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SUMMARY

In this dissertation, the charge transport mechanism in the conductive fibres of cable
bacteria is investigated. In Chapter 1, the research field of bacterial electricity is intro-
duced. Three kinds of bacterial nanowires are discussed: Shewenella nanowires, Geobac-
ter nanowires and the conductive fibres from cable bacteria. Even though the three types
of protein wires are all conductive, the cable bacteria’s protein wires stand out because
their activation energy of conductance is much lower than that of the other nanowires
and because they transport electrons over centimeter instead of micrometer distances.
These differences suggest they have a distinct charge transport mechanism. To put dif-
ferent transport mechanisms in more context, metallic conduction, semiconduction,
and hopping conduction are treated side by side and emphasis is placed on the tem-
perature dependence of conductivity.

In Chapter 2, temperature dependent measurements of the conductivity are pre-
sented, that were done in a wide temperature range (4-300 K). To execute these mea-
surements, gold electrode patterns were fabricated on a silicon chip with an insulating
silicon dioxide layer on top. Bacterial cables were placed across the electrodes, such that
for many segments of cable bacteria, the current-voltage curves, could be measured. As
the temperature is decreased, so is the conductance, with an activation energy of 42 meV,
averaged over 53 segments. When lowering the temperature below 75 K, the conductivity
decreases less rapidly than expected from the activation energy. The combination of this
low- and of the high-temperature dependence of conductance fits well with a quantum-
corrected hopping model, in which, upon cooling below 75 K, the energy in vibrational
modes remains higher than classically predicted due to the quantum vibrational energy.
In accordance with this model, the low-temperature conductance follows a power law in
temperature and electric field. The experimental data fits the accompanying, predicted
universal scaling curve, which estimates that the distances between hopping sites ex-
ceed 10 nm.

In Chapter 3, the hopping model proposed in Chapter 2 is treated in more detail, to
be able to estimate whether the 100 S/cm conductivity levels observed in cable bacteria,
are reasonable. Cable bacteria are modelled here as a collection of many parallel one-
dimensional hopping chains, each with a diameter of 2 nm, such that per 26 nm fibre 125
conduction channels fit in, for a total of 7500 conduction channels in 60 parallel fibres.
Taking into account that each hopping site has an energy and occupation probability,
the electrical current through the hopping chains can be calculated. When there is no
voltage drop in the hopping chain, but over the electrodes, the occupation probabilities
of the hopping chain follow a linear profile and the current is in a concentration-driven
regime. In this case, the current-voltage curve saturates above 0.1 V at room tempera-
ture, which is never experimentally seen. When all voltage drops in the hopping chain,
the occupation probabilities are all equal. This is the field-driven regime, which is the
optimal case for conductivity. There is also an in-between scenario, in which the occu-
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X SUMMARY

pation probability follows a tangent shape. If an injection barrier would be present, the
current-voltage curve would consist of two distinct regimes, which is not experimentally
observed. The question remains whether 100 S/cm conductivity levels are attainable
within the proposed model. The constraint is used, that for the observed reorganisation
energy of roughly 0.2 eV, the electronic coupling between hopping sites should not ex-
ceed one tenth of that (0.02 eV), to avoid a breakdown of hopping theory. Even with this
maximum hopping rate, large distances between hopping sites are required to obtain a
100 S/cm conducitivity level, similar to 10 nm.

In Chapter 4, gate voltage dependent measurements of the conductivity are pre-
sented in a wide temperature range (10 - 300 K). To execute these measurements, gold
electrode patterns were fabricated on a doped silicon substraat with an 285 nm thick
insulating silicon dioxide layer on top. A gate voltage is applied between the doped sili-
con and the ground electrode. At room temperature, the gate voltage has little effect on
the conductance (< 2 %). At lower temperatures (< 150 K), the conductance increases
for both positive and negative gate voltages. The gate effect becomes stronger with de-
creasing temperature, but the gate never doubles the conductivity. The gate response
saturates for high gate voltage, which suggests this method cannot improve the charge
carrier density in cable bacteria by much, which would be possible in a semiconductor.
A model proposition is done, in which there is an small energy gap of the order of ~ 1
meV, outside which there are multiple electronic states contributing to transport.

In Chapter 5, magneto-resistance measurements at temperatures below 10 K are pre-
sented. At 1.8 K, a relative magneto-resistance of up to 50 % can be observed in ca-
ble bacteria at a magnetic field of 8 T. As the temperature is increased, the magneto-
resistance diminishes, such that at 10 K it is only a few percent. Also, as a function of the
applied bias voltage, the magneto-resistance disappears. By measuring segments with
a different electrode seperation (4 micrometer and 40 micrometer), it was seen that the
applied voltage per length, i.e., the electric field, has the reducing effect on the magneto-
resistance. The behaviour observed fits a wave function shrinkage model. The hopping
distance, that can be estimated from this model, is of the order of 10 nm, just as seen in
Chapters 2 and 3.



SAMENVATTING

In dit proefschrift, wordt het ladingstransportmechanisme van de geleidende vezels in
kabelbacterién onderzocht. In Hoofdstuk 1, wordt het onderzoeksveld 'bacteriéle elek-
triciteit’ geintroduceerd. Drie types bacteriéle nanodraden worden behandeld: Shewa-
nella nanodraden, Geobacter nanodraden en the geleidende vezels in kabelbacterién.
Hoewel de drie soorten allen geleidend zijn, zijn de kabelbacterievezels uitzonderlijk,
omdat hun activeringsenergie veel lager is dan die van de andere nanodraden en omdat
ze elektronen transporteren over centimeterlange afstanden in plaats van micrometers.
Deze verschillen suggereren dat hun transportmechanisme wezenlijk anders is. Om ver-
schillende transportmechanismes in context te plaatsen, worden metallische geleiding,
halfgeleding en hopgeileiding één voor één behandeld, met nadruk op de temperatuurs-
afthankelijkheid van de geleiding.

In hoofdstuk 2, worden temperatuursafthankelijke metingen van de geleiding gepre-
senteerd, die gedaan zijn in een groot temperatuursbereik (4 K - 300 K). Om deze me-
tingen uit te kunnen voeren, zijn gouden elektrodepatronen geplaatst op een silicium-
substraat met een isolerende bovenlaag van siliciumdioxide. Bacteriéle kabels werden
dwars over de elektrodes gelegd, zodat voor veel verschillende kabelbacteriesegmen-
ten het verband tussen stroom en spanning kon worden vastgelegd. Als de tempera-
tuur verlaagt wordt, vermindert de geleiding, met een activeringsenergie van 42 meV,
wat het gemiddelde is van 53 gemeten segmenten. Voor temperaturen onder de 75 K,
neemt de geleiding minder snel af dan verwacht wordt aan de hand van de activerings-
energie. De combinatie van dit lage en het hoge temperatuursgedrag, passen goed bij
een kwantum-gecorrigeerd hopmodel, waarin onder de 75 K de trillingsenergieén hoger
blijven dan voorspeld in de klassieke mechanica, dankzij de kwantumtrillingsenergie. In
overeenstemming met dit model, volgt de geleiding een machtsrelatie in temperatuur
en elektrisch veld voor lage temperaturen. De experimentele data past op de voorspelde
universele schalingskromme, die voorspelt dat de hopafstanden groter dan 10 nm zijn.

In hoofdstuk 3, wordt het hopmodel dat wordt voorgesteld in hoofdstuk 2 in meer
detail uitgewerkt, om in te kunnen schatten of het geobserveerde, maximale geleidings-
niveau van 100 S/cm wel redelijk is. Kabelbacterién worden hier gemodelleerd als een
verzameling parallelle, een-dimensionale hopketens, elk met een diameter van 2 nm, zo-
dat er 125 geleidingskanalen passen in één 26 nm wijde vezel, voor een totaal van 7500
kanalen voor 60 vezels. In acht nemend dat elke hopplek een energie en bezettings-
graad heeft, kan de elektrische stroom door de hopketens worden uitgerekend. Waneer
er geen spanningsval in de hopketen is, maar wel over de elektrodes, volgt de bezet-
tingsgraad een lineair profiel and dan is de stroom concentratie-gedreven. In dit geval,
verzadigt de stroom boven een spanning van 0.1 V, wat nooit in het experiment gezien
wordt. Waneer alle spanning valt binnen de hopketen, heeft elke hopplaats dezelfde be-
zettingsgraad. Dit is het veld-gedreven geval, dat optimaal is voor de geleiding. Er is
ook een tussengebied, waarbij het bezettingsprofiel een tangentiéle vorm heeft. Als er

xi



xii SAMENVATTING

een injectiebarriere voor transport zou zijn, zou de stroom-spanningskromme uiteen-
vallen in twee aparte gebieden, wat niet overeenkomt met het experiment. De vraag
blijft dan of 100 S/cm haalbaar is binnen het voorgestelde model. De randvoorwaarde
wordt gebruikt, dat bij een reorganisatie-energie van 0.2 eV, de elektronische koppeling
tussen hopplaatsen niet meer mag bedragen dan een tiende daarvan (0.02 eV), om uit-
eenvallen van het hopmodel te voorkomen. Zelfs met deze maximale hopfrequentie, zijn
hopafstanden van ongeveer 10 nm nodig om 100 S/cm te bereiken.

In hoofdstuk 4, worden poortspanningsathankelijke metingen van de geleiding ge-
presenteerd in een groot temperatuursbereik (10 - 300 K). Om deze metingen uit te voe-
ren, werden gouden elektrodepatronen gemaakt op een gedoteerd siliciumsubstraat met
een bovenlaag van isolerend siliciumdioxide van 285 nm dik. De poortspanning wordt
aangelegd tussen het gedoteerde silicium en de geaarde elektrode. Bij kamertempera-
tuur, heeft de poortspanning weinig effect op de geleiding (<2 %). Bij lagere temperatu-
ren (< 150 K), neemt de geleiding toe bij zowel positieve als negatieve poortspanningen.
Het poorteffect wordt met het verlagen van de temperatuur, maar verdubbelt nooit de
geleiding. De poortrespons verzadigt voor hoge poortspanning, wat suggereert dat de
ladingsdichtheid in kabelbacterién niet veel verbeterd kan worden met deze methode,
wat wel mogelijk zou zijn in een halfgeleider. Een modelvoorstel wordt gedaan, waarbij
er een kleine energiekloof is van 1 meV, waarbuiten er meerdere elektronische standen
meedoen aan transport.

In hoofdstuk 5, worden magnetoweerstandsmetingen bij temperaturen onder de 10
K gepresenteerd. Bij 1.8 K, wordt een relatieve magnetoweerstand van wel 50 % geobser-
veerd in kabelbacterién, bij een magnetisch veld van 8 T. Met het verhogen van de tem-
peratuur, vermindert de magnetoweerstand snel, zodat er nog maar een paar procent
over is. Ook neemt de magnetoweerstand snel af met de toegepaste spanning. Door
segmenten van verschillende lengte te meten (4 micrometer en 40 micrometer), is het
vastgesteld dat de spanning per lengte-eenheid, ofwel het elektrisch veld, hiervoor ver-
antwoordelijk is. Het geobserveerde gedrag past goed bij een model, waarbij de golffunc-
tie krimpt met het magnetisch veld. Dit model voorspelt dat de hopafstand ongeveer 10
nm is, net zoals in hoofdstuk 2 en 3.



INTRODUCTION

It is a relatively new discovery that bacteria can grow structures that efficiently conduct
electricity over long distances. In this, the term "long" is critically important and refers
to macroscale conduction, i.e., charge transport over micrometer to centimeter scale
distances, much longer than the nanometer size of the individual proteins that guide
these currents. However, the mechanisms of charge transport in these biological con-
ductors remain poorly understood. Biological protein structures are generally thought
to be poorly conductive, and so it is enigmatic how microorganisms can efficiently guide
electrical currents over such long distances.

For now, cable bacteria hold the "world record" in terms of long-range conduction:
they are able to channel currents over centimeter distances [1-3]. The objective of this
work is to shed light on this intriguing centimeter-scale charge transport in cable bac-
teria. As a background to the work presented in this thesis, I will first provide a general
introduction to conduction mechanisms in materials (irrespective of whether the ma-
terial is biotic or abiotic). Subsequently, I will briefly review the current knowledge on
the conduction mechanism in three of the most studied groups of microbes that display
long-range conduction: Shewanella, Geobacter and cable bacteria..

1.1. CONDUCTION MECHANISMS

The conductance in microbial structures can be theoretically approached with concepts
that generically apply to any conducting material. Foremost, the electrical conductivity,
o, can be expressed as a combination of two factors, the charge carrier density, n, and
the charge carrier mobility, p, via the relation:

0 = ney, (1.1)

In this, e = 1.6- 107! C represents the elementary charge. The term ’charge transport
mechanism’ puts the focus on the mobility, y, since it describes how fluently individual
charges are moving through the conductor. In contrast, the charge carrier density de-
scribes how many charges are effectively moving. Both terms are of equal importance
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to understand electrical conductivity: it is crucial to treat n and p on equal footing. In
the sections below, metallic conductors, semiconductors and biological conductors are
compared. For each of these categories, the charge carrier concentration, n, and the
mobility, y, are different in character.

1.1.1. METALLIC CONDUCTORS

In metals, each atom contributes one or more free electrons that can participate in the
conduction. Metallic conduction is hence characterised by a high charge carrier con-
centration, n, which is on the order of the concentration of the atoms per unit volume
(~ 10%® cm~2 in magnitude). The charge carrier mobility, however, is not extraordinarily
high in metals, with an order of magnitude: u = 10 cm?/Vs. The combination of charge
carrier concentration and mobility provides a conductivity of:

o=neu= 103 cm™ -107° C-10' cm?/Vs = 10° S/cm. 1.2)

In metals, the charge carrier concentration, n, does not vary with temperature, and as
a result, the temperature dependence of the conductivity, o (T), is solely determined by
the temperature dependence of the mobility, (7). In metals, electrons will frequently
undergo collisions (scatter) with the crystal lattice, in which electrons are deflected and
loose energy (Fig. 1.1a). Because of this scattering, the drift speed of the electron in a 1
cm long metal bar under an applied bias voltage of 1V, vy = uV/L = 10 cm/s, is much
lower than the absolute speed of the electron (vp = 10® cm/s, the Fermi velocity). As
the temperature of the metal increases, the atoms in its crystal lattice will vibrate with
greater amplitude, thus increasing the chances of a collision with the electron. There-
fore, a higher temperature decreases the mobility of the electron and thus the conduc-
tivity of the metal. In summary, metallic conduction is characterised by two features: a
high, temperature insensitive charge carrier density, n, and a moderate mobility, p that
decreases with increasing temperature.

1.1.2. SEMICONDUCTORS

In semiconductors and insulators, there are no free electrons due to the nature of the
chemical bonds between atoms. For example, in silicon crystals, atoms are covalently
bonded. There are four electrons in the outer shell of the silicon atom, that each form
a covalent bond with a neighbouring atom. The electrons participating in these bonds
cannot move around. The electrons are all residing in a valence band, which is separated
from the conduction band by the band gap energy Uy. Still, a freely moving electron-
hole pair can be created (Fig. 1.1b), but this requires an external energy input that equals
the band gap energy, Uy, related to the covalent bond [4]. At zero temperature, thermal
fluctuations are absent and the required energy is not available, but at a fine tempera-
ture, there is a chance that free charge carriers are created. As a consequence, when the
temperature of a semiconductor is increased, the conductivity increases, in contrast to
metals. The charge carrier concentration for semiconductors is not constant but varies
as [5, 6]:

— []g

n= noexp(m), (1.3)
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where kp is Boltzmann'’s constant and 7 is the temperature. Here, 1o would be the charge
carrier concentration, if silicon would be metallic in nature. Using Ug = 1.1 eV as for sil-
icon, the exponential dependence on the band gap energy suppresses the conductivity
at room temperature by a factor of 107!, So all other things being equal, a conductivity
on the order of 107 S/cm is expected for silicon (downscaled from the metallic conduc-
tivity 10° S/cm derived above). At the same time, the mobility in silicon is an order of
magnitude higher than in metals (u = 100 cm?/Vs). As a result, the intrinsic conductivity
of silicon is o ~ 107 S/cm. In summary, semiconducting transport is characterised by
a low charge carrier density that is very sensitiveto temperature, n, and a relatively high
mobility, y, which is comparable or even higher than in the metallic case.

1.1.3. DOPED SEMICONDUCTORS AND HOPPING CONDUCTION

b
2 Metallic conduction Semiconductor
| ! |
—(Au)— (AU = <—(Au — @‘@ @‘@ @‘@
! ! "}~ @ © @
1 @ < 1
{@* ‘1@ ‘@ ‘@ @‘@ @‘@
| ! !
1 g r © O ©
{® ‘@ L@ @.@ @‘@@’@
! ! )
¢ Hopping conduction
Wy 7N ﬂc}%—é&o% Y NV,
1@@{900(”20 OO°O§3O°O€;e§9
AN 71T N N TN s 7D

Figure 1.1: Different types of bacteria producing electrically conducting nanowires. a, Metallic conduction,
with gold atoms depicted in yellow. A free electron e~} is freely moving in the lattice, but its path changes
often due to collisions (red arrows). b, Semiconductor, with silicon atoms depicted in grey blue. Four electrons
(orange) are drawn in the outer shell of silicon. These electrons form covalent bonds (dashed lines). Free elec-
trons (yellow) can exist if these bonds are broken, after which they can move through the lattice (red arrows). c,
Hopping conduction, where thee states are important (1,2 and 3). In state 1, the electron is the initial state, and
the charge distribution around creates an attractive force (green for positive charge, orange for negative). The
ovals represent matter surrounding the electron. In state 2, the electron is in the transition state, in which the
attractive force is compensated by thermal motion. In this state, there is no preference for the initial or final
position. In state 3, the electron has moved to the final position and the surrounding matter has reorganised
around the electron.

Therefore, the way to increase the conductivity of semiconductors is by increasing .
This can be done by adding impurities in the crystal lattice of the semiconductor (e.g.,
a phosphorus or boron atom in the place of silicon, thus introducing an extra electron
or hole to the silicon crystal). In principle, these charge donors, with concentration np,
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want to stay at the impurity. Yet, when there is an external input that exceeds the donor
activation energy, Up, a free charge carrier is created. As long as the thermal energy is
higher than this activation energy (kg T > Up), the charges are free and the charge carrier
concentration is np. Because the donor activation energies are small with respect to the
band gap (Up < Uy), the charge carrier density is boosted with respect to the undoped
semiconductor. The mobility u is again limited by collisions in the lattice. This conduc-
tivity in a highly doped semiconductor is in principle equivalent to metallic conductivity,
but with a lower charge carrier concentration and thus lower conductivity.

However, for low enough temperatures (Up > kpT), the creation of free charges be-
comes again a thermally activated process, and the number of charge carriers in the con-
duction band again drops exponentially as in Eq. 1.3. When lowering the temperature
enough, it becomes faster to directly move from impurity to impurity, without creating a
free electron, in what is known as a "hopping event’ [7]. Miller and Abrahams proposed
that electrons move in a network of hopping sites with disorder in site energy and dis-
tance. Each site has a random energy, U;, and there are random distances, r;, between
the sites / and j. The transition rates between site i and j are of the form [7], if U; > U;:

Tij U;-U;
Fi'jzfoexp —? exp _W , (1.4)

where I'g is a constant pre-factor. In the situation where U; < U}, the transition rate
becomes:
rij
I;j=Toexp _T . (1.5)

In this regime, the electron mobility u is entirely determined by the hopping rate. In-
stead of a free particle colliding in a lattice, there are now trapped particles tunneling
between localised states. The mobility, y, is thermally activated and the charge carrier
concentration is still the dopant concentration, np. The Miller-Abrahams rates are at the
basis of the Variable Range Hopping (VRH) model, which explains the conductive be-
haviour in many doped semiconductors at lower temperatures [8]. In summary, doped
semiconductor conduction is characterised by a charge carrier density determined by
the dopant concentration, np, and a mobility that is ‘'metallic-like’ at high temperatures
and "hopping-like’ at low temperatures (VRH). Doping in silicon is effective up until
np = 10! cm™3, such that the conductivity can be increased to the ~ 10 S/cm order of
magnitude [9]. The doped semiconductor, polyactelyene, can reach conductivity levels
close to that of metals (10* S/cm) [10].

1.1.4. BIOLOGICAL CONDUCTORS

In biological systems, electrical conductivity is generally thought to occur via hopping
mechanism, referred to as multi-step hopping. The prime example is the electron trans-
port that occurs between adjacent heme centres in multi-heme cytochromes [11]. With-
out these heme centres, the protein structures are insulators with large band gaps (~ 8
eV) [12]. The heme centres, iron groups that can have a Fe(II) or Fe(IlI) oxidation state,
are hopping sites, with electrons transitioning from one site to the other. In biological
proteins and other organic, flexible materials, the reorganisation effect plays a major
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role. This effect is not included in the Miller-Abrahams rate (Eq. 1.4), which is more suit-
able for inorganic semiconductors, which are inflexible. The reorganisation energy, A,
is the difference in the electron’s potential energy between the charged and uncharged
molecular state [13, 14], resulting from dipoles rearranging when an extra electron is
loaded onto the hopping site (Fig. 1.1c). The combination of electron and dipoles is
called the 'polaron’. The transition rate when accounting for this effect is the Marcus
hopping rate [15]:

oo W (AU - U 6
T VAT kg T P 4Akg T '

Here, H is the electronic coupling, which comes from the electrostatic interaction be-
tween hopping sites, which is commonly described in the formulation by Mulliken and
Hush [16, 17].

1.2. ELECTRICAL CONDUCTION IN MICROBIAL STRUCTURES

Now, the three most studied groups of microbial conductors will be introduced: She-
wanella membrane extensions, Geobacter nanowires, and the conductive fibres of cable
bacteria. The latter are the subject of this thesis.

1.2.1. SHEWANELLA

The history of the field of microbial electricity starts at lake Oneida, state of New York
(USA), when the bacterium Shewanella oneidensis MR-1was isolated from sediments in
this lake (discovery published in 1988 [18]). These bacteria live in anaerobic conditions,
so they cannot rely on oxygen as an electron acceptor for their metabolism. Instead, it
was found that these bacteria use external solid electron acceptors that are abundant in
anoxic sediments. Specifically, it was discovered that Shewanella performs this extracel-
lular electron transport by discarding its electrons onto manganese oxides (MnO5) [18].
These minerals then dissolve to form Mn*? ions, according to the redox half-reaction:

MnO; +2e~ +2H" — Mn?" + 20H". (1.7)

To channel electrons to these external metal oxides, Shewanella grows so-called nanowires,
which are extracellular appendages that can be several micrometers long and several
nanometers wide [19, 20] (Fig. 1.2a). These nanowires were found to be electrically con-
ductive [19], thus explaining the capability to perform extracellular electron transport. A
first estimate for the conductivity of these nanowires at room temperature was obtained
from conductive Atomic Force Microscopy (c-AFM) measurements of single nanowires,
and suggested a high conductivity of ~ 1 S/cm [20]. In Shewanella nanowires, non-
linear current-voltage (I(V)) curves were already before, in 2008. After filtering, peaks
were seen the derivative of I(V) curves, which were attributed to a non-trivial density
of charge carrying states, n [21]. The non-linearity itself was explained by a multi-step
hopping mechanism [11]. Later, the activation energy of biofilms of Shewanella was
measured: Uy = 0.3 eV [22], indicating A = 4U4 = 1.2 eV, which is a typical value for
cytochromes [23]. A multi-step hopping mechanism with heme cytochromes seems to
be responsible for electrical conductivity in Shewanella.
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The nanowires of Shewanella are extensions of the outer membrane of the bacte-
rial cell that are richly embedded with specific type of proteins named ’'cytochromes’
[24]. Cytochromes are proteins that contain hemes as cofactors, which consist of iron
centre coordinated by a surrounding conjugated porphyrin ring structure (also present
in hemoglobin in red blood cells). The heme iron can attain multiple oxidation states
(for example, Fe?* and Fe3*) and hence has the ability to temporally store an electron
[25]). As the electrons travel from one heme centre to the other, the oxidation state of
the hemes alternates between Fe?* and Fe3*. In Shewanella nanowires, multi-heme cy-
tochromes are placed close together in the cell membrane, thus enabling an electron
transport pathway [24, 26]. The electron transport mechanism hence involves a combi-
nation of direct electron hopping within the multiheme cytochromes, as well diffusion
and interaction of multi-heme electron carriers themselves.

1.2.2. GEOBACTER

Similar metal-reducing bacteria exist within the Geobacter genus and their capacity for
external electron transfer was discovered around the same time as Shewanella. In 1987,
it was found that Geobacter metallireducens species perform reduction of iron miner-
als, thus producing magnetite in sediments of the Potamac River, Chesapeake bay (USA)
[27]. To this end, these bacteria are channeling electrons freed up from organic mat-
ter oxidation to ferric (hydr)oxides in the sediment [27] (Fig. 1.2b). This process can be
represented by the redox half-reaction:

3Fe,03 +2e~ +2H" — 2Fe30,4 + H,O. (1.8)

In 1994, a closely related species, Geobacter sulfurreducens, was found in a ditch con-
taminated with hydrocarbons, and it was able to use both iron and sulfur compounds
as an electron acceptor [28]. Later on, Geobacter sulfurreducens was found to produce
nanowires that directly contact iron oxides in order to reduce them [29]. With c-AFM
measurements, these nanowires were shown to be electrically conductive [29]. Initially,
it was hypothesized that Geobacter nanowires were made of metal-free pilin proteins
[29, 30]. Yet, recently, this hypothesis has been invalidated, and detailed Cryo-Electron
microscopy investigations have demonstrated that Geobacter nanowires are essentially
thin protein filaments consisting of polymerized multi-heme cytochromes [31]. Differ-
ent types of nanowires, containing different types of multiheme cytochrome (OmcS and
OmcZ) have been reported [32]. Recently, the molecular structure of the OmcZ nanowire
was resolved [33], which shows a closely packed, linearly arranged array of heme through
the nanowire fiber.

Reported values for the conductivity of Geobacter nanowires show a range of con-
ductivities. From conductive AFM measurements, conductivity levels of 1 - 4 S/cm were
found [34]. In another study, two types of Geobacter nanowires were measured. It was
found that the conductivity is on average is 30 S/cm for OmcZ nanowires [32], while
nanowires made from OmcS cytochromes display a lower conductivity (~ 0.02 S/cm).
The latter value is consistent with earlier reports on the conductivity of wild-type Geobac-
ter nanowires [35]. When the protein pilA from Geobacter metallireducens is expressed in
Geobacter Sulfurreducens, conductivity levels of in the hundreds of S/cm can be reached
[36]. However, these measurements are puzzling, since the protein pilA is no longer
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thought to be involved in pili conduction.

In biofilms of Geobacter nanowires, the temperature dependence of conductivity was
measured in 2011 [37]. A conductivity level at room temperature of ~ 5 mS/cm was
reported. Because the conductance decreased between T = 260 K and T = 300 K, the
mechanism was reported to be 'metallic-like’ (in a metal, the conductivity decreases
upon heating due to electron-lattice scattering). However, for lower temperatures, the
conductivity showed a thermally activated behaviour with Uy = 0.6 eV [37]. The conduc-
tivity was highly tunable with a gate voltage, indicating that there is an energy gap and
thus a sub-optimal charge carrier density, as in a semiconductor [37]. The increase in
conductivity between room temperature and T = 260 K has been attributed to a restruc-
turing of hydrogen bonds [38], which can increase conductance by a factor 300 [39]. It
was suggested that this makes the structure more planar and decreases the reorganisa-
tion energy [39]. The charge transport, therefore, seems to be governed by a hopping
mechanism.

Shewanella Cable bacteria

Manganese reduction
MnO, + 2e~ + 2H* — Mn?* + 20H-

Sediment
Geobacter

Iron oxide reduction
3Fe,0; + 2~ + 2H" - 2Fe50, + H,0

H,S + 4H,0 - SO;2 + 8e~ + 10H"
Sulphide oxidation

Figure 1.2: Different types of electrogenic bacteria produce wire structures that are electrically conductive.
a, Shewanella bacteria and their nanowires (gray blue). Rocks containing manganese oxide are drawn in dark
grey (water in blue, sediment in brown). For electrons (e™1) the direction of flow is indicated with an arrow
(they are channeled to the rocks). Only the reduction half reaction is depicted (the other half reaction involves
organic matter oxidation). b, Geobacter bacteria and their nanowires, depicted in dark yellow. Rocks contain-
ing iron (hydr)oxide are drawn in orange (water in blue, sediment in brown). Only the reduction half reaction
is given in the plot. ¢, Cable bacteria (green), with their internal conductive network of periplasmic fibres (dark
green). Further down in the sediment, the sulphide concentration is higher (orange colour), and near the wa-
ter the oxygen concentration is higher. Electron (e™1), freed up by sulphide oxidation, are transported over the
cable to reduce oxygen (half reactions indicated in the figure).
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1.2.3. CABLE BACTERIA
Cable bacteria are multi-cellular, filamentous bacteria in the Desulfobulbaceae family
(Desulfobacterota phylum) that have the capacity for extremely long-range transport
(on the scale of the centimeters). These bacteria are relatively recently discovered (first
publication in 2012 [1]), and as their name suggests, they grow to form non-branched,
centimeter-long "cable" filaments that comprise > 1.000’s of cells. Cable bacteria were
originally discovered in marine sediments, after it was noticed that electrical currents
were flowing from 1 cm down in the sediment towards the sediment-water interface
[40] (Fig. 1.2c). This electrical current was accompanied by the consumption of oxygen
in the top layer and a consumption of hydrogen sulphide deeper in the sediment [40].
It turned out that cable bacteria were inducing these currents by mediating an inter-
nal transport of electrons through their filaments [1]. By means of long-range electron
transport, cable bacteria are coupling two redox half-reactions in the sediment that are
physically separated. Deep in the sediment, hydrogen sulphide is oxidized according to
the half-reaction:

HZS+4H20—>SO§_ +10H" +8e”. (1.9

Subsequently, the cable bacteria transport the electrons upwards along an internal con-
ductor system over centimeters distance. Close to the sediment-water interface, the
electrons are used to reduce oxygen (Fig. 1.2¢):

20, +8H"' +8e~ — 4H,O0. (1.10)

The electron transport induced by cable bacteria stretches a 10.000 times further than in
the micrometer long nanowires of Shewanella and Geobacter.

The discovery of long-range electron transport by cable bacteria immediately brought
up the question of how electrons were transported through the filaments. It was found
that cable bacteria harbour a set of fibres in their cell envelope [41]. These fibres are
located in the periplasm, which is the space between the inner membrane (which de-
fines individual cells) and the outer membrane (which provides a "wrapping" around
the filament, common to all cells). The fibers extend along the whole filament, are con-
tinuous across cell/cell interfaces, and were found to be ~ 50 nm in diameter [41]. Thick
cable bacteria contain more fibers than thinner filaments, but the fiber structure ap-
pears highy similar between between different types of cable bacteria. The thick strain
Ca. Electrothrix gigas (~ 5um diameter) is examined in detail in this thesis and contains
approximately 60 parallel fibres located cell envelope [42]. Based on electrode investi-
gations and [2] and c-AFM measurements [43] it was confirmed that these perisplasmic
fibers are indeed the conductive structures in cable bacteria.

A second important question pertains to the molecular structure and composition
of the conductive fibers in cable bacteria. Using Raman spectroscopy, it was found that
the fibres contain a sulfur-ligated nickel cofactor and do not contain cytochrome heme
groups [44]. The presence of nickel-based cofactors rather than iron-based cofactors
sets the conduction mechanism in cable bacteria apart from Shewanella and Geobacter
nanowires. From Time-Of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) mea-
surements, it was furthermore deduced that the fibres are made out of protein, and con-
tain a conductive core with a diameter of 26 nm [44].
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The conductance of the fiber network in cable bacteria was measured by depositing a
so-called 'fiber sheath’ onto a silicon chip with pre-patterned gold electrodes [2]. A fiber

sheath is obtained by chemical extraction of native cable bacterium filaments, so that

only the regular network of conductive fibers remains on top of a connecting polysaccha-

ride sheath. Thelonglength of the fibre sheaths (up to millimeters) allows for macroscale

investigation with electrode contacts, rather than conductive AFM, which reduces the

risk of measurement artifacts. This way, it was also shown that the conductance of the

fiber sheaths remains stable through time under vacuum conditions [2]. This hence cre-

ates a stable experimental environment in which detailed electrical characterisation of

conductive structures can be performed.

Intriguingly, the conductivity of the periplasmic fibres in cable bacteria was found
to reach up to 300 S/cm, which provides a high conductivity for a biological material.
Moreover, the contact resistances between the gold electrode and the fibre sheaths were
found to be low [2]. As such, the obtained conductivities reflect the intrinsic conductiv-
ity of the protein fibre material. Also, it was demonstrated that the activation energy of
the conductivity is much lower than Geobacter and Shewanella nanowires: between 0.04
and 0.05 eV [45]. This activation energy is very small with respect to semiconducting
band gaps (1.1 eV in silicon), and the activation energies observed for Shewanella (0.3
eV) [22] and Geobacter (0.6 eV) [37]. The origin of the low activation energy and high
conductivity hence need to be further explained. Therefore, in this thesis, the temper-
ature range measured over which the conductance is measured, is expanded to lower
temperatures, close to absolute zero (7' = 0.1 — 300 K). Because the activation energy is
so small, the conductance drops far less rapidly than in Shewanella and Geobacter. This,
in combination with the stable experimental conditions for cable bacteria [2], provides
a unique opportunity for experimental investigation of the charge transport mechanism
in cable bacteria.

1.3. DISSERTATION OUTLINE

This thesis addresses a number of outstanding questions pertaining to the long-range
transport in periplasmic fiber network of cable bacteria: [1] What are the electrical prop-
erties of periplasmic fibers at cryogeneic temperatures? [2] What is the mechanism of
charge transport in these fibers? [3] Is the charge transport different than the microbial
nanowire structures from Geobacter or Shewanella? [4] Is the charge transport differ-
ent from "traditional” multi-step hopping as seen in the conductive membrane proteins
that contain FeS clusters or hemes as cofactors? [5] How to explain the high conductivity
and low activation energy? [6] Can we explain the shape of the I/V curves recorded?

As outlined above, the temperature dependence of conductivity has the ability to dif-
ferentiate conductivity mechanisms. In Chapter 2, we present detailed electrical maesure-
ments on cable bacterium filaments over a wide range of temperatures (T = 4 — 300 K).
This provides a set of I/V curves, from the temperature dependence of the conductiv-
ity can be derived. In Chapter 3, we address the question whether a traditional one-
dimensional hopping chain allows to explain the I/V curves recorded in Chapter 2 as
well as the high conductivity levels observed in cable bacteria. In Chapter 4, we study
the gate-dependence of the conductance to investigate whether the charge transport
displays an energy gap. In Chapter 5, we investigate the effect of a magnetic field has on
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1 the conductivity. In combination, these investigations provide a deeper insight into the
conduction mechanism in cable bacteria.
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ABSTRACT

Multicellular cable bacteria display an exceptional form of biological conduction, chan-
neling electrical currents across centimeter distances through a regular network of pro-
tein fibers embedded in the cell envelope. The fiber conductivity is among the highest
recorded for biomaterials, providing a promising outlook for new bio-electronic tech-
nologies, but the underlying mechanism of electron transport remains elusive. Here,
we use detailed electrical characterization down to cryogenic temperatures, which re-
veals that long-range conduction in these bacterial protein wires is based on a unique
type of quantum-assisted multistep hopping. The conductance near room temperature
reveals thermally activated behavior, yet with a low activation energy, suggesting that

This chapter is a version of the article 'Quantum-assisted electron transport in microbial protein wires across
macroscopic distances’, published on Arxiv.
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substantial delocalization across charge carrier sites contributes to high conductivity. At
cryogenic temperatures, the conductance becomes virtually independent of tempera-
ture, thus indicating that quantum vibrations couple to the charge transport. Our re-
sults demonstrate that quantum effects can manifest themselves in biological systems
over macroscopic length scales.

2.1. INTRODUCTION

Conventionally, the reference point for long-range biological charge transport are the
protein complexes of the electron transport chain in mitochondria or the photosynthetic
reaction centers in chloroplasts [46, 47]. These membrane-bound complexes enable
sequential hopping of electrons between closely spaced cofactors (e.g. hemes or iron-
sulphur clusters) over total distances covering < 10 nm [48]. Recent studies, however,
demonstrate that biological electron transport may greatly surpass this length scale. While
metal-reducing bacteria such as Geobacter and Shewanella can mediate electron trans-
port over micrometer distances through thin surface appendages [20, 29, 31], the discov-
ery of cable bacteria extends the range of biological electron transport to the centimeter
scale [1, 3, 49]. However, the question as to why biological protein structures can sustain
conduction over these macroscopic distances remains fundamentally unresolved.

Cable bacteria harbor an internal conductive network, which consists of centimeter-
long protein fibers that run in the cell envelope along the entire length of the filamentous
bacteria [2, 41, 43, 44, 50]. Room-temperature characterisation [2, 44, 45] reveals that
these protein fibers possess an electrical conductivity up to 300 S/cm™!, which surpasses
that of biomaterials by several orders of magnitude, and even exceeds the conductivity
of most organic semiconductors [51]. To elucidate the transport mechanism underlying
this extraordinary form of biological long-range conduction, we characterised the fiber
conductance over a wide temperature range from room temperature down to liquid he-
lium temperature. These measurements reveal that charges are transported through a
unique type of multi-step hopping, involving low barriers due to delocalized charge car-
rier wave functions and quantum vibration effects at temperatures below 75 K.

2.2. TEMPERATURE DEPENDENCE OF CONDUCTANCE

Conductivity probing as a function of temperature is widely applied to elucidate the
charge transport mechanism in electronic materials [52]. For biological materials, in-
vestigation of low-temperature conduction (< 10 K) is not physiologically relevant, but
is instrumental to get insight into the mechanism of electron transport in proteins, as
thermal excitation becomes suppressed. Up until now, cryogenic characterization of
electron transfer has been primarily applied to photosynthetic reaction centers [53, 54],
which are experimentally accessible through facile light activation and high electron
transfer rates. For other protein systems, however, data on low-temperature conduc-
tance are critically missing, and consequently, it remains uncertain to what extent in-
sights and parameters from photosynthetic reaction centers can be extrapolated [55].
In particular, low-temperature conduction studies are lacking for macroscale (= 1 ym)
protein structures, as the increasing resistance with length prevents current detection at
low temperatures. The high conductance sustained across millimetres in cable bacteria
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Figure 2.1: Current as a function of temperature and electric field. (A) Individual fiber sheaths are deposited
on Si/SiO7 substrate with prepatterned gold contacts. (B) A fiber sheath filament is stretched across a series
of gold contacts. (C and D) Representative current () versus bias voltage (V) curves at different tempera-
tures for two different segment lengths, L. The current is normalized to the maximum current of each I(V)
trace. Temperature is indicated by the color scale. The top axis displays the applied electric field, E = V/L.
Shorter segments allow to investigate the conductance at lower temperatures and higher electrical fields. For
the longer segment (L = 240 pm), the current fell below the detection limit below 40 K.

alleviates this experimental bottleneck.

To probe the conductance of the periplasmic fibers, long cable bacterium filaments
(> 2 mm) were individually isolated from enrichment cultures. Subsequent extraction
provides a so-called "fiber sheath" that retains the conductive fiber network lying on top
of a connective carbohydrate sheath.[2] The number of parallel fibers embedded in one
fiber sheath is determined by microscopy (fig. S1). Combined with the known [44] fiber
diameter (26 nm), this enables the fiber conductivity to be calculated from the measured
conductance (Eq. S1 in Supplementary Text). This procedure has been shown to provide
reliable fiber conductivity data [2, 45], as native filaments and fibers sheaths provide
similar fiber conductivities, indicating that the extraction procedure does not affect the
electrical response [2].

fiber sheaths of variable length (diameter 4 pum; length up to several mm) were de-
posited onto insulating silicon substrates with pre-patterned gold electrodes (Fig. 2.1A)
for electrical characterization under vacuum. The multiple electrical contacts per fila-
ment allow conduction to be evaluated over different segments of the fiber sheath (Fig. 2.1B).
Room-temperature, four-probe measurements on single filaments show a linear depen-
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dence of the resistance R on the probed segment length L over a distance of millimeters
(fig. S2). These measurements demonstrate that the fiber network possesses a uniform
conductivity over mm-scale distances, which hence justifies the comparison of different
segments.

Current-voltage characteristics (I(V) curves) were recorded for 53 segments of vary-
ing length (L = 4 um to 2 mm), of which 16 were also measured down to cryogenic tem-
peratures (4.2 — 10 K). Measurements were highly consistent between filaments, reveal-
ing a similar response. Figure 2.1C and D display representative I(V') data for both along
(L = 240 um) and short segment (L = 4 um) (fig. S3 provides data for all segments). The
measured current shows a distinct response to the temperature, T, and to the imposed
electric field, E = V/L. At high temperature and low electric field, the I(V) curve is linear
(Fig. 2.1B). Yet, when temperature decreases and the electric field strength increases, the
I1(V) becomes increasingly more non-linear (Fig. 2.1C and D).

In a two-probe configuration, the measured resistance accounts for the intrinsic re-
sistance of the probed filament segment as well as the contact resistance between the
gold electrodes and filaments[2]. To verify our approach, two-probe and four-probe
measurements were compared on the same segment, revealing that contact resistances
do not influence the shape of the I(V) profile, nor the temperature dependence of the
conductance (fig. S5).

When replotting the I(V) data in terms of the conductance, G = I/V, we consis-
tently observe the same G(7, E) response across all segments (Fig. 2.2A and B; fig. S3).
At high temperatures (T > 75 K), the G(T) data collected at different E-values converge
(Fig. 2.2B), so conductance is not affected by the electric field. Moreover, the charge
transport is thermally activated and follows a classical exponential Arrhenius-type de-
pendence [45]. Below the cross-over temperature Tc «~ 75 K, the temperature depen-
dence becomes noticeably weaker, and for T < 20 K, the conductance remains high and
becomes virtually independent of temperature at moderate electric fields (Fig. 2.2B). At
these low temperatures, the conductance is strongly affected by the electric field. For
example, at 5 K, G increases by 3 orders of magnitude when E is increased from 1 to
2.5V/um (Fig. 2.2B).



2.2. TEMPERATURE DEPENDENCE OF CONDUCTANCE 15

T (K) B T (K) V (V)
A 200 100 67 50 40 10020 10 67 5 4
‘,: g
107 107 8
10V
. . o9 g
[9p] -9 2 -9 : 8
~ 1 ~ 1 7 5
s 0 o 0 . o6 2
—: |];
10—11 10—11 e—°° 2
05
05 1 15 2 25 1 5 10 15 20 25
100/T (K™ 100/T (K™
T (K) D T (K)
C 20 100 67 50 40 100 20 10 67 5 4
107 107
10V
@ s @ s :
® o ¢
3
10" 1071 053 8
05 1 15 2 25 1 5 10 15 20 25
100/T (K™ 100/T (K"
E F T (K)
10718 - 10710 100
< - 80
T +
Ry Q -15
¥ .20] x 10
% T 1070 40
1025 % i~ 2 20
= moLsm| o
e 0
10° 10" 102 10° 10* 10° 10" 10% 10® 10*

eV/2rk,T (-) eV/2rk T ()

Figure 2.2: Dependence of conductance on temperature and electrical field. (A and B) Conductance data
G = I/V are plotted as a function of inverse temperature at a constant electric field strength (i.e. fixed bias
voltage) for two segments of different length. Data are extracted from I(V,T) curves as shown in Fig. 1. In
panel (A), the Arrhenius fit to the high-temperature conductance data is included for reference (dashed grey
line). (C and D) Model simulation of the conductance data in panels (A) and (B) via a 1D hopping chain model
with one effective vibrational mode (Jortner model). Model parameters in panel (C): reorganization energy,
A =0.35 eV and effective vibrational frequency, (w) = 122 cm™L (15 meV). The number of hopping sites, Ng,
does not change the shape of the curve. Model parameters in panel (D): (w) = 58 cm™! (7.2 meV), 1 =0.16
eV, number of hopping sites, N5 = 200. (E and F) I(V, T) data replotted as a universal scaling curve [56, 57]; T
is temperature, e is the elementary charge, and kg is Boltzmann’s constant. The green solid line represents a
model fit to the data that has two fitting parameters: the dimensionless exponent  and the number of hopping
sites, Ng. For the longer segment, Ng = 1400 and 8 = 6.0; for the shorter segment, Ng = 120 and § = 6.5.
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2.3. QUANTUM VIBRATIONS COUPLE TO THE ELECTRON TRANS-
PORT

The observation that the conductance remains elevated as the temperature decreases,
and eventually becomes independent of temperature, is remarkable. The deviation from
an exponential temperature dependence is at odds with the standard semi-classical Mar-
cus theory of electron transfer [15], which assumes that transitions are thermally acti-
vated. The fact that the conductance remains high at low temperatures thus hints at an
energy source other than thermal energy that assists the charge transfer. In seminal ex-
periments on photosynthetic reaction centers in purple bacteria, DeVault and Chance
observed a similar temperature dependence that could not be accounted for by Marcus
theory. The charge separation reactions of photosynthesis continued at cryogenic tem-
perature and the rate of these reactions became independent of temperature [53, 54].

This finding spurred a host of theoretical developments, which eventually extended
electron transfer theory to a fully quantum-mechanical treatment [56, 58-60]. Quan-
tum theory asserts that at absolute zero, molecular vibrations retain a finite zero-point
energy. At low temperatures, thermal motion is frozen out, but quantised vibrational
modes can assist the electron tunnelling, in a process referred to as nuclear tunnel-
ing [58, 59]. Marcus theory[15] accounts for electron tunneling, but uses a classical har-
monic approximation of the nuclear motion, so it neglects the impact of nuclear tunnel-
ing and therefore underestimates the electron transfer rate at low temperatures.

To verify whether nuclear tunnelling could explain our observations, we modelled
electron transport subject to quantum vibrational coupling in a one-dimensional hop-
ping chain that mimics the conduction path in the fiber sheaths (Supplementary Text).
In metalloproteins, vibrational coupling can involve both high-frequency intramolec-
ular vibrations of the charge carrying cofactor as well as lower-frequency vibrations of
the surrounding protein matrix and solvent molecules. This vibrational coupling can
be described with models of increasing complexity. As a first step, we applied a model
where only one effective high-frequency mode (w) stimulates the hopping process (Jort-
ner model [59], Supplementary Text). These model calculations adequately capture the
essence of our experimental data: the conductance displays two regimes with a transi-
tion at the cross-over temperature T¢ = fi{w)/ kg, where kg is the Boltzmann constant
and 7 the reduced Planck constant. For T > T, the vibrational mode remains thermally
excited, and the conductance adopts a classical Arrhenius-type dependence (Fig. 2.2C).
Below T¢, the vibrational mode is no longer thermally excited, but due to the quantum
vibrational energy, the conductance remains higher than predicted by the Arrhenius re-
lation. Upon further cooling below T¢/5 = 25 K, the conductance becomes virtually in-
dependent of temperature (Fig. 2.2D).

Across all sixteen segments investigated, we find a mean cross-over temperature T¢ =
75 + 14 K, which corresponds to a characteristic frequency (w) = kg Tc/h =52 + 10 cm™!
for the single effective vibrational mode that couples to the electron hopping (vibrational
energy fi{w) = 6.4 + 1.2 meV). The experimental verification of vibronic coupling is highly
challenging in biological systems, and has only been done for photosynthetic reaction
centers, which yields substantially higher characteristic frequencies 7i{w) = 60 meV [61].
Previously, it has been speculated that the 60 meV frequency could be a general fea-
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ture of electron tunneling reactions in natural proteins [55]. Our results invalidate this
hypothesis, and instead, suggest a substantial variability in vibrational coupling, where
the characteristic frequency is likely dependent on the specific molecular configuration
of the cofactor and metalloprotein involved in the electron transport. To illustrate this,
fig. S9 compares the data fit for a cable bacterium to that of the photosynthetic reaction
center in Allochromatium vinosum.

T (K
A 300 200 100 B
Two-probe
108 12 Four-probe
— 2
D107 5 8
[0} o
6 o
10° 4
0
0.33 0.66 1 0.16 0.2 0.24 0.28 0.32 0.36
100/T (K™) A (eV)
C D
pEA -8
V<05V s 10
-8 3% 9
10 1’»" ',;:a 10
& B iar s & o IR
o 1010 PO vy St x5 10}
10 o ’4_‘;&{}» 2 10
g -
t'—'"'_?::"‘:j; o 12
o2k esEF T GoT 10
20 30 40 60 80 100 03 0507 1 15 225
T (K) E (V/um)

Figure 2.3: Empirical fits to conductance data. (A) Low-bias conductance, G, as a function of inverse tem-
perature for T > 100 K. Data for 4 segments. Two- and four-probe measurements are shown in blue and red
markers respectively. Solid black lines are fits by the non-linear least squares method to the Marcus equa-
tion G = go(kp T)~3/ Zexp(#), where g is a pre-factor and A the reorganization energy, of which the value
is given next to the data. (B) Histogram with reorganization energies for n = 53 samples (blue: two-probe
measurements; red: four-probe measurements). (C) Low-bias conductance against temperature in the region
20 —100 K for 16 segments. Black dashed lines represent power law fits (determining a). (D) Conductance
versus applied electric field at the lowest temperature achieved (T < 10 K), for the same 16 segments. Yellow
dashed lines represent power law fits (determining f3).

2.4. CONDUCTANCE FOLLOWS A UNIVERSAL SCALING RELATION

The single-mode vibrational model predicts that the zero-bias conductance should be-
come constant at the lowest temperatures. Yet closer data inspection reveals that the
conductance continues to decrease as a power law (G < T%; Fig. 2.3C), which suggests
that vibrational modes lower than w = kg T/ are additionally coupling to the electron
transport. To accommodate for this, we integrated a multi-mode description of vibra-
tional coupling in our one-dimensional hopping model (Egger model [56], Supplemen-
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tary Text). There are several predictions that can be tested. At high temperatures, all
vibrational modes must remain thermally excited, and hence, one should retrieve the
results of Marcus theory. This is indeed the case. For T > 100 K, the conductance fol-
lows a Marcus-type dependence on temperature, G «~ T~3/?exp(~A/4kgT), where A is
the reorganization energy (Fig. 2.3A; Supplementary Text). Also, at high temperatures,
the conductance should remain independent of E, which provides linear I(V) curves,
as observed (Fig. 2.1B). The reorganization energy is low and shows limited variation
(Fig. 2.3B), A =270 +£40 meV (n = 53 segments). The corresponding activation energy,
Up = A/4 =42 +8meV (fig. S6), aligns well with earlier high-temperature electrical mea-
surements on both intact cable bacteria and fiber sheaths [45].

The multi-mode model predicts that the conductance should follow a power-law de-
pendence on temperature at low electric fields, G < T%, and a power-law dependence
on the electric field at low temperatures, G EP. The fiber network conductance in-
deed shows such a power law behaviour with exponents ¢ = 3.7—-7.7 and f =~ 4.0 - 8.3
(Fig. 2.3C and D; table S2). Moreover, the multi-mode model asserts that in the low-
temperature regime, the I(V, T) data for a given segment can be suitably reduced to a
single universal scaling curve [57] (see Supplementary Text), which features the normal-
ized current I/ T'*P as a function of a normalized bias V = eV/ 2mkgT). Therescaled I/V
data closely follow this universal scaling curve for all 16 segments investigated (Fig. 2.2E
and F; fig. S4). This universal scaling behavior has not been seen before for a biological
material, butis characteristic for various synthetic one-dimensional conductors, such as
networks of graphene nanoribbons[62] and carbonized polymer nanofibers[63], which
display similarly high conductivities as the periplasmic fibers in cable bacteria. More-
over, the power law exponent 8, which designates the degree of vibronic coupling, is
on par with these synthetic conductors, thus suggesting that cable bacteria may have
evolved a similar electron relay system.

2.5. A UNIQUE FORM OF MULTISTEP HOPPING

Our results provide several insights into the mechanism that sustains long-range con-
duction in the periplasmic fiber network of cable bacteria. Foremost, the observed tem-
perature dependence of conduction displays the hallmark of quantum-mechanical elec-
tron tunneling [55]. At high temperatures, electron transport is assisted by thermal fluc-
tuations, thus providing an Arrhenius dependence, while at low temperatures, quan-
tized molecular vibrations couple to the electron transfer, thus resulting in higher con-
ductance than classically expected. Nuclear tunneling has been previously observed in
photosynthetic reactions centers [54], but not in macroscale electron transfer.

Electron tunneling shows a strong exponential dependence of the electron transfer
rate on distance, which limits individual electron transfer events to distances < 1.5 nm
[55]. Still, it is well known that protein structures can support electron transport over
much longer distances, of which the cm-scale conduction in cable bacteria represents
the most extreme example. Biology has resolved this problem by arranging cofactors in
chains at close spacings (typically 10—15 A). This enables multi-step electron hopping, in
which electrons are moving through the protein matrix by consecutive tunneling steps,
as for example, documented for multiheme cytochromes involved in extracellular respi-
ration [48] and FeS clusters aligned in the complexes of the respiratory chain [64]. While
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our data support this multi-step hopping picture, there are several unique features in
which the electron transport in cable bacteria is distinct from the currently known forms
of long-range electron transport in proteins.

Foremost, the length scale over which hopping takes place in cable bacteria is ex-
traordinary, as it covers distances of millimetres to centimeters. Raman spectroscopy has
shown that the periplasmic fiber network does not contain FeS clusters nor cytochromes
[2, 44], thus excluding a heme-based conduction mechanism as found in the surface ap-
pendages of metal-reducing bacteria [24, 31, 65]. Instead, recent work suggests that the
periplasmic fibers in cable bacteria contain a nickel-sulfur cofactor that mediates the
electron transport [44]. The involvement of nickel is remarkable, as all currently known
metalloproteins involved in electron transport rely on either iron- or copper-containing
cofactors, but never nickel [66]. It is thus reasonable to suggest a model in which the
quantized vibrational modes of this nickel-sulfur cofactor are strongly coupled to the
electron transport. If such vibronic coupling is due to a single mode, this mode would
have characteristic frequency of =~ 50 cm™!. The corresponding Huang-Rhys factor,
which provides a dimensionless measure for the coupling strength, is high (S = A/h{w)
= 42), thus indicating strong vibronic coupling. While the molecular structure of nickel
cofactor remains unresolved, the appearance of distinct Ni-associated Raman peaks in
the spectra of fiber sheaths near this frequency [44] suggests that cofactor modes could
be indeed involved in the reorganization process [67]. Most likely, multiple modes are
coupling to the electron transport, which then provides the observed universal scaling
response (Fig. 2.2E and F) as also seen in abiotic one-dimensional conductors [57, 63,
68].

A second notable feature is that the reorganization energy at room temperature (0.27 eV)
is markedly lower than observed for other forms of biological electron transport. Typical
values for single electron transfer steps in enzymes are in the range 0.7 < A < 1.4 eV, while
multi-step electron transport in the surface appendages of the metal-reducing bacteria
also exhibits similarly high reorganization energies [22, 37]. Within the thermally acti-
vated regime, and assuming a negligible driving force (as the voltage bias is distributed
over very many transitions in the hopping chain), the rate of electron transfer scales
with ~ exp(A/4kgT), and so, a low reorganization energy helps explaining the extraor-
dinary high fiber conductivity observed in cable bacteria. Moreover, the reorganization
energy is known to inversely scale with the localisation length of the charge carriers [69].
Therefore, high reorganization energies imply that electrons are strongly localized on the
charge carrier site, while low reorganization energies, as seen here, suggest substantial
delocalization of the charge carrier wave function. Heme-localised electronic states are
examples of the former: they form low energy states (“traps”) that are separated by siz-
able activation barriers of 0.2 —0.3 eV, which are large compared to thermal activation
barrier (= 10 kg T at 300 K) [48]. In contrast, the electronic states on the cable bacterium
fibers appear to be far more delocalized, thus enabling fast transitions. Comparably low
reorganization energies have been reported for highly-mobility organic semiconductors,
such as rubrene and naphtalene([70], in which the charge carrier sites display sizeable
conjugation and delocalization.
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2.6. THE CHALLENGE OF HIGH CONDUCTIVITY

Overall, the observed temperature dependence is consistent with multistep hopping,
which forms the cornerstone of the existing theories of long-range biological electron
transfer [48]. Still, the high fiber conductivity recorded (up to «~ 100 S cm™!; fig. S2)
poses a profound challenge to this hopping model. The key problem is the magnitude of
the electron transfer rate I'g, which is related to the fiber conductivity o via the relation

(2.1)

In nearly all electron transfer reactions in biology, the center-to-center spacing between
charge carriers falls within the range of a = 0.5 -2 nm. Consequently, one needs Ng = 5-
20 x 10% sequential charge carriers to cover the typical L = 1 cm length scale of a ca-
ble bacterium filament. Even if we assume massive parallelization of conduction chan-
nels (each fiber consists of N¢ = 125 parallel channels of 2 nm diameter; Supplementary
Text), the required transition frequency for nearest neighbor hopping exceeds 10'3 s~!
(see details in Supplementary Text). This < 0.1 picosecond electron transfer rate is or-
ders of magnitude faster than currently observed for non-light driven electron transfer,
which maximally reaches nanoseconds for inter-heme transfer in cytochrome c oxidase,
but is more typically on the scale of microseconds [48]. Effectively, the 10'® s~! hopping
rate exceeds the speed limit of non-adiabatic electron transfer, where relaxation times of
vibrational modes are slower than the hopping rate itself [55, 71].

Our data hint at a possible resolution to this problem. A larger center-to-center dis-
tance would allow for the same conductivity with a smaller hopping rate, thus bringing
the electron transport back in the non-adiatabic regime. The universal scaling curve
displays a cross-over point between high and low temperature regimes, which enables
a direct estimate for the number of hopping sites (Ns = eV/(2nkgT)). We find that Ng
linearly scales with the segment length L (table S2; fig. S8), thus providing a center-to-
center distance between hopping sites in excess of 10 nm. Clearly, this distance is far
too large to enable through-space tunneling of electrons [72, 73], and largely exceeds
the known heme-to-heme distances in cytochromes (< 1 nm) [23, 74]. Still, in doped
organic semiconducting nanowires, like polyacetylene, the universal scaling curves pro-
vides similar center-to-center distances (~ 10 nm) [57, 63, 68]. A potential model that
can accommodate these large center-to-center distance consists of hopping chains em-
bedding stacks of tightly spaced cofactors (> 10 nm). Electron tunneling then occurs
across low-potential barriers between the cofactor stacks, while in the internal part of
the stacks, electrons are delocalized and electron transport occurs largely unobstructed
(fig. S7). This speculative model provides a potential explanation of how the high elec-
trical conductivity in the periplasmic fibers in cable bacteria can be reconciled with the
multistepping mechanism that emerges from data obtained here, but requires further
experimental validation. Ultimately, such a better understanding of the charge carrier
transport in cable bacteria may enable the design and construction of new bio-mimetic
materials for electronics and energy conversion [75-77].
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2.7. METHODS

CONDUCTIVE FIBER NETWORKS FROM CABLE BACTERIA

Cable bacterium filaments were harvested from enrichment cultures that were set up
using natural sediment collected in the creek bed of a salt marsh (Rattekaai, The Nether-
lands). Upon collection, sediment was sieved and repacked into PVC core liner tubes
(diameter 40 mm). The cores were incubated in aerated artificial seawater at in situ
salinity, and the development of cable bacteria was tracked by microsensor profiling and
microscopy (procedure as in Ref. 11). Under a stereo microscope, individual filaments
were gently pulled out from the top layer of the sediment with custom-made glass hooks.
Through sequential extraction, the conductive fiber network is isolated from the cell
envelope of individual filaments. This extraction removes the membranes and cyto-
plasm, but retains the parallel conductive fibers embedded in a basal sheath (procedure
as in Ref. 8). These so-called "fiber sheaths" form the starting material for all investiga-
tions performed here. To produce these fiber sheaths, freshly isolated cable bacterium
filaments were cleaned by transferring them at least six times between droplets (-~ 20 pl)
of MilliQ water on a microscope cover slip. Subsequently, filaments were extracted in a
droplet of 1 (w/w) sodium dodecyl sulfate (SDS) for 10 minutes, followed by six MilliQ
washes. Filaments were then incubated for 10 minutes in a droplet of 1 mM sodium
ethylene diamine tetra-acetate (EDTA), pH 8, and again six times washed in MilliQ.

ELECTRICAL CHARACTERIZATION DOWN TO CRYOGENIC TEMPERATURES
Gold electrode patterns (Fig. 2.1) were deposited onto p**-doped silicon substrates with
a surface layer of silicon dioxide (285 or 500 nm thickness) via optical lithography. A laser
writer illuminates the desired pattern in a single light-sensitive resist layer (AZ ECI 3007
or 3012). The laser wave length (365 nm) limits the minimum feature size to approxi-
mately 1 um. The gold thickness was 100 nm, with 5 nm of titanium underneath to pro-
mote adhesion of the gold layer to the SiO, surface. Fiber sheaths were positioned onto
patterned substrates immediately after extraction and substrates were directly trans-
ferred to the vacuum chamber of the probe station. In this way, fiber sheaths retain a
stable conductance for up to a period of weeks [2].

The conductance of fiber sheaths was measured down to liquid helium temperatures
in two separate set-ups. The first setup is based around a dewar of helium, in which a
stick containing a vacuum sample chamber can be inserted. In this setup, the patterned
substrates were glued to a chip carrier, either with silver paint or epoxy glue. The elec-
trode pads of the substrate were subsequently wire bonded to the electrodes of the chip
carrier. For the lowest temperatures (T < 20 K) the sample chamber is not completely
vacuum, because helium exchange gas is used to reach the desired temperature. The
minimum temperature reached is near the helium condensation point (4.2 K). For higher
temperatures (T > 20 K), this exchange gas was pumped out of the sample chamber. A
resistor was used to heat up the device, while a thermometer is placed nearby the sample
to measure the temperature. The second set-up used was a cryo-free LakeShore Cryo-
genic Probe Station (Type CRX 6.5 K). In this case, the electrode pads did not need to be
wire bonded. Of the 16 segments for which the temperature dependence was measured
down to the lowest temperatures (T < 10 K; fig. S3), segments 1 - 5 were measured in the
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first set-up and segments 6 - 16 were measured in the second.

To assess the impact of contact resistances, two-probe and four-probe measurements
were conducted. In a two-probe measurement, a bias voltage, V3, is applied across two
electrodes, and the induced current, Iy, is measured. This yields the two-probe resis-
tance, Rop = Vg/Im = Rj + Rc, which is composed the intrinsic resistance of the fiber
sheath segment, R;j, and the two contact resistances between the fiber sheath and the
electrodes, Rc. In the four-probe approach, the bias current, I, is injected over the two
outer electrodes, while the voltage, V31, is measured over the two inner electrodes. The
four-probe resistance, Rsp = V\/ Is, equals the intrinsic resistance of the conductive fiber
sheath segment between the two inner pads. The contact resistance is hence determined
as Rc = Rop — Ryp.
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Figure S1: Microscopic images of fiber sheaths from cable bacteria. (A) Scanning electron micrograph (ac-
celeration voltage 10 kV) of a fiber sheath deposited silicon-dioxide substrate with gold patterned electrodes.
The scale bar is indicated in the bottom right corner of the image. The dark background is silicon dioxide, the
lighter grey background is the gold electrode. (B) Atomic force microscopy image of a fiber sheath filament.
The colour indicates the measured height profile (see colour bar). The fiber sheath displays the conductive
fibers as a set of lines running in parallel to the bacterial filament.
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FIGURE S2
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Figure S2: Linear dependence of electrical resistance on probing length over mm distances. (A and B) Four-
probe measurements of the resistance, R, as a function of the electrode spacing, L, at 300 K for three separate
fiber sheath filaments of cable bacteria. In these measurements, the two current-carrying electrodes and one
voltage-sensing electrode were kept at a fixed position, while the second voltage-sensing electrode was varied
along the filament, for increasing L. The resistance was calculated as R = V'/I, where V is the voltage measured
across the voltage-sensing electrodes and I is the applied current. The resistance increases linearly with the
probing length L, thus demonstrating that the fiber network possesses a uniform conductivity. The black lines
represent linear fits through the data, which provide an estimate of the fiber conductivity (inset values) derived
asogp =4/ (Npmdp?b), where b is the fitted slope, N = 60 is the number of fibers in a filament (as determined
by microscopy), and dg = 26 nm is the cross-sectional diameter of the conductive core of a fiber [2, 44].
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Figure S3: Current/voltage measurements as a function of temperature. The two panels in each row display
data for a given fiber sheath segment of length L. Data are provided for 16 segments of different length. (Al
to P1) Two-probe current-voltage (I(V)) characteristics recorded at different temperatures. To illustrate the
change in shape of the I(V) curve, the current is normalized to the maximum current obtained for the given
trace. The top axis shows the applied electric field, E = V/L. The colour of the lines indicates the temperature
(linearly changing from red to black in the range 300 — 80 K and from black to blue in the range 80 — 4 K). See
colour bar next to panel (P1). (A2 to P2) The same dataset is replotted in terms of the conductance, G = I/V, as
a function the inverse temperature, 100/ T, for different bias voltages, V. The colour scale linearly ranges from
black (zero-bias voltage) to blue (maximum bias voltage). Note that this voltage range differs per segment. The
segment number and segment length are indicated in the right panels (see also tablel).
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Figure S4: Universal scaling behaviour of the conductance at low temperatures. (A to P) Scaling curves are
displayed for the 16 segments shown in Fig. S3. The plots display the scaled current I/ TA+! on the y-axis
versus the scaled bias eV/2mkg T on the x-axis. The I(V) data in the temperature range below 100 K are used.
The temperature at which individual data points were collected is indicated by the colour scale next to panel
(0). The green solid line provides a fit of the universal scaling relation (Eq. S21) to the data. The power law
exponent S is visually calibrated to obtain the best fit (precision + 0.5). The transition from the low-bias, high-
temperature regime to the high-bias, low-temperature regime occurs at a bias eV = 27 Ngkg T. This transition
point hence determines the parameter Ng, which signifies the apparent number of electron transfer steps in
the hopping chain. In panel (0) this transition point is indicated by the dotted line. The resulting values for
the power law exponent, f and the apparent number of hopping sites, Ng, are listed in tableS2. The parameter
Ng scales with the segment length (see fig. S8).
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Figure S5: High-temperature conductivity analysis. (A) Temperature dependence of conductance, G, as mea-
sured by the two-probe and four-probe approach for three different segments. As expected, the four-probe
conductance is systematically higher as it does not include the contact resistance. The two-probe and four-
probe data show a very similar temperature dependence, demonstrating that both methods capture the same
intrinsic temperature response of the conductance. The activation energy, Uy, is determined as the slope from
an Arrhenius plot, i.e., a linear fit of In(G) vs. 1/(kgT) for T > 100 K (see also fig. S6). We find similar activa-
tion energies for the two-probe and four-probe data: first segment (squares): 38.1 + 0.2 meV vs. 38.2 +2 meV;
second segment (stars): 41.2 + 6.7 meV vs. 35.7 2.3 meV; third segment (circles): 48.5 +2.3 meV vs. 50.6 + 3.6
meV. (B) Histogram of the room-temperature conductivity for all fiber sheath segments investigated (n = 53).
Conductivity was calculated via Eq. S1 as detailed in the Supplementary Text. Both four-probe (red bars) and
two-probe (blue bars) estimates are shown. Note, that four-probe values are typically higher than two-probe
values, due to the absence of the contact resistance. (C) Activation energy Up of all segments investigated (n
= 53) plotted against the room-temperature fiber conductivity, oo r. Two-probe data (blue markers) and four-
probe data (red markers) are provided. The activation energy, U, and the room temperature conductivity,
09,F, are uncorrelated (Pearson correlation coefficient = 0.29). While the variance in o f is rather large, the
variation in Uy is small.
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FIGURE S6
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Figure S6: Arrhenius temperature dependence of the conductance. (A) Low-bias conductance as a function
of temperature plotted above 50 K for two- and four-probe measurements, shown in blue and red respectively.
Measurements taken on four different segments. Arrhenius fits (performed for data where 7'> 100 K) and cor-
responding activation energies are indicated. (B) Histogram with the activation energies measured in n = 53
segments (blue: two-probe measurements; red: four-probe measurements). The mean activation energy is
42 +8meV (n = 53) and the mean goodness of fit across all samples as expressed by the coefficient of determi-
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FIGURE S7
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Figure S7: Schematic of a one-dimensional hopping chain. The vertical axis denotes the energy, U, and the
horizontal axis the position, x, along the chain. The yellow rectangles represent the electrodes that have an
applied voltage bias V (U = 0 at the right electrode and U = eV at the left electrode). The horizontal black lines
indicate the charge carrier sites, numbered from i = 1to i = Ng, where Ng is the number of sites. The parameter
a is the center-to-center distance between adjacent sites. There is an equal energy drop between neighboring
sites, A = eV/Ng. There are forward hopping rates, I'g, and backwards hopping rates, I'y, between any pairs
of sites, but only hopping rates between nearest neighbour sites are taken into account. The reorganization
energy, A, determines the activation barrier for hopping (see Supplementary Text).



2. QUANTUM-ASSISTED ELECTRON TRANSPORT IN MICROBIAL PROTEIN WIRES ACROSS

36 MACROSCOPIC DISTANCES
FIGURE S8
A B
4000 [ calculation ° 4000 | calculation °
2 Universal Scaling Fit Universal Scaling Fit
. 3000 3000
92000 NP 92000 a=102nm
1000 1000
0 Three filaments 0 Single filament
0 10 20 30 40 0 20 40 60 80 100120 140

L (pm) L (um)

Figure S8: Linear scaling of the number of hopping sites with the segment length. The number of hopping
steps, Ng, is determined in two ways. In a first approach (red markers), Ng is derived from the transition point
in the universal scaling curves (see fig. S4). In a second approach (green markers), Ng is calculated via Eq. 526
in the Supplementary Text. In both cases, Ng linearly scales with the segment length L (solid lines provide
linear fits, excluding offset). The center-to-center distance between hopping sites, a, is given by the slope
a = L/Ns. Both methods imply a values that are in excess of 10 nm. (A) Data from three independent fiber
sheaths. (B) Data obtained from different segments on a single fiber sheath.
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Figure S9: Comparison of electron transfer rates in the purple bacterium Allochromatium vinosum versus
the cable bacterium Electrothrix gigas. Experimental data are respectively obtained from Ref. 18 for A. vi-
nosum (green dots) and segment 6 (L = 40 um) from the dataset provided here (green dots). The hopping
model with a single effective vibronic mode (Jortner model; Suppl. Text) is fitted to both datasets (solid lines).
Fitting parameters for A. vinosum: h{w) = 60 meV, A = 1.2 eV and Vpa = 1 meV. For E. gigas, the measured
current was first converted into an electron transfer rate via Eq. S7 with parameters: voltage bias V = 0.5V,
Ng =850, Ng =60 and N¢ = 125. The parameters used for the Jortner model fit are: i{w) = 9 meV, A = 0.24 eV
and Vpp =6 meV.
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2.9. TABLES S1 AND S2

TABLE S1

Segment L Go OoF Ua Tc
(nm) (ns) (S/em) (meV) (K)

#1 4 850 1.1 40.1 +£18 50

#2 9 285 0.81 452+ 2.7 80

#3 4 69.3 0.087 43.1+25 100

#4 9 23.3 0.066 319+04 70

#5 16 80.4 0.42 53.4+0.2 90

#6 40 957 12 41.6+0.5 50

H7 40 305 3.8 534104 70

#8 34 6.20 0.066 418+ 15 80

#9 22 16.6 0.12 403+ 1.7 80
#10 28 6.67 0.060 433+ 19 80
#11 4 7.45 0.0094 33.0+£0.6 60
#12 4 2.72 0.0034 33.1+£0.7 70
#13 9 6.70 0.019 35.1+15 70
#14 16 3.64 0.019 40.1+0.6 80
#15 60 13.9 0.26 46.1+1.8 90
#16 140 2.30 0.10 39.8+ 2.7 70

Table S1: Parameters estimated from high-temperature conductance data. The first column displays the
sample identification number (16 segments have been analysed). L denotes the segment length probed be-
tween two gold electrode pads. Gy is the conductance measured at room temperature, T = 300 K. oy is the
fiber conductivity at T = 300 K calculated via Eq. S1. The activation energy, Uy, is determined by fitting the
Arrhenius relation (Eq. S15) to the high-temperature conductance data (T > 100 K; see fig. S5). The cross-over
temperature, 7¢, is the first temperature where the conductance as predicted by the Arrhenius fit is 20% lower
than the actually measured conductance.
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TABLE S2
# L A Vpa Iy a B Busc | hw. | Ngnum | @num | Nsusc | @usc
(pm) | (eV) | (meV) | (nsh)| (=) & &) mev)| (=) |mm)) (=) | (mm)
1 4 0.25 2.0 11 5.15 7.08 6.5 28 275 15 120 33
+0.02 +0.17 | +0.04
2 9 0.27 1.7 6.6 5.08 8.19 7.5 26 493 18 210 43
+0.01 +0.46 | +£0.12
3 4 0.26 0.42 0.49 3.78 6.94 6.5 29 279 14 110 36
+0.11 +0.33 | +0.02
4 9 0.22 0.35 0.51 3.73 6.17 6.5 27 562 16 150 60
+ 0.03 +0.53 | +0.07
5 16 0.30 1.4 3.6 4.93 8.28 7.5 29 924 18 450 37
+0.01 +0.87 | +0.14
6 40 0.24 8.0 228 7.67 6.68 8.0 27 2910 14 850 47
+0.01 +0.58 | +0.01
7 40 0.30 5.7 55 7.36 5.23 7.5 41 3840 10 900 44
+0.01 +0.24 | +0.05
8 34 0.25 0.36 0.38 5.44 4.76 6.0 37 1330 26 250 90
+0.02 +0.32 | +0.00
9 22 0.25 0.42 0.55 5.19 4.64 6.0 37 803 28 450 76
+0.02 +0.25 | +0.00
10 28 0.26 0.51 0.69 5.07 4.70 6.0 39 2580 11 280 102
+ 0.02 +0.17 | £0.01
11 4 0.21 0.14 0.089 | 4.60 4.01 5.5 36 278 14 60 67
+0.01 +0.16 | +0.00
12 4 0.21 0.083 | 0.030 | 4.44 4.39 5.5 34 262 15 70 57
+0.01 +0.13 | £0.01
13 9 0.23 0.16 0.10 4.68 4.37 5.5 36 368 24 100 90
+0.01 +0.23 | +£0.00
14 16 0.25 0.18 0.10 4.94 495 5.5 36 579 38 180 92
+ 0.01 +0.12 | +£0.01
15 60 0.28 0.73 1.16 5.22 4.82 5.5 41 1930 31 600 100
+ 0.02 +0.10 | £0.01
16 | 140 | 0.24 0.45 0.68 | 5.36 4.95 6.0 35 4160 34 1400 | 100
+ 0.01 +0.22 | £0.01

Table S2: Parameters estimated from fitting the proposed hopping model. The first column dis-
plays the sample identification number (same 16 segments as in tablel). L is the segment length
between two electrode pads. The reorganization energy, A, is obtained by fitting the Marcus ex-
pression (Eq. S12) to the high-temperature conductance data (7' > 100 K; see Fig. 2.3A). The elec-
tronic coupling, Vpa, is obtained via Eq. S27. The transition rate, I'g, at 300 K is calculated from the
Marcus rate expression (Eq. 12) using the values for A and Vpj listed. The power law exponent, «,
was obtained by fitting the temperature-based power law G o< T% to the conductance data in the
region 20 - 100 K (Fig. 2.3C). The power law exponent, 3, was obtained by fitting the electric field-
based power law (Eq. 522 and Eq. S8) to the conductance data for T < 10 K (Fig. 2.3D). An alterna-
tive value for this exponent, Sysc, is obtained by fitting the universal scaling curve (fig. S4). The
characteristic vibration energy, 7iwc, was determined via Eq. S19. The number of sites Ng Nynm was
obtained by Eq. S26 and the corresponding center-to-center distance is aNyym = L/ Ns Num .- Alter-
natively, the number of sites Ng yysc was also independently obtained from the universal scaling
curves (fig. S4) and the corresponding center-to-center distance between sites, aysc = L/ Ns ysc
is also given.
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2.10. SUPPLEMENTARY TEXT

2.10.1. CALCULATION OF THE FIBER CONDUCTIVITY
The fiber conductivity, og r, at room temperature (7 = 300 K) was calculated from the

experimental I/V data as:
L 4L

= Go—.
NpAfp Ngmdy

oo =Go S
In this, Gy represents the low-bias conductance of a single fiber sheath as determined
at T =300 K from the slope of the I/V curve, L is the length of the fiber sheath segment
investigated as determined by microscopy, Ar is the cross-sectional area of one fiber,
and Nr is the total number of fibers embedded in the fiber sheath. Experimentally de-
termined values for Gy and L are given for different segments in table 1. The number
of parallel fibers Ny is determined by scanning electron microscopy or atomic force mi-
croscopy on individual filaments[41] and is here Np =60 (see fig. S1). The cross-sectional
area is taken the same value for all segments: dr = 26 nm is the diameter of the conduc-
tive core of an individual fiber, which is invariant across different filaments[44].

2.10.2. HOPPING MODEL OF ELECTRON TRANSPORT IN CABLE BACTERIA
GEOMETRY OF THE CONDUCTIVE NETWORK

Cable bacteria possess a set of Nr fiber structures in their cell envelope, which are ar-
ranged in parallel and run continuously along the whole length of cm-long filaments
[41] (Ng = 60; see above). The fibers themselves consist of a conductive core (diame-
ter dr = 26 nm), surrounded by an electrically insulating shell [44]. The large ratio of
length (1 cm) to diameter (26 nm) suggests that the electron transport in the fibers is
one-dimensional. Still, there could be multiple conduction channels acting in parallel
in a single fiber, as dr far exceeds the typical spacing between charge carrier sites in
metalloproteins (1 —2 nm).

At present, it is not known how many conduction channels are actually present. Here,
we assume that a conductive fiber core consists of multiple parallel molecular conduc-
tion paths, each dp = 2 nm in diameter. Assuming a hexagonal packing of cylinders, the
number of parallel channels in one periplasmic fiber can then be estimated as N¢ = 125.
The total number of parallel paths in a given cable bacterium filament thus amounts to
Np = Np - Nc = 7500. This large number of conduction channels should be regarded as
an upper limit of what’s physically possible, thus providing a conservative estimate for
the electron transfer rate. If less channels are present, then the conductivity of individual
channels must be higher, and this in turn also necessitates higher electron transfer rates
(see discussion in main text).

CURRENT THROUGH A SINGLE CONDUCTION CHANNEL

Each conduction channel is modelled as a one-dimensional chain of Ns equidistant
hopping sites, which serve as temporary localization centers of an electron during the
hopping process (fig. S7). The site at position, i, along the chain is characterised by the
site energy, U;. Transitions between sites represent the quantum-mechanical tunneling
of electrons, and are characterised by a forward rate, I'; j, and a backward rate, I';. The
ratio between forward and backward rates is governed by the detailed balance relation
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(56, 78]:
Tij/T = exp(A/kpT). (S2)

Here, kg is the Boltzmann constant, T is temperature, and A = U; - Uj is the driving force,
i.e., the difference between the site energy of the initial position of the electron, Uj, and
that of its final position, Uj. In our model, only nearest neighbour hopping is consid-
ered (j = i +£1). Moreover, the hopping sites are assumed to be identical and periodic in
structure, with the same center-to-center distance a between them (fig. S7). As sites are
identical, the transition rate is the same for every pair of sites (I'ij+1 = I'r; I'i+1,i = ['L).
Moreover, if we connect the hopping chain to an electrode on either side, and impose a
voltage bias V between the electrodes, the energy difference between two sites is con-
stant and amounts to A = eV/Ng (assuming there is no voltage drop over the electrode
interface). The current between two consecutive hopping sites along a single conduction
path is given by:

I = e[Tgrpi(1—-pis1) —Trpin (1-pi)], (83)
where pj and pj4) are the occupation probabilities at the consecutive hopping sites, and
eis the elementary charge (i.e., the magnitude of the charge carried by a single electron).
This expression embeds the Pauli exclusion principle: an electron can only jump to a
charge carrier site when this site is vacant.

Because the current is not dependent on the pair of sites where it is calculated, only
certain combinations of p; are possible. We make the simplification that our hopping
chain is optimally filled for conductance (p; = 1/2), using the following justification. Be-
cause in the electrode many electron states can contribute to the effective hopping rates
at the interface, these interfacial rates can be expected to be far greater than the internal
hopping rates, I'g 1. The occupation probability of the edge hopping sites, p; and pn,
are then expected to follow the Fermi-Dirac distribution in the metal electrodes:

1
1+exp (#)
Here, prp is the occupation probability of an electron state inside the electrode and € is
the energy difference of this electron state with respect to the energy of the electrode. If
e=0fori=1,N (seefig. S7), then p; = py = 1/2 and no occupancy difference is expected
to build up in the hopping chain, because all internal hopping rates I'g |, are the same.
Therefore, all sites in the chain can be expected to have the occupancy p; = 1/2.

Accounting for Np parallel conduction channels, and implementing the detailed bal-
ance relation, the total current along a single filament, can be expressed as:

PrD = (S4)

1
IZNPIPZEZNP(FR—FL). (85)
Implementing the detailed balance relation, we obtain:
1
I= eZNpl”R(l—exp(—A/kBT)). (S6)

Two separate regimes can be discerned. In the low-bias, high-temperature regime (kg T’ >
eV /Ng), the current in Eq. S6 simplifies to:
e eV

I= —NPFR

—_— S7
4 NskgT 57)
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Alternatively, in the low-temperature, high-bias regime (eV/Ns > kg T), the exponential
term in Eq. S6 vanishes, and the current reduces to:

1
I= e;}NpFR. (88)
The objective is now to find a suitable expression for the transition rate, I'g.

TRANSITION RATE ESTIMATES

The fiber conductivity o can be obtained from the current expression in the low-temperature,

high-bias regime, Eq. 57, as:

I L e2 LN¢
o=— =TR——%
14 N]:AF kBT NsT[dF

(S9)

As described above, the fiber sheath has Ny = 60 fibers with a diameter of dr = 26 nm,
and a cross-sectional area Ap = ndﬁ/ 4. Moreover, we estimate that a maximum of N¢ =
125 parallel conduction channels can be integrated in a single fiber (see 'Geometry of the
conductive network’). The above expression can be rearranged to provide the transition
rate I'p as a function of the measured conductivity

kg T md?
IR=0——+, (S10)
e alNc
In this, a = L/ Ng represents the mean center-to-center distance between two consecu-
tive sites.

Conductivities on the order of o = 100 S/cm have been estimated for the cable bac-
terium fibers (see also fig. 52). Moreover, typical center-to-center distances, a, between
the cofactors in metalloproteins are in the range of 0.5 < a < 2 nm. For a typical cable bac-
terium filament (L = 1 cm) this hence translates in between 5 and 20 million sites along
the hopping chain. Using these numbers, Eq. 19 predicts that the transition rate must
range between I'p = 13 — 54 x 10'2 s~ 1. This hopping rate exceeds the speed limit of 10'3
s~! for non-adiabiatic electron transfer [71], thus illustrating the theoretical challenge of
applying multistep hopping models in cable bacteria (see discussion in main text).

2.10.3. TRANSITION RATE MODELS

At low temperatures, the energy stored in vibrational modes can stimulate the hopping
process. To account for this effect, several authors have formulated an extended, quan-
tum version of the semi-classical Marcus electron transfer theory. These models ex-
plicitly account for vibrational modes that suitably couple to the electron transfer. Two
prominent examples are the single effective mode formulation presented by Jortner [59]
and the multiple mode formulation developed by Egger [56]. Below, we will integrate
these two vibrational model formulations in the multistep hopping chain model intro-
duced above. But first, we introduce the classical Marcus rate formalism as a reference
for these more elaborate quantum-based models.
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HIGH-TEMPERATURE REGIME: THE MARCUS MODEL FORMULATION

At a sufficiently high temperatures, the thermal energy, kg7, sufficiently exceeds the
quantum energy, 7iw, of the intramolecular vibrations, and all vibrations are then ther-
mally excited. Under these conditions, the transition rate between neighbouring sites is
given by the classical Marcus rate expression [69],

_2z Voa ex _(’l_mz] (S11)
o \/agAkg T 4AkgT

Here, A is the reorganization energy, Vpj is the electronic coupling, and A = eV/ Ng is the
energy difference between adjacent sites introduced above. Upon substitution of this ex-
pression into the high-temperature regime current (Eq. S7), we obtain the conductance:

2 V2 —(A-4%)?
G=_9Ne 2T Tpa o Ns (S12)
ANskgT h VAanAkg T AAkg T

Because the bacterial filaments investigated are very long (Ns > 102), the driving force
A = eV/Ns in the low-bias regime (V < 0.5 V) will be < 5 meV, which is substantially
smaller than the reorganization energy, A = 270 meV (Fig. 2.3). Consequently, the expo-
nent in Eq. S12 reduces to e~*/4%8T and the conductance relation simplifies to:

G = go(kgT) ™% ?exp(~ ). (S13)

4kgT
The pre-factor gy is given by:
_éNp2m Vj,
87N 7 Vi

Eq. S13 was fitted to the G(T) data to provide values for A and gy (non-linear least squares
fit of G versus 1/T as displayed in Fig. 2.3A; values for A and Vp, tabulated in table S2).

This fitting procedure assumes that gy itself is temperature independent. However,
it is known that the electronic coupling Vp, is weakly temperature dependent [70]. Con-
sequently, the exact temperature dependence of the pre-exponential factor in Eq. S13 is
unknown. As a simplification, one can leave the T=3/? dependence out of the equation,
to arrive at the classical Arrhenius relation:

(S14)

G ( Ua ) (S15)
=giexp|-——].

81€xp T
Here, the pre-factor g = go(kg T) —3/2 js now considered to be a temperature-independent
parameter. This basic Arrhenius relation was also fitted to the high temperature conduc-
tance data to arrive at values for the activation energy U, (fig. S5; table 1).

LOW-TEMPERATURE REGIME, ONE EFFECTIVE VIBRATIONAL MODE: THE JORTNER MODEL
FORMULATION

When the quantum energy of vibrations 7iw becomes smaller than the thermal energy,
kg T, the Marcus rate expression (Eq. 12) is no longer valid. In the Jortner model formula-
tion, vibrational modes are characterised by a single effective mode (w), which provides
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a suitable average across all molecular vibrations. The corresponding transition rate be-
comes [59]:

Tr =To-exp(-S(27p + 1)) - Ig(2S (7 (71 + 1) %) - (7 (72 + 1) 7'2. (S16)

In this expression, I’y is a temperature-independent pre-factor, S = 1/7i{w) is the electron-
phonon coupling strength associated with (w), g = 1/(exp(7{w)/ kg T) — 1) is the Bose-

Einstein distribution for the single effective mode (w), the exponent g = %w) is the ratio

between the site energy drop between hopping sites and the mean quantum vibrational

energy, and I, is the modified Bessel function [59]. One can show that at high tempera-

tures (when 71{w) < kg T), the Marcus rate expression is recovered.

The Jortner expression for the transition rate, Eq. S16, can be combined with the
expression for the current along a single filament, Eq. S6, in order to estimate the con-
ductance G as a function of temperature and the electric field strength. The results are
given in Fig. 2.2C and D. At high temperatures, the conductance follows an Arrhenius
type dependence (Fig. 2.2C), while at low temperatures (kg T < Fi{w)), the conductance
becomes temperature-independent (Fig. 2.2D). This calculated G(T, E) response shows
a good agreement with the data.

LOW-TEMPERATURE REGIME, MULTIPLE VIBRATIONAL MODES: THE EGGER MODEL FOR-
MULATION

In the Egger model formulation[56], it is assumed that many vibrational modes are cou-
pled to the electron hopping process. The phonon spectral density function J(w) de-
scribes how much a certain vibrational mode contributes to the reorganization energy[79]:

Azhf w](w)dw. (S17)
0

The Egger model formulation assumes that the phonon spectral density function has an
Ohmic form and can be expressed as:

-w/wc

J(w)=(p+2) (818)

o
Here, w( is the characteristic frequency of the spectrum. For the Ohmic spectral density,
the reorganization energy is directly proportional to the characteristic frequency, w¢, as
stated in the original derivation of the Egger model [56]:

A= (B+2)hwe, (S19)

Since the spectrum starts at zero frequency, some modes remain thermally activated
at the lowest temperatures. This explains an important difference between the Jortner
and Egger model formulations. Whereas in the Jortner model, the low-bias conductance
remains constant at cryogenic temperatures, this is not the case in the Egger model: the
low-bias conductance shows a power law behaviour, in which the conductance further
decreases as the temperature decreases. Effectively, the modes that remain thermally
activated at low temperatures force the low-bias conductance to die out.
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When the temperature is much lower than the characteristic energy of vibration (kg T <

hw,), the Egger model provides following expression for the transition rate [56]:

1 VB, (2nkBT)ﬁ“
I'r

_ o ( eV ) (S20)
~ Y(B+2)h hoe P\ oNGksT )

Here, y is the complex gamma function and the exponent § provides a measure for the
electron-phonon coupling strength. If we combine the expression for the current along
a single filament, Eq. S6, with the above expression for the transition rate, Eq. 520, we
obtain:

e
1+B/2+i—
Y( P +ZZJrNs,IcBT)

hwe

eV 2

—_— 1 124 i——F—
ZNskBT)‘Y( +ﬁ +127[NskBT)

The pre-factor Ay combines all temperature-independent parameters. Note, that the Eg-
ger model centrally depends on the assumption that the phonon spectral density func-
tion has an Ohmic form. However, at present, the details of electron-phonon coupling in
the conductive fibers of cable bacteria are unknown, and so, alternative shapes phonon
spectral density function could be relevant [79].

I= AoTﬁ”sinh( (S21)

UNIVERSAL SCALING CURVE

Closer inspection of Eq. S21 reveals that the I(V) data can be replotted as a single uni-
versal scaling curve, provided one normalizes the bias voltage as eV /(2nkg T) (the hori-
zontal axis) and rescales the current as I/ TP+ (vertical axis). If the Egger model applies,
then the I(V) data collected at different temperatures should fall onto a single curve,
only depending on Ap, B, and the number of hopping sites Ns. These universal scal-
ing plots are shown in fig. S4. In the low-bias, high-temperature regime (eV/Ns < kg T),
the approximation sinh(x) = x can be made and then G = I/V « TP. Accordingly, one
expects the conductance to follow a power law dependence on temperature, which is
also seen in the data (Fig. 2.3C). Oppositely, in the high-voltage, low-temperature regime
(eV/Ns > kg T), the transition rate is given by [56]:

on V3, ( eV )ﬁ“e ( eV )
=— xp [ — .

7 y(B+2)hwe \ Nshwe P\™ Nohioe
If we combine this expression with that for the current in the high-bias, low-temperature
regime (Eq. S8), the conductance becomes:

R (S22)

_ENe2n Vb, ( ev )ﬁ (523)
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In this equation, we have dropped the exponential decay factor in Eq. S22, as one can
prove that for small x = eV /(Nshw,), this term is very close to one. The overall result is
that the conductance depends on the bias voltage via a power law: G oc V7. This relation
is indeed seen in the data (Fig. 2.3D).

THE DISTANCE BETWEEN HOPPING SITES
Each conduction channel is modelled as a one-dimensional chain of Ng equidistant
hopping sites with the same center-to-center distance a = L/ Ns between them (fig. S7).
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We can estimate the number of hopping sites Ns from our data in two independent
ways. In a first approach, we can extract Ng directly from the universal scaling curve
(fig. S4). The scaling curves show a pronounced inflection point at the transition from
the low-bias, high-temperature regime towards the high-bias, low-temperature regime.
This transition occurs at a bias

eV =2nNskgT (524)

As a result, the value of eV /27 kg T at the inflection point of the scaling curve provides
a direct estimate of the apparent number of hopping steps Ns. In fig. 54, panel (O), this
transition point is indicated by the dotted line. In table S2, the resulting values of Ns ysc
are listed for each of the 16 segments investigated. The corresponding estimate for the
center-to-center distance aysc = L/ Ns ysc ranges between 33 and 102 nm.

In the second approach, a value for Ny is numerically calculated from other param-
eters available. To this end, we first note that for low temperatures and high voltages
(eV/Ns > kgT), the conductance scales as G = By VP where By is the pre-factor in the
power law fit. Using Eq. 523, this pre-factor can be explicitly written as:

2 Np 2 % P
= Ne2m Vi ( e ) (525)
4 Ns i y(B+2)(hwe)? \ Nsho
Rearrangement provides an expression for the number of hopping sites:
/
_ e |eNp2nm VEs p e (526)
ST hoe | 4 h hocy(B+2) Bo

This expression requires an estimate for the electronic coupling Vpa. To arrive at this,
we note that the pre-factor gy (as derived from the fitting of the Marcus rate expression,
Eq. S14) can be transformed into an expression for the electronic coupling:

h 4Ns
Vs = ———Vi4nl|. S27
DA 8o 2 esz 0 ( )
Substitution of Eq. S27 into Eq. S26 finally gives:
1/8
e 4 8o
Ng=—|——"7F7"F5—=— (528)
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From this, Ng can be calculated provided that we supply parameters that are fitted in
the low-temperature regime (the pre-factor By, the coupling exponent S, the character-
istic frequency fiw.) as well as parameters that are determined in the high-temperature
regime (pre-factor gy, reorganization energy A).

The above derivation essentially assumes that the electronic coupling is independent
of temperature (the high-temperature value is substituted into the low-temperature ex-
pression). It is, however, known that Vpa is enhanced by thermal fluctuations. So in
reality, the value of Vps could be smaller at lower temperatures, and as a consequence,
the value of Ng will be overestimated by Eq. S28. This could explain the differences ob-
tained for Ng by the two separate estimation procedures (see fig. S8). However, in high-
mobility organic semiconductors, this temperature effect changes the Vpa value by less
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than one order of magnitude [70]. Because of the power law dependence 1/ in Eq. 528,
such a tenfold difference in electronic coupling only causes a two-fold difference in the
Ns estimate.

The resulting values of Nsnuwm are listed in table S2 for all 16 segments investigated.
The associated center-to-center distance anym = L/ Nsnum ranges between 10 and 36
nm, which is a factor of 3 lower than the corresponding estimate based on the universal
scaling curve. fig. S8 shows that the number of hopping sites linearly scales with the
segment length. This trend is seen for both approaches.
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ABSTRACT

The recent discovery of cable bacteria has greatly expanded the known length scale of
biological electron transport, as these multi-cellular bacteria are capable of mediating
electrical currents across centimeter-scale distances. To enable such long-range con-
duction, cable bacteria embed a network of regularly spaced, parallel protein fibers in
their cell envelope. These fibers exhibit extraordinary electrical properties for a biolog-
ical material, including an electrical conductivity that can exceed 100 S/cm. Tradition-
ally, long-range electron transport through proteins is described as a multi-step hop-
ping process, in which the individual hopping steps are described by Marcus electron
transport theory. Here, we investigate to what extent such a classical hopping model
can explain the conductance data recorded for individual cable bacterium filaments. To
this end, the conductive fiber network in cable bacteria is modelled as a set of paral-
lel one-dimensional hopping chains. Comparison of model simulated and experimental
current(I)/voltage(V) curves, reveals that the charge transport is field-driven rather than

This chapter is a version of the article A model analysis of long-distance electron transport in cable bacteria),
published in the journal PCCP.
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concentration-driven, and there is no significant injection barrier between electrodes
and filaments. However, the observed high conductivity levels (>100 S/cm) can only be
reproduced, if we include much longer hopping distances (a > 10 nm) and lower reor-
ganisation energies (1 < 0.2 eV) than conventionally used in electron relay models of
protein structures. Overall, our model analysis suggests that the conduction mechanism
in cable bacteria is markedly distinct from other known forms of long-range biological
electron transport, such as in multi-heme cytochromes.

3.1. INTRODUCTION

Electron flow through proteins is central to the functioning of living organisms, as it con-
nects the sites where oxidation and reduction half-reactions occur that support vital bio-
chemical processes [80]. The best studied systems in terms of biological electron trans-
port are the membrane complexes that enable photosynthesis in chloroplasts or respi-
ration in mitochondria [47, 55]. These protein structures incorporate a series of non-
protein cofactors (e.g., hemes, FeS clusters) that act as relay centres for electron trans-
port. Electrons migrate through the electrically insulating protein medium by quantum-
mechanical tunneling from one center to the next. As the tunneling rate exponentially
decreases with distance, cofactors must be closely spaced (< 1.4 nm apart) to allow for
sufficiently fast rates (> 103 s7! time scale) that can sustain metabolism [55]. Typically,
electron transport chains incorporate up to 10-20 cofactors, and so the overall length
scale of conduction is limited to < 20 nm. This has fueled the idea that biological elec-
tron transport takes place at the nanometer scale, and so, any electron current exceeding
3 nm in biology is generally referred to as “long-range electron transport” [47].

The recent discovery that cable bacteria can channel electrical currents across cen-
timeter distances [1], i.e. 10% times further, thus gives a radically new meaning to the
concept of “long-range electron transport” [49]. Cable bacteria are long, motile, fila-
mentous bacteria that thrive in the surface sediments of rivers, lakes, and oceans [81—
84]. Their respiratory metabolism couples the oxidation of free sulfide (H>S) to the re-
duction of oxygen (O3), which is an energetically favorable reaction [85, 86]. The remark-
able feature is that these two half-reactions are carried out by different parts of the long
filaments, and so the sites of oxidation and reduction can be millimetres to centimetres
apart [1]. To ensure that the redox half-reactions remain electrically coupled, electrons
are internally conveyed through the cable bacterium filaments [2, 3, 43].

To mediate this centimeter-scale electron transport, cable bacteria harbor an elec-
trical grid consisting of thin protein fibers embedded in the cell envelope [2] (Fig. 1a).
Recent studies have resolved the intricate architecture of this highly organized fiber net-
work [41, 44, 50] (see Fig.1b and discussion below). Additionally, it has been shown that
these protein fibers display extraordinary electrical properties for a biological material.
Electrical measurements demonstrate that the fiber conductivity can reach up to 100
S/cm, which is comparable to that of highly doped conductive polymers [2, 45]. Because
of this, the protein fibers are regarded as a promising new material for bio-based elec-
tronics [2]. Such technological application however necessitates the resolution of some
fundamental questions. What mechanism allows for such highly efficient centimeter-
scale conduction in proteins? Does the electron transport in cable bacteria bear any
similarity to the mechanisms seen in the well-studied protein systems of photosynthesis



3.2. MODEL FRAMEWORK 51

and respiration?

At present, the molecular structure of the fiber network remains unresolved, and as
a result, the conduction mechanism remains elusive. Model analysis, however, allows
us to explore potential mechanisms. Nanoscale electron transport across proteins, as
seen in multi-heme cytochromes, is conventionally described by the multistep hopping
formalism [48]. Here, we investigate whether this same model formalism can describe
the highly efficient, centimeter-scale electron transport in cable bacteria. In the multi-
hopping picture, it is assumed that charges are temporarily localized at particular sites,
and that electron transport occurs by incoherent “hopping” between consecutive sites
along a chain. The electron transfer during a single hop is described by Marcus theory,
which requires that the reorganization energy, A, is significantly larger than electronic
coupling, H, so that localized charge carriers form in the initial and final states [15].
These Marcus-type hopping models comprise the default modelling approach for bio-
logical conduction, and have been used previously to describe nanometer scale electron
transport in multi-heme cytochromes [23] and protein-based molecular junctions [87-
89], as well as micrometer scale electron transport in the nanowires of metal-reducing
bacteria [24, 71, 90].

The distance over which electron transport occurs in cable bacteria is however very
different from the length scale for which the Marcus multi-stepping model has been orig-
inally developed. To test the validity of the Marcus formalism, we describe the conduc-
tive fiber network in cable bacteria as a set of parallel one-dimensional hopping chains.
This is the most parsimonious model description, given that the molecular structure of
the fibers still remains unresolved. The model describes the electron transport through
the hopping chains when a voltage bias is imposed by connecting electrodes (Fig.1). In
our analysis, we simulate the site occupancy along the chain as well as the resulting cur-
rent/voltage response, and investigate the relationship between the hopping rate and
the electrical conductivity. The model output is compared to an experimental dataset
that was recently obtained by detailed electrical characterization of individual fiber net-
works of cable bacteria [91].

3.2. MODEL FRAMEWORK

3.2.1. THE CONDUCTIVE STRUCTURE IN CABLE BACTERIA

Cable bacteria possess a set of Ng fibre structures in their cell envelope, which are ar-
ranged in parallel and run continuously along the whole length of the centimeter-long
cable bacterium filaments (Fig. 1a, b). These fibres consist of a conductive core (diame-
ter dp = 26 nm), surrounded by an electrically insulating shell[44], and always appear to
have a similar geometry[41]. Thicker cable bacteria simply embed more parallel fibers
in the cell envelope (INr ranges from 15 to 75[41]). Here, we adopt Nr = 60 as a refer-
ence value, which is a characteristic value for Electrothrix gigas, the larger strain of cable
bacteria [42] that was used in our electrical characterization experiments.

The large ratio of the fiber length (107 nm) to the fiber diameter (26 nm) suggests that
charge transport in the fibers is largely one-dimensional. Still, the fiber core diameter
is considerably larger than the typical spacing between charge carrier sites in metallo-
proteins [55] (= 1 nm). Hence, there could be multiple conduction channels acting in
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Figure 1: Conduction in cable bacteria is modelled as a set of parallel one-dimensional hopping chains (a)
Scanning electron microscope image of a cable bacteria filament. The outer surface shows a set of parallel
ridges, each embedding a conductive fibre. (b) Schematic of the conductive structure of cable bacteria based
on recent investigations. A filament consists of a long chain of cells. Electrons are uploaded through H> S
oxidation, transported along the filament, and downloaded via O reduction. The cell envelope incorporates
a set of conductive fibres, with diameter dg, that consist of thinner fibrils, with diameter d¢, which each act
as a single independent conduction path. (c) A single conduction path is schematically represented as a linear
chain of hopping sites (blue stripes). Between two adjacent sites (i,i + 1), there is a forward transition rate,
T'; i+1, and a backward transition rate, I'; 1 ;. At the terminal ends, electron exchange occurs with electrodes
or donor/acceptor molecules, formally represented by the sites i =0 and i = N + 1.

parallel in a single fiber. Here, we assume that each conductive fiber core consists of N¢
parallel conduction paths, each d¢ =2 nm in diameter (Fig. 1b). Assuming a hexagonal
packing of cylinders, this implies that each fiber embeds N¢ = 125 parallel conduction
channels. This large number of conduction channels can be regarded as an upper limit,
thus providing a conservative estimate for the conductivity estimated by the model. If
less channels are present, then the conductivity of individual channels must be higher.
We disregard electron transport between channels, and so the total electrical current
through a single bacterial filament is due to electron transport in Np = N - Nc = 7500
parallel one-dimensional conduction channels.

3.2.2. ELECTRON FLOW IN A ONE-DIMENSIONAL HOPPING CHAIN

Each conduction channel is described as a one-dimensional chain of charge carrier sites
that spans a length L. From a biological perspective, a charge carrier site can be inter-
preted as a electron-carrying cofactor embedded in a non-conductive protein matrix.
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Parameter Symbol | Units Value
Fibre diameter dp nm 26
Number of fibres N - 60
Conduction channel diameter dc nm 2
e | N | - | s
Total number of parallel Np ) 7500

conduction channels

Table 1: Parameterization of the conductive network in cable bacteria.

Electrons are assumed to be solely transported by hopping, i.e., sequential tunneling
through the protein matrix from one cofactor to the next. A site can be in two states: un-
charged (carrying no electron; X;) or charged (carrying an electron; X;). The resulting
electron transfer can be represented by a biomolecular self-exchange reaction between
electron carriers

X; +Xj— Xi+X;. M

Between any pair of charge carrier sites i, j, the forward transition rate is denoted by I'; ;
and the reverse rate is given by I'; ; (Fig. 1c). To keep the analysis tractable, we assume
that these transfer rates are only dependent on the present state of the protein complex,
and not on past states (Markov assumption). The hopping transitions at different loca-
tions are also assumed to be uncorrelated [92].

When the energies of the departure and destination sites differ (U; # Uj), energy
must be exchanged with the environment during the electron transfer from i to j to en-
sure energy conservation. If this energy is dissipated to an environment at constant tem-
perature T (heat bath), the ratio of the transition rates must follow the detailed balance
relation [56, 78]:

LTE
Lji

Y ) @)

ks T

where kg is Boltzmann’s constant. The electron flow (i.e., number of electrons trans-
ported per unit time) between two sites is given by:

Ji,j=Tijpi(1=pj). 3)

Here, p; is the site occupancy. An electron can only jump to a site when it is vacant (Pauli
exclusion principle without electron spin). The transition rate is hence weighted by the
probability that the starting site is occupied, p;, and that the destination site is empty,
(1- pj). The dynamics of the site occupancy is governed by the combined effect of all
electron currents that arrive at or leave a given site:

dpi _ g
E—;(J],l Jij)- 4)
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The net electrical current that passes through the chain segment between sites i and i +1
becomes:

Livi=e Y. pm Y Tmal=p—e Y pm Y Tmall—pp. ©6)

m=1,..,i n=i+1,..,N m=i+l,..,1 n=1,.,i

The quantity e = 1.6-107'° C is the elementary charge. The first term represents the
electrons travelling to the right (i.e. the forward currents passing site i), while the second
term represents the electrons travelling to the left (i.e. the backward currents passing
site i +1). Our interest is in the steady state situation, where no charge builds up in the
hopping chain, and so the net electron flow from/to a particular hopping site must be
zero (dp;i/dt = 0). In the steady state, the current must be the same across all segments
the chain (I; ;41 = ).

3.2.3. NEAREST NEIGHBOUR HOPPING

Electron tunneling in protein structures is known to have a strong exponential depen-
dence on distance [11, 93-95]. Therefore, the chance that an electron hops to a remote
site in the chain is improbable. We can implement this by only allowing transitions
between adjacent sites, i.e., nearest neighbour hopping. Moreover, when the protein
structure that forms the conduction channel is highly regular, all charge carriers will be
identical, and the interdistance and site energy (without an imposed electrical field) will
show little variation. As a result, the transition rates between neighbouring sites will be
identical throughout the whole chain (I'; ;41 = I'r and I';4;,; = I't). Assuming nearest
neighbour hopping in a regular chain with identical sites, the net current (Eq. 5) simpli-
fies to:

I=el'rpi(1-piv1) —el'Lpivi(1—pi). (6)
Similarly, the site occupancy balance reduces to
api _ ..
dr RPi-1(1=pi)) =Trpi(1=pi-1) +Trpi(1 = pi+1) —Trpiv1(1— pi). (7)

When the hopping chain is very long, as is the case for cable bacteria, we can describe the
occupancy profile as a continuous function of the position along the chain, p;+1 = p(x; +
a), where x; is the center position of site i, and a is the center-to-center distance between
sites. The total number of sites in the chain hence amounts to N = L/a. Expansion to
second order,

dp d’*p
dx |, ty 2 |dx? |,
and substitution into the site occupancy balance (Eq. 7), leads to the differential equa-
tion:

pxizta)=px)ta , (8)

d? p,2 A
—+— tanh

d x2 ( 2kp T)
Here, A=U; - Uj;1 =eV(1 - a)/ N represents the difference in site energy between two
sites (a = a1 + a g specifies the total voltage drop at the electrodes; see Fig. 2 and below).

In a similar fashion, the normalized current can be written as (see S.1.):

(2 —1)@—0 9)
p dx

L—(l—ex ( A)) ()1 -px) —ad—( (x) + ex ( A)(1 (x))) (10)
eFR_ p kT p p d p p p
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For a given temperature T, site spacing a and site energy difference A, the site occupancy
profile p(x) along the chain can be calculated from Eq. 9, and then implemented into
Eq. 10 to provide the current.

U No bias U With bias
A
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Figure 2: Electrical investigation of cable bacteria filaments between electrodes. (a) Schematic of the elec-
trical characterization approach. A filament is deposited onto insulating silicon dioxide (SiO2) substrate and
connected to two gold (Au) electrodes with a gap length L. Electrons flow from one side to the other, through
the conductive fiber network of the filament. (b) Site energy vs. position along the hopping chain for the case
without any voltage bias. Transfer rates between hopping sites are denoted I', and injection/ejection rates
from electrodes J. Electron states in the metal electrode (dark yellow) are filled up until the chemical potential,
chosen as p = 0. Site energies are equal to the injection barrier (Uj = Up). (c) Site energy vs. position for an
electrode bias V. The left electrode is at chemical potential yj, = eV, and the right electrode at ug = 0. An
electron looses an energy aj eV at the biased electrode and ageV at the grounded electrode, while the rest of
the energy is lost in the hopping chain (eV (1 — &) with a = ay, + ag). As long as the voltage drops linearly inside
the hopping chain, there is an constant voltage drop between adjacent hopping sites, A = eV (1 —a)/N. The
injection barrier at the left electrode is Uy — a1 eV, and the other side, itis Uy + ageV.

3.2.4. CHARGE TRANSFER TO AND FROM THE CHAIN
The site occupancy equation (Eq. 9), which governs the electron transport within the
hopping chain, requires suitable boundary conditions. For this, we need to consider how
electrons are either injected or ejected from the chain at the left and right boundaries.
Two different situations can be considered: the metabolic operation of cable bacteria
under in vivo conditions (in which electrons are supplied and removed through redox
half-reactions; Fig. S2 in the S.I.), and the situation under which cable bacteria are elec-
trically investigated in the laboratory (in which electrons are exchanged with electrodes;
Fig. 2). The latter will be the focus of our analysis here, as it represents the situation
under which the conductance data are collected.

In the laboratory, the conductance of cable bacteria is studied by connecting indi-
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vidual filaments to metal electrodes [2, 45, 91]. A bias voltage, V, is applied to the two
terminal electrode contacts, and the electrical current, I, that flows through the cable
bacterium segment is recorded (operation of the electrode set-up is illustrated in Fig. 2a).
If charge injection from the electrode is non-limiting (J > I'g 1 ; see Fig. S3 and additional
derivations in S.1.), the occupation probability at the edges reads:

1 1
PLR= = (11)

Upr— - Up+ % :
exp(—L'iB#L'R)+1 exp(—0 ,é;L'TRe )+1

In this expression, Uy r is the site energy of the start x = 0 and end x = L of the hopping
chain and py,r is the chemical potential of the left/right electrode (Fig. 2b). The site en-
ergy at the terminal ends is given by Uy, r = 1, r+Up a1 reV. In this approximation, the
edge occupancies, py g, follow the Fermi-Dirac distribution of the corresponding elec-
trodes. In the general case, an injection barrier, Uy, is present (difference between Fermi
level of the electrodes and the site energy in the hopping chain), and voltage drops (at,
ar) may occur at the interface between filaments and electrodes (see details in Fig. 2).

3.2.5. MARCUS HOPPING RATE
Semi-classical Marcus theory provides the following expression for the electron transfer
rate between two sites in the hopping chain[15]:

= _H (—M_A)Z) (12)
R Vamaks T P\ 4AksT )

Here, H represents the electronic coupling between the initial and final states, and A is
the reorganisation energy. The Marcus expression only holds for the case of weak elec-
tronic coupling, i.e., when H « A [15, 70, 96]. When the driving force is small compared
to the reorganization energy (A < A1), the approximation (1 — A)2 ~ A(A =2A) holds, and
the Marcus rate can be written as:

g =Thexp ( (13)

)
2kgT )’
The prefactor F% represents the unbiased Marcus rate at a given temperature (Eq. 12 with
A = 0). If the electronic coupling H is only weakly dependent on the driving force, this
prefactor can be considered to be independent of the applied voltage bias.

3.2.6. NUMERICAL APPROACH

The solution of the occupancy balance equation (Eq. 4) with suitable boundary condi-
tions (Eq. 11) fully describes the electron transport through the hopping chain. To solve
this differential equation, we implemented a numerical solution procedure (see S.1.) that
calculates the site occupancy profile, p(x), as a function of the position along the chain
x and the applied bias voltage V. Subsequently the normalized current I/(el'g) is cal-
culated, and this is then combined with the Marcus expression (Eq.12) to simulate the
full I1(V) curve (see Fig. S1). We also derived a set of analytical expressions for the occu-
pancy profile and normalized current for the case when there’s a symmetric voltage drop
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at the electrodes (a1, = ar). Expressions are derived for the absence (Uy = 0) or presence
(Up > 0) of an injection barrier. These analytical expressions allow to identify how dif-
ferent end-member transport regimes influence the shape of the I/V curve. The details
of the derivations are given in the S.I. and the resulting expressions are summarized in
Tables S1 and S2.

3.3. RESULTS

The mapping of the electrical current, I, as a function of the applied bias voltage, V,
forms a key analysis in the electrical characterisation of materials. As a baseline and
reference situation, we simulated a hopping chain with following parameters: N = 200,
transport is predominantly field-driven (a = 0.2), resides in the resonant regime (Up = 0),
and has a reorganisation energy, A = 200 meV, and electronic coupling, H = 16 meV. Sub-
sequently, we systematically varied each parameter individually to verify its impact on
the I(V) curve. We also compared the output of the model simulations to an exten-
sive experimental dataset, consisting of I(V) curves collected at different temperatures
(T = 80—300 K) for cable bacterium filaments of different length. The data collection
procedure is presented in detail elsewhere [91]. Fig. 5 displays relevant (V) curves for
three segments of different length (L =4, 40, 300 pm).

3.3.1. CONCENTRATION-DRIVEN VERSUS FIELD-DRIVEN REGIME

A first question is whether the electron transport in cable bacteria is concentration-
driven or field-driven. These regimes correspond to two limiting cases for the behaviour
of the electrical field at the electrode interfaces (see Fig. 3): either the applied voltage
completely drops over the electrode interfaces (a = 1), or there is no voltage drop at the
electrodes (a = 0). In our simulations, we assume that the voltage drop is similar at both
electrodes (a;, = ag = a/2).

When the current is exclusively concentration-driven, the entire voltage drop occurs
at the interface of the electrodes (a = 1, Fig. 3a), and there is no electric field or electric
potential gradient present in the hopping chain (A = 0). As a result, all sites reside at
the same site energy, and the detailed balance relation (Eq. 2) implies that the forward
and backward transition rates must be equal. In this regime, the electron transport is
purely "diffusive", i.e., driven by the difference in site occupation probability along the
chain. The differential equation describing the occupancy profile (Eq. 9), becomes the
stationary diffusion equation and has a linear solution (Fig. 3¢):

mm=m—wymm% (14)

with pp, = p(x=0) and pr = p(x = L).
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Figure 3: Concentration-driven versus field-driven electron transport. (a) and (b) Energy vs. position di-
agram in the concentration-driven end-member (@ = 1) and field-driven end-member (a = 0). (c) Site occu-
pancy, p; vs. site position, i, in the concentration-driven limit (a = 1). (d) Site occupancy, p; vs. site position, i,
in the field-driven limit (@ = 0). (e) Site occupancy, p; vs. site position, i, in the combined scenario (a = 0.2). (f)
Normalized electron current, I/(eI'g) as a function of the applied voltage, V, in the concentration-driven limit
(a =1). (e), Same graph in the field-driven limit (@ = 0). The inset shows higher-voltage regime, with a vertical
line plotted at eV = NkgT. (f), Same in the combined scenario (@ = 0.2), with the field- and concentration-
driven terms (red and blue respectively). The inset shows higher-voltage regime, with a vertical line plotted at
eV(l—a)=NkgT.
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he normalized current shows an hyperbolic tangent dependence on the applied volt-
age (Fig. 3f, derivation in S.I.):

1 1 eV
— = —tanh( ) (15)
el N 4kgT

Because there is no electric field within the hopping chain (A = 0), the transition rate
matches the unbiased Marcus rate (I'g = I“g), and so the I/V curve attains the form:

0
1= er—Rtanh( ev ) (16)
N 4kg T

The current starts out linearly (I o< V), and saturates around eV = 4kg T, as the occu-
pancy gradient approaches its maximum (pp, = 1; pr = 0). At room temperature, this
saturation should occur around V = 0.1 V. The experimental /(V) curves (Fig. 5a,b,c),
however, do not show this saturation effect. When the bias voltage is increased beyond
0.1, the I(V) curve still remains linear. Therefore, the electron transport in fiber network
of cable bacteria does not appear to be concentration-driven.

Oppositely, when the current is exclusively field-driven (a = 0, Fig. 3b), the site occu-
pancy does not show a gradient (p; = 1/2, Fig. 3d). In this field-driven scenario, electron
transport is solely "drift" based, i.e., it is driven by the difference in the forward and back-
ward transition rates. The normalized (V) curve becomes (Fig. 3g, derivation in S.I.):

I 1 1 —eV 17
eFR_4[ eXp(NkBT) ' an
This relation predicts that the normalized current becomes constant (I/(el'gr) = 1/4),
when the applied voltage becomes sufficiently high, i..e, when eV/N > kg T (inset in
Fig. 3g). Yet, when the chain includes many hopping sites, this transition voltage V =
NkgT/eis very large. For example, for a long cable bacterium segment (~ 2 mm) and a
short hopping distance (~ 1 nm), the number of hopping sites becomes N = 2-10%, and
so the corresponding transition voltage at room temperature (kg T = 25 meV) equals V
=50 x 10% V. This explains why the transition is not seen in the experimental I/V data.

When the voltage bias is sufficiently small compared to the reorganization energy
(eV/N < 1), we can use the Marcus rate expression, Eq. 13, and so the I/V curve attains
the form:

el? ( —eV )NeFOR eV

I=—L"ginh ~— .
2 2NkgT 4 NkgT

The experimentally recorded I(V) curves closely fit the temperature-dependent response
that is predicted by the above relation (Fig. 5d-f). When the temperature is high and the
bias is sufficiently small, i.e., when eV/N < kg T, the approximation in Eq. 18 is valid and
the I/V becomes linear. Such linear I/V curves are indeed observed near room temper-
ature. Moreover, when the temperature is lowered, the experimental I/V curves become
more non-linear and adopt a hyperbolic sinus shape, as predicted by Eq. 18. This hence
suggests that conduction in cable bacteria is field-driven.

When «a = 0.2, the site occupancy profile adopts a non-linear shape, which lies in
between the linear concentration-driven and flat field-driven profile (Fig. 3e). Likewise,

(18)
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it can be shown that the resulting I(V') curve can be decomposed into the sum of a field-
driven and a concentration-driven contribution (Fig. 3h; see derivation in S.1.). At higher
voltages, the field-driven current becomes dominant (Fig. S5).

When a = 0.2, the occupancy profile adopts a non-linear curve, which lies in between
the linear concentration-driven and flat field-driven profile (Fig. 3e). Likewise, it can be
shown that the resulting I(V) curve can be decomposed into the sum of field-driven con-
tribution and a concentration-driven contribution (Fig. 3h; see Appendix: 'Combination
field- and concentration-driven current’ for additional derivation and discussion).

3.3.2. RESONANT VERSUS OFF-RESONANT TRANSPORT
A second question is whether the electron transport in the conductive fibers of cable
bacteria is affected by an injection barrier, Uy, or not. When the charge transport is
not hampered by the barrier, it resides in the resonant regime. Oppositely, when the
injection barrier is slowing down the transport, it is off-resonant. Figure 4 shows the
transition from the off-resonant to resonant transport regime for the reference parame-
ters, but with Uy = 0.1 eV instead of zero. Analytical expressions can be derived for the
occupancy profile and the normalized I(V) curve (see S.I.). For low bias voltages, trans-
port is off-resonant (a.eV < Up), and the site occupancy stays low throughout the chain
(Fig. 4a). As the bias voltage increases, the conduction enters the resonant regime when
areV = Uy and the occupancy profile evolves towards a static tangent-shaped profile
(Fig. 4a, similar to that displayed in Fig. 3e). The normalized I(V) curve shows the tran-
sition from off-resonant to resonant transport, which occurs at V = Uy/(eay) (Fig. 4b).
Atlow bias, in the off-resonant regime, the normalized current is non-linear, while in the
resonant regime, the normalized current increases linearly with the applied voltage bias.
In the off-resonant regime, the temperature has a large effect on the site occupancy
profile, and induces an overall decrease of the site occupancy upon cooling. In contrast,
in the resonant regime, the occupancy profile is only marginally influenced by the tem-
perature (Fig. 4c). Overall, the full 7(V) curves show the same strong non-linear shape as
the normalized I(V) (Fig. 4d). The experimental I(V) curves do not display this strong
non-linearity (Fig. 5). This indicates that there is no significant injection barrier present,
when the cable bacterium filaments are interfaced to gold electrodes.
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Figure 4: Resonant and off-resonant electron transport in a hopping with an injection barrier. Model pa-
rameters are: N =200, Up =0.1 eV, a =0.2, T =300 K. (a) Simulated occupancy profile for six different voltages
(as indicated by numbers next to the colour bar). The dashed lines indicate the crossing at pyy2 = 1/2. (b)
Normalized current, I/el'g, plotted as a function voltage bias, V. The transition from off-resonant to resonant
occurs at eV = Up/ay, = 1 V. (c) Occupancy profile at two fixed voltages (off-resonant V = 0.75 V and resonant
V =2V) for six different temperatures (indicated by numbers next to the colour scale). (d) Simulated current-
voltage response for six different temperatures, using the Marcus rate (Eq. 12) with parameters H = 16 meV

and 1 =0.2eV.
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3.3.3. LENGTH DEPENDENCE OF THE I(V) CURVE

A third aspect relates to the impact of the hopping chain length on the I(V) curve. As
clearly seen in the experimental data (Fig. 5a-c), the shape of the I(V) curve becomes
more linear as the length of the investigated segment increases. This phenomenon is
well represented by Eq. 18, which predicts that the I(V) curve becomes more linear as
the number of sites N increases (simulated I/V curves are displayed in Fig. 5d-f). The
explanation is rather straight forward: as the number of sites NV decreases, the site en-
ergy difference A = eV/N increases at a given fixed voltage. When A increases, the ex-
pression for the normalized current (Eq. 17) becomes non-linear, while also the Marcus
rate (Eq. 13) adds to the non-linearity. As a result, the full I(V) curve becomes increas-
ingly hyperbolic, when the temperature decreases and/or the segment length decreases
(Fig. 5).
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Figure 5: Dependence of /(V) curves on temperature in the range 80-300 K. (a-c) Experimental data showing
the rescaled current, I/ Iy, as a function of voltage, V. The current, I, is rescaled to its maximum value, Iy, per
I(V)-trace, to illustrate the shape of the curve. The three panels (a),(b) and (c) correspond to three different
segment lengths (L =4 pm, L =40 ym, and L = 300 pm). (d-f) Simulated I(V)’s with N =70 (d), N =450 (e)
and N = 3000 (f). The other parameters are: Uy =0,a =0, H =16 meVand A =0.2 eV.
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3.3.4. CONDUCTIVITY
Overall, the multistep hopping model appears to adequately simulate the experimental
I(V) curves, in the field-driven regime with no significant injection barrier. Therefore,
a prominent question is whether the model can also reproduce the conductivity of the
cable bacteria fibers, which is extremely high for a biological system (reaching up to > 100
S/cm at room temperature). To this end, we now investigate the relationship between
the hopping rate and the electrical conductivity.

Assuming a suitably long chain (such that the low-bias limit eV/N <« kgT holds),
and adopting field-driven transport (@ = 0) and no injection barrier (Uy = 0), we can use
Eq. 18 to express the conductivity of a fiber of length L and cross-section A:

IL €Ty a
oO=——= —_— .
VA 4kgT n(dcl2)?

(19)

This expression is insightful, because it has the familiar form, o = ney, with the charge
carrier density n = 1/(4an(dc/2)?) and mobility, u = eT'a?/ (kg T). The factor 1/4 in the
charge carrier density n arises from the occupation factor p(1 — p) with p = 1/2 the site
occupancy in the resonant, field-driven regime (Fig. 4).

Equation 19 provides a direct relation between the hopping rate and the conductivity,
and readily illustrates the problem of explaining the high conductance in cable bacteria.
If we assume that multistep hopping in cable bacteria occurs over a similar length scale
as in multi-heme cytochromes [23], the center-to-center distance between sites would
be a ~ 1 nm. Using this value in Eq. 19, the required hopping rate for a conductivity of
100 S/cm becomes I'g = 2-10'3 s71. This value exceeds by far the fastest hopping rate
reported in literature for a biological protein structure (107 s~ [97, 98]. More prob-
lematically, it also exceeds the typical relaxation rate of vibrational modes in cofactors,
~ 103 571, which is considered as a "speed limit" for hopping conduction [99]. The re-
laxation rate of vibrational modes must be higher than the hopping rate itself, so that the
electron has time to dissipate energy before hopping onwards (see S.I.: 'Non-adiabatic
constraint’ for further detail).

To examine the maximum conductivity that a hopping model for cable bacteria can
support, we can evaluate the theoretical limits of the Marcus rate expression Eq. 12.
Marcus theory requires that the inter-site electronic coupling H is weak [15], so that it re-
mains small with respect to the reorganisation energy (H << 1). When H = A or beyond,
the electron will no longer be localised on the hopping site [70, 96, 100]. To quantita-
tively evaluate the maximum conductivity allowed by the Marcus formalism, we adopt
the working assumption that the maximum electronic coupling is Hpax = 0.11 (see S.I.
for additional discussion of this 'weak coupling’ constraint).

As aresult, the conductivity in Eq. 19 only varies with the reorganisation energy A and
the center-to-center distance a. The resulting model simulations are shown in Fig. 6a.
For parameters representing electron transport through multi-heme cytochromes [23]
(A =0.8 eV, a = 1 nm), a hopping rate of 5-10'° s~! and a conductivity level of 0.2 S/cm
form the theoretical maximum within the Marcus framework. Note however that this
conductivity limit is based upon an unrealistically high electronic coupling, H = 1/10 =
80 meV. As known from experimental and theoretical assessments, H = 10 meV is already
on the high side for multi-heme cytochromes [23]. Adopting the latter value lowers the
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Figure 6: Idealized hopping conductivity and mobility within the one-dimensional hopping chain, using
Marcus rates (Eq. 12). (a) Conductivity colour map, under the constraint H = 0.1A, as a function of reor-
ganisation energy A and center-to-center distance between hopping sites a. The red and black square are
indicators for the typical reorganisation energy and center-to-center distance in hemes and cable bacteria, re-
spectively (see panel (c)). Directions for increased conductivity compared to cytochromes are drawn in white.
(b) Conductivity, o, as a function of center-to-center hopping distance, a, for a biological system that im-
proves on heme-to-heme hopping with distance ap = 1 nm, reorganisation 1g = 1 eV and electronic coupling
Hp =0.11¢ = 100 meV, by wave function dilution (H, A < 1/a). (c) Scheme of heme-to-heme transport and the
proposed hopping mechanism in cable bacteria, with center-to-center distance, a, between regions in which
is the electron is unobstructed (orange, zero resistance) with repetitive surrounding protein structure (grey).
Electrons hop between repeated structures with hopping rates I'g 1.

maximum allowed conductivity to 4 mS/cm (hopping rate: 8-108 s™1).

We conclude that a multi-step hopping model with cytochrome-like parameters can-
not explain the conductivities measured in cable bacteria. As illustrated in Fig. 6a, there
are two ways to achieve a higher conductivity. A first way is to reduce the reorganisation
energy, and effectively, cable bacteria appear to do this. Recent studies [45, 91] indi-
cate that the reorganisation energy of conductance in cable bacteria is remarkably low
(A =0.2eV), i.e., a factor 4 lower compared to heme-to-heme transport in multi-heme
cytochromes.

Still, a reduction of the reorganization energy alone is not enough to explain the high
conductivity in cable bacteria. With A = 0.2 eV and a = 1 nm, we can only reach a hop-
ping rate of 2-10'? s7! and a conductivity level of 10 S/cm (vertical arrow in Fig. 6a).
Therefore, a second way is to increase increase conductivity is to increase the center-to-
center distance a, thus lowering the number of hopping steps. To attain a conductivity
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of 0 =100 S/cm as reported for cable bacterium fibers, we need to increase the hopping
distance to a = 10 nm, under the constraint H,,,;, = 0.1A1 with A = 0.2 eV (horizontal ar-
row in Fig. 6a). This provides a hopping rate 2.2-10'? s~1, which is still high, but below
the "speed limit" for hopping conduction [99]. For more stringent constraints with lower
H/ A ratios, higher a values are required (see Fig. S10 and additional results in SI).

The predicted electron mobility accompanying A = 0.2 eV and a = 10 nm is u =
80 cm?/Vs (Fig. S10). This mobility value is high and similar to that of metals (~ 50
cm?/Vs). Metals are highly conductive because many electrons contribute to transport
(n = 10*?2cm~3), but their charge carrier mobilities are not exceptionally high, since elec-
trons frequently collide with the crystal lattice. The predicted charge carrier density in
the one-dimensional hopping chain model with a = 10 nm, is n = 1/(4an(dci2)?) =
8-10'® cm™3, which is much lower than for metals, thus explaining why the conductivity
in cable bacteria is 4 orders of lower than in metals.

3.4. DISCUSSION AND CONCLUSIONS

We have developed a one-dimensional hopping model to describe the extremely long-
range electron transport in the periplasmic fiber network of cable bacteria. When fila-
ments are connected to metal electrodes, we propose that the edge occupation probabil-
ities in the hopping chain can be treated as if they were part of the electrode (see Eq. 11).
This allows simplified analytical expressions to be derived for the current-voltage char-
acteristics in the field- and concentration-driven regimes (Tables S1 and S2). For more
general cases, I/V curves can be numerically simulated.

The conductive fiber network in cable bacteria has been shown to consist of a met-
alloprotein that incorporates a nickel cofactor [44]. Yet, the detailed molecular structure
of this cofactor remains unresolved, and consequently, any model of charge transport in
cable bacteria remains somehow speculative. Still, the model analysis here allows to ex-
clude certain transport models, while at the same time, it provides guidance for further
experimental investigations and theoretical developments.

3.4.1. THE SHAPE OF THE I/V CURVE

When cable bacterium filaments are connected to electrodes and electrically investi-
gated at room temperature, the resulting I/V curves are conspicuously linear [2, 45, 91].
Comparison of our model results to these experimentally recorded 1/V curves, shows
that the model adequately reproduces the impact of segment length and temperature
on the shape of the I/V curve, provided that we adopt a field-driven regime with no sig-
nificant injection barrier (Fig. 5).

The linearity is explained by the fact that the filaments investigated are long, and
so the charge transfer involves a large number of charge transfer steps N. As a result,
the driving force A = eV/N remains small compared to the thermal energy scale (A <«
kpT and so Eq. 17 becomes valid). Moreover, the driving force also stays well below
the reorganization energy (A <« 1), implying that the electron transfer rate I'y remains
largely independent of the applied voltage bias (see Eq. 12). These conditions generate
linear I/V curves near room temperature, which become increasingly non-linear (sinus
hyperbolic) for lower temperatures and shorter segments, as seen in the experimental
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data (Fig. 5). Note that the condition (A < 1) also implies that the charge transport well
remains within the normal Marcus regime (and hence does not enter into the inverted
regime).

When using gold electrodes, there appears to be no injection barrier involved in the
charge transport. This absence of an injection barrier is intriguing, and requires fur-
ther experimental examination. The work function, which directly influences the bar-
rier, varies among metals (the energy to bring an electron from the electrode to vacuum
of the electrode) [101, 102]. Therefore, it could be that for electrode materials other than
gold, there is a sizable injection barrier.

3.4.2. IMPACT OF REORGANIZATION ON CONDUCTIVITY

Our model analysis demonstrates that a low reorganization energy is key to achieving a
high conductivity in cable bacteria (Fig. 6a). Recent studies have shown that the reor-
ganisation energy in cable bacteria is indeed considerably lower than in other conduc-
tive protein systems [45, 91]. Yet at present, the molecular structure of the conductive
fibers in cable bacteria remains largely unresolved, and therefore, it is not understood
why the reorganisation energy of cable bacteria is so small. One potential explanation
could be delocalization along the electron transport path, as would result from an or-
dered aggregation or tight stacking of cofactors. Recently, an extension of Marcus theory
has been developed that accounts for charge transfer between so-called donor and ac-
ceptor “aggregates”, in which the charge is no longer localized on a single cofactor, but
delocalized across a cluster of multiple cofactor molecules [69]. It was shown that such
delocalization can substantially reduce the reorganization energy below what is possi-
ble with a single donor and a single acceptor. For example, for a donor aggregate with
a fully delocalized state of N identical donors, the reorganisation energy is decreased
N-fold [69]. For example, if we assume that the reorganization energy 1 between a sin-
gle donor and a single acceptor would be similar to that between consecutive hemes
in multi-heme cytochromes, the observed 4 times reduction in A for cable bacteria as
compared to multi-heme cytochromes [45, 91] then would imply a delocalization of the
charge across ~ 4 cofactor molecules. Yet, to verify whether such a delocalization mech-
anism is truly at play, we need a better insight into the actual identity and structure of
the cofactor molecules in cable bacteria.

3.4.3. A TENTATIVE MODEL OF CHARGE TRANSPORT IN CABLE BACTERIA
Our model analysis reveals that the high conductivity recorded in the conductive fibers
of cable bacteria (> 100 S/cm) can only be explained by a Marcus-type hopping model,
unless the number of hopping steps is substantially reduced and the center-to-center
distance a becomes very large (Fig. 6a). Clearly, a hopping distance of a = 10 nm ex-
ceeds by far the known hopping distances in metalloproteins such as multi-heme cy-
tochromes. If electrons are transported by quantum mechanical tunneling, the center-
to-center distance a must be lower than 1.4 nm to attain metabolically relevant electron
transport rates (see Moser et al. [55]). How can such a large value for a be reached?

A tentative model is depicted in Fig. 6¢c. The key difference with classical hopping
models of biological transport (e.g. heme-based electron transport) is the amount of de-
localization, as reflected by the size of the charge carrier sites. Instead of being localized
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on a small cofactor molecule, electrons are delocalized across wide "relay segments"
(distance Lp ~ 10 nm) that are connected through small non-conductive bridges (dis-
tance 6). The electron transport through this protein connection is the rate limiting pro-
cess, and follows a Marcus-type hopping mechanism. In contrast, the electron transport
in the delocalized segments is very fast, and needs to have a far higher mobility than the
hopping transport. These relay segments could either be large conjugated molecules, as
seen in pi-conjugated polymers and graphene nanoribbons [103], or alternatively, they
could involve sets of tightly stacked cofactor molecules that induce electron delozaliza-
tion (the donor and acceptor “aggregates” discussed above).

This model immediately provokes the question of how biology can synthesize such a
structure. Clearly, to ensure high charge transport rates, the "relay segments" should be
carefully positioned and oriented, which hence requires a precise coordination by ligat-
ing proteins. Furthermore, it is known that delocalized regions are particularly sensitive
to disorder effects, as impurities and defects will induce Anderson localisation of elec-
trons [104], and hence reduce the conductivity. Effectively, the latter phenomenon may
help explaining the observation that the conductivity in cable bacteria fibers is variable
(ranging from 0.1 to >100 S cm-1; see [2]). Differences in levels of defects/impurities may
induce variability in conductance between filaments.

3.4.4. IMPACT OF DELOCALIZATION ON CONDUCTIVITY

As detailed above, the conductivity can be increased by lowering the reorganization en-
ergy and increasing the the center-to-center distance (Fig. 6a). To quantitatively assess
the conjoint impact of both factors, we can introduce reference values for the hopping
distance (ap ~ 1 nm) and reorganization energy (19 ~ 1 eV) for conventional biological
electron transport. We can now increase a while keeping 6 constant, thus simulating the
process of wave function dilution (Fig. 6¢). When a becomes much larger than ag, we
can approximate the delocalization length Lp = a and write the reorganisation energy
as A = Ag(ap/a) and the electronic coupling as H = Hy(ay/ a), where A is the original re-
organisation energy and Hj the original electronic coupling. With these constraints, the
ratio between H and A stays constant, and so the transport remains within the Marcus
regime. Moreover, the conductivity can be calculated as a sole function of the center-to-
center distance:

ap ﬂ,o )

-1/2

ola)x a exp( 4 kT
The impact of wave function dilution on conductivity is shown in Fig. 6b. With in-
creasing a, the conductivity first increases, after which it reaches a maximum at a =
aop Ao/ (2kg T) = 19 nm, which is equivalent to A = 2kg T'. At higher values of a, the impact
of A fades and the influence of H becomes dominant, and as a result, the conductiv-
ity decreases again. This analysis demonstrates that delocalization may indeed form a
mechanism that can substantially increase the conductivity in cable bacteria.

(20)

3.4.5. HOPPING VERSUS BAND TRANSPORT?

In our model analysis, we described the electron transport in cable bacteria as thermally
assisted hopping, as this is the default modelling approach employed to describe long-
range biological conduction. Is there a possibility that the charge transport is not due to
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hopping, but rather acts as a form of band transport? In a hopping regime, the charge
carrier is localized on a single molecule whereas in the band regime, the charge car-
rier (wave function) is delocalized over the entire system. In order to achieve a band
regime, one must have a highly ordered structure with only a few defects or impurities,
and a large electronic coupling between adjacent sites. In highly purified molecular sin-
gle crystals such as pentacene, transport at low temperature can be described within a
band picture [105]. However, at higher temperatures, the charge carriers get localized
over single polymer strands and transport operates by a thermally activated hopping
mechanism between adjacent polymer chains [106].

As impurities, disorder and structural defects seem hard to avoid in the cm-long fiber
structures in cable bacteria, a hopping regime is expected to operate at room tempera-
ture, as in organic crystals. Nevertheless, the models investigated here consider only one
electronic state in a given "relay segment". This leaves the possibility that there is more
than one electronic state in a given "relay segment". Recall that the driving force behind
localisation in our model is a weak electronic coupling at the edge of the hopping site
(H < A). If a relay segment would be composed of N tightly stacked molecules, these
must all be strongly coupled with an interaction energy, ¢ > A, if not, the electron would
localise in a smaller region [96]. According to the tight binding model, this results in mul-
tiple electronic states lying in an energy band of width 4¢ [71, 107]. Within a 10 nm wide
"relay segment", and assuming a stacking distance of 0.35 nm (a typical intermolecular
distances in organic conjugated crystals and films), each molecule (N = 30) would add
a single state to an energy band with an expected level spacing 4t/ N ~ 41/ N = 27 meV.
At room temperature, the majority of states would contribute to the conductance (ther-
mal window kg T = 25 meV). Therefore, while pure band transport is not expected in the
conductive fiber network of cable bacteria, future studies should consider more elabo-
rate model approaches that allow the existence of multiple electronic states within "relay
segments".
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3.5. SUPPLEMENTARY INFORMATION
3.5.1. NUMERICAL SIMULATION OF OCCUPANCY PROFILES
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Figure S1: a-d Iterative simulation of occupancy profiles. The simulated electrical current (a,c) and the oc-
cupation profile (b,d) are shown at different stages on the path towards convergence (indicated by different
values of the convergence parameter €). The model parameters used are: N =200, ay g = 0.1, Uy = 0.1 eV,
T=300K, H=16 meVand A =0.2 eV. In the first case (panels (a) and (b)), the voltage bias is V = 0.5 V and the
current resides in the off-resonant regime. In the second case (panels (c) and (d)), the voltage is V =2V and
the current is in the resonant regime.

Combining the equations for the occupancy balance (Eq. 3 and Eq. 4), and adopting
steady state, gives:
d pi

e =0=0-p)) eljipj=pi) eli;(l-p)). (S1)
J J

By rearranging this expression so that p; becomes isolated, we find:

% eljip;
pi = J HIF] i (S2)
Yjeljipj+Xjel;j(1-pj)
Note that p; features both on the left and right hand side. This non-linear equation
can be iteratively solved given an initial set of occupation probabilities, p;. The initial
condition chosen is:

px)=pL—(pr—pL) % (S3)
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where pr, and pg are determined by the edge occupancy relation (Eq. 11). After a suitable
number of iterations, the electrical current and the occupancy will converge (Fig. S1).
The criterion when to stop the iterative calculations is based on the difference between
the newly calculated site occupancies, {pinew}, and those from the previous iteration,
{Piolat:

¢ = max {Pinewt —{Pioal . (S4)

{Pi,oral

Aslong as the convergence indicator € exceeds a predefined error value, the iterative cal-
culation continues. After convergence of the occupancy profile, the net electrical current
to all sites beyond hopping site i, is evaluated via Eq. 5. As a quality check, we verified
whether the current is constant throughout the hopping chain: the net electrical current
calculated at each site must not vary more than 1% (otherwise the calculation has not
properly converged). In Fig. S1, we illustrate the iterative calculation of the occupancy
profile for two separate values of the voltage bias (leading to resonant and off-resonant
regimes).

3.5.2. ELECTRON TRANSFER AT THE BOUNDARIES

In vivo SITUATION

Under in vivo conditions, cable bacteria interact with mobile redox species in an aque-
ous solution. Electrons are injected onto, or withdrawn from, the internal conductive
fiber network through metabolic redox reactions. Free sulfide (H,S) acts as the electron
donor within the sulfidic zone of the sediment, while oxygen (O;) acts as the electron
acceptor near the sediment surface. We can describe this process of electron exchange
by incorporating two additional sites at the terminal ends of the hopping chain, which
represent the electron donor and electron acceptor respectively (i =0, N + 1). These two
sites show a difference in site energy that matches the difference in reduction oxidation
potential (Up — Un+1 = Eredox)- In reality, this difference in redox potential will be very
large, and hence, this will provide a non rate limiting concentration of donor and ac-
ceptor molecules (electron donor site fully reduced, pg = 1; electron acceptor site fully
oxidized, pn+1 =0).

Natural Situation

H,S
UO A ..
Po =
Uf-----m————— Uredox
(0]
Unttf---mmmmmmmmm oo ==
Pni1 =0

X

Figure S2: Boundary conditions in the natural situation. Under in vivo conditions, the electron transport in
cable bacteria is driven by redox reactions at the terminal ends. On one end, an electron is produced by the
oxidation of hydrogen sulphide (H»S) at energy Up, and introduced into the hopping chain. At the other end,
the electron participates in the reduction of oxygen (O») at energy Up+1, and is removed from the hopping
chain. It is assumed that the electron donor (H2S) and the electron acceptor (O2) can be modelled as edge
hopping sites with a fixed occupancy. Furthermore, it is assumed there is no voltage build-up in the hopping
chain due to ionic screening as suggested by Strycharz-Glaven et al. [90] (a = 1).
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ELECTRODE CONTACT AND EDGE OCCUPANCY

When using metal electrodes to inject/eject charges, there is not a single donor/acceptor
state at the ends of the hopping chain. Instead, many possible electronic states are in-
volved, so that the transition rates are determined by charge transfer integrals (Fig. 1¢):

Jogor Jyii,n =f fle)ge)K(e - Uy n)de, (S5)

(o0}

(1-f(e)gle)K(Uyn—e)de. (S6)

J1,00r N, N+1 =[

The quantity g(e) is the density of electronic states in the electrode, while K(e — Uy, n)
represents the transfer rate between a single electron state in the electrode and the injec-
tion/ejection site in the hopping chain (Fig. 2b). For an electrode in thermal equilibrium,
the occupancy follows the Fermi Dirac distribution:

1

exp (Z—’T’) +1

fle)= , (S7)

where  is the chemical potential of the electrode. For the boundary at the left electrode,
the occupancy balance is:

% =0=T21p2(1-p1) —T12p1(1 = p2) + (1 = p1)Jo,1 — P11, (58)
The first two terms represent contributions from neighbouring hopping sites, while the
last two terms include contributions from the electrodes. An analogous equation can be
derived for the electrode at the right boundary.

In general, the metal-chain transfer integrals must be calculated numerically. How-
ever, the analysis becomes simpler when the metal-chain transfer rates are much larger
than the internal hopping rate (/ > I'). We can evaluate this by assuming that the metal-
chain hopping rate, K, is of the same form as the internal hopping rate, I' (the Marcus
rate, Eq. 12). Then ] is likely to be relatively high, because in the electrode, the density
of states is very high. If the metal electrode acts like a 3D free electron gas, the density of

states becomes:
V 2m 3/2

2m2 2
Here, V is the volume of the free electron gas, m is the mass of an electron, 7 is the
reduced Planck’s constant and Uf is the Fermi energy. Taking a gold electrode as an ex-
ample with a Fermi energy, Ur = 5.5 eV [108], and assuming that the electrode has a
volume of V = 0.1 um?, the density of states near the Fermi Energy can be estimated
as g(Ur) = 10° meV~!. This gives a large number of contributing states to the effective
transfer rate from metal to hopping chain, ensuring that J > I'g . (Fig. S3). When the
metal-chain transfer integrals dominate the edge occupancy balance (Eq. S8), the occu-
pancy of the first site can be written as:

gle)= UF. (89)

Joa

= — (S10)
Ji0+Jon

P1
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The injection rate, for i = 1, becomes:
Joa = f_c: fe)gle)K(e—Ur)de, (S11)

whereas the ejection rate, for i = 1, is:
Ji0= [:(1 - f(€)gEeK (U -¢€)de. (512)

Using the detailed balance relation (Eq. 2), this ejection integral can be written in terms
of the injection rate:

Uy —¢
J1,0 =f (1-f(e)glEe)KEe—Uy) exp( kT ) de. (S13)
Recall that the Fermi-Dirac distribution for the left electrode is:

fle)=—/————, (§14)

where pp, = eV is the chemical potential of the left electrode. A useful property of the
Fermi-Dirac distribution is:

1-f(e) = “L) fle), (S15)

exp(e “L)+1 :exp(ek_T

As aresult, the ejection rate can be reformulated as:

Jio= f fe)geK(e—- U1)eXp( o “L)de. (S16)

The energy of the first site, Uj, can be written as U; = g, + Uy — apeV and the exponen-
tial factor can be taken out of the integral. This provides following relation between the
injection and ejection rates:

Ji0=exp (M) Jox (817)
kg T
If we substitute this relation into Eq. S10, we obtain:
p1= ; (518)
1+exp (%)
With the same considerations, it can be shown that:
PN = ; (519)
1+exp (%)
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Figure S3: Estimation of metal-chain hopping integrals. In the figure are indicated: the injection metal-chain
hopping integral at the first last, Jo,1, the ejection integral at the same site, J; o, both integrals at the last site
(UN+1,N> JN,N+1), and the right-moving and left-moving hopping rates (I'g,I';). Parameters in the hopping
chain, are chosen in accordance with the off-resonant case in the main text: N =200, Uy =0.1 eV, af g =0.1,
T =300 K. It was assumed that the internal hopping rates and the same as the metal-chain hopping rates, K
(Eq. S17). The Marcus hopping rate (Eq. 12) with A = 0.2 eV and H = 16 meV was used, both for calculating
Jand I'. For the electrode, the density of states was estimated from the 3D Electron Gas model (Eq. S9), with
Er =5.5eV.At V = Up/ay, there is a transition between off-resonant and resonant transport, which can be seen
as the crossing of Jo;; and JjpatV=1V.

3.5.3. ELECTRICAL CURRENT
The net electrical current between the consecutive sites i and i + 1 is given by the differ-
ence between the forward and backward electron flows between these sites:

I'=elrpi(1-pit1) —el'Lpi+1(1—pi). (820)

If we use the Taylor approximation

pit1=pxi+a)=plx)+a

dp ]

- ) S21
dx X (521)
and we substitute this in the net current expression, Eq. S20, we obtain:

I=e(Tr-Tp) (1-p@)—e(lrp@) +IL(1-px))a

dp
ax ] (S22)

The detailed balance relation for a regular 1D hopping chain with N equidistant sites
becomes
e = (i) S23)
T, CP\keT) (
In this, A = eV (1 — a)/N is the energy difference between two adjacent sites. The two
terms in Eq. S22 can be identified as the field-driven current (drift current) Irp and the
concentration-driven current (diffusion current) Icp. The normalized versions of these
currents hence become:

A
—:(l—exp(k T))p(x)(l—p(x)) (S24)

eFR B
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fep _ _ 2a- dp
= a(p(x)+exp(kBT)(1 p(x)))[dx

S25
oTn (825)

The total current is given by the sum of the field-driven and concentration-driven cur-
rents, I = Irp + I¢p, thus providing:

L = (1 —exp(_—A)) p(x) (1 —p(x))—
eFR - kBT
dp (526)

dx

prsn{ 31
alpx)+exp|—|(1-pk

p p kaT p
This provides Eq. 10 in the main text. In the next sections, we derive a set of analytical
expressions for the occupancy profile and normalized current under various conditions.

3.5.4. HOPPING CHAIN WITHOUT INJECTION BARRIER (Uy = 0)

In this section, we restrict ourselves here to the situation without an injection barrier
(Up = 0) and a similar voltage drop at the terminal ends (ay, = @r = a/2). The resulting
expressions are summarized in table S1.

GENERAL TREATMENT (0= a <1)
For general @, and using the edge occupancy relation (Eq. 11), the occupancy at the ter-
minal ends can be written as:

- (x—O)—1+1tanh(aev) (S27)
PL=plx=0=5%5 4kgT)’

=D = ltanh(aev) (S28)
PREPX=L=575 4kg T

Consequently, we find that the relation pr, + pgr = 1 always holds [11]. In addition, the
occupancy profile will show symmetry, and it always adopts the value p(x = L/2) =1/2
in the middle of the hopping chain. Under these conditions, the differential equation for
the occupancy profile (Eq. 9) has a solution of the form:

1
px) = 5~ Atan(kA(x—L/2)). (S29)
The parameter « is defined as:
2 2 Va-
K:—tanh( ): —tanh(w). (S30)
a 2kgT a 2NkgT

Application of the occupancy profile Eq. S29 to the left boundary, gives the self-consistency
relation that determines the parameter A:
pL—1/ 2) _ KAL

" —_ (S31)

arctan (
2

By numerically solving this non-linear equation, the parameter A can be determined for
each « value (i.e, for different values of the voltage bias V). The occupancy profile pro-
vided by Eqgs. 529-531 is in excellent agreement with that obtained by direct numerical
simulation (Fig. 54).
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Figure S4: Simulated occupancy profiles for a hopping chain without injection barrier. Occupation proba-

bility p; vs. site position i as a function of the bias voltage, V. The plotted voltages are indicated next to the
colour bar. The fixed model parameters are: N =200, @ =0.2 and 7 =300 K.

The derivative of the occupancy profile is given by:

ap _ _yp ! (S32)
dx cos2(kA(x—L/2)"

If we implement this in Eq. S26, and evaluate this at the mid-site, we obtain:

I _1(, -A ax A? ) -A s33
eFR_4( eXp(kBT))+ 2 ( +eXp(kBT)) (559)
This provides the general expression for the normalized current when there is no injec-
tion barrier. The first term is the field-driven part of the current, and the second term is
the concentration-driven part, which eventually goes to zero (see Fig. S5).

When the voltage bias on the electrodes is small, so that the voltage drop inside the
hopping chain is small compared to the thermal energy (eV (1 —a) < 4kgT), the arctan-
gent function in the self-consistency relation can be linearized and the parameter A can
be solved for analytically:

2 —-1/2
w22t 12), (S34)
xL
As as result, the normalized current in Eq. S33 simplifies to:
! 1(1 (‘A Py h(“ev 1+ (_A)) (S35)
—=—|l-exp|— — tan exp|—
eln 4 Pler)) Ton "Nk Plier

CONCENTRATION-DRIVEN LIMIT (& = 1)

When the current is exclusively concentration-driven, the entire voltage drop occurs at
the interface of the electrodes (a = 1), and there is no electrical field present in the hop-
ping chain (A = 0). The occupancies at the terminal ends are given by:

- (x—O)—1+1tanh( ev) (S36)
PL=pl=0=5%5 4kpgT )’
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Figure S5: Field-driven and concentration-driven currents in a hopping chain without barrier (a) The nor-
malized current I/el'g is plotted against bias voltage V, showing the total current (black) as well as the field-
driven (red) and concentration-driven (blue) components. The inset shows the higher-voltage regime, with
a vertical line plotted at eV (1 — @) = Nkg T.(b) Normalized current against bias voltage V, zooming in on the
concentration-driven current, which is suppressed at higher voltages. This figure is an extension of panel (a)
to a larger voltage range (0 —5 V). The model parameters used are: aj, g =0.1, Up =0, N =200, T =300 K.

- px=D)= 2 1tanh( ev) (S37)
PREPX=L=575 4kg T

The differential equation for the site occupancy, Eq. 9 from the main text, simplifies to:
d’p
— =0. S38
ax2 (838)

Accounting for the boundary conditions at the terminal ends, this linear differential
equation has the solution:

X
px)=pL—(pL— pR)Z; (839)
The expression for the normalized current, Eq. S26, now becomes:

I

el'r -

dp

dx

a

= (pL- )—ltanh( ev) (S40)
TTPTPREY 4kgT

This expression matches Eq. S52 when A =0and a = 1.
FIELD-DRIVEN LIMIT (& = 0)
When the current is exclusively field-driven, there is no voltage drop occurs at the inter-

face of the electrodes (@ = 0), and there is a constant electrical potential gradient within
in the hopping chain (A = eV/N).The occupancies at the terminal ends are given by:

1
pL=px=0=7 (S41)

1
pr=px=1)= > (S42)
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The differential equation for the site occupancy, Eq. 9 from the main text, simplifies to:

dp
Ix =0 (543)
The site occupancy therefore has be the same throughout the hopping chain:
1
px) = 2 (544)
The expression for the normalized current, Eq. 10 from the main text, now becomes:
L=1(1—exp( eV )):1 il ($45)
eFR 4 NkB T 4 NkB T

This expression matches Eq. S61 when a = 0. The linear approximation holds for suffi-
ciently small bias voltages V < Nkg T/ e. Under these conditions, the resulting I/V curve
tends to be linear.

Case Site Occupancy, p(x) Electrical Current, I

Concentration X elR eV

_ driven PL — (pL - pR) Z Ttanh (W)

a=1

Field 1 elg —eV

—driven 2 4 [1 — P (WBT)]

a=0

General L 1 elR 1 ( —A )]

0<a<l —Atan KA(X—E) +§ 7 exp P
kaA? A

+elg > [1 + exp (_kB_T)]

Table S1: Summary of relevant expressions for the site occupancy profile, p(x) and the electrical current, I,
without injection barrier. Py r denotes the site occupancy at the terminal ends (Left, Right) . The position
variable, x, runs from x = 0 to x = L. e is the electron charge, N is the number of hopping sites, I'g is the

forward hoppingrate, V is the applied bias voltage. xg is the solution of Eq. S50 and A is the solution of Eq. S49.
( eV(l-a) )

-2
kK = £ tanh INFT

, where a is the center-to-center distance between hopping sites.

3.5.5. HOPPING CHAIN WITH INJECTION BARRIER (Uj > 0)
In this section, we account for the situation with an injection barrier (Up > 0). The volt-
age drop at the terminal ends is again considered to be the same (a1, = ag = @/2). The
resulting expressions are summarized in table S2.

In the case with an injection barrier, Uy, the site occupancies at the terminal ends are
given by:

1
pL= . (546)
1+exp (—UOZ:;W)
1
PR = . (547)
1+exp (—Uozﬁev)

As a results, the constraints pr, + pr = 1 and p(x = [/2) = 1/2 are no longer applicable.
There is no general analytical solution to the differential equation (Eq. 9), but we can still
derive approximate solutions for two separate regimes.
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CURRENT IN THE RESONANT REGIME (ar.eV > Uy)
When the bias voltage is sufficiently raised above the energy barrier V > 2U,/(ae), the
system will no longer be influenced by the barrier. As a result, the occupancy profile and
normalized current should tend towards those from the no-barrier regime. This regime
is called the "resonant regime".

When the condition V > Up/(aye) is satisfied, we know that pr, > 1/2 and pr < 1/2
for Uy > 0. Therefore, we know that the occupancy profile must cross the 1/2 line, and so
we can evaluate the following solution to the differential equation (Eq. 9):

p(x) =1/2 - Atan(k A(x — Xp)). (548)

This expression forms a generalisation of Eq. 5S29. Here, X is the location of the hopping
site where the occupancy attains the value p = 1/2. Substituting this solution back into
the differential equation Eq. 9, provides the self-consistency relations:

pL—l/Z) (pR—l/Z)
A

K AL = arctan ( —arctan , (S49)

a (S50)

From these expressions, the quantities A and x( can be calculated. Equations S48, 549
and S50 describe the shape of the occupancy profile well (Fig. S6). For large enough
V, we attain xy ~ L/2, and as a result, the expressions from the previous section are
recovered.

—-1/2
K Axg = arctan (pL—) .

V (V)
2.0

0 50 100 150 200
()

Figure S6: Simulated occupancy profiles in a hopping chain with an injection barrier. Occupation prob-
ability p; vs. site position i. The dots represent direct numerical simulation results and the lines analytical
expressions. Model parameters: N = 200, ap, = ag = 0.1, Uy = 0.1 eV, T = 300 K. The dashed lines indicate the
crossing at pyy2 = 1/2. The six voltages next to the colour bar correspond to the six lines drawn. They show
the transition from the off-resonant (V' < 1V) to the resonant regime (V > 1V). The lines represent predictions
from Eq. S54 for V<1V, Eq. S48for 1 V<V <2V, Eq.S29for V=2V.

The derivative of the occupancy profile is given by:

dp 2 1
— = —KkAA——— S51
dx . oStk A(x—x0) (551
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If we implement this in Eq. 526, and evaluate this at x = xp, we obtain:

! —1(1 €ex] (_A )) +a1<A2 (1+ex (_A )) (S52)
el"R_4 P kBT 2 P kBT

This expression for the normalized current is identical to that when there is no injection
barrier, Eq. S33. Note however that the value of A will differ between the two cases.

CURRENT IN THE OFF-RESONANT REGIME (ag,eV < Up)

When the bias voltage remains sufficiently low V < Uy/ (a1 e), the energy barrier will have
an influence on the occupancy profile and the I/V curve. In this so-called off-resonant
regime, the site occupancies are low and the approximation 1 — p = 1 can be made. As a
result, the differential equation for the occupancy profile, Eq. 9, becomes:

% - %t h(ZkBT) fli (553)
This gives an exponential occupancy profile (Fig. S6; V <1 V):
KL _ KX x 1
px) =pL wL_] TPRAI 7 (854)
The derivative of occupancy profile is:
P tpr - p—— (555)
dx el -1

Upon substitution into Eq. S26, and evaluation at x = 0, we arrive at the field-driven
current,

IrD _ [ _exp[ 22 -
eTR_(l eXP(kBT))PL(l pL) (S56)

and the concentration-driven current current,

Icp A \pL—pr ( ( -A ) )
=~ —2tanh 1-—
ol tan (Zk ) oy pL+exp ks (1-p) (857)

The total current becomes:

A A

2kBT) ZiL pf (pL+EXp(k T)(l_pL)))
(S58)

The concentration-driven term, Icp, vanishes when the voltage drop inside the hopping

chain becomes higher than the thermal energy (eV(1 — a) > kg T; see Fig. S7). When

plotting the current, the transition between off-resonant and the resonant regime can

be clearly seen (Fig. 4b).

! —(l—ex (_A)) (1- )+2tanh(
eFR_ P T pPL pL
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Figure S7: Field-driven and concentration-driven currents in a hopping chain with an injection barrier. (a)
Normalized current, I/eI'g, is plotted against the bias voltage V. The total current (black) is decomposed into
the field-driven current (red) and the concentration-driven current (blue). The model parameters are: N = 500,
ap,r=0.1,Up=0.1eV, T =300 K. In panel (a), the bias voltage range is 0 — 0.04 V, while in panel (b), the bias
voltage range is0—0.2 V.

OFF-RESONANT REGIME: CONCENTRATION-DRIVEN LIMIT
In the concentration-driven limit, a; = agr = 0.5 and a = 1, and so the edge occupancies
become

1
PL= "7\
1+exp (—UOEBMT//Z)
1 (S59)
PR =
1+exp (—UOZBMT//Z)
The occupancy profile is linear:
X
p(x)=pL—(pL— pR)Z; (S60)
and the associated current becomes:
1 1 1 1
- = _(pL_ pR) = — 7 e - 7 Viz . (861)
el N N1+ exp (—",;:T ) 1+exp (—OlJcheT )

As required, this equation reduces to Eq. 5S40 for Uy — 0. The simulation results are
shown in Fig. S8c. The I(V) starts out non-linear due to the injection barrier, Uy, but
quickly saturates upon increasing the bias voltage, which compensates the injection bar-
rier.

OFF-RESONANT REGIME: FIELD-DRIVEN LIMIT
In the field-driven limit, a = 0, and the edge occupancies become

1

PR=PL=
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Figure S8: Field-driven and concentration-driven currents in a hopping chain with an injection barrier.
(a) Energy vs. position diagram of the field-driven limit (a = 0). (b) Energy vs. position diagram of the
concentration-driven limit (@ = 1) with a symmetric barrier (¢, = ag = 1/2). (c) Normalized current, I/el'g
as a function of the applied voltage bias V in the concentration-driven limit (o« = 1). The model parameters
are: N =200, Up=0.1eV, T =300 K.

The occupancy profile is hence constant:
p(x) = pr = pL, (S63)
and the associated current becomes:
e (e | X AR o)
— =|l-exp|— -p)=-|1-ex
eTx Pller))PLUE TP =5 P\ NksT

As required, this equation reduces to Eq. S45 for Uy — 0. The simulation results are
shown in Fig. 58d.

1
1+ cosh(Uy/kgT)

(S64)
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Case Site Occupancy, p(x) Electrical Current, I
Concentration x
— dFiEm p.— (oL — pe) I el 1 1
a=1 N evy eV
1 +eXp(U(, _T) 1+ exp(U0 +7)

Field 1
—driven I~ el —-A 1

U, R
p— PR e —

ksT 2 kT Uo

B 1+ cosh (kB—T)
Resonant 1 —A
Up— agev <0 | —Atan(kA(x — x,)) + > ely [1 —exp (_k T)] Py (1 — Dag)
B

—A
+raA?ely [exp (—) (1 —pe)+ Pxo]
kg

Off — Resonant
1-p=1
Ug—azeV >0

e(Tgr — T)p, (1 —py)
N (py — pylka

1 ol _ 1 [T (1 = py) + Tgpy]

Table S2: Summary of relevant expressions for the site occupancy profile, p(x) and the electrical current,
I, with injection barrier. P p denotes the site occupancy at the terminal ends (Left, Right) . The position
variable, x, runs from x = 0 to x = L. e is the electron charge, N is the number of hopping sites, I'y is the

forward hopping rate, V is the applied bias voltage. xp is the solution of Eq. S50 and A is the solution of Eq. S49.
eV(l-a)
2NkpgT

K= % tanh( ), where a is the center-to-center distance between hopping sites

3.5.6. NON-ADIABATIC CONSTRAINT

o (S/cm)

max

100

10

—_

0.3
0.1

0.03
5 10 20 50

051 2
a (nm)

Figure S9: Maximum possible conductivity based on the non-adiabatic constraint (calculated for k = 0.5), as a
function of the reorganisation energy, A, and the center-to-center hopping distance, a, at T =300 K

In the main text, the "weak coupling condition" H/A < 0.1 is used to calculate the
allowed maximum conductivity. A small value for the H/A ratio ensures that no delocal-
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ization occurs between nearest neighbour sites, and so the Marcus hopping theory can
be utilized [70]. Here we examine the same problem (What conductivity is allowed by
Marcus theory?) with an alternative approach.

Our starting point is that the Marcus rate is a non-adiabatic rate. Whether a rate is
non-adiabatic or not depends on the magnitude of the electron transition rate as com-
pared to the frequency of molecular vibrational modes that facilitate the hopping. When
the (average) frequency of vibrational modes, (fiw), is much higher than the hopping
rate, I', Marcus theory is valid. When this condition no longer holds, the electron transfer
process turns adiabatic and the Marcus expression for the transition rate can no longer
be used. More specifically, the transition process is non-adiabatic when the transition
probability is low [109]:

Py=1-expny) <1, (S65)

In this, the adiabatic parameter, y, depends on the electronic coupling, H, the (average)
frequency of vibrations, 7i{w), the reorganisation energy, 1, and the temperature, T
_H 2 T
 2h(w) \ Ak T’

Y (566)
The calculations are made for room temperature (7 = 300 K) and a typical frequency of
vibrations [91] i{w) = 7 meV . Following Zhu et al. [109], for the electron transfer to be
adiabatic, the adiabatic parameter y must be chosen in such a way, that the electronic
transmission coefficient, x, stays below one-half [109]:

2Py
Kk=——=<0.5. (S67)
1+ Py
For this regime, it has been shown that the hopping behaviour is nearly identical to that
predicted by Marcus theory. The maximum possible y that satisfies Eq.S67 gives the
maximum possible electronic coupling H?. From this, we can then calculate the maxi-
mum allowed conductivity, o, that satisfies the "non-adiabatic condition"

210
eFR a

A map of this maximal non-adiabatic conductivity as a function of the reorganisation
energy, A, and the center-to-center distance, a, is given in Fig. S9. For the parameters
implemented (7(w) = 7 meV; T =300 K), the plot shows that the ~ 100 S/cm conductivity
level is only compatible with non-adiabatic hopping for very low reorganisation energy
(A <0.1 eV) and high center-to-center hopping distance (a > 20 nm). Compared to the
"weak coupling condition", the "non-adiabatic" constraint requires a lower reorganisa-
tion energy, A, and higher center-to-center hopping distance, a, to reach the 100 S/cm
conductivity level.

3.5.7. EFFECT OF COUPLING CONSTRAINTS ON THE MAXIMUM CONDUC-
TIVITY

In the main text, the "weak coupling” condition was implemented by using a ratio "

H/A =0.1. This cut-off value for the H/A ratio is to some extent arbitrary. In Fig. 510,
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lower (and hence more conservative) ratios for H/A are explored (varying from 0.1 to
0.01). Separate plots are made the maximum conductivity and the maximum mobility.
The conductivity is calculated from Eq. 19. The mobility is given by p = eI’ a®/ (kg T). In
these, the hopping rate, FOR, is determined from the Marcus expression (Eq. 13), which
only depends on H, A and physical parameters (T = 300 K). For H/A ratios under 0.1,
lower reorganization energies A and higher center-to-center distances a are required to
reach the 100 S/cm conductivity level as observed for the fibers in cable bacteria . For
H/ A ratios below 0.05, this conductivity level even seems unreachable for a < 50 nm.
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Figure S10: a-d Maximum attainable conductivity with the "weak coupling" condition. Conductivity and mo-
bility are plotted as a function of the reorganisation energy, A, and the center-to-center hopping distance, a,
for different values of the ratio between electronic coupling and reorganisation energy, H/A, as indicated in
the top left corner of each color map.



CONDUCTION IN CABLE BACTERIA
FIBERS DISPLAYS A WEAK
ELECTRICAL GATE EFFECT

Jasper VAN DER VEEN, Matteo De Pellegrin, Albert Wieland,
Filip J.R. Meysman and Herre S.J. van der Zant

ABSTRACT

Cable bacteria display an exceptional type of biological conduction, as electrical currents
are channeled over centimeter distances through a network of protein fibers embedded
in the cell envelope. These fibers display a high conductivity, and their electronic proper-
ties bear some resemblance to doped organic semiconductors, such as polyaniline and
polyacetylene. In semiconducting nanowires, the conductivity can be tuned over several
orders of magnitude by applying an external electric field through a global back gate.
Here, we demonstrate that such a strong gating effect is not present in cable bacteria. At
room temperature, the conductance can only be marginally tuned by electrical gating (<
2 %). At cryogenic temperatures, the gating effect is slightly stronger (< 65 % modulation
of the conductance at T = 30 K). The gating effect attains a minimum near the zero gate
voltage, and displays saturation for both positive and negative gate voltages. An electron
transport model with a small energy gap (~ 1 meV) and a constant density of states ad-
equately reproduces the observed gating response at low temperatures. These findings
challenge the conventional model of biology electron transport, in which electrons move
through hopping and only a single electronic state per charge carrier site contributes to
the conduction.
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4.1. INTRODUCTION

Bio-based conductive materials are increasingly receiving interest, as they potentially
provide an alternative to conventional electronic materials, like silicon and metals, that
have a large environmental footprint. The prospect of a biodegradable electronic mate-
rial could also form a solution to the problem of electronic waste [110]. However, to en-
sure functionality, biomaterials must have electrical properties that are sufficiently com-
petitive to standard electronic materials. A natural system that has recently attracted
considerable attention in this regard is the highly conductive fiber network inside cable
bacteria. Cable bacteria are multicellular microorganisms that live in aquatic sediments
and grow to form centimeter-long filaments [1]. Electrical currents are guided along
these filaments through a regular network of protein fibers that are embedded in paral-
lel within the cell envelope [2]. These protein fibers display an extraordinarily high con-
ductivity (up to ~100 S/cm), and as such, they emerge as a promising new bio-electronic
material [2].

Detailed electrical investigation has recently shown that the conduction in cable bac-
teria shares features with some organic semiconductors, such as polyaniline and poly-
acetylene [111-114]. As such, conduction in cable bacteria somehow resembles that
of an organic conductor with a high charge carrier density and polaron delocalization
across multiple sites. The conductivity levels in the periplasmic fibers of cable bacteria
are very high, and the conductance does not show any redox signature and has a low
thermal activation energy (~40 meV). Electronic transport in other natural protein sys-
tems (e.g., electron transport through multi-heme cytochromes in the metal-reducing
bacteria Shewanella and Geobacter [115, 116]) usually has a much lower conductivity, a
much higher activation energy (> 0.3 eV) [23], and often shows the signature of a redox
process.

Here, our objective is to examine to what extent the conductance in cable bacteria is
similar to that in organic semiconductors, such as polyaniline and polyacetylene. These
organic semiconductors have the critical property of being amenable to gating: in a clas-
sical Schottky transistor configuration, the conductivity can be modulated over several
orders of magnitude [117-119]. To examine whether the conductance in cable bacteria
also shows this field effect, we investigated single filaments of cable bacteria in a global
back gate set-up. The resulting data provide insight into the underlying charge transport
mechanism.
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Eibre sheath

Figure 1: Gating setup used to examine the field effect in cable bacteria. Gold patterned electrodes (Au)
are deposited on a 285 nm thick non-conductive SiO; layer that overlays a conductive silicon substrate (p**
doped). A fiber skeleton of cable bacteria is aligned across two electrode contacts. A bias voltage, V, is applied
across the electrodes using probe tips, and the current, I, through the fiber skeleton is measured. A gate volt-
age, Vg, is applied to the underlying silicon substrate to modulate the current.

4.2. RESULTS

4.2.1. DATA COLLECTION

To study the field effect on the conductance of cable bacteria, native cable bacterium
filaments were individually isolated from enrichment cultures. A sequential extraction
procedure allows to remove the lipid membranes and cytoplasm, thus retaining a “fiber
skeleton” that comprises the conductive fiber network connected by a polysaccharide
sheath [2]. These fiber skeletons display a similar conductivity as native filaments, thus
demonstrating that the electron transport remains fully functional after extraction.

To study the field effect on the conductance of cable bacteria, we deposited fiber
sheaths onto a transistor set-up consisting of a silicon substrate (a 0.5 mm p**-doped
silicon layer covered by a 285 nm silicon dioxide layer) with gold-patterned electrodes
(Fig. 1). The current-voltage characteristic, I(V), was recorded as a function of the gate
voltage, V. The conductance, G = I/V, then can be calculated from the I(V) curve at
a certain bias voltage, V. This G value can be compared to the minimum conductance
obtained over the gate voltage range measured (Go = min(G(Vg))). The ratio of the two,
G/ Gy, is referred to as 'the gate effect’.

We measured the gate dependence on 8 separate segments from three individual
fiber skeleton filaments. These segments had different non-conductive interspacings
between the electrodes, ranging from 4 to 600 um (the positioning of the filaments on
the electrodes is displayed in Fig. S1). For each segment, we first determined how the
conductance G varied as a function of the bias voltage V and temperature 7, without
any gate voltage imposed. This non-gated conductance showed a similar temperature
dependence for all the segments investigated (Fig. 52).

The gate effect was determined for all segments at different temperatures, T. For
all segments, gate-dependent measurements were performed at low temperatures (11 K
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to 50 K). Segment 1 was a well conducting sample (room temperature conductivity of
14 S/cm, Table S1) and was measured in more detail: gate-dependent measurements
were performed over a wider range of temperatures (21 K to 200 K). For this segment,
the electrode spacing was 300 um and the electrode width was 100 pm with no electrode
material in between (Fig. S1).
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Figure 2: Current-voltage characteristics and conductance as a function of gate voltage. a Current, , versus
bias voltage, V, for zero gate voltage (black), for maximum positive gate voltage (green) and for maximum neg-
ative gate voltage (magenta). The temperature, T, is indicated in the upper left corner. The spacing between
electrodes is 600 pm (Segment 8 in Fig. S1). b, Same segment as in panel (a). The conductance, G, versus gate
voltage, V. the conductance is determined from a linear fit in the I(V). ¢, Current, I, versus bias voltage, Vg,
for zero gate voltage (Vg = 0, black), for maximum positive gate voltage (Vg = 80V, green) and for maximum
negative gate voltage (Vg = —80 V, magenta). These I(V) curves were taken at a temperature of 7' =21 K. The
inset shows the I(V) curves in the region V = [33,37] V. d, Gate effect versus gate voltage, Vi, where each colour
is a different segment. Measurements taken in temperature range T = [15,30] K, plotted at the lowest analysed
bias voltage (V <14 V).

4.2.2. GATING EFFECT

Our results show that the conductance in cable bacteria shows a limited gate effect. At
room temperature (T = 300 K), the gate effect is hardly noticeable. The I(V) curves are
linear and only marginally dependent on the gate voltage V (Fig. 2a). The gate effect
is smaller than 2% over the gate voltage range examined [-40 V,+40 V] (Fig. 2b). The
gate effect also changes linearly over the investigated gate voltage range (Fig. 2b). Ata
temperature of 200 K and over the extended gate voltage range [-80,+80] V, the effect was
at most 3 % (Fig. S3h). In this case, the conductance was higher for negative gate voltage
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instead of positive. Both for the low and high temperature data, it is not predictable for
which sign of the gate voltage the conductance is highest.

When the temperature was lowered further, the gate effect changes from linear to
bipolar, reaching a minimum near the zero gate voltage. The gate effect also increases
in magnitude. For 'Segment 1’ at T = 20 K, there was a 28% increase in conductance at
Vg = —80V and 26% increase at Vg = +80 V (Fig. 2c,d). This positive increase in the con-
ductance on both sides of the gate voltage polarity was observed for most other segments
(6 out of 7) within the low temperature range (< 150 K). Such behaviour was already pre-
viously observed down to a temperature of 77 K [45]. For some segments, the bipolarity
effect was not symmetric, showing a higher increase for one of the gate polarities (Fig.
2d, Fig. S3).

For segment 1, we monitored the gate effect in detail for increasing temperatures in
the range between 20 K and 160 K. We observed that the gate response changes from
bipolar to linear, and that the gate effect gradually diminishes (Fig. 3a).

When the I(V) curve does not display a linear Ohmic response, the conductance
G = I/V becomes dependent on the voltage bias V. At a fixed temperature, the gate
effect hence tends to be reduced with increasing bias voltage (Fig. 2b). However, this de-
pendence on voltage bias is weak compared to the temperature dependence of the gate
effect. When the temperature is increased by a factor 5 (from 7 = 20 Kto T = 100 K) the
gate effect decreases from 27 % to 3 %. Oppositely, when the voltage bias is increased by
a factor 5 (from 5 V to 25 V), the gate effect only drops from 28 % to 18 %.

Fig. 3c and d show these effects in more detail. At a high gate voltage (Vg = —80V), we
see that the gate effect, G/ Gy, linearly decreases as a function of V' (Fig. 3d). This effect is
more pronounced at lower temperatures. At T = 21 K, the slope of the linear fit provides
a decrease rate of 0.43%/V, while at 50 K it only decreases at a pace of 0.15%/V.

Consequently, if the blue data points in Fig. 3d were to be linearly extrapolated to the
vertical axis (see dashed line), the zero-bias gate effect at low temperature (T = 21 K),
is expected to be only slightly greater than the high-bias gate effect. It is therefore not
expected that the gate effect is much larger for low bias voltage.

4.3. DISCUSSION

4.3.1. CONDUCTION IN CABLE BACTERIA DISPLAYS A WEAK GATING EFFECT
Organic semiconductors such as polyaniline and polyacetylene display a temperature
dependence of conductivity similar that is similar to that of the protein fibers in cable
bacteria (Chapter 2). These organic semiconductors typically also show a strong gate
effect [117, 120-122]. For example, when HCI doped polyacetylene was investigated in
a comparable transistor set-up as done here (channel length: 100 um, gate oxide thick-
ness: 200 nm), the gating effect at room temperature amounted to a factor 10° for a
gate voltage of Vg = —30 V [117]. The fact that we only observe a very weak gate effect at
room temperature (factor <0.02; 5 orders of magnitude lower) is hence a key difference
between cable bacteria and these organic semiconductor systems.

This near absence of a gate response is surprising. In semiconducting materials, the
gate effect arises from the presence of a band gap energy. The gap energy, Uy, thermally
suppresses the charge carrier density in the conduction band under normal, zero-gate
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Figure 3: Temperature and bias voltage dependence of the gate effect, for segment 1. a, On the vertical axis
the normalized conductance, G/Gy, and on the horizontal axis the gate voltage, V5. The gate response is
plotted for temperatures indicated next to the colour bar. All conductance values are determined at the lowest
bias voltage (V < 5 V). b, The normalized conductance, G/Gy, versus gate voltage, V. The gate response is
plotted for multiple bias voltages, V, indicated next to the colour bar. ¢, The magnitude of the gate effect,
G/ Gy, is shown as a function of temperature, T, for the maximum negative gate voltage (Vg = —80 V). The data
is plotted at different bias voltage, V, indicated by the colour scale to the right. d, The magnitude of the gate
effect, G/ Gy, is shown as a function of bias voltage, V, for the maximum negative gate voltage (Vg = —80 V).
The data is plotted at different temperatures, T, indicated by the colour scale to the right. The dashed line is a
guide for the eye for linear extrapolation.

conditions (n o< exp[-Ug/(2kg T)1). By applying a gate voltage, the charge carrier density
can be substantially increased. When a positive gate voltage is applied, the conduction
band is moved closer to the Fermi energy level, thus increasing the charge carrier den-
sity. For the opposite polarity, the number of holes in the valence band is increased.
The fact that there is only a weak gate response at room temperature in cable bacteria
fibers, thus could indicate the absence of a band gap. When there is a non-zero density
of states at or near the Fermi energy, the charge carrier density cannot by changed much
through the application of an electrical field as imposed by the gate voltage. The latter is
an important feature of a (semi)metallic system.

Furthermore, at the interface between electrode and semiconductor, one would also
expect Schottky diode behaviour, which implies that one would observe a strongly asym-
metric I(V) response. Instead, we see a linear current-voltage (I(V)) curve, which is also
characteristic for systems that display a metallic type of conduction. Still, the tempera-
ture dependence of the conductance in cable bacteria does not show any true metallic
behaviour. Rather than decreasing, the conductance increases with temperature, albeit
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with a low activation energy of 40 meV (Chapter 2) [91].

4.3.2. TEMPERATURE DEPENDENCE OF THE GATING EFFECT

When moving to lower temperatures, we observed that the gate effect gradually increases,
which hence could result from the limited size of the energy gap. This small energy gap
must be on the order of 1 - 10 meV, given that is it only visible at low temperatures (<
150 K, kgTg = 13 meV). The band gap could originate from the charging energy of the
electron on the charge carrier site. The charge of the electron, e, leads to a voltage with
respect to the matter around the hopping site, V = e/C, where C is the capacitance be-
tween the hopping site and its material surroundings. For a sufficiently small capac-
itance C, this voltage is significant. For example, for a single fullerene (C-60) particle
connected between electrodes, the charging energy amounts to ~ 0.5 eV [123-125]. This
fullerene particle has a diameter of approximately 1 nm. Our inferred energy gap is two
to three orders of magnitude lower. If the observed energy gap in cable bacteria is due
to a charging effect, than the electronic states is possibly more extended than in such a
particle, since the capacitance scales directly with size.

The gate effect rapidly decreases in a non-linear fashion when the temperature in-
creases (Fig. 3d). In semiconductors this effect is explained as follows. The conductivity,
o = ney, is essentially the product of carrier mobility, i, and the charge carrier density,
n. The charge carrier concentration, n, is thermally influenced and is dependent on the
magnitude of the band gap (n o exp (%) [5]). When the energy gap is small with re-
spect to the thermal energy, the gate effect will be negligible.

The gate voltage can move the electronic states closer to the Fermi level and thereby
reduce the effective band gap [5], such that the activation energy of transport is Uy =
Ug/2 -y V. Assuming the gate has reduced the activation energy of transport, the con-
ductance can be written as:

U, A%
Gx exp(EAT)exp( k}l;TG)' 1)

The gate effect closely follows this Arrhenius relation (Fig. 4). From this, we can estimate
that the gate effect at Vi = - 80 V induces a shift in the activation energy caused of 0.43
meV. From this, the coupling parameter y, which determines how much the gate voltage
is able to shift the activation energy, can be estimated as y = 6 ueV/V. This limited change
is another way to express that the gate effect is small.

4.3.3. A THEORETICAL MODEL

To provide theoretical model support to the observed gate effect, we expanded the hop-
ping model presented in Chapter 3. To this end, we introduced a small energy gap, with
one chain of hopping states slightly above and below the Fermi energy (+¢, one hopping
site/location now has two states/orbitals). This coincides with the situation in Chapter
3 with an injection barrier, but now with two states instead of one. We assume that these
states independently contribute to the current, I (other assumptions in the Appendix).
The current per hopping chain is (see Chapter 3):

I=elrpji(l=pji1)—elLpjivi(l—pji), 2)
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Figure 4: Gate effect as a function of temperature on an Arrhenius plot, at maximum negative gate voltage
(Vg = —80V). Using the Arrhenius relationship, G o exp (?};—VTGJ (Eq.), an estimate of the energy shift applied
by the gate voltage at V5 = —80 V can be translated to a gate coupling y = 6 peV/V.

where j = 1,2 refers to the two states slightly above and below the Fermi energy (Fig. 5a).
The model does not allow the conductance at one side of the gate voltage polarity to be
higher. To describe such a difference, the hopping rate for j = 1 would need to be chosen
different from the one for j = 2. For low voltage (A <« kgT) and field-driven transport
(pj,i = pj+1,i, Chapter 3), the current is:

eV 1 1

R — +
2NsksT |1+ cosh( rkg(;) 1+ cosh(

I=el 3)

AL )
ks T
This model roughly reproduces the observed effect (Fig. 5¢). However, the shape of gate
effect curve and the size of the gate effect is relatively insensitive to the choice of the gap
size. For a large range of gap sizes (f = 5—100 meV), the same gate response is simulated
(Fig. S5). This is because the gate effect is determined by the energy shift that the gate
causes, Y Vg, and not by the gap size. Therefore, nothing can be said about the gap size,
L.

Nevertheless, we know that the sum of the activation energy from the hopping rate,
I'r, and gap energy, ¢, cannot be greater than the total activation energy (~ 40 meV), so
from the activation energy itself it can already be concluded that can be no large energy
gap in cable bacteria. However, in this model, the conductance is at a maximum for zero
gate voltage at high temperatures (Fig. 5¢), which is not consistent with the observations.
So, an alternative model is needed.

An important observation in the data is that there is a saturation effect apparent in
the gate response at high voltages (Fig. 3a,b). Such a saturated response can be explained
by a model that expands upon the model introduced above. This expansion introduces
many more electronic states, but keeps a small gap energy window, in which no states
are allowed Ug (Fig. 5b). In the model simulations, the conductance is saturated when
the shift in gate energy, y Vg, is much greater than the energy gap U,. The thermal energy,
kg T, smoothens the response (at zero T, it would be a step function).
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Figure 5: Scenarios to explain the gate effect. a, Energy vs. position diagram, where one hopping chain of
electron states lies at energy +¢ above the Fermi energy of the conductive protein (indicated by the dashed
line), and another at energy —t. Between every hopping site, there is an energy dissipation, A = eV/Ng, where
Ng is the number of hopping sites. b, An expanded version of the scenario in (a), but now with many electronic
states per site. In green, the density of states, p. There is an energy gap, Ug. The energy dissipation per hopping
site, A, is the same as in panel (a). ¢, Theoretical gate effect in system (a). Normalized conductance, G/Gy,
versus the gate voltage, V. The gate effect is plotted for the temperatures indicated in the colour scale to the
right. Parameters: gap, t = 5 meV and gate coupling, y = 20 peV/V. d, Theoretical gate effect in system (b).
Parameters: gap, Ug = 1 meV and gate coupling, y = 20 peV/V.

This model, which has a constant density of states, p, outside the gap, qualitatively
provides the best agreement with the experimental data (Fig. 5d, Fig. S6). It captures
both the tendency towards gradual saturation in the data, as well as the enhancement of
the effect for lower temperatures. Fig. 5d was constructed with Ug =1 meV and y = 0.1
meV/V, which is close to optimal for the two fitting parameters. The parameters can be
systematically varied to arrive at this conclusion. From the parameters of Fig. 5d, if the
coupling, v, is significantly decreased, the saturation will not be visible anymore. If y
is increased, most of the gate response will be characterised by a saturated response (a
flat line at G/ Gy > 1 for higher gate voltages, see Fig. S6). From the base situation, if the
energy gap is decreased below 0.5 meV, there will be no gate effect, because the thermal
energy kg T is always larger than the gap in the experimental temperature range (T > 4
K, ks T = 0.4 meV). If the energy gap is increased above 2 meV, a stronger maximum gate
effect is predicted (G/Gp > 2). If the coupling is reduced to weaken the effect back to
the experimental levels, the saturation disappears, so a combination of weaker coupling
and a larger gap is not an option. As already mentioned, in the opposite case, i.e. a
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combination of stronger coupling and a small gap, gives a response mostly dominated by
saturation (Fig. S6). We conclude that the size and temperature dependence of the effect
are consistent with an energy gap Ug = 0.5 -2 meV (Fig. S6a,b,c) with y = 0.1 meV/V.
This model only is sensible if the energy spacing between electronic levels is equal or
smaller than the gap size (~ 1 meV), so at least tens of states could be contributing to
conductivity at room temperature (1 meV fits 25 times in kg 7). We conclude, based on
the gate dependent measurements, that cable bacteria conductivity is effectively gapless
at room temperature. Based on the model presented here, there could be many states
contributing to conductivity, just like in metallic transport.

4.4. SUMMARY AND CONCLUSION

The observation of virtually no gate effect at room temperature, combined with the low-
temperature measurements, that show a positive gate effect for both polarities and sat-
uration for high gate voltages, lead us to conclude that cable bacteria are not semicon-
ducting. At room temperature, there is no significant energy gap at the Fermi energy.
This means that the charge carrier density, n, cannot be improved by gating. This con-
clusion supports the notions in Chapter 2, in which the temperature dependence of
conductivity was proposed to come from the charge carrier mobility, determined by a
hopping process. A model in which there is a small energy gap of the order of ~ 1 meV,
but otherwise a constant density of states, qualitatively fits the experimental data at low
temperature.
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4.5. METHODS

FABRICATION

A p**-doped silicon four inch wafer with a 285 nm silicon dioxide layer is diced into 19
mm? pieces, after which a single piece is cleaned for 5 minutes in nitric acid (HNO3 and
demineralized water, inside the Kavli Cleanroom at Delft University of Technology. In a
next step, a photoresist is spin coated onto it (AZ ECI 3007 or 3012). Using the Heidelberg
uMLA Laserwriter, with optical wave length 365 nm, the electrode pattern is exposed in
the photoresist layer (Dose ~ 250 mJ/cm?). The exposed photoresist layer is stripped
with developer MF321, by submerging the silicon piece for 1 minute in it, after which for
30 seconds the piece is submerged in water, to stop the development. With a diamond
pen, at 0.5 mm? squares stripped from photoresist, the silicon dioxide layer is locally
pierced through. This forms a reliable gate connection. Within one hour, 5 nm of tita-
nium is evaporated onto the sample, and 60 - 100 nm of gold, which also overlays the
air-exposed silicon gate connections. N-Methyl-2-pyrrolidone at 70 degrees Celsius lifts
off the remaining resist and unwanted gold.

GATE MEASUREMENTS

Measurements of the gate effect were performed in a LakeShore Cryogenic Probe Sta-
tion (Type CRX 6.5 K). A bias voltage, V, is fed to one of the probes, which is landed on
one of the electrodes. The other probe, is connected to another electrode and kept at
zero voltage. Due to this, a current, I, will flow from one to the other probe, via the fibre
sheath that is lying across the two electrodes. A third probe is connected to one of the
pierced through gate contacts (0.5 mm? size) and a fourth probe is connected to another
gate contact. With an electronic device that applies 10 mV and estimates the resistance
at that voltage ("beeper box"), it is checked whether a good connection through the gate
contacts via the doped silicon layer is achieved (< 100 Q). With the same electronic de-
vice, it is checked whether a very high resistance between the gate contact and the bi-
ased electrodes is achieved (open’). When the actual gate measurement is performed,
the gate voltage, Vg, is slowly ramped up (~ 1 V/s). During the ramping, the current
between the two biased electrodes is measured. During the ramping, this current is typ-
ically not zero, even though the bias voltage is zero, because of capacitive charging of the
gold electrodes or elsewhere in the system. After the ramping, the current reverts back to
zero. When the capacitive current is back at zero, the bias voltage, V, is swept from zero,
to a maximum positive value, to the same but negative value, and back to zero. During
this time, the current, I, and the temperature, T, are recorded.
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4.6. APPENDIX
4.6.1. SAMPLE-LAYOUT FOR MEASURED SEGMENTS
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| 40 pm

Figure S1: Sample-layout for all segments. Each subfigure is one of the used electrode pattern lay-outs. For
each design, electrode width and electrode spacing is given in the graph, using colour coding to indicate the
relevant length. For each segment, the electrode configuration is given (the segment was not necessarily at the
exact given location).
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4.6.2. TEMPERATURE DEPENDENCE OF MEASURED SEGMENTS
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Figure S2: Temperature dependence of segments for which the gate effect was characterized. Segments
3,4,5 are 8,12,13 in Chapter 2. a-e Current-voltage (I(V)) characteristics recorded at different temperatures
and zero gate voltage (Vg = 0). To illustrate the change in shape of the I(V) curve, the current is normalized to
the maximum current, Imax, obtained per I(V) trace. The line color indicates temperature, linearly changing
from red to black in the range 300 — 80 K and from black to blue in the range 80 — 0 K (see color bar). On the
top axis, the electric bias field is shown (E = V/L), see Table 1 for segment lengths, L). f-j The data is plotted as
G =1/V, as a function the inverse temperature, 100/ T, for different bias voltages, V. The colour scale linearly
ranges from black (zero bias voltage) to blue (maximum bias voltage). The values in the colour bars next to the
plot correspond to the lines plotted in the graph.



4.6. APPENDIX

4.6.3. CURRENT-VOLTAGE CHARACTERISTICS AND GATE EFFECT
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Figure S3: Current-voltage characteristics and relative gate effect, for the entire dataset, encompassing multi-
ple temperatures and segments of cable bacteria. al-s1 Current, I, versus bias voltage, V, for zero gate voltage
(black), for maximum positive gate voltage (green) and for maximum negative gate voltage (magenta). The
temperature, 7, is indicated in the inset. a2-s2, The normalized gate effect, G/ Gy, versus gate voltage, V.
the gate effect is shown at multiple applied bias voltages, indicated at the colour bar next to the figure. The
temperature, T, is indicated in one of the corners.
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4.6.4. UNIVERSAL SCALING BEHAVIOR AS A FUNCTION OF TEMPERATURE
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Figure S4: Universal scaling behavior as a function of temperature. Universal scaling curves for segment
1 (panel (a)) and 2 (panel (b)). The scaling curves for segments 3,4,5, are equivalent to Segments 8,12, and
13 in Chapter 2, which can be found there. Segments 6 - 8 were not measured as a function of temperature.
The current-voltage curves in the temperature interval T = [4,100] K, are considered. On the vertical axis the
current I/ TP*1, and on the horizontal axis the bias voltage scaled with temperature eV /2nkgT. The green
solid line gives a fit of the universal scaling relation to the data. The power law exponent f is visually calibrated
to make the data fall onto the same curve the most (precision +0.5) and is given in the inset of each panel.
The transition from the low-bias, high-temperature regime to the high-bias, low-temperature regime occurs
at a bias eV = 27 Ngkg T. This transition point gives the parameter Ng, which gives the number of effective
hopping steps.

4.6.5. TABLE WITH TEMPERATURE DEPENDENT PARAMETERS

Segment L Lg Gy oy LN Tc
(um)|  (pm) (nS) (S/em) (meV) (K)
#1 300 100 152 14 42.5+£0.7 80
#2 57 10 13.9 0.25 46.1+1.8 90
#3 34.5 3,10 6.20 0.066 418+ 15 80
#4 4 3 2.72 0.0034 33.1+0.7 70
#5 9 3 6.70 0.019 351+1.5 70
#6 40 10 - - - -
#7 40 10 - - - -
#8 600 100 - - - -

Table 1: Table with parameters for segments 1 - 5. Segments 6-8 were not measured as a function of tem-
perature. In the first column, the measurement length, L. In the second column, the electrode width, Lg (if
two different electrode widths were present, separated by a comma). In the third column, is the conductance
at room temperature, Go. In the fourth column, the corresponding conductivity, o, calculated with the indi-
cated length (L) and the effective conductive area, A, which is based on 60 parallel fibers with a 26 nm diameter
[44] In the fifth column, is the activation energy, Uy, obtained from fitting an Arrhenius law to G(1/T) curves
for T>100 K and V < 0.5 V. In the last column, is the cross-over temperature is given, defined as the tempera-
ture at which the conductance is 20% higher than expected from the Arrhenius relationship, with Uy from the
previous column.
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4.6.6. BEHAVIOUR OF THE TWO-CHAIN HOPPING MODEL FOR DIFFERENT
PARAMETER SETS

In the two-state model, there are i = 1,..., Ng states with an energy ¢ above the Fermi
energy and there are i = 1,...,, Ng states an energy ¢ below the Fermi energy (Ng is the
number of hopping sites). When a bias voltage, V, is applied, we assume it is equally
divided between all hopping sites, meaning an electron looses an energy A = eV / Ng per
hop. The implied assumption is that the voltage does not drop at the electrode-wire
interface (a = 0 in Chapter 3, see 'field-driven transport’). As put forward in the main
text, when only nearest-neighbour transport is taken into account, the electrical current
is:

I=el'rpi(1-pi1) —el'Lpir(1-py),

where the ratio between the forward and backward hopping rate is determined by the
detailed balance relation [56, 100]:

=oelgr)

— =exp .

I kT

In the two-state situation, the two states are off resonant with energy +¢. For an off-
resonant hopping chain, the current can be estimated as (Chapter 3):

I=e(Ir-T)p1(1-p1)

where p; is determined by the Fermi-Dirac distribution:

pr=—
)

1+exp (—i Z:/TVG

For A <« kg T, the approximation exp (%) ~1+ ﬁ and the sum of the current in the
chains can be written as:

eV 1 1

R - + =
4NskpT |1+ cosh( tkgG) 1+ cosh( thYTVG)

I=el

Here, it is assumed that the current in both hopping states (+) is independent, which
means there are no transitions between the the two states. We do not take into account
that electrons could go from the state at + ¢ to the state at — ¢ within the same hopping site
(thermalisation). If we were to assume thermalisation faster than the hopping rate, we
would obtain the same result for the current, because we would get the same p; at every
hopping site as now stated for p;, with an equilibrium at the (local) Fermi energy (the
dashed black line in Fig. 5). We also assume that when hopping to a nearest neighbour,
the electron remains in the same electronic state but at a different position (from a +z-
state at i = 1 to a +¢-state at i = 2, for example). In Fig. S5, the behaviour of the gate
response in the model is shown for a range of parameters.
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Figure S5: Behaviour of the two-chain hopping model for different parameter sets. Normalized conduc-
tance, G/ Gy, plotted versus gate voltage, Vi, at multiple temperatures, 7, given in the colour bar. Half the
gap size, t, and the gate coupling, y, are given in the plot. In panel (a), for a small gap size, the conductance
is optimal near zero gate voltage, because the occupation probabilities of both chains were already high. In
panels (b), (c), and (d), it can be seen that the gate response is always not sensitive to the gap size, but to the
amount by which the gate shifts the energies, y V. In panels (e), and (f), saturation in the gate response occurs
at lower gate voltage, Vg, for smaller gap size, 2.

4.6.7. BEHAVIOUR OF THE CONSTANT DENSITY OF STATES MODEL, WITH
GAP, FOR DIFFERENT PARAMETER SETS.

In the many-state model, we assume that at each hopping site, there is a 'constant den-

sity of states’, with a 0.4 meV level spacing, which is smaller than the experimental tem-

peratures (4 K, kgT = 0.4 meV), so the individual level is never visible in the gate re-

sponse (as in Fig. S5). Besides the constant density of states, around zero, a gap energy,
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Ug, was introduced, from which all states are removed. In this model, we assume that
electrons more quickly thermalise between the different states at the same hopping site,
i, than the hopping rate. At each site, i, there is a local potential at which the occupancy
would be one-half (the dashed black line in Fig. 5b), which is the local equilibrium for
the thermalisation process. Again, we assume that the hopping occurs via equivalent
neighbouring electronic states (e.g., from the state at energy +¢ and hopping site i = 1 to
the state at energy +¢ and hopping site i = 2). In this case, we can sum up contributions
in a similar manner as before to obtain:

eV 1

4NsksT 7 1 4 cosh(ej,;ByTVG)

IZQFR

where ¢; is the electronic state energy at zero bias voltage and zero gate voltage. We
do not include a bias voltage dependence of the occupation probabilities because we
assume full field-driven transport (a = 0, see 'Chapter 3’). That means that if there were
to be a single hopping chain at € = 0, the occupation probabilities of all sites would be
pi = 1/2. In Fig. S6, the behaviour of the gate response in the model is shown for a range
of parameters. A good match with the data of Fig. 3 is obtained for Ug = 0.5 -2 meV with
Y = 100 peV/V (Fig. S6a,b,c). For gap sizes smaller than 0.5 meV there is effectively no
energy gap, because the thermal energy is greater than the gap size (kg T (4K) = 0.4 meV)
and so there is no gate effect. For higher gap size than a few meV, with the same coupling,
the effect and its temperatures dependence becomes too large and no saturation will
be visible (Fig. S6d). Upon increasing the gate coupling, the saturation is again visible,
but the total effect is now too large (Fig. S6e). For a stronger gate coupling with 1 meV
gap size, complete saturation would be reached earlier and the gate effect would be of
the same magnitude as in the experiment (Fig. S6f). Thus, everything considered, Ug =
0.5—-2 meV with y = 100 peV/V is reasonable.



4.6. APPENDIX

111

a |y =05 meV‘ |7=100 peViv| T (K) u =1meV ‘7-100 peVIv | T (K)
16 160
1.1 130 130
= 10 12 100
o o
O 105 70 o 70
o 50 O 11 50
35 35
21 21
1
-90 -60 -30 0 30 60 90 -90 -60 30 0 30 60 90
Vo (V) sV
c Ug=2meV‘ ‘~,=1oo peVN| T(K) d U, =10 meV 7-100 ueVN‘ (K)
2 160 160
30
130 130
= 100 Z 20 100
© 70 o 70
© 50 S 10 50
35 35
21 21
1
-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
Vo V) Vo (V)
€ [u =10mev| [7=500 ueVIV| T (K) f Ug=1meV| 7 =500 peVIV | T (K)
160 1.3 160
100 130 130
z 10 12 100
o o
9 50 70 ) 70
(0] 50 G 141 50
35 35
21 21
-90 -60 -30 0 30 60 90 -90 -60 -30 0 30 60 90
Vg V) Vg V)

Figure S6: Behaviour of the constant density of states model, with gap, for different parameter sets. Normal-
ized conductance, G/ Gy, plotted versus gate voltage, Vg, at multiple temperatures, T, given in the colour bar.
The gap size, Ug, and the gate coupling, v, are given. The level spacing, inverse of the density of states, was 0.4
meV. In subfigures (a) to (d), only the gap size is increased. In subfigures (e) and (f), the coupling is higher than
in the other subfigures, showing that the gate effect saturates at the same gate voltage, Vg, but the strength of
the gate effect, G/ Gy, differs greatly.
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ABSTRACT

Conductive protein fibers produced by bacteria form a novel class of electrical mate-
rials, but the mechanism of conduction in these biological wires remains poorly un-
derstood. Cable bacteria embed an extremely long type of these protein wires in their
cell envelope, which they use to perform long-range electron transport over centimeter-
scale distances. Previous work has shown that the conductivity of these fibers is high (=
100 S cm™}), has a low activation energy (~ 40 meV) and remains elevated at cryogenic
temperatures. As such, the temperature dependence of the conductance resemble that
of doped organic semiconducting nanowires. These latter materials display a magneto-
resistance at low temperatures (< 10 K), which is attributed to wave function shrinkage.
Here, we performed magneto-resistance measurements on the conductive fiber network
in cable bacteria, which show a magneto-resistance of up to 50% at a temperature of
T = 1.8 K and a magnetic field of B = 8 T. This magneto-resistance is compatible with a
model based on wave function shrinkage. Crucially, this model implies that the distance
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between hopping sites must be in excess of 10 nm. This distance is much higher than in
other biological systems that exhibit electron transport.

5.1. INTRODUCTION

Conductive protein fibers form a class of promising materials at the interface between
electronics and biology. Once their properties are properly understood and controlled,
and if these properties prove to be sufficiently competitive, they could be integrated into
novel type of green electronic devices [126]. Such bio-based electronic materials could
be produced in a bioreactor, and being biodegradable, they would provide a promis-
ing prospect for reducing the problem of electronic waste [110]. Recently, it has been
demonstrated that a variety of bacteria, including Shewanella [19, 20], Geobacter [29,
37, 127] and cable bacteria [2], naturally produce highly conductive protein fibers. How-
ever, the charge transport mechanism in these bio-wires remain elusive.

Conventionally, biological electron transport is depicted as a series of reduction-
oxidation reactions, in which electrons are relayed between cofactors along a path through
the protein structure. For example, in Shewanella nanowires, the interaction of multi-
heme cytochromes allows for electrons to be transported towards external solid electron
acceptors [24]. In this process, hemes function as electron relay centres, in which a sin-
gle iron centre changes its oxidation state from Fe(I) to Fe(II), as the electron transfers
from one heme centre to the other [11]. This process of electron transfer is referred to as
‘'multi-step hopping’.

Cable bacteria stand out within the realm of bio-electricity, because the protein fibers
that they produce are extremely long (> 1 cm) and highly conductive (> 100 S cm™}).
Moreover, cable bacteria do not appear to use iron-based cofactors (such as hemes or
FeS clusters) like other electrogenic bacteria do. Spectroscopic evidence shows that
there are no cytochromes or FeS clusters present in the conductive fibers of cable bac-
teria [44]. Instead, there appears to be Ni-containing cofactor present, whose molecular
structure is yet unresolved [44]. Moreover, electric characterisation reveals markedly dis-
tinct properties. Measurement of the conductance as a function of temperature (Chap-
ter 2), reveals an activation energy (~ 40 meV) that is ~ 5 times lower than for heme or
FeS structures [48, 128, 129]. At low temperature, a transition from classical hopping to
nuclear tunnelling is observed [91]. Moreover, if one fits a classical multi-step hopping
model to the conductance data, one obtains the conclusion that distance between hop-
ping sites must be in excess of 10 nm (Chapter 3). Together, these properties suggest that
the conductance mechanism in cable bacteria is different from that in metal-reducing
bacteria. Instead, the electrical properties resemble those seen in networks of graphene
nanoribbons [62] and a variety of other organic semiconducting nanowires [57, 63, 130,
131].

In semiconducting nanowires made of polyacetylene or polyaniline, it has been shown
that an external magnetic field can alter the electrical conductance, by a process that
is known as wave function shrinkage [68, 132, 133]. In wave function shrinkage, the
magnetic field reinforces the tendency of the electron to be spatially confined. In the
most basic case, the electron is simply confined by the electrostatic attraction to a pos-
itive charged nucleus (hydrogen-like atom) [7]. In classical physics, when an electron
is exposed to a uniform magnetic field (and neglecting electrostatic interactions), the
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electron will go into a cyclotron orbit, due to the Lorentz force. In quantum physics, if
there is no confinement other than the magnetic one, only certain cyclotron radii are
allowed, thus resulting in electronic states that are known as Landau levels. If both elec-
trostatic and magnetic confinement are active, the electrostatic confinement is usually
dominant, but a magnetic field can still alter the wave function. This process is termed
the wave function shrinkage. When electron transport proceeds via a hopping mecha-
nism, wave function shrinkage lowers the wave function overlap between neighbouring
hopping sites, thus decreasing the hopping rate. This, in turn, gives rise to a magneto-
resistance which should be proportional to the square of the magnetic field (R « B?)
[7]. This magneto-resistance effect has been demonstrated in a range of semiconduct-
ing materials, from networks of carbon nanotubes to nickel doped silicon [68, 132, 134—
138]. Here, we examined whether such a magneto-resistance is also present in cable
bacteria.

Eibre
sheath

{Si0; Au /

Figure 1: Schematic representation of the experiment. Gold patterned electrodes are created on top of a
non-conductive SiO» substrate (light blue colour). A cable bacterium filament (fiber skeleton) is deposited in
between the electrode contacts. A voltage bias, V, is applied across the electrodes using probe tips, and the
current I through the fiber sheath is measured. A magnetic field, B, is created by applying an external current,
I, to a superconducting electromagnet that encircles the setup. This surrounding magnet induces a magnetic
field B, which is oriented in the vertical direction and attains positive values for an "up’ orientation of the field,
minus for down.
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5.2. RESULTS

To examine whether the conductance of cable bacteria depends on magnetic field, we
deposited individual fiber skeletons onto a silicon/silicon-dioxide substrate with pat-
terned gold electrodes (Fig. 1). Three separate segments were investigated with different
conductive spacing (information is summarized in Table S2). We measured the current,
I, as a function of applied bias voltage, V, for different temperatures 7' and range of
magnetic fields B (from —8 T to 8 T and back again). The magneto-resistance effect is
expressed as R/ Ry, where the resistance R = I/V with magnetization is compared to the
reference value Ry at zero magnetic field. The cryogenic measurement set-up allows a
full temperature control between 300 K and 1.8 K.

The data for all segments at all temperatures is provided in Fig. S1. At a temperature
of T = 60K, the current-voltage characteristic I(V)s was found to be fairly linear (Fig. 2a))
and independent of the magnetic field (Fig. 2b). Accordingly, there was no magneto-
resistance effect discernible.
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Figure 2: Magneto-resistive effect in cable bacteria. a, Current, I, versus the bias voltage, V, for segment 3, at
a temperature T = 60 K. The I(V) curve at B=38T (blue) and at B =0T (black), in the vertical z-direction (see
Fig. 1). b, The resistance, R, versus magnetic field, B, determined at a bias voltage of V' = 0.2V, at temperature
T =60 K.c, Current, I, versus bias voltage, V, for no magnetic field (B = 0 T, black) and for high magnetic field
(B =8 T, blue). These I(V)-curves were taken at a temperature of T = 1.8 K. On the top axis, the bias voltage,
V, is scaled by the measurement length (L = 4 um), expressed as the electric field E = V/L. The inset shows
the I(V) in the region V = 4.5+ 0.1 V. The data are from segment 2. d, Resistance as a function of magnetic
field, calculated as R = I/V, at an electric field of E = 1.1 V/um. The resistance is normalized to the resistance
at zero magnetic field, Ry. The temperature was T = 1.8 K. Each measured segment of cable bacteria has its
own colour. For each magnetic field, several I(V)-curves were taken (n = 4). Using these curves, the average
resistance and the standard deviation in the resistance are displayed.
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When cooling down the sample close to absolute zero (T = 1.8 K), the current-voltage
curve became more non-linear (Fig. 2¢; see also 'Chapter 2’). When varying the magnetic
field from B =0T to B =8 T and comparing the current-voltage curves, I(V), a magneto-
resistance effect was noticeable that exceeds the current detection limit (inset Fig. 2c).
This magneto-resistance effect was similar for all segments investigated when compared
at the same value of the electric field, E = V/L = 1.13 V/um (Fig. 2d). The magneto-
resistance effect increased when the magnetic field increased, amounting to ~ 30% at
B =8 T. For segment 2, the conductance was also determined at a lower electric field of
E=0.75V/um (V = 3 V), where the magneto-resistance at B =8 T was 50% (T = 1.8 K).
Furthermore, the curves were symmetric around B = 0, providing similar responses for
positive and negative magnetic fields (Fig. 2d).

In the dilution fridge experiment, segment 1 was cooled down further to near ab-
solute zero (T = 100 mK). During cooldown, the current decreased but eventually be-
come constant below 2 K. The magneto-resistance increased to 76% at 100 mK (Fig. S1a).
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Figure 3: Temperature and voltage dependence of the relative magneto-resistance. a, Temperature depen-
dence of the normalized resistance, R/ Ry, calculated in the interval V =1.13 +0.013 V/pm, versus magnetic
field, B (segment 1). The temperature is shown with a linear colour scale from black (1.8 K) to red (10 K), and
each temperature value in the color bar represents a separate curve. b, Voltage bias dependence of the normal-
ized resistance, R/ Ry, measured at T = 1.8 K, versus magnetic field, B (segment 1). The voltage bias is shown
with a linear colour scale from black (45 V) to red (65 V), and each voltage value in the colour bar represents a
separate curve. ¢, Normalized resistance, R/ Ry, versus temperature, T, shown at a high magnetic field (B =8
T), for both segments measured (segment 1 is shown in (a) and (b)), determined at E = 1.13 V/pm. d, Normal-
ized resistance, R/ Ry, versus electric field, E = V/L (bias voltage divided by the electrode separation) for both
segments measured. The temperature was T = 1.8 K.
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A magneto-resistance effect, G(B)/Gy, similar in size and shape to the effect in the z-
direction, was found in the y-direction (the plane of the substrate, but perpendicular to
the direction of the charge transport, Fig. S10a,b, y-direction in Fig. 1).

The magneto-resistance effect is both dependent on the temperature and the strength
of the electrical field inside the cable bacterium wires (Fig. 3). When the temperature is
step-wise increased from 1.8 K to 10 K, the magneto-resistance rapidly disappears. In
segment 1, the effect dropped from 32% at T =1.8 Kto 4.2% at T = 10 K at the maximal
value of B =8 T (Fig. 3a). The other two segments showed a similar behaviour as a func-
tion of temperature (Fig. 3c), when compared at the same electrical field strength. The
magneto-resistance also decreases when the electrical field increases. In segment 1, the
R/Ry dropped from 32% at V = 1.13 V/um to 11% at V = 1.63 V/um (Fig. 3b, Table S1).
The shape of the magneto-resistance is symmetric for all measured temperatures and
electric fields.
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5.3. DISCUSSION

5.3.1. JOULE HEATING

When the bias voltage is increased, and more current is running through the filament,
the magneto-resistance decreases (at a fixed temperature). A higher current through the
filament could imply increased heat dissipation in the wire, so that the local temperature
in the wire is higher than the mean temperature recorded in the setup. Therefore, it is
worthwhile to question whether such Joule heating could play a role in the observed
dependence of the magneto-resistance on the boas voltage.

To judge whether heat dissipation could raise the local wire temperature, we calcu-
lated the heat production P = GV? in all segments. In segment 1 (L = 40 pm), the dissi-
pation level at 45 Vand T = 1.8 Kis P = GV? = 7-10713-45? = 1.4 nW, while in segment 2
(L = 4 um), the dissipation level at 4.5 Vis P ~ GV? = 2-107!! - 4.5? ~ 0.4 nW. In segment
3 (L = 40 pm), the heat dissipation is also P = GV? =~ 2-10713-452 =~ 0.4 nW. The longer
segments 1 and 3 have a lower heat production per unit length, so less local heating is
expected, provided the heat transfer is radiative or occurs through conduction through
the substrate (Table 1). If the heat transfer goes via the electrodes, more local heating
is expected in the long segments, since their thermal resistance is higher. Nevertheless,
the applied electric field has a similar effect on the magnetoresitance in all segments
(Fig. 3d, Fig. S1 for all data). This indicates that Joule heating cannot play an important
role.

Segment L P (E=1.13V/pm) P/L
(pom) (nW) (nW/ pm)

#1 40 14 0.03

#2 4 0.4 0.1

#3 40 0.4 0.01

Table 1: Table with power dissipation values per segment. In the first column, segment number. In the second
column, segment length, L. In the third column, the total power dissipation in the fiber sheath, P, at E =1.13
V/um. In the fourth column, the power dissipation per unit length, P/L.

5.3.2. WAVE FUNCTION SHRINKAGE

In organic semiconducting nanowires with a similar low-temperature conduction be-
haviour as cable bacteria, such as doped polyacetylene and polyaniline, the wave func-
tion shrinkage model has been proposed to explain the magneto-resistance effect [68,
132, 133]. In this model, the magnetic field introduces an additional confinement next
to the electrostatic force, thus reducing the charge carrier delocalisation (See appendix:
'wave function shrinkage model’). The more delocalised the charge carriers are, the
greater is the relative effect of the magnetic field on the resistance [7]. Cable bacteria
show a slightly stronger magnetic response than polyacetylene [132], suggesting that
the charge carriers in the conductive fibers of cable bacteria are more extensively de-
localized than in polyacetylene. On the other hand, when the magneto-resistance of our
the fibers is compared to PANI (polyaniline) [132], the effect in cable bacteria is slightly
weaker. This suggests that the characteristic length scale of transport in cable bacteria is
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quite similar to these organic conductive polymers, as is also seen from the temperature
dependence of transport (Chapter 2).

a b
a a
— —
B
¢ & T
C

a(t) = ay + A sin(wt)
A= kgT/k

Figure 4: Schematic representation of the wave function shrinkage model. a, Two neighbouring hopping
sites, with vertically in dark yellow the electron density, the wave function decay length, { and center-to-center
distance, a. b, Same, but now with an external magnetic field in the vertical direction. The effective decay
length is now smaller. ¢, The center-to-center distance, a, is fluctuating in time, ¢, with amplitude A, due to
some vibrational mode with frequency w and spring constant .

In the wave function shrinkage model proposed by Efros [7], an isolated hydrogen-
like atom is analysed. Without the magnetic field, the wave function is spherically sym-
metric. When a magnetic field is imposed in the direction perpendicular to transport,
the wave function is pulled towards the centre, decreasing the wave function overlap be-
tween neighbouring sites (Fig. 4a,b). The electron transfer rate between two sites is of
the form:

l"Rzl"oexp(—a/E), (1)

where Iy is an fixed pre-factor, ¢ is the wave function decay length and a is the center-to-
center distance between hopping sites. For magnetic lengths, Lg = (%)“ 2 larger than
twice the wave function decay length, 2¢ (weak field regime), the magneto-resistance is
[7]:

R &ad (eB )2

— =1+ = )

Ro 6 \h
Accordingly, a quadratic dependence of the magneto-resistance on the magnetic field is
expected. Such a quadratic dependence is seen in the data (orange line in Fig. 5a). In
this weak-field regime, the quadratic fit of the relative magneto-resistance directly gives
the length scale: (£a®)!/%. This length scale, for all temperatures and applied electric
fields for which the magneto-resistance was measured, gives (¢a®)!* = 5—10 nm (see
Fig. S7). In a hopping model, the wave function overlap distance must of the same or-
der or smaller than the hopping distance (¢ < a). This means the length, (¢ a4 is an
approximate lower bound for the hopping distance. Accordingly, the distance between
neighbouring sites must at least be a = 5 — 10 nm. This outcome supports the idea that
electron transport in cable bacteria is delocalised. For example, if { = 0.1a, the number
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€a*)""* =0.1"*a~0.564, so a =~ 1.8(¢a®)!/* and the hopping length is than almost twice
the derived length scale. For smaller ¢/a ratios the difference is even larger.
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Figure 5: Wave function shrinkage model. a, Temperature dependence of the normalized resistance, R/Ry,
calculated at V =45+ 0.6 V, versus magnetic field, B (same segment as in Fig. 2), measured at T = 1.8 K. Each
point represents a separate I(V)-curve. The dark yellow line is a quadratic fit to the resistance versus magnetic
field data (R/Rg o Bz). b, Colour map of the hopping distance, a, as deducted from the wave function shrink-
age model. On the vertical axis temperature, T; on the horizontal axis the electric field, E. ¢, Decay length, ¢,
as a function of electric field, E, for all segments. d, The hopping distance, a, at an electric field E = 1.1 V/um,
as a function of temperature (segment 1). The drawn black line is a fit to data with formula a = ay — AT, with
ap =16 nmand A = 0.90 nm/K.

With the additional assumption that, below T = 10 K, the temperature dependence of
the hopping rate comes from the dynamics of the decay length, ¢, and the hopping dis-
tance, a, these lengths can be separated from the wave function shrinkage length scale,
d = (¢a®)V*. We assume the pre-factor in the hopping rate I'y to be temperature inde-
pendent (Eq. 1). The hopping rate in Chapter 2 had a different form, based on nuclear
tunneling. To ensure compatibility between the two forms, it is required that vibrations
involved in the reorganisation process, have already been frozen out (kg T < fiw;), which
could be sensible given the very low temperature conditions (T < 10 K). In that case, a
linear fit can be made per value of the electric field, E;, as a function of temperature, T
(Eq. 1 rewritten):

IN(R(E;, T)) = In(Reep) + %a(Ei, T) @)

Here, Ry is the fitted reference value of the resistance at zero hopping distance; this
parameter is a consequence of that the used hopping rate, Eq. 1, is an approximation
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that it only depends on a and ¢. The fit can also be done in terms of the wave function

shrinkage parameter, d = (¢ a3)l’4 (Fig. S7):

a'’* d(E;, T)
p—

In(R(E;, 7)) = In(Rref) + —577 d(Ei, T) = In(Rrep) +

55/4 @

5/
The parameter, s = %, is determined from the linear fit (Fig. S8), which gives the de-

cay length and consequently the hopping length, through the relations ¢ = (ds*)!/* and
a=d*?/&3, The hopping distance is in the range, a = 614 nm, in all segments (Fig. 5b
for segment 2, Fig. S9 for the other segments). It decreases for higher temperatures and
electric fields (Fig. 5b,d). The decay length is approximately constant: ¢ = 5 nm for the 40
pm sample and ¢ = 7 nm for the 4 um sample (Fig. 5c, shown for T'= 1.8 K). The decrease
for higher temperatures could be explained by vibrational modes (section 'Temperature
dependence magneto-resistance’). For the electric field dependence we do no proposi-
tion here, and we would like to stress that there more potential ways to could describe
the magnetic behaviour, such as a weak anti-localisation effect [139] or a energy splitting
of electronic levels by the magnetic field.

With the decay length estimated from the experiment, it is now possible to test the
weak-field assumption. When the magnetic length, Lg, is lower than 2¢, the behaviour
tends more to the strong-field regime [7], in which the magneto-resistance is linear (R/ Ry o
B). The magnetic length is Lg = (18,13,8) nm at B = 2,4,8 T and twice the decay length
is 2¢ = (10,14,10) nm in the three segments, so at B ~ 4 T the magnetic length, L,
and twice the decay length, 2¢, are comparably large. Indeed, at higher magnetic fields
(B = 4 T), the magneto-resistance looks linear (Fig. 5a), so that at high magnetic fields
the weak-field assumption is no longer valid. Furthermore, as expected, when R/Ry is
plotted vs B?, it is visible that the curve is sub-parabolic (Fig. S6), which was also the
case in magneto-resistance measurements in polyaniline nanowires [140]. Importantly,
when applying the strong-field expression to the data, the conclusion that the hopping
distance is ~ 10 nm remains intact (Fig. S5, see section "Weak and strong-field limit’ in
’Appendix: Wave function shrinkage model’).

5.3.3. TEMPERATURE DEPENDENCE MAGNETO-RESISTANCE

Looking at a particular electric field along the temperature axis, we see the following be-
haviour in the hopping distance, a. It starts of at a base value, ay, and decreases with
temperature (Fig. 5d). As a simple, conceptual model, we propose a scenario where
hopping centers periodically move closer to each other due to some slow, thermally ac-
tivated vibrational mode (Fig. 4c). This makes the center-to-center distance fluctuate
as a = ap + Asin(wt), with w the angular frequency of the vibrational mode and ¢ is the
time. At some moments, the distances is smaller or larger than the equilibrium distance.
This effectively increases the time-averaged hopping rate. Assuming tunneling through
arectangular barrier, the net effect is that the effective distance is reduced as [141]:

2VZmaWkyT
hix ’

where W is the energetic height of the tunneling barrier, m, is the mass of the electron,
and « is the spring constant of the vibrational mode. The effective center-to-center dis-

a=dag—

(5)
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tance as a function of temperature approximately decreases linearly as predicted by this
equation (a = ap — AT; (Fig. 5d). This behaviour also persists to the smallest of tem-
peratures (7 = 100 mK, Fig. S11). Based on how quickly the hopping distance falls with
temperature, we find: A = 0.9 nm/K (Table S2). The parameter A is related to the effec-

tive spring constant (A = Z—VZ'Z;W’%), which can be estimated by assuming that W ~ 10
eV (typical order of magnitude for atomic ground states and work functions), we can
estimate the spring constant: x = 1 pN/nm (values per segment listed in Table S2). This
could be a sensible order of magnitude for a protein-based conductor, because nanome-
ter displacements by piconewton forces are typical for protein-protein interactions, as
experimentally observed in optical tweezer experiments, for example with actin and
myosin [142]. To estimate whether the vibrational mode is thermally activated at low
temperature (hw < kg T), we can estimate the frequency of motion, w. For this, the ef-
fective mass of the vibration, m, is needed. In our conceptual model, we can assume
that the vibrational mode moves a molecular structure with ~ 100 carbon atoms, which
in one direction would stretch out to ~ 10 nm (bond length of ~ 0.1 nm), so the carbon
atoms would have a effective mass of 1200 a.u. (neglecting hydrogen and possibility of
other elements like nitrogen and oxygen, which have a similar mass). This gives a vi-

brational frequency hw = hy/ .- = 10 peV, which only freeze out at T = hw/kp = 0.1 K.

So, it could be a sensible proposition that the motion is still thermally activated in all
measurements.

5.3.4. INTERPRETATION OF THE HOPPING LENGTH

The hopping distance results here (Fig. 5b), match the order of magnitude of those found
through the temperature dependence and universal scaling curves (see Chapter 2). For
segment 2, the universal scaling curve indicated that there are Ng = 120 hopping sites
in L =4 um, so there is ay s.c = L/ Ns = 33 nm of length available for each hopping site.
From the wave function shrinkage model we find a = 5—- 10 nm. Given the many as-
sumptions in the models, this is a good match. However, the modelling could be much
improved. The idea of extended one-dimensional states presented in Chapter 2, with
stretched wave functions in the direction of transport, is at odds with the model here,
with an spherically symmetric electronic state in absence of magnetic field (Fig. 4a).
Note, that the distances deducted from the universal scaling curve, ay s.c and from the
magneto-resistance, a, are different in origin, because the inferred the universal scal-
ing curve looks at the number of energy dissipation (voltage division) events, while the
magnetic effect is about how the magnetic field changes the wave function shape. Once
structural inquiries reveals the molecular structures in the conductive protein fibers, the
nano-scale features of electron transport could be modelled in detail.

5.4. CONCLUDING REMARKS

The magneto-resistance experiments confirm the length scale of transport already in-
ferred from the temperature dependence measurements. The ~ 10 nm length scale is
much larger than that in multi-step hopping in cytochromes (< 1 nm). The magneto-
resistance measurements presented in this chapter form a second, independent line
of evidence that electron transport in cable bacteria is more delocalised than in cy-
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tochromes, which is believed to be key for its higher conductivity.

5.5. METHODS

CABLE BACTERIA CULTIVATION

Natural marine sediment was collected from the creek bed in a salt marsh (51.4391°N,
4.1697°E; Rattekaai, the Netherlands) and used for enrichment incubations (procedure
as described in [83]). Thick cable bacteria (ca. 4 um diameter) developed within four
weeks and were identified as Candidatus Electrothrix gigas based on size and morphol-
ogy [42]. Cable bacterium filaments were harvested from the enrichment incubation and
manipulated under a stereo-microscope with custom-made, small glass hooks. Individ-
ual filaments were washed repeatedly with MilliQ to remove sediment particles and salts.
The resulting samples are referred to as “native cable bacteria”. In a subsequent step, the
conductive fiber network was isolated from native cable bacterium filaments through
a chemical extraction procedure that removes the membranes and the cytoplasmic cell
content (procedure as described in [41]). After extraction, a so-called “fiber skeleton” is
retained, in which the conductive fibers are embedded onto a carbohydrate sheath [41].
Notably, the fiber skeletons remain equally conductive as native cable bacteria, indicat-
ing that the extraction procedure does not affect the fiber structure [2].

FABRICATION

For fabrication of the electrode-patterned silicon substrate, see Chapter 2 and/or Chap-
ter 4.

MAGNETIC SET-UPS

For the measurements in this paper, two different set-ups were used. Segments 1 and
3 were measured in a vessel with liquid helium (T = 4.2 K), in which a long cylindrical
stick can be inserted. Inside the stick, there is a sample chamber which is pumped to
vacuum conditions. Additional cooling power is achieved by pumping a tiny amount of
liquid helium through a needle valve, which results in helium in the gas phase at a lower
pressure and temperature than that of liquid helium. With this helium, the sample tem-
perature can be cooled down to approximately T = 1.8 K. With a heater placed nearby the
sample, the temperature can be controlled. Around the sample, there is a superconduct-
ing magnetic coil, with which magnetic fields of B =9 T can be applied perpendicular
to the substrate. The direction of the magnetic is fixed in the vertical direction, but can
be changed from 'up’ to 'down’ by reversing the direction of the current through the coil.
The set-up in which segment 2 was measured is the AttoDRY2100, which is a closed-cycle
cyrostat (no liquid helium), which has a temperature range from T = 1.65 K to T = 300
K and magnetic control from -9 T to + 9 T. Additional measurements on segment 1 were
done in a He-3/He-4 dilution refrigerator, which can reach temperatures down to 100
mK. In the dilution refrigerator there is a vector magnet with a magnetic field of B=1T,
3T, and 8 T available in the x,y and z directions, where x is the direction of transport, y
the in-plane perpendicular direction and z the vertical direction.
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CURRENT-VOLTAGE CHARACTERISTICS

The magnetic field is swept from B = -8 T to B =8 T and back again, in steps of B =0.5
T. At each magnetic field, four current-voltage curves (I(V)) are taken. This means that
in total there are eight I(V)s per magnetic field. The current at a particular voltage men-
tioned in the text, is calculated by averaging over all data points is a small interval. In
the case of segment 1 and segment 3, all current points within +0.5 V of the mentioned
bias voltage, V, are used to calculate the resistance, R = V/I. In the case of segment 2, all
points within +0.1 V are used. The data points and error bars seen in the R(B)/Ry, refer
to the average and standard deviation in the result over four I(V)’s. For calculating the
resistance, for segment 1 and 3 data points with a current of below 5 pA were not anal-
ysed. This was approximately the offset in the I(V), which was positive for one voltage
sweep direction and negative for other. For segment 2, data points of below 0.5 pA were
not analysed. This was roughly the detection limit in this case.
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5.6. APPENDIX

5.6.1. RELATIVE MAGNETO-RESISTANCE FOR THE ENTIRE DATASET
This section of the appendix is dedicated to providing all magneto-resistive measure-
ments that were used in this chapter, shown at bias voltages at which the current was
above the detection limit. Data were taken at different temperatures which are indicated
in the figures.
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Figure S1: Relative magneto-resistance for the entire dataset. For the three segments and at all measured
temperatures, the normalized resistance, R/ Ry, versus magnetic field, B, is displayed. The letters a.b and c
correspond to the segments 1,2 and 3, respectively.. In each subfigure, the magneto-resistance is shown at
multiple applied bias voltages. Each bias voltage has its own colour, scaling linearly from black (45 V) to red
(65V), and each voltage value in the colour bar represents a separate curve. Note, that for segment 1, a dilution
fridge measurement (7 = 100 mK), is included.
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5.6.2. TEMPERATURE DEPENDENT MEASUREMENTS
This appendix section is dedicated to showing that the measured segments showed the
same characteristic temperature dependence as described in Chapter 2.

TEMPERATURE DEPENDENCE OF INVESTIGATED SEGMENTS.
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Figure S2: Temperature dependence of investigated segments. a-c Current-voltage (I(V)) characteristics
recorded at different temperatures. To illustrate the change in shape of the I(V) curve, the current is normal-
ized to the maximum current obtained for each I(V) trace. The color of the lines indicates the temperature,
linearly changing from red to black in the range 100 —80 K and from black to blue in the range 80 —4 K, as
shown in the colour bars next to the plots. d-f The data is plotted as G = I/V, as a function the inverse tem-
perature, 100/ T, for different bias voltages, V. The colour scale linearly ranges from black (zero bias voltage)
to blue (maximum bias voltage). The values in the colour bars next to the plot correspond to the lines plotted
in the graph.
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UNIVERSAL SCALING BEHAVIOR AS A FUNCTION OF TEMPERATURE
This appendix section is dedicated to the universal scaling behaviour of the three seg-
ments investigated.
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Figure S3: Universal scaling behavior as a function of temperature. Universal scaling curves for all three seg-
ments constructed using the current-voltage curves in the temperature interval T = [4,100] K. On the vertical
axis the current I/ TA*1, and on the horizontal axis the bias voltage scaled with temperature, eV/(2wkg T). The
green solid line gives a fit of the universal scaling relation to the data. The power law exponent f is visually
calibrated to make the data fall onto the same curve the most (precision +0.5) and is given in the inset. The
transition from the low-bias, high-temperature regime to the high-bias, low-temperature regime occurs at a
bias eV = 2w Ngkg T. This transition point gives the parameter Ny (given in the insets), defined as the number
of hopping sites.




5. THE LOW-TEMPERATURE MAGNETO-RESISTANCE IN THE PROTEIN FIBERS OF CABLE
134 BACTERIA

5.6.3. COLOUR MAPS OF THE MAGNETO-RESISTIVE EFFECT IN TWO SEG-

MENTS
In this section, the relative magneto-resistance, R/ Ry, is plotted for all electric fields, E,
and temperatures, T, at which the magneto-resistance was determined.
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Figure S4: Colour maps of the magneto-resistive effect for the three segments. a-c correspond to the seg-
ments 1,2 and 3, respectively. The data plotted in Fig. S1 can be used to construct a colour map, with on the
vertical axis the temperature, T. Each rectangle is coloured by the average of the four data points at its corners.
On the horizontal axis, the electric field, E (voltage divided by segment length, see Table S2). The colour indi-
cates the strength of the relative magneto-resistance, R/ Ry at high magnetic field (B =8T).
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5.6.4. WAVE FUNCTION SHRINKAGE MODEL

The wave function shrinkage model used here, is laid out in ’Electronic Properties of
Doped Semiconductors’ by Shklovskii and Efros [7] in the chapter 'Hopping Conduction
in a Magnetic Field. A hydrogen-like atom is considered in a cylinderical coordinate
system (r = p, ¢, z), for which the Schrodinger equation is written as:

thz o2
8meL4 v

(16
[ v =Ey, (S1)

pﬁp[ 69] 822

2me 4mer

where m, is the electron mass, Lg = (; h )” 2 is the magnetic length, € is the electrical
permittivity, r is the position vector of the electron with respect to the nucleus, v is the
electron wave function and E are the energy levels (eigenvalues) of the solution to the
Schrédinger equation. The penultimate and last term on the left hand side of the equa-
tion are the magnetic and electrostatic confinement terms.

WEAK- AND STRONG-FIELD LIMIT
In the weak field regime, where the magnetic length, Lg, is larger than twice the decay
length, 2¢, and the resistance has the dependence [7]:

|l'ij| (x +yl])§|rl]
S 6L%

) (S2)

where |r;;| is the magnitude of the position vector from site i to site j. Assuming that
all hopping sites are aligned on the x-axis, the expression simplifies to (|r;;| = x;; = a,

yij=0):
R x ex a3 =ex a + @¢ eB” ex (a) 1+ ¢ eB” (S3)
x ——| = — — —
Pl 6L4 &6 n? Ple 6 h?
In the whole data set the quantity 5> @ e;f; « 1, so that the linearization of the exponent

can be done. Equation S3 only holds in the weak-field regime. The first requirement
for this limit is that 2 < Lg. For B = (2,4,8) T the magnetic length is Lg = (18,13,9)
nm. Because the derived values for twice the decay length are 2¢ = 10 — 14 nm (Fig. 5c,
determined by Eq.4), for high magnetic fields (B = 4 T), the measurement is not in the
weak-field regime. The second requirement for the weak-field regime is that the hop-

2
ping distance, a, should be much smaller than é—? With the weak-field fitted values for
the decay length, ¢, the ratio of interest can be evaluated (Fig. S5a; B = 4 T). It can be
seen that for low electric field and low temperature, we reach ratios of more than unity.
In this range, the measurement is not 'weak-field’ at B = 4 T, more due to this second
requirement. In any way, for the lowest temperature data and for fields above B =4 T,
the strong-field limit is the most appropriate, which gives [7]:

aZ

eB ,eB
W —|=14+a —

Rx exp =exp|a® > oh (S4)

It has been checked that the quantity a2 ‘“’B « 1, such that the linearization can be done

(Table S1 for the values, 8, in R/Ry =1 + ,BBZ). For segment 2, the linear fit at lowest
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magnetic field and temperature are plotted in Fig. S5b, as well as the outcomes for the
hopping distance, a (Fig. S5c). The conclusion that the hopping distance is ~5—10 nm
(much larger than in multi-heme cytochromes), remains intact when the strong-field
scenario is analysed.
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Figure S5: Strong-field limit fit of wave function shrinkage. a Test of the weak-field limit, by plotting the
12
ratio between a and %, as a function of temperature, 7, and electric field, E = V/L, for segment 2 (B = 4

T). b, Relative magneto-resistance, R/Ry, versus magnetic field, B, on the data of segment 2, at the lowest
temperature (7 = 1.8 K) and lowest electric field (E = 0.75 V/um). Each point represent a different current-
voltage characteristic, I(V). A linear fit through the data is plotted in dark yellow. ¢, For the same segment,
Strong-field hopping distance, a, plotted versus temperature, T, and electric field, E. The strong-field hopping
distance, a, is indicated by the colour bar to right and is determined from the linear fit and Eq. S4.

Given the fact that the measurement is in between the weak and strong-field limits, it
should not be surprising that both the quadratic fit in the main text (Fig. 5a) and the lin-
ear fit here (Fig. S5) essentially capture the data. When plotting the magneto-resistance
on the B—squared scale, it is clear that the data is sub-parabolic (Fig. S6). This was also
the case in magneto-resistance measurements in polyaniline nanowires [140].
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Figure S6: Magneto-resistance as a function of B2. a-c correspond to the segments 1,2 and 3, respectively. The
relative magneto-resistance, R/ Ry, is plotted at three different temperatures, T, which are coloured from black
to red on a linear scale between 0 K and 10 K. If the magneto-resistance scaled with B2, a linear relationship
should be there, but from the concave shape it can be seen the relation is sub-parabolic.
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COLOUR MAPS OF THE CHARACTERISTIC LENGTH SCALE OF WAVE FUNCTION SHRINKAGE
The quadratic, weak-field wave fit in the magneto-resistance directly gives the length

scale, d = (a3&)V%:
R &ad (eB)2
So1e 2 (22
Ry 6 nh

In Fig. S7 this length scale is plotted for all electric fields, E, and temperatures, T. We find
that (a®¢)!/* ranges from 6 to 12 nm for all segments, temperatures and electric fields
considered. With the assumption that the temperature dependence of the conductance,
G(T < 10 K), is due to a changing ratio between a and ¢ (G = Gyexp (—a/¢)), the length
scales ¢ and a can be separated (Fig. 5).
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Figure S7: Colour maps of the characteristic length scale of wave function shrinkage. a-c correspond to the
segments 1,2 and 3, respectively. The quadratic fit for the magneto-resistance. R/Ry = B2, directly gives the
parameter, (¢ a®)V4, where ¢ is the decay length and a is the hopping distance. Each rectangle is coloured by
the average of the four data points at its corners.
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LOGARITHMIC RESISTANCE AT ZERO MAGNETIC FIELD VERSUS d = (¢a®)'/4

As explained in the main text, All values for the magneto-resistance, are mapped to a
length scale, d. Then the data is grouped per value of the electric field, E, such that the
behaviour of d as a function of temperature at a fixed field can be determined. This
temperature dependence is described by the ratio of the center-to-center distance, a,
and the decay length, ¢, from Eq. 3 and Eq. 4 in the main text, expressing the relation-
ship between In(R), ¢ and a). This allows to data to interpreted further in terms of the

mentioned length scales.
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Figure $8: Logarithmic resistance at zero magnetic field versus d = (Ea3)! /4 a-c correspond to the segments
1,2 and 3, respectively. On the vertical axis is the logarithm of the resistance, In(R) and on the horizontal axis is
the length scale, d = ({ a®)t* All data points with a certain value of the electric field, E, are taken together, and
a fit is done in of the logarithm of the resistance as function of temperature, In(R(7)), versus the length scale,
d(E, T) (black lines).
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HOPPING DISTANCE FOR ALL SEGMENTS
Segment 1
a a (nm) d
10 15 -
9 }g ° E=1.1Vium
8 1
= 0 10 —
< 6 o £ S
~ 5 8 ©
4 7 °
3 | 6
1.8 5
113 125 1.38 1.5 1.63 2 4 6 8 10
E (V/um) T (K)
Segment 2
b a (nm) €
8 14 16 " E=0.75Viym
7 13
12
. 6 11
< 5 10
-’ 9
3 8
2.4
1.8 7
0.75 1 1.25 1.5 2 4 8
E (V/um) T (K)



5.6. APPENDIX 141
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Figure S9: Wave function shrinkage results for all segments (weak-field regime). For segment 1, the figures are
shown in the main text (Fig. 5b,d) a-c, Per segment, the colour map of the hopping distance, a, as determined
from the wave function shrinkage model. On the vertical axis temperature, T'; on the horizontal axis the electric
field, E. Each rectangle is coloured by the average of the four data points at its corners. d-f Per segment, the
hopping distance, a, at the lowest analysed electric field (E = 1.1 V/pm or E = 0.75 V/um), as a function of
temperature. The drawn black line is a fit to the data with formula a = ag — AT. For the three segments ag = 16
nm and A= 0.9 nm/K (see Table 52)

5.6.5. DILUTION FRIDGE MEASUREMENTS

DILUTION FRIDGE MEASUREMENTS IN THE PLANE OF THE SUBSTRATE

For segment 1, magneto-resistance measurements were done in a dilution refrigerator,
where the temperature can be lowered to T = 100 mK. The relative magneto-resistance
continued to increase, to a maximum value of 76%. The results of the relative magneto-
resistive effect with the magnetic field in the vertical z-direction are shown elsewhere
(Fig. S1a). The dilution fridge set-up also has a magnetic field available in the horizontal
plane (see 'Methods: Magnetic set-ups’). In the horizontal y-direction (perpendicular to
the direction of transport, Fig. 1), there was a magnetic field of B = 3 T available. This
gave a magneto-resistance similar to the that in the vertical z-direction (Fig. S10a,b).
In the x-direction (in the direction of transport), there was a magnetic field of B=1T
available, allowing for full angle control in the xy-plane up to B = 1 T. As a function of
angle at this field, there is no effect visible (Fig. S10c). This is inconclusive, because in
the whole data set it is hard to see an effect an effect at B = 1 T. Furthermore, during
cooldown from T = 5 K to base temperature, the current was measurement at a fixed
bias voltage of V = 60 V. It was observed that below T = 2 K the temperature dependence
of the conductance at this bias voltage is flat as illustrated by Fig. S10d.
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Figure S10: Additional dilution fridge measurements. Panels (a)-(c) are magneto-resistance measurements
in the plane of the substrate, while panel (d) shows the current as a function of temperature during cooldown.
a, Magneto-resistance in the plane of the substrate, roughly perpendicular to the direction of transport (see
Fig. 1). Current, I, versus the bias voltage, V, at temperature T = 100 mK. The I(V) was plotted at By =3T
(dark blue) and at By, =0T (black). b, Magneto-resistance in the plane of the substrate, roughly perpendicular
to the direction of transport. The resistance, R, versus magnetic field, B. ¢, Electrical current, I, at V =50V
in the xy-plane for all angles, ¢, at magnitude B = 1 T. d, Current, I, as a function of temperature, T, during
cooldown.
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MAGNETO-RESISTIVE EFFECT, INCLUDING THE DILUTION FRIDGE MEASUREMENTS

The wave function shrinkage model has been applied to the data, excluding the dilu-
tion fridge measurements in segment 1. The magneto-resistance colour map has been
extended with the dilution fridge data, which is dominated by the lowest temperature
measurement (Fig. S11a). At T = 100 mK, the dependence of the relative magneto-
resistance, R/ Ry, on the electric field, E = V/L, is similar to that at other temperatures
(Fig. 3, Fig. S11b). Including the measurements at the lowest temperature, the relative
magneto-resistance increases to 76 % (Fig. S11c). When the wave function shrinkage
model is applied to the results, we see that the effective center-to-center hopping dis-
tance continues to increase a the same pace (Fig. S11d). All in all, there is no trend devi-
ation from the T = 1.8 — 10 K measurements to be observed in the dilution fridge.
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Figure S11: Magneto-resistive effect, including the dilution fridge measurements, on segment 1 (T = 100
mK). a, Colour maps of the magneto-resistive effect in segment 1. The data plotted in Fig. S1 is used to con-
struct a colour map, with on the vertical axis the temperature, 7. On the horizontal axis, there is the electric
field, E (see Table S2 for the measurement length). the colour indicates the strength of the relative magneto-
resistance, R/ Ry at high magnetic field (B = 8 T). b, Normalized resistance, R/ Ry, versus electric field, E (bias
voltage divided by the measurement length). The temperature was T = 100 mK. ¢, Normalized magneto-
resistance, R/ Ry, versus temperature, 7. The magneto-resistance was determined at B = 8 T and at electric
field E = 1.1 V/um. All data but the lowest temperature point, indicated by the arrow, can also be found in
Fig. 5. d The hopping distance, a, at lowest electric field and with the dilution fridge measurement added
(T =100 mK; E = 1.1 V/um). The lowest temperature data point is highlighted by an arrow.




5. THE LOW-TEMPERATURE MAGNETO-RESISTANCE IN THE PROTEIN FIBERS OF CABLE
144 BACTERIA

5.6.6. TABLES

TABLE WITH (MAGNETO-)RESISTANCE VALUES PER TEMPERATURE

Segment | T (K) | Ro (TQ) | R/Ro (8T) | Bo (T) | B(1/T?) | a (nm)

#1 0.1 3.6 1.76 16 0.0096 17.7
1.8 1.56 1.33 25 0.0051 14.3

2.4 1.49 127 26 0.0043 135

3 1.40 1.25 26 0.0040 13.1

4 1.22 1.20 27 0.0030 12.0

5 1.06 1.13 31 0.0020 10.5

6 0.90 1.11 35 0.0015 9.7

7 0.73 1.08 37 0.0011 89

8 0.59 1.07 40 0.00098 8.5

9 0.47 1.05 51 0.00051 7.2

10 0.35 1.04 53 0.00062 7.4

#2 18 15 1.40 25 0.0050 143
2.4 1.4 1.39 25 0.0049 14.1

3 1.4 1.40 26 0.0047 134

4 1.3 1.32 27 0.0041 13.1

5 1.2 1.26 29 0.0030 11.5

6 1.0 1.19 21 0.0023 10.3

7 0.89 1.15 34 0.0018 95

8 0.68 1.13 35 0.0015 8.5

#3 1.8 6.2 1.39 29 0.0063 14.9
2.4 6.3 1.35 25 0.0060 14.8

3 5.5 133 29 0.0043 13.3

4 4.8 1.30 27 0.0035 12.4

5 42 1.22 31 0.0023 10.9

6 3.6 1.10 39 0.0015 95

7 2.8 1.15 33 0.0015 9.5

8 2.3 1.06 48 0.00047 7.8

9 1.7 116 41 0.0013 9.0

10 1.2 1.04 50 0.00047 6.7

Table S1: Table with (magneto-)resistance values per temperature. In the first column, is the segment num-
ber indicated. The second column gives the temperature, T. The third column gives the resistance, Ry = V/I,
averaged over the region V =45+ 0.5 V for segments 1 and 3 and over the region V' =3.0+£0.1 V for segment 2.
The fourth column, gives the magneto-resistive effect at B=8 T at E = 1.1 V/um. The fifth column, gives the
characteristic magnetic field of the quadratic magneto-resistance fit (wave function shrinkage, R% = (B%)z).

The sixth column gives f in the relation R% =1+ B2, The last column gives the hopping distance, a, as im-
plied from the wave function shrinkage model in the weak-field regime, at E = 1.1 V/um.
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TABLE WITH CHARACTERISTIC VALUES PER SEGMENT

Segment L Ve || G Tz Uy, A K
(um) | (K) | (nS) | (S/cm) | (me (nmK~') | (pN/nm)
#1 40 110 | 0.83 0.014 43.1+8 0.97 0.46
#2 4 300 | 3248 4.0 418+ 0.4 0.91 0.50
#3 40 80 0.34 | 0.004 - 0.98 0.46

Table S2: Table with characteristic values per segment. In the first column, is the segment number. In the sec-
ond, the distance in between electrodes covered by SiO (the segment length, L). In the third, is the maximum
temperature, Tmax to which the temperature dependent measurement was extended. In the fourth, conduc-
tance, Gmax, at the maximum measured temperature. In the fifth, the is the corresponding conductivity, o' max,
based on Gmax, the segment length, L and the conductive area, A = Nf - n(dp)%, with N = 60 and df = 25
nm. In the sixth column, is the activation energy determined in the region 7' > 70 K (in the rest of this thesis,
T > 100 Kis used). For segment 3, there was not enough data to determine the activation energy. As a guide for
translation to room temperature conductivity, given U4 ~ 40 meV, from 110 K to 300 K, note that an estimated
factor 14 will be gained in conductivity for segment 1, and a factor 160 from 70 K for segment 3. In the sixth
column, A, which is the reduction in effective hopping distance a, per Kelvin (Eq. 5). In the last column, is the
stiffness/spring constant, «, that is implied from A, assuming a classical harmonic oscillator model.







CONCLUDING REMARKS

Cable bacteria stand out in biology as they display an exceptional form of long-range
conduction. The principal objective of this thesis was to achieve a better insight into the
charge transport mechanism that sustains this long-range biological conduction over
centimeter scale distances.

6.1. TEMPERATURE DEPENDENCE OF CONDUCTION

In Chapter 2, it was shown that the temperature dependence of the conductance in cable
bacteria can be explained by a hopping mechanism, albeit not a conventional one. Anal-
ysis of an extensive current/voltage data set covering many fiber sheath samples (7 = 53)
revealed a thermally activated behaviour for high temperatures (T > 75 K), with an acti-
vation energy of ~ 40 meV. We verified that these properties are intrinsic to the protein
fibre material and hence not arise from a contact effect with the electrodes. The corre-
sponding reorganisation of 1 = 0.2 eV is small compared to the reorganisation energy in
multi-heme cytochromes [128, 129], which are responsible for the conductance in the
nanowires of Shewanella and Geobacter bacteria [22, 32].

For lower temperatures (T < 75 K), the conductance flattens out as a function of the
temperature, and hence, it remains relatively high at low temperatures. This flatten-
ing response is proposed to result from nuclear tunneling, in which, at low tempera-
tures, quantum mechanical vibrations contribute more to the charge transport process
than thermal motions. The mean energy of these vibrational modes was found to be
h{w) = 10 meV (order of magnitude estimate). An electrical field arises in the conductive
fibers as a result from the voltage bias applied between source and drain electrodes. At
low temperatures, the conductance was found to be strongly dependent on this electric
field. This behaviour is consistent with the scaling behaviour of nuclear tunneling: the
field-dependent behaviour starts to come notable around eV = Nskg T, where Ng is the
number of hopping sites.

While the charge transport in the periplasmic fibers of cable bacteria can be de-
scribed as a hopping process, the apparent hopping distance (center-to-center distance
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between two charge carrier sites) strongly deviates from conventional electron trans-
port in protein structures. The universal scaling curves indicate that there is only one
hopping site over a length of 10 - 100 nm. This distance is 10-100 times larger than the
packing distance of iron centres in multi-heme cytochromes [128]. This large hopping
distance, combined with the low activation energy, suggests that the charge carriers in
cable bacteria are substantially delocalised (Fig. 1).

6.2. NUCLEAR TUNNELING OR LUTTINGER LIQUID?

In Chapter 2, the conductance data were theoretically explained by a hopping mecha-
nism in which the electron transport is assisted by nuclear tunneling at low tempera-
ture. In this model, the exponent determining the power law G o< T# is determined by
the ratio of reorganisation energy and vibrational frequency (see Eq. S19 in Chapter 2)

B =Ml (hwe) -2 o))

However, other model explanations are possible. In the literature on carbon nanotubes
(see for example Ref.[143]), a comparable low-temperature behaviour of the conduc-
tance is described by the Luttinger Liquid (LL) model. The Luttinger liquid describes a
one-dimensional Fermi gas (1D metal) to which electron-electron interactions are added.
As such, the Luttinger Liquid model leads to exactly the same mathematical expression
for the universal scaling curve (Eq. S22 in Chapter 2). In a Luttinger Liquid, the number
of tunnelling barriers equals the number of hopping sites (INs) and the power law expo-
nent is determined by the ratio between the charging energy, Uc, and the energy spacing
Ac between electronic levels. In carbon nanotubes, if electrons tunnel between the ends
of Luttinger liquid fragments, the exponent becomes [143]:

B=K/1+2Uc/Ac—-1)/4. (2)

The exponent values in carbon nanotubes (8 = 0.84) are much smaller than in cable
bacteria ( = 6). To obtain the values seen in cable bacteria, a high ratio between charg-
ing energy and level spacing is required: Uc/Ac = 312. The charging energy is analo-
gous to the reorganisation energy, because both quantities represent an energy differ-
ence upon loading an electron onto a given location. If the high temperature activation
energy (50 meV) comes exclusively from the charging energy, the level spacing would
be A¢c =50/312 = 0.13 meV. In this model, many electronic levels are hence contribut-
ing to the charge transport. A similar conclusion is arrived upon in Chapter 4 when
analysing the gate dependence of conduction in cable bacteria. Future theoretical as-
sessments could examine the similarities and differences between the Luttinger liquid
and the hopping/nuclear tunneling models, in particular for the conductance as a func-
tion of temperature.

Overall, the charge transport mechanism at the nanometer scale remains puzzling.
The center-to-center distance between hopping sites a, as estimated in Chapter 2 (a ~ 10
-100 nm) is considerably larger than in conventional biological electron transport (a ~
1 nm). Note that a is possibly so large that it is experimentally reachable with electron
beam lithography. Therefore, it could be worthwhile to try to extract a single protein fi-
bre from a cable bacterium and connect this single protein fibre between electrodes that
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are only a few nanometers apart. This way, it might be possible to eliminate the hop-
ping process within the protein fibres,and so the question: 'what is the charge transport
mechanism on the nanometer scale?’, could be answered. Potentially, one might observe
ballistic transport, in which the electron does not scatter or hop (dissipate energy) in the
conductive fibre. If such a measurement could be done, it could give more insight into
the charge injection mechanism at the electrodes as well as the conductive properties of
the protein fibers.

6.3. CHARGE TRANSPORT IS RESONANT AND FIELD-DRIVEN

In Chapter 3, the one-dimensional hopping model, as proposed in Chapter 2, was anal-
ysed in more detail. An important goal was to understand if a classical Marcus-type
one-dimensional hopping model could provide the high conductivity levels that are ob-
served in cable bacteria (up to 100 S/cm) [2]. If charge injection and ejection at the
electrodes is not rate limiting, different regimes of transport are theoretically possible:
field-driven versus concentration-driven, resonant versus off-resonant. The experimen-
tal data collected allow to distinguish which regime is occurring in cable bacteria. In the
concentration-driven regime, the current-voltage curves would quickly saturate beyond
V = 0.1 V at room temperature. In the off-resonant regime, the I(V) would be highly
non-linear for low voltages, followed by a transition to a linear regime for high voltages.
Neither features is seen in cable bacteria. Therefore, charge transport in cable bacteria
can be viewed as resonant and field-driven. As it happens, this particular regime also
enables the highest conductivity.

6.4. ARE LARGE HOPPING DISTANCES REALISTIC?

The model analysis shows that a conductivity on the order of 100 S/cm is only possible
for large distances between hopping sites (a > 10 nm). This implies also that the con-
ductance is solely dominated by the hopping process and that the hopping mobilities
are high. As Chapter 3 shows, hopping mobilities are theoretically allowed to exceed
those of metals (metals have mobilities of ~ 10 cm?/Vs). At a one-to-ten ratio between
the electronic coupling, H, and the reorganisation energy, A = 0.2 eV (H/A = 0.1), and
with a large center-to-center hopping distance (a = 10 nm), the charge carrier mobility
in a hopping system could reach 80 cm?/Vs, and it could even rise above 300 cm 2/ Vs for
a > 20 nm. Thus, the question can be asked whether such a large hopping distance (and
associated high mobility) is reasonable.

In contrast to metals, in the one-dimensional hopping conductor model, it is as-
sumed there is no mobility loss inside the hopping site, as it is described by a delocalised
quantum-mechanical wave function. To test whether this is reasonable, the De Broglie
wave length, Ag = h/p can be calculated, where £ is Planck’s constant and p is the mo-
mentum of the electron. This concept was formulated more than a century ago, to esti-
mate whether an object behaves like a particle or a wave. Over a distance smaller than
the De Broglie wave length, matter can be expected to behave wave-like. Due to the
hopping process, the electrons have a speed p = mv = mI'a, where v is the speed of the
electron, m the effective mass and I' the hopping rate. Thus, the De Broglie wave length
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for hopping can be expressed as:

h
Ag = .
B ml'a

3

For wave lengths smaller than the hopping site (15 < a), it looks reasonable to propose
that electrons act as a standing wave within the hopping site. For a hopping rate of I' =
10'2 571, the point Ag = a is reached at a = \/% =26 nm. Therefore, a wave behaviour
over tens of nanometers is not unreasonable. For a = 26 nm, the electrons then have a
hopping speed of v = I'a = 2.6 - 10* m/s, which is much lower than the Fermi velocity
of electrons in a metal, 106 m/s. The latter gives a De Broglie wave length of only 0.1
nm, making electrons act as particles colliding with the metal lattice (e.g. gold atoms are
placed 0.4 nm apart, which is larger than the De Broglie wave length). Perhaps, with a
lower (hopping) speed of the electrons, they can retain the character of a standing wave
within the hopping site, with a wave length much larger than the size of single atoms. As
such, the electrons do not collide with them and the hopping mobility can reach levels
that exceed those in metals.

Apart from the question whether the mobility is adequately described by the hop-
ping process, it is also questionable whether charge carrier densities nearing that of
metals can be realised. If that were the case, the conductivity of the one-dimensional
hopping conductor would rival that of a metal. If we assume a = 20 nm and the hopping
chain contains one tenth of charge carrier density in metals, one-dimensional hopping
conductivities would rival those of metals. Electron-electron interactions could limit the
charge carrier density, as in the Luttinger Liquid, but the reorganisation effect will screen
electrons from each other’s repulsive electric field. It would be interesting to investigate
whether a (biological) one-dimensional hopping system can exist, whose conductivity
rivals that of metals, both in theory and in practice.

6.5. CONDUCTANCE SHOWS A WEAK FIELD EFFECT

In Chapter 4, gate dependent measurements on fiber skeletons from cable bacteria are
presented. These measurements show that there is little to no gate effect at room tem-
perature (< % 2), with a slightly larger gate effect appearing at lower temperatures (T <
150 K). Still, the gating effect remained small: the ratio between gated and ungated con-
ductance was always less than 2. At low temperatures, the conductance increased for
both sides of the gate voltage polarity, indicating that transport is not dominated by elec-
tron or hole mobilities in a band, as seen in semiconductors. Furthermore, the satura-
tion of the conductance for high gate voltage indicates that the charge carrier density
cannot be improved, even if the gate coupling would be more effective. To explain these
data, a model was proposed in which a small energy gap (~ 1 meV) exists between con-
ductive states on both sides of the Fermi energy. A single electron state (hopping state)
on both the electron and hole side could not describe the observed gate response. In-
stead, the model only fits the experimental data when more electronic states are added.
This proposition is at odds with the traditional view on electron transport in biology (e.g.
multi-heme cytochrome hopping), in which there is only one available electronic state
at a hopping site.

In future research, it could be worthwhile to make devices with more efficient gate
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coupling, for example by using hafnium oxide instead of silicon oxide, which has a much
higher dielectric constant. Also, in many of the measurements, gold electrodes covered
alarge part of the cable bacteria filaments, which screens the gate effect and reduces the
efficiency. Perhaps with a higher gate coupling and smaller electrodes, more features in
the gate response would be visible. For example: the gate response may again begin to
rise after saturation due to a peak in the density of states for higher energy values. More
broadly speaking, the density of states, which determines the charge carrier density, re-
mains unresolved in cable bacteria. This quantity could be calculated once the molecu-
lar/polymeric structure of the conductive protein fibres is known. This knowledge would
clarify whether there is any prospect of increasing the conductivity by gating.

6.6. THE MAGNETO-RESISTANCE AT CRYOGENIC TEMPERATURES
In Chapter 5, low-temperature magneto-resistance measurements on cable bacteria are
presented. At T = 1.8 K, an increase of the resistance of up to 50 % is observed at a mag-
netic field of B = 8 T. The magneto-resistance is reproducible among different samples
with different spacing between the electrodes (L = 42040 um), and it disappears with in-
creasing temperature and electric field. At a temperature of T = 10 K, only a few percent
of magneto-resistance can be measured (4 %). The magnetic response follows that of the
wave function shrinkage model and is very similar to the magnetic response in organic
semiconductors such as polyacetylene and polyaniline [132, 133, 138].

Even though the temperature and field dependent behaviour of the magneto-resistance

has been documented in other materials, its origin remains unclear. As documented in
Chapter 5, the application of the wave function shrinkage model implies a reduction in
the hopping distance with temperature and electric field. Therefore, it was proposed that
a thermally activated vibrational mode is reducing the effective hopping distance with
temperature, thus explaining the observed temperature response. However, no explana-
tion for the field-dependent behaviour was given. A model that does capture this aspect,
is the Variable Range Hopping model (VRH), in which the hopping distance decreases
both with temperature and electric field. For organic polymers with a similar magne-
toresistance, the proposed model was based on VRH [132]. Because this VRH model
predicts a similar dependence of conductance on temperature as the nuclear tunneling
model [144], it would be worthwhile to investigate the role of energetic disorder in hop-
ping sites, in cable bacteria and other biological conductors. Only if the reorganisation
effect plays a minor role in the charge transport, compared to energetic disorder, the
VRH model is a more sensible choice. A combination of the two models (VRH and nu-
clear tunneling) could also capture the observed G(E, T) behaviour (Chapter 2). At the
moment, it is not excluded that beyond nearest neighbour hopping or energetic disorder
play a role in charge transport.

6.7. CONCLUDING THOUGHTS

In summary, with the knowledge acquired in this thesis, the charge transport mechanism
in cable bacteria can be described as follows. Cable bacteria have an extraordinarily low
activation energy of transport, ~ 40 meV. The primary candidate for the origin of this
activation energy is the reorganisation effect, because proteins are generally insulators
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Figure 1: Picture of charge transport in cable bacteria. On the vertical axis, there is potential energy and on
the horizontal axis, there is the position of the electron. To get to the next hopping site, the electron has to
overcome a 0.04 eV barrier, which comes from the reorganisation effect. The electron is delocalised over the
distance between barriers (yellow oval).

with large band gaps [12]. The reorganisation energy implied is A = 0.2 eV, which is much
lower than in other microbial conductors [22, 37]. When measuring the cable bacteria
as a function of temperature, as treated in Chapter 2, the conductivity flattens out for
temperatures below T = 75 K. This fits the nuclear tunneling model, in which vibrational
modes freeze out, but retain their quantum vibrational energy, fiw/2, which makes more
energy available to the hopping process than predicted in classical physics. The tran-
sition to nuclear tunneling was found to be dependent on the electric field, which is
described in the universal scaling relation, which predicts a large distance between hop-
ping centres (a > 10 nm, Fig. 1). The combination of low reorganisation energy and this
large distance make it likely that electrons in cable bacteria are much more delocalised
than on a heme cytochrome, which is key for the high conductivity in cable bacteria.
Model analysis supports that the observed high conductivity in cable bacteria [2, 44]
(~ 100 S/cm) is possible within a delocalised hopping model (Chapter 3). The gate de-
pendence of conductivity supports that cable bacteria’s charge carrier density cannot be
tuned with a gate voltage, as in a band gap semiconductor (Chapter 4). Also, the shape of
the gate voltage response suggests that the hopping chain with single, repeating electron
state is a too simple picture for cable bacteria, because there seem to be more electronic
states involved in charge transport. Lastly, the magnetic response supports that the hy-
pothesis that the charge transport is governed by a delocalised hopping model (Chapter
5).
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