlo(x0,) = sc| py (xq) H mﬁf)_)q/(:rq/). (44)
xc\fl'q q ch\q CIEP(q,)\C
::mt(;lcuq)

The definition of the second type of messages
(qubit to check) in the last line recovers the initial
BP equations 60, 61 when identifying Q. = I'(¢)
and P(q) = I'(¢). Note that, instead of follow-
ing rule Eq. 38 or 39, standard BP thresholds the
beliefs of the small regions Eq. 41.

Intuitively, the BP algorithm operates on the
Tanner graph of the code by sending messages
along its edges. Starting on the qubit site, it as-
signs initial probabilities of error (e.g. depend-
ing on the error channel) to the qubit nodes.
This information is sent to the parity check nodes
along the edges. The parity check nodes collect
all incoming messages and send back a message
to all adjacent qubits. In its components, this
message contains the sum over all configurations
compatible with the observed syndrome, exclud-
ing the target qubit. Subsequently, the marginal
probability of the qubits is calculated according
to the incoming messages. If not compatible or
converged, these are sent back excluding the re-
ceiver’s information. This procedure is shown
graphically in Fig. 4.

2.2.3  Numerical results

Using this choice of regions, we obtain the decod-
ing performance for hypergraph product codes
based on random matrices and for topological
surface codes shown in Fig. 5. The random codes
are (7,4)-qLDPC and the surface codes are (4,4)-
qLDPC. We see that the random codes show a
good performance in the sense that increasing the
distance of the code increasingly suppresses fail-
ures. The surface codes however show the oppo-
site behavior. In both cases, the primary cause
for a decoding failure is not a logical error, but
a failure to return an error compatible with the
syndrome or a failure of convergence.

2.2.4  Success and obstacles using BP

The disadvantages and problems involved in clas-
sical BP decoding are extensively covered in the
literature. These mainly concern harmful pat-
terns in the Tanner graphs of the code due to
cycles or trapping sets [32]. Their existence in
classical codes translates to quantum codes when
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Figure 5: GBP with the Bethe approximation (standard
BP), for HGP codes based on random classical codes
(top) and topological surface codes (bottom). While
the random codes show the emergence of a (pseudo-)
threshold, the surface codes show decreasing decoding
performance for increasing distance.

Figure 6: Split belief on a patch of the surface code, de-
coded with BP. Tanner graph representation with qubits
as purple circles, parity-checks as green squares. X-
Paulis are represented by blue and Z-Paulis by red edges.
The initial error is indicated by filled qubits, the violated
checks by filled squares. The error guess of the decoder
by the heptagons. The Z-error on qubits Z1573; vio-
lates parity checks {6,9}. The (degenerate) error pat-
tern Z;Z3q is symmetric to the original one. The stan-
dard BP decoder returns the union of all those qubits
Z7 7304127231 with empty syndrome leading to a decod-
ing failure.

using constructions based on the classical codes,
like the hypergraph product construction. This
also means that classical methods like message
scheduling can be used to alleviate such prob-
lems [9]. The nature of quantum codes them-
selves introduces new obstacles to BP decoding.
Certain syndromes allow for different error con-
figurations, that can be translated to each other
by symmetry transformations in the correspond-
ing Tanner graph.

In a qubit-wise decoding fashion, the BP de-
coder assigns the same probability to each qubit
involved in such configurations. With this split
belief, the decoder thresholds all those qubits
to the same error guess and therefore fails to
converge. Some scheduling methods can break
these symmetries but there is no general method
to avoid them. Using irregular base codes and
graphs of odd degree distribution also reduces the
amount of symmetry, helping the decoder. An
exemplary split belief is shown and explained in
Fig. 6.

Because surface codes are highly symmetri-
cal, lots of such split beliefs occur during decod-
ing, which explains their bad performance. HGP
codes with random base codes however show a
good decoding performance because their local
topology is inherited from the random classical
codes that do not exhibit split beliefs.

There are two main strategies for improving the
performance of BP. The first makes changes to
the algorithm itself, Memory Belief Propagation
for example shows good decoding performance at
the cost of a slightly higher complexity [33]. A
version of GBP was used to improve the decoding
performance in quantum bicycle codes [13].

Other methods use the soft output of the BP
algorithm (i.e. the marginal probabilities) and
use them as input for post-processing methods.
Notably Ordered Statistics Decoding allows to ap-
ply the combined BP+OSD decoder across a wide
range of qLDPC codes, again at the cost of a
higher complexity [11, 12].

3 GBP for the Surface Code

We use the same region graph as used for the
Bethe approximation in Sec. 2.2.2, i.e. with large
and small regions. The reason for that choice is
that for surface codes, this construction method is
equivalent to using the cluster variational method,
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a standard method for constructing valid region
graphs [27]. This choice of regions ensures that
the smallest split beliefs, i.e. those related to two
syndrome excitations, are resolved. The transi-
tion from the Tanner graph to the region graph
is shown for a binary implementation in Fig. 7.

We implement the hard decision based on
Eq. 38. We show how this helps with the pro-
totypical split belief from Fig. 6 in Fig. 9. Using
this hard decision procedure, we might still get a
split belief within a single large region. However
in our simulations, we observe that this is not
the case, i.e. the argmax of the region is unique
towards the end of the iterations.

3.1 Split and Repeat

We observe that while decoding based on the re-
gion beliefs using Eq. 39 improves upon standard
BP, there still exist error guesses incompatible
with the overall syndrome. However, applying
the proposed correction usually reduces the syn-
drome weight. This is similar to one decoding it-
eration in the small-set flip algorithm (SSF), pro-
posed by Leverrier, Tillich and Zémor [22]. In the
SSF-algorithm, a configuration of qubits in the
support of a stabilizer is flipped, if it decreases
the syndrome weight. This works well for quan-
tum codes with a sufficiently expanding Tanner
graph. In surface codes however there are con-
stant weight error patterns, that lead to failure
of the SSF-algorithm. Our hard decision heuristic
after the GBP inference that reduces the residual
syndrome weight suggests that this issue can be
overcome.

We use this insight to formulate a split and re-
peat procedure: After a run of GBP, we save the
current error guess and reinitialize the decoding
procedure with the syndrome of lower weight and
a rescaled error probability. We repeat this until
there is an empty overall syndrome. The over-
all error guess then is the sum of all intermediate
errors. This algorithm is shown in Alg. 1. An
exemplary run for a particularly harmful error
pattern on a distance 9 surface code is shown in
Fig. 8. We also see that the free energy is reduced
during the course of decoding correspondingly.

3.2 Dependence on Initial Probabilities

An additional parameter of the decoding proce-
dure is the initial probability. As mentioned by

Algorithm 1: GBP split repeat decoding
for surface codes.

Input: Parity-Check matrix H, syndrome
S,

a-priori probability pinit, maximum

number of iterations and repetitions

Mmi, Mmr

Output: Error guess é

RG = region graph constructed from H
with Bethe approximation

1=20
€total = 0
S; — S

while i < n,,- do
Dinit = ‘pinit - Wt(étotal)/nqubits‘
¢; = GBP(s;, RG, Dinit> Pmi)
étotal = étotal + éz
if 0(étota1) =: SgBp = s then

| return é = é;y14

else
Si+1 = S; + SGBP
i=1+1
end
end

return Fail

Hagiwara et al., a linear decoder with a fixed ini-
tialization can correct a certain error set, inde-
pendent of the error probability [34]. Kuo and
Lai remark that choosing a fixed initialization can
prevent fluctuations and increase decoding stabil-
ity [33]. In our simulations, we observe that a
fixed initialization error probability can lead to
decoding failure. We therefore consider two fur-
ther adaptions.

On the one hand, when re-initializing after a
split procedure, we rescale the channel error prob-
ability by the weight of the current error guess,
see Alg. 1.

On the other hand, when decoding still fails,
we reinitialize the whole decoder with different
initial probabilities. Assuming a good decoding
performance when pi,jt is close to the channel er-
ror probability, we sample the new initial proba-
bility from a Gaussian with width 0.1 around the
channel error probability.

3.3 Numerical Results

Remarkably, in our simulations we never observe
a decoding failure and the decoder always returns
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drome (top) and thermodynamic quantities (bottom)
during decoding of an error on a distance 9 surface code.
Vertical lines represent the re-initialization after conver-
gence or maximum number of iterations reached. We
see that we can escape the oscillatory behavior by re-
initializing.

an error guess that puts the corrupted word back
to the codespace. The results are shown for in-
dependent X Z- noise and depolarizing noise in
Fig. 10 and 11 for the binary and quaternary im-
plementation respectively. They generally show a
decreasing logical error probability with increas-
ing distance and a crossing indicating a threshold.
The results for the threshold are summarized in
Tab. 1.

Complexity In a naive implementation, di-
rectly adapting Eqgs. 34 and 36, the GBP algo-
rithm requires

e ¢’ multiplications per check region ¢ —<
de
neq™,

e ¢% multiplications per qubit region ¢ —<
ngq®,

Figure 9: Split belief on a patch of the surface code,
decoded with GBP. Tanner graph representation with
qubits as purple circles, parity-checks as green squares.
X-Paulis are represented by blue and Z-Paulis by red
edges. The initial error is indicated by filled qubits, the

violated checks by filled squares. The error guess of
the decoder by the heptagons. The Z-error on qubits
Z19Z3; violates parity checks {6,9}. The (degenerate)
error pattern Z7Zsy is symmetric to the original one in
the sense that they have equal weight. After i = 4
iterations, the GBP decoder returns the correct error,
successfully decoding the split belief.
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Figure 10: GBP for the surface code for independent
X Z-noise (top) and depolarizing noise (bottom) in bi-
nary implementation. The logical error rate decreases
with increasing distance. We estimate thresholds of
Y ~ 17% and pP°" ~ 13.3%.

e ¢%~! summations per marginalization of

check region ¢ =< n.(g%1),

e ¢ multiplications and divisions per message
calculation —< 2d,n,q,

amounting to an overall asymptotic complexity
of (9(nrepetitionsniterationsqdC nc)' By implementing
parallel the calculation of beliefs and messages,
the explicit dependence on the code size can be
omitted, O(nrepetitionsNiterations). 1he amount of
repetitions and iterations needed still depends on
the code size and heuristically scale as shown in
Tab. 2. They amount to an overall scaling of
O(n?) (GF(2)) and O(evV™n?) (GF(4)).

4 Summary and Outlook

We developed a decoder based on Generalized
Belief Propagation using a specific hard decision
method and an outer re-initialization loop. With
these adaptations, the decoder is able to decode
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Figure 11: GBP for the surface code for independent
X Z-noise (top) and depolarizing noise (bottom) in qua-
ternary implementation. The logical error rate decreases
with increasing distance. We estimate thresholds of
Y &~ 17% and piPo" ~ 14%.

the surface code. The logical error probabil-
ity decreases with growing distance below a cer-
tain qubit error probability indicating the emer-
gence of a threshold of about 14% for depolar-
izing noise and 17% for independent bit- and
phase-flip noise. As is typical for practical de-
coders, these values fall short of theoretical up-
per bounds but offer a lower decoding complex-
ity.  When comparing to known decoding algo-
rithms, our decoder shows similar threshold val-
ues compared to BP-OSD. The main ingredient
to the OSD-post processing is matrix inversion,
which scales with the third power in the number
of rows, i.e. O(n?) [12]. Minimum weight perfect
matching achieves a higher threshold but scales
in general as (’)(ng’) [37]. The almost linear time
Union find decoder also achieves a slightly higher
threshold [38].

Future work can include a lower complexity
implementation that is based on log-likelihood-
ratios, which is frequently used in standard BP
algorithms to reduce complexity. This would al-
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Table 1: Thresholds from error sampling on the X Z-
channel and the depolarizing channel for binary and qua-
ternary implementation. The thresholds fall short of
the optimal thresholds obtained by statistical mechanic
methods but are similar to the ones from BP-OSD de-
coding. The optimal threshold for the X Z-channel is
obtained from the single-Pauli threshold p¥ ~ 10.9% as

? =20 — ()%

Ch. ¢ pwm BP-OSD optimal
2 1%  17.6% [12] .
XZ A 17% 20.6% [35]
2 13.3%
depol. 14% 18.9% [36]

Table 2: Scaling of iterations and repetitions of the de-
coder with code distance , heuristically obtained from
simulations.

GF(2) GF(4)
Iterations O(d?) = O(n.) O(d?) = O(n,)
Split rep.  O(d?) = O(n.) O(d?) = O(n,)
Pinit Tep. O(do) =0(1) O(exp(d))
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Figure 12: Average number of inner iterations scales
quadratic with the code distance, shown is a quadratic
fit for distances d > 5. (Left) Binary implementation
in the depolarizing channel. (Right) Quaternary imple-
mentation in the depolarizing channel. The quaternary
implementation needs on average more iterations.
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Figure 13: Average number of split repetitions scales
quadratic with the code distance, shown is a quadratic
fit for distances d > 5. (Left) Binary implementation
in the depolarizing channel. (Right) Quaternary imple-
mentation in the depolarizing channel. The quaternary
implementation needs on average more repetitions.

low the decoder to be tested for more general
quantum LDPC codes, where finding a fast and
general decoder is ongoing research.

Additionally, all simulations were performed
with code capacity noise, i.e. the data qubits
experience noise through the quantum channel
and the syndrome readout is assumed perfect.
A next step on the road towards fault tolerance
is to extend the decoding scheme to more real-
istic noise models, for example including faulty
syndrome measurements. There are recent re-
sults suggesting that belief propagation is also
suitable for syndrome noise when using repeated
measurements and even in a single-shot decoding
scheme (39, 40].

Simulation Methods

The decoder is implemented in a GF(q) formal-
ism with both ¢ = 2 and ¢ = 4 in C++ making
use of libraries libDai [41], the lemon Graph li-
brary [42], xtensor [43], NTL [44] and nlohmann
JSON headers [45]. The code can be found on
github [46].
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A Variational Methods in Statistical

Mechanics

The paradigmatic example of a variational
method in quantum mechanics is the Ritz
method ’. Here, the setting is that we are given
a Hamiltonian and the task is to find its ground-
state. Since this task is in general computation-
ally hard already for the simplest non-trivial prac-
tically relevant Hamiltonians, it is fruitful and in-
structive to develop systematic methods to con-
struct trial wavefunctions that approximate the
ground state wavefunction while retaining com-
putational feasibility. The fundamental insight
here is that the energy expectation value of the
problem Hamiltonian evaluated on any state is
lower bounded by the expectation value of the
true ground state,

<wtrial‘ H |¢trial> > <E0| -FI |EO>, (45)

which essentially only relies on the fact that we
can expand [¢) in the Hamiltonian eigenbasis,
upon which the statement follows immediately.

This paradigm of systematically constructing
trial states can be extended to mixed states and
finite temperature. The role of energy is taken
over by the (Helmholtz) free energy FF = E —
TS = f%logZ, where S is the entropy and
Z = tr exp(fﬁf[> the partition function. With
respect to the free energy, any trial state fulfils
the Bogoliubov inequality

trﬁ’ptrial > trﬁ'pc. (46)

Note that this contains the Rayleigh-Ritz inequal-
ity in the zero temperature limit. It can be proved
by exploiting the Gibbs inequality

tr[Alog A — Alog B] > 0, (47)

which holds for any A, B > 0 provided tr A =
tr B.  Plugging in the canonical ensemble (or

Gibbs state) p. = exp(—ﬁﬁ) /Z for B leads to

—8(pueiat) + Btr Hpgial +1og Z >0, (48)

which can be rearranged into the Bogoliubov in-
equality, stating that the free energy of any trial
density matrix pia) is lower bounded by the free

Icolloquially often known as Rayleigh-Ritz

energy of the canonical ensemble. This permits
the extension of the variational principle to mixed
states, where we now try to approximate the
Gibbs state by a trial density matrix. In the con-
text of the present work, we are dealing “only”
with probability distributions, so let us point out
the rather trivial fact that the above inequality in
particular also holds when H is diagonal and the
density operators are simply multivariate proba-
bility distributions.

A.1 Minimization of the Free Energy

For a variational ansatz, we introduce the trial
probability distribution, the belief b(x). Equiva-
lent to Eq. 48, it holds that the free energy of such
a trial probability distribution is lower bounded
by the free energy of the real distribution, i.e.

F(b):=U(b) — S(b) > Fy (49)
D bx)E(x)+ Y b(x)Inb(x) > —InZ. (50)

xeP xEP

Here, U(b) is the (variational) average energy and
S(b) the (variational) entropy of the trial state.
Plugging in the definition of the energy gives

F(b) = Fg+ Y _ b(x)In == = Fy + D(b||p)

b(x)
xepP p(X)

(51)

with F\(b) > Fpg and equality iff b(x) = p(x).
D(b||p) is the Kullback-Leibler divergence that
gives a measure of how close the trial distribu-
tion b is to the "true" distribution p. Because
D(b||p) > 0 with equality iff b(x) = p(x), a min-
imization procedure of D(b||p) with respect to
b(x) can exactly compute Fy and recover p(x).

Due to the intractability of a brute force ap-
proach, the trial functions are generally restricted
or approximated by some factorized form.

B Representation of Stablizer Codes

Binary representation ¢ = 2 The binary
representation maps Pauli words of length n to
binary vectors of length 2n. We can represent
any Pauli word (up to a phase) by E = X7
where e,,e, € GF(2)". The binary representa-
tion then are the concatenations H = (Hx,Hy)
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and e = (e,, e,) and it holds

X if e, = 1 and €itn = 0,
E, =Y if =1 and e, =1, (52)
Z if e =0 and e;j1, = 1.

The addition in GF(2) corresponds to addition
modulo 2, 1+ 1 = 0. The symplectic product of

to vectors e = (e, e,),€ = (€, €)) is defined via

exe :=ePe =e, e, +e, €,

oo (01,
with P := <1n 0) and

the scalar product, such that

H * e = HPe. (53)

Quaternary representation ¢ = 4 . In
GF(4), addition and multiplication can be de-
fined via its addition and multiplication tables

+10 1 w w X110 1 w w
070 1T w w 010 0 0 0
111 0 w w 110 1 w w
wlw w 0 1 w|0 w w 1
wlw w 1 0 w| |0 w 1 w

(54)

The group operation is naturally represented by
addition, if the Paulis are mapped via

I—-0, X—1, Y—w, Z->w (55

In order to define the symplectic product, two
more definitions are needed, the conjugation and
trace in GF(4),

e Conjugation: GF(4) - GF(4) : o - @ =
a X a,

e Trace: GF(4) —» GF(4) : a — Tr{a} = a +
R

Then

exe :=Tr{e €'} :Tr{Zeq ><ef]} (56)

q

such that

n—k—1
s=Hxe= (Tr{Zchxeq}> . (57)

q c=0

C Hypergraph Product Construction

The Tanner graph of the hypergraph product
(quantum) code 7o is based on the Cartesian
product of the classical Tanner graphs 7¢, and
Te,. The Cartesian product of two graphs 71 =
(N1 = %UCl,El) and 7o = (N2 = Vo U
Cy, E») is the bipartite graph Tixe =: Ty X Ta =
(Nix2, E1x2) with

Nixe = {nina|n € Ni,nz € Na} (58)
FEixo = {(nlng,n'lnéﬂ(nl = n’l AN (ng,né) S EQ)

V (77,2 = n’2 VAN (nl,n/l) € El)}
(59)

In words: the vertex set of the resulting graph
is the Cartesian product of the vertex sets of the
graph factors. There is an edge between vertices
in the resulting graph if any of their partial ver-
tices shared an edge in their graph factor. The
graph constructed from the Cartesian product of
two bipartite graphs is again bipartite. In order
to derive a code, the vertex set of the new graph
is partitioned into Nijxo = Q U (Cx U Cyz) with

e qubits: Q) := {nlng\(m e ViAng € VQ) vV
(n1 €cCiAng € CQ)}

e X-type stabilizers: Cz := {nins|(n1 € C1 A
ng € Va)}

o Z-type stabilizers: Cx := {ninz|(n1 € V1 A
no € 02)}

Chosen like that, the graph corresponds to a Tan-
ner graph of a quantum CSS code. The commuta-
tion condition is fulfilled since whenever n; € V;
is adjacent to n; € C; in Tg,, there are exactly
two vertices (qubits) in @ which are adjacent to
the constructed X-type stabilizer njn; and Z-
type stabilizer n;n’;: nin/; and n;n;. Twofold anti-

gr iy
commutation then gives commutation.

D Belief Propagation Equations

We denote by I'(e) the neighbors of node e and by
o(e) the parity of configuration . For a detailed
description of the steps, see text.

e Qubit to check messages

I m&.,(E) (60)
c'el(g)\c

mé’i’i) o po(Ey)
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e Check to qubit messages

c%q Z 6 - SC] H m((]l’)ﬁc(Eq')

Er(eng ¢ €T(c)\q
(61)
o DBelief
b((]l)( O(po H mc—)q (62)
cGF(q)
e hard decision / error guess
Eé') = arg max b( )(E,) (63)

Ey
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