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The spatial and temporal response characteristics of a laminar separation bubble to
impulsive forcing are investigated by means of time-resolved particle image velocimetry
and linear stability theory. A two-dimensional impulsive disturbance is introduced with an
AC dielectric barrier discharge plasma actuator, exciting pertinent instability modes and
ensuring flow development under environmental disturbances. Phase-averaged velocity
measurements are employed to analyse the effect of imposed disturbances at different
amplitudes on the laminar separation bubble. The impulsive disturbance develops into a
wave packet that causes rapid shrinkage of the bubble in both upstream and downstream
directions. This is followed by bubble bursting, during which the bubble elongates
significantly, while vortex shedding in the aft part ceases. Duration of recovery of the
bubble to its unforced state is independent of the forcing amplitude. Quasi-steady linear
stability analysis is performed at each individual phase, demonstrating reduction of
growth rate and frequency of the most unstable modes with increasing forcing amplitude.
Throughout the recovery, amplification rates are directly proportional to the shape factor.
This indicates that bursting and flapping mechanisms are driven by altered stability
characteristics due to variations in incoming disturbances. The emerging wave packet is
characterised in terms of frequency, convective speed and growth rate, with remarkable
agreement between linear stability theory predictions and measurements. The wave
packet assumes a frequency close to the natural shedding frequency, while its convective
speed remains invariant for all forcing amplitudes. The stability of the flow changes only
when disturbances interact with the shear layer breakdown and reattachment processes,
supporting the notion of a closed feedback loop. The results of this study shed light on
the response of laminar separation bubbles to impulsive forcing, providing insight into
the attendant changes of flow dynamics and the underlying stability mechanisms.

Key words: keywords added during submission

1. Introduction

A laminar boundary layer developing along an aerodynamic surface may separate if
exposed to sufficiently strong adverse pressure gradient. Under certain conditions, the
increase of momentum exchange due to laminar to turbulent transition in the separated
shear layer may lead to reattachment. Therefore, in the time-average sense, a closed
recirculation region forms near the surface, namely a laminar separation bubble (LSB,
Gaster 1967).
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Due to the requirement of a laminar boundary layer state at the separation location,
this phenomenon is usually observed at low to moderate Reynolds numbers, typical in
applications such as glider or unmanned aerial vehicle wings and turbomachine blades.
The transition process associated with LSBs is highly susceptible to environmental
disturbances and the resulting separated shear layers are inherently unstable. As a
result, changes in background disturbances can lead to unwanted impact on aerodynamic
performance such as stalling, loss of lift, increase of drag and noise emission. Due to
these implications, numerous studies have been performed to investigate and predict LSB
dynamic properties and stability characteristics (e.g. Gaster & Grant 1975; Dovgal et al.
1994; Watmuff 1999). Although applications primarily involve aerofoils, LSBs driven by
adverse pressure gradient on semi-infinite flat plates exhibit the relevant fundamental
effects and have been used as a suitable experimentation and computation platform (e.g.
Gaster 1967; Marxen & Rist 2010).

Whether numerical or experimental, most studies that investigate stability characteris-
tics involve artificial forcing of the boundary layer with known perturbations at a location
upstream of the LSB separation point and describe the subsequent flow evolution. The
most common type of forcing is sinusoidal and periodic at the most unstable frequency
of the separated shear layer, usually identified through linear stability theory (LST)
analysis. This type of forcing has been introduced by various means including spanwise
uniform wall oscillation (Alam & Sandham 2000; Marxen et al. 2009), externally imposed
acoustic excitation (Yarusevych et al. 2007; Jones et al. 2010) as well as DBD plasma
actuation (Yarusevych & Kotsonis 2017). However, the majority of the previous studies
considered the response of the LSB to continuous forcing. Gaster & Grant (1975) were
the first to introduce an impulsive disturbance, exciting the full spectrum of instability
modes, thus generating a wave packet through selective amplification. This method
was subsequently used by Watmuff (1999) and Diwan & Ramesh (2009). It must be
noted that impulsive disturbances have, so far, been locally introduced at a single
point, usually a pressure tap. Consequently, the emerging wave packets initially exhibit
strong three-dimensional features, which complicates the elucidation of the underlying
physical mechanisms and application of LST. The present study, instead, focuses on
two-dimensional spanwise-uniform impulsive disturbances.

In the laminar part of the LSB, flow is essentially considered two-dimensional and pa-
rallel. If, in addition, small perturbations to the baseline flow are assumed, it is possible to
apply linear stability theory for estimating the most amplified unstable mode frequency.
Häggmark et al. (2001), Rist & Maucher (2002) and Marxen & Rist (2010) demonstrated
that LST applied to the mean baseline flow can successfully reproduce experimental and
numerical stability observations. It is generally accepted that disturbances developing in
a LSB are initially convectively amplified via a Kelvin-Helmholtz instability mechanism,
similar to free shear layers (Ho & Huerre 1984; Watmuff 1999; Marxen et al. 2015).
Inviscid inflectional and Göertler type instability mechanisms have been proposed by
Diwan & Ramesh (2009) and Marxen et al. (2009) respectively. Furthermore, Theofilis
et al. (2000) conjectured a self-exciting, globally unstable process in a disturbance-
free numerical environment. In practice, convective amplification of disturbances in
the separated shear layer leads to the formation of initially two-dimensional vortical
structures which manifest as coherent vortex shedding (Jones et al. 2008; Hain et al. 2009;
Serna & Lázaro 2014; Kurelek et al. 2016). Once they reach the aft part of the LSB, these
spanwise structures undergo three-dimensional breakdown, the underlying mechanism
of which is the subject of active investigations. Marxen et al. (2013) summarise three
instability mechanisms that can take place in LSBs: “primary global”, “secondary” and
“highly localised” instabilities. Primary global instabilities refer to the entire bubble and
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are typically of low frequency. For a fully global instability to develop, Theofilis (2011)
reports a requirement of reverse flow on the order of 10% of the freestream velocity.
On the other hand, Alam & Sandham (2000) report that reverse flow between 15% and
20% is required for a local absolute instability. Secondary instabilities are absolute and
involve vortex shedding. They are either elliptic, causing three-dimensional deformation
of vortex cores, or hyperbolic, affecting the braid region between two consecutive vortices.
Finally, highly localised instabilities are of small scale and manifest in high-shear layers.
They have been shown to play a role in hairpin vortex formation (Bake et al. 2002).

Rist & Augustin (2006) and Marxen & Rist (2010) documented enhanced flow sta-
bilisation with increasing forcing amplitudes. Additionally, they observed reduction of
the LSB size from both upstream and downstream directions. Similarly to Dovgal et al.
(1994) and Boiko et al. (2002), they suggested a feedback loop process to explain the
bubble size reduction due to controlled disturbances. More specifically, a disturbance
input alters the flow in the aft part of the bubble, resulting in a global change of pressure
gradient due to viscous-inviscid interactions. This indirectly distorts the mean flow at
the upstream part of the bubble towards a more stable state, mitigating subsequent
disturbance amplification, effectively leading to stabilisation. Marxen & Henningson
(2011) argued that, if irregular disturbances are present in the incoming flow, such
as freestream turbulence in free flight or wind-tunnel experiments, the aforementioned
feedback loop may explain the occurrence of an intermittent shear layer fluctuation
associated with LSBs, often referred to as “flapping” (e.g. Zaman et al. 1989). Adding
to this argumentation, significant reduction of the flapping behaviour due to artificial
monochromatic forcing has been noted by Dovgal & Boiko (1994) and Sandham (2008),
related to the locking of the bubble dynamics to modes of constant amplitude. Moreover,
flow stabilisation due to the mean flow deformation under continuous forcing has recently
been confirmed experimentally by Yarusevych & Kotsonis (2017).

Laminar separation bubbles are often classified in literature as “short” or “long” based
on their length or whether their influence on pressure distribution is global or local (Owen
& Klanfer 1955; Tani 1964; Gaster 1967). A detailed overview of the associated bubble
characteristics is given by Marxen & Henningson (2011). Pauley et al. (1990) noted
that long separation bubbles with laminar reattachment do not exhibit formation of
vortex shedding. In contrast, the long separation bubbles of Gaster (1967) and Marxen
& Henningson (2011) exhibit laminar to turbulent transition and turbulent reattachment.
However, they fail to reattach as early as short bubbles. Marxen & Henningson (2011)
note that, contrary to short separation bubbles, vortex roll-up in long bubbles occurs
further downstream of the transition location. Under certain conditions, involving minor
flow variations, a short separation bubble may significantly elongate, a dynamic process
termed “bursting” which has been associated with aerofoil stall by Sandham (2008). It
should be noted, however, that bursting and elongation do not necessarily imply that the
LSB acquires long bubble characteristics. Although determining appropriate criteria for
bubble bursting has been a recurrent topic (Gaster 1967; Diwan & Ramesh 2009; Marxen
& Henningson 2011; Serna & Lázaro 2015), the development of a universal criterion has
proven difficult, mainly due to the lack of sufficient understanding of the bursting process.

In an effort to characterise short and long bubbles, Gaster (1967) initiated bursting
by reducing the wind-tunnel speed, affecting pressure gradient and free stream turbu-
lence. Following a different approach, Marxen & Henningson (2011) induced bursting
by eliminating or attenuating disturbances in their DNS boundary conditions. Both
studies, therefore, relied on artificial reduction of the amplitude of disturbances in the
separated shear layer. It must be noted here, that although this approach is technically
straightforward in experimental and numerical frameworks, it does not correspond fully
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to the physical sequence of events preceding bubble bursting. The reason is the inability
of these approaches to decouple the effect of local mean flow stability changes (i.e. mean
flow deformation) and the effect of incoming perturbation amplitude, since the latter is
varied. Nevertheless, based on these studies, a hypothesis can be formulated regarding
global changes of the size of LSBs as a function of incoming disturbances which could lay
the foundation for elucidating both the flapping and bursting mechanisms (Marxen &
Henningson 2011). Namely, the amplitude of flow perturbations entering the LSB defines
the breakdown location which, in turn, defines the size of the LSB and the growth of the
developing instabilities. The evaluation of such a hypothesis in an experimental framework
is the premise of the present study, in reference to the numerical study of Marxen &
Henningson (2011).

This work investigates the response of laminar separation bubbles to impulsive forcing
by assessing the attendant changes of flow dynamics and the underlying stability me-
chanism. Through the above, further insight is provided into both flapping and bursting
mechanisms. A laminar separation bubble is induced on a flat plate by an externally
imposed adverse pressure gradient. Based on the maximum reverse flow criterion, the
formed LSB is globally stable but convectively unstable (Gaster 1992; Alam & Sandham
2000). Repetitive, two-dimensional, impulsive disturbances are introduced upstream of
the location of LSB separation point by means of a dielectric barrier discharge (DBD)
plasma actuator (Corke et al. 2010; Kotsonis 2015; Yarusevych & Kotsonis 2017). The
premise of using impulsive, spanwise uniform, disturbances is twofold. Firstly, impulsive
excitation features a broad spectral content, giving rise to the naturally pertinent instabi-
lity modes through selective amplification. Secondly, for constant conditions (freestream
velocity and turbulence levels) the inflow of the LSB experiences an elevated incoming
disturbance amplitude only during the short duration of the impulse. At all other instants,
the LSB experiences a natural level of incoming disturbances. Effectively, this enables
monitoring mean flow deformation effects, following the wave packet convection, without
altering the amplitude of incoming disturbances.

The evolution of the emerging wave packet and the response of the LSB are captured
with time-resolved particle image velocimetry (PIV), demonstrating that bursting occurs
shortly after the convection of the wave packet. Finally, linear stability theory is employed
in order to relate pertinent changes in stability characteristics to the changes in LSB
dynamics. Since the aforementioned studies (Häggmark et al. 2001; Rist & Maucher 2002;
Marxen & Rist 2010) involving linear stability theory analysis only consider stability
characteristics of the mean flow, a necessity rises of investigating dynamic stability,
for which quasi-steady assumptions may be made. LST in the spatial formulation is,
therefore, applied on phase-averaged velocity fields within a forcing cycle in order to
assess changes in stability characteristics from bursting until recovery of the LSB to its
unperturbed state.

2. Experimental apparatus and techniques

2.1. Model set-up

Experiments are carried out in an open-loop wind tunnel with square cross-section of
500mm×500mm. An overview of the experimental setup is shown in figure 1. A 20mm
thick, 500mm wide and 1000mm long Plexiglas R© flat plate is inserted in the test section
off-centre at a 30% distance from the floor for alleviating wind tunnel corner effects (Saric
& White 1998). The flat plate leading edge is a modified super ellipse (Lin et al. 1992),
enabling seamless curvature change and ensuring development of laminar boundary layer.
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Figure 1. Schematic of the experimental setup.

A movable flap is positioned at the trailing edge of the flat plate and is deflected such as to
localise the leading edge stagnation point on the upper side of the flat plate, eliminating
possible unsteady separation effects. The pressure gradient on the flat plate surface is
conditioned with the aid of a flexible, 1mm thick polycarbonate wall, positioned on the
opposite side of the test section. A Cartesian coordinate system is defined such that x̃ = 0
lies 420mm from the leading edge of the flat plate, ỹ = 0 at its top surface and z̃ = 0 at
its midspan. Here, the tilde denotes dimensional quantities.

The boundary layer on the lower side of the flat plate is tripped at a distance of 50mm
from the leading edge by means of a 2mm thick ziz-zag turbulator. This is done for
eliminating possible fluctuations of a laminar boundary layer as well as for reducing the
strength of shedding at the trailing edge flap. The same tripping technique is applied at
the upstream end of the flexible wall in order to avoid unsteady separation in the adverse
pressure gradient region. Suppression of these effects was confirmed during preliminary
studies by employing both tuft flow visualisation and PIV measurements. In addition,
flow field surveys with a stethoscope confirmed that the boundary layer does not re-
laminarise in the favourable pressure gradient region.

The freestream velocity (Ũ0) is set using a Pitot-static tube located 100mm upstream
of the flat plate leading edge and is kept constant at 6.4m/s, with uncertainty lower than
2%. Hot-wire measurements, bandpass filtered between 0.1Hz and 1kHz, were used to
estimate freestream turbulence intensity (TI = Ũ ′rms/Ũ0), determined to be under 0.2%.

The pressure distribution imposed by the flexible wall is measured by means of 36
pressure taps integrated in the flat plate (figure 1) and is expressed in terms of surface
pressure coefficient (Cp). In the streamwise direction, pressure taps are located at the
midspan (z̃ = 0) with 30mm spacing. Spanwise taps are spaced symmetrically with
respect to the midspan at three streamwise locations; x̃ = −260mm, −80mm and 100mm,
with a spanwise spacing of 50mm. Measurements are performed with a high accuracy
multi-channel pressure scanner at an acquisition frequency of 10Hz and mean pressures
are estimated from 150 samples at each location. The obtained mean Cp distribution is
shown in figure 2. The presence of a pressure plateau in the streamwise surface pressure
distribution (figure 2a) indicates the formation of a laminar separation bubble (e.g.
Yarusevych et al. 2009) in the interval between x̃ ≈ 30mm and x̃ ≈ 150mm. The presence
of a laminar separation bubble is confirmed by tripping the boundary layer with a zig-
zag turbulator placed at the leading edge of the flat plate. The resulting streamwise
pressure distribution (figure 2a) shows that the turbulent boundary layer overcomes
the adverse pressure gradient without separating and that Cp increases downstream
without exhibiting the typical for laminar separation bubbles pressure plateau. Figure
2b demonstrates that both clean and tripped configurations produce uniform pressure
distribution in the spanwise direction, ensuring essentially two-dimensional conditions in
the time averaged sense.
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Figure 2. Cp distribution in (a) streamwise direction (z̃ = 0) and (b) spanwise direction. Solid
lines: clean flat plate conditions; dashed lines: tripped boundary layer near the leading edge.

2.2. AC-DBD forcing

Controlled disturbances are introduced upstream of the LSB with the use of an
Alternating Current Dielectric Barrier Discharge (AC-DBD) plasma actuator (Corke
et al. 2010; Benard & Moreau 2014; Kotsonis 2015; Yarusevych & Kotsonis 2017), located
just upstream of the mean separation point (figure 1). It consists of two asymmetri-
cally positioned electrodes, separated by a dielectric layer. When activated, the DBD
plasma actuator enables momentum exchange through ion-neutral collisions resulting
in the formation of a wall-parallel jet near the surface (Kotsonis 2015). Deterministic
perturbations in terms of amplitude and frequency can, therefore, be introduced by
manipulating the carrier signal. Being an electric device, the DBD plasma actuator
has a fast response and precisely controlled frequency and amplitude. For this study,
the streamwise extent of the high voltage and ground electrodes are 2mm and 5mm
respectively. Both electrodes are painted on the surfaces using conductive silver coating
and are less than 10µm in thickness. The dielectric comprises of 60µm thick Kapton R©

polyimide film, however, its thickness is significantly lower than the local boundary
layer displacement thickness (≈ 5.5mm). Preliminary studies have confirmed negligible
influence on the bubble dynamics from the mechanical roughness associated with the
actuator. The discharge gap is located at a distance of 420mm from the leading edge and
serves as the origin of the reference system (figure 1).

The actuator is driven by a digitally controlled high voltage amplifier. The forcing
signal is comprised by repetitive pulses as shown in figure 3. Each pulse is constructed by
modulating the sinusoidal carrier signal (f̃c = 5kHz) with a square signal at significantly
lower pulse frequency of f̃p = 2Hz. The duty cycle of modulation is fixed at 0.2%, resulting
in a pulse width of 1ms. As will be shown in a later section, the relevant hydrodynamic
frequency associated with the primary shear layer instability in the current LSB is 136Hz.
Respectively, the frequency associated with flapping is on the order of 10 Hz. With the
carrier frequency exceeding any relevant hydrodynamic frequency by at least two orders
of magnitude, each 1ms burst is essentially equivalent to a single impulsive perturbation.
Furthermore, the frequency of the pulses (f̃p = 2Hz) is selected such that the bubble fully
recovers to its unperturbed state between two consecutive pulses. Thus, the perturbations
introduced represent a sequence of statistically independent impulses, facilitating phase-
averaging of the flow measurements.

In order to assess the effect of the excitation amplitude on LSB topology and dynamics,
several peak to peak voltage amplitudes are considered, between 2.5kV and 5kV. Charac-
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Figure 3. Sample of the DBD plasma actuator forcing signal of amplitude A. The sinusoidal
signal at carrier frequency f̃c = 5kHz is modulated with a square wave of pulse frequency
f̃p = 2Hz. Duty cycle is 0.2% leading to 1ms pulse width.

Figure 4. (a) DBD plasma actuator momentum coefficient as a function of applied voltage. (b)

Time-averaged plasma-induced velocity field in quiescent conditions for Ṽpp = 5kV. The control
volume boundary for the Cµ estimation is indicated by a gray rectangle.

terisation of the forcing exerted on the fluid by the AC-DBD for the applied voltages is
expressed in terms of momentum coefficient (Cµ), as formulated by Amitay et al. (2001).

Cµ =
Ĩ

1
2 ρ̃0Ũ2

0 l̃
(2.1)

Here, the time-averaged momentum per unit length, Ĩ, is normalised by the freestream
fluid density, ρ̃0, the square of the freestream velocity, Ũ0, and the length of the plasma

actuator, l̃. For estimating Ĩ at each voltage, PIV measurements are carried out in

quiescent conditions with the actuator operating continuously at f̃c = 5kHz. Ĩ is then
calculated as described by Kotsonis et al. (2011) through application of the momentum
balance equation,

Ĩ =

∮
s

ρ̃0 ũ
(
ũ · n̂

)
dS̃ (2.2)

to the appropriate control volume, assuming uniform pressure distribution. It should be
noted here, that the described momentum coefficient is calculated based on continuous
operation of the actuator and, as such, pertains to the mechanical power of the actuator.
Since for the LSB control the actuator is operated in a modulated manner, the momen-
tum transferred to the flow during each individual pulse can be extracted by simply
multiplying the relevant momentum coefficient by the duty cycle.

The estimated Cµ during continuous operation under quiescent conditions for each
applied voltage and an exemplary velocity field are shown in figure 4. Evidently, the
largest contribution in forcing originates from the momentum exchange along the x-
direction (Cµx). As fluid is displaced by the jet, a secondary effect is observed in the region
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of the discharge gap (x̃ = 0). As a result, thrust along the y-direction is generated towards
the wall, signified by negative momentum coefficient (Cµy ). Although the magnitude of
momentum coefficient is proportional to the voltage, Cµy

remains significantly lower than
Cµx

for all applied voltage amplitudes. For the remainder of the study, Cµ ≈ Cµx
will

be used as an indicator of actuator strength. Finally, it is important to note, that the
topology of the jet as well as the value of Cµ are largely unchanged in the case of the
relatively weak external flow encountered in this study (Pereira et al. 2014).

2.3. Two-component PIV

A time-resolved, two-component Particle Image Velocimetry (PIV) system is employed
for investigating the flowfield in the x-y plane as seen in figure 1. Illumination is performed
by a laser system that delivers green light (532nm). The beam is transformed into a 1mm
light sheet with the aid of an array of spherical and cylindrical lenses. Two high-speed
cameras with 1024×1024 pixels sensor resolution are used to image the illuminated region.
Both are equipped with 200mm macro objectives set at an aperture of f/5.6. Particle
seeding consists of vaporised water-glycol mixture droplets of 1µm diameter. Acquisition
frequencies (f̃a) at 250Hz, 500Hz and 2000Hz are selected for obtaining statistics and
resolving high frequency phenomena accordingly. For each acquisition frequency, 10914
cropped image pairs (∆t̃ = 60µs) are recorded, resulting in total acquisition times of
43.7s, 21.8s and 5.5s respectively. The image pairs are acquired and processed with
LaVision DaVis 8.3. The magnification factor is M = 0.29, yielding a resolution of
14px/mm for each camera. Particle displacements are calculated by applying the multi-
step interrogation algorithm (Scarano & Riethmuller 2000) from an initial window of
48× 48 pixels to a final window of 12× 12 pixels with a 75% overlap between windows.
The resulting vector spacing is 0.19mm in both x and y directions. The multi-step
interrogation window sizes have been selected such that the final vector spacing matches
the limit of spatial resolution determined via the method described by Kähler et al.
(2012). Vector fields from the two cameras are stitched together to obtain a combined
field of view of 131mm by 14mm.

For the experimental data presented in this work, uncertainty is quantified using the
correlation statistics method Wieneke (2015). The local error for instantaneous velocity
measurements is estimated to be εu ≈ 1% in the free stream and εu ≈ 10% within the
LSB. Maximum uncertainty is associated with the region of shear layer breakdown and
reattachment. At this location, the uncertainty in the phase-averaged velocity fields is 3%,
5% and 8% for acquisition frequencies of 250Hz, 500Hz and 2000Hz respectively. Since
the majority of results discussed in the present study pertain to an acquisition frequency
of f̃a = 500Hz, the corresponding uncertainty is propagated through the analysis to yield
uncertainty estimates for the location of the LSB dividing streamline (< 2.5%) and LST
growth rates (< 3.5%).

Actuation and PIV measurements are digitally controlled and synchronised. The
reference time t̃0 = 0s is set at the moment when the actuator is activated. Subsequently,
the camera shutter and laser pulse signals are used for establishing the time of the first
measurement to within 1µs.

3. Post-processing methodology

3.1. Notation and scaling

Throughout this report, dimensional quantities are noted by a tilde and are accompa-
nied by the respective unit (e.g. x̃ [mm]). For non-dimensional representation, measured
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and computed quantities are globally normalised with representative scaling parameters
from the baseline unforced LSB. More specifically, all lengths are normalised with the
displacement thickness at the separation point of the unforced LSB (δ̃∗s0 = 2.39mm).
Integral boundary layer parameters are estimated based on the numerical integration of
the measured time-averaged velocity field. Velocities are non-dimensionalised with the
local edge velocity at separation, Ũ∞s

= 8.6m/s. These two scaling factors are employed
for defining the Reynolds number as Reδ∗s = Ũ∞s δ̃

∗
s0/ν̃ = 1305. Furthermore, they are

combined for frequency scaling in the form of a Strouhal number, St = f̃ δ̃∗s0/Ũ∞s
.

All non-dimensional quantities are denoted by their respective symbol (e.g. x = x̃/δ̃∗s0 ,

u = ũ/Ũ∞s
). Time-averaged quantities are identified with an overbar (e.g. ū), whereas

temporal fluctuations are marked by a dash (e.g. u′).
An additional scaling scheme is introduced for the comparison of forced and unforced

cases. Accordingly, quantities are scaled with the respective time-averaged value pertai-
ning to the unforced LSB for each case. For example, the separation point, xs, is scaled
with the mean separation point of the unforced LSB, x̄s0 . All scaled primary (e.g. length)
and derived (e.g. vorticity) quantities, are subsequently denoted by a hat (e.g. x̂ = x/x̄s0 ,
ω̂ = ω/ω̄s0).

As mentioned in section 2.2, the LSB is cyclically forced by pulses of frequency f̃p =
2Hz. Therefore, a non-dimensional phase, φ, is defined based on the pulse frequency and
the time interval elapsed from the preceding pulse, t̃ (equation 3.1).

φ = t̃f̃p (3.1)

Consequently, φ = 0 coincides with the moment of actuation, while φ = 1 occurs after a
time interval of t̃ = 1/f̃p, at the moment prior to the next pulse initiation. Phase-averaged
quantities are denoted with chevron brackets (e.g. 〈u〉).

3.2. Linear Stability Theory

Similarly to earlier studies (Häggmark et al. 2001; Rist & Maucher 2002; Jones et al.
2010; Marxen & Rist 2010; Yarusevych & Kotsonis 2017) the stability characteristics
of the LSB mean flow field are investigated using linear stability theory (LST). The
latter assumes local parallel flow and low amplitude wave-like disturbances. While these
assumptions are approximations for separated flows such as the LSB at hand, the above
studies have shown very good agreement between LST predictions and direct numerical
simulation (DNS) or experimental data. In classical LST analysis (e.g. van Ingen 2008),
the amplification of disturbances is governed by the Orr-Sommerfeld eigenvalue problem,

(Dy
2 − α2 − β2)2 ϕ(y) =

= iRe
[
(αū+ βw̄ − ω)(Dy

2 − α2 − β2)− αDy
2ū− βDy

2w̄
]
ϕ(y) (3.2)

Here, α and β are the complex streamwise and spanwise wavenumbers respectively while
ω is the corresponding wave frequency. The problem is solved in spatial formulation, i.e.
for real values of ω. A detailed description of the solution process may be found in the
work of van Ingen & Kotsonis (2011). For this study, two-dimensional flow is assumed
and only streamwise disturbances are considered, therefore, β = 0 and w̄ = 0.

The amplification factor, N , is expressed by equation 3.3,

N = ln

(
Ã

Ã0

)
=

x̃∫
x̃c

−α̃idx̃ (3.3)
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with x̃c being the critical streamwise location where a disturbance of amplitude Ã0

and frequency ω first becomes unstable. Due to practical limitations of experimental
techniques, it is not possible to directly measure minute amplitude of disturbances prior
to their amplification above a given measurement noise level. This renders experimental
determination of the critical point difficult. However, in the upstream part of the LSB, αi

may be approximated by a second order polynomial (e.g. Jones et al. 2010, cf. figure 11).
As a result, it is possible to estimate xc by extrapolating the fit curve to αi = 0. Using
this approach, the N factor at the beginning of the imaged field of view is quantified and
serves as a constant for the integration thereon.

Linear stability in temporally variable baseline flows may generally be treated following
the formulation of Reynolds & Hussain (1972). The latter differs from the classical
Orr-Sommerfeld eigenvalue problem, by the inclusion of Reynolds stress terms. It is
well asserted that global flow modification in the region of the LSB is associated with
rather low frequencies, e.g. changes experienced due to flapping or bursting (Gaster 1967;
Marxen & Henningson 2011). In contrast, the objective of LST is to describe the growth
of instabilities of significantly higher frequencies, such as the pertinent Kelvin-Helmholtz
modes developing in the separated shear layer. Due to this large timescale separation,
LST modes essentially experience a quasi-steady baseline flow at a given time after the
introduction of a pulse. Further discussion on the timescale separation is carried out in
section 5.2. A quasi-steady assumption can, therefore, be made and LST calculations may
be performed on phase-averaged velocity profiles, omitting Reynolds stress terms, thus
arriving to equation 3.2. This approach has been treated and discussed in past studies
(e.g. von Kerczek & Davis 1974; Brevdo & Bridges 1997). Finally, it should be stressed
that non-linear effects cannot be predicted using LST, especially in the aft part of the
LSB, where high amplitude three dimensional structures are dominant (e.g. Alam &
Sandham 2000). Reliable stability estimates are, therefore, expected in the fore portion
of the bubble, where the amplitude of disturbances is relatively low.

3.3. Proper Orthogonal Decomposition (POD)

Identification of coherent structures and data order reduction are performed via the
snapshot POD method suggested by Sirovich (1987). The fluctuations of the velocity
field, u′, are first decomposed to a set of eigenfunctions, Φ. The latter are sorted in
decreasing order of eigenvalue (λ). Hence, eigenfunctions with large eigenvalue represent
the most dominant flow structures. A reduced order representation (denoted by the
subscript ro) may, therefore, be achieved by summation of the time-averaged velocity
field and few selected spatial eigenfunctions by means of equation 3.4, where, a are the
temporal coefficients, unique to each snapshot.

uro(x, t) = ū(x) +

Nro∑
n=1

a(n)(t)Φ(n)(x) (3.4)

The analysis shows that for both unforced and forced cases studied here, 85% of the
total estimated modal energy is concentrated within the first four POD modes (figure
5a). A preliminary study sought in identifying the underlying phenomena that each of
the first four modes represent. In the unforced scenario, Φ(1) captures fluctuations of the
shear layer attributed to the flapping behaviour. The following eigenfunctions, Φ(2) and
Φ(3) represent the convective shedding of the LSB. Similar observations regarding the
first three modes have been made by Lengani et al. (2014). When the bubble is forced
(figure 5b-5e), Φ(1) remains to be associated with the shear layer flapping while the
second eigenfunction, Φ(2) represents the rapid shrinkage and recovery of the LSB shear
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Figure 5. (a) Nine first POD eigenvalues for unforced and forced LSB. (b)-(e) Curl between the

streamwise and wall-normal component of the first four eigenfunctions, Ω(n) = ∇× (Φ
(n)
u , Φ

(n)
v )

for Cµ = 1.6× 10−4. Dashed line: displacement thickness.

layer that is later described in section 5.1. Shedding and convection of the introduced
disturbance are simultaneously captured in Φ(3) and Φ(4), as they assume the same
frequency.

3.4. Wavelet analysis

An in-depth overview of wavelet analysis may be found in the work of Daubechies
(1992), thus, only the essential concepts are hereby mentioned. In contrast to the discrete
Fourier transform, the wavelet transform is suitable for capturing the spectral content
of an arbitrary temporal signal, ũ(t̃), such as the impulsive disturbance pertinent to this
study. First, a baseline wavelet function, ψ, must be chosen having zero mean and being
localised in both time and frequency space. For this study, the Morlet wavelet is selected
(equation 3.5).

ψ = e−(t̃/c̃)2ei2πf̃c t̃ (3.5)

In order to satisfy the wavelet admissibility condition described by Farge (1992), the
wavelet central angular frequency is selected to be 2πf̃c = 5rad/s while the damping
parameter is c̃ = 2s.

Wavelet coefficients, w, can then be estimated via expression 3.6, which represents the
convolution between the examined temporal signal, ũ(t̃), and the translated and dilated
complex conjugate of ψ, denoted as ψ∗.

w =
s̃−1/2√

2πf̃a

∞∫
−∞

ψ∗
(
t̃− τ̃
s̃

)
ũ(t̃)dt̃ (3.6)

Here, translation and dilation scales of ψ are represented by the terms τ and s respecti-

vely. In order to obtain unit power per scale, w is scaled by

√
2πf̃a, with f̃a being the

temporal signal sampling frequency.
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Figure 6. Unforced LSB. (a) Time-averaged streamwise velocity profiles, scaled with the local
freestream velocity. (b) Streamwise velocity fluctuations. (c) Wall-normal velocity fluctuations.
Solid line: dividing streamline, dashed line: displacement thickness, dash-dotted line: δ99%. M:
separation point, O: reattachment point, ◦: maximum height, �: maximum shape factor. Shaded
region: dividing streamline uncertainty limits for f̃a = 500Hz (see section 2.3).

4. The unforced LSB

4.1. Statistical features

Prior to the analysis of the spatio-temporal response of the bubble to the impulsive
forcing, it is instructive to examine the behaviour pertaining to the natural, unforced flow,
serving as baseline in this study. Figure 6 depicts time-averaged and fluctuating fields
of the unforced flow. Driven by the adverse pressure gradient, the flow separates and
reattaches downstream forming a closed, in the time-averaged sense, laminar separation
bubble. The boundary of the LSB is defined by the mean dividing streamline, where the
streamfunction ψ = 0. The mean separation and reattachment points are estimated at
x̄s = 6.3 and x̄r = 47.5, establishing a bubble length of l̄b = 41.2. The height of the
bubble is defined as the point of the dividing streamline that is most distant from the
wall, h̄ = 0.73, and is located at x̄h = 41.7. The maximum reverse flow observed within
the bubble is on the order of 2% of the local freestream velocity, indicating development
of only convective instabilities as suggested by Gaster (1992), Alam & Sandham (2000)
and Rist & Maucher (2002).

Time-averaged streamwise velocity profiles scaled with the local freestream velocity
(Ũ∞) are provided for several streamwise stations in figure 6a. These profiles are similar
to the hyperbolic tangent approximations suggested by Dovgal et al. (1994) as well as with
hot-wire measured profiles rectified in proximity to the wall (Niew 1993; Watmuff 1999;
Diwan & Ramesh 2009). Similar to the studies of Gaster & Grant (1975) and Marxen
& Henningson (2011), reattachment is turbulent, however, there is no correspondence
with a fully developed turbulent velocity profile (log-law) in the downstream vicinity
of the reattachment. Indeed, as Alam & Sandham (2000) indicate, relaxation of the
boundary layer to a fully turbulent equilibrium state may require several bubble lengths,
well downstream of the current field of view.
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Figure 7. Instantaneous vorticity demonstrating coherent vortex shedding at timesteps
separated by ∆t = 5f̃p/f̃a, with f̃a = 2kHz. Dashed line: displacement thickness (δ∗).

Fluctuations in the velocity field are quantified by the standard deviation of the two
velocity components, σu = σ̃u/U0 and σv = σ̃v/U0 (figures 6b and 6c). Two regions
of increased fluctuation can be identified, the first extending along the displacement
thickness, upstream of x̄h. In this region, small variations in the shear layer distance
from the wall due to the flapping mechanism (Zaman et al. 1989) result in substantial
changes in the value of u. Flapping does not affect the wall-normal velocity to the
same extent, thus this region is absent in the σv field. In contrast, the second region
of elevated fluctuations is evident in both standard deviation fields downstream of x̄h.
Here, fluctuations are attributed to coherent vortex shedding (figure 7) and the subse-
quent breakdown to turbulence. In both velocity components, the associated velocity
fluctuations are concentrated about the displacement thickness, known to approximate
the trajectory of the shed structures (e.g. Boutilier & Yarusevych 2012).

4.2. Spectral content and stability characteristics

The global displacement of the separated shear layer in a LSB, i.e. flapping, is known
to occur at significantly lower frequencies than the respective vortex rollup and shedding
(e.g. Hain et al. 2009). To access the spectral content of the shear layer flapping and vortex
shedding of the unforced LSB, velocity measurements are performed at f̃a = 250Hz
and f̃a = 2000Hz respectively. The selection of reference locations is made based on
results in figure 6. For assessing flapping, a temporal signal, u(t) is extracted at the
streamwise location corresponding to the mean separation point, x̄s, and at wall normal
location corresponding to δ∗(x̄s). Here, minimal vortex shedding signature is expected
in the spectra. For characterising vortex shedding in the aft part of the bubble, a v(t)
signal is sampled at the streamwise location of mean maximum height and wall-normal
distance equal to the displacement thickness δ∗(x̄h). Power spectral density is estimated
via the Welch method (Welch 1967) by dividing the corresponding temporal signal into
6 windows with 50% overlap. The resulting frequency resolution is St = 3.6× 10−5 and
2.8× 10−4 (0.13Hz and 0.98Hz) for each of the two acquisition frequencies, respectively.
The results shown in figure 8a suggest that flapping is comprised of a range of frequencies
below St = 0.005 (18Hz). The two peaks present in the vicinity of St ≈ 0.005 are
attributed to aliasing from shedding signature and are approximately three orders of
magnitude weaker than the highest point in the band. In contrast, shedding in the aft
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Figure 8. Power spectral density of the unforced LSB. (a) u(t) at x = x̄s and y = δ∗(x̄s),

f̃a = 250Hz. (b) v(t) at x = x̄h and y = δ∗(x̄h), f̃a = 2000Hz. Dashed line: N factor at the same

location. Shaded region: N factor uncertainty at f̃a = 500Hz (see section 2.3).

portion of the bubble produces a well defined, elevated spectral content situated between
St = 0.022 (80Hz) and St = 0.047 (170Hz) (figure 8b). The most dominant frequency is
St = 0.038 (136Hz), with an order of magnitude higher spectral density than the rest of
the band. The spectral content is also related to the dimensionless shedding parameter,
k̃h̃s (Yang & Voke 2001). Here, k̃ = 2πf̃/ũinfl, is the angular wave number, with ũinfl

being the inflection point velocity at x̄h, and h̃s is the shear layer thickness, equal to
the displacement thickness at the same location. For the dominant shedding frequency,
k̃h̃s = 0.78, lying well within the expected limits for Kelvin-Helmholtz instability (0 <
k̃h̃s < 1.2785, Yang & Voke 2001). Furthermore, this is in good agreement with other
relevant studies, e.g. Häggmark et al. (2001) and Simoni et al. (2012b).

In addition to spectral measurements, LST analysis is instrumental for identifying the
dynamic characteristics relevant to the growth of instabilities in the separated shear layer.
For validation purposes, a comparison between spectral results and N factors computed
from LST analysis is shown in figure 8b. It can be seen that the frequencies associated
with maximum amplification factor are in excellent agreement with that of the dominant
peak in the spectrum, both corresponding to St = 0.038 (136Hz). The results of linear
stability calculations (section 3.2) performed on the time-averaged streamwise velocity
field (figure 6a) are presented in figure 9a. It is evident that the growth rate of the most
unstable frequency wave increases from St = 0.033 (117Hz) in the vicinity of separation
to a maximum St = 0.043 (155Hz) near the mean maximum height (x = 42.3). The
corresponding amplification factor at this streamwise location is N = 7.2, comparable to
the direct numerical simulations of Marxen et al. (2009). Moreover, LST calculations yield
a convective speed of disturbances in the unforced LSB of approximately 0.45Ũ0. This
is in good agreement with observations on the propagation of coherent vortex shedding
structures (figure 7).

Monkewitz & Huerre (1982) suggested a scaling scheme for determining the occurrence
of Kelvin-Helmholtz instability in free shear layers. Shear layers are characterised by an
external and an internal velocity, Ue and Ui, respectively. Their difference, ∆U = Ue−Ui,
is used for calculating the vorticity thickness, δw = ∆U/(∂ū/∂y)max. By including the
dimensional frequency, f̃ , and the average of the bounding velocities, Ū = (Ue + Ui)/2,
a dimensionless frequency is expressed as ω∗ = 0.25δw(2πf̃)/Ū . Monkewitz & Huerre
(1982) demonstrated that the range of frequencies for Kelvin-Helmholtz instability lies
in the interval 0.21 < ω∗ < 0.222. For the case of laminar separation bubbles, the internal
velocity may be assumed negligible (Ui ≈ 0) while the external velocity is equal to the
local freestream (Ui ≈ U∞). Since the distance of the bubble shear layer from the wall
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Figure 9. Unforced LSB stability diagram. (a) Non-dimensional growth rate, −αi = −α̃iδ̃∗.
Solid line: Neutral curve (αi = 0). Dashed line: St(max{−αi}) (b) Dimensionless frequency

ω∗ = 0.25δw(2πf̃)/Ū . Solid line: ω∗ estimated on the most unstable LST frequency. � : ω∗ with

f̃ derived from experimental velocity spectra at the maximum δ∗. M: ω∗ from Watmuff (1999);
� : ω∗ from Diwan & Ramesh (2009). For comparing datasets, their x axis is scaled such that
separation and reattachment locations match with the current experiment.

varies with respect to streamwise position, the aforementioned scaling is not valid unless
the shear layer is at sufficient distance from the wall. Consequently, correspondence with
the expected range (ω∗ ≈ 0.21) is mainly achieved in the region of the mean maximum
height (e.g Pauley et al. 1990; Watmuff 1999; Simoni et al. 2012a). Figure 9b depicts a
comparison between ω∗ from the present results and the reporting of Watmuff (1999)
and Diwan & Ramesh (2009). The solid line corresponding to ω∗ estimated based on
the local most unstable frequency (dashed line in figure 9a). Its maximum (ω∗ = 0.213),
agrees well with the estimate based on the dominant frequency in velocity spectra at the
maximum δ∗ (ω∗ = 0.209). Similar to the aforementioned references, ω∗ exhibits linear
increase downstream the separation point, confirming the inviscid nature of disturbance
amplification (Watmuff 1999). The differences between the slopes of the linear portions
of the three data sets are attributed to the substantially different bubble height to length
ratio between the respective experiments.

5. The forced LSB

The LSB is subjected to impulsive forcing with amplitudes ranging from Cµ =

1.5 × 10−6 to Cµ = 1.6 × 10−4. The pulses are repeated at a frequency of f̃p = 2Hz.
Sample temporal and phase-averaged streamwise velocity signals at the mean maximum
height of the unforced LSB are provided in figure 10. The beginning of each cycle is
marked by introduction of a pulse and is identified as the vertical grid line. The results
illustrate the dynamic nature of the cycle, confirming that the transient completely
subsides before the introduction of the next impulse. The strong cycle-to-cycle periodicity
affirms the feasibility of phase-averaging for subsequent increase of statistical significance.
Experimental limitations dictate that, for each acquisition frequency (250Hz, 500Hz and
2000Hz), the number of realisations available at each phase is 87, 43 and 10, respectively.

5.1. Temporal response to impulse

The pertinent features of the temporal response of the LSB to the impulsive forcing
are captured by phase-averaged vorticity fields, 〈ω〉 = 〈ω̃〉δ̃∗s0/Ũ0, shown in figure 11.
An animated sequence of the ensuing events is provided as supplementary material. The
forcing magnitude of the demonstrated sequence is Cµ = 5.4 × 10−5, though the same
general behaviour has been observed at all other forcing amplitudes. An overview of the
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Figure 10. Sample of velocity signal at the location of maximum height, h̄, for Cµ = 1.6×10−4.
The initiation of each forcing cycle is marked by the vertical grid lines. Solid line: raw velocity
signal, u. Dashed line: phase-averaged velocity signal, 〈u〉.

Figure 11. Phase-averaged vorticity within the forcing cycle for Cµ = 5.4 × 10−5. Solid
line: dividing streamline; dashed line: displacement thickness (δ∗); M: separation point; O :
reattachment point; ◦: maximum height; �: location of maximum shape factor.

topological changes of the separation bubble for all forcing amplitudes is achieved by
tracing bounding properties of the LSB with respect to phase and is shown in figure
12. Specifically, the phase-averaged location of separation, 〈xs〉 and reattachment, 〈xr〉,
bubble length, 〈l〉 = 〈xr〉 − 〈xs〉, and maximum height, 〈h〉 are shown in figure 12. For
ease of comparison, these metrics are normalised by the corresponding parameters of
the unforced LSB (thus are denoted with the hat symbol). At this point a note needs
to be made considering the definition of the LSB boundaries. As seen in figure 11, for
phases φ < 0.08, the introduced vortical wavepacket distorts the flow to a degree where
a classical definition of LSB is no longer applicable. As such, the focus of the analysis is
directed to phases greater than 0.08. In figure 12, the shaded area corresponds indeed to
phases at which the introduced disturbance advances within the field of view.

Shortly after the introduction of the pulse, a wave packet emerges, which develops into a
set of co-rotating vortices that propagate downstream (0.036 < φ < 0.052, figure 11). The
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Figure 12. Evolution of phase-averaged (a) separation point; (b) reattachment point; (c) bubble
length and; (d) maximum bubble height. All metrics are scaled with the respective unforced
value. Shaded region: Interval during which the wave packet is within the field of view.

convective nature of the developing disturbance confirms the aforementioned assumption
of global stability of the present LSB, based on the magnitude of maximum reverse
flow of 2% (Gaster 1992; Alam & Sandham 2000). Once the developing wave packet
convects past the streamwise location of the mean maximum height of the unforced case
(φ = 0.08), the LSB undergoes rapid contraction with the separation and reattachment
points shifting downstream and upstream respectively, similar to the DNS observations
of Rist & Maucher (2002). For forcing amplitudes exceeding Cµ = 4.2 × 10−6, the LSB
is completely eliminated (φ = 0.096, figure 11). Complete elimination of the LSB is
signified in figure 12 by discontinuities in the plots at phases close to φ = 0.1. Within the
same range, the two lowest forcing amplitudes result in the reduction of LSB size, albeit
not complete elimination. From this point, the LSB starts recovering, a process that is
significantly slower than the contraction. Growth of the LSB is, too, occurring towards
both upstream and downstream directions (figure 12).

During the recovery stage, the LSB elongates before contracting to its unperturbed
state (φ ≈ 0.45, figure 11). The reattachment point shifts downstream, similar to the
behaviour of the bursting process described by Gaster (1967) and Marxen & Henningson
(2011). This produces the overshoot in the reattachment location, bubble length, and the
maximum height seen in figures 12b, c, and d, respectively, within 0.2 < φ < 0.4. Bursting
is accompanied by reduction of the vortex shedding strength. This is visualised in figure
13, which depicts instantaneous velocity traces probed at the aft part of the bubble.
At the early stages of the bursting process, for a short time interval after the bubble
elimination, no shedding traces are evident within the field of view (0.1 < t̃f̃ < 0.15).
Shedding, however, quickly resumes as the bubble grows, albeit at a lower strength, until
reattachment assumes its most downstream location (φ ≈ 0.25, figure 11). From this
point, the bubble height increases further than its unforced value, an inertial effect that
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Figure 13. Velocity signals at x = 55 and y = δ̄∗0(55) for Cµ = 5.4× 10−5. (a) streamwise
component, u. (b) wall-normal component, v.

is a direct consequence of the vortex shedding strength reduction. More specifically, mass
accumulation caused by the reverse flow is not balanced by sufficient mass entrainment in
the aft portion through vortex shedding until breakdown has moved sufficiently upstream.
After the latter occurs, the LSB finally recovers to its unperturbed state.

The dynamic cycle described here, including the bubble size reduction or elimination, is
also observed in cases where laminar separation bubbles interact with controlled periodic
wake disturbances (e.g. Simoni et al. 2012a). In addition, the separation bubble does not
exhibit any features of long bubbles (Marxen & Henningson 2011) throughout the forcing
cycle, thus, the elongation represents part of a dynamic process of a short bubble.

The LSB topology is dependent on the laminar to turbulent transition process as
the latter governs momentum entrainment and leads to reattachment. It is therefore
expected that variations in laminar to turbulent transition within the LSB shear layer
are accompanied by evident changes in integral boundary layer length scales (van Ingen
2008; Yarusevych & Kotsonis 2017). The aforementioned quantities are estimated during
the forcing cycle at the streamwise location of the unforced LSB mean maximum height
and are shown in figure 14. It is evident that during bursting, increasing forcing amplitude
results in decrease of displacement thickness (δ∗) and increase of momentum thickness (θ).
Consequently, the shape factor (H = δ∗/θ) decreases, signifying enhanced stabilisation of
the boundary layer for increasing forcing amplitude, consistent with the documentations
of Rist & Augustin (2006) and Marxen & Rist (2010).

Prior to the disturbance introduction (φ = 0), the location of maximum shape factor,
H, is located in the upstream vicinity of the mean reattachment location (figures 14c and
11). This location corresponds well to the abrupt rise of wall-normal velocity fluctuations
in the unforced bubble (figure 6), signifying the onset of the shear layer breakdown.
Due to the low turbulence environment and the strongly inflectional profiles exhibited
by the LSB, the breakdown and transition onset locations are in close proximity. As
such, a first order estimation of the breakdown onset location can be derived based
on the streamwise location where the shape factor is maximised. This is indicated by
a square marker in figure 11. Shortly after the convection of the forced wave packet
and the elimination of the LSB, the breakdown onset point swiftly shifts upstream
by approximately 12δ̃∗s (φ = 0.08 and 0.096). Here, the absence of reverse flow leads
to temporary stabilisation, which, in turn, causes the breakdown onset point to shift
downstream (φ = 0.173). This downstream shift persists throughout the entire bursting
process (figure 12). Given the observed behaviour, the phase at which the breakdown
onset location is most downstream corresponds to the longest LSB (φ ≈ 0.25), i.e. at the
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Figure 14. Evolution of phase-averaged boundary layer integral quantities scaled to the
respective unforced value. Values are probed at the streamwise location of maximum height
of the unforced LSB x̄h0 (a) Displacement thickness; (b) momentum thickness; (c) shape factor.
Shaded region: Interval during which forced disturbance is within the field of view.

end of bursting (figure 12c). As gradual recovery ensues after maximum elongation, the
breakdown onset point propagates upstream, reaching its unforced location at φ ≈ 0.5.

As mentioned earlier, during the interval between the bubble elimination and the end
of the bursting process, the LSB shedding strength is reduced (figure 13). This notion,
in conjunction with the significant changes in the breakdown onset location implies that
an impulsive disturbance significantly influences the stability characteristics of the LSB.
Following the elimination of the reverse flow region, the temporary stabilisation leads
to reduced growth rate of incoming disturbances, thus, transition to turbulence and
the associated increase of wall-normal mixing are driven to occur farther downstream.
Consequently, the separated shear layer fails to reattach as early as in the unforced
scenario. It is important to stress here that the apparent stabilisation of the LSB is slightly
different than the one observed by Gaster (1967) and Marxen & Henningson (2011)
in their respective studies. While a combination of mean flow distortion and changing
amplitude of incoming instabilities was at play in the aforementioned studies, the current
investigation is performed with a non-changing incoming disturbance amplitude during
the bubble bursting and recovery phase.

A final comment can be given on the characteristic timescales of the observed topolo-
gical changes in the LSB. As indicated by 〈ĥ〉 in figure 12d, increase of forcing amplitude
results in faster elimination of the LSB as well as increase of the duration of reverse
flow absence. Nonetheless, the phase at which the LSB recovers to its unperturbed state
(φ ≈ 0.45) seems to be independent of the forcing amplitude. This serves as an additional
indication that while the rapid and significant changes imparted on the topology and
shedding behaviour of the LSB are due to the initial effect of impulsive forcing, the
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Figure 15. Stability diagrams for selected phases and forcing amplitudes. Solid lines:
iso-contours of non-dimensional growth rate, −αi = −α̃iδ̃

∗. Dashed line: frequency of the most
unstable mode. Separation and reattachment points are noted with S and R, respectively.

recovery to the unperturbed state is driven by the global pressure gradient and the
amplitude of the natural incoming disturbances, which are constant for all tested cases.

5.2. Quasi-steady spatial stability

According to the analysis carried out in section 4.2, LST predictions (figure 9) suggest
that the most amplified instability mode in the unforced LSB manifests at a frequency
of approximately St = 0.038 (136Hz, k̃h̃s = 0.78). This is confirmed by the spectral
content (figure 8) where the band of amplified frequencies ranges from St = 0.022 (80Hz,
k̃h̃s = 0.62) to St = 0.047 (170Hz, k̃h̃s = 0.96). The results agree well with the findings of
similar studies, e.g. Häggmark et al. (2001), k̃h̃s = 0.88, Yang & Voke (2001), k̃h̃s = 0.98
and Simoni et al. (2012b), k̃h̃s = 0.98. In addition, as demonstrated in section 5.1,
the time interval from the disturbance introduction until full recovery of the LSB is
approximately δφ = 0.45, yielding an equivalent frequency of St = 1.2 × 10−3 (4.4Hz).
Due to this large separation of timescale between pertinent instability modes and global
topology changes in the LSB, the forcing cycle may be treated as a quasi-steady process
(Brevdo & Bridges 1997). In this manner, the statistical and stability properties at any
given phase are considered independent of the rate of change of bubble characteristics.

The assumption of quasi-steady behaviour allows performing LST analysis as formu-
lated in section 3.2, using phase-averaged streamwise velocity fields. Contours of growth
rates for three different forcing amplitudes and selected phases within the forcing cycle
are shown in figure 15. For φ = 0, the growth rate fields correspond to the unforced case
(figure 9a). In the following column (φ = 0.14), the bubble attains its smallest size or
is eliminated, depending on forcing amplitude. It is evident that the magnitude of the
maximum growth rate decreases for increasing forcing amplitude, indicating increase of
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Figure 16. (a) Maximum growth rate and (b) most unstable frequency at x̄h0 for different
forcing amplitudes as predicted by quasi-steady LST analysis. Quantities are normalised with
the respective unforced values.

stability of the LSB, supporting observations made in section 5.1. Similar behaviour is
observed for φ = 0.20, during the recovery phase.

The trend for different forcing amplitudes within the forcing cycle becomes more
evident by plotting the maximum growth rate at the streamwise location of the unforced
LSB mean maximum height, x̄h0 , with respect to phase (figure 16a). Here, with reference
to figure 12, it is noted that as the LSB recovers (φ > 0.2) growth rates are increasing.
In addition, LST calculations indicate that the frequency of the most unstable mode at
the same location (figure 16b) decreases with respect to its unforced LSB value during
the bubble recovery phase (0.1 < φ < 0.4), with a minimum achieved at φ ≈ 0.25. This
reduction, however, is relatively small (≈ 5%) compared to the respective reduction of
growth rate (≈ 25%), agreeing well with observations of Marxen et al. (2015).

As evident by the previous discussion, the change in mean bubble size and topology
has direct consequence on stability. Reduction of the bubble height and even complete
elimination of the reverse flow region results in more stable flow in LST terms. Further-
more, the effect of impulsive forcing on the integral properties of the boundary layer,
such as δ∗, θ and H, appears to follow similar trend as the growth rate and frequency
of most amplified mode (figure 14). The maximum growth rate as a function of the
corresponding shape factor at x̄h0

are, therefore, shown in figure 17a for all phases during
the recovery phase of the forcing cycle (0.1 < φ < 0.5) and all forcing amplitudes. For
ease of comparison the values are scaled with the respective values pertaining to the
unforced bubble.

It is apparent that all growth rates collapse on a monotonic, nearly-linear regression.
This indicates strong correlation between stability of the LSB and integral characteristics
of the boundary layer regardless of the forcing amplitude, as previously suggested
in the works of LeBlanc et al. (1989), van Ingen & Kotsonis (2011) and Boutilier
& Yarusevych (2012). The implication of this notion for both flapping and bursting
mechanisms is a consequence of altered stability characteristics due to the influence
of incoming perturbations on the bubble topology. If the perturbations are of small
amplitude and intermittent, as in the case of freestream disturbances, the LSB will
react with mild shape factor and stability variations leading to the observation of the
flapping phenomenon. In turn, introduction of a periodic disturbance at the most unstable
frequency or impulsive forcing, of amplitude higher than environmental disturbances,
may achieve reduction of flapping by pegging the stability characteristics, explaining the
observations of Dovgal & Boiko (1994). In the extreme case of a high amplitude impulsive
disturbance, the flow distorts to an extent that the LSB diminishes and by consequence
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Figure 17. (a) Maximum growth rate and (b) most unstable frequency for different forcing
amplitudes. Data are probed at x̄h0 and 0.1 < φ < 0.5 as a function of the local shape factor.
All quantities are normalised with the respective unforced values.

stabilises considerably. As a result, the shear layer breakdown onset location is forced
downstream (see figure 11), alleviating mixing benefits, and resulting in bubble bursting.
This confirms the observations of Marxen & Henningson (2011) regarding the bursting
process based on simulations where the flow becomes more stable by decreasing the
amplitude of numerical unsteady forcing.

Contrary to the growth rates, the frequency of the most unstable waves is not directly
proportional to the shape factor but demonstrates a parabolic variation (figure 17b).
In particular, the minimum value is achieved at φ ≈ 0.22. With reference to the trace
of the bubble length and height shown in figures 12c and 12d, this coincides with the
instant when these quantities temporarily assume their unforced value, followed by the
elongation due to bursting. The extremum in the frequency variation with shape factor
suggests a notable change in the boundary layer characteristics. Indeed, the inflection
point in the displacement thickness can be observed at the same time instant (φ ≈ 0.22)
in figure 14a.

5.3. Disturbance characteristics

The analysis performed in the preceding sections demonstrates the strong influence of
the impulsive disturbance on the LSB dynamic topology and stability. It is, therefore,
imperative to describe and quantify the disturbance evolution in order to close the
interaction loop. Complementary to figure 11, contours of Q-criterion (Hunt et al. 1988)
are shown in figure 18 for 0.026 < φ < 0.046. A set of three co-rotating vortices, labelled
Vp, Vu and Vd, dominates the flow field, downstream of which the Q-criterion detects
evidence of structures shed prior to the introduction of the impulse. Vp is the primary
vortex produced due to the introduction of the pulse as it can be traced to the streamwise
location of the actuator, x = 0, at φ = 0. Vd is induced by Vp shortly after the impulse
and becomes measurable when Vp has reached x ≈ 15. A tertiary weaker vortex, Vu,
emerges upstream of Vp closing the cascade. The streamwise distance between all three
vortices is initially approximately 9δ∗s , however, it gradually increases to 12δ∗s between
Vp and Vd, as Vd passes through the accelerated flow in the reattachment region. The
process closely resembles the wave packet sequence observed by Watmuff (1999). For
completing characterisation of this wave packet, analysis of its frequency, convective
speed and growth rate is performed.

Due to the highly transient nature of events, assessment of the frequency characteris-
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Figure 18. Q-criterion for Cµ = 1.6 × 10−4 at various phases. Dashed lines: displacement

thickness. Solid lines: displacement thickness based on reconstruction with Φ(1) and Φ(2).
Dash-dot lines: connect the vortex centroids (indicated by circles) at different time instants.
Square marker: location of probe used for extracting signal for wavelet analysis (figure 19).

tics of the disturbance cannot be performed via Fourier analysis. Instead, the wavelet
transform is employed as described in section 3.4, on the phase-averaged vorticity
signal. The disturbance is expected to affect the shape of the LSB as it convects,
thus, the probe location where vorticity is extracted takes into account the deformation
of the separated shear layer. Specifically, the probe’s streamwise location is fixed to
the location of mean maximum height of the unforced LSB, while the distance of the
probe from the wall is set to the displacement thickness at the corresponding phase.
In order to reduce the uncertainty in the probe location due to the passing wave
packet disturbance, displacement thickness is estimated on reduced order velocity fields,
reconstructed by considering POD modes Φ(1) and Φ(2). As demonstrated in section 3.3,
these modes capture the overall motion of the bubble disregarding shedding as well as
distortion of the shear layer due to the presence of the disturbance. A comparison between
the displacement thickness calculated based on the full phase-averaged signal and the
displacement thickness calculated on the reduced order signal (δ∗ro) is shown in figure
18. The location of the probe coinciding with the reduced order displacement thickness
is indicated by the square marker. The extracted vorticity signal and the corresponding
wavelet coefficients for forcing amplitude of Cµ = 1.6 × 10−4 are plotted in figure 19.
Peaks in the wavelet coefficient field indicate that the dominant frequency assumed by the
wave packet is approximately St = 0.037 (134Hz), which agrees with the most amplified
frequency of the unforced bubble, determined from velocity spectra and LST predictions
at the same streamwise position (section 4.2). It may be noted that the introduced
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Figure 19. (a) Signal of phase-averaged vorticity at x = x̄h and y = 〈δ∗ro〉 for Cµ = 1.6× 10−4.
(b) Normalised wavelet coefficients. Dashed line: connects the maxima at each phase.

disturbance frequency maintains approximately a constant value during all the phases
for which it is detected.

Though it is possible to obtain an approximation of the disturbance convective speed
by tracing the propagation of the vortex cores (figure 18), a more reliable approach is
followed based on integrating the phase-averaged wall-normal velocity component along
the y-direction. With this method, disturbance traces are detectable even at upstream
locations where the structures are still too weak to be detected by vortex identification
schemes. The result is shown on an x−φ diagram in figure 20a, for the case corresponding
to forcing amplitude of Cµ = 1.6 × 10−4. Two distinct sets of convective ridges are
identified. The first set is located in the interval 0 < φ < 0.08, spanning throughout the
entire streamwise extent and pertaining to the passage of the three structures induced
by the pulse (Vp, Vd and Vu, figure 18). The second set of convective ridges (φ > 0.2 and
x > 40) is the signature of the coherent vortex shedding in the aft part of the LSB, re-
established after the bursting process. Between these two regions in time (0.08 < φ < 0.2),
elimination of the LSB takes place, followed by cessation of vortex shedding associated to
the bursting process (see also figure 13), therefore, no clear convective ridges are observed.
The convective speed of the wave packet introduced by the impulsive forcing is directly
related to the slope of the dominant convective ridge (marked by the dashed line in figure
20a). The convective speed is found to be largely independent of the forcing amplitude
(figure 20b) with an average value of 0.46Ũ0, equal to estimations made on the unforced
bubble (section 4.2). This is in good agreement with LST analysis predictions as well as
the work of Rist & Maucher (2002) and Pröbsting & Yarusevych (2015).

Figure 20a provides an additional confirmation that the wave packet is convectively,
rather than globally unstable due to the lack of ridges with negative slope that would
otherwise signify upstream propagation of disturbances in the vicinity of the wall. Addi-
tionally, it is noteworthy that although data extraction is performed on phase-averaged
results, evident spatial and temporal coherence due to vortex shedding is observed in
the aft portion of the bubble during recovery (φ > 0.2). At these phases, the artificial
forcing wave packet has convected downstream and is no longer directly influencing the
bubble dynamics. Consequently, the aforementioned spatio-temporal coherence indicates
that bursting and the following recommencing onset of vortex shedding are associated
with nearly constant time scales with respect to the impulse instant. Given that incoming
disturbances during this phase intervals are effectively random, it follows that the onset of
vortex shedding in a LSB that has undergone bursting is deterministically synchronised
with the bursting and recovery process. This effect is not evident in the sequence
presented in figure 11. This can be attributed to the limited local resolution of PIV
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Figure 20. (a) Phase-streamwise location map of y-integral of wall-normal phase-averaged
velocity

(∫
〈v〉dy

)
for Cµ = 1.6 × 10−4. (b) Convective speed (uc) of forced disturbance for

tested forcing amplitudes. ◦: Measurements and � : corresponding LST predictions for the most
unstable mode at St = 0.043 (155Hz).

as well as insensitivity of the velocity curl to weak vortices. Nevertheless, the latter can
be discerned in figure 20a due to the employed integration in the wall-normal direction.

Quantification of the growth of the introduced disturbance is based on the extraction of
the phase-averaged wall-normal velocity fluctuating component, 〈v′〉 = 〈v〉−v̄, as it is not
significantly affected by global shear layer fluctuation. Each of the three dominant vortical
structures induced by the impulsive forcing (figure 18) features a region downstream
its core where fluid is displaced towards the wall. The location where the unique local
maximum magnitude of 〈v′〉 is reached within such region is recorded for phases in the
interval 0.02 < φ < 0.07, i.e. when the wave packet is within the FOV (figure 11).
Figure 21a depicts the resulting values. The magnitude of 〈v′〉 related to Vp increases
as the vortex convects, reaching its peak at approximately the mean maximum height
of the unforced LSB (x = 42). A similar process is observed further downstream for the
secondary vortex Vd, although the maximum point is not captured within the current
field of view. In contrast, the weaker vortex Vu induces notably lower 〈v′〉.

Comparison of the experimentally measured growth of the three individuated vortices
with quasi-steady LST is enabled by extracting LST growth rates at each phase for the
frequency determined through wavelet analysis (St = 0.037, 134Hz), shown as dashed
lines in figure 21b. It must be noted here, that as individual vortices convect through
the LSB, they experience a changing base velocity profile due to the global reduction
of bubble size (figure 12). As such, each vortex is traced at a given streamwise location
for each phase. A certain growth rate is predicted by LST for each pair of streamwise
location and phase values. Consequently, a composite growth rate is obtained for each
vortex by sliding through the phases and extracting the growth rate per streamwise
location and phase where the measured 〈v′〉 is locally maximised (i.e. at each phase
and corresponding streamwise location, a point is selected from the respective dashed-
line growth rate curve). The resulting composite growth rates correspond to the solid
lines of figure 21b. A composite amplification factor, Nc, may, therefore, be estimated by
integrating the composite growth rates (as per equation 3.3). Subsequently, amplification
factors of the experimentally measured disturbances are derived from the logarithmic
part of the same equation by setting Ã = 〈ṽ′〉. Defining Ã0 requires reformulating the left
hand side of equation 3.3 as Ã0 = Ã/eNc and utilising the measured induced velocity and
the aforementioned composite amplification factor at an arbitrary streamwise location
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Figure 21. Quasi-steady LST analysis for the case of Cµ = 1.6 × 10−4 in the phase interval
0.02 < φ < 0.07. (a) Points: magnitude of wall-directed 〈v′〉 due to forced wave packet. (b)

Dashed lines: Non-dimensional growth rates (−αi = −α̃iδ̃
∗) at the centre frequency determined

by wavelet analysis. Solid lines: Composite αi based on the maximum 〈v′〉 location at each
phase. (c) Points: N factor calculated from 〈v′〉. Solid lines: composite N factor calculated from
the composite αi.

(x = 30 for Vp,u and x = 40 for Vd). The constraint for this location selection is that 〈v′〉
be higher than the PIV measurement error (εv ≈ 2%).

The two sets of growth factors are plotted in figure 21c, where point markers and
solid lines correspond to measurements and quasi-steady LST respectively. Agreement
between the two methods is remarkable, even when the amplitude of the experimentally
measured disturbance is higher than the conventionally accepted threshold of 0.1%U0

for LST (e.g. Mack 1984; Reed et al. 1996). As discussed by Diwan & Ramesh (2009),
the success of LST estimations in LSBs is not fully understood. The good agreement
between the two analyses shown here suggests that rather weak non-linear effects come
into play for the investigated case, with little energy transferred between modes. This
is traced to the impulsive nature of the forcing and the exciting of a single dominant
mode, characterised by essentially constant frequency and convective speed within the
bubble. The above is further enhanced by the strong two-dimensionality of the considered
disturbance, pivoting on the inherent features of the plasma actuator (Kotsonis 2015).
Negligible non-linear interactions appear to take place in the case of the stronger vortex
Vp, for which LST predictions collapse on experimental measurements for the whole
streamwise extent. Contrary, for the cases of the induced Vd and Vu vortices, LST analysis
diverts from measured N values at higher amplitudes, implying more substantial non-
linear interactions.

It is important to note that, as the three identified vortices convect sequentially, they
experience the base flow profiles at slightly different phases (figure 18). Nevertheless, it is
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evident that the amplification factor of the two advancing vortices (Vp and Vd) increases
with the same rate (i.e. slope) until approximately the mean maximum height of the
unforced LSB (figure 21c). In contrast, the results for the trailing vortex (Vu), which
crosses the mean bubble last, indicate a notable change in growth rate slope, manifested
as a ‘kink’ in the N factor curve, at x ≈ 30 (figure 21c). Following figure 18, vortex
Vu is at this location at phase φ ≈ 0.05. Indeed, again with reference to figure 18, at
that instant, Vd has reached the aft part of the separation bubble. This suggests that
the stability characteristics of the separated shear layer remain largely invariant during
the convection of the forced wave packet. It is only when the introduced disturbance
first interacts with the reattachment region that stability characteristics of the bubble
are affected. The above, further reconcile with the hypothesis of a closed-loop feedback
between stability, breakdown onset location and amplification of incoming disturbances
suggested by Marxen & Henningson (2011).

5.4. Onset of the shear layer breakdown

Two essential features of the transitional dynamics and spatio-temporal evolution of
the LSB emerge from the so-far presented analysis. These are the proportionality of
the maximum growth rate to the shape factor irrespective of the incoming disturbance
amplitude (section 5.2, figure 17) and the indication that stability characteristics are
modified only when disturbances reach and interact with the reattachment region (section
5.3, figure 21). Both effects highlight the final stages of disturbance growth, turbulent
breakdown and reattachment as the key element of the closed feedback loop, governing
the flapping and bursting mechanisms.

In this section the temporal attributes of the transition process after convection of the
forced disturbances are investigated. As discussed in section 5.1, for the unforced LSB
the streamwise location where the shape factor is maximised may serve as a first order
approximation of the onset of shear layer breakdown (figure 6). A critical amplification
factor can be estimated at this streamwise position through LST, being equal to Ncrit =
7.7 (figure 9). In the forced LSB cases, at each phase, incoming disturbances perceive
the LSB at a certain stability state. The latter is modified as a disturbance convects
downstream due to the global topological changes induced by the bursting and subsequent
recovery of the bubble. This behaviour is expressed by the growth rate of the most
unstable mode calculated through quasi-steady LST analysis. This is visualised in the
x − φ plane by the contours of figure 22a. Evidently, any given disturbance convecting
through the domain will experience a local growth rate corresponding to both the current
streamwise location of the disturbance (x) and phase (φ). Based on this observation and
given the established nearly-constant convective speed of 0.46Ũ0 (figure 20), a composite
growth rate, −αicomp

, can be constructed for a given disturbance entering the domain at
phase φ. The trajectories of such disturbances through the x− φ plane (loci of −αicomp

)
are visualised by exemplary dashed lines in figure 22a, the slope of which is equal to
the convective speed. Composite growth rate curves are extracted only for disturbances
entering after the propagation of the wave packet (φ > 0.08).

A comparison is now performed between LST predictions for breakdown onset and
the experimental measurements. Direct estimations of the streamwise location where the
shape factor is maximised (i.e. onset of breakdown) may be done from the phase-averaged
velocity data (figure 11) and are marked by a dashed line in figure 22b. Additionally,
integration of the composite growth rates (figure 22a) provides compositeN factor curves,
Ncomp(x, φ), (as per equation 3.3). Subsequently, the value of Ncomp is extracted for each
phase at the x-location of maximum H. The result is traced by the solid line in figure
22 and is complementary to the observations analysed in section 5.1 and figure 11. It is
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Figure 22. Quasi-steady LST analysis for the case of Cµ = 1.6 × 10−4. (a) Growth rates

(−αi = −α̃iδ̃
∗) of mode with St = 0.043 (155Hz), with respect to phase and streamwise location.

Dashed lines: Loci of composite growth rates (−αicomp) for disturbances convecting at speed of

0.46Ũ0. (b) Dashed line: Evolution of the measured streamwise location of maximum shape
factor, x(max{H}); Solid line: LST-predicted N -factor at the streamwise location of maximum
shape factor calculated from αicomp ; Dash-dot line: End of the bursting process (φ ≈ 0.24).

evident that the convection of the initial forced wave packet over the aft portion of the
bubble (φ ≈ 0.1) is followed by a significant decrease in the amplification factor with
respect to its unforced LSB value (∼ 0.55Ncrit). The flow is, therefore, becoming more
stable, in line with the results of the analysis carried out in section 5.2.

6. Summary and concluding remarks

An experimental investigation of the spatial and temporal response of a laminar sepa-
ration bubble to impulsive forcing is carried out by means of time-resolved PIV and linear
stability theory. The LSB develops on a flat plate, driven by an imposed adverse pressure
gradient at a Reynolds number based on the separation point displacement thickness of
Reδ∗s = 1305. The aim is providing insight into both flapping and bursting mechanisms
of a short LSB by deterministically forcing the dynamics of the bubble. The selection
of impulsive forcing allows excitation of natural modes through selective amplification
(Gaster 1967) as well as further development of the flow in natural disturbance conditions.
Introduction of disturbances is spanwise and two-dimensional, achieved by means of an
AC-DBD plasma actuator, located just upstream of the mean separation point of the
unforced LSB. The forcing amplitude spans over two orders of magnitude when expressed
in terms of momentum coefficient and is varied by adjusting the DBD voltage. The forcing
of the bubble with well-separated impulsive pulses facilitates phase-averaged analysis.

Following its introduction, the impulsive disturbance undergoes convective amplifica-
tion as it propagates along the separated shear layer, evolving into a wave packet, similar
to the results of Watmuff (1999). Once the latter has convected past the reattachment
point, the LSB rapidly shrinks from both upstream and downstream sides. If the forcing
amplitude is sufficiently high, the separation bubble is completely eliminated. This rapid
process is followed by a gradual recovery in the bubble length similar to the bubble
bursting process. Recovery to the unperturbed state is shown to be achieved at the
same phase regardless of the forcing amplitude, further reconciling with the principle of
impulsive forcing.

The timescale difference between pertinent instability modes derived from LST analysis
and measured global topology changes of the LSB during the forcing cycle allow for
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treating the latter as a quasi-steady process (Brevdo & Bridges 1997). Pivoting on this
observation, LST calculations are performed on phase-averaged velocity fields. After the
elimination of the LSB, the amplification rate and the frequency of the predicted most
unstable mode are found to decrease with increasing forcing amplitude. The same trend
is followed by boundary layer integral quantities and, therefore, when the maximum
growth rate is compared to the shape factor, the two quantities collapse on a monotonic
linear regression for all forcing amplitudes. The aforementioned correlation confirms the
conjecture that both flapping and bursting mechanisms are driven by altered stability
characteristics due to the influence of incoming disturbances of different amplitude.
Contrary to the growth rate, the frequency of the most unstable wave is not monotonic
with respect to the shape factor but rather exhibits a parabolic relation.

Analysis of the wave packet produced by the impulse is performed for estimating
frequency, convective speed and growth rate. The transient nature of the disturbance
dictates the use of wavelet analysis for estimating the frequency of the wave packet.
As expected, the frequency assumed is equal to the LSB shedding frequency, both
from the comparison with velocity spectra and LST analysis of the unforced bubble.
The convective speed is determined to be constant regardless of the forcing amplitude
(0.46Ũ0). Regarding the wave packet amplification, a remarkable agreement between
measurements and LST is observed. The estimated growth of the vortices comprising
the wave packet is shown to change once they start interacting with the breakdown
region. This implies that stability changes ensue only when disturbances gain significant
amplitudes and affect the flow in the aft portion of the LSB.

Variation of stability due to interactions of disturbances with the shear layer breakdown
process stresses the necessity of investigating temporal attributes of the latter. The
convection of the wave packet is followed by a significant reduction of the amplification
factor, indicating flow stabilisation. At the same time, the breakdown onset location
where the shape factor is maximised shifts upstream.

In conclusion, experimental evidence has been provided for coupling incoming distur-
bances with the LSB shear layer breakdown location and, consequently, with changes in
stability characteristics towards flow stabilisation. This feedback loop serves as a ground
for both flapping and bursting mechanisms and is paramount for active flow control
realisation.
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